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Abstract. We consider families of quartic number fields whose normal closures over Q have Galois
group isomorphic toD4, the symmetries of a square. To any such fieldL, one can associate the Artin
conductor of the corresponding 2-dimensional irreducible Galois representation with imageD4. We
determine the asymptotic number of such D4-quartic fields ordered by conductor, and compute the
leading term explicitly as a mass formula, verifying heuristics of Kedlaya and Wood. Additionally,
we are able to impose any local splitting conditions at any finite number of primes (sometimes, at
an infinite number of primes), and as a consequence, we also compute the asymptotic number of or-
der-4 elements in class groups and narrow class groups of quadratic fields ordered by discriminant.

Traditionally, there have been two approaches to counting quartic fields, using arithmetic in-
variant theory in combination with geometry-of-number techniques, and applying Kummer theory
together with L-function methods. Both of these strategies fail in the case of D4-quartic fields or-
dered by conductor since counting quartic fields containing a quadratic subfield with large discrim-
inant is difficult. However, when ordering by conductor, we utilize additional algebraic structure
arising from the outer automorphism of D4 combined with both approaches mentioned above to
obtain exact asymptotics.

Keywords. Arithmetic statistics, Malle’s conjecture, analytic number theory

1. Introduction

The main purpose of this article is to determine the asymptotic number of quartic dihedral
fields with bounded conductor. If L denotes a quartic field whose normal closure M
over Q has Galois group Gal(M/Q) isomorphic to the group of symmetries of a square,
we refer to L as a D4-quartic field. Furthermore, there is a unique (up to conjugacy)
irreducible 2-dimensional Galois representation

ρM : Gal(Q/Q)→ GL2(C)
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that factors through Gal(M/Q) ∼= D4. We define the conductor of L to be equal to the
Artin conductor of ρM (see [7, pp. 158–159]).

Theorem 1. LetN (r2)
D4
(X) denote the number of isomorphism classes ofD4-quartic fields

with 4− 2r2 real embeddings and conductor bounded by X. Then

N
(0)
D4
(X) =

1
8
·

∏
p

(
1−

1
p2 −

2
p3 +

2
p4

)
·X logX +O(X log logX),

N
(1)
D4
(X) =

1
4
·

∏
p

(
1−

1
p2 −

2
p3 +

2
p4

)
·X logX +O(X log logX),

N
(2)
D4
(X) =

3
8
·

∏
p

(
1−

1
p2 −

2
p3 +

2
p4

)
·X logX +O(X log logX).

Understanding the distribution of number fields with fixed signature and Galois group is
a fundamental question in number theory with several significant applications. For ex-
ample, the inverse Galois problem follows from understanding the main terms for the
asymptotic number of field extensions of each fixed degree and Galois closure over a
given base field. Furthermore, if the results are refined enough to determine the asymp-
totic number of field extensions satisfying certain local specifications, then another appli-
cation of counting number fields is towards understanding the distribution of torsion in
class groups of number fields of fixed degree, i.e., to proving cases of the Cohen–Lenstra
heuristics [11] as well as the extensions given by Gerth [17], Cohen–Martinet [12], and
Malle [24].

There are heuristics (see [8, Conjecture 1.2]) for the order of growth for the number
of field extensions of each fixed degree and Galois closure over a given base field when
the extensions are bounded by their (norms of the relative) discriminants, due to Linnik,
Malle, and Türkelli. Linnik predicted that the number NSn(X) of Sn-degree-n number
fields with discriminant bounded by X satisfies NSn(X) ∼ cnX for some constant cn as
X→∞. Additionally, the heuristics of Malle [23] imply that the proportion of degree-n
fields with Galois closure Sn amongst all degree-n fields is expected to be 100% only
when n is a prime. Cohen, Diaz y Diaz and Olivier [9] verified a case of the strong Malle
conjecture in the quartic dihedral case by proving that the number of D4-quartic fields
with discriminant bounded by X is asymptotically equal to cX, where c ≈ .052326.

Cohen, Diaz y Diaz and Olivier [9] prove their result by determining the asymptotic
number of quadratic extensions of quadratic fields ordered by discriminant, a 100% of
which are D4-quartic fields. They show that the number of totally real D4-quartic fields
with absolute discriminant bounded by X is asymptotically equal to cX, where

c =
3
π2 ·

( ∑
[K:Q]=2

0<Disc(K)<∞

1
Disc(K)2

·
L(1,K/Q)
L(2,K/Q)

)
. (1)
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Our results imply that the number of totally realD4-quartic fields with conductor bounded
by X is asymptotically equal to a similar sum:

N
(0)
D4
(X) ∼

3
π2 ·

( ∑
[K:Q]=2

0<Disc(K)≤X

1
Disc(K)

·
L(1,K/Q)
L(2,K/Q)

)
·X. (2)

However, the methods to prove (1) and (2) vastly differ. When ordering by discriminant,
only the summation terms in (1) indexed by quadratic fields K of small discriminant
contribute to the main term of the asymptotics. However, when ordering by conduc-
tor, quadratic fields K in every range of the discriminant contribute to the main term.
In particular, we must evaluate the contribution coming from quadratic extensions L of
quadratic fields K where NmL/K(Disc(L/K)) is small relative to the discriminant of K .
As a consequence, the analytic methods used by [9] are insufficient in our case.

In addition to proving that (2) holds, we establish an explicit formula for the main
term of the asymptotic:

Theorem 2. We have the following:

∑
[K:Q]=2

0<Disc(K)≤X

1
Disc(K)

·
L(1,K/Q)
L(2,K/Q)

∼
ζ(2)

2
·

∏
p

(
1−

1
p2 −

2
p3 +

2
p4

)
· logX,

∑
[K:Q]=2

−X≤Disc(K)<0

1
|Disc(K)|

·
L(1,K/Q)
L(2,K/Q)

∼
ζ(2)

2
·

∏
p

(
1−

1
p2 −

2
p3 +

2
p4

)
· logX.

In conjunction with (2) (and the anologous statements for the non-totally-real splitting
types), Theorem 2 implies Theorem 1. We are also able to determine refined asymptotics
for families of D4-quartic fields with certain prescribed local specifications, but to de-
scribe these results, we must first introduce some notation.

We say that 6 = (6v)v is a collection of local specifications if for each place v of Q,
6v contains pairs (Lv,Kv) consisting of an étale algebra Lv of Qv of degree 4 along with
a quadratic subalgebra Kv . We say that such a collection 6 is acceptable if for all but
finitely many primes p, the set 6p contains all pairs (Lp,Kp) with conductor indivisible
by p2. Here, the conductor C of such a pair is equal to

C(Lp,Kp) := Disc(Lp)/Disc(Kp),

and we also let Cp denote the p-part of C. Such a collection 6 is said to be complete if
for each place v and each splitting type ς , the set 6v contains either all or none of the
pairs (Lv,Kv) having splitting type ς . If L(6) denotes all D4-quartic fields L such that
L ⊗ Qv ∈ 6v for all v, and ND4(6,X) denotes the number of isomorphism classes of
D4-quartic fields in L(6) whose conductor is bounded by X, we then have:
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Theorem 3. If 6 = (6v)v is an acceptable and complete collection of local specifica-
tions such that 62 contains every degree-4 étale algebra of Q2 containing a quadratic
subalgebra, then

ND4(6,X) ∼
1
2
·

( ∑
(L,K)∈6∞

1
# Aut(L,K)

)
·

·

∏
p

( ∑
(Lp,Kp)∈6p

1
# Aut(Lp,Kp)

·
1

Cp(Lp,Kp)

)(
1−

1
p

)2

·X logX,

where for all v, Aut(Lv,Kv) consists of the automorphisms of Lv which sendKv to itself.

In previous results of Gauss, Davenport–Heilbronn [14] and Bhargava [2, 4], the con-
stant cn of the main term of the asymptotic number of Sn-degree-n number fields (for
n ≤ 5) can also be explicitly given as a mass formula, i.e., the constants cn take the
form of an Euler product of local masses. In [3], Bhargava predicted the constants cn for
all n, explicitly describing them in terms of Euler products of local masses derived from
the heuristic assumption that the completions of Sn-degree-n number fields at different
places behave independently of one another. The constant determined in Theorem 3 is
completely analogous to the constants cn,6 predicted in [3, (4.2)]. However, the analo-
gous product of local masses forD4-quartic fields ordered by discriminant is not equal to
the constant c computed in [9]; in other words, the analogue of Theorem 3 when ordering
by discriminant is false!

The existence of mass formulae when ordering by invariants other than the discrimi-
nant has been studied by Kedlaya [20], Wood [29], and Johnson [18], building on work
of Mäki [22]. However, the question remains:

Question 4. Let G denote a finite group, and let C be a virtual conductor1 for G. A G-
number fieldK is a normal field extension of Q with Galois group Gal(K/Q) = G. Does
the product of local C-masses for the weighted number of G-étale algebras of Qp over
all places p predict the asymptotic number of G-number fields ordered by C?

This question for abelian G has been studied extensively by Wood in [31], in which a
sufficient condition for answering Question 4 in the affirmative is given for C. For non-
abelianG, the only conductorsC for which both the main term and the constant have been
explicitly obtained correspond to discriminant functions (see [14, 2, 4, 6]). On the other
hand, we show that the result of [9] in which D4-quartic fields are ordered by their dis-
criminants gives a negative answer to Question 4 (see (11)); however, Theorem 3 gives an
affirmative answer when ordering D4-fields by their (2-dimensional) conductors. More-
over, Theorem 3 is the first non-abelian case that answers Question 4 for a conductor C
that does not arise as a discriminant function. Overall, the choice of invariant appears to
be a subtle issue when determining asymptotics for families of G-number fields.

Theorem 3 allows us to compute the asymptotic number of order-4 elements in class
groups and narrow class groups of quadratic fields ordered by discriminant. Such elements

1 A virtual conductor for G is the Artin conductor for a virtual character of G.
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in the class groups of a quadratic field K determine D4-quartic fields L whose normal
closures over Q contain K as the fixed field of C4. We obtain the following theorem by
determining asymptotics for the acceptable collection ofD4-quartic fields that arise in this
manner, even when we restrict the set of quadratic fields by imposing local specifications
at a finite set of primes. We remark that it is crucial for the result below that we order
D4-quartic fields by conductor, and furthermore, that we can impose acceptable local
specifications at infinitely many primes.

Theorem 5. For a quadratic field K , let Cl2k (K) (resp. Cl+2k (K)) denote the 2k-torsion
subgroup in its ideal class group Cl(K) (resp. narrow class group Cl+(K)). Let K denote
a family of quadratic fields with prescribed splitting types at a finite set S consisting of
odd primes. Then

(a)
∑
K∈K

0<Disc(K)≤X

(# Cl4(K)− # Cl2(K)) ∼
1

16
·

∏
p∈S

mCl(p) ·
∏
p

(
1+

2
p

)(
1−

1
p

)2

·X logX,

(b)
∑
K∈K

−X≤Disc(K)<0

(# Cl4(K)− # Cl2(K)) ∼
1
4
·

∏
p∈S

mCl(p) ·
∏
p

(
1+

2
p

)(
1−

1
p

)2

·X logX,

(c)
∑
K∈K

0<Disc(K)≤X

(# Cl+4 (K)− # Cl+2 (K)) ∼
1
8
·

∏
p∈S

mCl(p) ·
∏
p

(
1+

2
p

)(
1−

1
p

)2

·X logX.
Here, mCl(p) is determined in terms of the prescribed splitting type for p ∈ S:

mCl(p) :=
2

p + 2
if p ramifies, mCl(p) :=

p

2p + 2
otherwise.

The above result is a generalization of work of Fouvry–Klüners [16] that is derived from
their own previous results [15] completely verifying Gerth’s extension [17] of the Cohen–
Lenstra heuristics to the 4-rank of the narrow class group of quadratic fields. In [15],
Fouvry–Klüners compute all moments for the 4-ranks of narrow class groups of quadratic
fields ordered by discriminant. In conjuction with those results, Theorem 5 gives evidence
towards the belief that the 4-ranks and the sizes of 2-torsion subgroups in class groups
and narrow class groups of quadratic fields behave independently (see Remark 9.6).

As a byproduct of the methods used to obtain (2), we also prove a refinement of
Theorem 2 that allows for imposing local specifications at a finite number of primes.

Theorem 6. Let K denote a set of quadratic fields with prescribed splitting types at a
finite set S of odd primes. Then

(a)
∑
K∈K

0<Disc(K)≤X

1
Disc(K)

·
L(1,K/Q)
L(2,K/Q)

∼
ζ(2)

2
·

∏
p∈S

m(p)

2p2 + 4p + 4
·

∏
p

(
1−

1
p2 −

2
p3 +

2
p4

)
· logX,
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(b)
∑
K∈K

−X<Disc(K)≤0

1
|Disc(K)|

·
L(1,K/Q)
L(2,K/Q)

∼
ζ(2)

2
·

∏
p∈S

m(p)

2p2 + 4p + 4
·

∏
p

(
1−

1
p2 −

2
p3 +

2
p4

)
· logX,

where m(p) is determined in terms of the prescribed splitting type for p ∈ S:

m(p) :=

p
2
+ 2p + 1 if p splits,

p2
+ 1 if p is inert,

2(p + 1) if p is ramified.

We next summarize the arguments for proving the main results. First, to establish Theo-
rem 2, we use the fact that for a quadratic field K , L(1,K/Q)

L(2,K/Q) can be written as a product
of infinite sums simply using Möbius inversion:

L(1,K/Q)
L(2,K/Q)

=

( ∞∑
n=1

χK(n)

n

)
·

( ∞∑
m=1

µ(m) ·
χK(m)

m2

)
, (3)

where χK is the quadratic character associated to K . The proof then relies on the fol-
lowing observation: weighting this product by Disc(K)−1, the main contribution when
summing over quadratic fieldsK with bounded discriminant as in (2) comes from certain
diagonal terms of the right hand side of (3), i.e., terms where mn is a square. For each K ,
the sum of these diagonal terms is expressible as an Euler product (see (21)), which then
yields Theorem 2.

If we were to instead weight the product in (3) by Disc(K)−2 when summing over
all quadratic fields K as in (1), then the non-diagonal terms are no longer negligible. It is
these terms that cause the constant c to fail Question 4; in fact, we show that the sum over
quadratic fields with discriminant bounded by X of the diagonal terms in the right hand
side of (3) weighted by Disc(K)−2 is asymptotically equal to

3 · 112

26 · 17
·

∏
p

(
1+

1
p2 −

1
p3 −

1
p4

)
·X,

which is equal to the mass formula predicted for the number of D4-quartic fields of
bounded discriminant (see Theorem 5.4).

Before discussing the proof of Theorem 1, we describe the differences in obtaining (2)
and (1) as in [9, Corollary 1.2]. Because of the convergence of

∑
K Disc(K)−2 when

K runs over all quadratic fields, the main contribution to the sum in (1) comes from the
terms indexed by K with Disc(K) < X1/2, i.e., quadratic fields with small discriminant
relative to X. However, this is not the case for the sum in (2); furthermore, the combina-
tion of Kummer theory and L-function methods utilized in [9] to prove (1) can only be
used to determine the asymptotic number of D4-quartic fields with conductor bounded
by X whose quadratic subfield has small discriminant relative to X (see Theorem 4.3).
Additionally, adapting the geometry-of-numbers techniques of [2] in combination with
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Wood’s parametrization of quartic rings with a quadratic subring [30] is also limited to
counting D4-quartic fields whose quadratic subfields have small discriminant.

Nevertheless, we obtain Theorem 1 and subsequently (2) by employing algebraic
properties of the conductor C(L) of a D4-quartic field L, namely that it is invariant under
the outer automorphism φ ofD4. More precisely, φ acts on the Galois group of the normal
closure M over Q of L, and the fixed field of φ(Gal(M/L)) is another D4-quartic field
φ(L) in M which is not isomorphic to L. The conductors of L and φ(L) coincide (even
though their discriminants do not). Moreover, we relate the discriminants of K and φ(K)
using the central inertia of L (see Definition 2.3). We prove (see Proposition 2.6)

|Disc(K)| > C(L)1/2 =⇒ |Disc(φ(K))| < C(φ(L))1/2,

and we use this phenomenon to obtain N (r2)
D4
(X) from the asymptotic number of D4-

quartic fields ordered by conductor whose quadratic subfield has small discriminant by
employing a simple sieve.

The proof of Theorem 1 does ultimately rely on both the analytic techniques of [9]
used to countD4-quartic fields by discriminant as well as the geometry-of-numbers meth-
ods used to count S4-fields as in [2]. Either can be used to obtain asymptotics for D4-
quartic fields of bounded conductor whose quadratic subfield has small discriminant, but
the sieve used to determine the asymptotics of N (r2)

D4
(X) from counting such D4-quartic

fields requires two ingredients: first, uniform error estimates on the number of such D4-
quartic fields having large central inertia, and second, asymptotics for the number of such
D4-quartic fields with prescribed ramification conditions. We are able to obtain the for-
mer using analytic methods and the latter using geometry-of-numbers techniques. This
method of proof allows us to count D4-quartic fields with prescribed splitting and ram-
ification conditions yielding Theorems 3 and 5. Additionally, Theorem 3 in conjunction
with Theorem 4.3 and p-adic density computations (see Proposition 6.7) implies Theo-
rem 6.

The analytic methods used to prove (2) show up frequently when studying asymp-
totics for the number of extensions of a family of number fields of fixed degree, including
when determining Malle’s conjecture for D4-octic fields ordered by discriminant, com-
puting the asymptotic number of S3-fields ordered by the radical of its discriminant, or
calculating the asymptotic number of octic fields with Galois group equal to the quater-
nion group ordered by its (2-dimensional) Artin conductor. Additionally, in order to attack
number field asymptotics for larger Galois groups as in the case of S6-sextic fields, utiliz-
ing algebraic inputs such as an outer automorphism in order to transfer problems of great
analytic difficulty to ones that can be approached using standard methods will be crucial.

This paper is organized as follows. First, we summarize basic arithmetic properties of
D4-quartic fields and their invariants in Section 2, including a table of the splitting be-
havior of primes inD4-quartic fields depending on their inertia and decomposition group.
We explicitly relate the conductors and quadratic discriminants of D4-quartic fields L
and φ(L). Next in Section 3, we further develop the method of [3, 20, 29] and simultane-
ously obtain heuristics for families ofD4-quartic fields ordered in multiple different ways.
We begin counting D4-quartic fields with bounded invariants in Section 4. Using the an-
alytic methods of [9], we obtain asymptotics for the number of such fields with small
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quadratic discriminant in terms of a sum of ratios of L-values. By isolating the diagonal
terms, we prove Theorem 2 in Section 5. In Section 6, we recall Wood’s parametrization
of quartic rings with a quadratic subrings and adapt it to obtain a modified parametriza-
tion of D4-quartic fields in terms of certain integral orbits of a coregular representation
V for a non-reductive group G. We study the p-adic properties of this representation, in-
cluding those arising from the outer automorphism φ. We then use geometry-of-numbers
methods in Section 7 to count integral orbits ofG on V having bounded invariants. Using
the results and methods from Sections 4, 6, and 7, we obtain crucial uniformity estimates
in Section 8 that will be necessary to carry out the various requisite sieves. Finally, in
Section 9, we prove the main theorems by using the analytic results of Sections 4, 7,
and 8, in conjunction with the algebraic properties of the outer automorphism φ proved
in Sections 2 and 6.

2. General properties of D4-quartic fields

Recall thatD4 denotes the order-8 group of symmetries of a square, and aD4-quartic field
is a degree-4 field extension of Q whose normal closure has Galois group D4 over Q. We
let σ denote a 90◦-rotation of a square and τ denote a reflection of a square so that

D4 = 〈σ, τ | σ
4
= 1, τ 2

= 1, τ−1στ = σ 3
〉.

The group D4 has non-trivial center Z(D4) = {1, σ 2
}.

2.1. Automorphisms of D4 and the Galois theory of D4-quartics

We first describe important group-theoretic properties of D4 as well as their applications
to D4-quartics via Galois theory. Recall that the inner automorphism group D4/Z(D4) is
isomorphic to the Klein four group V4, but the full automorphism group is isomorphic to
D4 (see [27, pp. 83–85]). The non-trivial outer automorphism φ of D4 has order 4 and
can be described explicitly by

φ(σ) = σ and φ(τ) = στ. (4)

Let L1 be aD4-quartic, and denote its normal closure byM so that Gal(M/Q) = D4.
Below, we describe a subfield diagram ofM corresponding to the subgroup lattice ofD4:

D4

〈τ, σ 2
〉 〈σ 〉 〈στ, σ 2

〉

〈σ 2
〉〈τ 〉 〈σ 2τ 〉 〈στ 〉〈σ 3τ 〉

{1}

Q

K1 K K2

LL1 L′1 L2L′2

M

(5)
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Here, a subgroup G of D4 and a subfield F of M in the same position are related by
Gal(M/F) = G. The fieldsL′i are the (unique) Galois conjugates ofLi for i = 1 or 2, and
L is the unique quartic Galois subfield ofM . While L1 and L2 are not conjugate, the outer
automorphism φ maps Gal(M/L1) → Gal(M/L2) and Gal(M/L′1) → Gal(M/L′2).
However, it sends Gal(M/L2) → Gal(M/L′1) and Gal(M/L′2) → Gal(M/L1). It also
interchanges Gal(M/K1) and Gal(M/K2) while leaving Gal(M/K) fixed.

Definition 2.1. If L1 is a D4-quartic with Galois closure M over Q, then we de-
note by φ(L1) the quartic subfield of M fixed by φ(Gal(M/L1)). If K1 denotes the
quadratic subfield of L1, then we denote by φ(K1) the quadratic subfield of M fixed
by φ(Gal(M/K1)).

In the notation of (5), we have φ(L1) = L2 and φ(K1) = K2.

2.2. Arithmetic of D4-quartics

We now describe the splitting behavior of primes inD4-octic fieldsM and their subfields.

Definition 2.2. If F is a number field, then the splitting type ςp(F ) at p of F satisfies

ςp(F ) = (f
e1
1 f

e2
2 . . .) ⇐⇒ OF /pOF

∼= Fpf1 [t1]/(t
e1
1 )⊕ Fpf2 [t2]/(t

e2)⊕ · · · .

Similarly, if R is a ring, then the splitting type ςp(R) at p is equal to (f e1
1 f

e2
2 . . .) if and

only if
R/pR ∼= Fpf1 [t1]/(t

e1
1 )⊕ Fpf2 [t2]/(t

e2)⊕ · · · .

Let Dp denote the decomposition group of p in Gal(M/Q), and let Ip denote the inertia
subgroup ofDp. For an arbitrary prime p, we determine the splitting type ofM and all of
its subfields using the notation described in (5) depending on the choices for Dp and Ip
in the table below.

We briefly recall how to compute the above table.2 First, any subgroup can potentially
be a decomposition group Dp. However, since all decomposition groups are only defined
up to conjugacy, in Table 1 we only enumerate conjugacy classes of subgroups. On the
other hand, the inertia group Ip must be a normal subgroup of Dp such that Dp/Ip is
cyclic of order prime to p. Moreover, if I ′p E Ip is the second ramification group (which,
by definition, is trivial if and only if the ramification is tame), then Ip/I ′p must be a product
of cyclic groups of order p. When the Galois group is equal to D4, this allows us to fully
enumerate the possibilities for pairs Ip E Dp.

To compute the entries of Table 1, let K ′ ≤ L′ ≤ M be a tower of number fields
with M normal over K ′. Let G = Gal(M/K ′) and let H = Gal(M/L′). Let p be a
prime ofK ′ and letDp be a decomposition group of p (defined up to conjugation) and let
Ip E Dp be the corresponding inertia group. Then the primes above p in L are in one-to-
one correspondence with the orbits ofDp onH\G. For a givenDp-orbit, the ramification

2 For more details, see Wood’s “How to determine the splitting type of a prime,” available at
https://math.berkeley.edu/∼mmwood/Splitting.pdf.

https://math.berkeley.edu/~mmwood/Splitting.pdf
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Table 1. Splitting type for a given decomposition and inertia group.

Ip Dp ςp(M) ςp(L1) ςp(K1) ςp(L2) ςp(K2) ςp(L) ςp(K)

{1} {1} (11111111) (1111) (11) (1111) (11) (1111) (11) U
nram

ified
L

acks
centralinertia

{1} 〈σ 2
〉 (2222) (22) (11) (22) (11) (1111) (11)

{1} 〈στ 〉 (2222) (22) (2) (112) (11) (22) (2)
{1} 〈τ 〉 (2222) (112) (11) (22) (2) (22) (2)
{1} 〈σ 〉 (44) (4) (2) (4) (2) (22) (11)

〈τ 〉 〈τ 〉 (12121212) (1211) (11) (1212) (12) (1212) (12)

Tam
e

〈τ 〉 〈τ, σ 2
〉 (2222) (122) (11) (22) (12) (1212) (12)

〈στ 〉 〈στ 〉 (12121212) (1212) (12) (1211) (11) (1212) (12)

〈στ 〉 〈στ, σ 2
〉 (2222) (22) (12) (122) (11) (1212) (12)

〈σ 〉 〈σ 〉 (1414) (14) (12) (14) (12) (1212) (11)

Tam
e

H
as

centralinertia

〈σ 〉 D4 (24) (14) (12) (14) (12) (22) (2)
〈σ 2
〉 〈σ 2

〉 (12121212) (1212) (11) (1212) (11) (1111) (11)
〈σ 2
〉 〈τ, σ 2

〉 (2222) (1212) (11) (22) (2) (22) (2)
〈σ 2
〉 〈στ, σ 2

〉 (2222) (22) (2) (1212) (11) (22) (2)
〈σ 2
〉 〈σ 〉 (2222) (22) (2) (22) (2) (22) (11)

〈τ, σ 2
〉 〈τ, σ 2

〉 (1414) (1212) (11) (14) (12) (1212) (12) W
ild〈στ, σ 2

〉 〈στ, σ 2
〉 (1414) (14) (12) (1212) (11) (1212) (12)

D4 D4 (18) (14) (12) (14) (12) (14) (12)

index e of the prime it corresponds to is the size of an Ip-orbit therein and the inertia
degree f is the number of such suborbits. (Note all such suborbits have the same size
since Ip is normal in Dp.) To compute all the values in Table 1, we have an example
script available at https://github.com/khwilson/D4Counting.

In Table 1, the first group consists of unramified splitting types, the second and third
groups consist of tamely ramified splitting types, and the fourth group consists of wildly
ramified splitting types. In particular, the splitting type of an odd prime p must appear
in the first three groups of Table 1. We distinguish between the tamely ramified splitting
types depending on whether the center 〈σ 2

〉 of D4 is contained in Ip.

Definition 2.3. We say that aD4-quarticL1 (or a pair (L1,K1) consisting of aD4-quartic
L1 and its quadratic subfield K1) has central inertia at p when Ip contains σ 2, or equiv-
alently when the pair (ςp(L1), ςp(K1)) is ((1212), (11)), ((22), (2)), or ((14), (12)).

Note that if M and K are as in (5), the extension M/K is ramified at a prime p if and
only if (L1,K1) has central inertia at p.

By analogy, we define splitting types at∞. If K is any quadratic field and L is any
quartic field, we write

ς∞(K) :=

{
(11) if K ⊗ R = R2,
(2) if K ⊗ R = C;

ς∞(L) :=


(1111) if L⊗ R = R4,
(112) if L⊗ R = R2

⊕ C,
(22) if L⊗ R = C2.

(6)

https://github.com/khwilson/D4Counting
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2.3. Invariants of D4-quartics

Next, we compare the Artin conductor of a D4-quartic L1 to the discriminant of L1 as
well as the products of the discriminants of certain subfields of the normal closure of L1.
Additionally, we define two fundamental invariants and a slightly refined conductor that
partially recovers the splitting type of L1 at∞.

If Gal(Q/Q) denotes the absolute Galois group of Q, and M is the normal closure
of L1 as in (5), then there is a (unique up to conjugacy) irreducible 2-dimensional Galois
representation

ρM : Gal(Q/Q)→ GL2(C)

that factors through Gal(M/Q). It arises as the composition of Gal(Q/Q)� Gal(M/Q)
and the unique 2-dimensional irreducible representation of D4 ∼= Gal(M/Q). We let
Cond(ρM) denote the Artin conductor of ρM . This invariant can be described in terms of
the discriminant of the quadratic subfield K1 and NmK1(Disc(L1/K1)), the image under
the norm map of K1 of the relative discriminant of L1 over K1:

Proposition 2.4. Let L1 denote a D4-quartic with normal closure M , and let K1 be its
quadratic subfield. Then

Cond(ρM) = |Disc(K1) · NmK1(Disc(L1/K1))|.

Proof. The proposition will follow from the fact that the representation IndD4
〈τ 〉 1 of D4

decomposes into a direct sum of IndD4
〈τ,σ 2〉

1 and the irreducible 2-dimensional represen-
tation of D4. To prove this fact, first note that each coset of 〈τ 〉 in D4 contains a unique
power of σ , so we can represent IndD4

〈τ 〉 in terms of the basis
〈
[1], [σ ], [σ 2

], [σ 3
]
〉
. We can

then decompose IndD4
〈τ 〉 1 = V1 ⊕ V2 where

V1 = 〈[1] + [σ 2
], [σ ] + [σ 3

]〉, V2 = 〈[1] − [σ 2
], [σ ] − [σ 3

]〉.

Since σ swaps the two basis elements of V1 while τ and σ 2 act trivially, V1 can be identi-
fied with IndD4

〈τ,σ 2〉
1. Furthermore, one can see that V2 is irreducible, and it is well-known

that there is a unique irreducible 2-dimensional representation of D4.
Now, if M is the normal closure of L1 as in (5) and ρ denotes the Galois represen-

tation constructed by composing IndD4
〈τ 〉 1 with Gal(Q/Q) � Gal(M/Q), then its Artin

conductor satisfies
Cond(ρ) = |Disc(L1)|.

We can compute Cond(ρ) as a product of the conductors of its subrepresentations: the
Galois representation IndD4

〈τ,σ 2〉
1 ◦ (Gal(Q/Q) � Gal(M/Q)) has conductor Disc(K1),

so we obtain
|Disc(L1)| = |Disc(K1)| · Cond(ρM).

The relative discriminant formula implies |Disc(L1)|=Disc(K1)
2 NmK1(Disc(L1/K1)),

and so we conclude the proposition. ut
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Definition 2.5. The (signed) conductor C(L1) of a D4-quartic L1 whose quadratic sub-
field is denoted by K1 is defined as

C(L1) :=
Disc(L1)

Disc(K1)
.

From the definition of the conductor and Proposition 2.4, it follows immediately that
two D4-quartics L1 and L2 with the same normal closure M have the same conductor.
Furthermore, if L1 has no central inertia, then C(L1) = Disc(K1) · Disc(φ(K1)). More
precisely, if L is a number field and p is a prime number, let Discp(L) denote the p-part
of the discriminant, and let Cp(L) be the p-part of the conductor. We then have:

Proposition 2.6. If L1 is a D4-quartic with quadratic subfield K1, then for all odd
primes p,

Cp(L1) =

{
p2
· Discp(K1) · Discp(φ(K1)) if Ip = 〈σ 2

〉,

Discp(K1) · Discp(φ(K1)) otherwise.

Proof. We refer to the notation described in (5), where φ(K1) = K2. Table 1 shows that
if Ip 6= 〈σ 2

〉, then Discp(K2) = NmK1(Discp(L1/K1)). Thus, Cp(L1) = Discp(K1) ·

Discp(K2). However, when Ip = 〈σ 2
〉, Table 1 implies that Discp(K1) = Discp(K2)

= 1, but NmK1(Discp(L1/K1)) = NmK2(Discp(L2/K2)) = p2. Thus, we find that
Cp(L1) = p

2
· Discp(K1) · Discp(K2). ut

We are now ready to define the two fundamental invariants of a D4-quartic.

Definition 2.7. If L1 is a D4-quartic with quadratic subfield K1, define the fundamental
invariants of L1:

q(L1) :=
Disc(L1)

Disc(K1)2
and d(L1) := Disc(K1).

Remark 2.8. For a D4-quartic L1, there is a global restriction on the integers q(L1)

and d(L1), namely that they are each congruent to 0 or 1 mod 4. Both of these are
due to (a generalization of) Stickelberger’s Theorem, though we note that |q(L1)| =

|NmK1(Disc(L1/K1))| requires carefully dealing with infinite places of relative discrim-
inants. See [25] for details.

Proposition 2.4 can be reformulated as

Cond(ρM) = |q(L1) · d(L1)| = |q(L2) · d(L2)|

for a D4-quartic L1 and L2 = φ(L1) as in (5). Define

J (L1) :=
C(L1)

Disc(K1) · Disc(φ(K1))
=

∣∣∣∣ q(L1)

d(φ(L1))

∣∣∣∣, (7)

and for a prime p, let Jp(L1) denote the p-part of J (L1). Proposition 2.6 determines that
for an odd prime p, Jp(L1) is equal to p2 if and only if the inertia group Ip at p is equal
to 〈σ 2

〉 ⊂ D4. Note that it is always true that J (L1) = J (φ(L1)). Furthermore, it will
not be necessary in what follows to compute J2; it will be enough that J2 is absolutely
bounded.
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3. Heuristics for counting D4-quartics by conductor

In [3], Bhargava developed heuristics for the asymptotics of the number of Sn-fields of
degree n ordered by discriminant. The framework used to formulate these heuristics was
expanded by Kedlaya [20] for families of Galois representations ordered by their Artin
conductor. Additionally, Wood [29] predicted asymptotics (including mass formulae for
the constants) for fixed-degree families of number fields whose normal closures have a
fixed Galois group when such fields are ordered by invariants including the conductor.
In this section, we adapt their heuristics to the family of D4-quartics ordered by our two
fundamental invariants, q and d (see Definition 2.7). We recover the predictions in [29]
for the number of D4-quartics ordered either by conductor or discriminant, and we ad-
ditionally verify that the conjectured mass formula when ordering by discriminant is not
equal to the constant c determined by Cohen, Diaz y Diaz and Olivier in [9].

3.1. The expected number of D4-quartics with fixed fundamental invariants

Let v be a place of Q, and let Kv ⊂ Lv be étale algebras of Qv of degrees 2 and 4,
respectively. When v corresponds to a finite prime p (resp. infinity), we say that such
a pair (Lv,Kv) is compatible with a pair of integers (q, d) if the p-parts (resp. signs)
of NmKv (Disc(Lv/Kv)), the norm in Qv of the relative discriminant of Lv over Kv ,
and Disc(Kv), the discriminant of Kv , agree with the p-parts (resp. signs) of q and d,
respectively. Note that when q > 0, d can be positive or negative; however, when q < 0,
d must be positive, otherwise no such compatible pairs (L∞,K∞) exist.

Given a place v of Q and integers q and d, let 6v(q, d) denote the set of pairs of Qv-
algebras (Lv,Kv) that are compatible with (q, d). Let the weighted local mass Ev(q, d)
be defined by

Ev(q, d) :=
∑

(Lv,Kv)∈6v(q,d)

1
# Aut(Lv,Kv)

,

where Aut(Lv,Kv) is the group of automorphisms of Lv that restrict to endomorphisms
of the subalgebra Kv . The following result evaluates Ev(q, d) for all places v.

Proposition 3.1. (1) If q and d are non-zero, then E∞(q, d) = 1/4 when at least one
of q or d is positive.

(2) If v corresponds to an odd prime p, then Ep(q, d) is non-empty if and only if the
p-parts of (q, d) are one of (1, 1), (p, 1), (p2, 1), (1, p), or (p, p). In each case, we
have Ep(q, d) = 1.

(3) The values of E2(q, d) are given below.

Proof. The proof is by direct computation. For p = ∞, the result is immediate. For p
odd, we note that as there is no wild ramification, the computation of q and d depends
only on the Galois decomposition, and the inertia groups of the component fields of Kv
and Lv . However, it turns out this enumeration depends only on whether p ≡ 1 (mod 4).

Explicitly, for odd primes p, Kummer theory implies that the quadratic extensions of
a p-adic field K are in one-to-one correspondence with the non-trivial square classes
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Table 2. The value of E2(q, d).

q d = 1 d = 22 d = 23

1 1 1 2
22 1 1 2
23 2 — —
24 2 2 4
25 2 4 8
26 4 — —

K×/(K×)2. Combining this with Hensel’s Lemma, we conclude that for each odd
prime p, there are exactly three possible quadratic extensions of any p-adic field K cor-
responding to adjoining the square root of u, π , and uπ , where u is a (lift of a) quadratic
non-residue in OK and π is a uniformizer.

For odd primes, this implies that there are up to 3 × 3 = 9 possible quartic fields Lv
which could be extensions of Kv . However, many of these fields are actually isomorphic
as fields over Qp. The number of possible isomorphism classes (and their associated
automorphisms, decomposition groups, and inertia groups) turns out to only depend on
the value of p mod 4.

Explicitly, the unramified quadratic extension K0 of Qp has three quadratic exten-
sions, one of which is Qp(

√
u′) where u′ is a quadratic non-residue inK0; it is unramified

and has Galois group C4. Another is Qp(
√
u,
√
p); it is a C2

2 field with decomposition
group equal to the inertia group that fixes K0. The final extension is Qp(

√
u′p); it is

ramified and has Galois group C4 and decomposition group equal to the inertia group
C2 ≤ C4.

This leaves 2 × 2 = 4 possible quartic extensions of Qp. Hensel’s Lemma directly
implies that the possible fields are Qp( 4

√
p), Qp( 4

√
4p), Qp( 4

√
−2p), and Qp( 4

√
−8p).

If p ≡ 1 (mod 4) then x4
− 1 has four distinct roots in the residue field Fp of Zp and

the above fields are distinct, each with Galois group, decomposition group, and inertia
group C4. On the other hand, when p ≡ 3 (mod 4), x4

− 1 has two solutions, and none
of these fields is Galois and thus they are D4-fields. The fields Qp( 4

√
x) and Qp( 4√

−4x)
are isomorphic. The decomposition group is all of D4 and the inertia group the rotation
subgroup 〈σ 2

〉.
At p = 2, the number of quartic extensions of Qp is much larger, and wild ramifi-

cation makes the computation of q and d much more complicated. However, a database
of local fields, e.g., [21, 19], can be used. The details of the computation can be found at
http://github.com/khwilson/D4Counting. ut

The framework in [3, 29] depends on the basic heuristic assumption that for a family of
number fields of fixed degree and fixed associated Galois group, the completions at dif-
ferent places behave independently of one another. This implies that the expected number
of such number fields having given invariants is equal to the infinite product over all
places v of Q of the weighted number of local extensions of Qv that are compatible with
those invariants. More precisely:

http://github.com/khwilson/D4Counting
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Assumption 3.2. If E(q, d) denotes the expected number of isomorphism classes of D4-
quartics with fundamental invariants equal to q and d, we assume

E(q, d) =
1
2
· E∞(q, d) ·

∏
p

Ep(q, d). (8)

The extra factor of 1/2 above arises from two issues: (1) there is a global restriction on the
invariants q and d (see Remark 2.8), which occurs 1/4 of the time, and is not taken into
account by the local masses, and (2) the product of the local masses Ev(q, d) determines
the expected weighted number ofD4-quartics with invariants q and d, where aD4-quartic
L is weighted by # Aut(L)−1

= 1/2.

3.2. Predictions for the global distribution of D4-quartics using double Dirichlet series

To determine the asymptotics of
∑
E(q, d), we study the behavior of the double Dirichlet

series
ξ(s, t) :=

∑
d

∑
q

E(q, d)
|q|s |d|t

,

which converges absolutely for s, t > 1. Since there are three possible sign configura-
tions for the pair (q, d) of integers, the archimedean contribution to ξ(s, t) is exactly 3/4.
Additionally, 2 · E(q, d) is multiplicative with respect to both q and d, and so it follows
from Proposition 3.1 that ξ(s, t) can be expressed as

ξ(s, t) =
3
8
·

∏
p

ξp(s, t),

where

ξp(s, t) = 1+
1
ps
+

1
p2s +

1
pt

(
1+

1
ps

)
when p is odd, and

ξ2(s, t) = 1+
1

22s +
2

23s +
2

24s +
2

25s +
4

26s +
1

22t

(
1+

1
22s +

2
24s +

4
25s

)
+

2
23t

(
1+

1
22s +

2
24s +

4
25s

)
.

Define the correction factor at 2 to be

ξ̃2(s, t) := ξ2(s, t)/

(
1+

1
2s
+

1
22s +

1
2t

(
1+

1
2s

))
.

We can rewrite ξ(s, t) as

ξ(s, t) =
3
8
· ξ̃2(s, t) ·

∏
p

(
1+

1
ps
+

1
p2s +

1
pt

(
1+

1
ps

))
=

3
8
· ξ̃2(s, t) · ζ(s) · ζ(t) ·

∏
p

(1− p−2t
− p−t−2s

− p−3s
+ p−2t−2s

+ p−t−3s).
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Therefore, the function ξ(s, t) is holomorphic in the region t > 1/2, s > 1/3 aside from
poles at the lines s = 1 and t = 1.

3.3. Heuristics

We now consider families ofD4-quartics under different orderings. IfX and Y are positive
real numbers going to infinity, letEq,d(X, Y ) denote the expected number of isomorphism
classes of D4-quartics L such that |q(L)| < X and |d(L)| < Y , i.e.

Eq,d(X, Y ) :=
∑
|q|<X
|d|<Y

E(q, d).

Then, by computing the residue of ξ(s, t) at (1, 1), we obtain the heuristic

Eq,d(X, Y ) ∼
3
8
·

∏
p

(
1−

1
p2 −

2
p3 +

2
p4

)
·X · Y. (9)

Here, the correction factor ξ̃2(1, 1) is 1. Note that this heuristic only relies on Assumption
3.2. If we were to take (8) as a definition, then we have completely verified the main term
(9), and we can additionally obtain a power saving.

Heuristics for the family of D4-quartics ordered by conductor.

Next, we consider the family of D4-quartics ordered by conductor. Let EC(X) denote the
expected number of isomorphism classes of D4-quartics L such that |C(L)| < X. If we
let E(C) denote the expected number of D4-quartics with conductor C, then∑

C

E(C)
|C|s

= ξ(s, s)

since C(L) = q(L)d(L). The function ξ(s, s) has a double pole at 1 and, by computing
its residue, we obtain

EC(X) ∼
3
8
·

∏
p

(
1−

1
p2 −

2
p3 +

2
p4

)
·X logX. (10)

The correction factor at 2 is again ξ̃2(1, 1) = 1.

Heuristics for the family ofD4-quartics ordered by discriminant. Finally, we consider the
family ofD4-quartics ordered by discriminant. Let EDisc(X) denote the expected number
of isomorphism classes of D4-quartics L such that |Disc(L)| < X. If we let E(Disc)
denote the expected number of D4-quartics L with discriminant Disc, then∑

Disc

E(Disc)
|Disc|s

= ξ(s, 2s)
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since Disc(L) = q(L)d(L)2. The function ξ(s, 2s) has a simple pole at 1 and, by com-
puting the residue, we obtain

EDisc(X) ∼
3 · 112

26 · 17
·

∏
p

(
1+

1
p2 −

1
p3 −

1
p4

)
·X. (11)

In this case, the correction factor at 2 is ξ̃2(1, 2) = 112/(17 · 23).
Cohen, Diaz y Diaz and Olivier showed in [9, Proposition 6.2] that the number of

D4-quartics having discriminant bounded by X is ∼ cX where c ≈ 0.052, whereas the
constant on the right hand side of (11) is ≈ 0.406. This implies that when ordering D4-
quartics by discriminant, the completions of such fields at different primes do not behave
independently of one another in the sense of [3], and so Assumption 3.2 does not hold.

4. Counting D4-quartics using analytic methods

In this section, we obtain asymptotics for the number of D4-quartics, ordered by conduc-
tor, whose quadratic subfield has small discriminant, following the methods of Cohen,
Diaz y Diaz and Olivier [9] where similar asymptotics for the number of suchD4-quartics
ordered by discriminant are determined. By refining their arguments, we are able to count
D4-quartics of bounded conductor whose quadratic subfields have small discriminant and
satisfy a prescribed set of splitting conditions at a finite number of primes. We begin with
a few definitions before giving the precise statement of the main theorem of the section.

Definition 4.1. If K is a quadratic field and L is a quadratic extension of K , define the
conductor of the pair (L,K) as

C(L,K) :=
Disc(L)
Disc(K)

. (12)

If L is aD4-quartic andK denotes its (unique) quadratic subfield, then C(L,K) = C(L).
We refine the notion of a collection of local specifications described in the intro-

duction. Let 6full
v = {(ςv(L), ςv(K))} be the set of all pairs consisting of a possible

splitting type for a place v in a D4-quartic L and a consistent splitting type at v for its
quadratic subfield K . We refer to a collection 6 = (6v)v as a set of local specifications
if 6v ⊆ 6full

v for each v.

Definition 4.2. A set 6 = (6v)v of local specifications is stable if for every prime p
and every quadratic splitting type ς ′p (equal to either (11), (2), or (12)), the set 6p either
contains all possible pairs (∗, ς ′p) or none of them.

Additionally, we denote by L(6) the set of D4-quartics L with quadratic subfield K
such that (ςv(L), ςv(K)) ∈ 6v for all v. Similarly, let K(6) denote the set of quadratic
subfields of L(6). Note that when 6 is stable, the set L(6) consists of all D4-quartics
that are quadratic extensions of all the fields in K(6).
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For a set 6 of local specifications, let NC(6;X, Y ) be the number of isomorphism
classes of D4-quartics L ∈ L(6) such that |C(L)| < X and |d(L)| < Y . Addition-
ally, set NC(X, Y ) := NC(6

full
;X, Y ). In this section, we compute asymptotics for

NC(6;X,X
β) when 6 is stable and β < 2/3. More precisely, our goal is to prove the

following theorem:

Theorem 4.3. Let 6 be a stable set of local specifications. Then, for every β < 2/3, we
have

NC(6;X,X
β) =

1
2ζ(2)

·

( ∑
K∈K(6)

|Disc(K)|<Xβ

L(1,K/Q)
L(2,K/Q)

·
2−r2(K)

|Disc(K)|

)
·X + oβ(X),

We do so by first demonstrating that the number of quadratic extensions of quadratic num-
ber fields that are notD4-quartic fields is negligible, so we can computeNC(6;X,X

β) in
terms of these towers of quadratic extensions. In [9], the authors define a Dirichlet series
for each quadratic field K whose residue at s = 1 is shown to be the number of quadratic
extensions of K . We then carry out a smooth count for the quartic fields in L(6) that
are quadratic extensions of K and subsequently obtain the theorem by summing over all
K ∈ K(6).

4.1. Quadratic extensions of quadratic number fields

If L is a quadratic extension of a quadratic field K , then either L is a D4-quartic or it is
Galois with Gal(L/Q) = C4 or V4. In the following lemma, we prove a bound for the
number of pairs (L,K) having bounded conductor, where L is a Galois quartic field and
K is a quadratic subfield of L having small discriminant.

Lemma 4.4. Let β < 1 be fixed. The number of pairs of (L,K), where L is a Galois
quartic field, K is a quadratic subfield of L, C(L,K) < X, and |Disc(K)| < Xβ is
bounded by Oε(X(1+β)/2+ε).

Proof. Let (L,K) be a pair satisfying the conditions of the lemma. By the relative dis-
criminant formula, we have

|Disc(L)| = |Disc(K) · C(L,K)| < X1+β .

It is known from [10, §§2.4–2.5] that the number of Galois quartic fields whose dis-
criminant has absolute value less than X is bounded by Oε(X1/2+ε). The lemma follows
immediately. ut

For stable 6, we can thus prove Theorem 4.3 by counting the number of quadratic exten-
sions over quadratic fields in K(6) whose relative discriminants have bounded norm. To
this end, we consider the Dirichlet series 8K,2(s) = 8K,2(C2, s) defined in [9] for any
number field K as

8K,2(s) :=
∑
[L:K]=2

1
NmK(Disc(L/K))s

.



The number of D4-fields ordered by conductor 2751

It is proved in [9, Theorem 1.1] that

8K,2(s) = −1+
2−r2(K)

ζK(2s)
·

∑
c|2

NmK(2/c)
NmK(2/c)2s

·

∑
χ∈Cl(K,c2)∨

LK(s, χ),

where r2(K) denotes the number of pairs of complex embeddings of K , c runs over all
integral ideals of K dividing 2, χ runs over all quadratic characters of the ray class group
modulo c2, and LK(s, χ) is the L-function of K for χ . It is also proven in [9, Corol-
lary 1.2] that the rightmost pole of 8K,2(s) is at s = 1 with residue

Ress=18K,2(s) =
2−r2(K)

ζ(2)
·
L(1,K/Q)
L(2,K/Q)

. (13)

We can then obtain “smooth counts” of the number of quadratic extensions of quadratic
fields K:

Lemma 4.5. Let ϕ be a smooth compactly supported function ϕ : R≥0 → R≥0. If K is
quadratic, then

∑
[L:K]=2

ϕ

(
|Disc(K) · NmK(Disc(L/K))|

X

)
= Vol(ϕ) · Ress=18K,2(s) ·

X

|Disc(K)|
+Oε,ϕ(2ω(Disc(K))

|Disc(K)|−1/4+εX1/2+ε),

where ω(d) denotes the number of prime divisors of d, and Vol(ϕ) denotes
∫
ϕ(t) dt .

Proof. Let ϕ̃ denote the Mellin transform of ϕ. By Mellin inversion, the left hand side of
the above equation is equal to

1
2πi

∫
Re(s)=2

ϕ̃(s) ·
Xs

|Disc(K)|s
·8K,2(s) ds.

Shifting the line of integration to Re(s) = 1/2 + ε, we pick up the main term from the
pole at 1 since ϕ̃(1) = Vol(ϕ). The error term follows by using the convexity bound
of Oε(|Disc(K)|1/4+ε) near s = 1/2 at each of the O(2ω(Disc(K))) L-functions used to
define 8K,2(s). ut

The next lemma, whose proof is very similar to that of Lemma 4.5, gives a bound when
imposing ramification on the quadratic extensions of a fixed quadratic field K and will
only be used in §8:

Lemma 4.6. If K is a quadratic field and f is a squarefree product of prime ideals in K ,
then the number of quadratic extensions L overK such that NmK(Disc(L/K)) < X and
every prime dividing f ramifies in L is bounded by

Oε

(
L(1,K/Q)

Nm(f)
·X +

|Disc(K)|−1/4

Nm(f)1/2
·X1/2+ε

)
.
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Proof. We can (and do) assume that f is odd. Since an upper bound for the number of
quadratic extensions ofK can be obtained with a smooth sum, we proceed as in the proof
of Lemma 4.5. The only difference is that we use, instead of8K,2(s), the Dirichlet series
8K,2,f(s) corresponding to extensions L of K that are ramified at every prime dividing f:

8K,2,f(s) :=
∑
[L:K]=2

L ramified at f

1
NmK(Disc(L/K))s

= − 1+
2−r2(K)

ζK(2s)
·

∑
c|2

NmK(c)
2s−1
·

∑
χ∈Cl(K,c2)∨

( ∑
a squarefree
(a,c)=1, f|a

χ(a)

NmK(a)s

)
,

where the notation is as in the definition of8K,2(s). Since the residue of8K,2,f(s) at 1, its
rightmost pole, is� L(1,K/Q)/Nm(f), the lemma follows from an argument identical
to the proof of Lemma 4.5. ut

4.2. Proof of Theorem 4.3

We are now ready to prove the main result of this section. From Lemma 4.4, it follows
that we may estimate NC(6;X,X

β) by counting quadratic extensions L of quadratic
fields K . Let χ[0,1] denote the characteristic function of [0, 1]. Then

NC(6;X,X
β) =

1
2

∑
K∈K(6)

|Disc(K)|<Xβ

∑
[L:K]=2

χ[0,1]

(
|Disc(K) · NmK(Disc(L/K))|

X

)
. (14)

The factor of 1/2 on the right hand side of (14) is to account for the fact that a D4-
quartic L and its conjugate L′ both contribute to the inner sum, while the left hand side
of (14) counts D4-quartics up to conjugacy.

For ε > 0, choose ϕ± to be smooth compactly supported functions such that ϕ± −
χ[0,1] takes values in R± and Vol(ϕ±) = 1 ± ε. Lemma 4.5 together with (13) implies
that ∑

K∈K(6)
|Disc(K)|<Xβ

∑
[L:K]=2

ϕ±
(
|Disc(K) · NmK(Disc(L/K))|

X

)

=

∑
K∈K(6)

|Disc(K)|<Xβ

1± ε
ζ(2)

·
L(1,K/Q)
L(2,K/Q)

·
2−r2(K)

|Disc(K)|
·X

+Oε

( ∑
K∈K(6)

|Disc(K)|<Xβ

|Disc(K)|−1/4+εX1/2+ε
)
.

In the above equation, the left hand side corresponding to ϕ+ (resp. ϕ−) is an upper bound
(resp. lower bound) for NC(6;X,X

β). Meanwhile the error term on the right hand side
is bounded by Oε(X1/2+3β/4+ε), which, when β < 2/3, is bounded by o(X). Therefore,
Theorem 4.3 follows by letting ε tend to 0. ut
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Remark 4.7. We note that standard analytic methods (namely, Perron’s formula in con-
junction with hybrid (sub)convexity bounds on the growth of Hecke L-functions in the
critical strip) yield a power saving in the error bound in Theorem 4.3. However, we do
not include the arguments since they will not be necessary for the results of this paper.

5. Mass formulae for families of D4-quartics

We now turn to the proof of Theorem 2. In the previous section, the constant in the asymp-
totic number of D4-quartics with bounded conductor whose quadratic subfield has small
discriminant was determined as a sum of L-values. In §§5.1–5.2, we prove an identity
relating the constant in Theorem 4.3 to an Euler product matching the predicted mass
formula described in §3.3 by proving that the main contribution to the sum on the right
hand side of Theorem 4.3 comes from certain diagonal terms. Finally, in §5.3, we study
the family of D4-quartics ordered by discriminant, and we prove an interesting identity
between the analogous diagonal terms and the heuristic predicted by (11).

5.1. Isolating the diagonal terms in Theorem 4.3

We first prove a lemma that will be used in bounding the non-diagonal terms when we
calculate the sum of L-values that appear in Theorem 4.3 in terms of a weighted Möbius
sum.

Lemma 5.1. For any ε > 0,

∑
0<D<X

D squarefree

1
D
·

( ∞∑
m=1

D1/2+ε∑
n=1
mn 6=�

µ(m)

m2n

(
D

mn

))
= Oε(1),

where ( ·
·
) denotes the Legendre symbol.

Proof. The m-sum is absolutely convergent, so we will focus on the n- and D-sums.
Interchanging the n- and D-sums yields∑

0<D<X
D squarefree

1
D
·

∑
n<D1/2+ε

mn 6=�

1
n

(
D

mn

)
=

∑
n<X1/2+ε

mn 6=�

1
n
·

∑
n

2
1+2ε <D<X
D squarefree

1
D

(
D

mn

)
. (15)

We will now apply a simple squarefree sieve to complete the D-sum and then use the
Pólya–Vinogradov inequality to finish the estimate. In particular, we can rewrite (15) as∑

n<X1/2+ε

mn 6=�

1
n
·

( ∑
α<n

1
1+2ε

(
µ(α)

α2 ·
∑

n
2

1+2ε ≤α2d<X

1
d
·

(
α2d

mn

))

+

∑
n

1
1+2ε ≤α<X1/2

(
µ(α)

α2 ·
∑

n
2

1+2ε ≤α2d<X

1
d
·

(
α2d

mn

)))
.
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Thus, (15) is bounded by

�

∑
n<X1/2+ε

mn 6=�

1
n
·

( ∑
α<n

1
1+2ε

1
α2 ·

∣∣∣∣ ∑
α−2n

2
1+2ε ≤d<α−2X

1
d
·

(
α2d

mn

)∣∣∣∣
+

∑
n

1
1+2ε <α<X1/2

1
α2 ·

∣∣∣∣ ∑
d<X/α2

1
d
·

(
α2d

mn

)∣∣∣∣)

�

∑
n<X1/2+ε

mn 6=�

m1/2 log(n)

n1/2+ 1
1+2ε

= Oε(m
1/2).

The last equality follows from the fact that for ε sufficiently small, 1
2 +

1
1+2ε >

3
2 −

1
1000 ,

so
∞∑
n=1

log(n)

n
1
2+

1
1+2ε
= Oε(1).

The lemma then follows from the absolute convergence of
∑
m−3/2. ut

The next result is the key input in obtaining the mass formula. Using Lemma 5.1, we
rewrite the sum of L-values appearing in Theorem 4.3 in terms of a weighted Möbius
sum that we will later show is equal to an Euler product. When ordering D4-quartics by
discriminant, there is no known analogue to Proposition 5.2.

Proposition 5.2. We have∑
[K:Q]=2

0<Disc(K)<X

L(1,K/Q)
L(2,K/Q)

·
1

|Disc(K)|

=

∑
[K:Q]=2

0<Disc(K)<X

1
|Disc(K)|

·

∑
0<a,b<∞

(Disc(K),ab)=1

µ(a)

a3b2 + O(1),

∑
[K:Q]=2

−X<Disc(K)<0

L(1,K/Q)
L(2,K/Q)

·
1

|Disc(K)|

=

∑
[K:Q]=2

−X<Disc(K)<0

1
|Disc(K)|

·

∑
0<a,b<∞

(Disc(K),ab)=1

µ(a)

a3b2 + O(1).

(16)

Proof. Let χK denote the quadratic character associated with K by class field theory so
that L(1,K/Q) =

∑
∞

n=1 χK(n)/n. From the absolutely convergent Euler product, it is
straightforward to see that L(2,K/Q) > (ζ(4)/ζ(2))2 > 0, and hence 1/L(2,K/Q)
is uniformly bounded independently of K . Using partial summation and the Pólya–
Vinogradov inequality, for any ε > 0 we get

1
L(2,K/Q)

·

∑
n>|Disc(K)|1/2+ε

χK(n)

n
= Oε

(
log |Disc(K)|
|Disc(K)|ε

)
.
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Thus, we can conclude that

L(1,K/Q)
L(2,K/Q)

=
1

L(2,K/Q)
·

|Disc(K)|1/2+ε∑
n=1

χK(n)

n
+Oε

(
log |Disc(K)|
|Disc(K)|ε

)
. (17)

Using (17), the left hand sides of (16) are equal to

∑
[K:Q]=2

0<Disc(K)<X

1
|Disc(K)|

·

(
1

L(2,K/Q)
·

Disc(K)1/2+ε∑
n=1

χK(n)

n
+Oε

(
log Disc(K)

Disc(K)ε

))
,

∑
[K:Q]=2

−X<Disc(K)<0

1
|Disc(K)|

·

(
1

L(2,K/Q)
·

|Disc(K)|1/2+ε∑
n=1

χK(n)

n
+Oε

(
log |Disc(K)|
|Disc(K)|ε

))
.

(18)

In either case, the sum of the Oε terms is itself Oε(1), and so we focus on the remaining
term. Using the absolute convergence of the Euler product of L(2,K/Q)−1, we have

1
L(2,K/Q)

·

(|Disc(K)|1/2+ε∑
n=1

χK(n)

n

)
=

( ∞∑
m=1

µ(m)χK(m)

m2

)
·

(|Disc(K)|1/2+ε∑
n=1

χK(n)

n

)
.

(19)

The key observation we make is that the main contribution to the right hand side of (19)
comes from the “diagonal” terms, i.e., when mn is a square. By pulling out these terms,
we may rewrite (19) as

∑
0<a,b<∞

(Disc(K),ab)=1

µ(a)

a3b2 +

|Disc(K)|1/2+ε∑
n=1

χK(n)

n
·

∞∑
m=1
mn 6=�

µ(m)χK(m)

m2 . (20)

Substituting (20) back into (18) implies that the left hand sides of (16) are equal to

∑
[K:Q]=2

0<Disc(K)<X

1
Disc(K)

·

( ∑
0<a,b<∞

(Disc(K),ab)=1

µ(a)

a3b2 +

Disc(K)1/2+ε∑
n=1

∞∑
m=1
mn 6=�

µ(m)χK(mn)

m2n

)
+Oε(1),∑

[K:Q]=2
−X<Disc(K)<0

1
|Disc(K)|

( ∑
0<a,b<∞

(Disc(K),ab)=1

µ(a)

a3b2 +

|Disc(K)|1/2+ε∑
n=1

∞∑
m=1
mn 6=�

µ(m)χK(mn)

m2n

)
+Oε(1).

By Lemma 5.1,

∑
[K:Q]=2
|Disc(K)|<X

1
|Disc(K)|

·

(|Disc(K)|1/2+ε∑
n=1

∞∑
m=1
mn 6=�

µ(m)χK(mn)

m2n

)
= Oε(1).

Noting that the remaining term does not depend on ε, we obtain the proposition. ut
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5.2. Proof of Theorem 2

We now turn to the proof of Theorem 2. From the identity∑
0<a,b<∞

(Disc(K),ab)=1

µ(a)

a3b2 =
ζ(2)
ζ(3)
·

∏
p|Disc(K)

1− 1
p2

1− 1
p3

, (21)

we immediately obtain∑
[K:Q]=2

0<Disc(K)<X

1
Disc(K)

·

∑
0<a,b<∞

(Disc(K),ab)=1

µ(a)

a3b2

=
ζ(2)
ζ(3)
·

( ∑
[K:Q]=2

0<Disc(K)<X

1
Disc(K)

·

∏
p|Disc(K)

1− 1
p2

1− 1
p3

)
,

∑
[K:Q]=2

−X<Disc(K)<0

1
|Disc(K)|

·

∑
0<a,b<∞

(Disc(K),ab)=1

µ(a)

a3b2

=
ζ(2)
ζ(3)
·

( ∑
[K:Q]=2

−X<Disc(K)<0

1
|Disc(K)|

·

∏
p|Disc(K)

1− 1
p2

1− 1
p3

)
.

(22)

Decomposing the right hand sides of (22) into sums over squarefree integers in a fixed
congruence class mod 4, we find that the left hand sides of (22) are equal to

ζ(2)
ζ(3)
·

( ∑
1<D<X
D≡1 mod 4
D squarefree

1
D
·

∏
p|D

1− 1
p2

1− 1
p3

+

∑
1<D<X
D≡3 mod 4
D squarefree

3
14D
·

∏
p|D

1− 1
p2

1− 1
p3

+

∑
1<D<X
D≡1 mod 2
D squarefree

3
28D
·

∏
p|D

1− 1
p2

1− 1
p3

)
,

ζ(2)
ζ(3)
·

( ∑
−X<D<−1
D≡1 mod 4
D squarefree

1
D
·

∏
p|D

1− 1
p2

1− 1
p3

+

∑
−X<D<−1
D≡3 mod 4
D squarefree

3
14D
·

∏
p|D

1− 1
p2

1− 1
p3

+

∑
−X<D<−1
D≡1 mod 2
D squarefree

3
28D
·

∏
p|D

1− 1
p2

1− 1
p3

)
.

(23)

Consider the limit

lim
X→∞

ζ(2)
ζ(3) log(X)

·

∑
1<D<X

D squarefree

1
D
·

∏
p|D

1− 1
p2

1− 1
p3

= lim
X→∞

ζ(2)
ζ(3) log(X)

·

∑
1<D<X

D squarefree

∏
p|D

1
p
·

1− 1
p2

1− 1
p3

. (24)
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Using Perron’s formula, for <(σ ) > 0, we can rewrite the right hand side of (24) as

lim
X→∞

ζ(2)
ζ(3) log(X)

·
1

2πi
·

∫
σ

(∏
p

(
1+

1
ps+1 ·

1− p−2

1− p−3

))
·Xs ·

ds

s
.

The Euler product, for σ > 0, is equal to∏
p

(
1+

1
ps+1 ·

1− p−2

1− p−3

)
= ζ(s + 1) ·

∏
p

(
1−

1
p2s+2 ·

1− p−2

1− p−3 −
1

ps+3 ·
1− p−1

1− p−3

)
.

Note that∏
p

(
1−

1
p2s+2 ·

1− p−2

1− p−3 −
1

ps+3 ·
1− p−1

1− p−3

)
=

∏
p

(
1+O

(
1

p2s+2 +
1

ps+3

))
.

Hence, moving the σ contour to the left of <(σ ) = 0 and using the Cauchy integral
formula, we get3∫
σ

(∏
p

(
1+

1
ps+1 ·

1−p−2

1−p−3

))
·Xs ·

ds

s
= (logX)·

∏
p

(
1−

1
p2 ·

1−p−2

1−p−3 −
1
p3 ·

1−p−1

1−p−3

)
+ o(logX). (25)

The main term on the right hand side of (25) simplifies to

ζ(2)ζ(3)(logX) ·
∏
p

(
1−

1
p2 −

2
p3 +

2
p4

)
This shows in particular that we can rewrite the limit in (24) as

lim
X→∞

ζ(2)
ζ(3) logX

·

∑
1<D<X

D squarefree

1
D
·

∏
p|D

1− 1
p2

1− 1
p3

= ζ(2) ·
∏
p

(
1−

1
p2 −

2
p3 +

2
p4

)
.

Carrying out the analogous computation for each term in both equations of (23) yields
Theorem 2. ut

Theorems 2 and 4.3 immediately imply the following result.

Theorem 5.3. Let β < 2/3 be fixed. For the family of all D4-quartics,

NC(X,X
β) =

3β
8
·

∏
p

(
1−

1
p2 −

2
p3 +

2
p4

)
·X logX +O(X).

It follows from the heuristics of §3.3 that the family ofD4-quartics L satisfying |d(L)| ≤
|C(L)|2/3 satisfies the mass formula (10) when such fields are ordered by their conductors.
In §§6–8, we prove a refinement of Theorem 5.3 by adapting the arguments in [2] in
conjunction with the analytic techniques used in Section 4.

3 One can in fact obtain a better error term, but it is unnecessary for establishing the results of
the current article.
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5.3. Diagonal terms for the family of D4-quartics ordered by discriminant

We would like to conclude this section by considering asymptotics for the analogous
“diagonal terms” that arise when counting the number of D4-quartics having bounded
discriminants. Let NDisc(X) denote the number of isomorphism classes of D4-quartics L
with |Disc(L)| < X. By [9, Corollary 1.4] (or following the proof of Theorem 4.3 with
discriminant in place of conductor), we have

NDisc(X) =
X

2ζ(2)
·

∑
[K:Q]=2
|Disc(K)|<X

L(1,K/Q)
L(2,K/Q)

·
2−r2(K)

|Disc(K)|2
+ o(X). (26)

Applying the reasoning in the proof of Proposition 5.2, we find that combining (19) and
(26) implies

NDisc(X) =
X

2ζ(2)
·

∑
[K:Q]=2
|Disc(K)|<X

( ∞∑
m=1

µ(m)χK(m)

m2

)
·

( ∞∑
n=1

χK(n)

n

)
·

2−r2(K)

|Disc(K)|2
+o(X).

We replace the product of sums

( ∞∑
m=1

µ(m)χK(m)

m2

)
·

( ∞∑
n=1

χK(n)

n

)

with simply the “diagonal” terms (i.e., the terms where mn is a square).

Theorem 5.4. We have

1
2ζ(2)

·

∑
[K:Q]=2
|Disc(K)|<X

2−r(K)

|Disc(K)|2
·

( ∑
0<a,b<∞

(Disc(K),ab)=1

µ(a)

a3b2

)
·X

∼
3 · 112

26 · 17
·

∏
p

(
1+

1
p2 −

1
p3 −

1
p4

)
·X. (27)

Proof. This follows from an argument analogous to the proof of Theorem 2. ut

The right hand side of (27) agrees exactly with the heuristic in (11)! The non-diagonal
terms, as in §5.2, again give an error term of O(X). In the case when D4-quartics were
ordered by conductor, this error term was negligible compared to the main term of or-
der X logX. This time, however, the main term of � X does not automatically dominate
the error term. In fact, the comparison of the constant c ≈ 0.0523 from [9] and the con-
stant ≈ 0.406 on the right hand side of (27) implies that the non-diagonal terms do make
a non-negligible contribution.
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6. Parametrizing D4-quartics via pairs of ternary quadratic forms

We next give a proof using geometry-of-numbers techniques in conjunction with arith-
metic invariant theory methods for determining asymptotics of the number ofD4-quartics
with |q| < X and |d| � X. We obtain worse error estimates in this second proof, but we
are able to prove more refined statements for a wider class of collections of local spec-
ifications. We begin with a parametrization of D4-quartics via certain pairs of ternary
quadratic forms, following Bhargava [1] and Wood [30]. In §6.1, we describe the arith-
metic invariant theory for orbits of such pairs of ternary quadratic forms and compare
it to the invariants defined in Definitions 2.7 and 2.5 for the corresponding D4-quartics.
We additionally define splitting types, and we compute the p-adic densities for pairs of
ternary quadratic forms corresponding toD4-quartics with fixed splitting type at p. These
results allow us to employ geometry-of-numbers methods carried out in Section 7 to count
the relevant orbits parametrizing D4-quartics with |q| < X and |d| � X.

In [1], Bhargava proved that isomorphism classes of pairs (Q,C), whereQ is a quartic
ring and C is a cubic resolvent ring ofQ are in bijection with GL2(Z)×SL3(Z)-orbits on
Z2
⊗ Sym2(Z3), the space of pairs of integral ternary quadratic forms. If Q is a maximal

quartic ring, then it has a unique cubic resolvent ring, so this bijection (when restricted
to maximal rings) can be viewed as a parametrization of quartic fields. We write a pair
of ternary quadratic forms as a pair (A,B) of symmetric 3 × 3 matrices whose diagonal
entries are integers and non-diagonal entries are half-integers. The group GL2×SL3 acts
on pairs of ternary quadratic forms as follows:

(g2, g3) · (A,B) = (g3Ag
t
3, g3Bg

t
3) · g

t
2.

For quartic rings Q containing a quadratic subring, Wood [30] gives a more special-
ized bijection: For any ring R, let V ′(R) ⊂ R2

⊗ Sym2(R3) denote the space of pairs
(A,B) of ternary quadratic forms satisfying

(A,B) =

0 0 0
0 a22 a23/2
0 a23/2 a33

 ,
 b11 b12/2 b13/2
b12/2 b22 b23/2
b13/2 b23/2 b33

 ,
where a22, a23, a33, b11, b12, b22, b23, and b33 are elements of R with b11 6= 0. The
subgroup G′(R) of GL2(R)× SL3(R) consisting of elements (g2, g3) such that

g2 =

[
±1 0
∗ ±1

]
and g3 =

±1 0 0
∗ ∗ ∗

∗ ∗ ∗


acts on V ′(R). Then the G′(Z)-orbits on V ′(Z) are in bijection with triples (Q,C, T )
consisting of a quartic ring Q, a cubic resolvent C of Q, and a quadratic subring T ⊂ Q.
More precisely:

Theorem 6.1 ([30, Thm. 7.3.5]). For any principal ideal domain R of characteristic
different from 2, there is a bijection between G′(R)-equivalence classes of elements
of V ′(R) with isomorphism classes of triples (Q,C, T ) where
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• Q is a quartic ring over R,
• C is a cubic resolvent of Q with map ϕ : Q→ C, and
• T ⊂ Q is a primitive quadratic subalgebra such that ϕ(T ) 6= 0.

In order to obtain a parametrization of maximal orders inD4-quartics, we first make a few
definitions.

Definition 6.2. An element of v ∈ V ′(Z) is generic if the quartic ring corresponding
to v under Theorem 6.1 is a D4-quartic order, i.e., an order in a D4-quartic. Addition-
ally, an element V ′(Z) is said to be maximal if it corresponds to a maximal quartic ring.
A collection of elements of V ′(Z) is said to be maximal or generic if each element is the
same.

Let (A,B) be an element of V ′(Z) and let Q be the quartic ring corresponding to it. It
follows from [1, Lemma 22] that Q is non-maximal at every prime dividing b11. Hence
Q is maximal only when b11 = ±1. Furthermore, by replacing (A,B) with (− Id, Id) ·
(A,B) = (−A,−B) if necessary, we may assume that b11 = 1. We define V (Z) ⊂ V ′(Z)
to be the subspace of pairs

(A,B) =

0 0 0
0 a22 a23/2
0 a23/2 a33

 ,
 1 b12/2 b13/2
b12/2 b22 b23/2
b13/2 b23/2 b33

 , (28)

and we define the subgroup G(Z) ⊂ G′(Z) to be the set of pairs (g2, g3) ∈ G
′(Z) such

that

g2 =

[
±1 0
∗ 1

]
and g3 =

±1 0 0
∗ ∗ ∗

∗ ∗ ∗

 .
Moreover, for any ring R, we analogously define the space V (R) and the group G(R).
We have the following proposition:

Proposition 6.3. There is a bijection between (isomorphism classes of ) D4-quartics and
maximal generic G(Z)-orbits on V (Z).

Proof. Recall that every D4-quartic field L has a unique maximal order and that a maxi-
mal order has a unique cubic resolvent ring as well as a unique primitive quadratic subal-
gebra. Thus, there is exactly oneG′(Z)-orbit in V ′(Z) corresponding toL by Theorem 6.1
The above discussion shows that each generic, maximalG′(Z)-orbit in V ′(Z) contains an
element of V (Z). Moreover, if (A′, B ′) = (g2, g3) · (A,B) for some (A,B) ∈ V (Z) and
(g2, g3) ∈ G

′(Z) then B ′11 = g2,22 = 1 and thus (g2, g3) ∈ G(Z). Since we only make a
claim about maximal orders, this completes the proof. ut

6.1. Invariant theory

We next discuss the invariant theory for the action of G on V . The action of G(C) ∩
SL3(C) on V (C) turns out to have ring of invariants freely generated by three elements.
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We can describe these invariants in terms of the cubic resolvent of (A,B), i.e., the binary
cubic form det(Ax + By). It is straightforward to check that if (A,B) is as in (28), then
the coefficient of x3 in det(Ax +By) is zero. For a ring R, let U(R) denote the subspace
of the space of binary cubic forms consisting of elements

f (x, y) = bx2y + cxy2
+ dy3,

where b, c, d ∈ R. Define N1 to be the group of lower triangular 2× 2 matrices with top
left entry ±1 and bottom right entry 1. Then N1 acts on U via

g · f (x, y) = f ((x, y) · gt ).

Additionally, if π : V (R)→ U(R) denotes the resolvent map (A,B) 7→ 4 det(Ax+By),
then for (g2, g3) ∈ G(R),

π((g2, g3) · (A,B)) = g2 · π(A,B).

The coefficients b, c, and d of the binary cubic form π(A,B) are the invariants for the
action of G(C) ∩ SL3(C) on V (C). Therefore, the ring of invariants for the action of all
of G(C) on V (C) is the same as the ring of invariants for the action of N1(C) on U(C).
The latter ring is freely generated by two elements d and q, which can be associated to an
element of V as follows:

Definition 6.4. If (A,B) ∈ V (R) has resolvent f (x, y) = bx2y + cxy2
+ dy3, then

d(A,B) := d(f ) := −b, q(A,B) := q(f ) := c2
− 4bd.

Additionally, we set

C(A,B) := d(A,B) · q(A,B) and Disc(A,B) := d(A,B)2 · q(A,B).

We now relate the invariants d and q of an element (A,B) ∈ V (Z) to the invariants of the
quartic ring corresponding to the G(Z)-orbit of (A,B) in Theorem 6.1.

Proposition 6.5. Let (A,B) ∈ V (Z) with non-zero invariants d(A,B) and q(A,B). Let
Q denote the quartic ring corresponding to (A,B) and let T be its quadratic subalgebra.
Then Disc(T ) = d(A,B) and NmT (Disc(Q/T )) = |q(A,B)|.

Proof. Let (A,B) be as in (28) with resolvent f (x, y) = bx2y + cxy2
+ dy3, and as-

sume that d(A,B) and q(A,B) are non-zero. As described in [1, Section 3], one can
describe the multiplicative structure on a (normal) Z-basis of Q using the matrix coeffi-
cients of (A,B). Indeed, if 〈1, α1, α2, α3〉 is a Z-basis for Q, we can write its multiplica-
tion table as

αiαj = c
0
ij + c

1
ijα1 + c

2
ijα2 + c

3
ijα3,

where ckij ∈ Z for 1 ≤ i, j ≤ 3 and k ∈ {0, 1, 2, 3} are completely determined by aij
and bij . Equations (20)–(22) of [1] with a11 = a12 = a13 = 0 and b11 = 1 imply that
c2

11 = c
3
11 = 0. Additionally, we obtain c0

11 = −a33a22 and c1
11 = a23, i.e.,

α2
1 = −a33a22 + a23α1,
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and so Z[α1] = 〈1, α1〉 is a quadratic subalgebra of Q. By the description of T given in
[30, proof of Corollary 7.2.2], we have T = Z[α1], and

Disc(T ) = Disc(α1) = a
2
23 − 4a33a22.

Using the resolvent map π(A,B) = 4 det(Ax + By) = bx2y + cxy2
+ dy3, we deduce

that
b = 4a22a33 − a

2
23.

Thus, Disc(T ) = d(A,B), as desired.
Furthermore, by [1, Proposition 10] and since Disc(A,B) = Disc(π(A,B)), we have

Disc(Q) = Disc(A,B) = Disc(bx2y + cxy2
+ dy3) = b2c2

− 4b3d.

The relative discriminant formula implies that |Disc(Q)|=|Disc(T )2·NmT (Disc(Q/T ))|,
and so we conclude that

NmT (Disc(Q/T )) =
∣∣∣∣Disc(Q)
Disc(T )2

∣∣∣∣ = |c2
− 4bd|.

The proposition follows. ut

We slightly generalize the notion of conductor given in the introduction for étale quartic
algebras over R. For a pair (Q, T ), where Q is a étale quartic algebra over R and T
is a primitive quadratic subalgebra of Q, we set C(Q, T ) := Disc(Q)/Disc(T ). The
following lemma will be useful in obtaining a bound on the number of G(Z)-orbits that
correspond to non-maximal D4-quartic orders in Section 8.

Lemma 6.6. Let p be an odd prime. If (A,B) ∈ V (Zp) corresponds to a non-maximal
quartic order Q contained in a degree-4 étale extension Lp of Qp and a quartic subal-
gebra T contained in a quadratic subextension Kp of Lp, then

p2
|

C(A,B)
C(Lp,Kp)

.

Proof. Since the index of Q in the maximal order of L is a multiple of p, it follows that
the discriminant of (A,B) differs from the discriminant of L by a factor of at least p2.
Since C(A,B) = Disc(A,B)/Disc(T ) and C(Lp,Kp) = Disc(Lp)/Disc(Kp), the lem-
ma follows unless Disc(T )/Disc(Kp) is divisible by p, or equivalently, unless T is not
maximal in the ring of integers of Kp.

Assume that T is not maximal in the ring of integers ofKp, and thus has discriminant
divisible by p2. We know from Proposition 6.5 that −Disc(T ) is the discriminant of the
quadratic form a22y

2
+ a23yz + a33z

2 corresponding to A. Hence, either A is a multiple
of p or, after a change of variables, we may assume that p2

| a22 and p | a23. In the first
case, the pair of rings (Q1, T1) corresponding to (A/p,B) ∈ V (Z) are over-orders of Q
and T such that p4

|C(Q, T )/C(Q1, T1). In the second case, the argument is similar: we
use the pair (A2, B2) obtained by multiplying the third row and column of A and B by p,
and dividing A by p2, which yield a pair (Q2, T2) of over-orders of (Q, T ) such that
p2
|C(Q, T )/C(Q1, T1). The lemma follows. ut
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6.2. Splitting types of pairs of ternary quadratic forms

Let p be a fixed prime. We say that a pair (A,B) ∈ V (Fp) is non-degenerate if the zero
sets in P2(Fp) of the two ternary quadratic forms corresponding to A and B intersect at
four points counted with multiplicity. For non-degenerate elements (A,B) ∈ V (Fp) such
that A is non-zero, we define the quartic splitting type at p to be

ςp(A,B) = (f
e1
1 f

e2
2 · · · ),

where the fi’s are the degrees over Fp of the field of definition of these points, and the ei’s
are their multiplicities. Furthermore, recall that the top row and column ofA is 0, and so in
the notation of (28), A corresponds to a quadratic form g(y, z) = a22y

2
+ a23yz+ a33z

2.
We define the quadratic splitting type ς ′p(A,B) of (A,B) to be (11) if g(x, y) has two
distinct roots in P1(Fp), to be (2) if g(x, y) has a pair of conjugate roots defined over a
quadratic extension of Fp, and (12) if g(x, y) has a double root. We then say that the pair
(ςp(A,B), ς

′
p(A,B)) is the splitting type of (A,B) at p.

If (A,B) is an element in V (Z) or V (Zp), we define the splitting type of (A,B) at p to
be the splitting type of the reduction modulo p of (A,B), assuming it is non-degenerate.
LetQ be the quartic ring corresponding to (A,B), and let T denote the quadratic subring
of Q arising from Theorem 6.1. It follows from [1, §4.1] that the quartic splitting type of
(A,B) is equal to the splitting type ofQ. We have seen that the quadratic subring T ofQ
corresponding to the pair (A,B) is the quadratic ring whose discriminant is the same as
that of the binary quadratic form corresponding to A. Hence, the quadratic splitting type
of (A,B) is the same as the splitting type of T .

Given a pair (Lp,Kp) of extensions of Qp, whose rings of integers correspond to
a pair (A,B) ∈ V (Zp), we define ςp(Lp,Kp) to equal the splitting type of (A,B).
Additionally, there are four possible splitting types ς = (ς∞, ς ′∞) at∞ for an element in
V (R) having non-zero discriminant. The invariants (d, q) of an element v ∈ V (R)(ς) are
constrained in the following way:

ς = ((1111), (11)) =⇒ q > 0, d > 0;
ς = ((112), (11)) =⇒ q < 0, d > 0;
ς = ((22), (11)) =⇒ q > 0, d > 0;
ς = ((22), (2)) =⇒ q > 0, d < 0.

We denote the set of elements in V (R) having splitting type ς by V (R)(ς) and set
V (Z)(ς) = V (Z) ∩ V (R)(ς).

6.3. The density of maximal elements

For a prime p and splitting type (ςp, ς ′p), let Tp(ςp, ς ′p) denote the set of elements
(A,B) ∈ V (Zp) whose splitting type at p is (ςp, ς ′p) and let Mp(ςp, ς

′
p) denote the

set of elements (A,B) ∈ Tp(ςp, ς ′p) that correspond to quartic rings under Theorem 6.1
that are maximal at p. Identifying V (Zp) ∼= Z8

p by regarding the non-fixed entries of (28)
as a vector, let µ denote the Haar measure normalized so that V (Zp) has volume 1. We
have the following result which gives the volumes of the sets Mp(ςp, ς

′
p).
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Proposition 6.7. We have

µ(Mp((1111), (11))) = 1
8 (p − 1)3(p + 1)/p4,

µ(Mp((22), (11))) = 1
8 (p − 1)3(p + 1)/p4,

µ(Mp((22), (2))) = 1
4 (p − 1)3(p + 1)/p4,

µ(Mp((112), (11))) = 1
4 (p − 1)3(p + 1)/p4,

µ(Mp((4), (2))) = 1
4 (p − 1)3(p + 1)/p4,

µ(Mp((1211), (11))) = 1
2 (p − 1)3(p + 1)/p5,

µ(Mp((122), (11))) = 1
2 (p − 1)3(p + 1)/p5,

µ(Mp((1212), (12))) = 1
2 (p − 1)3(p + 1)/p5,

µ(Mp((22), (12))) = 1
2 (p − 1)3(p + 1)/p5,

µ(Mp((14), (12))) = (p − 1)3(p + 1)/p6,

µ(Mp((1212), (11))) = 1
2 (p − 1)3(p + 1)/p6,

µ(Mp((22), (2))) = 1
2 (p − 1)3(p + 1)/p6.

Proof. First note that the splitting type of v ∈ V (Zp) depends only on the reduction of v
modulo p. It follows that the densities of the sets Tp(ςp, ς ′p) can be computed by counting
elements in V (Fp). The conditions that ensure the maximality of v are listed in [1, §4.2].
We prove Proposition 6.7 by computing the densities of Tp(ςp, ς ′p) and then, for each ςp,
determining the probability that v ∈ Tp(ςp, ς ′p) is maximal.

Let (A,B) be an element of V (Zp) having quadratic splitting type (11). It follows
that the quadratic form corresponding to A has two distinct roots in P1(Fp). The number
of possibilities for Ā, the reduction of A modulo p, is thus equal to (p + 1)p(p − 1)/2
giving a density of (p + 1)p(p − 1)/(2p3) for the possibilities of A. By a change of
variables, we may assume that (A,B) is of the form

(Ā, B̄) =

0 0 0
0 0 1/2
0 1/2 0

 ,
1 0 0

0 s 0
0 0 t

 (29)

when p is odd, and

(Ā, B̄) =

0 0 0
0 0 1/2
0 1/2 0

 ,
 1 α/2 β/2
α/2 s 0
β/2 0 t

 (30)

when p = 2. The quartic splitting type of (A,B) then has six options: (1111), (112),
(22), (1211), (122), and (1212). When p is odd, this splitting type depends on whether
s and t are residues modulo p, non-residues modulo p, or 0. Their relative densities can
be computed directly. To obtain the splitting type (1111), both s and t must be residues
modulo p which occurs with relative density (p−1)2/(4p2). It is a straightforward com-
putation to check that for p = 2, the relative density of elements with quartic splitting
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type (1111) is again 1/16 = (p−1)2/(4p2). Multiplying with the density (p2
−1)/(2p2)

of split quadratic forms arising from A yields the density of Tp((1111), (11)). Since
every element with unramified splitting type is automatically maximal, it follows that
Tp((1111), (11)) = Mp((1111), (11)), yielding the first part of the proposition.

We now compute the density ofMp((1212), (11)). Again, we may assume that (Ā, B̄)
is of the form (29) when p is odd and of the form (30) when p = 2. When p is odd, such
a pair (A,B) has quartic splitting type (1212) when s = t = 0, and when p = 2 such
a form has splitting type (1212) when α = β = 0. The relative density of such (A,B)
is 1/p2, and we therefore see that the density of Tp((1212), (11)) is 1

2 (p− 1)(p+ 1)/p4.
We now compute the probability that an element (A,B) ∈ Tp((1212), (11)) is maximal
at p. Let (A,B) in Tp((1212), (11)) be fixed. By a change of variables, we may assume
(for both p odd and p = 2) that the reduction of (A,B) modulo p is equal to

(Ā, B̄) =

0 0 0
0 0 1/2
0 1/2 0

 ,
1 0 0

0 0 0
0 0 0

 . (31)

From [1, Lemma 23], it follows that (A,B) is maximal if and only if neither b22 nor b23
is divisible by p2. Hence the relative density of Mp((1212), (11)) in Tp((1212), (11)) is
(1 − 1/p)2. In conjunction with the previously computed density of Tp((1212), (11)), it
follows that the density of Mp((1212), (11)) is as stated in the proposition. The computa-
tions of the densities of the Mp(ςp, ς

′
p) for other splitting types (ςp, ς ′p) are very similar

to the above two computations and so we omit them. ut

Proposition 6.7 gives the p-adic splitting densities in V . However, it is possible to extract
densities that are more refined. From the splitting types with central inertia in Table 1, it
is evident that the splitting type of aD4-quartic L at a prime p is not enough to determine
the decomposition groups of L at p. However, if v ∈ V (Z) corresponds to OL, then the
G(Zp)-orbit of v in V (Zp) determines OL ⊗ Zp, and hence determines the decomposi-
tion groups of L at p. In the following lemma, we compute some of these more refined
densities.

If p is an odd prime with splitting type ((1212), (11)) (resp. ((22), (2))) in a D4-
quartic L with quadratic subfield K , then there are two possibilities for the splitting
type (ςp(φ(L)), ςp(φ(K))) of φ(L) at p (see Definition 2.1), namely ((1111), (11))
(resp. ((22), (11))) or ((22), (2)). Let M(11)

p (ςp, ς
′
p) (resp. M(2)

p (ςp, ς
′
p)) denote the sub-

set of elements (A,B) ∈ Mp(ςp, ς
′
p) corresponding to (Q, T ) under Theorem 6.1 such

that φ(Frac(T )) has splitting type (11) (resp. (2)) at p.

Lemma 6.8. Letp be an odd prime and let (ςp, ς ′p) be one of ((1212), (11)) or ((22), (2)).
Then with the notation of the previous paragraph,

µ(M(2)
p (ςp, ς

′
p)) = µ(M

(11)
p (ςp, ς

′
p)).

Proof. We prove the lemma only for the splitting type ((1212), (11)), since the proof is
very similar for ((22), (2)). Let (A,B) ∈ V (Zp) be a maximal element, corresponding to
a degree-4 étale Zp-algebra Q and a quadratic subalgebra T , and let L (respectively, K)
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denote the fraction field ofQ (respectively, T ). Assume that the splitting type of (A,B) is
((1212), (11)), and let f (x, y) = 4 det(Ax + By) denote the cubic resolvent polynomial
of (A,B). Then the x3-coefficient of f is 0, and dividing f by y yields a binary quadratic
form. A direct computation, in conjunction with Propositions 2.6 and 6.5, implies that

Discp(f (x, y)/y)/p2
= Discp(φ(K)), (32)

where Discp means the p-part of the discriminant, and hence sign issues do not arise.
Since the two possible decomposition groups for the splitting type ((1212), (11)) are de-
termined by the splitting behavior of p at φ(K) (see Table 1), it follows that the relative
densities of these decomposition groups can be found by computing the relative densities
of the different possible splitting behaviors of p in the quadratic order whose discriminant
is Discp(f (x, y)/y)/p2.

Since p is odd, from the discussion surrounding (31), it follows that we may assume
(A,B) satisfies

a11 = a12 = a13 = b12 = b13 = 0, b11 = 1, a23 ≡ 1 (mod p),
a22 ≡ b22 ≡ b23 ≡ b33 ≡ 0 (mod p).

Consider the pair (A,B1), where the B1 is obtained from B by dividing the b22, b23, and
b33 by p. Let f1 denote the cubic resolvent form of (A,B1). By a direct computation
and applying (32), the discriminant of f1(x, y)/y is exactly the same as the discriminant
of φ(K). Hence the decomposition group of L is determined by the splitting of p in
f1(x, y)/y. Since (A,B) was assumed to be maximal, it follows that p does not divide
the discriminant of f1(x, y)/y, because, by Table 1, for the splitting types under consid-
eration, φ(K) is unramified at p. It is a direct computation to check that the density of
elements (A,B1) such that f1(x, y)/y has splitting type (11) (resp. (2)) is exactly 1/2,
yielding the lemma. ut

Let Mp denote the set of elements (A,B) ∈ V (Zp) that are maximal at p, and let Up
denote the set of elements (A,B) in Mp that do not have central inertia, i.e., the splitting
type of any (A,B) ∈ Up at p is not equal to ((14), (12)), ((1212), (11)), or ((22), (2)).
Summing the values obtained in Proposition 6.7 we can compute the density of Mp. To
determine the density of Up, we add up the values of the first nine rows.

Theorem 6.9. We have

µ(Mp) =

(
1−

1
p2

)(
1−

1
p2 −

2
p3 +

2
p4

)
,

µ(Up) =
(

1−
1
p2

)(
1−

1
p

)2(
1+

2
p

)
.

7. Counting D4-quartics using geometry-of-numbers methods

In the previous section, we defined an injective map from D4-quartics to G(Z)-orbits on
V (Z) and determined generators d and q for the ring of invariants for the action of G
on V . In this section, our goal is to count generic G(Z)-orbits on V (Z) having bounded
invariants.
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Recall that an element v ∈ V (Z) is said to be generic if v corresponds to an order in a
D4-quartic, and the subset of elements in V (Z) with infinite splitting type ς is denoted by
by V (Z)(ς). For any G(Z)-invariant set L ⊂ V (Z) and for any δ > 0, let N (δ)

q (L;X, Y )
denote the number of generic G(Z)-orbits v on L such that X < |q(v)| ≤ (1 + δ)X and
Y < |d(v)| ≤ (1+ δ)Y . Our goal in this section is to prove the following theorem:

Theorem 7.1. LetX and Y be positive real numbers going to infinity such that Y (logY )2

= o(X). Then

N (δ)
q (V (Z)(ς);X, Y ) =

ζ(2)
2τς

δ2XY + oδ(XY),

where τς = 8 when ς = ((1111), (11)) or ς = ((22), (11)) and τς = 4 otherwise.

To do so, we study the fundamental domain for the action of the non-reductive group
G(Z) on V (R). We then compute the volume of a cover of this fundamental set after
cutting off the cusps in terms of an Euler product of local densities.

7.1. Construction of fundamental domains

In this section, our goal is to construct a finite cover for a fundamental domain for the
action of G(Z) on V (R). As a first step, we describe the G(R)-orbits on V (R), and the
sizes of the stabilizers in G(R) of elements in each orbit. Before we do so, it will be
convenient to introduce the following group and space: For any ring R, let Vred(R) ⊂

V (R) consist of all pairs (A,B) of the form

(A,B) =

0 0 0
0 a22 a23/2
0 a23/2 a33

 ,
1 0 0

0 b22 b23/2
0 b23/2 b33

 . (33)

The subgroup Gred(R) of G(R) acts on Vred(R), where Gred(R) consists of elements
(g2, g3) ∈ GL2(R)× SL3(R) such that

g2 =

[
±1 0
∗ 1

]
and g3 =

±1 0 0
0 ∗ ∗

0 ∗ ∗

 . (34)

Proposition 7.2. The orbits for the action of G(R) on the set of elements in V (R) hav-
ing non-zero invariants q and d correspond to a pair (L∞,K∞) of étale algebras with
splitting types and invariants as follows:

(1) When q > 0 and d > 0, there are two orbits, one with splitting type ((1111), (11))
and one with splitting type ((22), (11)).

(2) When q < 0 and d > 0, there is one orbit with splitting type ((112), (11)).
(3) When q > 0 and d < 0, there is one orbit with splitting type ((22), (2)).

The respective sizes of the stabilizers in G(R) of elements in these orbits are 8 in the first
case, and 4 in the second and third cases, and we denote these stabilizer quantities by
τς (L∞,K∞).
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Proof. We start with a few observations. First note that G(R)-orbits on V (R) having
fixed invariants d and q are in bijection with Gred(R)-orbits on Vred(R) having invariants
q and d. This is because (A,B) ∈ V (R) is G(R)-equivalent to some (Ared, Bred) ∈

Vred(R). Futhermore, if two elements in Vred(R) areG(R)-equivalent via some g ∈ G(R),
then g must in fact belong to Gred(R). This latter fact also implies that the stabilizer in
G(R) of any element in Vred(R) is contained inGred(R). Also note thatGred(R)-orbits on
Vred(R) having non-zero invariants d and q are in bijection withGred(R)-orbits on Vred(R)
having invariants q/|q| and d/|d|. Indeed, if (A,B) ∈ Vred(R) has invariants q and d, then
dividing A by

√
|d| and dividing the lower 2 × 2 submatrix of B by

√
|q|/|d| yields the

necessary bijection. Moreover, a direct computation shows that the stabilizers in Gred(R)
of these two elements are the same. Therefore, it suffices to prove the proposition in the
case when q and d are ±1.

Consider the case q = d = 1. Let (A,B) ∈ Vred(R) have such invariants. By replacing
(A,B) with a Gred(R)-translate, we transform it as follows: first, we ensure that a22 =

a33 = 0; next, we subtract an appropriate multiple of A from B to ensure that its off-
diagonal entries are 0; finally, we use an element of SL2(R) ⊂ Gred(R) to ensure that
|b22| = |b33|. From the fact that q = d = 1, it follows that we have transformed (A,B)
into the form 0

1
2

1
2

 ,
1

±1
4

±1
4

 ,
where b22 and b33 are either both positive or both negative. It is a direct computation to
check that (A,B) has splitting type ((22), (11)) in the former case and ((1111), (11)) in
the latter case. Furthermore, the stabilizer in Gred(R) of (A,B) in either case is seen to
consist of the following eight elements:[1

1

]
,

1
1

1

 ,
[−1

1

]
,

−1
1
−1

 ,
[1

1

]
,

−1
1

1

 ,
[−1

1

]
,

1
1

−1

 ,
[1

1

]
,

1
−1
−1

 ,
[−1

1

]
,

−1
−1

1

 ,
[1

1

]
,

−1
−1

−1

 ,
[−1

1

]
,

1
−1

1

 .
This concludes the proof of the first item in Proposition 7.2. We omit the proofs of the
other two items since they are very similar. ut

Recall that the set of elements in V (R)with infinite splitting type ς is denoted by V (R)(ς).
Given a splitting type ς , let (Aς , Bς ) ∈ V (R)(ς)∩Vred(R) be an element whose invariants
have absolute value 1. By multiplying Aς by

√
|d| and multiplying the bottom 2 × 2

submatrix of B by
√
|q|/|d|, we obtain an element with invariants q and d, for any pair

(q, d) ∈ R2 having appropriate signs. We thus obtain the following result which follows
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immediately from Proposition 7.2. Note that the set of such pairs (A,B) is bounded (since
q and d are) and semialgebraic (indeed, they are defined by linear conditions.)

Proposition 7.3. Fix an infinite splitting type ς . There exists a fundamental set R(ς)

for the action of G(R) on V (R)(ς) such that R(ς) contains one element (A,B) having
invariants q and d for any (q, d) ∈ R2 having appropriate signs. Moreover, R(ς) may
be constructed so that the element (A,B) ∈ R(ς) having invariants q and d is such that
the coefficients of A are bounded by Oδ(|d|1/2) and the coefficients of B are bounded by
Oδ(|q|1/2|d|−1/2).

Let F be a fundamental domain for the action of G(Z) on G(R). We may assume that F
is contained in the Siegel domain S = S1S2, where

S1 =


[1
n 1

]
,

1
1
m3 1

1
t−1

t

1
cos θ sin θ
− sin θ cos θ

 : n,m3 ∈ [0, 1), t > 1
2

,

S2 =


[1

1

]
,

 1
m1 1
m2 1

 : m1, m2 ∈ [0, 1)

.
(35)

We have F = F2F1, where F1 ⊂ S1 and F2 = S2. From an argument identical to that
in [5, §2.1], it follows that F · R(ς) is a cover of a fundamental domain for the action
of G(Z) on V (R)(ς), where the G(Z)-orbit of v is represented m(v) times. Here m(v) is
given by

m(v) = # StabG(R)(v)/# StabG(Z)(v).

Every element in V (R) is fixed by the element (Id, g3) ∈ G(Z), where g3 is the diagonal
3 × 3 matrix whose diagonal entries are 1, −1, and −1. Conversely, every non-trivial
element γ ∈ G(Z) not equal to (Id, g3) ∈ G(Z), acts non-trivially on V (R). Hence the
set of points in V (R) fixed by γ has lower dimension and thus has measure 0. Since there
are only countable many elements in G(Z), it follows that the set of elements in V (R)
that have a stabilizer in G(Z) of size greater than 2 has measure 0. We thus obtain the
following theorem.

Theorem 7.4. The multiset F · R(ς) is a τς/2-fold cover of a fundamental domain for
the action of G(Z) on V (R)(ς), where τς = 8 for ς = ((1111), (11)) or ((22), (11)) and
τς = 4 for ς = ((112), (11)) or ((22), (2)).

7.2. Averaging and cutting off the cusp

Let L ⊂ V (R)(ς) be a G(Z)-invariant lattice, and denote the set of generic elements in L
by Lgen. Given a subset W of V (R) and a constant δ > 0, we denote by WXY the set of
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elements w ∈ W with X ≤ |q(w)| < (1 + δ)X and Y ≤ |d(w)| < (1 + δ)Y . Since the
stabilizer in G(Z) of a generic element in V (Z) has size 2, Theorem 7.4 implies that

N (δ)
q (L;X, Y ) =

2
τς

#{F ·R(ς)
XY ∩ L

gen
}, (36)

From Proposition 7.3, it follows that the coefficients aij and bij of any element (A,B) ∈
R(ς)
XY satisfy the bounds

|aij | � Y 1/2, |bij | � X1/2/Y 1/2. (37)

We now pick the following bounded open non-empty subset G0 of Gred(R):

G0 :=


[1
n 1

]
,

1
a b

c d

 : n ∈ (0,√X/Y), [a b

c d

]
∈ G1 ⊂ SL2(R)

 ,
where G1 is a bounded open non-empty SO2(R)-invariant subset of SL2(R). The reason
for the choice of the range of n is that the coefficients of every element inG0 ·R(ς)

XY satisfy
the bounds (37). Write the fundamental domain F in (36) as F2F1g. Using coordinates
from (35), we write an element in F1 as (n,m3, t, θ). In these coordinates,

dg = t−2dndm3d
×tdθ

is a Haar measure onGred(R). The proof of the following lemma follows the argument in
[5, proof of Theorem 2.5].

Lemma 7.5. We have

N (δ)
q (L;X, Y ) =

2
τς Vol(G0)

∫
g∈F1

#{F2gG0 ·R(ς)
XY ∩ L

gen
} dg.

Proof. For every g ∈ Gred(R), the set g ·R(ς) is a fundamental set for the action ofG(R)
on V (R)ς . Therefore, averaging (36), with R(ς) replaced with g ·R(ς), over g ∈ G0, we
obtain

N (δ)
q (L;X, Y ) =

2
τς Vol(G0)

∫
g∈G0

#{F2F1g ·R(ς)
XY ∩ L

gen
} dg.

Pick v ∈ Lgen, and let v0 ∈ R(ς) denote the unique element that is G(R)-equivalent to v.
SinceGred(R) ·R(ς) is contained in Vred(R), and there exists at most one element in F−1

2 ,
such that γ2 · v ∈ Vred(R), it follows that the set Sv of elements γ ∈ Gred(R) such that
γ · v0 ∈ F−1

2 v is finite. Therefore,∫
g∈G0

#{F2F1g ·R(ς)
XY ∩ L

gen
} dg =

∑
v∈Lgen

∑
γ∈Sv

Vol({g ∈ G0 : γ ∈ F1g}),∫
g∈F1

#{F2gG0 ·R(ς)
XY ∩ L

gen
} dg =

∑
v∈Lgen

∑
γ∈Sv

Vol({g ∈ F1 : γ ∈ gG0}).
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Since

Vol({g ∈ G0 : γ ∈ F1g}) = Vol(G0 ∩ F−1
1 γ ) = Vol(γG−1

0 ∩ F1)

= Vol({g ∈ F1 : γ ∈ gG0}),

the lemma follows. ut

In the next lemma we show that F2gG0 · R(ς)
XY has no integral generic points if t is too

large.

Lemma 7.6. Suppose F2gG0 ·R(ς)
XY ∩ V (Z)

gen is non-empty for g = (n,m3, t, θ). Then
t � Y 1/4.

Proof. Let (A,B) ∈ R(ς). Then |a22| � Y 1/2. Therefore, there exists a constant C
such that if t > CY 1/4, then |a22| < 1 for every (A,B) ∈ tθG0R(ς). The action of
m3, n, and F2 does not change the value of a22, and it follows that a22 = 0 for every
(A,B) ∈ F2gG0 · R(ς)

XY ∩ V (Z). We claim that such an (A,B) is not generic. Indeed,
the conic in P2 cut out by A consists of a pair of lines, each of which is defined over Q.
Therefore, the intersection points of the conics corresponding toA and B are defined over
a degree-2 extension of Q, and so (A,B) cannot correspond to aD4 field. The lemma thus
follows. ut

We let F ′ = F2F ′1 ⊂ F consist of all elements g2g1 with g2 ∈ F2 and g1 = (n,m3, t, θ),
where t ≤ CY 1/4 for the C in the proof of the above lemma. For any lattice L of V (Z),
define

N ∗q (L;X, Y ) :=
2

τς Vol(G0)

∫
g∈F ′1

#{(F2gG0 ·R(ς)
XY ∩ L} dg. (38)

We use the following result of Davenport [13] to estimate N ∗q (L;X, Y ):

Proposition 7.7. Let R be a bounded, semi-algebraic multiset in Rn having maximum
multiplicitym, and that is defined by at most k polynomial inequalities each having degree
at most `. Then the number of integral lattice points (counted with multiplicity) contained
in R is

Vol(R)+O(max {Vol(R̄), 1}),

where Vol(R̄) denotes the greatest d-dimensional volume of any projection of R onto a
coordinate subspace obtained by equating n − d coordinates to zero, where d takes all
values from 1 to n − 1. The implied constant in the second summand depends only on n,
m, k, and `.

In fact, the proof of the above proposition implies that we may replace Vol(R̄) by the
maximum of the d-dimensional volumes of the projections of any unipotent translate
of R.

Now, for g ∈ F1, the set gG0 ·R
(ς)
XY is a bounded set contained in Vred(R). Hence, the

b12- and b13-coefficients of elements in F2gG0 ·R
(ς)
XY must lie in [0, 2). They can only be

integral when they are 0 or 1. Therefore, every integral point in F2gG0 ·R
(ς)
XY lies on one

of four hyperplanes in V (R): the hyperplanes corresponding to (b12, b13) = (0, 0), (0, 1),
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(1, 0), and (1, 1). Moreover, these hyperplanes are unipotent translates of each other, in
fact, by the elements in F2 with m1, m2 ∈ {0, 1/2}. It follows that the four hyperplane
sections have the same volume, and Proposition 7.7 applied to them yields the same error
estimates. Therefore,

N ∗q (L;X, Y ) =
8

τς Vol(G0)

∫
g∈F ′1

VolL(gG0 ·R(ς)
XY ) dg +O(E(X, Y )), (39)

where VolL is computed with Euclidean measure normalized so that L has covolume 1,
and

E(X, Y ) =
1

Vol(G0)

∫
g=(0,0,t,0)∈F ′1

MP(gG0 ·R(ς)
XY )t

−2 d×t.

The quantity MP(g) denotes the maximal volume of the projections of gG0 ·R(ς)
XY onto its

coordinate hyperplanes. Every element (A,B) in R(ς) is such that the coefficients of A
are bounded by Y 1/2 and the coefficients ofB are bounded byX1/2/Y 1/2. By construction
of G0, the same is true for every element in G0 · R(ς). Then the error integral is easily
bounded: as long as Y � X, the maximum projection is onto the coordinate subspace
obtained by setting b22 to 0 since the ranges of the other coordinates are � 1 for every
value of g ∈ F ′1. Therefore, for g = (0, 0, t, 0), we have

MP(gG0 ·R(ς)
XY )� t2Y 3/2X

Y
= t2XY 1/2.

Therefore,

E(X, Y )�
1

Vol(G0)

∫ Y 1/4

t=1
XY 1/2 d×t � Y 3/2X1/2 logY, (40)

since Vol(G0) is easily seen to be � X1/2/Y .
We next have the following bound on the number of non-generic G(Z)-orbits

on V (Z).

Proposition 7.8. We have

1
Vol(G0)

∫
g∈F ′1

#{gG0 ·R(ς)
XY ∩ V (Z)\V (Z)

gen
} dg = o(XY).

Proof. If v ∈ V (Z) is not generic, then there exists unramified splitting types ς ′′ =
(ς ′′p , ς

′′′
p )p for all primes p such that (ςp(v), ς ′p(v)) 6= (ς

′′
p , ς

′′′
p ) for all primes p. Given

any unramified splitting type, there exists a constant c < 1 such that the density of ele-
ments in V (Zp) that do not have splitting type (ς ′′p , ς

′′′
p ) is bounded above by c. From (41)

we therefore obtain, for any fixed integer M ,

1
Vol(G0)

∫
g∈F ′1

#{gG0 ·R(ς)
XY ∩ V (Z)\V (Z)

gen
} dg

�
Vol(G0 ·R(ς)

XY )

Vol(G0)
·

∏
p<M

c(ς ′′p , ς
′′′
p )+ E(X, Y )� XY ·

∏
p<M

c +X1/2Y 3/2 logY,
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where the second estimate follows since the ratio of volumes is � XY . Note that by
assumption, we have X1/2Y 3/2 logY = o(XY). Therefore, by letting M tend to infinity,
we obtain the result. ut

From (39), (40) and Proposition 7.8, we see that if X and Y go to infinity such that
Y (logY )2 = o(X), then

N (δ)
q (L;X, Y ) =

8X−1/2Y

τς Vol(G1)
Vol(F1)VolL(G0 ·R(ς)

XY )+ o(XY)

=
8

τς Vol(G0)
Vol(F1)VolL(G0 ·R(ς)

XY )+ o(XY). (41)

To compute the volumes of G0 · R(ς)
XY , we have the following result, which follows im-

mediately from a Jacobian change of variables computation.

Proposition 7.9. Let dvi be the standard Euclidean measures on Vred(R), let dh denote
the Haar measure on Gred(R) obtained from the N̄AN decomposition of SL2(R), and
pick the measure dd dq on R(ς). We have a natural map Gred(R) × R(ς)

→ Vred(R).
Then the Jacobian of the change of variables is 1/16, i.e., for any measurable function ϕ
on Vred(R), we have∫

v∈Gred(R)·R(ς)

ϕ(v) dv =
1

16

∫
r∈R(ς)

∫
h∈Gred(R)

ϕ(g · r) dh dd(r) dq(r). (42)

Therefore, we obtain the following theorem from which Theorem 7.1 follows immedi-
ately.

Theorem 7.10. Let L denote a finite union of G(Z)-invariant lattices in V (R)(ς). Then,
for positive real numbers X, Y going to infinity such that Y (logY )2 = o(X), we have

N (δ)
q (L;X, Y ) =

ζ(2)
2τς

δ2XY
∏
p

Vol(Lp)+ oδ(XY),

where Lp denotes the closure of L in V (Zp), the volumes of sets in V (Zp) are taken with
respect to the usual Euclidean measure, and τς is as in Theorem 7.1.

Proof. The set R(ς)
XY contains exactly one point with invariants q and d, for every X ≤

q < (1+ δ)X and Y ≤ d < (1+ δ)Y . Hence, the volume of R(ς)
XY is δ2XY . The theorem

now follows from (41) and Proposition 7.9 since the volume of F1 under the measure dh
is ζ(2), and VolL differs from normal Euclidean measure by a factor of

∏
p Vol(Lp). ut

8. Uniformity estimates and sieving to D4-quartics

In order to use our results from §§4–5 and §§6–7 to prove our main theorems, we will
employ simple sieves. In this section, we start by collecting the requisite tail estimates.
First, we need a bound on the number of D4-quartics having central inertia at some large
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prime, which is established in §8.1. On the other hand, in §8.2 we obtain an estimate
on the number of G(Z)-orbits on V (Z) that are non-maximal at some large prime. It is
interesting to note that the results in §7 are not strong enough for these estimates, and so
we employ techniques from §4.

8.1. Bounding the number of D4-quartics with large central inertia

We start with a preliminary lemma bounding the number of D4-quartics with fixed con-
ductor.

Lemma 8.1. For any positive integer N , the number of D4-quartics with conductor N is
bounded by Oε(N ε).

Proof. Let L be aD4-quartic with conductor N , and letK be the quadratic subfield of L.
Then the discriminant ofK divides N . Hence the number of choices forK is bounded by
twice the number of divisors of N . Given a fixed quadratic field K whose discriminantD
divides N , the number of D4-quartics of conductor N whose quadratic subfield is K is
bounded by 4 · # Cl2(K) times the number of squarefree ideals dividing 4N (see [9, §3]).
But 4 · # Cl2(K) �ε D

ε and the number of divisors of 4N is�ε N
ε. Combining these

estimates yields the lemma. ut

Next, we prove the required estimate on D4-quartics having specified central inertia by
combining the previous lemma with Lemma 4.6.

Proposition 8.2. Let X and Y be integers such that X ≥ Y . Then the number of D4-
quartics L such that X ≤ q(L) < 2X, Y ≤ d(L) < 2Y , and L has central inertia every
prime dividing a positive squarefree integer n is bounded by Oε(XY/n2−ε).

Proof. We consider two ranges of n. We fix a large positive real numberM (anyM > 16
will suffice). When n ≥ X1/M , we have n ≥ (XY)1/2M . The number of possible con-
ductors for a D4-quartics L satisfying the conditions of the proposition is bounded by
O(XY/n2), since the conductor is bounded by 4XY and is divisible by n2. Hence, from
Lemma 8.1, it follows that the number of such fieldsL is bounded byOε((XY)1+ε/n2) =

Oε(XY/n
2−ε).

For n ≤ X1/M , we see from Lemma 4.6 that the number of D4-quartics satisfying
the conditions of the proposition and having splitting type ((1212), (11)) or ((22), (2)) at
every prime dividing n is bounded by

O

(
X

n2−ε ·
∑
[K:Q]=2
|Disc(K)|<Y

L(1,K/Q)
)
.

By [28, §3], the sum above is � Y and so the total displayed quantity is bounded
by O(XY/n2−ε). Similarly, the number of D4-quartics satisfying the conditions of the
proposition and having splitting type ((14), (12)) at every prime dividing n is bounded by

O

(
X

n1−ε ·
∑
[K:Q]=2
n|Disc(K)
|Disc(K)|<Y

L(1,K/Q)
)
.
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If Y ≥ nM , the sum of L-values is bounded by O(Y/n) by arguments identical to those
in [28, §3], yielding a total bound of O(XY/n2−ε). When instead Y < nM , the classical
bound of Oε(Disc(K)ε) on L(1,K/Q) yields the proposition. ut

8.2. Bounding the number of non-maximal G(Z)-orbits on V (Z)

For a fixed prime p, let Wp denote the set of generic elements in V (Z) that correspond to
non-maximal orders in D4-quartics. Our next goal is to prove a uniform tail estimate for
the number ofG(Z)-orbits on Wp having bounded invariants. We start with the following
lemmas.

Lemma 8.3. The number of D4-quartics L with |q(L)| < X and |d(L)| < Y is bounded
by O(XY).

Proof. From Lemma 4.5, we see that for X ≥ Y (in fact for Y �ε X
3−ε), the number of

D4-quartics with invariants q and d less than X and Y , respectively, is bounded by

O

(
X ·

∑
|Disc(K)|<Y

L(1,K/Q)
)
,

which is O(XY) by the results in [28, §3].
When X < Y , we bound the number of D4-quartics L by instead bounding the num-

ber of fields φ(L) (see Definition 2.1). To do so, it suffices to show that, when X < Y the
number of fields L with X < q(L) < 2X and Y < d(L) < 2Y is O(XY) since

∑
2−m

converges. But recall from (7) that J (L)d(φ(L)) = q(L). Then under this assumption,

Y · J (L) < q(φ(L)) < 2Y · J (L),
X

J (L)
< d(φ(L)) <

2X
J(L)

.

By Proposition 8.2, since Y · J (L) ≥ Y > X ≥ X/J(L), we find that the number of such
D4-quartics φ(L) in this range with J (φ(L)) = J (L) = n isOε(XY/n2−ε), so it suffices
to sum Oε(XY/n

2−ε) over all valid n. Since
∑

1/n2−ε over integers n converges, this
completes the proof. ut

We now prove the following uniform bound on the number ofG(Z)-orbits on Wp, the set
of generic elements in V (Z) that are not maximal at p.

Proposition 8.4. The number of G(Z)-orbits v on Wp with X ≤ q(v) < 2X and Y ≤
d(v) < 2Y is bounded by Oε(XY/p2−ε).

Proof. Note that since this is an asymptotic statement as p grows, we may assume that p
is sufficiently large, and in particular that p is odd. An element v ∈ Wp gives a quartic
ring Q whose field of fractions L is a D4-quartic. Let i(v) denote C(v)/C(L), the ratio
of the conductors of v and L. From Lemma 6.6, it follows that i(v) is divisible by p2.
From Lemma 8.3, it follows that the number of possible fields L that occur this way is
bounded by O(XY/i(v)1−ε). Next, note that the index of Q in the ring of integers of L
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divides i(v). The methods of [26] imply that the number of suborders of index k =
∏
p
ei
i

of a maximal quartic ring is bounded by

j (k) :=
∏

p
(2+ε)bei/4c
i .

Once the orderQ has been determined, there areO(1) choices for the quadratic subring T
of Q corresponding to v under Theorem 6.1. Finally, Corollary 4 of [1] asserts that the
number of cubic resolvents of ring Q is d(c), the sum of the divisors of the content c
ofQ. Furthermore, the content c of the quartic ring corresponding to v = (A,B) is equal
to the gcd of the coefficients of A (see [1, §3.6]), which implies that i(v) is a multiple
of c4.

Therefore, the number of G(Z)-orbits on Wp satisfying the conditions of the propo-
sition is bounded by ∑

p2|m

∑
c4|m

∑
k|m

j (k)d(c)(X/m1−ε), (43)

where m runs over all integers divisible by p2. Using the multiplicativity of j and d, the
expression (43) is easily seen to be�ε X/p

2−ε and the proposition follows. ut

9. Proof of the main theorems

In this section, we conclude the proof of the generalization of Theorem 5.3 that allows for
imposing certain local specifications (see Theorem 9.3). First, we define p-adic densities
and determine the number of étale algebras along with their automorphism groups for
each splitting type. As a byproduct of the two asymptotics obtained for NC(6;X,X

1/2)

by Theorem 4.3 and in §9.2, we prove Theorem 6.
Theorems 1 and 3 are proved in §9.3. First, we obtain asymptotics for NC(6;X, Y )

when Y > X1/2 from countingD4-quartics φ(L)with conductor bounded byX and small
quadratic discriminant, where L ∈ L(6). We then prove Theorem 3 after employing a
bound that follows from the analytic methods in Sections 4 and 5. Finally, in §9.4 we
prove a refinement of Theorem 5, which follows from Theorem 3 in conjunction with the
p-adic volumes determined in Proposition 6.7.

9.1. Acceptable local specifications, densities, and automorphism groups

Recall that for a collection 6 of local specifications, L(6) is the set of D4-quartics L
such that the pair consisting of the splitting type of L and the splitting type of K (its
quadratic subfield at a prime p (respectively, at∞) is contained in 6p for all p, respec-
tively, in6∞). A set6 of local specifications (and the corresponding family L(6)) is said
to be acceptable if for all but finitely many primes p, the set 6p contains all unramified
splitting types and tamely ramified splitting types without central inertia. (In the notation
of (5), 6p contains exactly the pairs (ςp(L1), ςp(K1)) contained in the first two groups
in Table 1.)
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Recall that for a prime p and a splitting type (ςp, ς ′p), we computed the density
µ(Mp(ςp, ς

′
p)) in Proposition 6.7. We define the density µ(6p) to be the sum of the

values of µ(Mp(ςp, ς
′
p)) over (ςp, ς ′p) ∈ 6p, and define the density of µ(6∞) to be the

sum of 1/τς over all ς ∈ 6∞. The stabilizer quantities τς are defined in Theorem 7.1,
and we list them below for convenience:

τς =

{
8 if ς = ((1111), (11)), ((22), (11)),
4 if ς = ((112), (11)), ((22), (2)).

(44)

Furthermore, if ς(L) = ((1111), (11)), then L is a totally real field, and Aut(L∞,K∞) =
Aut(R4,R2) = D4. If ς(L) = ((22), (11)), then L is a CM field and Aut(L∞,K∞) =
Aut(C2,R2) = D4. If ς(L) = ((112), (11)), then L has exactly one complex embedding,
and Aut(L∞,K∞) = Aut(R2

⊕ C,R2) = V4. Finally, if ς(L) = ((22), (2)), then L
is a totally complex field with imaginary quadratic subfield K , and Aut(L∞,K∞) =
Aut(C2,C) = V4. Overall, we have shown:

Lemma 9.1. For any quadratic extension L of a quadratic field K ,

# Aut(L∞,K∞) = τς (L,K).

Next, we determine the automorphism groups of étale quartic algebras over Qp sending a
quadratic subalgebra to itself for odd primes p.

Lemma 9.2. Let p be an odd prime. The automorphism group of a pair (L,K), where
K is a quadratic étale algebra over Qp, and L is a quadratic étale algebra over K , is
determined by the splitting type of (L,K), and is listed in the following table: Above,
when we write (a, b) for the number of (isomorphism classes of ) étale algebras over Qp,
the first coordinate indicates the quantity for primes of the form 4k + 1 and the second
coordinate for primes of the form 4k+3. Additionally, there are two distinct isomorphism
classes of étale algebras with splitting type (1212) : in the table, we distinguish them by
letting (1212) refer to the sum of two isomorphic ramified quadratic extensions of Qp
and letting (1212′) refer to the sum of two non-isomorphic ramified quadratic extensions
of Qp.

Proof. The above lemma can be verified case by case using [21] in conjunction with the
fact that determining the possible étale algebras for a given splitting type depends only
on the congruence class of p mod 4. ut

9.2. A refinement of Theorem 5.3 and the proof of Theorem 6

For positive real numbers X and Y , let N (δ)
q (6;X, Y ) be as in Section 7. We have the

following theorem, giving another proof that the heuristics of (9) holds for certain ranges
of X and Y .

Theorem 9.3. Let 6 be an acceptable set of local specifications. For positive real num-
bers X and Y such that Y (logY )2 = o(X), we have

N (δ)
q (6;X, Y ) =

ζ(2)
2
· δ2
· µ(6∞) ·

∏
p

µ(6p) ·XY + oδ(XY).



2778 S. Ali Altuğ et al.

Table 3. Automorphism groups for étale algebras over Qp .

ςp(L,K) # of algebras Aut(L,K) C(L,K)

((11), (1111)) 1 D4 1
((11), (112)) 1 V4 1
((11), (22)) 1 D4 1
((2), (22)) 1 V4 1
((2), (4)) 1 C4 1

((11), (1211)) 2 V4 p

((11), (122)) 2 V4 p

((12), (1212)) 2 V4 p

((12), (22)) 2 V4 p

((11), (1212)) 2 D4 p2

((11), (1212′)) 1 V4 p2

((2), (22)) 1 V4 p2

((2), (22)) 1 C4 p2

((12), (14)) (0, 2) C2 p2

((12), (14)) (4, 0) C4 p2

Proof. By Proposition 6.3, it suffices to obtain asymptotics for the number of generic
G(Z)-orbits (A,B) on V (Z) such that (A,B) is maximal and the splitting type of (A,B)
at each place belongs to 6. The number of generic G(Z)-orbits on V (Z) satisfying any
finite set of congruence conditions has been estimated in Theorem 7.10. Theorem 9.3 then
follows from Theorem 7.10 and the uniformity estimates in Propositions 8.2 and 8.4 by
means of a simple sieve. We omit the details since they are very similar to those in the
proof of Theorem 9.4. ut

As a consequence of the main terms obtained in Theorems 4.3 and 9.3, we may now prove
Theorem 6. It is interesting to note that the proof of Theorem 6 is much more involved
than that of Theorem 2. In particular, it is not obvious that the arguments in Section 5 can
be refined to directly allow for imposing acceptable sets of local specifications.

Proof of Theorem 6. Let K denote the set of quadratic fields with prescribed splitting
types ς ′p given at a finite set S of odd primes p. Let (6p)p denote sets, where for each
p /∈ S, 6p = 6full

p contains all possible splitting types, and for p ∈ S, 6p = {(∗, ς ′p)}
consists of all possible splitting types compatible with ς ′p. If we let

6
(a)
∞ = {((1111), (11)), ((112), (11)), ((22), (11))} and 6

(b)
∞ = {((22), (2))},

we can define 6(∗) to be the collection (6p)p and 6(∗)∞ for ∗ = a or b, which are both
acceptable collections.

Recall that NC(6
(∗)
;X,Xβ) counts the number of isomorphism classes of D4-quar-

tics L ∈ L(6(∗)) such that |C(L)| < X and |d(L)| < Xβ . As before, let r2(K) denote
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the number of pairs of complex embeddings of K . From Theorem 4.3 we have, for ∗ = a
or b and β < 2/3,

NC(6
(∗)
;X,Xβ) =

X

2ζ(2)
·

∑
K∈K(6(∗))
|Disc(K)|<Xβ

L(1,K/Q)
L(2,K/Q)

·
2−r2(K)

|Disc(K)|
+ oβ(X). (45)

On the other hand, we can also estimate NC(6(∗);X,Xβ) using Theorem 9.3 as follows.
Consider the region

RX,β := {(d, q) ∈ R2
: |d · q| < X, |d| < Xβ}.

There exist regions R(±)X,β , that are disjoint unions of δ-adic rectangles, such that

R
(−)
X,β ⊂ RX,β ⊂ R

(+)
X,β

and such that

|Vol(RX,β)− Vol(R(±)X,β)| � δ ·X log(Xβ).

The volume ofRX,β isX log(Xβ). Therefore, from Theorem 9.3, we see that for β < 1/2,

NC(6
(∗)
;X,Xβ) =

ζ(2)
2
·X log(Xβ) · µ(6(∗)∞ ) ·

∏
p

µ(6p)+ oδ(X log(Xβ))

+O(δX log(Xβ)). (46)

Equating the right hand sides of (45) and (46), dividing both sides by X log(Xβ), first
letting Xβ tend to infinity, and then finally letting δ tend to 0, we obtain

1
2ζ(2)

·

∑
K∈K(6(∗))
|Disc(K)|<X

L(1,K/Q)
L(2,K/Q)

·
2−r2(K)

|Disc(K)|
∼
ζ(2)

2
·µ(6(∗)∞ ) ·

∏
p

µ(6p) · logX. (47)

It is a direct computation to verify from (44) and the definitions of 6(∗)∞ that 2r2(K) ·
µ(6

(∗)
∞ ) is always equal to 1/2, independently of the choice of K ∈ K(6(∗)). Further-

more, the values of µ(6p) =
∑
(ςp,ς ′p)∈6p

µ(Mp(ςp, ς
′
p)) can be computed from Propo-

sition 6.7, and it then follows that the right hand sides of Theorem 6(a, b) are asymptoti-
cally equal to

ζ(2)2

2
·

∏
p

µ(6p) · logX.

This concludes the proof of Theorem 6. 2



2780 S. Ali Altuğ et al.

9.3. The proofs of Theorems 1 and 3

We next obtain asymptotics for N (δ)
q (6;X, Y ) when Y � X. Recall that the outer au-

tomorphism φ of D4 provides a non-isomorphic D4-quartic φ(L) for each D4-quartic L,
and the fields L and φ(L) have the same conductor but (possibly) different invariants.
Proposition 2.6 can be used to compute the invariants of φ(L) in terms of the invariants
of L. Note that if d(L) > q(L), then d(φ(L)) < q(φ(L)). Hence, for a collection 6
of local specifications, we may relate counts of D4-quartics with d > q to counts of
D4-quartics with d < q.

Given an acceptable collection 6, let φ(L(6)) denote the family defined by

φ(L(6)) := {φ(L) : L ∈ L(6)}

There exists another acceptable collection φ(6) of local specifications such that φ(L(6))
= L(φ(6)). Furthermore, for every odd prime p, by Table 1 in conjunction with Propo-
sition 6.7 and Lemma 6.8 for an acceptable collection 6, we have µ(6p) = µ(φ(6p)).
An acceptable family 6 is said to be very stable at 2 if the set 62 either contains all split-
ting types with central inertia (pairs (ς2(L1), ς2(K1)) in the latter two groups of Table 1),
or contains none of them. Our next result computes the number of D4-quartics in L(6)
satisfying X ≤ |q(L)| ≤ (1 + δ)X and Y ≤ |d(L)| < (1 + δ)Y when Y is much larger
than X.

Theorem 9.4. Let6 be an acceptable collection of local specifications that is very stable
at 2. Let X and Y be positive real numbers such that X(logX)2 = o(Y ). Then

N (δ)
q (6;X, Y ) =

ζ(2)
2
· δ2
· µ(6∞) ·

∏
p

µ(6p) ·XY + o(XY).

Proof. For a prime p and an integer a ≥ 1, let V(p, a) denote the set of D4-quartics L
such that Jp(L) = pa . Recall that J (L) is defined in (7), and an odd prime p divides
J (L) if only if p2

‖L if and only if L has splitting type ((22), (2)), or ((1212), (11)). Let
Vp denote the union of V(p, a) over all a ≥ 1, and for any integer n ≥ 1, let L(6)(n)
denote the set of fields L in L(6) such that J (L) = n. One can check that L(6)(n) is
defined by an acceptable collection 6(n) of local specifications that is very stable at 2,
i.e., L(6(n)) = L(6)(n). Using (7) and the fact that J (L) = J (φ(L)), we have

N (δ)
q (6;X, Y ) =

∑
n≥1

N (δ)
q (6(n);X, Y ) =

∑
n≥1

N (δ)
q (φ(6(n));Yn,X/n).

For a fixed integer M , we use Theorem 9.3 to evaluate N (δ)
q (φ(6)(n);Yn,X/n) for

n ≤ M and Proposition 8.2 to bound N (δ)
q (φ(6)(n);Yn,X/n) for n > M . Altogether,

we obtain

N (δ)
q (6;X, Y )

∼
ζ(2)

2
· δ2
· µ(φ(6)∞) ·

( M∑
n=1

∏
pa‖n

µ(φ(6)p ∩ V(p, a)) ·
∏
p-n
µ(φ(6)p\Vp)

)
·XY
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up to an error of oδ,M(XY) + Oε,δ(XY/M1−ε), where we assume that a ≥ 1. Dividing
by XY , letting X and Y tend to infinity, and then letting M tend to infinity, we obtain

lim
M→∞

lim
X,Y→∞

N (δ)
q (6;X, Y )

δ2XY

=
ζ(2)

2
· µ(φ(6)∞) ·

∑
n≥1

(∏
pa‖n

µ(φ(6)p ∩ V(p, a)) ·
∏
p-n
µ(φ(6)p\Vp)

)
=
ζ(2)

2
· µ(φ(6)∞) ·

∑
n≥1

(∏
p

µ(φ(6)p\Vp) ·
∏
pa‖n

µ(φ(6)p ∩ V(p, a))
µ(φ(6)p\Vp)

)
=
ζ(2)

2
· µ(φ(6)∞) ·

∏
p

µ(φ(6)p\Vp) ·
∏
p

(
1+

∑
a≥1

µ(φ(6)p ∩ V(p, a))
µ(φ(6)p\Vp)

)
=
ζ(2)

2
· µ(φ(6)∞) ·

∏
p

µ(φ(6)p).

Since µ(6p) = µ(φ(6)p) for all primes p and µ(6∞) = µ(φ(6∞)), we obtain the
result. ut

We now have theorems computing N (δ)
q (6;X, Y )whenX(logX)2=o(Y ) (Theorem 9.3)

and when Y (logY )2 = o(X) (Theorem 9.4) with identical right hand sides. Our last task
in proving Theorem 3 is to show that the region that neither Theorem 9.3 nor 9.4 covers
contributes negligibly to N (δ)

q (6;X, Y ). For that we need the following lemma.

Lemma 9.5. The number of D4-quartics L such that |C(L)| ≤ X and X(logX)−3
≤

|d(L)| ≤ X(logX)3 is bounded by O(X log logX).

Proof. The number of D4-quartics satisfying the conditions of the lemma can be esti-
mated as a sum of ratios of L-values from Theorem 4.3. This sum can be bounded, using
Proposition 5.2, by

X ·

X(logX)3∑
D=X(logX)−3

1
D
,

yielding the lemma. ut

Proof of Theorem 3. The invariants d and q of a D4 field with absolute conductor
bounded by X satisfy |d · q| < X. Consider the region RX := {(d, q) ∈ R2

: |d · q| < X}.
We bound the number of D4-quartics L with

√
X(log

√
X)−3

≤ d(L) ≤
√
X(log

√
X)3

using Lemma 9.5, and estimate the rest of the D4-quartics using Theorems 9.3 and 9.4
with an argument identical to the proof of Theorem 6, obtaining

ND4(6,X) ∼
ζ(2)

2
· µ(6∞) ·

∏
p

µ(6p) ·X logX.

Let ςp(Lp,Kp) denote the splitting type of a pair (Lp,Kp) of local extensions of Qp.
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From Proposition 6.7 and Lemma 9.2 we obtain, for each odd prime p,

1
# Aut(Lp,Kp)

·
1

Cp(Lp)
·

(
1−

1
p

)2

=
µ(Mp(ςp(Lp,Kp)))

1− p−2 ,

and at∞, Lemma 9.1 implies # Aut(L∞,K∞) = τς (L∞,K∞). For p = 2, we can utilize
Proposition 3.1(3) to conclude the proof of Theorem 3. 2

Theorem 1 follows directly from Theorem 3 in conjunction with the p-adic density
computations in Theorem 6.9 and the following density computations at∞ using (44):

(0) D4-quartic fields with exactly four real embeddings all have infinite splitting type
((1111), (11)), and therefore µ(6∞) = 1/8;

(1) D4-quartic fields with exactly two real embeddings all have infinite splitting type
((112), (11)), and therefore µ(6∞) = 1/4;

(2) D4-quartic fields with no real embeddings have infinite splitting type ((22), (11)) or
((22), (2)), and therefore µ(6∞) = 1/8+ 1/4 = 3/8.

9.4. The proof of Theorem 5

We end this article with the proof and a discussion of Theorem 5.
Let K ∈ K be a quadratic field, and for each p ∈ S, let ς denote the prescribed split-

ting type at p for K. Since finite abelian groups are isomorphic to their duals, we see that
# Cl(K)[4] − # Cl(K)[2], the number of elements in Cl(K) having exact order 4, is equal
to twice the number of index-4 subgroups of Cl(K) whose quotients are cyclic. By class
field theory, such index-4 subgroups of Cl(K) are in bijection with isomorphism classes
of unramified extensions M of K with Gal(M/K) = C4. Such an extension M is Galois
over Q with Galois groupD4. Conversely, ifM is an octicD4-quartic whose splitting type
at every prime p lies in the first two quadrants of Table 1, then M is unramified over K ,
its quadratic subfield fixed by C4 ⊂ D4. Furthermore, it is straightforward to check from
Table 1 that under these conditions, M is unramified over K .

Now we define three collections6(i) of local specifications corresponding to the three
cases in Theorem 5. First, let K(∗) be the subset of K ∈ K with ς∞(K) = (11) when
∗ = a or c, and ς∞(K) = (2) when ∗ = b, and define

6(∗)∞ :=


{((1111), (11))} if ∗ = a,
{((112), (11)), ((22), (2))} if ∗ = b,
{((1111), (11)), ((22), (11))} if ∗ = c.

Next we define 6p for all finite primes p. If p 6∈ S, define

6p = {(ςp, ς
′
p) : (ςp, ς

′
p) lacks central inertia}.

For p ∈ S, define

6p =


{((1111), (11)), ((22), (11)), ((4), (2))} if ς = (11),
{((112), (11)), ((22), (2))} if ς = (2),
{((1211), (11)), ((122), (11)), ((1212), (12)), ((22), (12))} if ς = (12).
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Let 6(∗) then denote the collection of local specifications consisting of (6p)p along
with 6(∗)∞ for ∗ = a, b, or c, which is acceptable and very stable at 2. It is easily checked
from Table 1 that the Galois closures of fields in L(6(∗)) correspond to cyclic quartic
unramified extensions of fields in K(∗). When ∗ = a or b, L(6(∗)) corresponds to order-4
elements in the class groups of K(∗). On the other hand, L(6(c)) corresponds to cyclic
quartic extensions of K(c) that are unramified at every finite place, but possibly ramified
at infinity; thus, they correspond to order-4 elements in the narrow class groups of real
quadratic fields in K. Furthermore, from (5), it follows that exactly two distinct isomor-
phism classes ofD4-quartics yield the same Galois closure, but additionally every index-4
subgroup of the class group corresponds to two order-4 ideal classes. Thus, we conclude
that the left hand sides of Theorem 5(∗) are equal to ND4(6

(∗), X), for ∗ = a, b, and c.
The theorem follows from Theorem 3 along with density computations following from
Proposition 6.7. 2

Remark 9.6. Fouvry–Klüners [15] prove that the average size of 2rk4(Cl+(K)) over imag-
inary (respectively, real) quadratic fields K ordered by discriminant is equal to 2 (respec-
tively, 3/2), where rk4(Cl+(K)) = dimF2(Cl+(K)4/Cl+(K)2). Furthermore,

# Cl+4 (K)− # Cl+2 (K) = (2
rk4(Cl+(K))

− 1) · (# Cl+2 (K)).

Genus theory implies that for any quadratic field K , # Cl+2 (K) = 2ω(Disc(K))−1, where
ω(D) denotes the number of prime factors of D. Additionally, using similar techniques
to those in §5.2, one can check the genus theory formula for the size of Cl+2 (K) implies
the asymptotics ∑

K quad.
−X≤Disc(K)<0

# Cl+2 (K) ∼
1
4
·

∏
p

(
1+

2
p

)(
1−

1
p

)2

·X logX,

∑
K quad.

0<Disc(K)≤X

# Cl+2 (K) ∼
1
4
·

∏
p

(
1+

2
p

)(
1−

1
p

)2

·X logX.

Combining the above result with those of [15] and Theorem 5 illustrates an interest-
ing “independence” phenomenon: the average value of the product (2rk4(Cl+(K))

− 1) ·
(# Cl+2 (K)) is equal to the product of the average value of 2rk4(Cl+(K))

−1 and the average
size of Cl+2 (K).
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