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Abstract. We show that typical interval exchange transformations on three intervals are not 2-
simple answering a question of Veech. Moreover, the set of self-joinings of almost every 3-IET is a
Poulsen simplex.
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1. Introduction

Definition 1.1. Let (X,B, µ, T ) be a probability measure preserving system. A self-
joining is a T × T invariant measure on X ×X with marginals µ.

Definition 1.2. (X,B, µ, T ) is called 2-simple if every ergodic self-joining, other than
µ× µ, is one-to-one on almost every fiber.

Definition 1.3. A Poulsen simplex is a metrizable simplex whose extreme points are
dense.

Lindenstrauss, Olsen and Sternfeld proved that a Poulsen simplex is unique up to affine
homeomorphism [11].

Definition 1.4. A 3-interval exchange transformation is defined by three non-negative
numbers `1, `2, `3. It is T : [0, `1 + `2 + `3)→ [0, `1 + `2 + `3) given by

T (x) =


x + `2 + `3 if x < `1,

x + `3 − `1 if `1 ≤ x < `1 + `2,

x − (`1 + `2) otherwise.

Theorem 1.5. Almost every 3-IET is not 2-simple. Also, its self-joinings form a Poulsen
simplex.

Note that T × T has topological entropy 0.
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The first part of Theorem 1.5 answers a question of Veech in the negative [16, Ques-
tion 4.9]. (In [16] “2-simple” is called “Property S.”)

Recall that a measure preserving system is called prime if it has no non-trivial factors.
In the paper [16] mentioned above, Veech classified the factors of 2-simple systems, and
so a natural question remains:

Question 1.6. Is almost every 3-IET prime?

It is also natural to wonder what happens for IETs with other permutations and flows on
translation surfaces. It is likely that our techniques can show that residual sets of interval
exchange transformations on more intervals, and flows on translation surfaces of genus
greater than 1 are not simple, but we do not see how they can be applied to almost every
flow on translation surface or IET with different permutation.

To prove Theorem 1.5 we define in Section 2 a distiguished class of self-joinings
called “shifted power joinings.” In Section 2 we also show that a special type of trans-
formations called “rigid rank 1 by intervals” (which includes IET’s by [17, Part 1, Theo-
rem 1.4]) have the property that linear combinations of shifted power joinings are dense
in their self-joinings. M. Lemańczyk brought to our attention that this result was proved
in an unpublished paper of J. King [10]. We then prove that almost every 3-IET has the
property that its ergodic self-joinings are dense in linear combinations of the shifted power
joinings. We do this by producing an abstract criterion (Section 3) and showing 3-IETs
satisfy this criterion (Section 4).

Context of our results. Before Veech’s work, D. Rudolph introduced the notion of min-
imal self-joinings, using it as a fruitful class of examples, including examples of prime
systems [12]. The property of 2-simple generalizes minimal self-joinings and in particu-
lar, no rigid system has minimal self-joinings. The typical IET is rigid [17, Part 1, The-
orem 1.4], so the typical IET does not have minimal self-joinings, but there are rigid 2-
simple systems. Ageev proved that the set of measure preserving transformations which
are not 2-simple contains a dense Gδ , i.e. it is a residual set (with the topology being the
so called weak topology) [1]. Our construction can be modified to give a new proof of this
fact.

Our result that the self-joinings form a Poulsen simplex is also perhaps a little un-
expected. Many examples of systems whose set of invariant measures forms a Poulsen
simplex are well known, but typically these systems are of high complexity, satisfying
some form of specification. In contrast, our examples have very low complexity, as T ×T
has quadratic block growth. Since systems of linear block growth have only finitely many
ergodic measures [2], such a system cannot have the set of its invariant measures form-
ing a Poulsen simplex (though as our examples show its Cartesian product could). We
remark that in the previously mentioned unpublished work, J. King proved that a residual
set of measure preserving transformations (which therefore must include rank 1 transfor-
mations) have the property that their self-joinings form a Poulsen simplex [10], giving
many (non-explicit) entropy zero examples. Our result is perhaps still surprising, because
we treat a previously considered family of examples and we show typicality in a metric,
rather than topological setting.
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Two key steps are showing that the typical 3-IET admit good linked (nj , nj + 1)
approximation [7] (see Remark 4.8 and the proof of Proposition 4.5) and that this implies
the existence of all sorts of ergodic joinings (see Proposition 3.1). Some consequences
of transformations with (nj , nj + 1) approximation were studied by Ryzhikov [14] and
as a result we get some spectral consequences for T n and T × · · · × T (n times) (see
Remark 4.6). Related to this, the methods of the paper show that Katok maps are not
simple, answering [4, Question 7.1].

2. Joinings of rigid rank 1 transformations come from limits of linear combinations
of powers

Let ([0, 1],M, λ, T ) be an ergodic invertible transformation.

Definition 2.1. We say T is rigid rank 1 by intervals if there exists a sequence of intervals
I1, I2, . . . and natural numbers n1, n2, . . . such that:

• T iIk is an interval with diam(T iIk) = diam(Ik) for all 0 ≤ i < nk .
• T iIk ∩ T

j Ik = ∅ for all k and 0 ≤ i < j < nk .
• limk→∞ λ(

⋃nk−1
i=0 T iIk) = 1.

• limk→∞ λ(T
nkIk 4 Ik)/λ(Ik) = 0.

This is a condition meaning that our transformation is well approximated by periodic
transformations. A similar condition, admitting cyclic approximation by periodic trans-
formations, was considered in [8].

Let

Rk =

nk−1⋃
i=0

T iIk, R̂k =

nk−1⋃
i=0

T i(Ik ∩ T
−nkIk ∩ T

nkIk),

R̃k =

nk−1⋃
i=0

T i(Ik ∩ T
−nkIk ∩ T

−2nkIk ∩ T
nkIk ∩ T

2nkIk),

(2.1)

Then Rk is the Rokhlin tower over Ik , R̂k is the Rokhlin tower over Ik ∩T −nkIk ∩T nkIk ,
and R̃k is the Rokhlin tower over

⋂2
i=−2 T

inkIk . We have

R̂k = {x : T
ix ∈ Rk for all −nk < i < nk}, (2.2)

R̃k = {x : T
ix ∈ Rk for all −2nk < i < 2nk}. (2.3)

Heuristically one can think of Rk as the set of points we can control. The sets R̂k and
R̃k let us control the points for long orbit segments, which is necessary for some of our
arguments.

Lemma 2.2. limk→∞ λ(R̃k) = 1 = limk→∞ λ(Rk) = limk→∞ λ(R̂k).
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Proof. By the third condition in the definition of rigid rank 1 by intervals we have
limk→∞ λ(Rk) = 1. By (2.1),

λ(R̂k) ≥ λ(Rk)− nkλ(Ik \ (T
nkIk ∪ T

−nkIk)) ≥ λ(Rk)− 2nkλ(Ik \ T nkIk),

and thus by the fourth condition of that definition, limk→∞ λ(R̂k) → 1. Similarly,
limk→∞ λ(R̃k) = 1. ut

Definition 2.3 (Shifted power joining). Let (X, T , µ) be a measure preserving dynam-
ical system. A self-joining of (X, T , µ) that gives full measure to {(x, T ax)} for some
a ∈ Z with a 6= 0 is called a shifted power joining. These have also been called off-
diagonal joinings.

Let ι : [0, 1] → [0, 1] by x 7→ (x, x). Let µ = ι∗λ. Shifted power joinings have the form
(id× T a)∗µ for some a ∈ Z \ {0}.

The operator Aσ and convergence in the strong operator topology. Let σ be a self-
joining of (T , λ). Let σx be the corresponding measure on [0, 1] coming from disinte-
grating along σ on the fiber {x} × [0, 1]. Define Aσ : L2(λ) → L2(λ) by Aσ (f )[x] =∫
f dσx .

Recall that one calls the topology of pointwise convergence on L2(λ) the strong op-
erator topology. That is, A1, A2, . . . converges to A∞ in the strong operator topology if
and only if limi→∞ ‖Aif − A∞f ‖2 = 0 for all f ∈ L2(λ).

Theorem 2.4. Assume ([0, 1], T , λ) is rigid rank 1 by intervals and σ is a self-joining
of ([0, 1], T , λ). Then Aσ is the strong operator topology (SOT) limit of linear combi-
nations, with non-negative coefficients, of powers of UT , where UT : L2([0, 1], λ) →
L2([0, 1], λ) denotes the Koopman operator UT (f ) = f ◦ T .

Corollary 2.5 (J. King). Any self-joining of a transformation rigid rank 1 by intervals
is a weak-* limit of linear combinations of shifted power joinings.

These results (or very closely ones) were established earlier by J. King [10] using a dif-
ferent proof. In fact he shows that if the joining in Corollary 2.5 is ergodic then there is no
need to take a linear combination. See also [6, Theorem 7.1]. There is an open question
of whether this result is true for general rank 1 systems [9, p. 382]. Ryzhikov has a series
of results in this direction: see for example [13] and [15].

2.1. Proof of Theorem 2.4

Lemma 2.6. For each 0 ≤ j < nk we have

nk

∫
T j Ik

σx(Rc
k) dλ(x) ≤ λ(R̃

c
k). (2.4)

Remark. Note that nk is roughly λ(T j Ik)−1.
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Proof of Lemma 2.6. Suppose 0 ≤ j < nk , and suppose x ∈ T j Ik . From (2.3) we have
T iRc

k ⊂ R̃c
k for all −nk < i < nk . We claim that

σx(Rc
k) ≤ σT `x(R̃

c
k) for all −nk < ` < nk . (2.5)

Indeed, σx(Rc
k) = σT `x(T

`Rc
k) ≤ σT `x(R̃

c
k). Integrating (2.5) we get∫

T j Ik

σy(Rc
k) dλ(y) ≤

∫
T j+`Ik

σz(R̃c
k) dλ(z) for all −nk < ` < nk . (2.6)

Since we can choose ` in (2.6) so that j + ` takes any value in [0, nk − 1] ∩ Z, we get∫
T j Ik

σy(Rc
k) dλ(y) ≤ min

0≤i<nk

∫
T iIk

σz(R̃c
k) dλ(z). (2.7)

Now
nk−1∑
i=0

∫
T iIk

σy(R̃c
k) dλ(y) ≤

∫
[0,1]

σy(R̃c
k) dλ(y) ≤ λ(R̃

c
k),

where the last estimate uses the fact that σ has projections λ. So we obtain

min
0≤i<nk

∫
T iIk

σx(R̃c
k) dλ(x) ≤

1
nk
λ(R̃c

k). (2.8)

Now the estimate (2.4) follows from (2.7) and (2.8). ut

We want to guess coefficients cj such that σ is close to
∑nk−1
j=0 cj (id × T i)∗µ. The next

lemma comes up with a candidate pointwise version. Theorem 2.4 and Corollary 2.5
follow because by Egorov’s theorem this choice is almost constant on most of the T `Ik
and the subsequent lemma (Lemma 2.8) shows that they are almost T -invariant.

Lemma 2.7. Let x ∈ R̂k ∩ T
j Ik where 0 ≤ j < nk . Define ci(x) = σx(T

aIk ∩ R̂k)

where 0 ≤ a < nk and i + j ≡ a (mod nk). For all 1-Lipschitz f we have

∣∣∣Aσf (x)− nk−1∑
i=0

ci(x)f (T
ix)

∣∣∣ ≤ diam(Ik)+ 2‖f ‖supσx(R̂c
k).

Morally cj (x) is the σx measure of the level in Rk that is j levels above the level x is on.
Because j +` can be bigger than nk the definition is slightly more complicated. Note that
the cj (x) are non-negative.

Proof of Lemma 2.7. Suppose x ∈ R̂k ∩ T
j Ik . First notice that if y, z ∈ T iIk for some

0 ≤ i < nk then d(y, z) ≤ diam(Ik). So if j + ` < nk we have∣∣∣∣∫
R̂k∩T

j+`Ik

f dσx − cj (x)f (T
ix)

∣∣∣∣ ≤ ‖f ‖Lip diam(Ik). (2.9)
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If j + ` ≥ nk then |cj (x)−σx(R̂k ∩T j+`Ik)| ≤ σx(R̃ck ∩T
j+`Ik) because if y ∈ R̃k then

T ±nky ∈ R̂k . So for any j we have∣∣∣∣∫
R̂k∩T

j+`Ik

f dσx − cj (x)f (T
jx)

∣∣∣∣ ≤ ‖f ‖Lip diam(Ik)+ ‖f ‖sup σx(R̃
c
k ∩ T

j+`Ik).

(2.10)

By (2.2), for all 0 ≤ ` < nk , T −`R̂k ⊂ Rk . Therefore, R̂k ⊂
⋃`+nk−1
i=` T iIk for all

0 ≤ ` < nk . By summing over j in (2.10) we obtain∣∣∣∣∫
R̂k

f dσx −

nk−1∑
j=0

ci(x)f (T
ix)

∣∣∣∣ ≤ ‖f ‖Lip diam(Ik)+ ‖f ‖supσx(R̃
c
k). (2.11)

In view of the fact that ∣∣∣∣∫
R̂ck

f dσx

∣∣∣∣ ≤ ‖f ‖sup σx(R̃
c
k), (2.12)

we obtain the lemma. ut

Lemma 2.8. Suppose 0 ≤ ` < nk . If x ∈ T `Ik and −` ≤ i < nk − ` then

nk−1∑
j=0

|cj (x)− cj (T
ix)| ≤ 2σx(R̃ck).

Proof. Suppose 0 ≤ ` < nk , 0 ≤ j < nk , and −` ≤ i < nk − `. First note that if
0 ≤ m < nk and z ∈ T mIk ∩ R̂k then by (2.1), we have T sz ∈ T m+sIk ∩ R̂k for all
−m ≤ s < nk −m. Thus, if j + ` < nk and i + j + ` < nk then

σT ix(T
i+j+`Ik ∩ R̂k) = σx(T

j+`Ik ∩ T
−iR̂k) = σx(T

j+`Ik ∩ R̂k).

This gives cj (x) = cj (T ix) if j + ` < nk and i + j + ` < nk . By a similar reasoning we
have cj (x) = cj (T ix) if j + ` ≥ nk and i + j + ` ≥ nk .

Now assume that j + ` < nk and i + j + ` ≥ nk . Then

cj (T
ix) = σT ix(T

i+j+`−nkIk ∩ R̂k) = σx(T
j+`−nkIk ∩ T

−iR̂k). (2.13)

Also,
cj (x) = σx(T

j+`Ik ∩ R̂k). (2.14)

Now because R̃k ⊂
⋂nk
i=−nk

T iR̂k , if z ∈ T i+j+`−nkIk∩R̃k , then z ∈ T j+`−nkIk∩T −iR̂k
and z ∈ T j+`Ik ∩ R̂k . Therefore, the symmetric difference between T j+`−nkIk ∩ T −iR̂k
and T j+`Ik ∩ R̂k is contained in the union of T i+j+`−nkIk ∩ R̃ck and T j+`Ik ∩ R̃ck . Thus,
in view of (2.13) and (2.14),

|cj (x)− cj (T
ix)| ≤ σx(T

j+`+i−nk R̃ck)+ σx(T
j+`R̃ck).

The last case, where j + ` ≥ nk and 0 ≤ i + j + ` < nk , gives analogous bounds. So
we bound

∑nk−1
i=0 |cj (x) − cj (T

ix)| by 2
∑nk−1
i=0 λ(T iIk ∩ R̃

c
k) ≤ 2λ(R̃ck) and obtain the

lemma. ut
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Let dKR denote the Kantorovich–Rubinstein metric on measures,

dKR(µ, ν) = sup
{∣∣∣∣∫ f dµ−

∫
f dν

∣∣∣∣ : f is 1-Lipschitz
}
.

The next lemma is an immediate consequence of this definition.

Lemma 2.9. If f is 1-Lipschitz and dKR(σx, σy) < ε then |Aσf (x)− Aσf (y)| < ε.

We say 0 ≤ j < nk is k-good if there exists yj in T j Ik such that at least 1− ε proportion
of the points in T j Ik have their disintegration ε close to yj , that is

λ({x ∈ T j Ik : dKR(σx, σyj ) < ε}) ≥ (1− ε)λ(Ik).

Lemma 2.10. For all ε > 0 there exists k0 such that for all k > k0 we have

|{0 ≤ j < nk : j is k-good }| > (1− ε)nk.

Proof. By Luzin’s Theorem there exists a compact set K of measure at least 1 − ε2/4
such that the map y 7→ σy is continuous with respect to the usual metric on [0, 1] and the
metric dKR on measures. Because K is compact, this map is uniformly continuous and
so there exists δ > 0 such that if x, y ∈ K and |x − y| < δ then dKR(σx, σy) < ε. We
choose k so that diam(Ik) < δ and λ([0, 1] \Rk) < ε2/4. Let

η =
1
nk
|{0 ≤ j < nk : λ(T

j Ik ∩K
c) > ελ(Ik)}|.

Then, because the T j Ik are disjoint and of equal size and
⋃nk−1
j=0 T j Ik = Rk , it is clear

that

ηε ≤
λ(Kc

∩Rk)

λ(Rk)
≤

ε2/4
1− ε2/4

<
ε2

2
,

and thus η < ε/2. This completes the proof of the lemma. ut

Notation. If j is k-good let

Gj =
{
x ∈ T j Ik : λ({y ∈ T

j Ik : dKR(σx, σy) < 2ε}) > (1− ε)λ(Ik)
}
,

i.e. Gj is the set of points that are almost continuity points of the map x 7→ σx (restricted
to T j Ik). We set Gj = ∅ if j is not k-good.

Lemma 2.11. For all ε > 0 there exists k1 such that for all k > k1 there exist 0 ≤ ` < nk
and yk ∈ T `Ik ∩ R̂k such that σyk (R̃c

k) < ε and

|{−` ≤ j < nk − ` : T
jyk ∈ G`+j and j is k-good}| > (1− 12ε)nk. (2.15)

Proof. If j is k-good then
λ(Gj ) > (1− ε)λ(Ik).
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Let R∗k =
⋃nk−1
j=0 Gj . Notice that limk→∞ λ(

⋃nk−1
i=0 T iIk) = limk→∞ λ(Rk) = 1 and so

for all large enough k (such that λ(Rk) is close to 1 and Lemma 2.10 holds) we have

λ(R∗k) ≥ (1− ε)
2λ(Rk) > 1− 3ε.

By a straightforward L1 estimate, we have

nk−1∑
`=0

λ
({
y ∈ T `Ik : |{−` ≤ j < nk − ` : Gj = ∅ or T jy 6∈ Gj+`}| ≥ 12εnk

})
<

3ε
12
=
ε

4
.

Therefore, the measure of the set of yk satisfying (2.15) (for some `) is at least 1/2.
Recall that by Lemma 2.2 we have limk→∞ λ(R̃c

k) = 0 and so for k large enough,

λ({y : σy(R̃k) > ε}) < 1/3.

Thus, we can pick yk satisfying the conditions of the lemma. ut

Proof of Theorem 2.4. For each k large enough that Lemmas 2.10 and 2.11 hold and
diam(Ik) < ε and λ(Rc

k) < ε, let yk be as in the statement of Lemma 2.11 and assume it
is in T `Ik for some 0 ≤ ` < nk .

Step 1: We show that for all 1-Lipschitz functions f with ‖f ‖sup ≤ 1 we have

lim
k→∞

∥∥∥Aσf − nk−1∑
i=0

ci(yk)U
i
T f

∥∥∥
2
= 0.

First, observe that by Lemma 2.7 and the fact that ‖f ‖sup ≤ 1,

∣∣∣Aσf (T jyk)− nk−1∑
i=0

ci(T
jyk)f (T

i+jyk)

∣∣∣ < diam(Ik)+ 2σT j yk (R̂
c
k)

≤ diam(Ik)+ 2σyk (R̃
c
k).

By our assumptions that diam(Ik) < ε and σyk (R̃c
k) < ε we have

∣∣∣Aσf (T jyk)− nk−1∑
i=0

ci(T
jyk)f (T

i+jyk)

∣∣∣ < 3ε.

From Lemma 2.9 we know that if x satisfies

dKR(σx, σT j yk ) < ε (2.16)

then ∣∣∣Aσf (x)− nk−1∑
i=0

ci(T
jyk)f (T

i+jyk)

∣∣∣ < 4ε.
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Let V denote the set of x satisfying (2.16) and such that x ∈ T `+j Ik ∩ R̂k for −` ≤ j <
nk − `. Then, for x ∈ V , we have T ix, T i+jyk ∈ T i+`+j (mod nk)Ik for all 0 ≤ i < nk
since −nk < i, i + j < nk (by (2.2)). Thus for any x ∈ V ,∣∣∣Aσf (x)− nk−1∑

i=0

ci(T
jyk)f (T

ix)

∣∣∣ < 4ε + diam(Ik).

Recalling that by assumption diam(Ik) < ε and invoking Lemma 2.8 we have∫
V

∣∣∣Aσf (x)− nk−1∑
j=0

cj (yk)f (T
jx)

∣∣∣2 dλ(x) ≤ (5ε + σy(R̃k))
2 < (6ε)2.

Since yk satisfies the assumptions of Lemma 2.11 and λ(R̃c
k) < ε, we have

λ(V c) < 2εnkλ(Ik)+ ε. (2.17)

Estimating trivially on V c we have∥∥∥Aσf − nk−1∑
j=0

cj (yk)f ◦ T
j
∥∥∥2

2
=

∫ 1

0

∣∣∣Aσf (x)− nk−1∑
j=0

cj (yk)f (T
jx)

∣∣∣2 dλ(x)
≤ (6ε)2 + ‖f ‖2sup(2εnkλ(Ik)+ ε).

Since ‖f ‖sup ≤ 1 and ε is arbitrary, this establishes Step 1.

Step 2: Completing the proof. The idea of the proof is that by Step 1 and linearity we
have the limit on a dense set in L2. Since the functions on L2 we consider have operator
norm uniformly bounded (by 1), they are an equicontinuous family and so convergence
on a dense set implies convergence.

To complete the formal proof of the theorem, observe that for any z we have
∑
ci(z)

=
∑
|ci(z)| ≤ σz([0, 1]) and we may assume that σz([0, 1]) = 1.1 So∥∥∥nk−1∑

i=0

ci(yk)U
i
T

∥∥∥
op
≤ 1 for all k.

Therefore since we have shown limk→∞ ‖Aσf −
∑nk−1
i=0 ci(yk)U

i
T f ‖2 = 0 for a set of f

with dense span in L2 (namely, the 1-Lipschitz functions with ‖f ‖sup ≤ 1), we know that
for all f ∈ L2 we have limk→∞ ‖Aσf −

∑nk−1
i=0 ci(yk)U

i
T f ‖2 = 0. This is the definition

of strong operator convergence. ut

Proof of Corollary 2.5. Let δ̂p denote the point mass at p. By the proof of the theorem
there exists yk such that

dKR

(
σx,

nk−1∑
j=0

cj (yk)δ̂(x,T ix)

)
< 5ε

for all x ∈ V . By (2.17) we may assume λ(V c) is as small as we want. The corollary
follows. ut

1 It is 1 for all but a measure zero set of z and we may change the disintegration on this zero set.
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3. An abstract criterion

Let (S, Y, λ) be a uniquely ergodic topological dynamical system. Let δ̂p denote a point
mass at p. Note we will consider the metric dKR on the Borel probability measures
on Y × Y (which is a weak-* closed set since Y is compact) and the measures δ̂p for
p ∈ Y ×Y . If µ is a measure on Y ×Y , let (µ)x be the disintegration of µ along {x}×Y .

Motivated by Corollary 2.5, we wish to build ergodic joinings that are close to fi-
nite linear combinations of shifted power joinings. For example we wish to have ergodic
measures with dKR distance ε from the joining that gives measure 1/2 to {(x, x)} and
measure 1/2 to {(x, Sx)}. Naively, one wants to find a sequence of shifted power join-
ings that spend half their time close to {(x, x)} and half their time shadowing {(x, Sx)}.
Taking a weak-* limit of these we wish to have a measure close to the joining that gives
measure 1/2 to {(x, x)} and measure 1/2 to {(x, Sx)}.

Our approach will be to do this inductively, to have sequences of measures νi and µi
such that ν0 is the shifted power joining supported on {(x, x)} and µ0 is the joining sup-
ported on {(x, Sx)}. Inductively, µi+1 spends a definite proportion of its time near µi
and a definite proportion near νi , and similarly for νi+1. That is, we want to have sets
Ai+1 and Bi+1 such that if x ∈ Ai+1 then (νi+1)x is close to (µi)x and (µi+1)x is close
to (νi)x , and if x ∈ Bi+1 then (νi+1)x is close to (νi)x and (µi+1)x is close to (µi)x .
Clearly we want the union of Ai and Bi to have almost full measure and it is helpful
that they each have measure at least c > 0. This is not quite good enough, in particular
if Ai and Bi were constant sequences. We now make the next technical proposition to
overcome these issues and additionally guarantee that the limiting joining is ergodic.

Of course we want to consider the case of a linear combination of d off-diagonal
joinings. That is, if we are given a finite number of shifted power joinings ν(1)0 , . . . , ν

(d)
0

we wish to approximate d−1∑d
i=1 ν

(i)
0 . We do this analogously to the previous case.

Indeed, we have A1, B1 and {ν(i)1 }
d
i=1 such that (ν(i)1 )x is close to (ν(i−1)

0 )x for x ∈ A1

(where i − 1 is interpreted as d if i = 1) and to (ν(i)0 )x for x ∈ B1. We repeat this
and obtain {ν(i)2 }

d
i=1, A2 and B2. Now (ν

(i)
2 )x is close to (ν(i−2)

0 )x for x ∈ A1 ∩ A2. We
continue repeating to approximate d−1∑d

i=1 ν
(i)
0 .

Proposition 3.1 makes this precise. Conditions (a)–(e) are the basic setup, condi-
tion (A) gives the inductive switching as above and condition (B) lets us rule out a previ-
ously mentioned issue to show that the weak-* limit of the νi and µi is close to 1

2 (µ0+ν0)

and moreover that it is ergodic.

Proposition 3.1. Let Jk be a sequence of intervals, Uk be a sequence of measurable
sets, rk be a sequence of natural numbers, n(`)k be sequences of natural numbers for
` ∈ {1, . . . , d}, and εj > 0 be a sequence of real numbers. Let Ak =

⋃rk
i=1 S

i(Jk) \ Uk

and Bk = Ack \Uk . Let ν(`)k be the unique S × S-invariant probability measure supported

on {(x, Sn
(`)
k x)}. Assume that:

(a) There exists c > 0 such that for all k we have λ(Ak) > c and λ(Bk) > c.
(b) The minimal return time of S to Jk is at least 3

2 rk.
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(c) λ(Uk) < εk .
(d) limk→∞ rk

∑
i>k λ(Ji) = 0.

(e) The εi are non-increasing and
∑
εj <∞.

Assume moreover that:

(A) For any x ∈ Ak we have dKR((ν
(`)
k )x, (ν

(`−1)
k−1 )x) < εk and for any x ∈ Bk we have

dKR((ν
(`)
k )x, (ν

(`)
k−1)x) < εk . Note that ν(`−1)

k−1 is interpreted to be ν(d)k−1 if ` = 1.

(B) dKR(L
−1∑L

i=1(S × S)
i(ν

(`)
k )x, ν

(`)
k ) < εk for all x ∈ X, all L ≥ rk+1/9 and any

` ∈ {1, . . . , d}.2

Then the weak-* limit of any ν(`)k (as k → ∞) is the same as the weak-* limit of
d−1∑d

`=1 ν
(`)
k as k → ∞. In particular these limits exist. Call this measure µ. It is

ergodic and there exists C such that dKR(µ, d
−1∑d

`=1 ν
(`)
k ) ≤ C

∑
∞

j=k εj .

Note that the system (Y × Y, S × S, ν
(`)
k ) is isomorphic to (S, Y, λ), and that (ν(`)j )x is a

point mass at (x, Sn
(`)
j x).

Remark 3.2. To connect this to the remarks above, consider the case that the ν(`)0 are
given shifted power joinings and we want an ergodic measure close to d−1∑ ν

(`)
0 . Of

course this only treats particular types of linear combinations, but if our system is rigid (as
in the case of transformations rigid rank 1 by intervals), for any shifted power joining we
have different shifted power joinings close to it. For example, if we want to approximate
ν̃ = 2

3 (T
n
× id)∗λ+ 1

3 (T
m
× id)∗λ we choose k so that T k ≈ id. This means

ν̃ ≈ 1
3 (T

n+k
× id)∗λ+ 1

3 (T
n
× id)∗λ+ 1

3 (T
m
× id)∗λ,

and this is the measure we approximate as above. This lets us treat general linear combi-
nations of shifted power joinings.

Remark 3.3. One can drop the assumption that (S, Y, λ) is uniquely ergodic. In this case
one replaces (B) by

λ

({
x : dKR

(
1
L

L∑
i=1

(S × S)i(ν
(`)
k )x, ν

(`)
k

)
> εk for some L ≥ rk+1/9

})
< εk.

This requires some straightforward changes to the estimates in the proof of Corollary 3.5
and to the definition of the set Gk in the proof of Proposition 3.1.

2 Note that since S × S on {(x, Sn
(`)
j x)} is uniquely ergodic, such an rk+1 always exists [3,

Proposition 4.7.1].
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3.1. Proof of Proposition 3.1

Lemma 3.4. Given c > 0 and d ∈ N there exist ρ < 1 and C such that if 0 < δi < 1/2
and ai, bi are such that ai, bi > c and 1 ≥ ai + bi > 1 − δi and also 0 ≤ γ (`)i ≤ 1 are
sequences of real numbers for each ` ∈ {1, . . . , d} satisfying

|γ
(`)
i − (aiγ

(`−1)
i−1 + biγ

(`)
i−1)| < δi−1, (3.1)

then ∣∣∣∣γ (s)i − 1
d

d∑
`=1

γ
(`)
k

∣∣∣∣ ≤ C i−1∑
j=k

(
δj +

δj

1− δj

)
+ Cρi−k

for all k ≥ 0, i > k and s ∈ {1, . . . , d}.

Proof. Let γ̂ (`)k = γ
(`)
k and inductively let

γ̂
(`)
i =

ai

ai + bi
γ̂
(`−1)
i−1 +

bi

ai + bi
γ̂
(`)
i−1.

Observe that

|γ̂
(`)
i − γ

(`)
i | ≤

∣∣∣∣ ai

ai + bi
(γ̂
(`−1)
i−1 − γ

(`−1)
i−1 )+

bi

ai + bi
(γ̂
(`)
i−1 − γ

(`)
i−1)

∣∣∣∣
+

∣∣∣∣ ai

ai + bi
γ
(`−1)
i−1 +

bi

ai + bi
γ
(`)
i−1 − γ

(`)
i

∣∣∣∣.
The second term is at most δi−1

1−δi−1
+ δi−1 and we inductively see that |γ̂ `i − γ

(`)
i | ≤∑i−1

j=k

(
δj +

δj
1−δj

)
.

Thus it suffices to show that there exist C, ρ such that∣∣∣∣γ̂ (s)i − 1
d

d∑
`=1

γ
(`)
k

∣∣∣∣ < Cρi−k.

To see this note that γ̂ (s)i+d =
∑
c`,s γ̂

(`)
i where 1 ≥ c`,s > ζ > 0 for some fixed ζ

depending only on c and d. Consider the matrix Ai which has (`, s) entry c`,s . This ma-
trix is a definite contraction in the Hilbert projective metric. Indeed, for every ζ there
exists θ > 0 such that if M is a positive matrix where the ratio of every pair of en-
tries is at most ζ and v,w are any vectors in the positive cone then DHP(Mv,Mw) <

θDHP(v,w) where DHP denotes the Hilbert projective metric. Now γ̂
(`)
k+rd is the `th en-

try of AkAk+d . . . Ak+(r−1)d γ̃ where γ̃ is the vector whose ith entry is γ̂ (k)i . Since each

Ai+jd is a definite contraction in the Hilbert projective metric, we see that |γ̂ (`)i+rd− γ̂
(`′)
i+rd |

decays exponentially in r . It is straightforward to check that

1
d

d∑
`=1

γ̂
(`)
i =

1
d

d∑
`=1

γ̂
(`)
k =

1
d

d∑
`=1

γ
(`)
k
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and so |γ̂ (`)k+rd − d
−1∑d

`=1 γ
(`)
k | decays exponentially in r . After choosing C > ρ−d we

get ∣∣∣∣γ̂ (`)k+j − 1
d

d∑
`=1

γ
(`)
k

∣∣∣∣ < Cρj . ut

Corollary 3.5. Under the assumptions of Proposition 3.1 there exist ρ < 1 and C′ > 0
such that

dKR

(
ν
(`)
k ,

1
d

d∑
`=1

ν
(`)
b

)
≤ C′

k∑
j=b

εj + C
′ρk−b

whenever k ≥ b and ` ∈ {1, . . . , d}.

Remark. Corollary 3.5 establishes all the conclusions of Proposition 3.1 except the
ergodicity of µ.

Proof of Corollary 3.5. First notice that by (A) we have

dKR(ν
(`)
j |Aj , ν

(`−1)
j−1 |Aj ) < εj and dKR(ν

(`)
j |Bj , ν

(`)
j−1|Bj ) < εj . (3.2)

We now claim that for all `,

dKR

(
1

λ(Aj )
ν
(`)
j−1|Aj , ν

(`)
j−1

)
< εj−1 + 2εj +

εj

c2 . (3.3)

Indeed, for f 1-Lipschitz with ‖f ‖sup ≤ 1 we have

1
λ(Jj )rj

∫
Aj

f dν
(`)
j−1

=
1

λ(Jj )rj

∫
⋃rj

i=1 S
iJj \U

f dν
(`)
j−1 =

1
λ(Jj )rj

rj∑
i=1

∫
Jj

f ◦ Si(x)χU c (S
ix) dν

(`)
j−1

=
1

λ(Jj )rj

rj∑
i=1

∫
Jj

f ◦ Si(x) dν
(`)
j−1 −

1
λ(Jj )rj

rj∑
i=1

∫
Jj

f ◦ Si(x)χU (S
ix) dν

(`)
j−1.

By (B), ∣∣∣∣ 1
λ(Jj )rj

rj∑
i=1

∫
Jj

f ◦ Si(x) dν
(`)
j−1 −

∫
f dν

(`)
j−1

∣∣∣∣ ≤ εj−1,

and by (c) (the size estimate on Uj ),∣∣∣∣ 1
λ(Jj )rj

rj∑
i=1

∫
Jj

f ◦ Si(x)χU (S
ix) dν

(`)
j−1

∣∣∣∣ ≤ ‖f ‖supλ
(
Uj ∩

rj⋃
i=1

SiJj

)
≤ 2εj .

Then (3.3) follows because∣∣∣∣ 1
rjλ(Jj )

−
1

λ(Aj )

∣∣∣∣ ≤ ∣∣∣∣ 1
rjλ(Jj )

−
1

rjλ(Jj )− λ(Uj )

∣∣∣∣ ≤ εj

c2 .
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Similarly, by partitioning Bj into Drj /2, . . . where

D` =
{
x ∈ Srj Jj : min {i > 0 : Six ∈ Jj } = `

}
,

we get

dKR

(
1

λ(Bj )
ν
(`)
j−1|Bj , ν

(`)
j−1

)
< εj−1 + 2εj +

εj

c2 . (3.4)

So for any 1-Lipschitz function f with ‖f ‖sup ≤ 1, we may apply Lemma 3.4 to
γ
(`)
i =

∫
f dν

(`)
i with c = c, δj−1 = εj−1+ 4εj + εj/c2, aj = λ(Aj ) and bj = λ(Bj ). To

verify (3.1), note that∣∣∣∣∫ f dν
(`)
i −

∫
Ai

f dν
(`)
i −

∫
Bi

f dν
(`)
i

∣∣∣∣ ≤ ‖f ‖supλ(Ui) < εi

and so by (3.2), ∣∣∣∣∫ f dν
(`)
i −

∫
A

f dν
(`−1)
i−1 −

∫
B

f dν
(`)
i−1

∣∣∣∣ ≤ 2εi .

Then, by (3.3) and (3.4),∣∣∣∣∫ f dν
(`)
i −

(
λ(Ai)

∫
f dν

(`−1)
i−1 + λ(Bi)

∫
f dν

(`)
i−1

)∣∣∣∣ ≤ εj−1 + 4εj +
εj

c2 .

This completes the verification of (3.1), and, in view of Lemma 3.4, the proof of Corol-
lary 3.5. ut

To complete the proof of Proposition 3.1, we need to prove that µ is ergodic. We start
with the following:

Lemma 3.6. It suffices to show that for any ε > 0 and M ∈ N there exist c > 0 and
G ⊂ Y × Y with µ(G) > c and such that for (x, y) ∈ G there exists L > M with
dKR(L

−1∑L
i=1 δ̂(S×S)i (x,y), µ) < ε.

To prove Lemma 3.6 we use the following consequence of the ergodic decomposition.

Lemma 3.7. Let T̃ : Ỹ → Ỹ be a measurable map of a σ -compact metric space and µ̃ be
an invariant measure. For µ̃-almost every z ∈ Ỹ the sequence N−1∑N−1

i=0 δ
T̃ z

converges
to an ergodic measure in the weak-* topology. (The measure is allowed to depend on the
point.)

Proof. µ̃ has an ergodic decomposition µ̃ =
∫
Ỹ
µ̃y dµ̃where µ̃y is an ergodic probability

measure with µ̃y({z : µ̃z = µ̃y}) = 1 for µ̃-almost every y. For each y, let

Zy =

{
z : lim

N→∞

1
N

N−1∑
i=0

f (T ix) =

∫
f dµ̃y for every f ∈ Cc(Y )

}
.
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Because there is a countable ‖ · ‖sup-dense subset of Cc(Y ), by the Birkhoff Ergodic
Theorem we have µ̃y(Zy) = 1 for all y. Then

⋃
Zy has full µ̃-measure and satisfies the

conclusion of the lemma. ut

Proof of Lemma 3.6. By our assumptions, a positive µ-measure set of (x, y) has the
property that µ is a weak-∗ limit point of L−1∑L

i=1 δ̂(S×S)i (x,y). Indeed, choose a se-
quence of εi > 0 converging to 0 and observe that any point in the set lim supGεi has this
property. Throwing out a set of µ-measure zero where the limit may not exist, Lemma 3.5
implies this is the unique weak-∗ limit point and it is ergodic. ut

We now identify a set of full measure for µ. As a preliminary, by assumptions (e) and (A)
of Proposition 3.1 we find that if x /∈

⋂
∞

n=1
⋃
∞

k=n Uk (this is a full measure condition)
then there exists p1(x), . . . , pd(x) such that

lim
i→∞
{(ν

(`)
i )x}

d
`=1 = {δ̂p1(x), . . . , δ̂pd (x)}.

Lemma 3.8. µ
(
{(x, p1(x)), . . . , (x, pd(x))}x /∈

⋂
∞

n=1
⋃
∞

k=n Uk

)
= 1.

Proof. It is straightforward to see that for any f ∈ C(Y × Y ) we have

lim
i→∞

∫
Y×Y

f d

( d∑
`=1

1
d
ν
(`)
i

)
=

∫
Y

1
d

d∑
`=1

f (x, p`(x)) dλ.

By Corollary 3.5, the left hand side is
∫
f dµ = limi→∞

∫
Y×Y

f dν
(`)
i for every `, estab-

lishing the lemma. ut

Proof of Proposition 3.1. Let Gk be the set of all x ∈ Y such that:

(1) Six /∈
⋃
∞

j=k+1 Jj ∪ S
rj Jj for all 0 ≤ i ≤ rk+1/9.

(2) |{0 ≤ i ≤ rk+1/9 : Six ∈
⋃
∞

j=k Uj }| < 4
∑
∞

j=k

εj
9 rk+1.

(3) x /∈
⋃
∞

j=k Uj .

Claim 3.9. For all large enough k we have λ(Gk) ≥ 1/2.

This is a straightforward measure estimate using assumptions (c), (d) and (e).

Suppose x ∈ Gk and y ∈ supp(µx). The next claim shows that there exists j̀ such

that lim(ν
( j̀ )

j )x is the point mass at y.

Claim 3.10. There exists `′ such that dKR(δ̂y, (ν
(`′)
k )x) < 3

∑
∞

j=k+1 εj . Also

dKR

(
9
rk+1

rk+1/9∑
i=1

δ̂(S×S)i (x,y), ν
(`′)
k

)
< C′′

∞∑
j=k

εj .

Proof of Claim 3.10. We first state the following straightforward consequence of condi-
tion (A) of Proposition 3.1 (by considering if x ∈ Ak or x ∈ Bk):
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Lemma 3.11. Let a ∈ {1, . . . , d}. If Sjx /∈ Jk ∪ SrkJk for 0 ≤ j ≤ L then there exists `
(it is either a or a + 1) such that dKR((ν

(`)
k )Sj x, (ν

(a)
k−1)Sj x) < εk for any 0 ≤ j ≤ L with

Sjx /∈ Uk .

By iterating we obtain:

Corollary 3.12. For all j > k, ` ∈ {1, . . . , d} and x ∈ Gk there exists `′ such that

d((ν
(`)
k )Six, (ν

(`′)
j )Six) < 2

j∑
s=k+1

εs

for any 0 ≤ i ≤ rk+1/9 with Six /∈
⋃j

s=k+1 Us .

Note that if L ≥ rk+1/9 then by condition (B) of the proposition we obtain

dKR

(
1
L

L∑
j=1

(ν
(a)
k )Sj x, ν

(a)
k

)
< εk. (3.5)

By Corollary 3.12 there exists ` such that if Six /∈
⋃
∞

`=k+1 U` then for some ` we have
dKR(δ(Si×Si )(x,y), (ν

(`)
k )Six) ≤

∑
∞

j=k+1 εj (for 0 ≤ i ≤ rk+1/9). With (3.5) this gives

dKR

(rk+1/9∑
i=1

δ(S×S)i (x,y), ν
(a)
k

)
< εk + 2

∞∑
j=k+1

εj + 4
∞∑

j=k+1

εj . ut

This completes the proof of Proposition 3.1 by verifying Lemma 3.6 since for all ε > 0
there exists k0 such that for all k ≥ k0 and ` ∈ {1, . . . , d} we have dKR(µ, ν

(`)
k ) < ε (by

Corollary 3.5). ut

4. Proof of Theorem 1.5

In this section, we will verify the conditions of Proposition 3.1.
Before beginning the proof we set up a geometric context connected to our situation.

A 3-IET with lengths `1, `2 and `3 is a rescaling of the Poincaré first return map of
rotation by `2+`3

`1+2`2+`3
to the interval [0, `1+`2+`3

`1+2`2+`3
) ⊂ [0, 1) [8, Section 8]. If ωsq denotes

the area 1 square torus oriented horizontally and vertically, observe that rotation by α
corresponds to the first return map of the vertical flow on

( 1 −α
0 1

)
ωsq to a horizontal side,

which is also the time 1 map of that flow.
To set up the geometric context, let M1,2 denote the moduli space of area 1 tori

with two marked points where we allow the marked points to coincide. Note that M1,2
is isomorphic to (SL(2,R) n R2)/(SL(2,Z) n Z2). For ω ∈ M1,2 let F tω denote the
vertical flow on ω, which corresponds to left multiplication by the element

(
1 0
0 1

)
n
(

0
t

)
.

Let ω̂ ∈ M1,2 be the square torus with two marked points a distance 1/2 apart on the
same horizontal line segment. Let S ⊂M1,2 be the set of surfaces ω such that F 1

ωp is on
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the same horizontal as p and its distance along this horizontal is at most 1/2. That is, if p
is one marked point the other marked point is at

(
1 0
0 1

)
n
(
s
0
)

where s ≤ 1/2.
Let T be a 3-IET. It arises as the first return map of a rotation Rα to an intervalK . Let

ψM(x) =

M−1∑
`=0

χK(R
`
αx).

Then, for any x ∈ K such that RMα x ∈ K ,

T ψM (x)x = RMα x. (4.1)

Let ωT ∈M1,2 be the torus defined by taking the torus
( 1 −α

0 1

)
ωsq and marking two

points on the bottom horizontal line that are |K| apart. Whenever convenient, in what
follows we will consider K as being embedded in ωT and gtK as being embedded in
gtωT where gt =

(
et 0
0 e−t

)
. Here we are identifying gt with the matrix

(
et 0
0 e−t

)
n
(

0
0

)
and

think of gt as acting on M1,2 ∼= (SL(2,R)nR2)/(SL(2,Z)nZ2) by left multiplication.
Thus, for anyM ∈ N we can identify ψM(x) as the intersection number betweenK and a
vertical line of length M on ωT starting at an x (see Figure 1). Using this as a definition,
we can make sense of ψM for all M ∈ R+.

Fig. 1. The torus ωT . A vertical segment of length M (colored red) intersects a horizontal slit
(colored blue) of length |K|.

If we embed K in ωT , then for x ∈ K and M ∈ N, we have

T φM (x) = FMωT (x) if FMωT (x) ∈ K (4.2)

where φM(x) is the number of intersections between a vertical line of length M starting
at x and K .

Lemma 4.1. For almost every T the torus ω̂ is a limit point of {gtωT }t≥0.

Proof. Let U+ denote the subgroup
(

1 ∗
0 1
)
n
(
∗
0
)

of SL(2,R) n R2. Then U+ is the
expanding horospherical subgroup with respect to the action of gt , or in other words, the
orbits of U+ are the unstable manifolds for the flow gt .

By construction, the map T 7→ ωT projects to a positive measure subset D of a
single U+ orbit on M1,2. Moreover, the pushforward of the Lebesgue measure on the
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space of 3-IET’s to D is absolutely continuous with respect to the pushforward of the
Haar measure on U+ to D. The lemma then follows from the ergodicity of gt . ut

Corollary 4.2. For every δ > 0 and almost all T , there exists arbitrarily large t > 0
with gtωT ∈ B(ω̂, δ) ∩ S.
Proof. Since ω̂ is square, for p ∈ ω̂ we have F 1

ω̂
p = p. Therefore, for ω′ ∈ B(ω̂, δ′) and

p ∈ ω′, F 1
ω′
p is within c1(δ

′) of p, where c1(δ
′) → 0 as δ′ → 0. Write F 1

ω′
p − p =

(v1, v2), and note that for δ′ > 0 sufficiently small and for small s ∈ R, for p ∈ gsω′, we
have

F 1
gsω′

p − p = (e−sv1, 1− es + esv2).

Therefore, given ω′ ∈ B(ω̂, δ), we can choose s ∈ R, with |s| < c2(δ
′) where c2(δ

′)→ 0
as δ→ 0, such that 1− es + esv2 = 0, i.e. gsω′ ∈ S. We have gsω′ ∈ B(ω̂, c3(δ

′)) with
c3(δ

′)→ 0 as δ′→ 0.
Suppose T is such that ω̂ is a limit point of {gtωT }t≥0. Choose δ′ > 0 such that

c3(δ
′) < δ and choose t ′ such that gt ′ωT ∈ B(ω̂, δ′) and then let t = t ′ + s where s is as

in the previous paragraph. Then gtωT ∈ B(ω̂, δ) ∩ S as required. ut

We now apply gt to Figure 1 with t = logM . Note that ψM(x) is also the intersection
number between a vertical segment γ1 of length 1 and a horizonal slit γ2 of length M|K|
(see Figure 2). From now on, we assume that gtωT ∈ B(ω̂, δ) ∩ S for some δ � 1.

Fig. 2. The torus glogMωT : A vertical segment γ1 of length 1 (red) intersects a horizontal slit γ2
of length M|K| (blue). If we also assume that glogMωT ∈ B(ω̂, δ) ∩ S then the torus glogMωT
is nearly square, and the two endpoints of γ1 are on the same horizontal line segment, of length at
most 1/2+O(δ).

The following lemma refers to Figure 3.

Lemma 4.3. There exists m such that if the green segment does not cross the purple
segment then the number of times a trajectory of length 1 crosses gtK (the blue lines) is
either m or m+ 1. Moreover, it is m+ 1 if the trajectory does not cross the (horizontal)
purple segment, and m if it does.

In other words, for the set of points x whose green segment does not cross the pur-
ple segment, φM(x) is m if its red segment crosses the purple segment (where φM is as
in (4.2)) and φM(x) = m+ 1 if it does not.
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Fig. 3. Closing the curves. We complete the vertical segment γ1 to a closed curve γ̂1 by adding
a horizontal segment ζ1 (green). Note that since gtωT ∈ B(ω̂, δ) ∩ S, the length of ζ1 is at most
1/2+O(δ). Similarly, we close up the horizontal slit γ2 to obtain a closed curve γ̂2 by adding in a
horizontal segment ζ2 and a vertical segment ζ ′2 (purple).

Note that because Figure 3 represents glogMωT , vertical trajectories of length 1 in Fig-
ure 3 correspond to vertical trajectories of length M on ωT .

Proof of Lemma 4.3. Indeed, the family of curves we define are all homotopic and so
their intersection with γ̂2 is all the same. So for such curves, if the green and purple
segments have intersection number zero then the intersection of the red segment and the
blue segment depends only on the intersection of the purple segment and the red segment,
which by construction is either 0 or 1. ut

For the remainder, let λ denote 1-dimensional Lebesgue measure restricted to K .

Lemma 4.4. For all ε > 0 there exists δ > 0 so that if ω ∈ B(ω̂, δ)∩ S and the flow F sω
is minimal then there exist ρ < ε and L ∈ N such that for any interval J with |J | = ρ
we have:

• λ(
⋃
s∈[0,L) F

s
ωJ ) > 1− ε.

• For all 0 ≤ s < ` < L we have F sωJ ∩ F
`
ωJ = ∅.

• F 1
ωJ is horizontally adjacent to J .

Proof. Suppose p is a point in ω, and ω ∈ S. Then F 1
ωp is horizontally adjacent to p.

For all ε > 0 there exists δ > 0 such that if ω is in S ∩ B(ω̂, δ) then F 1
ωp is translated

by less than ε/9. Since the vertical flow on ω is minimal, F 1
ωp 6= p. Therefore, F 1

ωp is
translated horizontally by some ρ > 0. Let J be a horizontal interval of length ρ. We
choose L = min {s > 0 : F sωJ ∩ J 6= ∅}. We have λ(

⋃
s∈[0,L) F

s
ωJ ) > 1 − ρ. Indeed,⋃

s∈[0,L+1) F
s
ωJ = ω. ut

Proposition 4.5. For any a1, . . . , ad , b1, . . . , bd ∈ Z and c/5 > ε > 0 there exist
δ, t0 > 0 such that if gtωT ∈ B(ω̂, δ) ∩ S, λ(K) > c and t > t0 then there exist

• n1, . . . , nd ∈ Z and r, L ∈ N,
• an interval J ⊂ K and a measurable set B ⊂ K
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such that the minimal return time (under T ) to J is at least 3
2 r , and for A =

⋃r
i=0 T

iJ

we have λ(A) > 1
2λ(K)− ε, λ(B) >

1
2λ(K)− ε and the sets A and B satisfy

d(T n`x, T a`x) < ε for all x ∈ A and ` ∈ {1, . . . , d}, (4.3)

d(T n`x, T b`x) < ε for all x ∈ B and ` ∈ {1, . . . , d}. (4.4)

Moreover, T iJ ∩T jJ = ∅ for all 0 ≤ i < j ≤ 3
2 r . Lastly, if ν(a`) is the joining supported

on {(x, T a`x)} then for all x ∈ A and ` ∈ {1, . . . , d} we have

dKR

(
1
L

L−1∑
i=0

δ(T ix,T i+n`x), ν
(a`)

)
< 2ε (4.5)

and if ν(b`) is the joining supported on {(x, T b`x)} then for all x ∈ B and ` ∈ {1, . . . , d}
we have

dKR

(
1
L

L−1∑
i=0

δ(T ix,T i+n`x), ν
(b`)

)
< 2ε. (4.6)

Remark 4.6. Specializing to the case where d = 1, a = 0 and b = k, we see that
1
2 (id + T

k) is in the weak closure of the powers of T . Veech showed that almost ev-
ery 3-IET has simple spectrum [17, Theorem 1.3]. Combining these two facts with
Ryzhikov’s [14, Theorem 6.1(3, 4)] we find that the spectra of T n and T×· · ·×T (n times)
are simple for all n > 0.

Proof of Proposition 4.5. In view of Lemma 4.4, we can choose δ so small that for any
ω ∈ B(ω̂, δ),

(i) the horizontal purple line has length between 1/2− ε/4 and 1/2+ ε
4 (which we can

do because the two marked points on ω̂ are 1
2 apart),

(ii) F 1
ωx =

(
1 0
0 1

)
n
( ρ

0
)
x where 0 < ρ ≤ ε

10 max {|a`|+|b`|}
.

Because T ×T is uniquely ergodic on the supports of ν(a`) and ν(b`), there exists L` such
that if d(pi, T a`+iy) < ε for all 0 ≤ i ≤ L then

dKR

(
1
L

L−1∑
i=0

δ(T iy,pi ), ν
(a`)

)
< 2ε, dKR

(
1
L

L−1∑
i=0

δ(T iy,pi ), ν
(b`)

)
< 2ε (4.7)

for allL ≥ L` and y ∈ K . Indeed, T×T is uniquely ergodic on supp(ν(a)) and supp(ν(b)),
and uniquely ergodic systems have uniform convergence of Birkhoff averages of contin-
uous functions (see for example [3, Proposition 4.7.1]). Let L0 = max L`. We choose t0
so large that any vertical trajectory of length et0 on ωT crosses K at least L0 times. We
further assume L0 > max {|a`|, |b`|}.

We now set about defining J and A. Let V be the horizontal purple line segment. Let
ρ be as in the previous lemma for gtωT . For any horizontal interval I on gtωT of length ρ
we have one of the following mutually exclusive possibilities:
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(a)
⋃
s∈[0,1) F

s(I ) ∩ V = ∅.
(b) There exists s ∈ [0, 1) such that F s(I ) ⊂ V .
(c)

⋃
s∈[0,1) F

s(I ) ∩ (∂V ) 6= ∅.

Note that by Lemma 4.3 there existsm such that if I ⊂ K and (b) holds then φM(x) = m
and similarly if I ⊂ K and (a) holds then φM(x) = m+ 1.

Let Â be the set of points in gtωT which belong to some horizontal interval of length ρ
satisfying (b). Let

Ã =
⋂

s∈[−2−max {|a`−b`|},2+max {|a`−b`|}]

F sgtωT Â. (4.8)

Let ρ > 0 be given by Lemma 4.4 and I be an interval of length ρ in Ã ∩ gtK such
that F−1

gtωT
I 6⊂ Ã. Now F 1I is horizontally adjacent to I , and so F jgtωT I is horizontally

jρ away from I . So by our assumption on the length of I , we have

F
j
gtωT I ⊂ Ã for all 0 ≤ j ≤ |V |/ρ − 2(2+max {|a` + b`|})− 3 ≡ p̂. (4.9)

(Note that by (ii) and the fact that |V | > 1/2− ε we have p̂ ≥ 1.)
We now use what we have done for the flow on gtωT to establish some of our

claims about the IET T . Let r be the cardinality of the set of intervals of length ρ in⋃
s∈[0,p̂) F

s
gtωT

I ∩ K . Note that because in our set Â a vertical trajectory of length 1
crosses gtK ⊂ gtωT exactly m times, we have r = mp̂.

Let A′ = g−t Â ∩ K ⊂ ωT ∩ K , which we may as well consider as a subset of the
domain of T (because it is contained in K). Note that

φet (x) = m for x ∈ A′. (4.10)

We also have, for all x ∈ A′,

d(F e
t

ωT
x, x) = e−tρ, (4.11)

because when we apply g−t to pull our dynamics from gtωT back to ωT , we contract
horizontal distances by e−t . It follows from (4.2), (4.10) and (4.11) that

d(T mx, x) = e−tρ for all x ∈ A′. (4.12)

Let J denote the interval corresponding to I in the domain of our IET T . That is, we
consider J = g−tI ⊂ K ⊂ ωT , which since it is in K we consider as an interval in the
domain of T . Let A =

⋃r−1
i=0 T

iJ , which we can consider as a subset of K ⊂ ωT . We
now claim that

A ⊂ g−t Ã ∩K. (4.13)

Indeed, by (4.9), we have

F se
t

ωT
J ⊂ g−t Ã for all 0 ≤ s ≤ p̂. (4.14)
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It follows, in view of (4.10), that for x ∈ J ,

φp̂et (x) =

p̂−1∑
k=0

φet (F
ket

ωT
x) = mp̂ = r. (4.15)

By (4.2) we have, for x ∈ J and i ∈ N,

T ix = F sωT x where s is such that φs(x) = i.

Since for a fixed x ∈ J , the map s 7→ φs(x) is increasing, for 0 < i < r we have in view
of (4.15),

T ix = F sωT x where s < p̂.

This together with (4.14) implies (4.13). The same argument shows that

T ux ∈ A′ for x ∈ A and |u| ≤ m(max {|a` − b`|} + 1). (4.16)

Let n` = a` + (a` − b`)m. We claim that for all x ∈ A,

d(T n`x, T a`x) ≤ d(T a`x, T a`x)+

|a−b|∑
i=1

d(T im+a`x, T (i−1)m+a`x) ≤ εe−t ≤ ε.

Indeed, by (4.16) and (4.12) we have d(T jm+a`x, T (j−1)m+a`x) = ρe−t for all |j | ≤
|a` − b`|, because |a`| < m. We obtain the second inequality by (ii).

We now show that for all x ∈ A,

dKR

(
1
m

m−1∑
i=0

δ(T ix,T i+n`x), ν
(a`)

)
< 3ε.

By construction, if x ∈ A then T ix ∈ A′ for all −m ≤ i ≤ m. Consequently,
d(T i+n`x, T i+a`x) < ε for all |i| ≤ |m|. So by (4.7) and the fact that m ≥ L0 ≥ L`
we have our condition on dKR.

We now show that λ(A) > 1
2λ(K) − ε. This follows from the fact that by (ii) the

measure of the set of x ∈ gtωT such that F `ωT x crosses the horizontal purple strip for 0 ≤
` ≤ 1 and−1 ≤ ` ≤ 0, and F sgtωT x does not have this property for some−1 ≤ s ≤ 1, has
measure at most 2 ε

10 max {|a|+|b|} . By our condition on the length of the purple horizontal
strip, the measure condition on A is proved.

The fact that the return time of T to J is at most 3
2 r follows from the fact that the

measure of Ac is at most 1
2λ(K) + ε and so the orbit of J after leaving A and before

returning to J has measure at least 1
2λ(K)− ε − ε >

1
2λ(A). So J has at least 1

2 r images
outside of A before part of it returns.

We now similarly define B ⊂ Ac with the desired properties. First let

B̂ =
{
x ∈ gtωT :

⋃
s∈[−3−max {|a−b|},3+max {|a−b|]}

F sgtωT (x) ∩ V = ∅
}
.
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Similarly to before let B̃ =
⋂
s∈[−1,1] F

s
gtωT

B̂ and B = g−t B̃ ∩ K ⊂ ωT , considered
as a subset of the domain of T . Now as above, by Lemma 4.3 if x ∈ B̃ then we see
that a vertical trajectory of length 1 or −1 emanating from x crosses gtK exactly m + 1
times. Moreover, F sgtωT x has this property for all −|a` − b`| ≤ s ≤ |a` − b`|. Since
n` = b` + (m+ 1)(a` − b`), for any x ∈ B and |i| ≤ m we have

d(T n`T ix, T b`T ix) ≤

|a`−b`|∑
j=1

d(T j (m+1)x, T (j−1)(m+1)x) ≤ ε.

Thus, as above we have dKR(m
−1∑m−1

i=0 δ(T ix,T i+n`x), ν
(b`)) < 3ε for all x ∈ B. The fact

that λ(B) > λ(K)− ε is proved similarly to the case of λ(A) above. ut

Proof that Proposition 4.5 implies the assumptions of Proposition 3.1. We prove the case
d = 1; the case of larger d is analogous. Choose εi satisfying assumption (e). Define
a1, b2 = a and b1, a2 = b. We apply Proposition 4.5 to the pairs (a1, b1), (a2, b2) and
ε = ε1/2 to obtain n(1)1 , n

(2)
1 , A1, B1 and r1. Note that U1 = (A ∪ B)

c and its measure is
less than 1−2(1/2−ε1/2) = ε1, (4.3) and (4.4) imply (A), and (4.5) and (4.6) imply (B).
We repeat this procedure with n1 and n2 in place of a and b, and ε2 in place of ε1,
and obtain n(1)2 , n

(2)
2 , A2, B2, r2 and J2. We further require that the interval J2 satisfies

rλ(J2) < ε2. Iterating this we have the conditions of Proposition 3.1. ut

Proof of Theorem 1.5. Let µ be an invariant measure for T × T . By Corollary 2.5
there exist n1, . . . , nd such that if νi is the joining supported on {(x, T nix)} then
dKR(µ, d

−1∑d
i=1 νi) < ε. By the above, Proposition 4.5 implies we can satisfy the as-

sumptions of Proposition 3.1 with
∑
εi < ε. By Proposition 3.1 we obtain an ergodic

measure within Cε of d−1∑d
i=1 νi . This establishes that the joinings form a Poulsen

simplex.
It remains to prove that there is an ergodic self-joining that is neither λ × λ nor one-

to-one on almost every fiber. Let ν(1)0 be the self-joining carried by {(x, x)} and ν(2)0 be
the self-joining carried by {(x, T x)}. Let εi > 0 satisfy

d(x, T x) > 40C
∞∑
i=1

εi, (4.17)

dKR
(
λ× λ, 1

2 (ν
(1)
0 + ν

(2)
0 )

)
> 4C

∞∑
i=1

εi, (4.18)

where C is as in the conclusion of Proposition 3.1. We apply Proposition 3.1 for these
εi as above to obtain ν(1)i , ν

(2)
i and their weak-* limit ν∞, an ergodic measure which by

(4.18) is not λ× λ. The following lemma show ν∞ cannot be one-to-one on almost every
fiber.

Lemma 4.7. If µ is a measure that is one-to-one on almost every fiber then µ cannot be
the weak-* limit of a sequence of measures ν̃i that are two-to-one on almost every fiber
and such that

λ({x : diam(supp (ν̃i)x) > δ}) > 3/4
for infinitely many i.
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Proof. There exists f : [0, 1)→ [0, 1) measurable such that µ is carried by {(x, f (x))}.
By Luzin’s Theorem there exists K compact with λ(K) > 99

100 such that f |K is uniformly
continuous. Let s > 0 be such that d(f (x), f (y)) < δ/8 for all x, y ∈ K with d(x, y) <
s. Choose an interval I with |I | ≤ s, λ(I ∩K) > 99

100λ(I) and

λ({x ∈ I : diam(supp (ν̃i)x) > δ}) > 1
2 |I | (4.19)

for infinitely many i. Let p = f (x) for some x ∈ I ∩ K and let g : [0, 1) × [0, 1)→ R
be a 1-Lipschitz function such that

• g|I c×[0,1) ≡ 0,
• g|I×B(p,δ/4) ≡ 0,
• g(x, y) = min {d(x, ∂I ), d(y, ∂B(p, δ/4)), δ/4} for all (x, y) ∈ I × (B(p, δ/4))c.

Now
∫
g dµ ≤ .01|I | · ‖g‖sup ≤ .01|I | ·min {δ/4, |I |/2}. On the other hand if ν̃i satisfies

(4.19) then on a set of x ∈ I of measure at least |I |/3 we find that one of the two points
in supp (ν̃i)x is at least δ/2 away from p. A subset of these x of measure at least |I |/6
satisfies d(x, ∂I ) ≥ 1

12 |I |. So
∫
g dν̃i ≥ (|I |/6)min {δ/4, |I |/12}. Since g is 1-Lipschitz

it follows that
dKR(µ, ν̃i) > |I |min

{
|I |
( 1

72 −
1

200

)
, δ24 −

δ
400

}
,

proving the lemma. ut

Let ν̃i = 1
2 (ν

(1)
i + ν

(2)
i ). Since by (4.17) they satisfy the condition in the lemma, we see

that T is not 2-simple. ut

Remark 4.8. Morally, for our construction of joinings we use the fact that our transfor-
mation T preserves λ and has the following properties: There exists r > 0, an infinite
sequence of numbers n1, n2, . . . and intervals I1, I2, . . . and J1, J2, . . . such that

• Ik, T Ik, . . . , T
nk−1Ik, Jk, T Jk, . . . , T

nkJk are disjoint intervals,
• limk→∞ λ(

⋃nk−1
i=0 T iIk ∪

⋃nk
j=0 T

jJk) = 1,

• λ(
⋃nk−1
i=0 T iIk) and λ(

⋃nk
i=0 T

iJk) are both at least r for all k,

• limk→∞
λ(Ik∩T

nk Ik)
λ(Ik)

= 1 = limk→∞
λ(Jk∩T

nk+1Jk)
λ(Jk)

.
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