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Abstract. A vector field X is called a star flow if every periodic orbit of any vector field C I_close
to X is hyperbolic. It is known that the chain recurrence classes of a generic star flow X on a 3-
or 4-manifold are either hyperbolic, or singular hyperbolic (see [MPP] for 3-manifolds and [LGW]
for 4-manifolds).

As it is defined, the notion of singular hyperbolicity forces the singularities in the same class
to have the same index. However in higher dimensions (i.e. > 5), [dL1] shows that singularities of
different indices may be robustly in the same chain recurrence class of a star flow. Therefore the
usual notion of singular hyperbolicity is not enough for characterizing the star flows.

We present a form of hyperbolicity (called multisingular hyperbolicity) which makes the hyper-
bolic structure of regular orbits compatible with the one of singularities even if they have different
indices. We show that multisingular hyperbolicity implies that the flow is star, and conversely we
prove that there isa C 1—open and dense subset of the open set of star flows which are multisingular
hyperbolic.

More generally, for most of the hyperbolic structures (dominated splitting, partial hyperbolicity
etc.) well defined on regular orbits, we propose a way of generalizing it to a compact set containing
singular points.
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1. Introduction

1.1. General setting and historical presentation

Considering the infinite diversity of dynamical behaviors, it is natural to have a special in-
terest in robust properties, that is, properties that cannot be broken by small perturbations
of the system; in other words, a dynamical property is robust if it holds on a (non-empty)
open set of diffeomorphisms or flows.

One important starting point in dynamical systems has been the characterization of
structural stability (i.e. systems whose topological dynamics is unchanged under small
perturbations) by hyperbolicity (i.e. a global structure expressed in terms of transversality
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and of uniform expansion and contraction). This characterization, first stated in the sta-
bility conjecture [PaSm], was proven for diffeomorphisms in the C! topology by Robin
and Robinson [R1], [R2] (hyperbolic systems are structurally stable) and Maié [Ma2]
(structurally stable systems are hyperbolic). The equivalent result for flows (also for the
C'-topology) leads to extra difficulties and was proven in [H2].

We can see in this case how the robustness of the properties is related to the structure
in the tangent space: in this case, a very strong robust property is related to a very strong
uniform structure. However, hyperbolic systems are not dense in the set of diffeomor-
phisms or flows; instability and non-hyperbolicity may be robust. In order to describe a
larger set of systems, one can consider less rigid robust properties, and try to characterize
them by (weaker) structures that limit the effect of small perturbations.

In this spirit there are several results for diffeomorphisms in the C!-topology:

1. A system is robustly transitive if every C'-close system is transitive. [Ma] proves that
robustly transitive surface diffeomorphisms are globally hyperbolic (i.e. are Anosov
diffeomorphisms). This is no longer true in higher dimensions (see examples in [Sh,
Mal]). [DPU, BDP] show that robustly transitive diffeomorphisms admit a structure
called dominated splitting, and their finest dominated splitting is volume partially hy-
perbolic. This result extends to robustly transitive sets, and to robustly chain recurrent
sets.

2. One says that a system is star if all periodic orbits are hyperbolic in a robust fashion:
every periodic orbit of every C'-close system is hyperbolic. For a diffeomorphism, to
be star is equivalent to be hyperbolic (an important step is done in [Ma] and has been
completed in [H1]).

Now, what is the situation for flows? The dynamics of flows seems to be closely re-
lated to the dynamics of diffeomorphisms. Even more, the dynamics of vector fields in
dimension n looks like that of diffeomorphisms in dimension n — 1. Several results can
be translated from one setting to the other, for instance by considering suspension. For
example, [D] proved that robustly transitive flows on 3-manifolds are Anosov flows, gen-
eralizing Mané’s result for surface diffeomorphisms. More generally, in any dimension,
if a vector field is robustly transitive (or chain recurrent) then [Vi] shows that it is non-
singular, and its linear Poincaré flow (that is, the natural action of the differential on the
normal bundle) admits a dominated splitting which is volume partially hyperbolic. On
the other hand, if one considers the suspension of a robustly transitive diffeomorphism
without a partially hyperbolic splitting (as built in [BV]) one gets a robustly transitive
vector field X whose flow {¢} does not admit any dominated splitting. This leads to the
fundamental observation that

for flows, hyperbolic structures live on the normal bundle for the linear Poincaré
flow, and not on the tangent bundle.

However, there is a phenomenon which is really specific to vector fields: the existence
of singularities (zeros of the vector field) accumulated, in a robust way, by regular recur-
rent orbits. Then, some of the previously mentioned results may fail to translate to the
flow setting.
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The first example with this behavior has been indicated by Lorenz [Lo]. Then [GW]
constructs a C!-open set of vector fields in a 3-manifold, having a topologically transitive
attractor containing periodic orbits (which are all hyperbolic) and one singularity. The
examples in [GW] are known as the geometric Lorenz attractors.

The Lorenz attractor is also an example of a robustly non-hyperbolic star flow, show-
ing that the result in [H1] is no longer true for flows. In dimension 3 the difficulties
introduced by the robust coexistence of singularities and periodic orbits are now almost
fully understood. In particular, Morales, Pacifico and Pujals [MPP] defined the notion of
singular hyperbolicity, which requires some compatibility between the hyperbolicity of
the singularity and the hyperbolicity of the regular orbits. They prove the following

e For C'-generic star flows on 3-manifolds, every chain recurrence class is singular hy-
perbolic. It was conjectured in [GWZ] that the same result could hold without the
generic assumption. However, [BaMo] built a star flow on a 3-manifold having a chain
recurrence class which is not singular hyperbolic, contradicting the conjecture. We ex-
hibit a very simple such example in Section 10.

e Any robustly transitive set containing a singular point of a flow on a 3-manifold is
either a singular hyperbolic attractor or a singular hyperbolic repeller.

The singular hyperbolic structure for a compact invariant set K of a vector field X on
a 3-manifold is equivalent to the existence of a volume partially hyperbolic splitting of
the tangent bundle for the flow ¢?, for ¢ # 0.

Let us make two observations:

e The singular hyperbolic structure lives on the tangent bundle (and not on the normal
bundle), contradicting our fundamental observation above.

e When the compact set is singular, the splitting has only two bundles, one of dimen-
sion 1 and the other of dimension 2; this asymmetry forces all singularities contained
in K to have the same index. In other words, all singularities contained in a singular
hyperbolic compact set have the same index, by definition of singular hyperbolicity.
The examples of star flows in [BaMo], as well as the examples presented in Section 10,
contain singular points with distinct indices, and therefore are not singular hyperbolic.

1.2. Star flows and hyperbolic structures

The aim of this paper is to propose a new way to define hyperbolic structures that over-
comes the difficulties introduced by the existence of singularities in chain recurrence sets.
In order to illustrate what we are aiming at, we will present informally one of the main
corollaries of this paper, which is a necessary and sufficient condition for a generic flow
to be a star flow.

As mentioned earlier, we want to look at hyperbolic structures in the normal space and
for the linear Poincaré flow. But our chain recurrence classes might have singularities. As
in [LGW], we define a way to extend the linear Poincaré flow to the singularities.

For a maximal invariant set A of a vector field X we denote by Ay p(X) the closure
in PM of {{(X(x)) : x € A(X,U) \ Sing(X)}; itis a ¢]§,-invariant compact set, but in
general it fails to vary upper semicontinuously with X.



2652 Christian Bonatti, Adriana da Luz

The smallest compact set satisfying all the required properties is

A(X, U) = limsup Ay p(Y).
Cl

Y—X

Now Conley theory asserts that any chain recurrence class C admits a basis of neigh-
borhoods which are nested filtrating neighborhoods U,y C U, with C = (U, (see
Section 3.1 for the definitions). We define

A©) = AKX, Up).

Over this set of directions we can define a normal bundle N: the fiber over L € PM
(corresponding to a line L C T, M) is the quotient N, = T, M /L. The derivative of the
flow D¢’ of X passes to the quotient on the normal bundle N in a linear cocycle over ¢p,,
called the extended linear Poincaré flow and denoted by I/fjv.

But by looking at the linear Poincaré flow, we lose some of the information about
expansion rates along the flow direction, which might be unimportant away from singu-
larities but, in our case, play a crucial role. To recover this information we need a corollary
of one of our main results.

Let X be a vector field with a singular chain recurrence class C with a set of singular-
ities S.

For every singularity o € S we consider a neighborhood U, of o such that {o} is
the maximal invariant set in it. We also consider a Riemannian metric || - || such that
[(Dx¢") ||l = 1 in the complement of |, g Us.

Corollary 1. There exists a multiplicative cocycle
he = {h'}: A(X,U) x R — R
such that if x and ¢' (x) are in U, then h! (L) = ||[(Dx¢")|L|l, and otherwise h (L) = 1.

Definition 2. We say that a flow is multisingular hyperbolic in C if there is an invariant

continuous splitting N’ = E @ _ F for w/t\/ over A(C) and there are sets of singularities
S € C N Sing(X) and S € C N Sing(X) such that the vectors in E are uniformly

contracted by the flow
( l_[ hif;) ’ Ip.tN'

0;CS1
and the ones in F are uniformly expanded by the flow
( 1_[ hffi) ’ 1pjt\/ :

g CSy

A multisingular hyperbolic flow is a flow that is multisingular hyperbolic in all its chain
recurrence classes.

Note that with this definition all multisingular hyperbolic flows are star flows.
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With all of these definitions we are now able to state the corollary regarding star flows:

Corollary 3. There is an open and dense set R of star flows that are multisingular hy-
perbolic.

However, this corollary is not as satisfying as one would hope, in the following sense:
One cannot tell whether a given vector field is or not a multisingular hyperbolic vector
field without additional information on perturbations of the vector field.

This is not a problem of the definition of multisingular hyperbolicity itself but rather
a problem of the set over which we define the multisingular hyperbolicity.

One of the difficulties this paper deals with is defining a bigger set of directions over
the singularities, which varies upper semicontinuously with the flow, but such that the
corollary stated above still holds. Also we discuss the following question: To what extent
are these two ways of extending the linear Poincaré flow to the singularities different?

Note that the problem of extending the linear Poincaré flow to the singularities is not
a problem that is only useful for star flows but rather a way to deal with any hyperbolic
structure in a chain recurrence class with singularities. In fact, the idea of recovering the
information on the expansion along the orbit by multiplying the flow with a cocycle like
the one illustrated above is also applicable to many other settings. We will later give a
definition of hyperbolic structure for singular chain classes involving these concepts.

1.3. Discussion of the notion of singular hyperbolicity in dimensions > 3

1.3.1. The natural generalization of singular hyperbolicity. The notion of singular hy-
perbolicity defined by [MPP] admits a straightforward generalization in higher dimen-
sions: following [LGW, GWZ, SGW], a chain recurrence class is called singular hy-
perbolic if the tangent bundle over this class admits a dominated, partially hyperbolic
splitting into two bundles, one uniformly contracting (resp. expanding) and the other
expanding (resp. contracting) area on any two-dimensional subspace. If instead of area
expansion we ask for volume expansion of the non-uniform bundle, then as in [MM] this
is called sectional hyperbolicity.

These notions have been very helpful for the study of singular star flows. If the chain
recurrence set of a vector field X can be covered by filtrating sets U; in which the maximal
invariant set A; is singular hyperbolic, then X is a star flow. Conversely, [LGW] and
[GWZ] prove that this property characterizes the generic star flows on 4-manifolds. In
[SGW] the authors prove the singular hyperbolicity of generic star flows in any dimension
assuming an extra property: if two singularities are in the same chain recurrence class then
they must have the same s-index (dimension of the stable manifold).

However, in dimension > 4, singularities of different indices may coexist C 1-robustly
in the same class, and these classes may have a robust property which requires a notion
of hyperbolicity. For instance:

e In dimension 4, [BLY] built a flow having a robustly chain recurrent attractor contain-
ing saddles of different indices. In particular, this attractor is not singular hyperbolic in
the sense of [SGW].
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e In [dL1], an example is announced of a star flow in dimension 5 admitting singularities
of different indices which belong robustly to the same chain recurrence class. This
example cannot satisfy the singular hyperbolicity used in [SGW].

1.3.2. A local solution for a local problem. If one wants to explain robust properties of
chain recurrence classes containing a singularity, one needs to understand the interac-
tion between the hyperbolic structure on the regular orbits and the local dynamics in the
neighborhood of the singular point:

Why do the regular orbits not lose their hyperbolic structure when crossing a
small neighborhood of the singularity?

That is a local problem.

Singular hyperbolicity, as defined in [GWZ, SGW], and sectional hyperbolicity as in
[MM] are global ways for fixing this local problem. As a consequence, if several sin-
gularities coexist in the same class, the global solution needs to solve the local problem
corresponding to each singularity; as a consequence, singular hyperbolicity implies that
the singularities have the same local behavior. This explains why singular hyperbolicity
could not characterize all the star flows but only those for which singular points of distinct
indices are assumed to belong in distinct chain recurrence classes.

This paper provides a local answer to this local problem: the way for fixing the hy-
perbolic structure of the regular orbits with the one of a given singular point needs to be
independent of what we do in the neighborhood of the other singular points. For that:

e The main new tool will be Theorem 1 which associates a cocycle to any singularity of
a vector field.

e Another important tool built in [LGW] is the generalized linear Poincaré flow, and we
need to recall its construction to present our results.

e The last tool will be the notion of extended maximal invariant set. Such a notion has
already been defined and used in [LGW, SGW]; we propose here a slightly different
notion and we compare it (see Theorem 2) with the one in [LGW, SGW].

Given any usual notion of hyperbolic structure (hyperbolicity, partial hyperbolicity,
volume hyperbolicity, etc.), well defined on compact invariant sets far from the singu-
larities, we propose a notion of (multi)singular hyperbolic structure generalizing it to
compact invariant sets containing singular points.

Then we will illustrate the power of this notion by paying special attention to star
flows. In this particular setting, the usual structure (for regular orbits) one wants to gen-
eralize to the singular setting is uniform hyperbolicity. In order to avoid confusion with
the singular structure defined in [LGW], we will call our way of generalizing uniform
hyperbolicity to singular sets multisingular hyperbolicity. Then Theorem 3 proves that
multisingular hyperbolicity characterizes the star flows in any dimension:

Multisingular hyperbolic flows are star flows, and conversely, a C'-open and
dense subset of the star flows consists of multisingular hyperbolic flows.
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In the same spirit, generalizing the results in [BDP], the second author announced
in [dL2] that every C'-robustly chain recurrence class of a singular flow is singular vol-
ume partially hyperbolic; in particular, the example of robustly chain recurrent attractors
in [BLY] is singular volume partially hyperbolic.

2. Presentation of our results

2.1. The extended linear Poincaré flow

The hyperbolic structure we will define does not lie on the tangent bundle, but on the
normal bundle. However, the flows we consider are singular and so the normal bundle
(and therefore the linear Poincaré flow) is not defined at the singularities. In [LGW], the
authors define the notion of extended linear Poincaré flow defined on some sort of blow-
up of the singularities. Our notion of multisingular hyperbolicity will be expressed in
terms of this extended linear Poincaré flow (see the precise definition in Section 4); we
present it roughly below.

o We denote by PM the projective tangent bundle of M, that is, a point L of PM corre-
sponds to a line of the tangent space at a point of M.
e We denote by Ax C PM the union

Ax = {(X(x)) € PTyM : x € M \ Sing(X)} U U PTy M.
yeSing(X)
It is a compact set, invariant under the topological flow ¢f.
e The restriction of w/t\/ to the fibers of PM over {(X (x)) € PT,M : x € M\ Sing(X)}is
naturally conjugate to the linear Poincaré flow over M \ Sing(X); thus the restriction of
1///’\/ to Ay is a natural extension, over the singular points, of the linear Poincaré flow.

2.2. A local cocycle associated to a singular point

Let X be a vector field and ¢’ its flow. A (multiplicative) cocycle over X is a continuous
maph: Axy x R — R, h(L,t) = h'(L), satisfying the cocycle relation
R (L) = h" (¢p(L)) - h*(L).

Remark 4. For instance, fix a Riemannian metric || - || on M. For L € PT,M andt € R
set

Ry (L) = [[(Dx¢)]L,
where (D, ¢")|, is the restriction to L of the derivative at x of the flow ¢’. The map
hx: Ax xR —> R, (L,t) — h’X(L), is a cocycle that we will call the expansion in the
direction of the flow.

Let o € Sing(X) be an isolated singular point. We will say that A = {h'} is a local cocycle
at o if for any neighborhood U of PT, M in A there is a constant C > 1 such that

1/C < h'(L) < C
forevery (L,1) € Ax x Rwith L ¢ U and ¢, (L) ¢ U.
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Definition 5. Let 0 € Sing(X) be an isolated singular point. A local reparametrization
cocycle associated to o is a cocycle h = {h'}: Ax x R — R such that:

e {h'}is alocal cocycle at o;
e there is a neighborhood U of o and C > 1 such that

1 h'(L)

C  hy(L)
foranyr € R and L € Ay such that L € PT, M with x € U and ¢’ (x) € U, where
{h';} is the cocycle of expansion in the flow direction.

<C

The following result is central to this paper:

Theorem 1. Let X be a vector field on a closed manifold and let o be a simple singularity
of X (that is, the derivative of X at o is invertible). Then:

e There is a local reparametrization cocycle hy: Ax x R — R associated to o.

o [f h is another reparametrization cocycle then hi /(h)" is uniformly bounded (thus
hs is unique up to a bounded cocycle).

o There is a C'-neighborhood U of X and a continuous map U > Y +> hy,oy where oy
is a continuation of o on Y and hy , is a reparametrization cocycle for Y and oy.

The proof of Theorem 1 is the aim of Section 6.
Notice that the product of two cocycles is a cocycle, and the power of a cocycle is a
cocycle.

Definition 6. Let X be a vector field on a compact manifold such that the zeros of X
are all simple. We say that a cocycle h is a reparametrization cocycle if, for every o in
Sing(X), there exists a choice of a local reparametrization cocycle &, associated to o and
a positive number « (o) such that

W= T] &H*.

o eSing(X)

2.3. Hyperbolic structures

2.3.1. Hyperbolic structures over compact subsets of PM. Consider now a vector field
X on a compact manifold M and Ay C PM. We assume that every singularity of X is
simple. Let K C Axbea ¢ﬁp—invariant compact set. A singular hyperbolic structure on K
is a dominated splitting
N=E &, & E

of the normal bundle over K for the extended linear Poincaré flow, with the following
additional property:

For some of the bundles E; there exists a number 1 < d; < dim E; and a reparametr-
ization cocycle hf = HG€Sing(X)(hQ)“i @) such that

J(hi - (Prlp)

is a uniform contraction or expansion for any subspace D; C E; of dimension d;.
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We show that singular hyperbolic structures are robust in the following sense:

Lemma 7. Let X be a vector field on a compact manifold. If K C Ax C PM is a
$p-invariant compact set admitting a singular hyperbolic structure, then there is a C L
neighborhood of X and a neighborhood U of K in PM such that for any Y in U the
maximal invariant set of ¢y, p in Ay NU admits the same singular hyperbolic structure.

This lemma is a straightforward consequence of the fact that the reparametrization co-
cycles used to define the singular hyperbolic structures admit a continuous choice with
respect to the vector field (last item of Theorem 1).

2.3.2. Multisingular hyperbolicity. One of the many possible motivations for looking
for new definitions of hyperbolic structures in the case of singular flows is understand-
ing what is the type of hyperbolicity that a typical star flow carries (and that allows for
singularities of different indices in the same invariant compact connected set). With the
above way of defining a singular hyperbolic structure we next define our candidate for
hyperbolicity of a typical star flow in dimensions more than three.

Definition 8. Let X be a vector field on a compact manifold. If K C Ay C PM is a ¢p-
invariant compact set we say that K is multisingular hyperbolic if there is a dominated
splitting N' = E @_ F for /) and there are two reparametrization cocycles A% and /|,
such that the vectors in E are uniformly contracted by the flow A’, - tﬁ/’\/ and the ones in F
are uniformly expanded by the flow 7/, - l/fjv.

Note that this definition is equivalent to hyperbolicity away from singularities and choos-
ing 1!, as in Remark 4 and h', as the identity we get a hyperbolic structure that is equivalent
to (positive) singular hyperbolicity.

In a very similar way it is possible to generalize partial hyperbolicity or volume partial
hyperbolicity.

2.4. The extended maximal invariant set

The next difficulty is to define the set on which we would like to define a hyperbolic
structure.

We are interested in the dynamics of X in a compact region U on M, that is, to de-
scribe the maximal invariant set A (X, U) in U. An important property is that the maximal
invariant set depend upper semicontinuously on the vector field X. This property is fun-
damental for a hyperbolic structure to be a robust property.

Therefore we need to consider a compact part of PM, as small as possible, such that:

e It is invariant under the flow q)fP.
o It contains all the directions spanned by X (x) for x € A(X, U) \ Sing(X).
o It varies upper semicontinuously with X.

We denote by Ay p(X) the closure in PM of {{(X(x)) : x € A(X, U) \ Sing(X)};itisa
¢fp-invariant compact set, but in general it fails to vary upper semicontinuously with X.
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The smallest compact set satisfying all the required properties is

A(X,U) = limsup Ay p(Y).
Y—X

Definition 9. We will say that X has a singular hyperbolic structure in a compact region

U if the compact set A(X,U) C Ax C PM has a singular hyperbolic structure, as
defined in Section 2.3.1.

—_~—

As a straightforward consequence of the upper semicontinuous dependence of A(X, U)
on the vector field X one gets the robustness of the singular hyperbolic structure of X
inU.

Lemma 10. If X has a singular hyperbolic structure in a compact region U then the
same singular hyperbolic structure holds for every vector field C'-close to X.

Remark 11. If X is non-singular on U then a singular hyperbolic structure of X is equiv-
alent to the corresponding (non-singular) hyperbolic structure.

More generally, if X has a singular hyperbolic structure on U then every ¢,-invariant
compact set K C U \ Sing(X) has a corresponding (non-singular) hyperbolic structure.

The set AT)Z,/U) is a fundamental tool for defining singular hyperbolic structures. How-
ever, it may be hard to calculate because it depends not only on X but also on all C!-small
perturbations of X. That is a little unsatisfactory: hyperbolic structures have been invented

to control the effect of small perturbations. However, in order to know whether A (X, U)
admits a hyperbolic structure, we need to understand the effect of perturbations of X.

In what follows, we propose another set, much simpler to compute, since it does not
depend on perturbations of X.

In Section 5.2 we define the notion of central space E€ o.u of asingular pointo € U.
Then the extended maximal invariant set is the set B(X, U ) C PM of all lines L such
that either

e L is contained in the central space of a singular point in U, or
e L is directed by the vector X (x) at the regular point x € A(X, U) \ Sing(X).

Proposition 41 proves that B(X, U) varies upper semicontinuously with the vector
field X. In particular, once again, the existence of a dominated splitting N = E; @ Fp.
of the normal bundle A over B(X, U) is a robust property, as also is the existence of a

singular hyperbolic structure. Furthermore, Remark 42 shows it is larger than A (X, U):

AX.U) C B(X,U).

2.5. Hyperbolic structures over a chain recurrence class

Other sets one is interested in when defining hyperbolic structures are the chain recurrence
classes C (o) of singular points o. Conley theory asserts that any chain recurrence class C
admits a basis of nested filtrating neighborhoods U, +1 C Uy, C = [\ U, (see Section 3.1
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for the definitions). We define

A©) =AX. Uy and BO) =) B(X. Up).

These two sets are independent of the choice of the sequence U,,. Clearly ZT(E‘/) C B(C).

Definition 12. We say that a chain recurrence class C has a given singular hyperbolic
structure if A(C) carries that structure.

Remark 13. If C is a chain recurrence class which has a singular hyperbolic structure
then X has this structure on a small filtrating neighborhood of C.

If o € Sing(X) is a hyperbolic singular point, we define ES = (), E; U, and we call it
the center space of 0. We denote by P. = IPEY its projective space.

Remark 14. Consider the open and dense set of vector fields whose singular points are
all hyperbolic. In this open set the singularities depend continuously on the field. Then for
every singular point o, the projective center space P¢ varies upper semicontinuously, and
in particular the dimension dim E¢ varies upper semicontinuously. As it is a non-negative
integer, it is locally minimal and locally constant on an open and dense subset.

We will say that such a singular point has locally minimal center space.

We prove

Theorem 2. Let X be a vector field on a closed manifold, whose singular points are hy-
perbolic, with locally minimal center spaces, and such that the finest dominated split-
ting of the center spaces is into one- or two-dimensional subspaces. Then for every

o € Sing(X), every hyperbolic structure on A@\(;)) extends to B(C(0)).

2.6. Multisingular hyperbolicity and star flows

We say that a vector field X whose singularities are all hyperbolic is multisingular hy-
perbolic if every chain recurrence class is multisingular hyperbolic. Recall that a vector
field is a star flow if it belongs to the C!-interior of the set of vector fields whose periodic
orbits are all hyperbolic.

Remark 15. e If C is a non-singular chain recurrence class which is multisingular hy-
perbolic then it is uniformly hyperbolic and therefore is a hyperbolic basic set and a
homoclinic class.

e If C is a chain recurrence class which is multisingular hyperbolic then X is multisin-
gular hyperbolic on a small filtrating neighborhood of C.

One may check easily
Lemma 16. If X is multisingular hyperbolic, then X is a star flow.

Conversely, we will show
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Theorem 3. There is a C'-open and dense subset U of X'(M) such that if X € U is
a star flow then the chain recurrent set R(X) is contained in the union of finitely many
pairwise disjoint filtrating regions in each of which X is multisingular hyperbolic.

Indeed, we will get a more precise result: our notion of singular hyperbolic structure
allows many possible choices of reparametrization cocycles. However, in the setting of
star flows, some of the results in [SGW] allow us to fix a priori the reparametrization
cocycle. More precisely, according to [SGW] for an open and dense subset of the set of
star flows, one has the following properties:

1. Any chain recurrence class C admits a (unique) dominated splitting N' = E @ F
for the extended linear Poincaré flow on m which is the limit of the hyperbolic
splittings of the periodic orbits for C'-nearby flows.

2. The set Sing(X) N C is the union of two sets Sg and S, where:

e o € Sg if the stable space E} has the same dimension as the bundle E of the

dominated splitting of the extended linear Poincaré flow over A(E(;)) (and thus
dim EY =dim F + 1).
e 0 € Spifdim E) =dim F and dim E{ =dim E + 1.

In particular, the indices of the singularities in a given chain recurrence class may differ
by at most 1 from each other.
Then one considers the reparametrization cocycles ', and h'. defined as

Wy= [] hh and hl= [] 4.

oeSEg oeSF

Now, Theorem 3 is a straightforward corollary of

Theorem 4. There is a C'-open and dense subset U of the open set of star flows such that
for any X in U every chain recurrence class admits a dominated splitting N = E ®_ F
for the extended linear Poincaré flow I/f/t\/ over B(C) and such that the reparametrized
flow

(hp ¥l MV F)

is uniformly hyperbolic.
In other words, X is multisingular hyperbolic and its reparametrization cocycles are
(h', hp).

Remark 17. If all the singular points in a chain recurrence class C have the same index,
that is, if Sg or Sr is empty, then multisingular hyperbolicity is the same as singular
hyperbolicity as in [SGW].

The proof of Theorem 4 follows closely the proof in [SGW] that star flows with only
singular points of the same index are singular hyperbolic.

Question 1. Can we remove the generic assumption, at least in dimension 3, in Theo-
rem 3? In other words, is it true that, given any star flow X (for instance on a 3-manifold)
every chain recurrence class of X is multisingular hyperbolic?
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3. Basic definitions and preliminaries

3.1. Chain recurrent set

The following notions and theorems are due to Conley [Co] and they can be found in
several other references (for example [AN]).

e We say that a pair of sequences {x; }o<;j<k and {#; }o<i<k—1, k > 1, are an e-pseudo orbit
from xq to xi for a flow ¢ if for every 0 <i < k — 1 one has

ti—ti-1>1 and d(xiy1, 9" (x;)) < e.

e A compact invariant set A is called chain transitive if for any ¢ > O and any x, y € A
there is an e-pseudo orbit from x to y.

e We say that x € M is chain recurrent if for every ¢ > 0 there is an e-pseudo orbit
from x to x. We call the set of chain recurrent points the chain recurrent set and denote
it by R(M).

e We say that x, y € PR(M) are chain related if, for every ¢ > 0, there are e-pseudo
orbits from x to y and from y to x. This is an equivalence relation. The equivalence
classes of this relation are called chain recurrence classes.

Fig. 1. An e-pseudo orbit.

Definition 18. e An attracting region (also called a trapping region) is a compact set U
such that ¢’ (U) is contained in the interior of U for every ¢t > 0. The maximal invariant
set in an attracting region is called an attracting set. A repelling region is an attracting
region for — X, and the maximal invariant set is called a repeller.

e A filtrating region is the intersection of an attracting region with a repelling region.

e Let C be a chain recurrence class of M for the flow ¢. A filtrating neighborhood of C
is a (compact) neighborhood which is a filtrating region.
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Fig. 2. A trapping region or attracting region.

Definition 19. Let {¢’} be a flow on a Riemannian manifold M. A complete Lyapunov
function is a continuous function £ : M — R such that:

o L(¢'(x)) is decreasing for ¢ if x € M \ R(M).
e Two points x, y € SR(M) are chain related if and only if L(x) = L(y).
o L(R(M)) is nowhere dense.

The next result is called the fundamental theorem of dynamical systems by some authors:

Theorem 5 (Conley [Co]). Let X be a C! vector field on a compact manifold M. Then
its flow {¢'} admits a complete Lyapunov function.

The next corollary will be used often in this paper:

Corollary 20. Let ¢ be a C' vector field on a compact manifold M. Every chain recur-
rence class C of X admits a basis of filtrating neighborhoods, that is, every neighborhood
of C contains a filtrating neighborhood of C.

Lemma 21 (Connecting lemma [BC]). Let ¢; be a flow induced by a vector field X €
XY(M) such that all periodic orbits of X are hyperbolic. For any C'-neighborhood U
of X and x,y € M, if y is in the same chain recurrence class as x, then there exist
Y e U and t > O such that ¢ty (x) = y. Moreover, for any k > 1, let {x; x, ti,k}lr‘lio be a
(1/k)-pseudo orbit from x to y and define

ng—1

Ap = U 10,111 k) -
i=0
Let A be the upper Hausdorff limit of Ag. Then for any neighborhood U of A, there exists
YeUwithY =XonM\Uandt > Osuchthatq&ty(x) =y
For a generic vector field X € X'1(M) we also have:

Theorem 6 ([C]). There exists a generic set Gapprox C X (M) such that forevery X €
Gapprox and for every chain recurrence class C there exists a sequence of periodic orbits
¥n Which converges to C in the Hausdorff topology.
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3.2. Linear cocycles

Let ¢ = {¢'};cr be a topological flow on a compact metric space K. A linear cocycle
over (K, ¢) is a continuous map {A’}: E x R — E defined by

Al (x,v) = (@' (x), A (x)v),
where:

e m: E — K is a d-dimensional vector bundle over K.
o A : K xR 3 (x,1) = GL(Ey, Eg(x)) is a continuous map that satisfies the cocycle
relation
Arrs(x) = A (¢° (x))As(x) forany x € K and,s € R.

Note that A = {A},cR is a flow on the space E which projects on ¢':

EX E
J J
¢l
K — K

If A C K is a ¢-invariant subset, then P (A) C E is A-invariant, and we call the
restriction of {A’} to w1 (A) the restriction of A to A.

3.3. Hyperbolicity, dominated splitting on linear cocycles

Definition 22. Let ¢ be a topological flow on a compact metric space A. We consider a
vector bundle 7 : E — A and a linear cocycle A = {A’} over (A, X).
We say that A admits a dominated splitting over A if:

e There exists a splitting E = E' @ - - - @ E* over A into k subbundles.

e The dimension of the subbundles is constant, i.e. dim E ; = dimE ; forall x,y € A
andi € {l,...,k}.

e The splitting is invariant, i.e. A’ (x)(El) = Eé), (o foralli € {1,... k).

e There exists a ¢ > 0 such that for every x € A and any pair of non-zero vectors v € E.
andu € EJ,i < j, one has

A"l _ 1A )]
full =2 vl

ey

We denote E = E' @_ --- @_ EF. The notation @ _ is used to highlight the fact that,
in addition to the fact that E can be expressed as a direct sum of the spaces E', these
spaces are ordered so that each is dominated by the next one.

A classical result (see for instance [BDV, Appendix B]) asserts that the bundles of a
dominated splitting are always continuous. A given cocycle may admit several dominated
splittings. However, the dominated splitting is unique if one prescribes the dimensions
dim E'.
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Associated to the dominated splitting we define a family of cone fields C, ZM around
each space E' @ - - -® E* as follows. Let us write the vectors v € E asv = (v1, vp) with
vieE'@®---®E"vandvy € El @ --- & E*. Then the cone field C}! is the set

Cy' ={v= (v, ) : lvill <alvll}.

These are called the family of unstable cone fields and the domination implies that they
are strictly invariant for times larger than #: the cone C* at T,y M is taken by A’ to the
interior of the cone C" at Ty, M.

Analogously we define the stable family of cone fields C'* around E' @ - -- @ E' and
the domination implies that they are strictly invariant for negative times smaller than —7.

One says that one of the bundles E' is (uniformly) contracting (resp. expanding) if
there is ¢ > 0 such that for every x € A and every non-zero vector u € E)’C one has
IA )| /llull < 1/2 (resp. |A™ )||/|lull < 1/2). In both cases one says that E’ is
hyperbolic.

Notice that if E/ is contracting (resp. expanding) then the same holds for any E? with
i < j (resp. j < i) as a consequence of the domination.

Definition 23. We say that the linear cocycle A is hyperbolic over A if there is a dom-
inated splitting £ = E® @ _ E" over A into two hyperbolic subbundles such that E¥ is
uniformly contracting and E* is uniformly expanding.

One says that E* is the stable bundle, and E" is the unstable bundle.

The existence of a dominated splitting or of a hyperbolic structure is an open property in
the following sense:

Proposition 24. Let K be a compact metric space, w: E — K a d-dimensional vector
bundle, and A a linear cocycle over K. Let Ao be a ¢p-invariant compact set. Assume that
the restriction of A to Ay admits a dominated splitting E' b, P, EX, for some t > 0.

Then there is a compact neighborhood U of A with the following property. Let A =
N;er 9" (U) be the maximal invariant set of ¢ in U. Then the dominated splitting admits
a unique extension as a dominated splitting over A for 2t > 0. Furthermore if one of the
subbundles E' is hyperbolic over Ao, it is still hyperbolic over A.

As a consequence, if A has a hyperbolic structure over A then (up to shrinking U if
necessary) it also has a hyperbolic structure over A.
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3.4. Robustness of hyperbolic structures

The aim of this section is to explain that Proposition 24 can be seen as a robustness
property.

Let M be a manifold and ¢, a sequence of flows in M tending to ¢g as n — 00, in
the CO-topology on compact subsets: for any compact set K C M and any T > 0, the
restriction of ¢,’1 to K,t € [T, T], tends uniformly (inx € K andt € [T, T]) to ¢6.

Let A, be compact ¢,-invariant subsets of M, and assume that the upper limit of A,
for the Hausdorff topology is contained in Ag: more precisely, any neighborhood of Ag
contains all but finitely many of the A,’s. One can also see this property in another way:
Consider the subset Z = {0} U {l1/n : n € N\ {0}} C R endowed with the induced
topology. Set Moo = M x T and

Ao = Ao x {0} U [ J Ay x {1/n} C M.

n>0

With this notation, the upper limit of the A, is contained in Ag if and only if Ay is a
compact subset.

Let m: E — M be a vector bundle. We denote by Eo, = E x Z the vector bundle
Too: ExZ — M x Z. We denote by Ex|a,, the restriction of E, to the compact
subset A .

Assume now that A, are linear cocycles over the restriction of E to A,. We denote
by A the map defined on the restriction Exoa,, by

Al (x,0) = (A)(x), 0) for (x,0) € Ag x {0},
Al (x,1/n) = (AL (x),1/n) for (x,1/n) € A, x {1/n}.

Note that A is a cocycle over Ay and hence a map on Exgla,, X R.

Definition 25. With the notation above, we say that the family of cocycles A, tends
to Ag as n — oo if the map Ay is continuous, and therefore is a linear cocycle.

As a consequence of Proposition 24 we get

Corollary 26. Let m: E — M be a linear cocycle over a manifold M and let ¢, be
a sequence of flows on M converging to ¢og as n — 00. Let A, be a sequence of ¢y-
invariant compact subsets so that the upper limit of the A,, as n — 00, is contained
in Ao.

Let A, be a sequence of linear cocycles over ¢, defined on the restriction of E to A,,.
Assume that A,, tends to Ay as n — o0.

Suppose that Ay admits a dominated splitting E = E! G, - B, E* over Ay.
Then, for any n large enough, A, admits a dominated splitting with the same number
of subbundles and the same dimensions of the subbundles. Furthermore, if E* was hyper-
bolic (contracting or expanding) over A, it is still hyperbolic (contracting or expanding,
respectively) for A, over A,.

The proof just consists in applying Proposition 24 to a neighborhood of Ag x {0} in A .
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3.5. Reparametrized cocycles and hyperbolic structures

Let A = {A’(x)} and B = {B'(x)} be two linear cocycles on the same vector bundle
7: & — A and over the same flow ¢’ on a compact invariant set A of a manifold M. We
say that BB is a reparametrization of A if there is a continuous map & = {h’}: A x R —
(0, +00) such that for every x € A and ¢ € R one has

B'(x) = h'(x)A" (x).
The reparametrizing map h' satisfies the cocycle relation
R (x) = h" (0)h* (@" (x)),

and is called a cocycle.
One can easily check the following lemma:

Lemma 27. Let A be a linear cocycle and B be a reparametrization of A. Then any
dominated splitting for A is a dominated splitting for 5.

Remark 28. e If /' is a cocycle, then for any @ € R the power ()% : x > (A (x))¥ is
a cocycle.
o If f" and g’ are cocycles then h! = f! . g' is a cocycle.

A cocycle A is called a coboundary if there is a continuous function h: A — (0, +00)
such that

o h@ ()
h(x)_—h(x) .

A coboundary cocycle is uniformly bounded. Two cocycles g’, h! are called cohomol-
ogous if g' / h' is a coboundary.

Remark 29. The cohomology relation (where two cocycles are related if they are co-
homologous) is an equivalence relation among the cocycles and is compatible with the
product: if g} and g} are cohomologous and &) and 4 are cohomologous, then g} 4/ and
ghh?, are cohomologous.

Lemma 30. Let A = A’ be a linear cocycle, and h = h' be a cocycle which is bounded.
Then A is uniformly contracted (resp. expanded) if and only if the cocycle B = h - A is
uniformly contracted (resp. expanded).

As a consequence one gets

Corollary 31. If g and h are cohomologous, then g - A is hyperbolic if and only if h - A
is hyperbolic.
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4. The extended linear Poincaré flow

4.1. The linear Poincaré flow
Let X be a C! vector field on a compact manifold M. We denote by ¢’ the flow of X.

Definition 32. The normal bundle of X is the vector subbundle Ny over M \ Sing(X)
defined as follows: the fiber Nx(x) of x € M \ Sing(X) is the quotient space of T, M by
the vector line R. X (x).

Note that if M is endowed with a Riemannian metric, then Ny (x) is canonically identified
with the space orthogonal to X (x):

Nxy ={(x,v) eTM:v L X(x)}

Consider x € M \ Sing(X) and ¢ € R. Thus D¢’ (x) : M — Tyt ()M is a linear
isomorphism mapping X (x) onto X (¢’ (x)). Therefore D¢’ (x) passes to the quotient as
a linear isomorphism ¥/ (x): Nx(x) = Nx(¢'(x)):

D!
TM =5 TyM
! )
Nx(x) 5 Ny (@' (x)

where the vertical arrows are the canonical projections.

Fig. 3. ! is the differential of the holonomy or Poincaré map.

Proposition 33. Let X be a C! vector field on a manifold M, and A be a compact invari-
ant set of X. Assume that A does not contain any singularity of X. Then A is hyperbolic
if and only if the linear Poincaré flow over A is hyperbolic.

Notice that the notion of dominated splitting for non-singular flows is sometimes better
expressed in terms of the linear Poincaré flow: for instance, the linear Poincaré flow of a
robustly transitive vector field always admits a dominated splitting, while the flow by itself
may not admit any dominated splitting. See for instance the suspension of the example
in [BV].
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4.2. The extended linear Poincaré flow

We are dealing with singular flows, and the linear Poincaré flow is not defined on the
singularities of the vector field X. However, we can extend it to a flow on a larger set for
which the singularities of X do not play a specific role, as in [LGW]. We call this the
extended linear Poincaré flow.

This flow will be a linear cocycle defined on certain vector bundles over a manifold,
which we define now.

Definition 34. Let M be a d-dimensional manifold.

o We define the projective tangent bundle of M to be the fiber bundle I1p: PM — M
whose fiber P, is the projective space of the tangent space Ty M; in other words, a point
L, € P, is a one-dimensional vector subspace of Ty M.

o The tautological bundle of PM 1is the one-dimensional vector bundle over PM,
[I7: TM — PM, whose fiber Ty, over L € PM is the line L itself.

o The normal bundle of PM is the (d — 1)-dimensional vector bundle over PM,
My : N — PM, whose fiber N over L € P, is the quotient space T,y M /L.

If we endow M with a Riemannian metric, then N}, is identified with the hyperplane
orthogonal to L in Ty M.

Let X be a C" vector field on a compact manifold M, and ¢’ its flow. The natural actions of
the derivative of ¢’ on PM, TM and A define flows on these manifolds. More precisely,
for any t € R:

e We denote by ¢,: PM — PM the flow defined by

¢p(Ly) = D' (Lx) € Pyryy.

e We denote by ¢%-: TM — T M the topological flow whose restriction to a fiber 77 is
the linear isomorphism onto ’7;&) (1) Which is the restriction of D¢’ to the line 7.

o We denote by ¢rj,: N — N the flow whose restriction to a fiber N7, L € Py, is the
linear isomorphism onto ./\/'% (1) defined as follows: D¢’ (x) is a linear isomorphism
from Ty M to Ty ()M which maps the line 7, C T M onto the line 7;5]5)( 1) Therefore
it passes to the quotient as the announced linear isomorphism.

D¢’
.M 25 TyoM
! )
N,
L ¢p(L)

Note that ¢ﬁ), t € R, defines a flow on IPy; which is a cocycle over ¢’ whose action on
the fibers is by projective maps.

The one-parameter families ¢’7- and l/f/t\/ define flows on 7M and N, respectively,
which are linear cocycles over ¢, We call ¢ the tautological flow, and /- the extended
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linear Poncaré flow. We can summarize this by the following diagrams:

N5 N 7™ 25 TM

! ! ! !

ey 25 Py M 2 pp

{ 4 { {
¢! ¢

M — M M — M

Remark 35. The extended linear Poincaré flow is really an extension of the linear Poin-
caré flow defined in the previous section; more precisely:

Let Sxy: M \ Sing(X) — PM be the section of the projective bundle such that Sx (x)
is the line (X (x)) € P, generated by X (x). Then:

e The fibers Ny (x) and N, () are canonically identified.
e The linear isomorphisms ¥’ : Nx(x) — Nx(¢'(x)) and ¥},: Noyx) = Nsy(g(x))
are equal (under the identification of the fibers).

4.3. Maximal invariant set and lifted maximal invariant set

Let X be a vector field on a manifold M and U C M be a compact region. The maximal
invariant set A = Ay of X in U is the intersection

AKX, U)=()¢'U).

teR

We say that a compact X-invariant set K is locally maximal if there exists an open
neighborhood U of K such that K = A(X, U).

Definition 36. The lifted maximal invariant set in U, denoted by Ap y C PM (or simply
Ap if one may omit the dependence on U), is the closure of the set of lines (X (x)) for
regular x € Ay:

Ap,y = Sx(Ay \ Sing(X)) C PM,
where Sy : M \ Sing(X) — PM is the section defined by X.

5. The extended maximal invariant set

5.1. Strong stable, strong unstable and center spaces associated to a hyperbolic
singularity

Let X be a vector field and o € Sing(X) be a hyperbolic singular point of X. Let A} <
c- <Ay <A <0 <A <Aj <--- < Af be the Lyapunov exponents of ¢, at o and let

EIiEB<EB<E§®< E?®< E'll@< E;®<@< E;

be the corresponding (finest) dominated splitting over o.
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A subspace F of T, M is called a center subspace if it is of one of the forms below:

° F:Efea<~-~ea<E§ea<E5;
.F_EM@ EM@ @ ES.
o F=E'O® - ESEB E“EB -~EB<E]S.forie{l,...,k}andje{l,...,l}.

Asubspace
Ef(o)=E®. - ®_ E & E, 1<ic<k,

of T, M is called a strong stable space.

A classical result from hyperbolic dynamics asserts that for any i there is a unique
injectively immersed manifold W;** (o') in M, called a strong stable manifold, with tangent
space E7° (o) and invariant by the flow of X.

We define analogously the strong unstable spaces Ej'f“ (o) and the strong unstable
manifolds VV;M(O’) forj=1,...,1

5.2. The lifted maximal invariant set and the singular points

The aim of this section is to add to the lifted maximal invariant set Ap gy some set over the
singular points in order to recover some upper semicontinuity properties. As mentioned in
Section 2.4, we want to define a set that is as small as possible, but which can be defined
without any information on the perturbations of our vector field.

We define the escaping stable space E’;; as the biggest strong stable space E]“ (o)
such that the corresponding strong stable manifold Wj” (o) is escaping, that is,

AxuNW* (o) ={o}.

We define the escaping unstable space analogously.
We define the central space E;U of o in U as the center space such that

ToM=E}; ®E;y ® ESYy-
We denote by ]P’f,’U the projective space of E (o, U) where i € {ss, uu, c}.

Lemma 37. Let U be a compact region and X a vector field whose singular points are
hyperbolic. Then, for any o € Sing(X) N U,

Apy N ]P’;S’U =Apy N ngtu = 0.

Proof. Suppose (towards a contradiction) that L € Ap gy N IP’;Y y- This means that there
exists a sequence x, € Ay y \ Sing(X) converging to o such that L, converges to L,
where L,, is the line RX (x,) € P,,.

We fix a small neighborhood V of o endowed with local coordinates such that the
vector field is very close to its linear part in these coordinates: in particular, there is a
small cone C** C V around W,*;; whose complement is strictly invariant in the following
sense: the positive orbit of a point outside C** remains outside C** until it leaves V. For
n large enough the points x, belong to V.
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As RX (xy) tends to L, this implies that the points x,, for n large, are contained in
the cone C*°. In particular, they cannot belong to W* (o). Therefore they admit negative
iterates y, = ¢ (x,) with the following properties:

o ¢ (x,) € Viorallt € [0, t,,].
o ¢ ) ¢ V.

e [, —> OQ.

Up to considering a subsequence, one may assume that the points y, converge to a point y,
and one may easily check that y € W* (o) \{o}. Furthermore all the points y, arein Ay y,
sothaty € Ax y.

We conclude the proof by showing that y € W%, which contradicts the definition of
Wiy Ity ¢ WS, thenits positive orbit arrives at o tangentially to weaker stable spaces:
in particular, there is ¢ > 0 such that ¢’ (y) does not belong to the cone C*%.

Consider n large, in particular #, is larger than ¢ and ¢'(y,) is so close to y that
@' (yn) ¢ CS*: this contradicts the fact that x, = ¢ (y,) € C**.

We have proved Ap y NP}, = @; the proof that Ap,y NP, = ¥ is analogous. O

As a consequence we get the following characterization of the central space of ¢ in U:

Lemma 38. Let U be a compact region and X a vector field whose singular points are
hyperbolic. Then for any o € Sing(X) N U the central space E;U is the smallest center
space containing Ap,y U Ps M.

Proof. The proof that E ;; contains Ap y NPy is very similar to the end of the proof
of Lemma 37 and we just sketch it: by definition of the strong escaping manifolds, the
points x, admit a neighborhood of a fundamental domain which is disjoint from the max-
imal invariant set. This implies that any point in Ax ¢ close to o lies outside of arbitrarily
large cones around the escaping strong direction. Therefore the vector X at these points
is almost tangent to EJ ;.

Assume now for instance that:

e ECy=E & - @ E|® E{®_- & E]: inparticular W;

o,
strong stable manifold.

e Ap y NPy is contained in the smaller center space

'} 1(0) is the escaping

E &, 0 Ee Ele. & .

We will show that the strong stable manifold W’* () is escaping, contradicting the max-
imality of Wisjl (0). Suppose there is x € (W¥(0) \ {0)) N Ay, y. The positive orbit of
x tends to o tangentially to E}( B, B, Ej and thus X (¢’ (x)) for ¢ large is almost
tangent to E; @_ --- @_ E7; this implies that Ap y N P, contains at least a direction in
E} ®_ ---@_ E7, contradicting the hypothesis. O

Lemma 39. Let U be a compact region. Given a hyperbolic singular point o in U, and
its continuation oy for vector fields Y in a C'-neighborhood of X, both escaping strong
stable and unstable spaces E;iU and E (’;;‘U depend lower semicontinuously on Y.

As a consequence, the central space E;Y’ v depends upper semicontinuously on Y,

. L. s
and so does its projective space P(Ty,U'
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Proof. We will only give the proof for the escaping strong stable space, as the proof for
the escaping strong unstable space is identical.

As o is in the interior of U, thereis § > O and a C 1-neighborhood U of X such that,
forany Y e U:

e o has a hyperbolic continuation oy for Y.

e The finest dominated splitting of oy for X has a continuation for oy which is a domi-
nated splitting (but maybe not the finest).

e The local stable manifold of size § of oy is contained in U and depends continuously
onY.

e For any strong stable space E**(o0), the corresponding local strong stable manifold
W3S (oy) varies continuously with ¥ € U.

Let E* denote the escaping strong stable space of o and let Wi*(o) be the corre-
sponding local strong stable manifold. We fix a sphere Sy embedded in the interior of
W3¥(o), transverse to X and intersecting every orbit in Wi* (o) \ {o'}. By definition of es-
caping strong stable manifold, for every x € Sy there is #(x) > 0 such that ¢')(x) ¢ U.

As Sy is compact and the complement of U is open, there is a finite family #, i =
0,...,k, an open covering Vp, ..., Vy and a C l-neighborhood Uy of X such that, for
every x € U; and every Y € U the point q&;ﬁ (x) does not belong to U.

For Y in a smaller neighborhood U/, of X, the union of the V;’s covers a sphere Sy C
W3¥(oy, Y) intersecting every orbit in Wi*(oy, Y) \ {oy}.

This shows that W{* (oy, ¥) is contained in the escaping strong stable manifold of oy,
proving the lower semicontinuity. O

5.3. The extended maximal invariant set

We are now able to define the subset of PM which extends the lifted maximal invariant
set and depends upper semicontinuously on X.

Definition 40. Let U be a compact region and X a vector field whose singular points are
hyperbolic. Then the set

B(X,U)=Apy U U P, CPM
oeSing(X)NU

is called the extended maximal invariant set of X in U.

Proposition 41. Let U be a compact region and X a vector field whose singular points
are hyperbolic. Then the extended maximal invariant set B(X, U) of X in U is a compact
subset of PM, invariant under the flow (/ﬁfp. Furthermore, the map X — B(X, U) depends
upper semicontinuously on X.

Proof. First notice that the set of singular points of Y in U consists of finitely many hy-
perbolic singularities varying continuously with Y in a neighborhood of X. The extended
maximal invariant set is compact, being the union of finitely many compact sets.
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Let ¥, be a sequence of vector fields tending to X in the C!-topology, and let
(xn, Ly) € B(Yy, U). Up to considering a subsequence we may assume that (x,, L;)
tends to a point (x, L) € PM, and we need to prove that (x, L) belongs to B(X, U).

First assume that x ¢ Sing(X). Then, for n large, x, is not a singular point for ¥, so
that L, = (Y, (x,,)) and therefore L = (X (x)) belongs to B(X, U) as desired.

Thus we may assume x = o € Sing(X). First notice that if, for infinitely many #,
Xy 1s a singularity of Y;, then L, belongs to IP’(CTY - As ]P’er’U varies upper semicontin-
uously with Y, we deduce that L belongs to ng,u’ as desired. So we may assume that
xn ¢ Sing(Yy,).

We fix a neighborhood V of o endowed with coordinates, so that X (and therefore Y,
for large n) is very close to its linear partin V. Let Sy C W} (o) be a sphere transversal
to X and intersecting every orbit in W} (o) \ {0}, and let W be a small neighborhood
of Sx.

Assume that x,, ¢ W¥(oy,) for infinitely many n. There is a sequence #, > 0 with the
following properties:

. qS;n’(x,,) e Vforallt € [0, t,].

o ¢y "(xn) €W.
e 1, tends to +o0 as n — o0.

Up to considering a subsequence, one may assume that the points y, = ¢>;n’” (x,) tend to
apoint y € W¥(o).

Claim. The point y does not belong 1o W' ;.

Proof. By definition of the escaping strong stable manifold, for every y € W%, there
is ¢ such that ¢'(y) ¢ U; thus ¢§,n (yn) ¢ U for y, close enough to y; in particular
n & Ay, U. o

Since y ¢ W(‘;YU for T > 0 large enough the line (X (z)), z = ¢’ (y), is almost tangent
to EY = Eé,U ® Eg"U As a consequence, for n large, (Y, (z,)), where z,, = ¢;n (yn),

is almost tangent to the continuation E.* of E€ for 0,,Y,. As x, = q&;”n_T(yn) , and
ast, — T — oo, the dominated splitting implies that L, = (Y, (x,)) is almost tangent
to ES".

This shows that L C E“. Notice that this also holds if x, belongs to the unstable
manifold of oy,. Arguing analogously we find that L C E“ = E_ ;, & E;’;. Thus
L C E7 ;, concluding the proof. O

Remark 42. The lower semicontinuity of the strong escaping stable and unstable man-
ifolds of a vector field X, and the upper semicontinuity of E¢, imply that there is a cl-
neighborhood U/ of X such that for any Y in / there are no regular orbits approaching the
singularity o tangent to the escaping spaces. In fact, domination implies that any regular
orbit approaching o becomes tangent to EY. This implies that

AX,U) C B(X,U).
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6. Reparametrizing cocycle associated to a singular point

Let X be a C! vector field, ¢’ its flow, and o a hyperbolic singularity of X. We denote by
Ax C PM the union

Ax ={RX(x):x ¢SingX)ju () BM.
xeSing(X)

It can be shown easily that this set is upper semicontinuous in X, as in the case of B(X, U)
(see Proposition 41).

Lemma 43. Ay is a compact subset of PM invariant under the flow d)fp, and the map
X +— Ay is upper semicontinuous. Finally, if the singularities of X are hyperbolic then
B(X,U) C Ay for any compact region U.

Let U, be a compact neighborhood of o on which {o} is the maximal invariant set. Let
Vs be a compact neighborhood of Sing(X) \ {0} such that V, N U, = . We fix a ch
Riemannian metric || - || on M such that

IXx)| =1 forallx € M\ (Uy U V,).

Consider the map hy: Ax X R — (0, +00), he (L, t) = h’ (L), defined as follows:

o If L € PT,M with x ¢ U, and ¢'(x) ¢ U, then h'(L) = 1.

o If L € PT M with x € U, and ¢ (x) ¢ U, then L = RX (x) andhf,(L) =1/ Xx)].

o If L € PT\M with x ¢ U, and ¢'(x) € U, then L = RX(x) and hl (L) =
1 X (@' I

o If L ¢ PT\M with x € U, and ¢'(x) € U, but x # o then L = RX(x) and
hy (L) = | X (@' O/ 11X o)l

o If L € PT, M then hl (L) = ||¢p(u)||/|lu|| where u is a vector in L.

Note that the case in which x is not the singularity and x € U, can be written as in the
last item by taking u = X (x).

Lemma 44. Let X be a C! vector field, ¢ its flow, and o a hyperbolic singularity of X.
Define the sets Ax, Uy, Vo and the map hy as above. Then hy is a (continuous) cocycle
on Ax.

Proof. The continuity of h, comes from the continuity of the norm and the fact that the
compact neighborhood U, contains only one singularity. Now for L € Ay we aim to
show that A, satisfies the cocycle relation

Ry (¢5(L)h (L) = hy™ (L).

o If L € PTuM with x ¢ Uy, ¢*(x) ¢ Uy and ¢*1'(x) ¢ U,, then AT (L) =
H (S8 (L) (L) = 1.

o Let L € PT M with x ¢ Uy, ¢*(x) ¢ U, and ¢*T(x) € U,. Then x is not singular
and L = RX (x). Since i) (L) = 1, we have

hy (@p(L)RG (L) = X (@' (@ (Ol = X (@ (DI = hg™ (L).
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he(L) = | DX | 4]

N
—

Fig. 4. The local cocycle Al associated to the singularity o = oy.

o If L € PT,M with x ¢ Uy, ¢*(x) € Uy, and ¢'T5(x) ¢ U,, then L = RX (x),
hi (L) = [ X (¢* (x))]l, and

R (@S(L))hS (L) = IX (@ ()l =1 =R (L).

X (@* ol

o If L € PT\M with x ¢ U,, ¢*(x) € Uy, and ¢'*(x) € U,, then L = RX (x),
hy (L) = | X (¢°(x))|, and

, 1 X (9" (¢ CONI .
WS (VRS (L) = ————7 77701 X (o° = | X (&' (¢*
o @p(L)h, (L) X6 Ol 1 X(@” NIl = 1 X(¢" (@" ()]

= X (@ Il = hy"™ (L).

o If L € PT,M withx € Uy , ¢*(x) ¢ Uy, and ¢* ' (x) ¢ Uy, then hl (p3(L)) = 1 and

R (@5 ()RS (L) = : =T (L).
’ ’ IX)l ¢

o Let L € PT\M with x € U,, ¢*(x) ¢ U, and ¢**'(x) € U,. Since hi (L) =
1/ X (x)||, we have

_ IX@ "ol
X o)l X ol

R (@5 (L)RS (L) = [ X (@' (¢° )l =hi"(L).

o If L € PT M with x € Uy, ¢*(x) € U, and ¢'T*(x) ¢ U,, then L = RX(x),
hy (9p(L)) = 1/11X (¢*(x)) || and
I X (@* Nl 1

1
ht s L hs L — = =ht+S L .
o P () =5 on X@ ol — ixen e
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o If L € PT,M withx € U, \ {0}, ¢*(x) € U, and ¢' ™ (x) € U, then L = RX (x) and

X (@' @ CONI X @ NI _ 1IX (@' (@*

R (@S (LS (L) = =
g(¢P( )) O'( ) ||X(¢S(X))|| ||X(x)|| ||X()C)||
t+s
= IX@TTON _ s gy,
X Co)ll

e If L € PT,M, let u be a vector in L; then

pv Ly < 1P9E7 @I ID9p" @) DG
’ lul IDpzal llul
I1DGp (DY@ 1D _ (o
= =h L))h, (L).
IDgsl g o PR ) g

Lemma 45. The cohomology class of a cocycle h defined as above is independent of the
choice of the metric || - || and of the neighborhoods U, and V.

Proof. Let | -|l and |- ||” be two different metrics. Let Uy, V,; and U, V., be two different
sets of neighborhoods of o and Sing(X) \ {o} such that:

o V,NU, =40.

o V.NU, =40.

o V.NUy;=0@and V, NU, =4.

o | X(x)|=1forallx e M\ (Us U Vy).
o [X(x)|=1forallx e M\ (U, UV)).

We define 4, as before for the metric | - || and 4, as before for the metric | - ||”. We define
a function g: B(X, U) — (0, +00) such that:

o If L € PT.M with x ¢ V, U V,, then g(L) = |lul|’/|lu|l for a non-zero vector u in L.
o If L e PT.M withx € V), U V,, then g(L) = 1.

Claim. The function g: B(X, U) — (0, +00) defined above is continuous.

Proof. The continuity of the norms || - || and || - ||, and the fact that they are 1 outside
Vo UV, and V. N U, = @Y and V, N U, = @, gives us the continuity on the boundary of
U, UU!. ]

The following claim will show us that the functions A, and A. differ by a coboundary

1
defined as g’ (L) = g(l?gq(ﬁ_%(u)).

Claim. The functions hy and h!, are such that

g(Dpp(u))
gw)

Proof. e For the metric || - || and L € PTy M with x ¢ U, UU/, and ¢'(x) ¢ Uy UU/,
one has g’ (L) = 1. On the other hand 2"* (L) = 1 as desired.

hg (u) = he (u)
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e If L € PTyM withx € U, UU., and ¢' (x) ¢ Uy U U, then g'(L) = ||u||/|lul’. Take
u = X(x). Then h'(L) = 1/||X (x)]|| and
1 X ()l

R (L) = h' (L .
) ( )IIX(X)II’

o If L € PT\M withx ¢ U, UU, and ¢'(x) € Uy, U U, then L = RX(x). Take

u = X(x). Then g' (L) = % and since h' (L) = || D¢}, ),
h(L) = hl(L)w_
| Dl (u) |

o If L e PTyM N B(X,U) withx € U, and ¢’ (x) € Uy, then taking u = X (x), one has

| Dbz (1) ||l |
I D) llull””

and h' (L) = Db (u)/llull. So k" (L) = h*(L)g' (L). O

g'(L)

Now in order to finish the proof we need to show that the condition that V, N Uy =
and V, N U, = # does not restrict generality. For this, suppose we started with any other
norm || - ||” and that there exist neighborhoods V/, U/ such that:

e V/NU) =4.
o IX()|” = 1forallx € M\ (U U V).

Choose a smaller neighborhood V. C V. Then V. N U/ = @. Analogously U, C U/
will satisfy V. N U, = (. Now if we choose the neighborhoods V., and U, as small as
we want, and a norm || - ||” such that | X (x)||’ = 1 forall x € M \ (U U V), the claims
above imply that the corresponding 4" and &’ differ by a coboundary. Therefore 4’ can be
chosen so that 4” and A differ by a coboundary. O

We denote by [h(X, o)] the cohomology class of any cocycle defined as / above.

Lemma 46. Consider a vector field X and a hyperbolic singularity o of X. Then there
is a C'-neighborhood U of X such that o has a well defined hyperbolic continuation oy
forY inU, and for any Y € U there is amap hy: Ay x R — (0, +00) such that:

e hy is a cocycle belonging to the cohomology class [h(Y, oy)].

e hy depends continuously on Y: if Y, € U converges to Z € U for the C'-topology
and if L, € Ay, convergesto L € Az, then h’;,'1 (Ly) tends to h', (L) for every t € R;
furthermore, this convergence is uniformint € [—1, 1].

Proof. The manifold M is endowed with a Riemannian metric || - ||. We fix the neighbor-
hoods U, and V,, for X and U/ is a C 1—neighborhood of X such that oy is the maximal
invariant set for Y in U, and Sing(Y) \ {oy} is contained in the interior of V. Up to
shrinking U/ if necessary, we also assume that there are compact neighborhoods Uy of oy
contained in the interior of U, and \7(, of Sing(Y) \ {oy} contained in the interior of V.
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We fix a continuou§ funcEion E:M — [0,1]sothaté(x) =1forx e M\ (Us U V)
and £(x) =0forx € U, U V.
For any Y € U we consider the map ny : M — (0, 400) defined by

&)
) = ol

+1—&(x).

This map is a priori not defined on Sing(Y’) but extends by continuity to y € Sing(Y) by
ny (¥) = 1, and is continuous.

This map depends continuously on Y. Now we consider the metric || - |y = ny| - ||
Note that || Y (x)|ly = 1 forx € M\ (U, U V). Now hy is the cocycle built in Lemma 45
for Uy, Vy and || - ||y. O

Notice that, according to Remark 29, if o1, . .., o} are hyperbolic singularities of X, the
homology class of the product cocycle hf,l e hf,k is well defined, and admits representa-
tives varying continuously with the flow.

7. Extension of the dominated splitting

7.1. The dominated splittings over the singularities

The aim of this section is to prove Theorem 2.
Remark 47. Suppose that the finest Lyapunov decomposition of the singularity is
I-M=E & - -QE,®---DE;d---D E].

If we pick a direction L € P, M such that the closure of its orbit under ¢ﬁ», denoted O (L),
is contained in E; @ - - - @ E;, then the angle between ¢, (L) and any space

ZE:«Eh or ZE:«Eh

h<i h>j

is uniformly away from zero.
Recall that 7 : T, M — N is the projection associated to the normal bundle. We
can identify wy (Ep) with Ej, forall h < i and h > j, and also we can identify

q)fp(z Eh) with ZE” fork < i

h<k h<k

and

04 (D" En) with 3By fork > j.

k<h k<h
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Lemma 48. Let X be a vector field on a d-dimensional manifold M with a hyperbolic
singularity o where the finest splitting of the tangent space is

IsyM=E &---®E.

Consider a Riemannian metric such that E; | Ej for all i # j. Let L be such that
L = (u) where u belongs to some E;. Then

NL=E\ @ - @®n,(E)® - ®E
is the finest dominated splitting over the closure of the orbit of L.

Proof. Suppose that A < 0; the other case is analogous. Let w € my (E;). Since D¢’ (u)
and Ip_f\/(w) are perpendicular, we have

J(D) g, = JWAD |, () 1D ).

If dim E; = d we have J(D¢")|g, = e’ and the largest Lyapunov exponent of 1/;}\/
cannot be greater than A. Therefore there are two possibilities: either

1. there exists a constant C such that J (w/’\/) = Ce@=D for ¢ large enough, or
2. the ratio of contraction of u is greater than A.

Since D¢’ | g, has all the Lyapunov exponents equal to A, for ¢ large enough we have
1D @) < Cillulle™,
reaching a contradiction. O

The following lemma together with Lemma 53 are very similar to Lemma 4.3 in [LGW].
Since the context is slightly different and the statement is split into two parts, we add the
proof anyway.

Lemma 49. Let X be a vector field with a hyperbolic singularity o where the finest
hyperbolic decomposition of the tangent space is

I-M=E & -QE,®---QE;d---DE].

Suppose E; is a stable space, and E; an unstable space. Define k; = Z;{_:ll dim Ey
l .
and hj =3} _;  dim Ej.
Consider a direction L = (u), where u is a vector in (E; ® E;) \ (E; U Ej). Assume
E & F is a dominated splitting for Y s over the closure O (L) of the orbit of L for ¢p.
Then either

e dim E < k;, in which case there is 1 < i’ < i such that, forany L' € O(L),

_nL,<ZEk) ZEk and F—an<i Ek),

k=i"+1

in particular F contains the projection of the sum of the Ey fork > i; or
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e dim F < hj, in which case there is j < j' <1 such that, for any L’ € O(L),

=/

l Jj =1

F = ”L'<Z Ek) ~ Zl: Ey and E = ﬂL/(Z Ek),

k=j k=)’ k=1
in particular E contains the projection of the sum of the Ey for k < j.

Proof. First note that, as L is contained in E; @ E; but not in E; or E;, the w-limit of L
for ¢p is contained in PE; and its -limit is contained in PE;.

Towards a contradiction, assume that there is a dominated splitting £ @ F over m
such that dim E > k; and dim F > h;.

According to Lemma 48, for any L, € m NIPE;, the finest dominated splitting of
O(L) is obtained from E1 ® --- @ E; @ --- @ E; ® - - - @ E; by replacing the space E;
by its projection and keeping all the others unchanged (modulo their identification with
their projections). Thus the splitting £ @ F is just given by the dimension. So there is
i <r < jsuch that for any such L, one has

E(Ly)=E1® - ®E and F(L,) =E 1@ ®E_1®7L,(E)& & El.

The same argument shows that there is i < s < j such that for any L, in PE; N O(L)
(a-limit of L) one has

E(Ly) =E1®- - OE 1®m (E)®---®E;, and F(Ly)=Es11D---DE;.

This allows us to find the spaces E(L) and F(L). For that, consider an unstable cone
around the space F'(L,) and extend it by continuity to a small neighborhood of the w-
limit of L. Then E(L) is exactly the set of vectors which do not enter the unstable cone
for large positive iterates of the extended linear Poincaré flow. One deduces that

EL)=E1®--- QE_1®n (E;®OL)PE 1D -DE,.

In the same way, F'(L) consists of the vectors which do not enter the stable cone defined
on the a-limit set of L under large negative iterates of the extended linear Poincaré flow.
One deduces that

F(L)=E;® - QEj1 O (Ej®L)®Ej1®--- D E].

Consider the positive iterates wj\f(F(L)) = F(¢p(L)) of F(L). Denote L; = ¢f(L).
Then F(L,) contains 7y, (E; & L), which has the same dimension as E;. Recall that,
by hypothesis, L, is contained in E; & E;. Thus 7z, (E; & L,) converges in N(L,) to
some subspace of 7y (E; @ E;) ~ E; ® ny,(E;) containing 7, (E;) and having the
same dimension as E;. This implies that the limit of 7, (E; @ L,) as t — +00 contains
vectors in E; but is contained in F'(L,,). This contradicts the fact that E; C E(L,,).

This contradiction implies that dim E < k; or dim /' < h;. We now conclude the
proof in the first case, the other case being similar.
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Assume dim E < k;. Then looking at the finest dominated splitting at L, one deduces
that there is 1 < i’ < i such that dim E = ) ;_, dim E. Then the splitting (L") =
E(L) @ F(L') defined as

i’ i’ l
E(L) =np (Z Ek> ~Y E and F(L)= nu< 3> Ek)
k=1 k=1 k=i'+1
is invariant, has constant dimension for L’ € O (L) and coincides with a dominated split-

ting over the w-limit set and over the o-limit set. Therefore it is a dominated splitting so
that dim £ = dim E and so E = E and F = F, concluding the proof. O

7.2. Relating the central space of the singularities with the dominated splitting on A

Now let us go back to our dynamical context. Let X be a vector field with a chain recur-
rence class C and a singularity o € C. We consider the following splitting of the tangent
space M:
ESS @ EC @ Euu’

into the stable escaping space, the central space and the unstable escaping space. We
suppose that the singularities are hyperbolic and that the dimension of the central space
is locally constant. These are open and dense conditions. Let us consider the hyperbolic
eigenvalues of the hyperbolic splitting restricted to the central space:

A< o< N
and the associated spaces:
E‘=E @ --®E.
Note that fzom Remark 42 we know that A C B(X, U), and from Theorem 6 we have
Ap(X,U) C A.
Remark 50. By Lemma 39 there is a C!-open and dense set such that the dimension
of the central space is locally constant. By definition of central space there is always a

direction L in AN Py M such that L = (u) where u belongs to Ej and L; in AN P, M,
such that L; = (v) where v belongs to E;.

Lemma 51. Consider a vector field X such that:

o There is a hyperbolic singularity o and the splitting of the tangent space of the singu-
larity into escaping spaces and central space is

.M = E* @& E° @ E"".

e The central space splits as E = E1 ® --- @ E|.

o The chain recurrence class of o, C (o), is not trivial.

e The dimension of E€ is locally constant (i.e. the dimension of E(o,Y) is constant
for Y in a C'-open neighborhood of X).

Then for any C'-neighborhood U of X, there is Y in U such that there is a homoclinic
orbit y C C(o) that approaches the singularity tangent to the E| direction for the future
and tangent to the E direction for the past.
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Proof. Let us consider the finest hyperbolic decomposition of the central space of o for
this vector field:
E°=E & ---®E,.

By definition, there is an orbit in the stable manifold tangent to E** @ E| that is contained
in C (o) and there is an orbit in the unstable manifold tangent to E; @ E** that is contained
in C (o). In the open set around X such that the dimension of the central space is constant,
we choose Y such that all periodic orbits of ¥ are hyperbolic, and the orbit in the stable
manifold tangent to E¥* @ E| approaches the singularity in the direction of E, while
the orbit in the unstable manifold tangent to E; @ E** approaches the singularity in the
direction of E;. By Theorem 21 we can get another vector field Y7 arbitrarily close to Y
that has a homoclinic orbit I that approaches the singularity in the direction of E; for
the future and in the direction of E; for the past (observe that for Y| the dimension of the
central space is the same as for X). O

Corollary 52. Consider a vector field X such that:

o There is a singularity o and the tangent space of the singularity splits into escaping
spaces and central space as follows:

TUM — ESS @Ec‘@Euu.

e The central space splits as E = E1 ® --- @ EJ.

o The chain recurrence class C (o) is not trivial.

o The dimension of E€ is locally constant (i.e. the dimension of E€(o,Y) is constant
forY in a C'-open neighborhood of X).

Then:

o Thereis L1 € A(C(0)) Np(Ey) and Ly € A(C(0)) Nrp(Ey).
o Thereis L € A(C(0)) such that L = (u) where u is a vectorin (E1 ® E;) \ (E1U E}).

Proof. The first item is a direct consequence of Lemma 51.

For the second item, from Lemma 51, we can find a vector field Y having a homoclinic
orbit y that approaches the singularity o tangent to L and it approaches the singularity
for the past, tangent to a direction L; in E;. We may assume that Y is linearizable in a
neighborhood of 0. We now consider a linearized neighborhood of the singularity that
we call Uy, and choose two regular points x, y such that x € Wi (o) Ny and y €
Wl‘gc(cr) N y. Then we can choose x, — x and y, — y such that ¢;,(x,) = y, and
{:(x) : 0 <t <1t,}is tangent to E1 & Ej; note that for n large enough we can suppose
that the segment of orbit from x, to y, is in U, and in the linearized neighborhood, so
actually if L, = (Y (x,)) then

{pp(Ly) 10 <1 <t,} Cp(E1 ® E;\ (E{ U Ep)).

We now perturb our vector field Y to a new vector field X, — Y so that there is a
closed orbit y,, formed by the segment of orbit between x,, and y, in U, and the segment
of orbit of y outside U, (see Figure 5).
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Fig. 5. Perturbation to get yy.

We can now find a p, in y, §Vatisfying pn —> o andif L, = (X,,(p,,))ﬁ3 then the
upper limit of L, is a subset of A(C(0)) (i.e. all limit points of L, are in A(C(0))).
Taking a subsequence if necessary, we may assume that L,, — L where L = (u) and
ue(E1®E)\(E1UE). O

In this section we suppose that the extended linear Poincaré flow over IN\(C (0)) has a
dominated splitting,

N =NE@NE,

where L is a direction in X(C(a)).
We denote by 7y : TyM — N where L € P, M the projection onto the normal
space at a given direction L.

Lemma 53. Let X be a vector field having a singular chain recurrence class C (o). De-
note S = Sing(X) N C (o) and suppose that:

e Everyo € S is hyperbolic.
o The dimension of the central space of o € S is locally constant.
o The extended linear Poincaré flow over A(C (o)) has a dominated splitting,

Ny =NE@NF,
where L is any direction in K(C(U)).
Let L be a direction in A N Py M. Then either
7L(ES) C NLE or wi(ES) C N[
Proof. Since o is hyperbolic we can suppose that the tangent space at o splits as
TeM = E** @ E° ® E",

into the escaping spaces and the central space. We also consider the finest hyperbolic
splitting E€ = E, @ --- ® E.
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Suppose that dim A/ LE = n. If dim ES® > n, then since dim E** = dim 7w (E*%) we
have
NLE C . (E*).

This implies that 7, (ES) C N
Suppose that dim./\/LF = m. If dim E** > m, then since dim E** = dim 7t (E"*) we

have
NF cap(E").

This implies that 77 (ES) C Nf
Suppose now that
dim ESS < dim NF. )
From Corollary 52, for every L we have 7 (E;) C N, LE . Since the singularity is not
isolated, E is a contracting space and E; is expanding.
Suppose for contradiction that there exists a direction L, = (u) such that N, con-
tains some v such that (v) = L, € wp (E1 @ --- @ E;) withv ¢ /\/LEu
We can assume without loss of generality that v € E; and u € E. Then Lemma 48
gives ./\/'5 N E; = (. This implies that dim./\/'LE < dimnp (ES° @ E€) for any L in
A (C(0)), and therefore
dim N} > dim oy (E*") (3)
for any L in 1~\(C(0)).
_On the other hand, we are under the hypotheses of Corollary 52. Thus there is L €
A(C(0)) such that L = (w) where w (E1 & E;) \ (E1 U Ej). Taking E| for E; and E;
for E; we see from Lemma 49 that either

dim E*S > dimNLE or dimNLF < dimm; (E"),

contradicting (2) and (3). This allows us to conclude the proof. We can do this for all
singularities in S. O

Corollary 54. Let X be a vector field having a singular chain recurrence class C (o). Let
S = Sing(X) N C (o), and suppose that:

e All o € S are hyperbolic.
o The dimension of the central space of any singularity o is locally constant.

Then the extended linear Poincaré flow has a dominated splitting over K(C (0)) if and
only if it has a dominated splitting over B(C (o)) of the same dimension.

Proof. Suppose that B(C (o)) has a dominated splitting. Then K(C(o)) has a dominated
splitting of the same dimension, since it is a compact invariant subset.
_Conversely, suppose that there is a dominated splitting of the normal bundle
in A(C(0)),
N, =N E &N F

Then, according to the previous lemma, we have two possibilities:

nL(Ef;)C./\/’LE or nL(Ef,)C./\/'LF.
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The tangent space at o splits as
TO-M — ESS @ EC® Euu7

into the escaping spaces and the central space. We also consider the finest hyperbolic
splittings

ECZEI@"'@Els ESS:ESI@"'GBEsks Euu:Eul@"'@Eur-
Soif rp(ES) C N, E Lemma 48 implies that there exists i such that
Nf =E,;® D E,,, N[f; = EssEBnL(EC)EBEul D DE,i—1.

The same dominated splitting can be defined for any L € B(C(c)). The other case is
analogous.
We can do the same for every singularity in the class. O

Lemma 55. Consider a chain recurrence class C (o) of a singularity o where
TUM — ESS @ EC @ Euu'

Consider the finest Lyapunov splitting E€ = E|1 & - - - @ E,. If the dimension of the central
space is locally constant then

mp(E) N A(C(0)) #

for all the Lyapunov spaces E; of the hyperbolic splitting. Moreover if all the spaces Ej;
are one- or two-dimensional, then

mp(E;) C A(C(0))
foralll <i <L

Proof. Let us consider wrp(E7) in PS. By definition of central space, there is an orbit y;
tangent to E** @ E| that is not tangent to E£**. This implies that 7p(E1) N K(C(a)) = 0.

Consider a small filtrating neighborhood U of C(o). First we perturb X to a vector
field Y’ that is Kupka—-Smale. We can make the perturbation small enough so that the
vector field Y’ satisfies the hypotheses of the lemma as well, since our assumptions are
robust.

By Lemma 21 we perturb Y’ to Y so that y; is a homoclinic connection of the singular-
ity and without changing the property that y| becomes tangent to E** @ E as it approaches
the singularity. Now we perturb Y to Y; breaking the homoclinic connection in the direc-
tion of E» so that it is no longer tangent to E** @ E but it is tangent to E** & E| @ E».
The domination implies that the orbit will become tangent to E; as it approaches o. We
can do this perturbation so that y; remains the same outside the linear neighborhood of
the singularity and such that the «-limit also remains the same (o). Therefore, y; still be-
longs to C(o)y, . Thus there is a direction L, € E such that L, € Ap (Y1) for any U.
We can continue this process forall 1 <i </.
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We conclude that in any small enough C!-neighborhood of X there are vector fields
Y;_1 such that

Apy(Yi—1) Nmp(E;) # 0.

Since the C'-neighborhood of X can be taken arbitrarily small, we have
AX,U)NE; # 0.

Since this is true for any small enough filtrating neighborhood, it follows that
A(C(0)) NE; # 0.

If the central space splits into only one- or two-dimensional spaces, let us take L €
ap(E;) N A where E; is two-dimensional with complex Lyapunov exponents. Since
K(C (0)) is invariant, the orbit of L under ¢]§,, denoted O(L), is such that O(L) C
K(C (0)). Since E; has complex Lyapunov exponents, the direction L is not invariant
and O (L) covers all directions of E; and therefore np(E;) C Ap(X, U). m]

The next corollary implies Theorem 2:

Corollary 56. Let X be a vector field having a singular chain recurrence class C (o). Let
S = Sing(X) N C(o) and suppose that:

e Every o € S is hyperbolic.
o The dimension of the central space of o € S is locally constant, and the finest Lyapunov
splitting is into one- or two-dimensional spaces.

UK(C(U)) has a hyperbolic structure on the normal bundle N = N1 ® --- @ N; ®
-« @ N, for the extended linear Poincaré flow, then B(C (o)) has the same hyperbolic
structure.

Proof. From Corollary 54, the dominated splitting in A extends to B(X,U). So let us
consider the space N; and the number d; such that

J(h - (Whlp)

is a uniform contraction or expansion for any subspace D; C N of dimension d; over the
orbits in A. We suppose, without loss of generality, that it is a contraction.

Since B(C(0)) and A coincide on the directions that are not over the singularities,
we only need to check that for every o and every orbit of an L € B(C(o0)) NP, M the
Jacobian J (h; . (lff/tv| p;)) contracts uniformly for any subspace D; C E; of dimension d;.

The tangent space of o splits as

TOM — ESS @ EC @ Euu’

into the escaping spaces and the central space. We also consider the finest Lyapunov
splitting E€ = E{ @ --- & E;. From Lemma 55 we know that 7wp(E;) C A for every
iefl,... 1}
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Then we consider L € B(X, U) and a vector u in the direction of L. In coordinates
of the central space, u = (u1,...,u;,...,uj,...,u;). We suppose that uj, is the first
non-zero coordinate of u and u; is the last. Domination implies that for ¢ sufficiently
negatively large, ¢[’P,(L) is in a small cone around 7p(E}) and remains there thereafter.
For the future, ¢ﬁD(L) is in a small cone around rp(E;) and remains there thereafter. Since
the contraction and expansion rates extend to the cones around rp(E;) and wp(Ej), and
the orbit is outside these cones only for a finite time, we get our conclusion.

We are now ready to define our notion of multisingular hyperbolicity.

8. Multisingular hyperbolicity

8.1. Definition of multisingular hyperbolicity

Definition 57. Let X be a C! vector field on a compact manifold and let U be a compact
region. One says that X is multisingular hyperbolic on U if:

(1) Every singularity of X in U is hyperbolic. We denote S = Sing(X) N U.

(2) The restriction of the extended linear Poincaré flow {I/JJ’\/} to the extended maximal
invariant set B(X, U) admits a dominated splitting N7, = E; @ Ff.

(3) There is a subset Sg C S such that the reparametrized cocycle h’wa\/ is uniformly
contracted when restricted to the bundles E over B(X, U), where hg = ]_[U €Sk he.
(If Sg is empty, one may assume that hg = 1.)

(4) There is a subset Sg C S such that the reparametrized cocycle h’Fl//j\/ is uniformly
expanded in restriction to the bundles F over B(X, U), where hr = [] hy. (If
SF is empty, one may assume that hp = 1.)

GESF

Remark 58. The subsets Sg and Sg are not necessarily uniquely defined, leading to
several notions of multisingular hyperbolicity. We can also slightly modify this definition
allowing the product of powers of the /. In that case &g would be of the form

= [ o)==

o€eSEg

for some ag (o) € R.

Theorem 7. Let X be a C' vector field on a compact manifold M and let U C M be a
compact region. Assume that X is multisingular hyperbolic on U. Then X is a star flow
on U, that is, there is a C'-neighborhood U of X such that every periodic orbit contained
in U of a vector field Y € U is hyperbolic. Furthermore every Y € U is multisingular
hyperbolic in U.

Proof. Recall that the extended maximal invariant set B(Y, U) varies upper semicon-
tinuously with ¥ for the C'-topology. Therefore, according to Proposition 24 there is
a Cl—neighborhood Up of X such that, for every Y € Uy, the extended linear Poincaré
flow l/f/t\/’y admits a dominated splitting E & F over B(Y, U), whose dimensions are
independent of Y and whose bundles vary continuously with Y.
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Let Sg and SF be the sets of singular points of X in the definition of singular hyperbol-
icity. Lemma 46 allows us to choose two families of cocycles h%’y and h’RY depending
continuously on Y in a small neighborhood ¢/ of X and which belong to the product of
the cohomology classes of cocycles associated to the singularities in Sg and Sr, respec-
tively. Thus the linear cocycle

Wy ¥ yley over B(Y,U)

varies continuously with Y in U1, and is uniformly contracted for X. Thus, it is uniformly
contracted for Y in a C'-neighborhood of X.
One shows in the same way that

Ry ¥ ylry over BY,U)

is uniformly expanded for Y in a small neighborhood of X.

We have just proved that there is a neighborhood ¢/ of X such that Y € {/ is multisin-
gular hyperbolic in U.

Consider a (regular) periodic orbit y of Y and let 7 be its period. Just by construction
of the cocycles i and & f, one can check that

hE(y(0)) = h(y(0) = 1.

One deduces that the linear Poincaré flow is uniformly hyperbolic along y so that y is
hyperbolic, ending the proof. O

8.2. Multisingular hyperbolic structures over a singular point

The aim of this subsection is to prove

Proposition 59. Let X be a C' vector field on a compact manifold and U C M a com-
pact region. Assume that X is multisingular hyperbolic in U and let i denote the dimen-
sion of the stable bundle of the reparametrized extended linear Poincaré flow. Let o be a
singularity of X. Then either

e at least one entire invariant (stable or unstable) manifold of o is escaping from U, or
e o is Lorenz-like. More precisely, either

— the stable index is i + 1, the central space Eg y contains exactly one stable direction
E} (dim E] = 1), and E{ ® E"(0) is sectionally dissipative, in which case o € Sp;
or

— the stable index is i, the central space E;U contains exactly one unstable direction
E{ (dim EY = 1), and E* (o) ® EY is sectionally contracting, in which case o € Sg.

Note that in the first case of this proposition the class of the singularity in U must be
trivial. If it were not, the regular orbits of the class that accumulate on o, entering U,
would accumulate on an orbit of the stable manifold. Therefore the stable manifold could
not be completely escaping. The same reasoning holds for the unstable manifold.
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Let E; ©_ --- @ E] ©_ E{ ©_ --- ®_ EJ be the finest dominated splitting of the
flow over o. For the proof, we will assume in the rest of the section that the class of o is
not trivial, and therefore we are not in the first case of the proposition. In other words, we
assume that there are a, b > 0 such that

ov=E, ®. - ®_ E|®_E{®_---O_Ej.

We assume that X is multisingular hyperbolic of s-index i and we denote by E @ _ F
the corresponding dominated splitting of the extended linear Poincaré flow over B(X, U).
The following lemma is a direct consequence of Lemma 53:

Lemma 60. Let X be a C' vector field on a compact manifold and U C M a compact
region. Assume that X is multisingular hyperbolic in U and let i denote the dimension
of the stable bundle of the reparametrized extended linear Poincaré flow. Let o be a
singularity of X. Then with the notation above, either

e i=dmE <dimE; ®---® E,  (i.e. the dimension of E is smaller than or equal to
the dimension of the biggest stable escaping space); or

e dmM —i—1=dimF < dim E? DD EZ_H (i.e. the dimension of F is smaller
than or equal to the dimension of the biggest unstable escaping space).

According to Lemma 60 we now assume that i < dim E ,i ®---OF ; i (the other case is
analogous, with X replaced by —X).

Lemma 61. With the hypotheses above, for every L € PZ’ y the projection of E;U on
the normal space N is contained in F(L).

Proof. This is because the projection of E} @ --- @ E; 41 has dimension at least the
dimension i of E and hence contains E(L). Thus the projection of EY ;; is transverse to E.
As the projection of EJ ;; on N, defines a yf~invariant bundle over the ¢/ —-invariant

compact set IP¢ ,, one concludes that the projection is contained in F. O

As a consequence, the bundle F is not uniformly expanded on ]P’;’U for the extended
linear Poincaré flow. As it is expanded by the reparametrized flow, this implies o € Sf.

Consider now L € EJ. Then ‘ﬂ/l\f restricted to the projection of E; v on Ny consists
in multiplying the natural action of the derivative by the exponential contraction along L.
As it is included in F, multisingular hyperbolicity implies that it is a uniform expansion;
this means that:

e L is the unique contracting direction in E; Us in other words, a = 1 and dim ES —
dimE} = 1.

o Contraction along E? is less than expansion in E;’, Jj > 1; in other words E_ ;; is
sectionally expanding.

To finish the proof of Proposition 59, it remains to check the s-index of o: for L € E}
one finds that F'(L) is isomorphic to E{ @ --- @ E; so that the s-index of o is i + 1,
ending the proof.
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9. Multisingular hyperbolicity is a necessary condition for star flows: Proof of
Theorem 4

The aim of this section is to prove

Lemma 62. Let X be a generic star vector field on M. Consider a chain recurrence
class C of X. Then there is a filtrating neighborhood U of C such that the extended
maximal invariant set B(X, U) is multisingular hyperbolic.

Notice that, as the multisingluar hyperbolicity of B(X, U) is a robust property, Lemma 62
implies Theorem 3.

As already mentioned, the proof of Lemma 62 consists essentially in recovering the
results in [SGW] and adjusting a few of them to the new setting. So we start by recalling
several of the results from or used in [SGW].

We begin by stating the following properties of star flows:

Lemma 63 ([L], [Ma2]). For any star vector field X on a closed manifold M, there is
a C'-neighborhood U of X and numbers n > 0 and T > 0 such that, for any periodic
orbit y of a vector field Y € U and any integer m > 0 the following holds: Let N =
Ng @& N, be the stable-unstable splitting of the normal bundle N for the linear Poincaré
flow Y. Then:

e Domination: Foreveryx € y andt > T, one has
Y
Il _ o,
min(y; [n,)

e Uniform hyperbolicity at the period: If the period m(y) is larger than T then, for every
X €y, one has:

mr(y)/T]-1

[T 1w in@renn<e™ ™,

i=0
[mm(y)/T1-1
[[ min@w/) Iy, @) =)
i=0
Here min(A) is the mini-norm of A, i.e., min(A) = [|A~"||~L.

Now we need some generic properties for flows:

Lemma 64 ([C], [BGY]). There is a C'-dense G subset G of the C'-open set of star
Sflows of M such that, for every X € G, one has:

e Every critical element (zero or periodic orbit) of X is hyperbolic and therefore admits
a well defined continuation in a C'-neighborhood of X.

e For every critical element p of X, the chain recurrence class C(p) is continuous in X
in the Hausdorff topology.
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e If p and q are two critical elements of X such that C(p) = C(q) then there is a C'-
neighborhood U of X such that the chain recurrence classes of p and q still coincide
foreveryY e U.

e For any non-trivial chain recurrence class C of X, there exists a sequence of periodic
orbits Q,, such that Q,, tends to C in the Hausdorff topology.

Lemma 65 ([SGW, Lemma 4.2]). Let X be a star flow in M and o € Sing(X). Assume
that the Lyapunov exponents of ¢;(o) are

AM S-S A1 S A <0< A1 SAsgr <00 S Ag.

If the chain recurrence class C (o) is non-trivial, then:

Either Ag_1 # As O Agy1 7# Ag42.

If As—1 = g, then g + Ag+1 < 0.

If As+1 = As42, As + As41 > 0.

If hs—1 # &g and hsq1 # hsq2, then hg + hgy1 # 0.

We say that a singularity o satisfying the conditions of the previous lemma is Lorenz-like
of index s, and we define the saddle value of o as

sv(o) = Ay + Agy1.
Consider a Lorenz-like singularity o.

e If sv(o) > 0, we consider the splitting
TeM =G & G

where (using the notations of Lemma 65) the space G° corresponds to the Lyapunov
exponents A1 to A,—1, and G* corresponds to Ay, ..., Ag.
e If sv(o) < 0, we consider the splitting

T,M = G & G"

where the space G&* corresponds to A1 to Ag41, and G4* corresponds to the Lyapunov
exponents Ag42, ..., Ag.

Corollary 66. Let X be a vector field, o a Lorenz-like singularity of X, and hy : Ax xR
— (0, +00) a cocycle in the cohomology class [hy] defined in Section 6.
(1) If Ind(oc) = s + 1 and sv(c) > 0, then the restriction of Y to PGS admits a
dominated splitting N;, = E, @ Fy withdim E;, = s for L € PGS*. Furthermore:
e FE is uniformly contracting for Yy s.
o F is uniformly expanding for the reparametrized extended linear Poincaré flow
he - Y-
(2) IfInd(c) = s and sv(o) < O, then the restriction of Yar to PGE* admits a dominated
splitting Ni, = E; @ Fi withdim E;, = s for L € PG$". Furthermore:
o F is uniformly expanding for s
e E is uniformly contracting for the reparametrized extended linear Poincaré flow
he - Y.
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Proof. We only consider the first case Ind(c) = s + 1 and sv(o) > O0; the other is
analogous and can be deduced by reversing the time.

We consider the restriction of ¥ s to PGS, that is, for points L € Ay corresponding
to lines contained in G¢". Therefore the normal space Ny can be identified, up to a pro-
jection which is uniformly bounded, to the direct sum of G3° with the normal space of L
in G¢".

Now we fix E; = G¥° and F is the normal space of L in G§*. As G5¥ and G&" are
invariant under the derivative of the flow ¢,, one sees that the splitting Ny = E; & Fp is
invariant under the extended linear Poincaré flow over PG¢". Let us first prove that this
splitting is dominated:

By Lemma 65 if we choose a unit vector v in E; we know that for any ¢ > 0 one has

Wi ) < Ke™1.

Now let us choose a unit vector u in F, and consider w; = l/fj\/(u) € F%(L). Then
for any ¢ > 0, one has
1D~ (Il < K'e" 4w, .

The extended linear Poincaré flow is obtained by projecting the image by the derivative of
the flow on the normal bundle. Since the projection on the normal space does not increase
the norm of the vectors, one gets

¥ ol < K'e' T |,

in other words
K'e!Hs),

A @l —

Putting together these inequalities one gets

t
WAL _ 0730,
1Vl

This provides the domination as A;_1 — Ay < 0.

Notice that E; = G3’ is uniformly contracted by the extended linear Poincaré flow
V7, because it coincides, on G3* and for L € PGS, with the differential of the flow ¢'.
To finish the proof, it remains to show that the reparametrized extended linear Poincaré
flow hy - YA expands uniformly the vectors in Fy, for L € PGS".

Notice that, over the whole projective space PP, the cocycle A (L) is the rate of
expansion of the derivative of ¢, in the direction of L. Therefore h, - ¥ s is defined as
follows: Consider a line D C Np. Then the expansion rate of the restriction of Ay - Yps
to D is the expansion rate of the area on the plane spanned by L and D by the derivative
of ¢;.

The hypothesis A* 4+ A1 > 0 implies that the derivative of ¢, expands uniformly the
area on the planes contained in G¢*, concluding the proof. O
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Lemma 67 ([SGW, Lemma 4.5 and Theorem 5.7]). Let X be a C! generic star vector
field and let o € Sing(X). Then there is a filtrating neighborhood U of C (o) such that,
for any two periodic points p,q € U,

Ind(p) = Ind(q).
Furthermore, for any singularity ¢’ in U,

/ Ind(q) if sv(o’) <0,

Ind(c") = : ,
Ind(g) +1 if sv(c’) > 0.

Lemma 68. There is a dense Gs set G in the set of star flows on M with the following
properties: Let X be in G, and let C be a chain recurrence class of X. Then there is a
(small) filtrating neighborhood U of C such that the lifted maximal invariant set A(X, U)
of X in U has a dominated splitting N' = E @ F for the extended linear Poincaré flow
such that E extends the stable bundle for every periodic orbit y contained in U.

Proof. According to Lemma 67, the class C admits a filtrating neighborhood U in which
the periodic orbits are hyperbolic and with the same index. On the other hand, according
to Lemma 64, every chain recurrence class in U is accumulated by periodic orbits. Since
X is a star flow, Lemma 63 asserts that the normal bundle over the union of these periodic
orbits admits a dominated splitting for the linear Poincaré flow, corresponding to their
stable/unstable splitting. It follows that the union of the corresponding orbits in the lifted
maximal invariant set has a dominated splitting for . Since any dominated splitting
defined on an invariant set extends to the closure of this set, we have a dominated splitting
on the closure of the lifted periodic orbits, and hence on the whole A (X, U). O

Lemma 68 asserts that the lifted maximal invariant set A (X, U) admits a dominated split-
ting. What we need now is to extend this dominated splitting to the extended maximal
invariant set

BX.Uy=AXx.0)u | J P .
o;eSing(X)NU
We need the following theorem to have more information on the projective center
spaces ]P’gi U

Lemma 69 ([SGW, Lemma4.7]). Let X be a star flow in M and o be a singularity of X
such that C (o) is non-trivial.
e If sv(o) > 0, then
W*(0) N C(o) = {o},
where W** (o) is the strong stable manifold associated to the space G?.
e If sv(o) <O, then
W (@) N C(o) = {o},

where W"" (o) is the strong unstable manifold associated to the space Gi*.
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Remark 70. Consider a vector field X and a hyperbolic singularity o of X. Assume
that W¥ (o) N C(0) = {0}, where C(0) is the chain recurrence class of o. Then there
is a filtrating neighborhood U of C(o) on which the strong stable manifold W*¥ (o) is
escaping from U (see the definition in Section 5.2).

Proof. Each orbitin W*% (o) \ {o'} goes out of some filtrating neighborhood of C (o) and
the nearby orbits exit the same filtrating neighborhood. Notice that the space of orbits in
W95 (o) \ {0} is compact, so that we can consider a finite cover of it by open sets for which
the corresponding orbits exit the same filtrating neighborhood of C (o). The announced
filtrating neighborhood is the intersection of these finitely many filtrating neighborhoods.

O

Remark 70 allows us to consider the escaping strong stable manifold and the strong un-
stable manifold of a singularity o without referring to a specific filtrating neighborhood
U of the class C(o0): these notions do not depend on U small enough. Hence the notion
of the center space E. = E(o, U) is also independent of U for U small enough. Thus
we will denote

B =B,

for a sufficiently small neighborhood U of the chain recurrence class C (o).

Remark 71. Lemma 69 together with Remark 70 implies that:

e Ifsv(o) > 0, then ES C G.
e Ifsv(o) <0, then E C G*.

Lemma 72. Let X be a generic star vector field on M. Consider a chain recurrence
class C of X. Then there is a neighborhood U of C such that the extended maximal
invariant set B(X, U) has a dominated splitting for the extended linear Poincaré flow,

Npxvy=E®<F,

which extends the stable-unstable bundle defined on the lifted maximal invariant set
AX, U).

Proof. The case where C is not singular is already done. According to Lemma 67 there
exist an integer s and a neighborhood U of C such that every periodic orbit in U has index
s and every singular point o in U is Lorenz-like, and either its index is s and sv(o) < O,
or o hasindex s + 1 and sv(o) > 0.

According to Remark 71,

B(X,U) Cc A(X,U)U U PGS U U PG

sv(o;)<0 sv(o;j)>0

By Corollary 66 and Lemma 68 each of these sets admits a dominated splitting E @ F
for the extended linear Poincaré flow ¥z with dim E = s.

The uniqueness of dominated splittings for prescribed dimensions implies that these
dominated splittings coincide on the intersections, concluding the proof. O
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We already proved the existence of a dominated splitting £ @ F, with dim E = s, for
the extended linear Poincaré flow over B(X, U) for a small filtrating neighborhood of C,
where s is the index of any periodic orbit in U. It remains to show that the extended linear
Poincaré flow admits a reparametrization which contracts uniformly the bundle £ and a
reparametrization which expands the bundle F'.

Lemma 65 divides the set of singularities into two kinds: those with positive saddle
value and those with negative saddle value. We denote

Sg = {x € Sing(X) N U : sv(x) < 0},
Sr = {x € Sing(X)NU :sv(x) > 0}.

Recall that Section 6 associated to every singular point o acocycle iy : Ax xR — R,
whose cohomology class is well defined. Define

hg = l_[ha and hp = l_[ha.

O‘ESE O‘ESF

Now Lemma 62, and therefore Theorem 3, is a direct consequence of the next lemma:

Lemma 73. Let X be a generic star vector field on M. Consider a chain recurrence
class C of X. Then there is a neighborhood U of C such that the extended maximal
invariant set B(X, U) is such that the normal space has a dominated splitting Np(x vy =
E @ F such that the space E (resp. F) is uniformly contracting (resp. expanding) for
the reparametrized extended linear Poincaré flow hy -\, (resp. hy - rj,).

The proof uses the following theorem by Gan, Shi and Wen, which describes the ergodic
measures for a star flow. Given a C! vector field X, an ergodic measure p for the flow
@' is said to be hyperbolic if either u is supported on a hyperbolic singularity, or u has
exactly one zero Lyapunov exponent, whose invariant subspace is spanned by X.

Theorem 8 ([SGW, Lemma 5.6]). Let X be a star flow. Any invariant ergodic measure
w of the flow @' is a hyperbolic measure. Moreover, if | is not the atomic measure on any
singularity, then supp(i) N H(P) # 0, where P is a periodic orbit with the index of |,
i.e., the number of negative Lyapunov exponents of (1 (with multiplicity), and H(P) is the
homoclinic class of P.

Proof of Lemma 73. Towards a contradiction, assume that the bundle E is uniformly
contracting for hg - wjt\/ over B(X, U) for no filtrating neighborhood U of the class C.
One deduces the following claim:

Claim. Ler C C A(X) be the closure in PM of the lift of C \ Sing(X) and let S =
Sing(X) N C. Then, for every T > 0, there exists an ergodic invariant measure . whose

support is contained in
Jriuc

seS
such that
/1og Ihg - vilell du(x) = 0.
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Proof. For each U, there exists an ergodic measure pr whose support is contained in
B(X, U) such that

/log IhE - ¥ ilell dur (x) = 0.

But a priori the class C need not be a maximal invariant set in U. We fix this by observing
that

Jreuc cBx. )

ses

for any U as small as we want and actually we can choose a sequence {U, },,en of neigh-
borhoods such that U,, — C and therefore

(JPiuC =) Bx. U.

seS neN

This defines a sequence % — ,u(% of measures such that

flog WLy Ll dilh (o) = 0,

and with supports converging to (¢ P§ U C. The resulting limit measure ,u(}, whose

support is contained in | J, ¢ P$ U C, might not be ergodic but it is invariant. We can
decompose it as a sum of ergodic measures, and so if

flog AL -y il el dud(x) > 0,

there must exist an ergodic measure 7 in the ergodic decomposition of ,u(% such that
T T
/log lhg - Yalelldur(x) =0,

and the support of 7 is contained in | J, g P§ U C. O

Recall that for generic star flows, every chain recurrence class in B(X, U) is the Hausdorff
limit of periodic orbits of the same index and which satisfy the conclusion of Lemma 63.
Let n > O and Ty > 0 be given by Lemma 63. We consider an ergodic measure 4 = ur
for some T > Tj.

Claim. Let v,, be a measure supported on a periodic orbit y, with period w(y,) > T.
Then [log hL dv,(x) = 0.

o, . T
Proof. By definition of h,

logh =log 1_[ ||h§i||,

g €SE
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so it suffices to prove the claim for a given h; . For every x in y, by the cocycle condition
in Lemma 44 we have

Lmm()/T]1-1
[T rh@freo) =nm M= ),
i=0

The norm of the vector field restricted to y is bounded, and therefore h},:””(”)/ =1y is

bounded for m € N going to infinity. Then this is also true for hg. Since vy, is an ergodic
measure, we have

1 e/ T1-1

im — Y loghk(gl ()

m—o00 m L
i=0

Lmm(y)/T]-1

mli_)moo % log< l—[ hE(¢,»YT(x)))

i=0

/ log h dv, (x)

1 -
lim — log(hy"™ "7 () = 0. o
m—o0 m

Claim. There is a singular point o; such that p is supported on g .

Proof. Suppose that I‘L(Uai esing(x) P5;) = 0. Then p projects to an ergodic measure v
on M supported on the class C and such that it is the singularities, for which

/log ke - Wirlelldv(x) = 0.

(Recall that xpT is the linear Poincaré flow, and hg can be defined as a function of x € M
instead of a function of L € PM outside an arbitrarily small neighborhood of the singu-
larities.)

However, as X is generic, the ergodic closing lemma implies that v is the weak-* limit
of measures v, supported on periodic orbits y;,, which converge for the Hausdorff distance
to the support of v. Therefore, for n large enough, the y;, are contained in a small filtrating
neighborhood of C, hence

/log IBE - T gl dvy(x) < —n.

The map log ||h£ - T|g| is not continuous. Nevertheless, it is uniformly bounded
and the unique discontinuity points are the singularities of X. These singularities have (by
assumption) weight O for v and thus admit neighborhoods with arbitrarily small weight.
Outside such a neighborhood the map is continuous. One deduces that

/log Ik -y Elldvix) = lim/log IhEe - w7 |El dva(x)

and therefore it is strictly negative, contradicting the assumption. This contradiction
proves the claim. O
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On the other hand, Corollary 66 asserts that:

e If g; is such that sv(o;) < 0, then 0; € Sg and the restriction of ¥\ to IP’Gf,f is such
that 4 g coincides with i, and i g - ¥ ar uniformly contracts the bundle E.

e Ifsv(o;) > 0, then 0; ¢ Sg and the restriction of Y Ar to }P’Gf,’i‘ uniformly contracts E.
Note that in this case htE is constant equal to 1.

Recall that PG is contained in PGg? (resp. PGgY) if sv(o;) < O (resp. sv(o;) > 0). One
deduces that there are 71 > 0 and ¢ > 0 such that

logllhg - Yirlg, Il < —6. YL EPS andT > Ti.

Therefore the measures pr, for T > max{7y, 71} cannot be supported on IP’;I_ , leading
to a contradiction. The expansion for F is proved analogously.

This finishes the proof of Lemma 73 and therefore the proof of Lemma 62 and Theo-
rem 3. O

10. A multisingular hyperbolic set in R3

In this section we will build a chain recurrence class in M? containing two singularities of
different indices that will be multisingular hyperbolic. However, this will not be a robust
class, and the singularities will not be robustly related. Other examples of this kind are in
[BaMo]. A robust example on a 5-dimensional manifold is given in [dL1]

Theorem 9. There exists a vector field X on S* x S' with an isolated chain recurrence
class A such that:

o There are two singularities in A. They are Lorenz-like and of different indices.

o There is a cycle between the singularities. The cycle and the singularities are the only
orbits in A.

o The set A is multisingular hyperbolic.

To begin the proof, let us construct a vector field X that we will later show to have the
properties of Theorem 9.
Consider a vector field in S? having:

e A source fj such that the basin of repulsion of fj is a disc bounded by a cycle I" formed
by the unstable manifold of a saddle sy and a sink oy.

e A source «g in the other component limited by I'.

e We require that the tangent at oy splits into two spaces, one having a stronger contrac-
tion than the other. The strongest direction is tangent to I" at oy.

Note that the unstable manifold of sq is formed by two orbits. These orbits have their
w-limit in o, and as they approach oy, they become tangent to the weak stable direction
(see Figure 6).

Now we consider S% embedded in S3, and we define a vector field X on $3 that is
normally hyperbolic on §2, in fact we have S? times a strong expansion, and two extra
sinks that we call wp and Py completing the dynamics (see Figure 7).
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Fig. 6. The vector field in s2.

wo Po

Fig. 7. 52 normally repelling in 53,

Note that o is now a saddle. We require that the weaker contraction at o is weaker
than the expansion. So oy is Lorenz-like.

Now we remove a neighborhood of fj and Py. The resulting manifold is diffeomor-
phic to $2 x [—1, 1] and the vector field X will be pointing outwards on Ay = $2 % {1}
(corresponding to removing a neighborhood of Pg) and entering on By = §2 x {—1}
(corresponding to removing a neighborhood of fj) (see Figure 8).

wo

The vector field X
Fig. 8. Removing a neighborhood of f{ and Py.
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Now we consider another copy of $2 x [—1, 1] with a vector field X that is the time
reversal of X¢. Therefore X has a saddle called o7 that has a strong expansion, a weaker
expansion and a contraction, and is Lorenz-like. It also has a sink called «, a source
called w;, and a saddle called s;.

The vector field X is entering on A; = S? x {1} and pointing outwards on B| =
§2 x {—1}.

We can now paste X| and X together along their boundaries (A9 with A; and the
other two). Since both vector fields are transversal to the boundaries we can obtain a C'!
vector field X in the resulting manifold that is diffeomorphic to S x S'.

We do not paste any of the boundaries using the identity. We first describe the map
gluing Ag with A;. We paste them by a rotation so that

(W(ag) N Ap)¢ and W' (sp) N Ag

are mapped to
W (1) N (Ay).

We also require that W* (o) N Ag is mapped to W¥ (o) N Ay, We will later require an
extra condition on this gluing map, which is a generic condition, and which will guarantee
multisingular hyperbolicity.

Fig. 9. Pasting $2 x {1} and 5% x {1}.

To glue By to By, let us first observe that these boundaries were formed by removing
a neighborhood of fj and f7. Then by construction W*(og) N By is a circle that we will
call Cp. We can also define the corresponding C;. Note that all points in Cp, except one,
are in W*(oyp), while there is one point / in Cy that is in W¥(sg). We paste By and B,
mapping Cy so as to intersect C; transversally at points of W¥(op) and W*(o7).

Note that the resulting vector field X has a cycle between two Lorenz-like singularities
op and o7.
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Fig. 10. Pasting S x {—1} and §2 x {—1}.

Lemma 74. The vector field X defined above is such that the cycle and the singularities
are the only chain recurrent points.

Proof. e All the recurrent orbits of X in S are the singularities. Once we remove the
neighborhoods of the two singularities we obtain the manifold with boundary S? x
[—1, 1]. The the only other orbits of the vector field X (that results from pasting X
and X) that may be recurrent have to intersect the boundaries.

e The points in Ag that are in W (o) U W (o) are wandering since they are mapped
to the stable manifold of the sink ¢ .

e The points in By N W*(«g) are wandering.

As a conclusion, the only point in Ag whose orbit could be recurrent is the one in
By N W (0y).

Let us now look at the points in By. There is a circle Cy, corresponding to W* (a9) N By
that divides By into two components. One of these components is the basin of the sink wg
and the other is what used to be the basin of Pj. So we have the following possibilities:

e The points that are in the basin of the sink wq are not chain recurrent.

e The points that are in what used to be the basin of Py are either mapped into the basin
of w; or sent to what used to be the basin of P;. Note that these points cross Ag for the
past, and since they are not in the stable manifold of o1, they are wandering.

e Some points in Cy will be mapped to the basin of w1, others to what used to be the basin
of P;, and others to C;. In the first two cases those points are wandering.

To sum up:

e The only recurrent orbits that cross By are in the intersection of Co with Cj.
e The only recurrent orbits that cross Ag are in the intersection of W*(og) with W* (o).
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e The only recurrent orbits that do not cross the boundaries of S§2 x[—1,1] are singular-
ities.

This proves the lemma. O

For the Lorenz singularity op of X which is a positive saddle and such that 75, M
E* @ E* @ E"", we define B;, C PM as

By, = p(E* ® E"™).

For the Lorenz singularity o7 of X which is a negative saddle and such that 7, M
E* @ E" @ E*", we define B,, C PM as

By, = p(E* @& E").

Let a, b and ¢ be points that are one in each of the three regular orbits forming the cycle
between the two singularities of X; assume « is the one such that the «-limit is op. We
define L, = Sx(a), L, = Sx(b) and L. = Sx(c). We also denote by O(L,), O(Lp) and
O(L,) the orbits of Lg, L and L. under ¢}.

Proposition 75. Suppose that X is a vector field defined as above. Then there exist an
open set U containing the orbits of a, b and c and the saddles oy and o1 such that

B(U, X) = Byy U By, UO(Ly) UO(Lp) UO(Ly).

Proof. The two orbits of the strong stable manifold of oy go by construction to o for the
past. This implies that the strong stable manifold is escaping. The fact that there is a cycle
tells us that there are no other escaping directions, therefore the center space is formed by
the weak stable and the unstable spaces. By definition By, = P; . Analogously we see
that By, = PP, . Since the cycle formed by the orbits of a, b and ¢ and the saddles o¢ and
o1 is an isolated chain recurrence class, we can choose U small enough so that this class
is the maximal invariant set in U. This proves our proposition. O

Lemma 76. We can choose a vector field X defined as above in such a way that it is
multisingular hyperbolic in U.

Proof. The reparametrized linear Poincaré flow is hyperbolic when restricted to the
bundle over B, U B,, and of index 1. We consider the set B, U By, U O(L,).

The strong stable space at oy is the stable space for the reparametrized linear Poincaré
flow. There is a well defined stable space in the linearized neighborhood of ¢y, and since
the stable space is invariant for the future, there is a one-dimensional stable flag that
extends along the orbit of a. We can reason analogously with the strong unstable manifold
of o1 and conclude that there is an unstable flag extending through the orbit of a. We can
choose the gluing maps of §? x {—1} to $? x {—1} so that the stable and unstable flags
in the orbit of a intersect transversally. This is because this condition is open and dense
in the set of possible gluing maps with the properties mentioned above. Therefore the set
By, U By, U O(L,) is hyperbolic for the reparametrized linear Poincaré flow.
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Analogously we prove that B, U B, U O(L,)U O(Lp)U O(L.) is hyperbolic for the
reparametrized linear Poincaré flow, and since from Proposition 75 there exists U such
that

By, UBs;, UO(Ly)UO(Lp)UO(L:) = B(U, X),
it follows that X is multisingular hyperbolic in U. O

The example in [BaMo] consists of two singular (negatively and positively) hyperbolic
sets H_ and Hy of different indices, and wandering orbits going from one to the other.
Since they are singular hyperbolic, H_ and H, are multisingular hyperbolic sets of
the same index. Moreover, the stable and unstable flags (for the reparametrized linear
Poincaré flow) along the orbits joining H_ and H. intersect transversally. This is also
true for H_.

With all these ingredients we can prove (in a similar way to what we just did with the
simpler example above) that the chain recurrence class containing H_ and H in [BaMo]
is multisingular hyperbolic, while it was shown by the authors that it is not singular hy-
perbolic.
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