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Abstract. A vector field X is called a star flow if every periodic orbit of any vector field C1-close
to X is hyperbolic. It is known that the chain recurrence classes of a generic star flow X on a 3-
or 4-manifold are either hyperbolic, or singular hyperbolic (see [MPP] for 3-manifolds and [LGW]
for 4-manifolds).

As it is defined, the notion of singular hyperbolicity forces the singularities in the same class
to have the same index. However in higher dimensions (i.e. ≥ 5), [dL1] shows that singularities of
different indices may be robustly in the same chain recurrence class of a star flow. Therefore the
usual notion of singular hyperbolicity is not enough for characterizing the star flows.

We present a form of hyperbolicity (called multisingular hyperbolicity) which makes the hyper-
bolic structure of regular orbits compatible with the one of singularities even if they have different
indices. We show that multisingular hyperbolicity implies that the flow is star, and conversely we
prove that there is a C1-open and dense subset of the open set of star flows which are multisingular
hyperbolic.

More generally, for most of the hyperbolic structures (dominated splitting, partial hyperbolicity
etc.) well defined on regular orbits, we propose a way of generalizing it to a compact set containing
singular points.
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1. Introduction

1.1. General setting and historical presentation

Considering the infinite diversity of dynamical behaviors, it is natural to have a special in-
terest in robust properties, that is, properties that cannot be broken by small perturbations
of the system; in other words, a dynamical property is robust if it holds on a (non-empty)
open set of diffeomorphisms or flows.

One important starting point in dynamical systems has been the characterization of
structural stability (i.e. systems whose topological dynamics is unchanged under small
perturbations) by hyperbolicity (i.e. a global structure expressed in terms of transversality
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and of uniform expansion and contraction). This characterization, first stated in the sta-
bility conjecture [PaSm], was proven for diffeomorphisms in the C1 topology by Robin
and Robinson [R1], [R2] (hyperbolic systems are structurally stable) and Mañé [Ma2]
(structurally stable systems are hyperbolic). The equivalent result for flows (also for the
C1-topology) leads to extra difficulties and was proven in [H2].

We can see in this case how the robustness of the properties is related to the structure
in the tangent space: in this case, a very strong robust property is related to a very strong
uniform structure. However, hyperbolic systems are not dense in the set of diffeomor-
phisms or flows; instability and non-hyperbolicity may be robust. In order to describe a
larger set of systems, one can consider less rigid robust properties, and try to characterize
them by (weaker) structures that limit the effect of small perturbations.

In this spirit there are several results for diffeomorphisms in the C1-topology:

1. A system is robustly transitive if every C1-close system is transitive. [Ma] proves that
robustly transitive surface diffeomorphisms are globally hyperbolic (i.e. are Anosov
diffeomorphisms). This is no longer true in higher dimensions (see examples in [Sh,
Ma1]). [DPU, BDP] show that robustly transitive diffeomorphisms admit a structure
called dominated splitting, and their finest dominated splitting is volume partially hy-
perbolic. This result extends to robustly transitive sets, and to robustly chain recurrent
sets.

2. One says that a system is star if all periodic orbits are hyperbolic in a robust fashion:
every periodic orbit of every C1-close system is hyperbolic. For a diffeomorphism, to
be star is equivalent to be hyperbolic (an important step is done in [Ma] and has been
completed in [H1]).

Now, what is the situation for flows? The dynamics of flows seems to be closely re-
lated to the dynamics of diffeomorphisms. Even more, the dynamics of vector fields in
dimension n looks like that of diffeomorphisms in dimension n − 1. Several results can
be translated from one setting to the other, for instance by considering suspension. For
example, [D] proved that robustly transitive flows on 3-manifolds are Anosov flows, gen-
eralizing Mañé’s result for surface diffeomorphisms. More generally, in any dimension,
if a vector field is robustly transitive (or chain recurrent) then [Vi] shows that it is non-
singular, and its linear Poincaré flow (that is, the natural action of the differential on the
normal bundle) admits a dominated splitting which is volume partially hyperbolic. On
the other hand, if one considers the suspension of a robustly transitive diffeomorphism
without a partially hyperbolic splitting (as built in [BV]) one gets a robustly transitive
vector field X whose flow {φt } does not admit any dominated splitting. This leads to the
fundamental observation that

for flows, hyperbolic structures live on the normal bundle for the linear Poincaré
flow, and not on the tangent bundle.

However, there is a phenomenon which is really specific to vector fields: the existence
of singularities (zeros of the vector field) accumulated, in a robust way, by regular recur-
rent orbits. Then, some of the previously mentioned results may fail to translate to the
flow setting.
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The first example with this behavior has been indicated by Lorenz [Lo]. Then [GW]
constructs a C1-open set of vector fields in a 3-manifold, having a topologically transitive
attractor containing periodic orbits (which are all hyperbolic) and one singularity. The
examples in [GW] are known as the geometric Lorenz attractors.

The Lorenz attractor is also an example of a robustly non-hyperbolic star flow, show-
ing that the result in [H1] is no longer true for flows. In dimension 3 the difficulties
introduced by the robust coexistence of singularities and periodic orbits are now almost
fully understood. In particular, Morales, Pacifico and Pujals [MPP] defined the notion of
singular hyperbolicity, which requires some compatibility between the hyperbolicity of
the singularity and the hyperbolicity of the regular orbits. They prove the following

• For C1-generic star flows on 3-manifolds, every chain recurrence class is singular hy-
perbolic. It was conjectured in [GWZ] that the same result could hold without the
generic assumption. However, [BaMo] built a star flow on a 3-manifold having a chain
recurrence class which is not singular hyperbolic, contradicting the conjecture. We ex-
hibit a very simple such example in Section 10.
• Any robustly transitive set containing a singular point of a flow on a 3-manifold is

either a singular hyperbolic attractor or a singular hyperbolic repeller.

The singular hyperbolic structure for a compact invariant set K of a vector field X on
a 3-manifold is equivalent to the existence of a volume partially hyperbolic splitting of
the tangent bundle for the flow φt , for t 6= 0.

Let us make two observations:

• The singular hyperbolic structure lives on the tangent bundle (and not on the normal
bundle), contradicting our fundamental observation above.
• When the compact set is singular, the splitting has only two bundles, one of dimen-

sion 1 and the other of dimension 2; this asymmetry forces all singularities contained
in K to have the same index. In other words, all singularities contained in a singular
hyperbolic compact set have the same index, by definition of singular hyperbolicity.
The examples of star flows in [BaMo], as well as the examples presented in Section 10,
contain singular points with distinct indices, and therefore are not singular hyperbolic.

1.2. Star flows and hyperbolic structures

The aim of this paper is to propose a new way to define hyperbolic structures that over-
comes the difficulties introduced by the existence of singularities in chain recurrence sets.
In order to illustrate what we are aiming at, we will present informally one of the main
corollaries of this paper, which is a necessary and sufficient condition for a generic flow
to be a star flow.

As mentioned earlier, we want to look at hyperbolic structures in the normal space and
for the linear Poincaré flow. But our chain recurrence classes might have singularities. As
in [LGW], we define a way to extend the linear Poincaré flow to the singularities.

For a maximal invariant set 3 of a vector field X we denote by 3U,P(X) the closure
in PM of {〈X(x)〉 : x ∈ 3(X,U) \ Sing(X)}; it is a φtP-invariant compact set, but in
general it fails to vary upper semicontinuously with X.
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The smallest compact set satisfying all the required properties is

3̃(X,U) = lim sup
Y
C1
−→X

3U,P(Y ).

Now Conley theory asserts that any chain recurrence class C admits a basis of neigh-
borhoods which are nested filtrating neighborhoods Un+1 ⊂ Un with C =

⋂
Un (see

Section 3.1 for the definitions). We define

3̃(C) =
⋂
n

˜3(X,Un).

Over this set of directions we can define a normal bundle N : the fiber over L ∈ PM
(corresponding to a line L ⊂ TxM) is the quotient NL = TxM/L. The derivative of the
flowDφt of X passes to the quotient on the normal bundle N in a linear cocycle over φtP,
called the extended linear Poincaré flow and denoted by ψ tN .

But by looking at the linear Poincaré flow, we lose some of the information about
expansion rates along the flow direction, which might be unimportant away from singu-
larities but, in our case, play a crucial role. To recover this information we need a corollary
of one of our main results.

Let X be a vector field with a singular chain recurrence class C with a set of singular-
ities S.

For every singularity σ ∈ S we consider a neighborhood Uσ of σ such that {σ } is
the maximal invariant set in it. We also consider a Riemannian metric ‖ · ‖ such that
‖(Dxφ

t )|L‖ = 1 in the complement of
⋃
σ∈S Uσ .

Corollary 1. There exists a multiplicative cocycle

hσ = {h
t
σ } : 3̃(X,U)× R→ R

such that if x and φt (x) are in Uσ then htσ (L) = ‖(Dxφ
t )|L‖, and otherwise htσ (L) = 1.

Definition 2. We say that a flow is multisingular hyperbolic in C if there is an invariant
continuous splitting N = E ⊕

≺
F for ψ tN over 3̃(C) and there are sets of singularities

S1 ⊂ C ∩ Sing(X) and S2 ⊂ C ∩ Sing(X) such that the vectors in E are uniformly
contracted by the flow ( ∏

σi⊂S1

htσi

)
· ψ tN

and the ones in F are uniformly expanded by the flow( ∏
σi⊂S2

htσi

)
· ψ tN .

A multisingular hyperbolic flow is a flow that is multisingular hyperbolic in all its chain
recurrence classes.

Note that with this definition all multisingular hyperbolic flows are star flows.
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With all of these definitions we are now able to state the corollary regarding star flows:

Corollary 3. There is an open and dense set R of star flows that are multisingular hy-
perbolic.

However, this corollary is not as satisfying as one would hope, in the following sense:
One cannot tell whether a given vector field is or not a multisingular hyperbolic vector
field without additional information on perturbations of the vector field.

This is not a problem of the definition of multisingular hyperbolicity itself but rather
a problem of the set over which we define the multisingular hyperbolicity.

One of the difficulties this paper deals with is defining a bigger set of directions over
the singularities, which varies upper semicontinuously with the flow, but such that the
corollary stated above still holds. Also we discuss the following question: To what extent
are these two ways of extending the linear Poincaré flow to the singularities different?

Note that the problem of extending the linear Poincaré flow to the singularities is not
a problem that is only useful for star flows but rather a way to deal with any hyperbolic
structure in a chain recurrence class with singularities. In fact, the idea of recovering the
information on the expansion along the orbit by multiplying the flow with a cocycle like
the one illustrated above is also applicable to many other settings. We will later give a
definition of hyperbolic structure for singular chain classes involving these concepts.

1.3. Discussion of the notion of singular hyperbolicity in dimensions > 3

1.3.1. The natural generalization of singular hyperbolicity. The notion of singular hy-
perbolicity defined by [MPP] admits a straightforward generalization in higher dimen-
sions: following [LGW, GWZ, SGW], a chain recurrence class is called singular hy-
perbolic if the tangent bundle over this class admits a dominated, partially hyperbolic
splitting into two bundles, one uniformly contracting (resp. expanding) and the other
expanding (resp. contracting) area on any two-dimensional subspace. If instead of area
expansion we ask for volume expansion of the non-uniform bundle, then as in [MM] this
is called sectional hyperbolicity.

These notions have been very helpful for the study of singular star flows. If the chain
recurrence set of a vector fieldX can be covered by filtrating setsUi in which the maximal
invariant set 3i is singular hyperbolic, then X is a star flow. Conversely, [LGW] and
[GWZ] prove that this property characterizes the generic star flows on 4-manifolds. In
[SGW] the authors prove the singular hyperbolicity of generic star flows in any dimension
assuming an extra property: if two singularities are in the same chain recurrence class then
they must have the same s-index (dimension of the stable manifold).

However, in dimension≥ 4, singularities of different indices may coexist C1-robustly
in the same class, and these classes may have a robust property which requires a notion
of hyperbolicity. For instance:

• In dimension 4, [BLY] built a flow having a robustly chain recurrent attractor contain-
ing saddles of different indices. In particular, this attractor is not singular hyperbolic in
the sense of [SGW].



2654 Christian Bonatti, Adriana da Luz

• In [dL1], an example is announced of a star flow in dimension 5 admitting singularities
of different indices which belong robustly to the same chain recurrence class. This
example cannot satisfy the singular hyperbolicity used in [SGW].

1.3.2. A local solution for a local problem. If one wants to explain robust properties of
chain recurrence classes containing a singularity, one needs to understand the interac-
tion between the hyperbolic structure on the regular orbits and the local dynamics in the
neighborhood of the singular point:

Why do the regular orbits not lose their hyperbolic structure when crossing a
small neighborhood of the singularity?

That is a local problem.
Singular hyperbolicity, as defined in [GWZ, SGW], and sectional hyperbolicity as in

[MM] are global ways for fixing this local problem. As a consequence, if several sin-
gularities coexist in the same class, the global solution needs to solve the local problem
corresponding to each singularity; as a consequence, singular hyperbolicity implies that
the singularities have the same local behavior. This explains why singular hyperbolicity
could not characterize all the star flows but only those for which singular points of distinct
indices are assumed to belong in distinct chain recurrence classes.

This paper provides a local answer to this local problem: the way for fixing the hy-
perbolic structure of the regular orbits with the one of a given singular point needs to be
independent of what we do in the neighborhood of the other singular points. For that:

• The main new tool will be Theorem 1 which associates a cocycle to any singularity of
a vector field.
• Another important tool built in [LGW] is the generalized linear Poincaré flow, and we

need to recall its construction to present our results.
• The last tool will be the notion of extended maximal invariant set. Such a notion has

already been defined and used in [LGW, SGW]; we propose here a slightly different
notion and we compare it (see Theorem 2) with the one in [LGW, SGW].

Given any usual notion of hyperbolic structure (hyperbolicity, partial hyperbolicity,
volume hyperbolicity, etc.), well defined on compact invariant sets far from the singu-
larities, we propose a notion of (multi)singular hyperbolic structure generalizing it to
compact invariant sets containing singular points.

Then we will illustrate the power of this notion by paying special attention to star
flows. In this particular setting, the usual structure (for regular orbits) one wants to gen-
eralize to the singular setting is uniform hyperbolicity. In order to avoid confusion with
the singular structure defined in [LGW], we will call our way of generalizing uniform
hyperbolicity to singular sets multisingular hyperbolicity. Then Theorem 3 proves that
multisingular hyperbolicity characterizes the star flows in any dimension:

Multisingular hyperbolic flows are star flows, and conversely, a C1-open and
dense subset of the star flows consists of multisingular hyperbolic flows.
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In the same spirit, generalizing the results in [BDP], the second author announced
in [dL2] that every C1-robustly chain recurrence class of a singular flow is singular vol-
ume partially hyperbolic; in particular, the example of robustly chain recurrent attractors
in [BLY] is singular volume partially hyperbolic.

2. Presentation of our results

2.1. The extended linear Poincaré flow

The hyperbolic structure we will define does not lie on the tangent bundle, but on the
normal bundle. However, the flows we consider are singular and so the normal bundle
(and therefore the linear Poincaré flow) is not defined at the singularities. In [LGW], the
authors define the notion of extended linear Poincaré flow defined on some sort of blow-
up of the singularities. Our notion of multisingular hyperbolicity will be expressed in
terms of this extended linear Poincaré flow (see the precise definition in Section 4); we
present it roughly below.

• We denote by PM the projective tangent bundle of M , that is, a point L of PM corre-
sponds to a line of the tangent space at a point of M .
• We denote by 3X ⊂ PM the union

3X = {〈X(x)〉 ∈ PTxM : x ∈ M \ Sing(X)} ∪
⋃

y∈Sing(X)

PTyM.

It is a compact set, invariant under the topological flow φtP.
• The restriction of ψ tN to the fibers of PM over {〈X(x)〉 ∈ PTxM : x ∈ M \Sing(X)} is

naturally conjugate to the linear Poincaré flow overM \Sing(X); thus the restriction of
ψ tN to 3X is a natural extension, over the singular points, of the linear Poincaré flow.

2.2. A local cocycle associated to a singular point

Let X be a vector field and φt its flow. A (multiplicative) cocycle over X is a continuous
map h : 3X × R→ R, h(L, t) = ht (L), satisfying the cocycle relation

hr+s(L) = hr(φsP(L)) · h
s(L).

Remark 4. For instance, fix a Riemannian metric ‖ · ‖ on M . For L ∈ PTxM and t ∈ R
set

htX(L) = ‖(Dxφ
t )|L‖,

where (Dxφt )|L is the restriction to L of the derivative at x of the flow φt . The map
hX : 3X × R→ R, (L, t) 7→ htX(L), is a cocycle that we will call the expansion in the
direction of the flow.

Let σ ∈ Sing(X) be an isolated singular point. We will say that h = {ht } is a local cocycle
at σ if for any neighborhood U of PTσM in 3X there is a constant C > 1 such that

1/C < ht (L) < C

for every (L, t) ∈ 3X × R with L /∈ U and φtP(L) /∈ U .
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Definition 5. Let σ ∈ Sing(X) be an isolated singular point. A local reparametrization
cocycle associated to σ is a cocycle h = {ht } : 3X × R→ R such that:

• {ht } is a local cocycle at σ ;
• there is a neighborhood U of σ and C > 1 such that

1
C
<
ht (L)

htX(L)
< C

for any t ∈ R and L ∈ 3X such that L ∈ PTxM with x ∈ U and φt (x) ∈ U , where
{htX} is the cocycle of expansion in the flow direction.

The following result is central to this paper:

Theorem 1. LetX be a vector field on a closed manifold and let σ be a simple singularity
of X (that is, the derivative of X at σ is invertible). Then:

• There is a local reparametrization cocycle hσ : 3X × R→ R associated to σ .
• If h′σ is another reparametrization cocycle then htσ /(h

′
σ )
t is uniformly bounded (thus

hσ is unique up to a bounded cocycle).
• There is a C1-neighborhood U of X and a continuous map U 3 Y 7→ hY,σY where σY

is a continuation of σ on Y and hY,σY is a reparametrization cocycle for Y and σY .

The proof of Theorem 1 is the aim of Section 6.
Notice that the product of two cocycles is a cocycle, and the power of a cocycle is a

cocycle.

Definition 6. Let X be a vector field on a compact manifold such that the zeros of X
are all simple. We say that a cocycle h is a reparametrization cocycle if, for every σ in
Sing(X), there exists a choice of a local reparametrization cocycle hσ associated to σ and
a positive number α(σ) such that

ht =
∏

σ∈Sing(X)

(htσ )
α(σ).

2.3. Hyperbolic structures

2.3.1. Hyperbolic structures over compact subsets of PM . Consider now a vector field
X on a compact manifold M and 3X ⊂ PM . We assume that every singularity of X is
simple. LetK ⊂ 3X be a φtP-invariant compact set. A singular hyperbolic structure onK
is a dominated splitting

N = E1 ⊕≺ · · · ⊕≺ Ek

of the normal bundle over K for the extended linear Poincaré flow, with the following
additional property:

For some of the bundles Ei there exists a number 1 ≤ di ≤ dimEi and a reparametr-
ization cocycle hti =

∏
σ∈Sing(X)(h

t
σ )
αi (σ ) such that

J (hti · (ψ
t
N |Di ))

is a uniform contraction or expansion for any subspace Di ⊂ Ei of dimension di .
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We show that singular hyperbolic structures are robust in the following sense:

Lemma 7. Let X be a vector field on a compact manifold. If K ⊂ 3X ⊂ PM is a
φtP-invariant compact set admitting a singular hyperbolic structure, then there is a C1-
neighborhood of X and a neighborhood U of K in PM such that for any Y in U the
maximal invariant set of φY,P in 3Y ∩ U admits the same singular hyperbolic structure.

This lemma is a straightforward consequence of the fact that the reparametrization co-
cycles used to define the singular hyperbolic structures admit a continuous choice with
respect to the vector field (last item of Theorem 1).

2.3.2. Multisingular hyperbolicity. One of the many possible motivations for looking
for new definitions of hyperbolic structures in the case of singular flows is understand-
ing what is the type of hyperbolicity that a typical star flow carries (and that allows for
singularities of different indices in the same invariant compact connected set). With the
above way of defining a singular hyperbolic structure we next define our candidate for
hyperbolicity of a typical star flow in dimensions more than three.

Definition 8. Let X be a vector field on a compact manifold. If K ⊂ 3X ⊂ PM is a φP-
invariant compact set we say that K is multisingular hyperbolic if there is a dominated
splitting N = E ⊕

≺
F for ψ tN and there are two reparametrization cocycles hts and htu

such that the vectors in E are uniformly contracted by the flow hts ·ψ
t
N and the ones in F

are uniformly expanded by the flow htu · ψ
t
N .

Note that this definition is equivalent to hyperbolicity away from singularities and choos-
ing htu as in Remark 4 and hts as the identity we get a hyperbolic structure that is equivalent
to (positive) singular hyperbolicity.

In a very similar way it is possible to generalize partial hyperbolicity or volume partial
hyperbolicity.

2.4. The extended maximal invariant set

The next difficulty is to define the set on which we would like to define a hyperbolic
structure.

We are interested in the dynamics of X in a compact region U on M , that is, to de-
scribe the maximal invariant set3(X,U) inU . An important property is that the maximal
invariant set depend upper semicontinuously on the vector field X. This property is fun-
damental for a hyperbolic structure to be a robust property.

Therefore we need to consider a compact part of PM , as small as possible, such that:

• It is invariant under the flow φtP.
• It contains all the directions spanned by X(x) for x ∈ 3(X,U) \ Sing(X).
• It varies upper semicontinuously with X.

We denote by 3U,P(X) the closure in PM of {〈X(x)〉 : x ∈ 3(X,U) \ Sing(X)}; it is a
φtP-invariant compact set, but in general it fails to vary upper semicontinuously with X.
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The smallest compact set satisfying all the required properties is

3̃(X,U) = lim sup
Y→X

3U,P(Y ).

Definition 9. We will say that X has a singular hyperbolic structure in a compact region
U if the compact set 3̃(X,U) ⊂ 3X ⊂ PM has a singular hyperbolic structure, as
defined in Section 2.3.1.

As a straightforward consequence of the upper semicontinuous dependence of 3̃(X,U)
on the vector field X one gets the robustness of the singular hyperbolic structure of X
in U .

Lemma 10. If X has a singular hyperbolic structure in a compact region U then the
same singular hyperbolic structure holds for every vector field C1-close to X.

Remark 11. IfX is non-singular onU then a singular hyperbolic structure ofX is equiv-
alent to the corresponding (non-singular) hyperbolic structure.

More generally, if X has a singular hyperbolic structure on U then every φt -invariant
compact set K ⊂ U \ Sing(X) has a corresponding (non-singular) hyperbolic structure.

The set 3̃(X,U) is a fundamental tool for defining singular hyperbolic structures. How-
ever, it may be hard to calculate because it depends not only onX but also on all C1-small
perturbations ofX. That is a little unsatisfactory: hyperbolic structures have been invented
to control the effect of small perturbations. However, in order to know whether 3̃(X,U)
admits a hyperbolic structure, we need to understand the effect of perturbations of X.

In what follows, we propose another set, much simpler to compute, since it does not
depend on perturbations of X.

In Section 5.2 we define the notion of central space Ecσ,U of a singular point σ ∈ U .
Then the extended maximal invariant set is the set B(X,U) ⊂ PM of all lines L such
that either

• L is contained in the central space of a singular point in Ū , or
• L is directed by the vector X(x) at the regular point x ∈ 3(X,U) \ Sing(X).

Proposition 41 proves that B(X,U) varies upper semicontinuously with the vector
field X. In particular, once again, the existence of a dominated splitting NL = EL ⊕ FL
of the normal bundle N over B(X,U) is a robust property, as also is the existence of a
singular hyperbolic structure. Furthermore, Remark 42 shows it is larger than 3̃(X,U):

3̃(X,U) ⊂ B(X,U).

2.5. Hyperbolic structures over a chain recurrence class

Other sets one is interested in when defining hyperbolic structures are the chain recurrence
classes C(σ) of singular points σ . Conley theory asserts that any chain recurrence class C
admits a basis of nested filtrating neighborhoods Un+1 ⊂ Un, C =

⋂
Un (see Section 3.1
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for the definitions). We define

3̃(C) =
⋂
n

˜3(X,Un) and B(C) =
⋂
n

B(X,Un).

These two sets are independent of the choice of the sequence Un. Clearly 3̃(C) ⊂ B(C).

Definition 12. We say that a chain recurrence class C has a given singular hyperbolic
structure if 3̃(C) carries that structure.

Remark 13. If C is a chain recurrence class which has a singular hyperbolic structure
then X has this structure on a small filtrating neighborhood of C.

If σ ∈ Sing(X) is a hyperbolic singular point, we define Ecσ =
⋂
n E

c
σ,Un

and we call it
the center space of σ . We denote by Pcσ = PEcσ its projective space.

Remark 14. Consider the open and dense set of vector fields whose singular points are
all hyperbolic. In this open set the singularities depend continuously on the field. Then for
every singular point σ , the projective center space Pcσ varies upper semicontinuously, and
in particular the dimension dimEcσ varies upper semicontinuously. As it is a non-negative
integer, it is locally minimal and locally constant on an open and dense subset.

We will say that such a singular point has locally minimal center space.

We prove

Theorem 2. Let X be a vector field on a closed manifold, whose singular points are hy-
perbolic, with locally minimal center spaces, and such that the finest dominated split-
ting of the center spaces is into one- or two-dimensional subspaces. Then for every
σ ∈ Sing(X), every hyperbolic structure on ˜3(C(σ)) extends to B(C(σ)).

2.6. Multisingular hyperbolicity and star flows

We say that a vector field X whose singularities are all hyperbolic is multisingular hy-
perbolic if every chain recurrence class is multisingular hyperbolic. Recall that a vector
field is a star flow if it belongs to the C1-interior of the set of vector fields whose periodic
orbits are all hyperbolic.

Remark 15. • If C is a non-singular chain recurrence class which is multisingular hy-
perbolic then it is uniformly hyperbolic and therefore is a hyperbolic basic set and a
homoclinic class.
• If C is a chain recurrence class which is multisingular hyperbolic then X is multisin-

gular hyperbolic on a small filtrating neighborhood of C.

One may check easily

Lemma 16. If X is multisingular hyperbolic, then X is a star flow.

Conversely, we will show
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Theorem 3. There is a C1-open and dense subset U of X 1(M) such that if X ∈ U is
a star flow then the chain recurrent set R(X) is contained in the union of finitely many
pairwise disjoint filtrating regions in each of which X is multisingular hyperbolic.

Indeed, we will get a more precise result: our notion of singular hyperbolic structure
allows many possible choices of reparametrization cocycles. However, in the setting of
star flows, some of the results in [SGW] allow us to fix a priori the reparametrization
cocycle. More precisely, according to [SGW] for an open and dense subset of the set of
star flows, one has the following properties:

1. Any chain recurrence class C admits a (unique) dominated splitting N = E ⊕ F

for the extended linear Poincaré flow on 3̃(C) which is the limit of the hyperbolic
splittings of the periodic orbits for C1-nearby flows.

2. The set Sing(X) ∩ C is the union of two sets SE and SF , where:

• σ ∈ SE if the stable space Esσ has the same dimension as the bundle E of the
dominated splitting of the extended linear Poincaré flow over ˜3(C(σ)) (and thus
dimEuσ = dimF + 1).
• σ ∈ SF if dimEuσ = dimF and dimEsσ = dimE + 1.

In particular, the indices of the singularities in a given chain recurrence class may differ
by at most 1 from each other.

Then one considers the reparametrization cocycles htE and htF defined as

htE =
∏
σ∈SE

htσ and htF =
∏
σ∈SF

htσ .

Now, Theorem 3 is a straightforward corollary of

Theorem 4. There is a C1-open and dense subset U of the open set of star flows such that
for any X in U every chain recurrence class admits a dominated splitting N = E ⊕

≺
F

for the extended linear Poincaré flow ψ tN over B(C) and such that the reparametrized
flow

(htEψ
t
N |E, h

t
Fψ

t
N |F )

is uniformly hyperbolic.
In other words, X is multisingular hyperbolic and its reparametrization cocycles are

(htE, h
t
F ).

Remark 17. If all the singular points in a chain recurrence class C have the same index,
that is, if SE or SF is empty, then multisingular hyperbolicity is the same as singular
hyperbolicity as in [SGW].

The proof of Theorem 4 follows closely the proof in [SGW] that star flows with only
singular points of the same index are singular hyperbolic.

Question 1. Can we remove the generic assumption, at least in dimension 3, in Theo-
rem 3? In other words, is it true that, given any star flowX (for instance on a 3-manifold)
every chain recurrence class of X is multisingular hyperbolic?
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3. Basic definitions and preliminaries

3.1. Chain recurrent set

The following notions and theorems are due to Conley [Co] and they can be found in
several other references (for example [AN]).

• We say that a pair of sequences {xi}0≤i≤k and {ti}0≤i≤k−1, k ≥ 1, are an ε-pseudo orbit
from x0 to xk for a flow φ if for every 0 ≤ i ≤ k − 1 one has

ti − ti−1 ≥ 1 and d(xi+1, φ
ti (xi)) < ε.

• A compact invariant set 3 is called chain transitive if for any ε > 0 and any x, y ∈ 3
there is an ε-pseudo orbit from x to y.
• We say that x ∈ M is chain recurrent if for every ε > 0 there is an ε-pseudo orbit

from x to x. We call the set of chain recurrent points the chain recurrent set and denote
it by R(M).
• We say that x, y ∈ R(M) are chain related if, for every ε > 0, there are ε-pseudo

orbits from x to y and from y to x. This is an equivalence relation. The equivalence
classes of this relation are called chain recurrence classes.

Fig. 1. An ε-pseudo orbit.

Definition 18. • An attracting region (also called a trapping region) is a compact set U
such that φt (U) is contained in the interior ofU for every t > 0. The maximal invariant
set in an attracting region is called an attracting set. A repelling region is an attracting
region for −X, and the maximal invariant set is called a repeller.
• A filtrating region is the intersection of an attracting region with a repelling region.
• Let C be a chain recurrence class of M for the flow φ. A filtrating neighborhood of C

is a (compact) neighborhood which is a filtrating region.
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Fig. 2. A trapping region or attracting region.

Definition 19. Let {φt } be a flow on a Riemannian manifold M . A complete Lyapunov
function is a continuous function L : M → R such that:

• L(φt (x)) is decreasing for t if x ∈ M \R(M).
• Two points x, y ∈ R(M) are chain related if and only if L(x) = L(y).
• L(R(M)) is nowhere dense.

The next result is called the fundamental theorem of dynamical systems by some authors:

Theorem 5 (Conley [Co]). Let X be a C1 vector field on a compact manifold M . Then
its flow {φt } admits a complete Lyapunov function.

The next corollary will be used often in this paper:

Corollary 20. Let φ be a C1 vector field on a compact manifold M . Every chain recur-
rence class C ofX admits a basis of filtrating neighborhoods, that is, every neighborhood
of C contains a filtrating neighborhood of C.

Lemma 21 (Connecting lemma [BC]). Let φt be a flow induced by a vector field X ∈
X 1(M) such that all periodic orbits of X are hyperbolic. For any C1-neighborhood U
of X and x, y ∈ M , if y is in the same chain recurrence class as x, then there exist
Y ∈ U and t > 0 such that φYt (x) = y. Moreover, for any k ≥ 1, let {xi,k, ti,k}

nk
i=0 be a

(1/k)-pseudo orbit from x to y and define

1k =

nk−1⋃
i=0

φ[0,ti,k](xi,k).

Let1 be the upper Hausdorff limit of1k . Then for any neighborhood U of1, there exists
Y ∈ U with Y = X on M \ U and t > 0 such that φYt (x) = y.

For a generic vector field X ∈ X 1(M) we also have:

Theorem 6 ([C]). There exists a generic set Gapprox ⊂ X 1(M) such that for every X ∈
Gapprox and for every chain recurrence class C there exists a sequence of periodic orbits
γn which converges to C in the Hausdorff topology.
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3.2. Linear cocycles

Let φ = {φt }t∈R be a topological flow on a compact metric space K . A linear cocycle
over (K, φ) is a continuous map {At } : E × R→ E defined by

At (x, v) = (φt (x), At (x)v),

where:

• π : E→ K is a d-dimensional vector bundle over K .
• At : K × R 3 (x, t) 7→ GL(Ex, Eφt (x)) is a continuous map that satisfies the cocycle

relation
At+s(x) = At (φ

s(x))As(x) for any x ∈ K and t, s ∈ R.

Note that A = {At }t∈R is a flow on the space E which projects on φt :

E
At

−→ E

↓ ↓

K
φt

−→ K

If 3 ⊂ K is a φ-invariant subset, then π−1(3) ⊂ E is A-invariant, and we call the
restriction of {At } to π−1(3) the restriction of A to 3.

3.3. Hyperbolicity, dominated splitting on linear cocycles

Definition 22. Let φ be a topological flow on a compact metric space 3. We consider a
vector bundle π : E→ 3 and a linear cocycle A = {At } over (3,X).

We say that A admits a dominated splitting over 3 if:

• There exists a splitting E = E1
⊕ · · · ⊕ Ek over λ into k subbundles.

• The dimension of the subbundles is constant, i.e. dimEix = dimEiy for all x, y ∈ 3
and i ∈ {1, . . . , k}.
• The splitting is invariant, i.e. At (x)(Eix) = E

i
φt (x)

for all i ∈ {1, . . . , k}.
• There exists a t > 0 such that for every x ∈ 3 and any pair of non-zero vectors v ∈ Eix

and u ∈ Ejx , i < j , one has

‖At (u)‖

‖u‖
≤

1
2
‖At (v)‖

‖v‖
. (1)

We denote E = E1
⊕
≺
· · · ⊕

≺
Ek . The notation ⊕

≺
is used to highlight the fact that,

in addition to the fact that E can be expressed as a direct sum of the spaces Ei , these
spaces are ordered so that each is dominated by the next one.

A classical result (see for instance [BDV, Appendix B]) asserts that the bundles of a
dominated splitting are always continuous. A given cocycle may admit several dominated
splittings. However, the dominated splitting is unique if one prescribes the dimensions
dimEi .
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Associated to the dominated splitting we define a family of cone fields Ciua around
each space Ei ⊕ · · · ⊕Ek as follows. Let us write the vectors v ∈ E as v = (v1, v2) with
v1 ∈ E

1
⊕ · · · ⊕ Ei−1 and v2 ∈ E

i
⊕ · · · ⊕ Ek . Then the cone field Ciua is the set

Ciua = {v = (v1, v2) : ‖v1‖ < a‖v2‖}.

These are called the family of unstable cone fields and the domination implies that they
are strictly invariant for times larger than t : the cone Ciua at TxM is taken by At to the
interior of the cone Ciua at TφtxM .

Analogously we define the stable family of cone fields Cisa around E1
⊕ · · · ⊕Ei and

the domination implies that they are strictly invariant for negative times smaller than −t .

One says that one of the bundles Ei is (uniformly) contracting (resp. expanding) if
there is t > 0 such that for every x ∈ 3 and every non-zero vector u ∈ Eix one has
‖At (u)‖/‖u‖ < 1/2 (resp. ‖A−t (u)‖/‖u‖ < 1/2). In both cases one says that Ei is
hyperbolic.

Notice that if Ej is contracting (resp. expanding) then the same holds for any Ei with
i < j (resp. j < i) as a consequence of the domination.

Definition 23. We say that the linear cocycle A is hyperbolic over 3 if there is a dom-
inated splitting E = Es ⊕

≺
Eu over 3 into two hyperbolic subbundles such that Es is

uniformly contracting and Eu is uniformly expanding.
One says that Es is the stable bundle, and Eu is the unstable bundle.

The existence of a dominated splitting or of a hyperbolic structure is an open property in
the following sense:

Proposition 24. Let K be a compact metric space, π : E → K a d-dimensional vector
bundle, and A a linear cocycle overK . Let30 be a φ-invariant compact set. Assume that
the restriction of A to30 admits a dominated splitting E1

⊕
≺
· · · ⊕

≺
Ek , for some t > 0.

Then there is a compact neighborhood U of 30 with the following property. Let 3 =⋂
t∈R φ

t (U) be the maximal invariant set of φ in U . Then the dominated splitting admits
a unique extension as a dominated splitting over 3 for 2t > 0. Furthermore if one of the
subbundles Ei is hyperbolic over 30, it is still hyperbolic over 3.

As a consequence, if A has a hyperbolic structure over 30 then (up to shrinking U if
necessary) it also has a hyperbolic structure over 3.
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3.4. Robustness of hyperbolic structures

The aim of this section is to explain that Proposition 24 can be seen as a robustness
property.

Let M be a manifold and φn a sequence of flows in M tending to φ0 as n → ∞, in
the C0-topology on compact subsets: for any compact set K ⊂ M and any T > 0, the
restriction of φtn to K , t ∈ [−T , T ], tends uniformly (in x ∈ K and t ∈ [−T , T ]) to φt0.

Let 3n be compact φn-invariant subsets of M , and assume that the upper limit of 3n
for the Hausdorff topology is contained in 30: more precisely, any neighborhood of 30
contains all but finitely many of the 3n’s. One can also see this property in another way:
Consider the subset I = {0} ∪ {1/n : n ∈ N \ {0}} ⊂ R endowed with the induced
topology. Set M∞ = M × I and

3∞ = 30 × {0} ∪
⋃
n>0

3n × {1/n} ⊂ M∞.

With this notation, the upper limit of the 3n is contained in 30 if and only if 3∞ is a
compact subset.

Let π : E → M be a vector bundle. We denote by E∞ = E × I the vector bundle
π∞ : E × I → M × I. We denote by E∞|3∞ the restriction of E∞ to the compact
subset 3∞.

Assume now that An are linear cocycles over the restriction of E to 3n. We denote
by A∞ the map defined on the restriction E∞|3∞ by

At∞(x, 0) = (At0(x), 0) for (x, 0) ∈ 30 × {0},
At∞(x, 1/n) = (Atn(x), 1/n) for (x, 1/n) ∈ 3n × {1/n}.

Note that A∞ is a cocycle over 3∞ and hence a map on E∞|3∞ × R.

Definition 25. With the notation above, we say that the family of cocycles An tends
to A0 as n→∞ if the map A∞ is continuous, and therefore is a linear cocycle.

As a consequence of Proposition 24 we get

Corollary 26. Let π : E → M be a linear cocycle over a manifold M and let φn be
a sequence of flows on M converging to φ0 as n → ∞. Let 3n be a sequence of φn-
invariant compact subsets so that the upper limit of the 3n, as n → ∞, is contained
in 30.

Let An be a sequence of linear cocycles over φn defined on the restriction of E to3n.
Assume that An tends to A0 as n→∞.

Suppose that A0 admits a dominated splitting E = E1
⊕
≺
· · · ⊕

≺
Ek over 30.

Then, for any n large enough, An admits a dominated splitting with the same number
of subbundles and the same dimensions of the subbundles. Furthermore, if Ei was hyper-
bolic (contracting or expanding) over30, it is still hyperbolic (contracting or expanding,
respectively) for An over 3n.

The proof just consists in applying Proposition 24 to a neighborhood of 30 × {0} in 3∞.
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3.5. Reparametrized cocycles and hyperbolic structures

Let A = {At (x)} and B = {B t (x)} be two linear cocycles on the same vector bundle
π : E → 3 and over the same flow φt on a compact invariant set 3 of a manifold M . We
say that B is a reparametrization of A if there is a continuous map h = {ht } : 3× R→
(0,+∞) such that for every x ∈ 3 and t ∈ R one has

B t (x) = ht (x)At (x).

The reparametrizing map ht satisfies the cocycle relation

hr+s(x) = hr(x)hs(φr(x)),

and is called a cocycle.
One can easily check the following lemma:

Lemma 27. Let A be a linear cocycle and B be a reparametrization of A. Then any
dominated splitting for A is a dominated splitting for B.

Remark 28. • If ht is a cocycle, then for any α ∈ R the power (ht )α : x 7→ (ht (x))α is
a cocycle.
• If f t and gt are cocycles then ht = f t · gt is a cocycle.

A cocycle ht is called a coboundary if there is a continuous function h : 3 → (0,+∞)
such that

ht (x) =
h(φt (x))

h(x)
.

A coboundary cocycle is uniformly bounded. Two cocycles gt , ht are called cohomol-
ogous if gt/ht is a coboundary.

Remark 29. The cohomology relation (where two cocycles are related if they are co-
homologous) is an equivalence relation among the cocycles and is compatible with the
product: if gt1 and gt2 are cohomologous and ht1 and ht2 are cohomologous, then gt1h

t
1 and

gt2h
t
2 are cohomologous.

Lemma 30. Let A = At be a linear cocycle, and h = ht be a cocycle which is bounded.
Then A is uniformly contracted (resp. expanded) if and only if the cocycle B = h · A is
uniformly contracted (resp. expanded).

As a consequence one gets

Corollary 31. If g and h are cohomologous, then g ·A is hyperbolic if and only if h ·A
is hyperbolic.
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4. The extended linear Poincaré flow

4.1. The linear Poincaré flow

Let X be a C1 vector field on a compact manifold M . We denote by φt the flow of X.

Definition 32. The normal bundle of X is the vector subbundle NX over M \ Sing(X)
defined as follows: the fiber NX(x) of x ∈ M \ Sing(X) is the quotient space of TxM by
the vector line R.X(x).

Note that ifM is endowed with a Riemannian metric, thenNX(x) is canonically identified
with the space orthogonal to X(x):

NX = {(x, v) ∈ TM : v ⊥ X(x)}

Consider x ∈ M \ Sing(X) and t ∈ R. Thus Dφt (x) : TxM → Tφt (x)M is a linear
isomorphism mapping X(x) onto X(φt (x)). Therefore Dφt (x) passes to the quotient as
a linear isomorphism ψ t (x) : NX(x)→ NX(φ

t (x)):

TxM
Dφt

−→ Tφt (x)M

↓ ↓

NX(x)
ψ t

−→ NX(φ
t (x))

where the vertical arrows are the canonical projections.

Fig. 3. ψ t is the differential of the holonomy or Poincaré map.

Proposition 33. LetX be a C1 vector field on a manifoldM , and3 be a compact invari-
ant set of X. Assume that 3 does not contain any singularity of X. Then 3 is hyperbolic
if and only if the linear Poincaré flow over 3 is hyperbolic.

Notice that the notion of dominated splitting for non-singular flows is sometimes better
expressed in terms of the linear Poincaré flow: for instance, the linear Poincaré flow of a
robustly transitive vector field always admits a dominated splitting, while the flow by itself
may not admit any dominated splitting. See for instance the suspension of the example
in [BV].
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4.2. The extended linear Poincaré flow

We are dealing with singular flows, and the linear Poincaré flow is not defined on the
singularities of the vector field X. However, we can extend it to a flow on a larger set for
which the singularities of X do not play a specific role, as in [LGW]. We call this the
extended linear Poincaré flow.

This flow will be a linear cocycle defined on certain vector bundles over a manifold,
which we define now.

Definition 34. Let M be a d-dimensional manifold.

• We define the projective tangent bundle of M to be the fiber bundle 5P : PM → M

whose fiber Px is the projective space of the tangent space TxM; in other words, a point
Lx ∈ Px is a one-dimensional vector subspace of TxM .
• The tautological bundle of PM is the one-dimensional vector bundle over PM ,
5T : TM → PM , whose fiber TL over L ∈ PM is the line L itself.
• The normal bundle of PM is the (d − 1)-dimensional vector bundle over PM ,
5N : N → PM , whose fiber NL over L ∈ Px is the quotient space TxM/L.
If we endow M with a Riemannian metric, then NL is identified with the hyperplane
orthogonal to L in TxM .

LetX be aCr vector field on a compact manifoldM , and φt its flow. The natural actions of
the derivative of φt on PM , TM and N define flows on these manifolds. More precisely,
for any t ∈ R:

• We denote by φtP : PM → PM the flow defined by

φtP(Lx) = Dφ
t (Lx) ∈ Pφt (x).

• We denote by φtT : TM → TM the topological flow whose restriction to a fiber TL is
the linear isomorphism onto TφtP(L) which is the restriction of Dφt to the line TL.
• We denote by ψ tN : N → N the flow whose restriction to a fiber NL, L ∈ Px , is the

linear isomorphism onto NφtP(L)
defined as follows: Dφt (x) is a linear isomorphism

from TxM to Tφt (x)M which maps the line TL ⊂ TxM onto the line TφtP(L). Therefore
it passes to the quotient as the announced linear isomorphism.

TxM
Dφt

−→ Tφt (x)M

↓ ↓

NL

ψ tN
−→ NφtP(L)

Note that φtP, t ∈ R, defines a flow on PM which is a cocycle over φt whose action on
the fibers is by projective maps.

The one-parameter families φtT and ψ tN define flows on TM and N , respectively,
which are linear cocycles over φtP. We call φtT the tautological flow, and ψ tN the extended
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linear Poncaré flow. We can summarize this by the following diagrams:

N
ψ tN
−→ N

↓ ↓

PM
φtP
−→ PM

↓ ↓

M
φt

−→ M

TM
φtT
−→ TM

↓ ↓

PM
φtP
−→ PM

↓ ↓

M
φt

−→ M

Remark 35. The extended linear Poincaré flow is really an extension of the linear Poin-
caré flow defined in the previous section; more precisely:

Let SX : M \ Sing(X)→ PM be the section of the projective bundle such that SX(x)
is the line 〈X(x)〉 ∈ Px generated by X(x). Then:

• The fibers NX(x) and NSX(x) are canonically identified.
• The linear isomorphisms ψ t : NX(x) → NX(φ

t (x)) and ψ tN : NSX(x) → NSX(φ
t (x))

are equal (under the identification of the fibers).

4.3. Maximal invariant set and lifted maximal invariant set

Let X be a vector field on a manifold M and U ⊂ M be a compact region. The maximal
invariant set 3 = 3U of X in U is the intersection

3(X,U) =
⋂
t∈R

φt (U).

We say that a compact X-invariant set K is locally maximal if there exists an open
neighborhood U of K such that K = 3(X,U).

Definition 36. The lifted maximal invariant set in U , denoted by3P,U ⊂ PM (or simply
3P if one may omit the dependence on U ), is the closure of the set of lines 〈X(x)〉 for
regular x ∈ 3U :

3P,U = SX(3U \ Sing(X)) ⊂ PM,

where SX : M \ Sing(X)→ PM is the section defined by X.

5. The extended maximal invariant set

5.1. Strong stable, strong unstable and center spaces associated to a hyperbolic
singularity

Let X be a vector field and σ ∈ Sing(X) be a hyperbolic singular point of X. Let λsk <
· · · < λs2 < λs1 < 0 < λu1 < λu2 < · · · < λul be the Lyapunov exponents of φt at σ and let

Esk ⊕≺ · · · ⊕≺ E
s
2 ⊕≺ E

s
1 ⊕≺ E

u
1 ⊕≺ E

u
2 ⊕≺ · · · ⊕≺ E

s
l

be the corresponding (finest) dominated splitting over σ .
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A subspace F of TσM is called a center subspace if it is of one of the forms below:

• F = Esi ⊕≺ · · · ⊕≺ E
s
2 ⊕≺ E

s
1;

• F = Eu1 ⊕≺ E
u
2 ⊕≺ · · · ⊕≺ E

s
j ;

• F = Esi ⊕≺ · · · ⊕≺ E
s
1 ⊕≺ E

u
1 ⊕≺ · · · ⊕≺ E

s
j for i ∈ {1, . . . , k} and j ∈ {1, . . . , l}.

A subspace
Essi (σ ) = E

s
k ⊕≺ · · · ⊕≺ E

s
i+1 ⊕≺ E

s
i , 1 ≤ i ≤ k,

of TσM is called a strong stable space.
A classical result from hyperbolic dynamics asserts that for any i there is a unique

injectively immersed manifoldW ss
i (σ ) inM , called a strong stable manifold, with tangent

space Essi (σ ) and invariant by the flow of X.
We define analogously the strong unstable spaces Euuj (σ ) and the strong unstable

manifolds Wuu
j (σ ) for j = 1, . . . , l.

5.2. The lifted maximal invariant set and the singular points

The aim of this section is to add to the lifted maximal invariant set3P,U some set over the
singular points in order to recover some upper semicontinuity properties. As mentioned in
Section 2.4, we want to define a set that is as small as possible, but which can be defined
without any information on the perturbations of our vector field.

We define the escaping stable space Essσ,U as the biggest strong stable space Essj (σ )
such that the corresponding strong stable manifold W ss

j (σ ) is escaping, that is,

3X,U ∩W
ss
j (σ ) = {σ }.

We define the escaping unstable space analogously.
We define the central space Ecσ,U of σ in U as the center space such that

TσM = E
ss
σ,U ⊕ E

c
σ,U ⊕ E

uu
σ,U .

We denote by Piσ,U the projective space of Ei(σ, U) where i ∈ {ss, uu, c}.

Lemma 37. Let U be a compact region and X a vector field whose singular points are
hyperbolic. Then, for any σ ∈ Sing(X) ∩ U ,

3P,U ∩ Pssσ,U = 3P,U ∩ Puuσ,U = ∅.

Proof. Suppose (towards a contradiction) that L ∈ 3P,U ∩ Pssσ,U . This means that there
exists a sequence xn ∈ 3X,U \ Sing(X) converging to σ such that Lxn converges to L,
where Lxn is the line RX(xn) ∈ Pxn .

We fix a small neighborhood V of σ endowed with local coordinates such that the
vector field is very close to its linear part in these coordinates: in particular, there is a
small cone Css ⊂ V aroundW ss

σ,U whose complement is strictly invariant in the following
sense: the positive orbit of a point outside Css remains outside Css until it leaves V . For
n large enough the points xn belong to V .
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As RX(xn) tends to L, this implies that the points xn, for n large, are contained in
the cone Css . In particular, they cannot belong to Wu(σ ). Therefore they admit negative
iterates yn = φ−tn(xn) with the following properties:

• φ−t (xn) ∈ V for all t ∈ [0, tn].
• φ−tn−1(xn) /∈ V .
• tn→∞.

Up to considering a subsequence, one may assume that the points yn converge to a point y,
and one may easily check that y ∈ W s(σ )\{σ }. Furthermore all the points yn are in3X,U ,
so that y ∈ 3X,U .

We conclude the proof by showing that y ∈ W ss
σ,U , which contradicts the definition of

W ss
σ,U . If y /∈ W ss

σ,U then its positive orbit arrives at σ tangentially to weaker stable spaces:
in particular, there is t > 0 such that φt (y) does not belong to the cone Css .

Consider n large, in particular tn is larger than t and φt (yn) is so close to y that
φt (yn) /∈ C

ss : this contradicts the fact that xn = φtn(yn) ∈ Css .
We have proved 3P,U ∩ Pssσ,U = ∅; the proof that 3P,U ∩ Puuσ,U = ∅ is analogous. ut

As a consequence we get the following characterization of the central space of σ in U :

Lemma 38. Let U be a compact region and X a vector field whose singular points are
hyperbolic. Then for any σ ∈ Sing(X) ∩ U the central space Ecσ,U is the smallest center
space containing 3P,U ∪ PσM .

Proof. The proof that Ecσ,U contains 3P,U ∩ Pσ is very similar to the end of the proof
of Lemma 37 and we just sketch it: by definition of the strong escaping manifolds, the
points xn admit a neighborhood of a fundamental domain which is disjoint from the max-
imal invariant set. This implies that any point in3X,U close to σ lies outside of arbitrarily
large cones around the escaping strong direction. Therefore the vector X at these points
is almost tangent to Ecσ,U .

Assume now for instance that:

• Ecσ,U = E
s
i ⊕≺ · · · ⊕≺ E

s
1 ⊕≺ E

u
1 ⊕≺ · · · ⊕≺ E

u
j : in particular W ss

i+1(σ ) is the escaping
strong stable manifold.
• 3P,U ∩ Pσ is contained in the smaller center space

Esi−1 ⊕≺ · · · ⊕≺ E
s
1 ⊕≺ E

u
1 ⊕≺ · · · ⊕≺ E

u
j .

We will show that the strong stable manifold W ss
i (σ ) is escaping, contradicting the max-

imality of W ss
i+1(σ ). Suppose there is x ∈ (W ss

i (σ ) \ {σ)) ∩ 3X,U . The positive orbit of
x tends to σ tangentially to Esk ⊕≺ · · · ⊕≺ E

s
i and thus X(φt (x)) for t large is almost

tangent to Esk ⊕≺ · · · ⊕≺ E
s
i ; this implies that 3P,U ∩ Pσ contains at least a direction in

Esk ⊕≺ · · · ⊕≺ E
s
i , contradicting the hypothesis. ut

Lemma 39. Let U be a compact region. Given a hyperbolic singular point σ in U , and
its continuation σY for vector fields Y in a C1-neighborhood of X, both escaping strong
stable and unstable spaces EssσY ,U and EuuσY ,U depend lower semicontinuously on Y .

As a consequence, the central space EcσY ,U depends upper semicontinuously on Y ,
and so does its projective space PssσY ,U .
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Proof. We will only give the proof for the escaping strong stable space, as the proof for
the escaping strong unstable space is identical.

As σ is in the interior of U , there is δ > 0 and a C1-neighborhood U of X such that,
for any Y ∈ U :

• σ has a hyperbolic continuation σY for Y .
• The finest dominated splitting of σX for X has a continuation for σY which is a domi-

nated splitting (but maybe not the finest).
• The local stable manifold of size δ of σY is contained in U and depends continuously

on Y .
• For any strong stable space Ess(σ ), the corresponding local strong stable manifold
W ss(σY ) varies continuously with Y ∈ U .

Let Ess denote the escaping strong stable space of σ and let W ss
δ (σ ) be the corre-

sponding local strong stable manifold. We fix a sphere SX embedded in the interior of
W ss
δ (σ ), transverse to X and intersecting every orbit inW ss

δ (σ ) \ {σ }. By definition of es-
caping strong stable manifold, for every x ∈ SX there is t (x) > 0 such that φt (x)(x) /∈ U .

As SX is compact and the complement of U is open, there is a finite family ti , i =
0, . . . , k, an open covering V0, . . . , Vk and a C1-neighborhood U1 of X such that, for
every x ∈ Ui and every Y ∈ U1 the point φtiY (x) does not belong to U .

For Y in a smaller neighborhood U2 of X, the union of the Vi’s covers a sphere SY ⊂
W ss
δ (σY , Y ) intersecting every orbit in W ss

δ (σY , Y ) \ {σY }.
This shows thatW ss

δ (σY , Y ) is contained in the escaping strong stable manifold of σY ,
proving the lower semicontinuity. ut

5.3. The extended maximal invariant set

We are now able to define the subset of PM which extends the lifted maximal invariant
set and depends upper semicontinuously on X.

Definition 40. Let U be a compact region and X a vector field whose singular points are
hyperbolic. Then the set

B(X,U) = 3P,U ∪
⋃

σ∈Sing(X)∩U

Pcσ,U ⊂ PM

is called the extended maximal invariant set of X in U .

Proposition 41. Let U be a compact region and X a vector field whose singular points
are hyperbolic. Then the extended maximal invariant set B(X,U) of X in U is a compact
subset of PM , invariant under the flow φtP. Furthermore, the mapX 7→ B(X,U) depends
upper semicontinuously on X.

Proof. First notice that the set of singular points of Y in U consists of finitely many hy-
perbolic singularities varying continuously with Y in a neighborhood of X. The extended
maximal invariant set is compact, being the union of finitely many compact sets.
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Let Yn be a sequence of vector fields tending to X in the C1-topology, and let
(xn, Ln) ∈ B(Yn, U). Up to considering a subsequence we may assume that (xn, Ln)
tends to a point (x, L) ∈ PM , and we need to prove that (x, L) belongs to B(X,U).

First assume that x /∈ Sing(X). Then, for n large, xn is not a singular point for Yn so
that Ln = 〈Yn(xn)〉 and therefore L = 〈X(x)〉 belongs to B(X,U) as desired.

Thus we may assume x = σ ∈ Sing(X). First notice that if, for infinitely many n,
xn is a singularity of Yn then Ln belongs to PcσYn ,U . As PcσY ,U varies upper semicontin-
uously with Y , we deduce that L belongs to PcσX,U , as desired. So we may assume that
xn /∈ Sing(Yn).

We fix a neighborhood V of σ endowed with coordinates, so that X (and therefore Yn
for large n) is very close to its linear part in V . Let SX ⊂ W s

loc(σ ) be a sphere transversal
to X and intersecting every orbit in W s

loc(σ ) \ {σ }, and let W be a small neighborhood
of SX.

Assume that xn /∈ Wu(σYn) for infinitely many n. There is a sequence tn > 0 with the
following properties:

• φ−tYn (xn) ∈ V for all t ∈ [0, tn].
• φ
−tn
Yn
(xn) ∈ W .

• tn tends to +∞ as n→∞.

Up to considering a subsequence, one may assume that the points yn = φ
−tn
Yn
(xn) tend to

a point y ∈ W s(σ ).

Claim. The point y does not belong to W ss
σ,U .

Proof. By definition of the escaping strong stable manifold, for every y ∈ W ss
σ,U there

is t such that φt (y) /∈ U ; thus φtYn(yn) 6∈ U for yn close enough to y; in particular
yn /∈ 3Yn,U . ut

Since y /∈ W ss
σ,U for T > 0 large enough the line 〈X(z)〉, z = φT (y), is almost tangent

to Ecu = Ecσ,U ⊕ E
uu
σ,U . As a consequence, for n large, 〈Yn(zn)〉, where zn = φTYn(yn),

is almost tangent to the continuation Ecun of Ec for σn, Yn. As xn = φ
tn−T
Yn

(yn) , and
as tn − T → ∞, the dominated splitting implies that Ln = 〈Yn(xn)〉 is almost tangent
to Ecun .

This shows that L ⊂ Ecu. Notice that this also holds if xn belongs to the unstable
manifold of σYn . Arguing analogously we find that L ⊂ Ecs = Ecσ,U ⊕ E

ss
σ,U . Thus

L ⊂ Ecσ,U , concluding the proof. ut

Remark 42. The lower semicontinuity of the strong escaping stable and unstable man-
ifolds of a vector field X, and the upper semicontinuity of Ecσ , imply that there is a C1-
neighborhood U of X such that for any Y in U there are no regular orbits approaching the
singularity σ tangent to the escaping spaces. In fact, domination implies that any regular
orbit approaching σ becomes tangent to Ecσ . This implies that

3̃(X,U) ⊂ B(X,U).
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6. Reparametrizing cocycle associated to a singular point

Let X be a C1 vector field, φt its flow, and σ a hyperbolic singularity of X. We denote by
3X ⊂ PM the union

3X = {RX(x) : x /∈ Sing(X)} ∪
⋃

x∈Sing(X)

PxM.

It can be shown easily that this set is upper semicontinuous inX, as in the case ofB(X,U)
(see Proposition 41).

Lemma 43. 3X is a compact subset of PM invariant under the flow φtP, and the map
X 7→ 3X is upper semicontinuous. Finally, if the singularities of X are hyperbolic then
B(X,U) ⊂ 3X for any compact region U .

Let Uσ be a compact neighborhood of σ on which {σ } is the maximal invariant set. Let
Vσ be a compact neighborhood of Sing(X) \ {σ } such that Vσ ∩ Uσ = ∅. We fix a (C1)
Riemannian metric ‖ · ‖ on M such that

‖X(x)‖ = 1 for all x ∈ M \ (Uσ ∪ Vσ ).

Consider the map hσ : 3X × R→ (0,+∞), hσ (L, t) = htσ (L), defined as follows:

• If L ∈ PTxM with x /∈ Uσ and φt (x) /∈ Uσ , then htσ (L) = 1.
• If L ∈ PTxM with x ∈ Uσ and φt (x) /∈ Uσ then L = RX(x) and htσ (L) = 1/‖X(x)‖.
• If L ∈ PTxM with x /∈ Uσ and φt (x) ∈ Uσ then L = RX(x) and htσ (L) =
‖X(φt (x))‖.
• If L ∈ PTxM with x ∈ Uσ and φt (x) ∈ Uσ but x 6= σ then L = RX(x) and
htσ (L) = ‖X(φ

t (x)‖/‖X(x)‖.
• If L ∈ PTσM then htσ (L) = ‖φ

t
P(u)‖/‖u‖ where u is a vector in L.

Note that the case in which x is not the singularity and x ∈ Uσ can be written as in the
last item by taking u = X(x).

Lemma 44. Let X be a C1 vector field, φt its flow, and σ a hyperbolic singularity of X.
Define the sets 3X, Uσ , Vσ and the map hσ as above. Then hσ is a (continuous) cocycle
on 3X.

Proof. The continuity of hσ comes from the continuity of the norm and the fact that the
compact neighborhood Uσ contains only one singularity. Now for L ∈ 3X we aim to
show that hσ satisfies the cocycle relation

htσ (φ
s
P(L))h

s
σ (L) = h

t+s
σ (L).

• If L ∈ PTxM with x /∈ Uσ , φs(x) /∈ Uσ and φs+t (x) /∈ Uσ , then ht+sσ (L) =

htσ (φ
s
P(L))h

s
σ (L) = 1.

• Let L ∈ PTxM with x /∈ Uσ , φs(x) /∈ Uσ and φs+t (x) ∈ Uσ . Then x is not singular
and L = RX(x). Since hsσ (L) = 1, we have

htσ (φ
s
P(L))h

s
σ (L) = ‖X(φ

t (φs(x)))‖ = ‖X(φt+s(x))‖ = ht+sσ (L).
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Fig. 4. The local cocycle htσ associated to the singularity σ = σ0.

• If L ∈ PTxM with x /∈ Uσ , φs(x) ∈ Uσ , and φt+s(x) /∈ Uσ , then L = RX(x),
hsσ (L) = ‖X(φ

s(x))‖, and

htσ (φ
s
P(L))h

s
σ (L) =

1
‖X(φs(x))‖

‖X(φs(x))‖ = 1 = ht+sσ (L).

• If L ∈ PTxM with x /∈ Uσ , φs(x) ∈ Uσ , and φt+s(x) ∈ Uσ , then L = RX(x),
hsσ (L) = ‖X(φ

s(x))‖, and

htσ (φ
s
P(L))h

s
σ (L) =

‖X(φt (φs(x)))‖

‖X(φs(x)‖
‖X(φs(x))‖ = ‖X(φt (φs(x)))‖

= ‖X(φt+s(x))‖ = ht+sσ (L).

• If L ∈ PTxM with x ∈ Uσ , φs(x) /∈ Uσ , and φs+t (x) /∈ Uσ , then htσ (φ
s
P(L)) = 1 and

htσ (φ
s
P(L))h

s
σ (L) =

1
‖X(x)‖

= ht+sσ (L).

• Let L ∈ PTxM with x ∈ Uσ , φs(x) /∈ Uσ and φs+t (x) ∈ Uσ . Since hsσ (L) =
1/‖X(x)‖, we have

htσ (φ
s
P(L))h

s
σ (L) = ‖X(φ

t (φs(x)))‖
1

‖X(x)‖
=
‖X(φt+s(x))‖

‖X(x)‖
= ht+sσ (L).

• If L ∈ PTxM with x ∈ Uσ , φs(x) ∈ Uσ and φt+s(x) /∈ Uσ , then L = RX(x),
htσ (φ

s
P(L)) = 1/‖X(φs(x))‖ and

htσ (φ
s
P(L))h

s
σ (L) =

‖X(φs(x))‖

‖X(x)‖

1
‖X(φs(x))‖

=
1

‖X(x)‖
= ht+sσ (L).
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• If L ∈ PTxM with x ∈ Uσ \ {σ }, φs(x) ∈ Uσ and φt+s(x) ∈ Uσ then L = RX(x) and

htσ (φ
s
P(L))h

s
σ (L) =

‖X(φt (φs(x)))‖

‖X(φs(x))‖

‖X(φs(x))‖

‖X(x)‖
=
‖X(φt (φs(x)))‖

‖X(x)‖

=
‖X(φt+s(x))‖

‖X(x)‖
= ht+sσ (L).

• If L ∈ PTσM , let u be a vector in L; then

ht+sσ (L) =
‖Dφt+sP (u)‖

‖u‖
=
‖Dφt+sP (u)‖

‖DφsP(u)‖

‖DφsP(u)‖

‖u‖

=
‖DφtP(Dφ

s
P(u))‖

‖DφsP(u)‖

‖DφsP(u)‖

‖u‖
= htσ (φ

s
P(L))h

s
σ (L). ut

Lemma 45. The cohomology class of a cocycle h defined as above is independent of the
choice of the metric ‖ · ‖ and of the neighborhoods Uσ and Vσ .

Proof. Let ‖·‖ and ‖·‖′ be two different metrics. Let Uσ , Vσ and U ′σ , V ′σ be two different
sets of neighborhoods of σ and Sing(X) \ {σ } such that:

• Vσ ∩ Uσ = ∅.
• V ′σ ∩ U

′
σ = ∅.

• V ′σ ∩ Uσ = ∅ and Vσ ∩ U ′σ = ∅.
• ‖X(x)‖ = 1 for all x ∈ M \ (Uσ ∪ Vσ ).
• ‖X(x)‖′ = 1 for all x ∈ M \ (U ′σ ∪ V

′
σ ).

We define hσ as before for the metric ‖ · ‖ and h′σ as before for the metric ‖ · ‖′. We define
a function g : B(X,U)→ (0,+∞) such that:

• If L ∈ PTxM with x /∈ V ′σ ∪ Vσ , then g(L) = ‖u‖′/‖u‖ for a non-zero vector u in L.
• If L ∈ PTxM with x ∈ V ′σ ∪ Vσ , then g(L) = 1.

Claim. The function g : B(X,U)→ (0,+∞) defined above is continuous.

Proof. The continuity of the norms ‖ · ‖ and ‖ · ‖′, and the fact that they are 1 outside
Vσ ∪ V

′
σ and V ′σ ∩ Uσ = ∅ and Vσ ∩ U ′σ = ∅, gives us the continuity on the boundary of

Uσ ∪ U
′
σ . ut

The following claim will show us that the functions hσ and h′σ differ by a coboundary

defined as gt (L) = g(DφtP(u))
g(u)

.

Claim. The functions hσ and h′σ are such that

h′tσ (u) = h
t
σ (u)

g(DφtP(u))

g(u)
.

Proof. • For the metric ‖ · ‖′ and L ∈ PTxM with x /∈ Uσ ∪U ′σ and φt (x) /∈ Uσ ∪U ′σ ,
one has gt (L) = 1. On the other hand h′t (L) = 1 as desired.
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• If L ∈ PTxM with x ∈ Uσ ∪ U ′σ and φt (x) /∈ Uσ ∪ U ′σ then gt (L) = ‖u‖/‖u‖′. Take
u = X(x). Then ht (L) = 1/‖X(x)‖ and

h′t (L) = ht (L)
‖X(x)‖

‖X(x)‖′
.

• If L ∈ PTxM with x /∈ Uσ ∪ U
′
σ and φt (x) ∈ Uσ ∪ U ′σ then L = RX(x). Take

u = X(x). Then gt (L) = ‖Dφ
t
P(u)‖

′

‖DφtP(u)‖
and since ht (L) = ‖DφtP(u)‖,

h′t (L) = ht (L)
‖DφtP(u)‖

′

‖DφtP(u)‖
.

.
• If L ∈ PTxM ∩B(X,U) with x ∈ Uσ and φt (x) ∈ Uσ , then taking u = X(x), one has

gt (L)
‖DφtP(u)‖

′
‖u‖

‖DφtP(u)‖‖u‖
′
,

and ht (L) = DφtP(u)/‖u‖. So h′t (L) = ht (L)gt (L). ut

Now in order to finish the proof we need to show that the condition that V ′σ ∩ Uσ = ∅
and Vσ ∩U ′σ = ∅ does not restrict generality. For this, suppose we started with any other
norm ‖ · ‖′′ and that there exist neighborhoods V ′′σ , U ′′σ such that:

• V ′′σ ∩ U
′′
σ = ∅.

• ‖X(x)‖′′ = 1 for all x ∈ M \ (U ′′σ ∪ V
′′
σ ).

Choose a smaller neighborhood V ′σ ⊂ V
′′
σ . Then V ′σ ∩ U

′′
σ = ∅. Analogously U ′σ ⊂ U

′′
σ

will satisfy V ′′σ ∩ U
′
σ = ∅. Now if we choose the neighborhoods V ′σ and U ′σ as small as

we want, and a norm ‖ · ‖′ such that ‖X(x)‖′ = 1 for all x ∈ M \ (U ′′σ ∪ V
′′
σ ), the claims

above imply that the corresponding h′′ and h′ differ by a coboundary. Therefore h′ can be
chosen so that h′′ and h differ by a coboundary. ut

We denote by [h(X, σ)] the cohomology class of any cocycle defined as h above.

Lemma 46. Consider a vector field X and a hyperbolic singularity σ of X. Then there
is a C1-neighborhood U of X such that σ has a well defined hyperbolic continuation σY
for Y in U , and for any Y ∈ U there is a map hY : 3Y × R→ (0,+∞) such that:

• hY is a cocycle belonging to the cohomology class [h(Y, σY )].
• hY depends continuously on Y : if Yn ∈ U converges to Z ∈ U for the C1-topology

and if Ln ∈ 3Yn converges to L ∈ 3Z , then htYn(Ln) tends to htZ(L) for every t ∈ R;
furthermore, this convergence is uniform in t ∈ [−1, 1].

Proof. The manifold M is endowed with a Riemannian metric ‖ · ‖. We fix the neighbor-
hoods Uσ and Vσ for X and U is a C1-neighborhood of X such that σY is the maximal
invariant set for Y in Uσ and Sing(Y ) \ {σY } is contained in the interior of Vσ . Up to
shrinking U if necessary, we also assume that there are compact neighborhoods Ũσ of σY
contained in the interior of Uσ and Ṽσ of Sing(Y ) \ {σY } contained in the interior of Vσ .
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We fix a continuous function ξ : M → [0, 1] so that ξ(x) = 1 for x ∈ M \ (Uσ ∪ Vσ )
and ξ(x) = 0 for x ∈ Ũσ ∪ Ṽσ .

For any Y ∈ U we consider the map ηY : M → (0,+∞) defined by

ηY (x) =
ξ(x)

‖X(x)‖
+ 1− ξ(x).

This map is a priori not defined on Sing(Y ) but extends by continuity to y ∈ Sing(Y ) by
ηY (y) = 1, and is continuous.

This map depends continuously on Y . Now we consider the metric ‖ · ‖Y = ηY ‖ · ‖.
Note that ‖Y (x)‖Y = 1 for x ∈ M \ (Uσ ∪Vσ ). Now hY is the cocycle built in Lemma 45
for Uσ , Vσ and ‖ · ‖Y . ut

Notice that, according to Remark 29, if σ1, . . . , σk are hyperbolic singularities of X, the
homology class of the product cocycle htσ1

· · ·htσk is well defined, and admits representa-
tives varying continuously with the flow.

7. Extension of the dominated splitting

7.1. The dominated splittings over the singularities

The aim of this section is to prove Theorem 2.

Remark 47. Suppose that the finest Lyapunov decomposition of the singularity is

TσM = E1 ⊕ · · · ⊕ Ei ⊕ · · · ⊕ Ej ⊕ · · · ⊕ El .

If we pick a direction L ∈ PσM such that the closure of its orbit under φtP, denotedO(L),
is contained in Ei ⊕ · · · ⊕ Ej , then the angle between φtP(L) and any space∑

h<i

Eh or
∑
h>j

Eh

is uniformly away from zero.
Recall that πL : TxM → NL is the projection associated to the normal bundle. We

can identify πL(Eh) with Eh for all h < i and h > j , and also we can identify

φtP

(∑
h<k

Eh

)
with

∑
h<k

Eh for k < i

and

φtP

(∑
k<h

Eh

)
with

∑
k<h

Eh for k > j .
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Lemma 48. Let X be a vector field on a d-dimensional manifold M with a hyperbolic
singularity σ where the finest splitting of the tangent space is

TσM = E1 ⊕ · · · ⊕ El .

Consider a Riemannian metric such that Ei ⊥ Ej for all i 6= j . Let L be such that
L = 〈u〉 where u belongs to some Ei . Then

NL = E1 ⊕ · · · ⊕ πL(Ei)⊕ · · · ⊕ El

is the finest dominated splitting over the closure of the orbit of L.

Proof. Suppose that λ < 0; the other case is analogous. Let w ∈ πL(Ei). Since Dφt (u)
and ψ tN (w) are perpendicular, we have

J (Dφt )|Ei = J (ψ
t
N )|πL(Ei )‖Dφ

t (u)‖.

If dimEi = d we have J (Dφt )|Ei = etλd and the largest Lyapunov exponent of ψ tN
cannot be greater than λ. Therefore there are two possibilities: either

1. there exists a constant C such that J (ψ tN ) = Cetλ(d−1) for t large enough, or
2. the ratio of contraction of u is greater than λ.

Since Dφt |Ei has all the Lyapunov exponents equal to λ, for t large enough we have

‖Dφt (u)‖ ≤ C1‖u‖e
λt ,

reaching a contradiction. ut

The following lemma together with Lemma 53 are very similar to Lemma 4.3 in [LGW].
Since the context is slightly different and the statement is split into two parts, we add the
proof anyway.

Lemma 49. Let X be a vector field with a hyperbolic singularity σ where the finest
hyperbolic decomposition of the tangent space is

TσM = E1 ⊕ · · · ⊕ Ei ⊕ · · · ⊕ Ej ⊕ · · · ⊕ El .

Suppose Ei is a stable space, and Ej an unstable space. Define ki =
∑i−1
k=1 dimEk

and hj =
∑l
k=j+1 dimEk .

Consider a direction L = 〈u〉, where u is a vector in (Ei ⊕ Ej ) \ (Ei ∪ Ej ). Assume
E ⊕

≺
F is a dominated splitting for ψN over the closure O(L) of the orbit of L for φP.

Then either

• dimE ≤ ki , in which case there is 1 ≤ i′ < i such that, for any L′ ∈ O(L),

E = πL′
( i′∑
k=1

Ek

)
'

i′∑
k=1

Ek and F = πL′
( l∑
k=i′+1

Ek

)
,

in particular F contains the projection of the sum of the Ek for k ≥ i; or
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• dimF ≤ hj , in which case there is j < j ′ ≤ l such that, for any L′ ∈ O(L),

F = πL′
( l∑
k=j ′

Ek

)
'

l∑
k=j ′

Ek and E = πL′
(j ′−1∑
k=1

Ek

)
,

in particular E contains the projection of the sum of the Ek for k ≤ j .

Proof. First note that, as L is contained in Ei ⊕ Ej but not in Ei or Ej , the ω-limit of L
for φP is contained in PEj and its α-limit is contained in PEi .

Towards a contradiction, assume that there is a dominated splitting E⊕F over O(L)
such that dimE > ki and dimF > hj .

According to Lemma 48, for any Lω ∈ O(L)∩ PEj , the finest dominated splitting of
O(Lω) is obtained from E1 ⊕ · · · ⊕Ei ⊕ · · · ⊕Ej ⊕ · · · ⊕El by replacing the space Ej
by its projection and keeping all the others unchanged (modulo their identification with
their projections). Thus the splitting E ⊕ F is just given by the dimension. So there is
i ≤ r < j such that for any such Lω one has

E(Lω) = E1 ⊕ · · · ⊕ Er and F(Lω) = Er+1 ⊕ · · · ⊕ Ej−1 ⊕ πLω (Ej )⊕ · · · ⊕ El .

The same argument shows that there is i < s ≤ j such that for any Lα in PEi ∩ O(L)
(α-limit of L) one has

E(Lα) = E1 ⊕ · · · ⊕ Ei−1 ⊕ πLα (Ei)⊕ · · · ⊕ Es and F(Lα) = Es+1 ⊕ · · · ⊕ El .

This allows us to find the spaces E(L) and F(L). For that, consider an unstable cone
around the space F(Lω) and extend it by continuity to a small neighborhood of the ω-
limit of L. Then E(L) is exactly the set of vectors which do not enter the unstable cone
for large positive iterates of the extended linear Poincaré flow. One deduces that

E(L) = E1 ⊕ · · · ⊕ Ei−1 ⊕ πL(Ei ⊕ L)⊕ Ei+1 ⊕ · · · ⊕ Er .

In the same way, F(L) consists of the vectors which do not enter the stable cone defined
on the α-limit set of L under large negative iterates of the extended linear Poincaré flow.
One deduces that

F(L) = Es ⊕ · · · ⊕ Ej−1 ⊕ πL(Ej ⊕ L)⊕ Ej+1 ⊕ · · · ⊕ El .

Consider the positive iterates ψ tN (F (L)) = F(φ
t
P(L)) of F(L). Denote Lt = φtP(L).

Then F(Lt ) contains πLt (Ej ⊕ Lt ), which has the same dimension as Ej . Recall that,
by hypothesis, Lt is contained in Ei ⊕ Ej . Thus πLt (Ej ⊕ Lt ) converges in N (Lω) to
some subspace of πLω (Ei ⊕ Ej ) ' Ei ⊕ πLω (Ej ) containing πLω (Ej ) and having the
same dimension as Ej . This implies that the limit of πLt (Ej ⊕ Lt ) as t → +∞ contains
vectors in Ei but is contained in F(Lω). This contradicts the fact that Ei ⊂ E(Lω).

This contradiction implies that dimE ≤ ki or dimF ≤ hj . We now conclude the
proof in the first case, the other case being similar.
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Assume dimE ≤ ki . Then looking at the finest dominated splitting at Lω one deduces
that there is 1 ≤ i′ < i such that dimE =

∑i′

k=1 dimEk . Then the splitting N (L′) =
Ẽ(L′)⊕ F̃ (L′) defined as

Ẽ(L′) = πL′
( i′∑
k=1

Ek

)
'

i′∑
k=1

Ek and F̃ (L′) = πL′
( l∑
k=i′+1

Ek

)
is invariant, has constant dimension for L′ ∈ O(L) and coincides with a dominated split-
ting over the ω-limit set and over the α-limit set. Therefore it is a dominated splitting so
that dim Ẽ = dimE and so Ẽ = E and F̃ = F , concluding the proof. ut

7.2. Relating the central space of the singularities with the dominated splitting on 3̃

Now let us go back to our dynamical context. Let X be a vector field with a chain recur-
rence class C and a singularity σ ∈ C. We consider the following splitting of the tangent
space M:

Ess ⊕ Ec ⊕ Euu,

into the stable escaping space, the central space and the unstable escaping space. We
suppose that the singularities are hyperbolic and that the dimension of the central space
is locally constant. These are open and dense conditions. Let us consider the hyperbolic
eigenvalues of the hyperbolic splitting restricted to the central space:

λ1 < · · · < λl

and the associated spaces:
Ec = E1 ⊕ · · · ⊕ El .

Note that from Remark 42 we know that 3̃ ⊂ B(X,U), and from Theorem 6 we have
3P(X,U) ⊂ 3̃.

Remark 50. By Lemma 39 there is a C1-open and dense set such that the dimension
of the central space is locally constant. By definition of central space there is always a
direction L1 in 3̃∩PσM such that L1 = 〈u〉 where u belongs to E1 and Ll in 3̃∩PσM ,
such that Ll = 〈v〉 where v belongs to El .

Lemma 51. Consider a vector field X such that:

• There is a hyperbolic singularity σ and the splitting of the tangent space of the singu-
larity into escaping spaces and central space is

TσM = E
ss
⊕ Ec ⊕ Euu.

• The central space splits as Ec = E1 ⊕ · · · ⊕ El .

• The chain recurrence class of σ , C(σ), is not trivial.
• The dimension of Ec is locally constant (i.e. the dimension of Ec(σ, Y ) is constant

for Y in a C1-open neighborhood of X).

Then for any C1-neighborhood U of X, there is Y in U such that there is a homoclinic
orbit γ ⊂ C(σ) that approaches the singularity tangent to the E1 direction for the future
and tangent to the El direction for the past.
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Proof. Let us consider the finest hyperbolic decomposition of the central space of σ for
this vector field:

Ec = E1 ⊕ · · · ⊕ El .

By definition, there is an orbit in the stable manifold tangent to Ess⊕E1 that is contained
inC(σ) and there is an orbit in the unstable manifold tangent toEl⊕Euu that is contained
in C(σ). In the open set aroundX such that the dimension of the central space is constant,
we choose Y such that all periodic orbits of Y are hyperbolic, and the orbit in the stable
manifold tangent to Ess ⊕ E1 approaches the singularity in the direction of E1, while
the orbit in the unstable manifold tangent to El ⊕ Euu approaches the singularity in the
direction of El . By Theorem 21 we can get another vector field Y1 arbitrarily close to Y
that has a homoclinic orbit 0 that approaches the singularity in the direction of E1 for
the future and in the direction of El for the past (observe that for Y1 the dimension of the
central space is the same as for X). ut

Corollary 52. Consider a vector field X such that:

• There is a singularity σ and the tangent space of the singularity splits into escaping
spaces and central space as follows:

TσM = E
ss
⊕ Ec ⊕ Euu.

• The central space splits as Ec = E1 ⊕ · · · ⊕ El .

• The chain recurrence class C(σ) is not trivial.
• The dimension of Ec is locally constant (i.e. the dimension of Ec(σ, Y ) is constant

for Y in a C1-open neighborhood of X).

Then:

• There is L1 ∈ 3̃(C(σ)) ∩ πP(E1) and Ll ∈ 3̃(C(σ)) ∩ πP(El).
• There is L ∈ 3̃(C(σ)) such that L = 〈u〉 where u is a vector in (E1⊕El) \ (E1 ∪El).

Proof. The first item is a direct consequence of Lemma 51.
For the second item, from Lemma 51, we can find a vector field Y having a homoclinic

orbit γ that approaches the singularity σ tangent to L1 and it approaches the singularity
for the past, tangent to a direction Ll in El . We may assume that Y is linearizable in a
neighborhood of σ . We now consider a linearized neighborhood of the singularity that
we call Uσ , and choose two regular points x, y such that x ∈ W s

loc(σ ) ∩ γ and y ∈
Wu

loc(σ ) ∩ γ . Then we can choose xn → x and yn → y such that φtn(xn) = yn and
{φt (xn) : 0 ≤ t ≤ tn} is tangent to E1 ⊕ El ; note that for n large enough we can suppose
that the segment of orbit from xn to yn is in Uσ and in the linearized neighborhood, so
actually if Ln = 〈Y (xn)〉 then

{φtP(Ln) : 0 ≤ t ≤ tn} ⊂ πP(E1 ⊕ El \ (E1 ∪ El)).

We now perturb our vector field Y to a new vector field Xn → Y so that there is a
closed orbit γn formed by the segment of orbit between xn and yn in Uσ , and the segment
of orbit of γ outside Uσ (see Figure 5).
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Fig. 5. Perturbation to get γn.

We can now find a pn in γn satisfying pn → σ and if Lpn = 〈Xn(pn)〉, then the
upper limit of Lpn is a subset of 3̃(C(σ)) (i.e. all limit points of Lpn are in 3̃(C(σ))).
Taking a subsequence if necessary, we may assume that Lpn → L where L = 〈u〉 and
u ∈ (E1 ⊕ El) \ (E1 ∪ El). ut

In this section we suppose that the extended linear Poincaré flow over 3̃(C(σ)) has a
dominated splitting,

NL = NE
⊕N F ,

where L is a direction in 3̃(C(σ)).
We denote by πL : TxM → NL where L ∈ PxM the projection onto the normal

space at a given direction L.

Lemma 53. Let X be a vector field having a singular chain recurrence class C(σ). De-
note S = Sing(X) ∩ C(σ) and suppose that:

• Every σ ∈ S is hyperbolic.
• The dimension of the central space of σ ∈ S is locally constant.
• The extended linear Poincaré flow over 3̃(C(σ)) has a dominated splitting,

NL = NE
⊕N F ,

where L is any direction in 3̃(C(σ)).

Let L be a direction in 3̃ ∩ PσM . Then either

πL(E
c
σ ) ⊂ NE

L or πL(E
c
σ ) ⊂ N F

L .

Proof. Since σ is hyperbolic we can suppose that the tangent space at σ splits as

TσM = E
ss
⊕ Ec ⊕ Euu,

into the escaping spaces and the central space. We also consider the finest hyperbolic
splitting Ec = E1 ⊕ · · · ⊕ El .
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Suppose that dimNE
L = n. If dimEss ≥ n, then since dimEss = dimπL(E

ss) we
have

NE
L ⊂ πL(E

ss).

This implies that πL(Ecσ ) ⊂ N F
L .

Suppose that dimN F
L = m. If dimEuu ≥ m, then since dimEuu = dimπL(E

uu) we
have

N F
L ⊂ πL(E

uu).

This implies that πL(Ecσ ) ⊂ NE
L .

Suppose now that
dimEss < dimNE

L . (2)

From Corollary 52, for every L we have πL(E1) ⊂ NE
L . Since the singularity is not

isolated, E1 is a contracting space and El is expanding.
Suppose for contradiction that there exists a direction Lu = 〈u〉 such that NLu con-

tains some v such that 〈v〉 = Lv ∈ πLu(E1 ⊕ · · · ⊕ El) with v /∈ NE
Lu

.
We can assume without loss of generality that v ∈ El and u ∈ E1. Then Lemma 48

gives NE
Lu
∩ El = ∅. This implies that dimNE

L < dimπL(E
ss
⊕ Ec) for any L in

3̃(C(σ)), and therefore
dimN F

L > dimπL(E
uu) (3)

for any L in 3̃(C(σ)).
On the other hand, we are under the hypotheses of Corollary 52. Thus there is L ∈

3̃(C(σ)) such that L = 〈w〉 where w (E1 ⊕ El) \ (E1 ∪ El). Taking E1 for Ei and El
for Ej we see from Lemma 49 that either

dimEss ≥ dimNE
L or dimN F

L ≤ dimπL(E
uu),

contradicting (2) and (3). This allows us to conclude the proof. We can do this for all
singularities in S. ut

Corollary 54. LetX be a vector field having a singular chain recurrence class C(σ). Let
S = Sing(X) ∩ C(σ), and suppose that:

• All σ ∈ S are hyperbolic.
• The dimension of the central space of any singularity σ is locally constant.

Then the extended linear Poincaré flow has a dominated splitting over 3̃(C(σ)) if and
only if it has a dominated splitting over B(C(σ)) of the same dimension.

Proof. Suppose that B(C(σ)) has a dominated splitting. Then 3̃(C(σ)) has a dominated
splitting of the same dimension, since it is a compact invariant subset.

Conversely, suppose that there is a dominated splitting of the normal bundle
in 3̃(C(σ)),

NL = NE
⊕N F .

Then, according to the previous lemma, we have two possibilities:

πL(E
c
σ ) ⊂ NE

L or πL(E
c
σ ) ⊂ N F

L .
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The tangent space at σ splits as

TσM = E
ss
⊕ Ec ⊕ Euu,

into the escaping spaces and the central space. We also consider the finest hyperbolic
splittings

Ec = E1 ⊕ · · · ⊕ El, Ess = Es1 ⊕ · · · ⊕ Esk, Euu = Eu1 ⊕ · · · ⊕ Eur .

So if πL(Ecσ ) ⊂ NE
L , Lemma 48 implies that there exists i such that

N F
L = Eui ⊕ · · · ⊕ Eur , NE

L = Ess ⊕ πL(E
c)⊕ Eu1 ⊕ · · · ⊕ Eui−1.

The same dominated splitting can be defined for any L ∈ B(C(σ)). The other case is
analogous.

We can do the same for every singularity in the class. ut

Lemma 55. Consider a chain recurrence class C(σ) of a singularity σ where

TσM = E
ss
⊕ Ec ⊕ Euu.

Consider the finest Lyapunov splitting Ec = E1⊕· · ·⊕El . If the dimension of the central
space is locally constant then

πP(Ei) ∩ 3̃(C(σ)) 6= ∅

for all the Lyapunov spaces Ei of the hyperbolic splitting. Moreover if all the spaces Ei
are one- or two-dimensional, then

πP(Ei) ⊂ 3̃(C(σ))

for all 1 ≤ i ≤ l.

Proof. Let us consider πP(E1) in Pcσ . By definition of central space, there is an orbit γ1
tangent to Ess ⊕E1 that is not tangent to Ess . This implies that πP(E1)∩ 3̃(C(σ)) 6= ∅.

Consider a small filtrating neighborhood U of C(σ). First we perturb X to a vector
field Y ′ that is Kupka–Smale. We can make the perturbation small enough so that the
vector field Y ′ satisfies the hypotheses of the lemma as well, since our assumptions are
robust.

By Lemma 21 we perturb Y ′ to Y so that γ1 is a homoclinic connection of the singular-
ity and without changing the property that γ1 becomes tangent toEss⊕E1 as it approaches
the singularity. Now we perturb Y to Y1 breaking the homoclinic connection in the direc-
tion of E2 so that it is no longer tangent to Ess ⊕ E1 but it is tangent to Ess ⊕ E1 ⊕ E2.
The domination implies that the orbit will become tangent to E2 as it approaches σ . We
can do this perturbation so that γ1 remains the same outside the linear neighborhood of
the singularity and such that the α-limit also remains the same (σ ). Therefore, γ1 still be-
longs to C(σ)Y1 . Thus there is a direction L2 ∈ E2 such that L2 ∈ 3P,U (Y1) for any U .
We can continue this process for all 1 ≤ i ≤ l.
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We conclude that in any small enough C1-neighborhood of X there are vector fields
Yi−1 such that

3P,U (Yi−1) ∩ πP(Ei) 6= ∅.

Since the C1-neighborhood of X can be taken arbitrarily small, we have

3̃(X,U) ∩ Ei 6= ∅.

Since this is true for any small enough filtrating neighborhood, it follows that

3̃(C(σ)) ∩ Ei 6= ∅.

If the central space splits into only one- or two-dimensional spaces, let us take L ∈
πP(Ei) ∩ 3̃ where Ei is two-dimensional with complex Lyapunov exponents. Since
3̃(C(σ)) is invariant, the orbit of L under φtP, denoted O(L), is such that O(L) ⊂
3̃(C(σ)). Since Ei has complex Lyapunov exponents, the direction L is not invariant
and O(L) covers all directions of Ei and therefore πP(Ei) ⊂ 3P(X,U). ut

The next corollary implies Theorem 2:

Corollary 56. LetX be a vector field having a singular chain recurrence class C(σ). Let
S = Sing(X) ∩ C(σ) and suppose that:

• Every σ ∈ S is hyperbolic.
• The dimension of the central space of σ ∈ S is locally constant, and the finest Lyapunov

splitting is into one- or two-dimensional spaces.

If 3̃(C(σ)) has a hyperbolic structure on the normal bundle NL = N1 ⊕ · · · ⊕ Ni ⊕

· · · ⊕ Nr for the extended linear Poincaré flow, then B(C(σ)) has the same hyperbolic
structure.

Proof. From Corollary 54, the dominated splitting in 3̃ extends to B(X,U). So let us
consider the space Ni and the number di such that

J (hti · (ψ
t
N |Di ))

is a uniform contraction or expansion for any subspaceDi ⊂ Ni of dimension di over the
orbits in 3̃. We suppose, without loss of generality, that it is a contraction.

Since B(C(σ)) and 3̃ coincide on the directions that are not over the singularities,
we only need to check that for every σ and every orbit of an L ∈ B(C(σ)) ∩ PσM the
Jacobian J (hti · (ψ

t
N |Di )) contracts uniformly for any subspaceDi ⊂ Ei of dimension di .

The tangent space of σ splits as

TσM = E
ss
⊕ Ec ⊕ Euu,

into the escaping spaces and the central space. We also consider the finest Lyapunov
splitting Ec = E1 ⊕ · · · ⊕ El . From Lemma 55 we know that πP(Ei) ⊂ 3̃ for every
i ∈ {1, . . . , l}.
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Then we consider L ∈ B(X,U) and a vector u in the direction of L. In coordinates
of the central space, u = (u1, . . . , ui, . . . , uj , . . . , ul). We suppose that uh is the first
non-zero coordinate of u and uj is the last. Domination implies that for t sufficiently
negatively large, φtP(L) is in a small cone around πP(Eh) and remains there thereafter.
For the future, φtP(L) is in a small cone around πP(Ej ) and remains there thereafter. Since
the contraction and expansion rates extend to the cones around πP(Ej ) and πP(Eh), and
the orbit is outside these cones only for a finite time, we get our conclusion.

We are now ready to define our notion of multisingular hyperbolicity.

8. Multisingular hyperbolicity

8.1. Definition of multisingular hyperbolicity

Definition 57. Let X be a C1 vector field on a compact manifold and let U be a compact
region. One says that X is multisingular hyperbolic on U if:

(1) Every singularity of X in U is hyperbolic. We denote S = Sing(X) ∩ U .
(2) The restriction of the extended linear Poincaré flow {ψ tN } to the extended maximal

invariant set B(X,U) admits a dominated splitting NL = EL ⊕ FL.
(3) There is a subset SE ⊂ S such that the reparametrized cocycle htEψ

t
N is uniformly

contracted when restricted to the bundles E over B(X,U), where hE =
∏
σ∈SE

hσ .

(If SE is empty, one may assume that hE = 1.)
(4) There is a subset SF ⊂ S such that the reparametrized cocycle htFψ

t
N is uniformly

expanded in restriction to the bundles F over B(X,U), where hF =
∏
σ∈SF

hσ . (If
SF is empty, one may assume that hF = 1.)

Remark 58. The subsets SE and SF are not necessarily uniquely defined, leading to
several notions of multisingular hyperbolicity. We can also slightly modify this definition
allowing the product of powers of the hσ . In that case h̃E would be of the form

htE =
∏
σ∈SE

(htσ )
αE(σ )

for some αE(σ ) ∈ R.

Theorem 7. Let X be a C1 vector field on a compact manifold M and let U ⊂ M be a
compact region. Assume that X is multisingular hyperbolic on U . Then X is a star flow
on U , that is, there is a C1-neighborhood U ofX such that every periodic orbit contained
in U of a vector field Y ∈ U is hyperbolic. Furthermore every Y ∈ U is multisingular
hyperbolic in U .

Proof. Recall that the extended maximal invariant set B(Y,U) varies upper semicon-
tinuously with Y for the C1-topology. Therefore, according to Proposition 24 there is
a C1-neighborhood U0 of X such that, for every Y ∈ U0, the extended linear Poincaré
flow ψ tN ,Y

admits a dominated splitting E ⊕
≺
F over B(Y,U), whose dimensions are

independent of Y and whose bundles vary continuously with Y .
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Let SE and SF be the sets of singular points ofX in the definition of singular hyperbol-
icity. Lemma 46 allows us to choose two families of cocycles htE,Y and htF,Y depending
continuously on Y in a small neighborhood U1 of X and which belong to the product of
the cohomology classes of cocycles associated to the singularities in SE and SF , respec-
tively. Thus the linear cocycle

htE,Y · ψ
t
N ,Y |E,Y over B(Y,U)

varies continuously with Y in U1, and is uniformly contracted for X. Thus, it is uniformly
contracted for Y in a C1-neighborhood of X.

One shows in the same way that

htF,Y · ψ
t
N ,Y |F,Y over B(Y,U)

is uniformly expanded for Y in a small neighborhood of X.
We have just proved that there is a neighborhood U of X such that Y ∈ U is multisin-

gular hyperbolic in U .
Consider a (regular) periodic orbit γ of Y and let π be its period. Just by construction

of the cocycles hE and hF , one can check that

hπE(γ (0)) = h
π
F (γ (0)) = 1.

One deduces that the linear Poincaré flow is uniformly hyperbolic along γ so that γ is
hyperbolic, ending the proof. ut

8.2. Multisingular hyperbolic structures over a singular point

The aim of this subsection is to prove

Proposition 59. Let X be a C1 vector field on a compact manifold and U ⊂ M a com-
pact region. Assume that X is multisingular hyperbolic in U and let i denote the dimen-
sion of the stable bundle of the reparametrized extended linear Poincaré flow. Let σ be a
singularity of X. Then either

• at least one entire invariant (stable or unstable) manifold of σ is escaping from U , or
• σ is Lorenz-like. More precisely, either

– the stable index is i+1, the central space Ecσ,U contains exactly one stable direction
Es1 (dimEs1 = 1), and Es1⊕E

u(σ ) is sectionally dissipative, in which case σ ∈ SF ;
or

– the stable index is i, the central space Ecσ,U contains exactly one unstable direction
Eu1 (dimEu1 = 1), andEs(σ )⊕Eu1 is sectionally contracting, in which case σ ∈ SE .

Note that in the first case of this proposition the class of the singularity in U must be
trivial. If it were not, the regular orbits of the class that accumulate on σ , entering U ,
would accumulate on an orbit of the stable manifold. Therefore the stable manifold could
not be completely escaping. The same reasoning holds for the unstable manifold.
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Let Esk ⊕≺ · · · ⊕≺ E
s
1 ⊕≺ E

u
1 ⊕≺ · · · ⊕≺ E

u
` be the finest dominated splitting of the

flow over σ . For the proof, we will assume in the rest of the section that the class of σ is
not trivial, and therefore we are not in the first case of the proposition. In other words, we
assume that there are a, b > 0 such that

Ecσ,U = E
s
a ⊕≺ · · · ⊕≺ E

s
1 ⊕≺ E

u
1 ⊕≺ · · · ⊕≺ E

u
b .

We assume that X is multisingular hyperbolic of s-index i and we denote by E ⊕
≺
F

the corresponding dominated splitting of the extended linear Poincaré flow over B(X,U).
The following lemma is a direct consequence of Lemma 53:

Lemma 60. Let X be a C1 vector field on a compact manifold and U ⊂ M a compact
region. Assume that X is multisingular hyperbolic in U and let i denote the dimension
of the stable bundle of the reparametrized extended linear Poincaré flow. Let σ be a
singularity of X. Then with the notation above, either

• i = dimE ≤ dimEsk ⊕ · · · ⊕E
s
a+1 (i.e. the dimension of E is smaller than or equal to

the dimension of the biggest stable escaping space); or
• dimM − i − 1 = dimF ≤ dimEu` ⊕ · · · ⊕ E

u
b+1 (i.e. the dimension of F is smaller

than or equal to the dimension of the biggest unstable escaping space).

According to Lemma 60 we now assume that i ≤ dimEsk ⊕ · · · ⊕E
s
a+1 (the other case is

analogous, with X replaced by −X).

Lemma 61. With the hypotheses above, for every L ∈ Pcσ,U the projection of Ecσ,U on
the normal space NL is contained in F(L).

Proof. This is because the projection of Esk ⊕ · · · ⊕ E
s
a+1 has dimension at least the

dimension i ofE and hence containsE(L). Thus the projection ofEcσ,U is transverse toE.
As the projection of Esσ,U on NL defines a ψ tT -invariant bundle over the φtT -invariant
compact set Pcσ,U , one concludes that the projection is contained in F . ut

As a consequence, the bundle F is not uniformly expanded on Pcσ,U for the extended
linear Poincaré flow. As it is expanded by the reparametrized flow, this implies σ ∈ SF .

Consider now L ∈ Esa . Then ψ tN restricted to the projection of Ecσ,U on NL consists
in multiplying the natural action of the derivative by the exponential contraction along L.
As it is included in F , multisingular hyperbolicity implies that it is a uniform expansion;
this means that:

• L is the unique contracting direction in Esσ,U ; in other words, a = 1 and dimEs −

dimEsa = 1.
• Contraction along Esa is less than expansion in Euj , j > 1; in other words Ecσ,U is

sectionally expanding.

To finish the proof of Proposition 59, it remains to check the s-index of σ : for L ∈ Esa
one finds that F(L) is isomorphic to Eu1 ⊕ · · · ⊕ E

u
` so that the s-index of σ is i + 1,

ending the proof.
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9. Multisingular hyperbolicity is a necessary condition for star flows: Proof of
Theorem 4

The aim of this section is to prove

Lemma 62. Let X be a generic star vector field on M . Consider a chain recurrence
class C of X. Then there is a filtrating neighborhood U of C such that the extended
maximal invariant set B(X,U) is multisingular hyperbolic.

Notice that, as the multisingluar hyperbolicity of B(X,U) is a robust property, Lemma 62
implies Theorem 3.

As already mentioned, the proof of Lemma 62 consists essentially in recovering the
results in [SGW] and adjusting a few of them to the new setting. So we start by recalling
several of the results from or used in [SGW].

We begin by stating the following properties of star flows:

Lemma 63 ([L], [Ma2]). For any star vector field X on a closed manifold M , there is
a C1-neighborhood U of X and numbers η > 0 and T > 0 such that, for any periodic
orbit γ of a vector field Y ∈ U and any integer m > 0 the following holds: Let N =
Ns ⊕ Nu be the stable-unstable splitting of the normal bundle N for the linear Poincaré
flow ψYt . Then:

• Domination: For every x ∈ γ and t ≥ T , one has

‖ψYt |Ns‖

min(ψYt |Nu)
≤ e−2ηt .

• Uniform hyperbolicity at the period: If the period π(γ ) is larger than T then, for every
x ∈ γ , one has:

[mπ(γ )/T ]−1∏
i=0

‖ψYt |Ns (φ
Y
iT (x))‖ ≤ e

−mηπ(γ ),

[mπ(γ )/T ]−1∏
i=0

min(ψYt |Nu(φ
Y
iT (x))) ≥ e

mηπ(γ ).

Here min(A) is the mini-norm of A, i.e., min(A) = ‖A−1
‖
−1.

Now we need some generic properties for flows:

Lemma 64 ([C], [BGY]). There is a C1-dense Gδ subset G of the C1-open set of star
flows of M such that, for every X ∈ G, one has:

• Every critical element (zero or periodic orbit) of X is hyperbolic and therefore admits
a well defined continuation in a C1-neighborhood of X.
• For every critical element p of X, the chain recurrence class C(p) is continuous in X

in the Hausdorff topology.
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• If p and q are two critical elements of X such that C(p) = C(q) then there is a C1-
neighborhood U of X such that the chain recurrence classes of p and q still coincide
for every Y ∈ U .
• For any non-trivial chain recurrence class C of X, there exists a sequence of periodic

orbits Qn such that Qn tends to C in the Hausdorff topology.

Lemma 65 ([SGW, Lemma 4.2]). Let X be a star flow in M and σ ∈ Sing(X). Assume
that the Lyapunov exponents of φt (σ ) are

λ1 ≤ · · · ≤ λs−1 ≤ λs < 0 < λs+1 ≤ λs+1 ≤ · · · ≤ λd .

If the chain recurrence class C(σ) is non-trivial, then:

• Either λs−1 6= λs or λs+1 6= λs+2.
• If λs−1 = λs , then λs + λs+1 < 0.
• If λs+1 = λs+2, λs + λs+1 > 0.
• If λs−1 6= λs and λs+1 6= λs+2, then λs + λs+1 6= 0.

We say that a singularity σ satisfying the conditions of the previous lemma is Lorenz-like
of index s, and we define the saddle value of σ as

sv(σ ) = λs + λs+1.

Consider a Lorenz-like singularity σ .

• If sv(σ ) > 0, we consider the splitting

TσM = G
ss
σ ⊕G

cu
σ

where (using the notations of Lemma 65) the space Gssσ corresponds to the Lyapunov
exponents λ1 to λs−1, and Gcuσ corresponds to λs, . . . , λd .
• If sv(σ ) < 0, we consider the splitting

TσM = G
cs
σ ⊕G

uu
σ

where the space Gcsσ corresponds to λ1 to λs+1, and Guuσ corresponds to the Lyapunov
exponents λs+2, . . . , λd .

Corollary 66. LetX be a vector field, σ a Lorenz-like singularity ofX, and hσ : 3X×R
→ (0,+∞) a cocycle in the cohomology class [hσ ] defined in Section 6.

(1) If Ind(σ ) = s + 1 and sv(σ ) > 0, then the restriction of ψN to PGcuσ admits a
dominated splitting NL = EL ⊕ FL with dimEL = s for L ∈ PGcuσ . Furthermore:

• E is uniformly contracting for ψN .
• F is uniformly expanding for the reparametrized extended linear Poincaré flow
hσ · ψN .

(2) If Ind(σ ) = s and sv(σ ) < 0, then the restriction of ψN to PGsuσ admits a dominated
splitting NL = EL ⊕ FL with dimEL = s for L ∈ PGcuσ . Furthermore:

• F is uniformly expanding for ψN .
• E is uniformly contracting for the reparametrized extended linear Poincaré flow
hσ · ψN .
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Proof. We only consider the first case Ind(σ ) = s + 1 and sv(σ ) > 0; the other is
analogous and can be deduced by reversing the time.

We consider the restriction of ψN to PGcuσ , that is, for points L ∈ 3̃X corresponding
to lines contained in Gcuσ . Therefore the normal space NL can be identified, up to a pro-
jection which is uniformly bounded, to the direct sum of Gssσ with the normal space of L
in Gcuσ .

Now we fix EL = Gssσ and FL is the normal space of L in Gcuσ . As Gssσ and Gcuσ are
invariant under the derivative of the flow φt , one sees that the splitting NL = EL ⊕ FL is
invariant under the extended linear Poincaré flow over PGcuσ . Let us first prove that this
splitting is dominated:

By Lemma 65 if we choose a unit vector v in EL we know that for any t > 0 one has

‖ψ tN (v)‖ ≤ Ke
tλs−1 .

Now let us choose a unit vector u in FL, and consider wt = ψ tN (u) ∈ FφtP(L). Then
for any t > 0, one has

‖Dφ−t (wt )‖ ≤ K
′et (−λs )‖wt‖.

The extended linear Poincaré flow is obtained by projecting the image by the derivative of
the flow on the normal bundle. Since the projection on the normal space does not increase
the norm of the vectors, one gets

‖ψ−tN (wt )‖ ≤ K
′et (−λs )‖wt‖,

in other words
1

‖ψ tN (u)‖
≤ K ′et (−λs ).

Putting together these inequalities one gets

‖ψ tN (v)‖

‖ψ tN (u)‖
≤ KK ′et (λs−1−λs ).

This provides the domination as λs−1 − λs < 0.
Notice that EL = Gssσ is uniformly contracted by the extended linear Poincaré flow

ψN , because it coincides, on Gssσ and for L ∈ PGcuσ , with the differential of the flow φt .
To finish the proof, it remains to show that the reparametrized extended linear Poincaré
flow hσ · ψN expands uniformly the vectors in FL for L ∈ PGcuσ .

Notice that, over the whole projective space Pσ , the cocycle hσ,t (L) is the rate of
expansion of the derivative of φt in the direction of L. Therefore hσ · ψN is defined as
follows: Consider a line D ⊂ NL. Then the expansion rate of the restriction of hσ · ψN
to D is the expansion rate of the area on the plane spanned by L and D by the derivative
of φt .

The hypothesis λs + λs+1 > 0 implies that the derivative of φt expands uniformly the
area on the planes contained in Gcuσ , concluding the proof. ut
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Lemma 67 ([SGW, Lemma 4.5 and Theorem 5.7]). Let X be a C1 generic star vector
field and let σ ∈ Sing(X). Then there is a filtrating neighborhood U of C(σ) such that,
for any two periodic points p, q ∈ U ,

Ind(p) = Ind(q).

Furthermore, for any singularity σ ′ in U ,

Ind(σ ′) =
{

Ind(q) if sv(σ ′) < 0,
Ind(q)+ 1 if sv(σ ′) > 0.

Lemma 68. There is a dense Gδ set G in the set of star flows on M with the following
properties: Let X be in G, and let C be a chain recurrence class of X. Then there is a
(small) filtrating neighborhoodU of C such that the lifted maximal invariant set 3̃(X,U)
of X in U has a dominated splitting N = E ⊕≺ F for the extended linear Poincaré flow
such that E extends the stable bundle for every periodic orbit γ contained in U .

Proof. According to Lemma 67, the class C admits a filtrating neighborhood U in which
the periodic orbits are hyperbolic and with the same index. On the other hand, according
to Lemma 64, every chain recurrence class in U is accumulated by periodic orbits. Since
X is a star flow, Lemma 63 asserts that the normal bundle over the union of these periodic
orbits admits a dominated splitting for the linear Poincaré flow, corresponding to their
stable/unstable splitting. It follows that the union of the corresponding orbits in the lifted
maximal invariant set has a dominated splitting for N . Since any dominated splitting
defined on an invariant set extends to the closure of this set, we have a dominated splitting
on the closure of the lifted periodic orbits, and hence on the whole 3̃(X,U). ut

Lemma 68 asserts that the lifted maximal invariant set 3̃(X,U) admits a dominated split-
ting. What we need now is to extend this dominated splitting to the extended maximal
invariant set

B(X,U) = 3̃(X,U) ∪
⋃

σi∈Sing(X)∩U

Pcσi ,U .

We need the following theorem to have more information on the projective center
spaces Pcσi ,U .

Lemma 69 ([SGW, Lemma 4.7]). LetX be a star flow inM and σ be a singularity of X
such that C(σ) is non-trivial.

• If sv(σ ) > 0, then
W ss(σ ) ∩ C(σ) = {σ },

where W ss(σ ) is the strong stable manifold associated to the space Gssσ .
• If sv(σ ) < 0, then

Wuu(σ ) ∩ C(σ) = {σ },

where Wuu(σ ) is the strong unstable manifold associated to the space Guuσ .
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Remark 70. Consider a vector field X and a hyperbolic singularity σ of X. Assume
that W ss(σ ) ∩ C(σ) = {σ }, where C(σ) is the chain recurrence class of σ . Then there
is a filtrating neighborhood U of C(σ) on which the strong stable manifold W ss(σ ) is
escaping from U (see the definition in Section 5.2).

Proof. Each orbit in W ss(σ ) \ {σ } goes out of some filtrating neighborhood of C(σ) and
the nearby orbits exit the same filtrating neighborhood. Notice that the space of orbits in
W ss(σ )\{σ } is compact, so that we can consider a finite cover of it by open sets for which
the corresponding orbits exit the same filtrating neighborhood of C(σ). The announced
filtrating neighborhood is the intersection of these finitely many filtrating neighborhoods.

ut

Remark 70 allows us to consider the escaping strong stable manifold and the strong un-
stable manifold of a singularity σ without referring to a specific filtrating neighborhood
U of the class C(σ): these notions do not depend on U small enough. Hence the notion
of the center space Ecσ = E

c(σ, U) is also independent of U for U small enough. Thus
we will denote

Pcσ = Pcσ,U
for a sufficiently small neighborhood U of the chain recurrence class C(σ).

Remark 71. Lemma 69 together with Remark 70 implies that:

• If sv(σ ) > 0, then Ecσ ⊂ G
cu.

• If sv(σ ) < 0, then Ecσ ⊂ G
cs .

Lemma 72. Let X be a generic star vector field on M . Consider a chain recurrence
class C of X. Then there is a neighborhood U of C such that the extended maximal
invariant set B(X,U) has a dominated splitting for the extended linear Poincaré flow,

NB(X,U) = E ⊕≺ F,

which extends the stable-unstable bundle defined on the lifted maximal invariant set
3̃(X,U).

Proof. The case where C is not singular is already done. According to Lemma 67 there
exist an integer s and a neighborhoodU of C such that every periodic orbit inU has index
s and every singular point σ in U is Lorenz-like, and either its index is s and sv(σ ) < 0,
or σ has index s + 1 and sv(σ ) > 0.

According to Remark 71,

B(X,U) ⊂ 3̃(X,U) ∪
⋃

sv(σi )<0

PGcsσi ∪
⋃

sv(σi )>0

PGcuσi

By Corollary 66 and Lemma 68 each of these sets admits a dominated splitting E ⊕ F
for the extended linear Poincaré flow ψN with dimE = s.

The uniqueness of dominated splittings for prescribed dimensions implies that these
dominated splittings coincide on the intersections, concluding the proof. ut
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We already proved the existence of a dominated splitting E ⊕ F , with dimE = s, for
the extended linear Poincaré flow over B(X,U) for a small filtrating neighborhood of C,
where s is the index of any periodic orbit in U . It remains to show that the extended linear
Poincaré flow admits a reparametrization which contracts uniformly the bundle E and a
reparametrization which expands the bundle F .

Lemma 65 divides the set of singularities into two kinds: those with positive saddle
value and those with negative saddle value. We denote

SE := {x ∈ Sing(X) ∩ U : sv(x) < 0},
SF := {x ∈ Sing(X) ∩ U : sv(x) > 0}.

Recall that Section 6 associated to every singular point σ a cocycle hσ : 3X×R→ R,
whose cohomology class is well defined. Define

hE =
∏
σ∈SE

hσ and hF =
∏
σ∈SF

hσ .

Now Lemma 62, and therefore Theorem 3, is a direct consequence of the next lemma:

Lemma 73. Let X be a generic star vector field on M . Consider a chain recurrence
class C of X. Then there is a neighborhood U of C such that the extended maximal
invariant set B(X,U) is such that the normal space has a dominated splitting NB(X,U) =

E ⊕≺ F such that the space E (resp. F) is uniformly contracting (resp. expanding) for
the reparametrized extended linear Poincaré flow htE · ψ

t
N (resp. htF · ψ

t
N ).

The proof uses the following theorem by Gan, Shi and Wen, which describes the ergodic
measures for a star flow. Given a C1 vector field X, an ergodic measure µ for the flow
φt is said to be hyperbolic if either µ is supported on a hyperbolic singularity, or µ has
exactly one zero Lyapunov exponent, whose invariant subspace is spanned by X.

Theorem 8 ([SGW, Lemma 5.6]). Let X be a star flow. Any invariant ergodic measure
µ of the flow φt is a hyperbolic measure. Moreover, if µ is not the atomic measure on any
singularity, then supp(µ) ∩ H(P ) 6= ∅, where P is a periodic orbit with the index of µ,
i.e., the number of negative Lyapunov exponents of µ (with multiplicity), andH(P ) is the
homoclinic class of P .

Proof of Lemma 73. Towards a contradiction, assume that the bundle E is uniformly
contracting for hE · ψ tN over B(X,U) for no filtrating neighborhood U of the class C.

One deduces the following claim:

Claim. Let C̃ ⊂ 3̃(X) be the closure in PM of the lift of C \ Sing(X) and let S =
Sing(X)∩C. Then, for every T > 0, there exists an ergodic invariant measure µT whose
support is contained in ⋃

s∈S

Pcs ∪ C̃

such that ∫
log ‖hTE · ψ

T
N |E‖ dµ(x) ≥ 0.
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Proof. For each U , there exists an ergodic measure µT whose support is contained in
B(X,U) such that ∫

log ‖hTE · ψ
T
N |E‖ dµT (x) ≥ 0.

But a priori the class C need not be a maximal invariant set in U . We fix this by observing
that ⋃

s∈S

Pcs ∪ C̃ ⊂ B(X,U)

for any U as small as we want and actually we can choose a sequence {Un}n∈N of neigh-
borhoods such that Un→ C and therefore⋃

s∈S

Pcs ∪ C̃ =
⋂
n∈N

B(X,Un).

This defines a sequence µnT → µ0
T of measures such that∫

log ‖hTE · ψ
T
N |E‖ dµ

n
T (x) ≥ 0,

and with supports converging to
⋃
s∈S Pcs ∪ C̃. The resulting limit measure µ0

T , whose
support is contained in

⋃
s∈S Pcs ∪ C̃, might not be ergodic but it is invariant. We can

decompose it as a sum of ergodic measures, and so if∫
log ‖hTE · ψ

T
N |E‖ dµ

0
T (x) ≥ 0,

there must exist an ergodic measure µT in the ergodic decomposition of µ0
T such that∫

log ‖hTE · ψ
T
N |E‖ dµT (x) ≥ 0,

and the support of µT is contained in
⋃
s∈S Pcs ∪ C̃. ut

Recall that for generic star flows, every chain recurrence class inB(X,U) is the Hausdorff
limit of periodic orbits of the same index and which satisfy the conclusion of Lemma 63.
Let η > 0 and T0 > 0 be given by Lemma 63. We consider an ergodic measure µ = µT
for some T > T0.

Claim. Let νn be a measure supported on a periodic orbit γn with period π(γn) > T .
Then

∫
loghTE dνn(x) = 0.

Proof. By definition of hTE ,

loghTE = log
∏
σi∈SE

‖hTσi‖,
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so it suffices to prove the claim for a given hTσi . For every x in γ , by the cocycle condition
in Lemma 44 we have

bmπ(γ )/T c−1∏
i=0

hTσi (φ
Y
iT (x)) = h

bmπ(γ )/T c−1
σi

(x).

The norm of the vector field restricted to γ is bounded, and therefore hbmπ(γ )/T c−1
σi (x) is

bounded for m ∈ N going to infinity. Then this is also true for hTE . Since νn is an ergodic
measure, we have∫

loghTE dνn(x) = lim
m→∞

1
m

bmπ(γ )/T c−1∑
i=0

log(hTE(φ
Y
iT (x)))

= lim
m→∞

1
m

log
(bmπ(γ )/T c−1∏

i=0

hTE(φ
Y
iT (x))

)
= lim
m→∞

1
m

log(hbmπ(γ )/T c−1
E (x)) = 0. ut

Claim. There is a singular point σi such that µ is supported on Pcσi .

Proof. Suppose that µ(
⋃
σi∈Sing(X) Pcσi ) = 0. Then µ projects to an ergodic measure ν

on M supported on the class C and such that it is the singularities, for which∫
log ‖hE · ψTN |E‖ dν(x) ≥ 0.

(Recall that ψT is the linear Poincaré flow, and hTE can be defined as a function of x ∈ M
instead of a function of L ∈ PM outside an arbitrarily small neighborhood of the singu-
larities.)

However, asX is generic, the ergodic closing lemma implies that ν is the weak-∗ limit
of measures νn supported on periodic orbits γn which converge for the Hausdorff distance
to the support of ν. Therefore, for n large enough, the γn are contained in a small filtrating
neighborhood of C, hence ∫

log ‖hTE · ψ
T
|E‖ dνn(x) ≤ −η.

The map log ‖hTE · ψ
T
|E‖ is not continuous. Nevertheless, it is uniformly bounded

and the unique discontinuity points are the singularities ofX. These singularities have (by
assumption) weight 0 for ν and thus admit neighborhoods with arbitrarily small weight.
Outside such a neighborhood the map is continuous. One deduces that∫

log ‖hTE · ψ
T
|E‖ dν(x) = lim

∫
log ‖hE · ψT |E‖ dνn(x)

and therefore it is strictly negative, contradicting the assumption. This contradiction
proves the claim. ut
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On the other hand, Corollary 66 asserts that:

• If σi is such that sv(σi) < 0, then σi ∈ SE and the restriction of ψN to PGscσi is such
that hE coincides with hσi and hE · ψN uniformly contracts the bundle E.
• If sv(σi) > 0, then σi /∈ SE and the restriction of ψN to PGcuσi uniformly contracts E.

Note that in this case htE is constant equal to 1.

Recall that Pcσi is contained in PGcsσi (resp. PGcuσi ) if sv(σi) < 0 (resp. sv(σi) > 0). One
deduces that there are T1 > 0 and ε > 0 such that

log ‖hE · ψTN |EL‖ ≤ −ε, ∀L ∈ Pcσi and T > T1.

Therefore the measures µT , for T > max{T0, T1} cannot be supported on Pcσi , leading
to a contradiction. The expansion for F is proved analogously.

This finishes the proof of Lemma 73 and therefore the proof of Lemma 62 and Theo-
rem 3. ut

10. A multisingular hyperbolic set in R3

In this section we will build a chain recurrence class inM3 containing two singularities of
different indices that will be multisingular hyperbolic. However, this will not be a robust
class, and the singularities will not be robustly related. Other examples of this kind are in
[BaMo]. A robust example on a 5-dimensional manifold is given in [dL1]

Theorem 9. There exists a vector field X on S2
× S1 with an isolated chain recurrence

class 3 such that:

• There are two singularities in 3. They are Lorenz-like and of different indices.
• There is a cycle between the singularities. The cycle and the singularities are the only

orbits in 3.
• The set 3 is multisingular hyperbolic.

To begin the proof, let us construct a vector field X that we will later show to have the
properties of Theorem 9.

Consider a vector field in S2 having:

• A source f0 such that the basin of repulsion of f0 is a disc bounded by a cycle 0 formed
by the unstable manifold of a saddle s0 and a sink σ0.
• A source α0 in the other component limited by 0.
• We require that the tangent at σ0 splits into two spaces, one having a stronger contrac-

tion than the other. The strongest direction is tangent to 0 at σ0.

Note that the unstable manifold of s0 is formed by two orbits. These orbits have their
ω-limit in σ0, and as they approach σ0, they become tangent to the weak stable direction
(see Figure 6).

Now we consider S2 embedded in S3, and we define a vector field X0 on S3 that is
normally hyperbolic on S2, in fact we have S2 times a strong expansion, and two extra
sinks that we call ω0 and P0 completing the dynamics (see Figure 7).
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Fig. 6. The vector field in S2.

Fig. 7. S2 normally repelling in S3.

Note that σ0 is now a saddle. We require that the weaker contraction at σ0 is weaker
than the expansion. So σ0 is Lorenz-like.

Now we remove a neighborhood of f0 and P0. The resulting manifold is diffeomor-
phic to S2

× [−1, 1] and the vector field X0 will be pointing outwards on A0 = S
2
× {1}

(corresponding to removing a neighborhood of P0) and entering on B0 = S2
× {−1}

(corresponding to removing a neighborhood of f0) (see Figure 8).

Fig. 8. Removing a neighborhood of f0 and P0.
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Now we consider another copy of S2
× [−1, 1] with a vector field X1 that is the time

reversal of X0. Therefore X1 has a saddle called σ1 that has a strong expansion, a weaker
expansion and a contraction, and is Lorenz-like. It also has a sink called α1, a source
called ω1, and a saddle called s1.

The vector field X1 is entering on A1 = S2
× {1} and pointing outwards on B1 =

S2
× {−1}.
We can now paste X1 and X0 together along their boundaries (A0 with A1 and the

other two). Since both vector fields are transversal to the boundaries we can obtain a C1

vector field X in the resulting manifold that is diffeomorphic to S2
× S1.

We do not paste any of the boundaries using the identity. We first describe the map
gluing A0 with A1. We paste them by a rotation so that

(Wu(α0) ∩ A0)
c and Wu(s0) ∩ A0

are mapped to
W s(α1) ∩ (A1).

We also require thatWu(σ0)∩A0 is mapped toW s(σ1)∩A1,We will later require an
extra condition on this gluing map, which is a generic condition, and which will guarantee
multisingular hyperbolicity.

Fig. 9. Pasting S2
× {1} and S2

× {1}.

To glue B0 to B1, let us first observe that these boundaries were formed by removing
a neighborhood of f0 and f1. Then by construction W s(σ0) ∩ B0 is a circle that we will
call C0. We can also define the corresponding C1. Note that all points in C0, except one,
are in W s(σ0), while there is one point l in C0 that is in W s(s0). We paste B0 and B1,
mapping C0 so as to intersect C1 transversally at points of W s(σ0) and Wu(σ1).

Note that the resulting vector fieldX has a cycle between two Lorenz-like singularities
σ0 and σ1.
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Fig. 10. Pasting S2
× {−1} and S2

× {−1}.

Lemma 74. The vector field X defined above is such that the cycle and the singularities
are the only chain recurrent points.

Proof. • All the recurrent orbits of X0 in S3 are the singularities. Once we remove the
neighborhoods of the two singularities we obtain the manifold with boundary S2

×

[−1, 1]. The the only other orbits of the vector field X (that results from pasting X0
and X1) that may be recurrent have to intersect the boundaries.
• The points in A0 that are in Wu(α0)

c
∪Wu(σ0) are wandering since they are mapped

to the stable manifold of the sink α1.
• The points in B0 ∩W

u(α0) are wandering.

As a conclusion, the only point in A0 whose orbit could be recurrent is the one in

B0 ∩W
u(σ0).

Let us now look at the points in B0. There is a circle C0, corresponding toW s(σ0)∩B0
that divides B0 into two components. One of these components is the basin of the sink ω0
and the other is what used to be the basin of P0. So we have the following possibilities:

• The points that are in the basin of the sink ω0 are not chain recurrent.
• The points that are in what used to be the basin of P0 are either mapped into the basin

of ω1 or sent to what used to be the basin of P1. Note that these points cross A0 for the
past, and since they are not in the stable manifold of σ1, they are wandering.
• Some points in C0 will be mapped to the basin of ω1, others to what used to be the basin

of P1, and others to C1. In the first two cases those points are wandering.

To sum up:

• The only recurrent orbits that cross B0 are in the intersection of C0 with C1.
• The only recurrent orbits that cross A0 are in the intersection of Wu(σ0) with W s(σ1).



2702 Christian Bonatti, Adriana da Luz

• The only recurrent orbits that do not cross the boundaries of S2
× [−1, 1] are singular-

ities.

This proves the lemma. ut

For the Lorenz singularity σ0 of X which is a positive saddle and such that Tσ0M =

Ess ⊕ Es ⊕ Euu, we define Bσ0 ⊂ PM as

Bσ0 = πP(E
s
⊕ Euu).

For the Lorenz singularity σ1 of X which is a negative saddle and such that Tσ1M =

Ess ⊕ Eu ⊕ Euu, we define Bσ1 ⊂ PM as

Bσ1 = πP(E
ss
⊕ Eu).

Let a, b and c be points that are one in each of the three regular orbits forming the cycle
between the two singularities of X; assume a is the one such that the α-limit is σ0. We
define La = SX(a), Lb = SX(b) and Lc = SX(c). We also denote by O(La),O(Lb) and
O(Lc) the orbits of La , Lb and Lc under φtP.

Proposition 75. Suppose that X is a vector field defined as above. Then there exist an
open set U containing the orbits of a, b and c and the saddles σ0 and σ1 such that

B(U,X) = Bσ0 ∪ Bσ1 ∪O(La) ∪O(Lb) ∪O(Lc).

Proof. The two orbits of the strong stable manifold of σ0 go by construction to α0 for the
past. This implies that the strong stable manifold is escaping. The fact that there is a cycle
tells us that there are no other escaping directions, therefore the center space is formed by
the weak stable and the unstable spaces. By definition Bσ0 = Pcσ0

. Analogously we see
that Bσ1 = Pcσ1

. Since the cycle formed by the orbits of a, b and c and the saddles σ0 and
σ1 is an isolated chain recurrence class, we can choose U small enough so that this class
is the maximal invariant set in U . This proves our proposition. ut

Lemma 76. We can choose a vector field X defined as above in such a way that it is
multisingular hyperbolic in U .

Proof. The reparametrized linear Poincaré flow is hyperbolic when restricted to the
bundle over Bσ0 ∪ Bσ1 and of index 1. We consider the set Bσ0 ∪ Bσ1 ∪O(La).

The strong stable space at σ0 is the stable space for the reparametrized linear Poincaré
flow. There is a well defined stable space in the linearized neighborhood of σ0, and since
the stable space is invariant for the future, there is a one-dimensional stable flag that
extends along the orbit of a. We can reason analogously with the strong unstable manifold
of σ1 and conclude that there is an unstable flag extending through the orbit of a. We can
choose the gluing maps of S2

× {−1} to S2
× {−1} so that the stable and unstable flags

in the orbit of a intersect transversally. This is because this condition is open and dense
in the set of possible gluing maps with the properties mentioned above. Therefore the set
Bσ0 ∪ Bσ1 ∪O(La) is hyperbolic for the reparametrized linear Poincaré flow.
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Analogously we prove that Bσ0 ∪Bσ1 ∪O(La)∪O(Lb)∪O(Lc) is hyperbolic for the
reparametrized linear Poincaré flow, and since from Proposition 75 there exists U such
that

Bσ1 ∪ Bσ2 ∪O(La) ∪O(Lb) ∪O(Lc) = B(U,X),

it follows that X is multisingular hyperbolic in U . ut

The example in [BaMo] consists of two singular (negatively and positively) hyperbolic
sets H− and H+ of different indices, and wandering orbits going from one to the other.
Since they are singular hyperbolic, H− and H+ are multisingular hyperbolic sets of
the same index. Moreover, the stable and unstable flags (for the reparametrized linear
Poincaré flow) along the orbits joining H− and H+ intersect transversally. This is also
true for H−.

With all these ingredients we can prove (in a similar way to what we just did with the
simpler example above) that the chain recurrence class containingH− andH+ in [BaMo]
is multisingular hyperbolic, while it was shown by the authors that it is not singular hy-
perbolic.
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[Ma] Mañé, R.: An ergodic closing lemma. Ann. of Math. (2) 116, 503–540
Zbl 0511(1982)58029 MR 0678479
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