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Abstract. Building upon recent results of Dubédat [7] on the convergence of topological correla-
tors in the double-dimer model considered on Temperleyan approximations �δ to a simply con-
nected domain � ⊂ C we prove the convergence of probabilities of cylindrical events for the
double-dimer loop ensembles on �δ as δ → 0. More precisely, let λ1, . . . , λn ∈ � and L be a
macroscopic lamination on � \ {λ1, . . . , λn}, i.e., a collection of disjoint simple loops surrounding
at least two punctures considered up to homotopies. We show that the probabilities P δ

L
that one

obtains L after withdrawing all loops surrounding no more than one puncture from a double-dimer
loop ensemble on �δ converge to a conformally invariant limit PL as δ→ 0, for each L.

Though our primary motivation comes from 2D statistical mechanics and probability, the proofs
are of a purely analytic nature. The key techniques are the analysis of entire functions on the rep-
resentation variety Hom(π1(� \ {λ1, . . . , λn})→ SL2(C)) and on its (non-smooth) subvariety of
locally unipotent representations. In particular, we do not use any RSW-type arguments for double-
dimers.

The limits PL of the probabilities P δ
L

are defined as coefficients of the isomonodromic tau-
function studied in [7] with respect to the Fock–Goncharov lamination basis on the representation
variety. The fact that PL coincides with the probability of obtaining L from a sample of the nested
CLE(4) in � requires a small additional input, namely a mild crossing estimate for this nested
conformal loop ensemble.

Keywords. Isomonodromic tau-function, double-dimer model, topological correlators

1. Introduction and main results

Convergence of double-dimer interfaces and loop ensembles to SLE(4) and CLE(4), re-
spectively, is a well-known prediction made by Kenyon after the introduction of SLE
curves by Schramm [23, Section 2.3]. In particular, this provided a strong motivation to
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study couplings between Conformal Loop Ensembles (CLE) and the two-dimensional
Gaussian Free Field (GFF), a subject which remained very active during the last fifteen
years and led to several breakthroughs in the understanding of SLEs and CLEs via the
Imaginary Geometry techniques; see e.g. [17] and references therein.

Originally, this prediction was strongly supported by the convergence of dimer height
functions to the GFF proved (for Temperleyan approximations on Z2) by Kenyon [12, 13]
and the fact that the level lines of the GFF are SLE(4) curves [24], [29]. More re-
cently it received even more support due to the breakthrough works of Kenyon [14] and
Dubédat [7] on the convergence of topological observables for double-dimer loop en-
sembles. Our paper should be considered as a complement to the work of Dubédat who
writes (see [7, Corollary 3]),

The assumptions: 1. (µδ)δ is tight, and 2. a probability measure µ on loop ensembles in a
simply connected domainD is uniquely characterized by the expectations of the functionals
. . . imply weak convergence of the µδ’s to the CLE4(D) measure as δ ↘ 0.

To the best of our knowledge, there are still no available results on the first assumption
(tightness), thus Kenyon’s prediction should not be considered as fully proven yet. The
main goal of this paper is to give a solid ground for the second assumption: we show that
the topological observables treated by Dubédat [7] do characterize the measure on loop
ensembles in the sense described below.

It is worth noting that several approaches to the convergence of (double-)dimer height
functions to the GFF are known nowadays (see e.g. [2] and [4]) besides the original one
of Kenyon [12, 13], which is based on the analysis of the scaling limit of the Kasteleyn
matrix by means of discrete complex analysis and is also the starting point for [14] and [7].
Also, the choice of discrete approximations �δ to a simply connected domain � is a very
delicate question; see [22] for another (not Temperleyan) special case when the discrete
complex analysis machinery works well. To be able to build upon the results of [7], below
we assume that�δ are Temperleyan approximations on the square grids of mesh δ though
this setup can be enlarged in several directions.

Recall that, given a Temperlean simply connected discrete domain �δ ⊂ δZ2,
a double-dimer loop ensemble on �δ is obtained by superimposing two dimer config-
urations on �δ chosen independently uniformly at random: this produces a number of
loops and double-edges, the latter should be withdrawn. We denote by 2δ� the random
collection of simple pairwise disjoint loops obtained in this way. The nested conformal
loop ensemble CLE(4) in � is a conjectural limit of 2δ� as δ → 0. The CLE(4) can be
defined and effectively studied purely in continuum; see [25, 20] and references therein
for background. We denote by 2?� a random sample of this loop ensemble. Note that 2?�
almost surely contains infinitely many loops but most of them are very small: almost
surely, for each cut-off ε > 0 only finitely many of the loops of2?� have diameter greater
than ε.

Let λ1, . . . , λn ∈ � be a collection of pairwise distinct punctures in �. A lamina-
tion 0 is a finite collection of disjoint simple loops in � \ {λ1, . . . , λn} considered up to
homotopies. We call a lamination macroscopic if each of these loops surrounds at least
two of the punctures. For a random loop ensemble 2 and a deterministic macroscopic
lamination 0, let 2 ∼ 0 denote the event that withdrawing all loops surrounding no
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more than one puncture from 2 one obtains 0. We call the events 2 ∼ 0 cylindrical;
their probabilities (for all n ≥ 1, all λ1, . . . , λn ∈ � and all macroscopic laminations L)
determine the law of 2 for reasonable topologies on the space of loop ensembles.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Given n, put ne points in the interior of
each edge e ∈ E .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Connect these points by chords inside
each triangle.

Fig. 1. A triangulation T� of � \ {λ1, . . . , λn} and a lamination 0 recovered from a multi-index
n ∈ ZE

≥0. One has |0| =
∑
e∈E ne = 20.

An important notion that is constantly used in our paper is the complexity |0| of a
lamination 0. From now onwards, we fix a triangulation T� of � \ {λ1, . . . , λn} whose
n + 1 vertices correspond to λ1, . . . , λn and to the boundary of �; see Fig. 1. Note that
we allow two triangles to share several edges; see Fig. 2 for an example. However, for
simplicity we do not allow λ1, . . . , λn or ∂� to have degree 1 in the triangulation T�.

Definition 1.1. Given a triangulation T� of�\{λ1, . . . , λn}, we define the complexity |0|
of a lamination 0 to be the minimal possible (after applying homotopies) number of
intersections of loops constituting 0 with the edges e ∈ E of T�.

Remark 1.2. (i) In fact, one can parametrize laminations on � \ {λ1, . . . , λn} by multi-
indices n = (ne) ∈ ZE

≥0 satisfying certain conditions; see Fig. 1 and Section 3.2 for more
details. Under this parametrization one has |0| =

∑
e∈E ne.

(ii) The notion of complexity introduced above depends on the choice of the trian-
gulation T�. However, it is easy to see that, for any two such choices T ′� and T ′′� , the
complexities |0|′, |0|′′ differ by no more than a multiplicative factor independent of 0.

(iii) Let us emphasize that, once T� is fixed, the complexity |0| cannot be estimated
via the number of loops in 0 (below we denote the latter quantity by #loops(0)). Indeed,
provided that n ≥ 3, the complexity |0| can be arbitrarily large even if #loops(0) = 1.

We denote by
X := Hom(π1(� \ {λ1, . . . , λn})→ SL2(C))

the (smooth) variety of SL2(C)-representations of the free non-abelian fundamental
group π1(� \ {λ1, . . . , λn}). Note that one could view X as (SL2(C))n by fixing genera-
tors of the fundamental group but this viewpoint is not invariant enough for the analytic
tools that we use below. Let λ◦i denote the loop surrounding a single puncture λi , and

Xunip := {ρ ∈ X : Tr(ρ(λ◦i )) = 2 for all i = 1, . . . , n} (1.1)

be the (non-smooth) subvariety of locally unipotent representations ρ ∈ X. In this paper
we study entire functions f : X → C or f : Xunip → C, in the latter case we mean
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that f is continuous on Xunip and is holomorphic on its regular part. Moreover, we are
interested only in those entire functions that are invariant under the action of SL2(C) onX
or Xunip given by the conjugation ρ(·) 7→ A−1ρ(·)A, A ∈ SL2(C). This reflects the fact
that SL2(C)-representations ρ ∈ X are used below to build observables that distinguish
free homotopy classes of loops in the punctured domain, which correspond to conjugacy
classes of elements in the fundamental group. Below we use the notation Funhol(X)

SL2(C)

and Funhol(Xunip)
SL2(C) for the spaces of holomorphic SL2(C)-invariant functions on X

and on Xunip, respectively.
Given a lamination (not necessarily macroscopic) 0 on � \ {λ1, . . . , λn}, we set

f0(ρ) :=
∏
γ∈0

Tr(ρ(γ )), ρ ∈ X. (1.2)

Since TrA = TrA−1 for A ∈ SL2(C), this definition does not require fixing an orien-
tation of the loops γ ∈ 0. Clearly, one has f0 ∈ Funhol(X)

SL2(C) and this function can
also be treated as an element of Funhol(Xunip)

SL2(C) by taking the restriction to locally
unipotent monodromies ρ ∈ Xunip.

The main results of our paper can be loosely formulated as follows: each entire func-
tion f ∈ Funhol(X)

SL2(C) admits a unique expansion via the functions f0 while each
function f ∈ Funhol(Xunip)

SL2(C) admits a unique expansion via the functions f0 indexed
by macroscopic laminations 0, with coefficients decaying faster than exponentially.

For ρ ∈ Xunip, let

τ δ(ρ) := Edbl-d

[ ∏
γ∈2δ(�δ)

( 1
2 Tr(ρ(γ ))

)]
=

∑
0macroscopic

pδ0f0(ρ), pδ0 := 2−#loops(0)Pdbl-d[2
δ
� ∼ 0], (1.3)

and similarly

τ ?(ρ) := ECLE(4)

[ ∏
γ∈2?(�)

( 1
2 Tr(ρ(γ ))

)]
=

∑
0macroscopic

p?0f0(ρ), p?0 := 2−#loops(0)PCLE(4)[2
?
� ∼ 0]. (1.4)

Following [7] we call the functions τ δ and τ ? the topological correlators of the loop
ensembles 2δ and 2?, respectively.

While τ δ is actually a finite linear combination of f0 , one should be more careful
with the infinite series (1.4). It is checked in [7] that Pdbl-d[2

?
� ∼ 0] = O(R

−|0|
0 ) for

some R0 > 1, therefore τ ? is correctly defined at least in the vicinity of the trivial rep-
resentation Id ∈ Xunip. It seems to be folklore that these probabilities actually decay
super-exponentially as |0| → ∞ (see e.g. [30, Section 4] and references therein for re-
lated results) but we have been unable to find an explicit reference for this fact and thus
prefer to keep it as an assumption in Corollary 1.7; see also Remark 1.5.

Dubédat [7] also introduced a notion of the isomonodromic tau-function
τ�(λ1, . . . , λn; ρ), ρ ∈ Xunip, on a simply connected domain � which is defined as
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follows. For � = H (the upper half-plane), consider a representation of the fundamental
group of the punctured Riemann sphere

ρ′ : CP1
\ {λ1, . . . , λn, λn, . . . , λ1} → SL2(C)

constructed so that the monodromies of ρ′ around the punctures λi match those of ρ while
the monodromies of ρ′ around λi are their inverses; see [7] for more details. For each
ρ ∈ Xunip one can check that the classical Jimbo–Miwa–Ueno [10, 18] isomonodronic
tau-function τCP1(λ1, . . . , λn, λn, . . . , λ1; ρ

′) can be normalized so that it equals to 1
when all the pairs of punctures λi, λi collide on the real line. A priori, this tau function
is well-defined only on the universal cover of the space parametrizing pairwise distinct
punctures λ1, . . . , λn ∈ �. However, it turns out that

τH(ρ; λ1, . . . , λn) := τCP1(ρ
′
; λ1, . . . , λn, λn, . . . , λ1)

is invariant under braid moves as well as under Möbius automorphisms of the upper half-
plane H. This allows one to define τ�(ρ; λ1, . . . , λn) for general simply connected do-
mains � by conformal invariance.

Although one usually considers an isomonodromic tau-function as a function
of λ1, . . . , λn, the one discussed above can also be viewed as a function of a locally
unipotent representation ρ as its multiplicative normalization does not depend on ρ. In
our paper both � and λ1, . . . , λn can be usually thought of as fixed once forever, thus
from now onwards we use the shorthand notation

τ(ρ) := τ�(λ1, . . . , λn; ρ), ρ ∈ Xunip. (1.5)

From the above construction one can see that τ ∈ Funhol(Xunip)
SL2(C); note that this can

also be easily deduced from the following theorem, which is the main result of [7].
Recall that the functions τ δ and τ ? are defined by (1.3) and (1.4).

Theorem 1.3 (Dubédat). Let� be a planar simply connected domain,�δ be a sequence
of Temperleyan approximations to �, and λ1, . . . , λn ∈ �. Then the following holds:
(i) For each locally unipotent representation ρ ∈ Xunip,

τ δ(ρ)→ τ(ρ) as δ→ 0,

and the convergence is uniform on compact subsets of Xunip.
(ii) Moreover, τ(ρ) = τ ?(ρ) if ρ ∈ Xunip is close enough to the trivial representation.

The next theorem (see also Theorem 5.11) is the main result of our paper.

Theorem 1.4. Each entire function f ∈ Funhol(Xunip)
SL2(C) admits a unique expansion

f (ρ) =
∑

0macroscopic

p0f0(ρ), ρ ∈ Xunip, (1.6)

where the functions f0 are given by (1.2) and |0|−1 log |p0| → −∞ as |0| → ∞. More-
over, for each R > 0 there exists a compact subset KR ⊂ Xunip and a constant CR > 0
independent of f such that

|p0| ≤ CR · R
−|0|
· ‖f ‖L∞(KR) (1.7)

for all macroscopic laminations L.



2792 Mikhail Basok, Dmitry Chelkak

Remark 1.5. It is worth noting that our results do not guarantee the uniqueness of the
expansion (1.6) for functions defined just in a small vicinity of Id ∈ Xunip. To illustrate a
possible catch one can think about expanding entire functions of one complex variable in
the basis 1, z−1, z2

−z, . . . , zn−zn−1, . . . . In the full plane such expansions always exist
and are unique but 1+(z−1)+(z2

−z)+· · · = 0 near the origin. Since the functions f0 are
far from being a Fourier basis, we expect a similar (though more involved) phenomenon
in our setup.

It is easy to see that a combination of Theorems 1.3 and 1.4 implies the convergence of
probabilities of cylindrical events. Let

τ(ρ) =
∑

0macroscopic

piso
0 f0(ρ), ρ ∈ Xunip,

be the expansion of the isomonodromic tau-function provided by Theorem 1.4.

Corollary 1.6. Let � be a planar simply connected domain, �δ be a sequence of Tem-
perleyan approximations to �, and λ1, . . . , λn ∈ �. Then, for each macroscopic lamina-
tion 0 on � \ {λ1, . . . , λn},

pδ0 = 2−#loops(0)Pdbl-d[2
δ
� ∼ 0] → piso

0 as δ→ 0.

Moreover, R|0| · |pδ0 − p
iso
0 | → 0 as δ→ 0 uniformly in 0 for each R > 0.

Proof. By definition, pδ0 are nothing but the coefficients in the expansion (1.6) of the
function τ δ . Therefore, for each R > 0, Theorem 1.4 implies the uniform estimate

R|0| · |pδ0 − p
iso
0 | ≤ CR · ‖τ

δ
− τ‖L∞(KR)

and the right-hand side vanishes as δ→ 0 due to Theorem 1.3(i). ut

Corollary 1.7. In the same setup, assume that

PCLE(4)[2
?
� ∼ 0] = O(R

−|0|) as |0| → ∞, for all R > 0. (1.8)

Then piso
0 = p

?
0 = 2−#loops(0)PCLE(4)[2

?
� ∼ 0] for all macroscopic laminations 0.

Proof. If the assumption (1.8) holds, then the series (1.4) converges for all ρ ∈ Xunip

and τ ? ∈ Funhol(Xunip)
SL2(C). Due to Theorem 1.3(ii) the entire functions τ and τ ? coin-

cide in the vicinity of ρ = Id and hence everywhere on Xunip. Therefore, the uniqueness
of the expansion (1.6) gives piso

0 = p
?
0 for all macroscopic laminations 0. ut

The main ideas of the proof of Theorem 1.4 are discussed in Section 2. We conclude the
introduction by the following vague remark on a possible deformation of the topological
observables (1.4). Though the first naive idea would be just to replace the CLE(4) measure
in their definition by CLE(κ) with κ 6= 4, the resulting functions do not look very natural.
In view of the discussion in Section 4 it actually looks more promising to simultaneously
deform the functions f0 given by (1.2) by using the quantum trace functionals [3] instead
of the usual traces. Having in mind the famous predictions on the scaling limits of loop
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O(n) and FK(q) models (see e.g. [23, Section 2.4] and [26, Section 2]), it seems plausible
that the quantization parameter should then be tuned so that the simple loop weight in
the corresponding skein algebras is equal to ±2 cos(4π/k). We believe that developing
tools to analyze such deformations might be of great interest, both from CLE and lattice
models perspectives.

2. Toy example n = 2 and the strategy of the proof

In this section we informally describe the main ideas of the proof of Theorem 1.4. Some-
times we use the case n = 2 as a toy example. Certainly, this is a classical and well-
studied setup (see e.g. [14, Section 10] and [7, Corollary 2]): each macroscopic lamina-
tion on � \ {λ1, λ2} is given by k ≥ 0 loops homotopic to the simple loop ` surrounding
both punctures. Let z := Tr(ρ(`)) ∈ C and pδk be the probability, divided by 2k , of find-
ing exactly k copies of ` in the double-dimer model loop ensemble on�δ . In this situation
our main result can be rephrased as follows: the convergence of the entire functions

τ δ(z) =
∑
k≥0

pδkz
k
→ τ(z) =

∑
k≥0

pkz
k as δ→ 0

on compact subsets of C implies that pδk → pk as δ→ 0 for each k ≥ 0.
Unfortunately, such a straightforward argument does not work for n > 2 since the

set of functions f0 : Xunip → C indexed by macroscopic laminations does not have the
structure of the Fourier basis. Thus, more involved tools should be used.

Recall that the manifold X = Hom(π1(� \ {λ1, . . . , λn})→ SL2(C)) can be viewed
as (SL2(C))n (a parametrization is given by a choice of generators of the fundamen-
tal group) which provides it with the structure of an affine algebraic group. The def-
inition (1.1) makes Xunip an algebraic subvariety of X. We denote by Funalg(X) and
Funalg(Xunip) the rings of algebraic functions on these varieties. Note that SL2(C) acts
on X and Xunip algebraically, so let us denote the corresponding rings of invariants by

Funalg(X)
SL2(C) ⊂ Funhol(X)

SL2(C) and Funalg(Xunip)
SL2(C) ⊂ Funhol(Xunip)

SL2(C).

One can relatively easily deduce from the Fock–Goncharov theorem [8, Theo-
rem 12.3] that the f0 form an algebraic basis of the space Funalg(Xunip)

SL2(C). In other
words, each polynomial function f ∈ Funhol(Xunip)

SL2(C) admits a unique (finite) ex-
pansion f (ρ) =

∑
0macroscopic p0f0(ρ). However, even the uniqueness of such (infinite)

expansions for arbitrary entire functions f is not at all obvious. To see a possible dif-
ficulty, the reader can think, e.g., about replacing the Fourier basis 1, z, z2, . . . by its
lower-triangular transform 1, z − 2, z2

− 4z, . . . , zn − 2nzn−1, . . . in the toy example
discussed above: one has 1 + 1

2 (z − 2) + · · · + 2−n(n+1)/2(zn − 2nzn−1) + · · · = 0 for
z ∈ C.

Even if the aforementioned existence and uniqueness issues are settled, it still might
be problematic to deduce the convergence of the coefficients pδk from the convergence
of the functions τ δ unless an a priori estimate similar to (1.7) is available. Since, to the
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best of our knowledge, no explicit analogue of the Cauchy formula (which settles the toy
case n = 2) on Xunip is known if n > 2, we develop a set of general tools to analyze
SL2(C)-invariant entire functions on Xunip as sketched below.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The case n = 2. A lamination corresponding to the multi-index n = (3, 4, 3) and one of
the multi-curves from the set C(3, 4, 3).

Though our ultimate goal is to study the space Funhol(Xunip)
SL2(C), we begin by dis-

cussing the rings Funalg(X)
SL2(C) and Funhol(X)

SL2(C) before descending this analysis
to Funalg(Xunip)

SL2(C) and Funhol(Xunip)
SL2(C). Since X carries a (non-canonical) struc-

ture of an algebraic group (whereas Xunip does not), we can expect to have a natural
vector-space basis of Funalg(X)

SL2(C) obtained by an application of the Peter–Weyl theo-
rem. It turns out that such a basis can be labeled by laminations and is related to the basis
{f0} by a lower-triangular transform. Following Fock and Goncharov [8, Section 12] this
goes as follows:
• One encodes the laminations 0 by multi-indices n = (ne)e∈E ∈ ZE

≥0 indexed by the
edges of a triangulation T� of � \ {λ1, . . . , λn} (see Fig. 1). If n = 2, these multi-indices
are just triples (n1, n2, n3) of non-negative integers (see Fig. 2) such that

(n1, n2, n3) satisfy the triangle inequality & n1 + n2 + n3 is even; (2.1)

the condition (2.1) is called the lamination condition.
• Flat SL2(C) connections on � \ {λ1, . . . , λn} can be parametrized by assigning

transition matrices Ae ∈ SL2(C) to the edges of T� and factorizing over the natural
action (change of basis of the rank-two vector bundle) of SL2(C)matrices assigned to the
faces of T�. This parametrization provides a natural isomorphism

Funalg(X)
SL2(C) ' Funalg(SL2(C)E )SL2(C)F . (2.2)

• As already mentioned, the functions f(n1,n2,n3) ∈ Funalg(X)
SL2(C) (for simplic-

ity, we focus on the case n = 2 though the same arguments work in the general case)
do not have a Fourier basis structure. Nevertheless, applying the Peter–Weyl theorem to
the right-hand side of (2.2) one can obtain another collection of functions g(n1,n2,n3) ∈

Funalg(X)
SL2(C) indexed by the same set of triples satisfying the lamination condi-

tion (2.1) which is an orthogonal basis in the space L2(SU2(C)E )SU2(C)F ; we call these
functions the Peter–Weyl basis. In fact, the functions g(n1,n2,n3) can be constructed by the
following symmetrization procedure. Let C(n1, n2, n3) be the set of all possible collec-
tions of (not necessarily simple or disjoint) loops obtained by concatenating two collec-
tions of arcs with (n1, n2, n3) endpoints drawn inside each of the two faces of T� so that
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no arc connects two points on the same edge (see Fig. 2). Then

g(n1,n2,n3) = |C(n1, n2, n3)|
−1
·

∑
C∈C(n1,n2,n3)

fC,

where fC(ρ) :=
∏
γ∈C Tr(ρ(γ )).

• The Fock–Goncharov theorem states that the bases f0 and g0 are related by a lower-
triangular transform:

g0 =
∑

1:1≤0

c01f1,

where the partial order on the set of laminations is given by the partial order on the set of
multi-indices n ∈ ZE

≥0.
By analogy with entire functions on C, one can expect that each holomorphic func-

tion f ∈ Funhol(X)
SL2(C) admits a Fourier-type expansion f =

∑
0 q0g0 with coef-

ficients q0 decaying faster than exponentially. Formally, this implies that one can also
write

f =
∑
1

p1f1, where p1 =
∑

0:1≤0

c01q0,

but there is a catch: to pass from the former series to the latter rigorously, one needs
an exponential upper bound for the coefficients c01 of the Fock–Goncharov change of
basis. To the best of our knowledge, such an estimate is not available in the literature and
therefore we prove the (non-optimal) upper bound |c01| ≤ 4|0|.

It is well known that the identities between the functions f0 , fC and g0 can be equiv-
alently written in terms of the Kauffman skein algebras Sk(M,±1) of framed knots
in M := (� \ {λ1, . . . , λn})× [0, 1]. In fact, Funalg(X)

SL2(C) ' Sk(M,−1) ' Sk(M, 1)
and the skein relations reflect the identity Tr(AB) + Tr(AB−1) = Tr(A)Tr(B) for
A,B ∈ SL2(C). This isomorphism suggests expanding each of the terms fC in the def-
inition of g0 as fC =

∑
1:1≤0 cC1f1 by resolving all the crossings of C via the skein

relations. Unfortunately, this is not an easy thing to do: a collection C of loops may con-
tain about |0|2 crossings, hence one must analyse highly non-trivial cancelations arising
along the way in order to end up with an exponential bound for cC1.

Following the advice of Vladimir Fock we circumvent these complications by using
the positivity of the co-called bracelet basis of Sk(M, 1) proved by D. Thurston [28]
in combination with a representation of Sk(M, 1) in the space of Laurent polynomials
coming from Thurston’s shear coordinates of hyperbolic structures on � \ {λ1, . . . , λn}

(see e.g. [3]). Remarkably enough, in this representation all functions fC are mapped to
Laurent polynomials with positive integer coefficients. Together, these positivity results
imply the desired exponential estimate of coefficients as the sums contain no cancelations
anymore.

The arguments briefly described above allow one to prove counterparts of our main
results for holomorphic functions living on the whole manifold X and their expansions
in the basis f0 indexed by all, not necessarily macroscopic, laminations. The last but not
the least part of our analysis is devoted to the translation of these results to holomor-
phic functions living on the subvariety Xunip ⊂ X. Recall that we denote by λ◦i the loop
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surrounding a single puncture λi . Note that each lamination admits a unique decompo-
sition into a macroscopic lamination 0, k1 copies of λ◦1, k2 copies of λ◦2 etc.; we use the
notation 0 t λ◦k to describe such a lamination.

The main ingredient of the proof of the existence part of Theorem 1.4 is a ‘controlled’
extension of holomorphic functions from Xunip to X provided by Manivel’s Ohsawa–
Takegoshi-type theorem [15]. Roughly speaking, given f ∈ Funhol(Xunip)

SL2(C) one can
first extend it to a function F ∈ Funhol(X)

SL2(C) and then group all the terms of the
expansion of F that correspond to the laminations 0 t λ◦k with a fixed 0:∑

k∈Zn
≥0

p0tλ◦kf0tλ
◦

k
(ρ) =

( ∑
k∈Zn

≥0

2|k|p0tλ◦k

)
· f0(ρ) for ρ ∈ Xunip.

Finally, the uniqueness part of Theorem 1.4 can be deduced from a version of Hilbert’s
Nullstellensatz for invariant holomorphic functions on X as follows. Assume that a se-
ries f :=

∑
0macroscopic p0f0 vanishes on Xunip. Since Xunip is cut out from X by the

equations fλ◦i − 2 = 0, one can find functions hi ∈ Funhol(X)
SL2(C) such that

f (ρ) = h1(ρ) · (fλ◦1(ρ)− 2)+ · · · + hn(ρ) · (fλ◦n(ρ)− 2) for ρ ∈ X.

Due to the existence of expansions (1.6) one has hi =
∑
0tλ◦k

p
(i)

0tλ◦k
f
0tλ◦k

. Using the

uniqueness of the expansion of f ∈ Funhol(X)
SL2(C) in the basis {f0tλ◦k} and the fact that

the product f0tλ◦k · fλ◦i is again a basis function one obtains the identity

p0f0(ρ) =
∑

k∈Zn
≥0

n∑
i=1

p
(i)

0tλ◦k
f
0tλ◦k

(ρ) · (fλ◦i (ρ)− 2) for ρ ∈ X

by collecting all the terms corresponding to a given macroscopic lamination 0. The right-
hand side vanishes at ρ = Id and hence p0 = 0.

Certainly, the informal discussion given in this section is far from being complete
or rigorous, with many important details omitted. For instance, we actually work with
functions F ∈ Funhol(BR)SU2(C)F defined on poly-balls BR ⊂ (C2×2)E rather than
with F ∈ Funhol(SL2(C)E )SL2(C)F as sketched above. Nevertheless, we hope that this
discussion might help the reader to understand the general structure of our arguments and
the set of tools used in the proof.

The rest of the paper is organized as follows. We collect relevant basic facts of the
representation theory of SL2(C) and discuss the Fock–Goncharov theorem in Section 3.
Section 4 is devoted to the proof of the exponential estimate of the coefficients c01:
as explained above, the Kauffman skein algebra Sk(M, 1) plays a central role here. In
Section 5 we prove our main results. In particular, Section 5.2 is devoted to holomorphic
extensions of functions defined on compact subsets of Xunip and Section 5.3 contains
a precise version of the Nullstellensatz that we need. All these ingredients are used in
Section 5.4 to prove Theorem 5.11 which is a slightly stronger version of Theorem 1.4.
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3. Preliminaries and Fock–Goncharov theorem

Let X = Hom(π1(� \ {λ1, . . . , λn})→ SL2(C)) be the affine variety parametrizing rep-
resentations of π1(� \ {λ1, . . . , λn}) in SL2(C); note that X can also be thought of as
an algebraic variety. Let Funalg(X) be the ring of algebraic functions on X. The group
SL2(C) acts onX by conjugations, and since this action is algebraic, one can consider the
ring of invariants Funalg(X)

SL2(C). Clearly, all functions f0 belong to Funalg(X)
SL2(C).

A famous theorem due to Fock and Goncharov [8, Theorem 12.3] states that these func-
tions actually form a basis in the vector space Funalg(X)

SL2(C). For the sake of complete-
ness and in order to introduce a consistent notation, we begin this section with some basic
facts of the representation theory of SL2(C) and then repeat the proof of this theorem
in Section 3.4 following [8]. In Section 3.5 we discuss extensions of the functions f0
and g0 from SL2(C)E to the Euclidean space (C2×2)E . Finally, Section 3.6 is devoted to
the lower bound for the norms of the resulting extensions of g0 which play an important
role in the core part of the paper.

3.1. Basics of the representation theory of SL2(C)

In this section we collect basic facts of the representation theory of SL2(C). We use the
well-known correspondence between representations of groups and their Lie algebras,
which holds for SL2(C). Due to this correspondence, one can work with the Lie algebra
sl2(C) instead of SL2(C) itself. The proofs are mostly omitted; an interested reader can
easily find them in the classical literature (see e.g. [9, Lecture 11] for a nice exposition).

Lemma 3.1. The Lie algebra sl2(C) of SL2(C) is given by

sl2(C) = {e, f, h | [f, e] = h, [h, e] = −2e, [h, f ] = 2f }.

Consider now an irreducible finite-dimensional representation sl2(C)→ End(V ).

Lemma 3.2. (i) If v ∈ V is an eigenvector of h, then so are ev and f v. Moreover, if
hv = λv, then h(ev) = (λ− 2)(ev) and h(f v) = (λ+ 2)(f v).

(ii) There exists a non-zero vector v ∈ V such that

• v is an eigenvector for h;
• ev = 0;
• the vectors v, f v, f 2v, . . . , f dimV−1v form a basis of V .

(iii) Let hv = λv, where the vector v is introduced in (ii). Then

0 = Trh =
dimV−1∑
k=0

(λ+ 2k) = (λ+ dimV − 1) dimV

and hence λ = −(dimV − 1).

The above considerations can be summarized as follows:
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Proposition 3.3. (i) The irreducible finite-dimensional representations of sl2(C) are
enumerated by non-negative integers and dimVn = n+ 1, where Vn denotes the n-th
representation. For each n, the representation Vn has a basis v0, v1, . . . , vn such that

hvk = (2k − n)vk, evk = kvk−1, f vk = (n− k)vk+1.

(ii) The representation V1 corresponds to the standard matrix representation of SL2(C)
and Vn is isomorphic (as an sl2(C)-module) to the space Symn V1, which is in its turn
isomorphic to the space of homogeneous polynomials of two variables of degree n.
Under this isomorphism vk = x

n−kyk , where {x, y} is the basis of V1.

Recall that the action of sl2(C) on the tensor product of representations is defined as
a 7→ a ⊗ Id+ Id⊗ a.

Lemma 3.4. (i) For each n,m ≥ 0, the following isomorphism of sl2(C)-modules
holds:

Vn ⊗ Vm ' Vn+m ⊕ Vn+m−2 ⊕ Vn+m−4 ⊕ · · · ⊕ V|m−n|. (3.1)

The projection onto the first component is given by the symmetrization

Vn ⊗ Vm ' Symn V1 ⊗ Symm V1 → Symn+m V1 ' Vn+m.

(ii) Furthermore,

V⊗n1 '

⊕
0≤m≤n

V⊕l(n,m)m , where l(n,m) =
m+ 1
n+ 1

(
n+ 1

1
2 (n−m)

)
(3.2)

if n−m is even and l(n,m) = 0 if n−m is odd. The projection onto the first compo-
nent is given by the symmetrization V⊗n1 → Symn V1 ' Vn; note that l(n, n) = 1.

Given a representation SL2(C)→ End(V ), we denote by V SL2(C) the subspace of invari-
ant (under the action of SL2(C)) vectors in V ; this subspace is nothing but the sum of all
copies of V0 arising in the decomposition of V into irreducible representations.

Corollary 3.5. Let n,m, k be non-negative integers. The subspace (Vn⊗Vm⊗Vk)SL2(C)

is one-dimensional if

|n−m| ≤ k ≤ n+m and n+m+ k is even. (3.3)

Otherwise, this invariant subspace is trivial.

Proof. Using (3.1) one gets

(Vn ⊗ Vm ⊗ Vk)
SL2(C) '

⊕
l: 0≤l≤min(n,m)

(Vn+m−2l ⊗ Vk)
SL2(C).

Applying (3.1) again, one sees that (Vn+m−2l⊗Vk)
SL2(C) is non-zero if and only if n+m

= k + 2l. Moreover, in this case dimC(Vn+m−2l ⊗ Vk)
SL2(C) = 1 since V0 may appear

only once on the right-hand side of (3.1). The claim follows. ut
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3.2. Parametrization of laminations by multi-indices on E

Given a collection of punctures λ1, . . . , λn ∈ �, we fix a triangulation T� =

({λ1, . . . , λn, ∂�}, E,F) of � and an (arbitrary) orientation of its edges E . Sometimes
we also use the notation T ◦� for the dual graph, which has F as the set of vertices. Let

L(T�) :=
{
n = (ne)e∈E ∈ ZE

≥0 | (ne1 , ne2 , ne3) satisfies the lamination condition (3.3)

for each σ ∈ F with ∂σ = {e1, e2, e3}
}
.

Following [8], one can construct a bijection between L(T�) and the set of laminations
as follows. Given n ∈ L(T�) and an edge e ∈ E , let 0e be an arbitrary collection of ne
distinct points lying in the interior of e. Consider a face σ ∈ F with ∂σ = {e1, e2, e3}.
The condition (3.3) for (ne1 , ne2 , ne3 ) ensures that we can draw 1

2 (ne1 + ne2 + ne3) non-
intersecting chords inside σ , each starting at some point of 0ei and ending at some point
of 0ej with i 6= j . Moreover, such a drawing is unique up to homotopy. Once all such
chords in all faces σ are drawn and concatenated in a natural way, one obtains a collection
of simple disjoint curves that represents a lamination 0 = 0(n) (see Figure 1).

Conversely, given a lamination 0 there is a unique way to represent each of the
curves γ ∈ 0 as a closed non-backtracking path on the dual graph T ◦� . Set ne to be
the total number of crossing of an edge e by these paths on T ◦� . It is easy to see that
n := (ne)e∈E ∈ L(T�) and that the procedure explained above leads to 0(n) = 0. Thus,
we have constructed a bijection between the set of all laminations and the set L(T�). We
also obtain a partial order: given two laminations 01, 02 and the corresponding multi-
indices n1,n2 ∈ L(T�) we say that

01 ≤ 02 if and only if n1 ≤ n2 coordinatewise.

We define the complexity |0| of a lamination 0 as the sum of all coordinates of the cor-
responding multi-index n; it is worth noting that this definition depends on the (arbitrary)
choice of the triangulation T� of �. Finally, given a lamination 0 and a face σ we say
that c is a chord of 0 in σ if c is one of the chords drawn inside σ along the procedure
explained above (see Figure 1).

3.3. Peter–Weyl basis

Following [8], in this section we discuss the application of the (algebraic) Peter–
Weyl theorem to the space Funalg(X)

SL2(C). For this purpose we move from SL2(C)-
representations of π1(� \ {λ1, . . . , λn}) to holonomies of flat SL2(C) connections
on � \ {λ1, . . . , λn}. These connections can be parameterized by collections (Ae)e∈E of
matrices assigned to edges e ∈ E : one can think that there is a copy C2

σ of C2 assigned to
each of the faces σ of the triangulation and that Ae : C2

σleft
→ C2

σright
encodes the change

of basis when moving across e from left to right (recall that we have fixed an orientation
of all the edges e ∈ E once and for all).

This parametrization allows one to study the ring of functions Funalg(X) as a subring
of Funalg(SL2(C)E ). The action of SL2(C) on X corresponds to an action of the bigger
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group SL2(C)F on SL2(C)E ; the latter is given by changes of basis in the spaces C2
σ

assigned to faces of T�. Namely, given A = (Ae)e∈E ∈ SL2(C)E and C = (Cσ )σ∈F ∈
SL2(C)F , one defines

(C[A])e := C−1
σleft
AeCσright

, C[A] := (C[A])e∈E ∈ SL2(C)E , (3.4)

where σleft and σright stand for two faces adjacent to an edge e. Quotients under these
actions of SL2(C) and SL2(C)E coincide (see Lemma 3.7 below) and so do the rings of
invariants:

Funalg(X)
SL2(C) ' Funalg(SL2(C)E )SL2(C)F . (3.5)

Then one can use the representation theory of the group SL2(C)E to analyze the ring
of SL2(C)F -invariant functions on it. More details are given below.

Let V ∨ be the dual space to V . Classically, given an algebraic group G and a repre-
sentation ρ : G→ End(V ) one can construct a map V ⊗ V ∨→ Funalg(G) by setting

v ⊗ w 7→ 〈ρ(·)v,w〉. (3.6)

The following algebraic version of the Peter–Weyl theorem asserts that each algebraic
function on SL2(C)E can be obtained in this way.

Theorem 3.6 (algebraic Peter–Weyl theorem). Let G be a reductive linear algebraic
group, Funalg(G) denote the space of algebraic functions on G, and Ĝ be the set of all
irreducible finite-dimensional representations of G. Then the mapping (3.6) defines an
isomorphism of G×G-modules:⊕

V∈Ĝ

V ⊗ V ∨
'
−→ Funalg(G)

Proof. See e.g. [27, Theorem 27.3.9]. ut

Let γ be a path on the dual graph T ◦� that crosses edges e0, e1, . . . , em−1 ∈ E consecu-
tively, and let A ∈ SL2(C)E . We denote by Aei the matrix from the collection A assigned
to the edge ei . Let σ0, σ1, . . . , σm be the faces of T� visited by γ , enumerated so that ei
is adjacent to σi and σi+1. The holonomy of A along γ is defined as

hol(A, γ ) := Asign(σ0,e0)
e0 A

sign(σ1,e1)
e1 . . . A

sign(σm−1,em−1)
em−1 , (3.7)

where sign(σ, e) = +1 if σ lies to the left of e and sign(σ, e) = −1 otherwise (recall that
the orientation of all the edges e ∈ E is fixed once and for all).

By definition, hol(A, γ1 · γ2) = hol(A, γ1) hol(A, γ2) provided γ1 ends at the face
where γ2 begins, and γ1 ·γ2 stands for the concatenation of γ1 and γ2. As the fundamental
groups of the punctured domain�\{λ1, . . . , λn} and of the 1-skeleton of T ◦� coincide, we
see that the mapping hol(A, ·) induces an SL2(C)-representation of π1(�\{λ1, . . . , λn}).
In particular we obtain an algebraic mapping

φ : SL2(C)E → X, A 7→ hol(A, ·). (3.8)

Recall that the action of the group SL2(C)F on SL2(C)E is given by (3.4).
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Lemma 3.7. The mapping (3.8) intertwines the action of SL2(C)F on SL2(C)E and the
action of SL2(C) on X. The induced mapping

φ∗ : Funalg(X)
SL2(C)→ Funalg(SL2(C)E )SL2(C)F

is an isomorphism.

Proof. The fact that φ intertwines the two actions is straightforward. Let T be a spanning
tree for the triangulation T� and let Y ⊂ SL2(C)E be the subvariety defined as

Y := {A = (Ae)e∈E | Ae = Id if e /∈ T }.

It is easy to see that φ restricted to Y is an isomorphism, so let ψ : X → Y be the
inverse mapping. Further, for each A ∈ SL2(C)E there exists C ∈ SL2(C)F such that
C[A] ∈ Y . Thus the restriction mapping Funalg(SL2(C)E ) → Funalg(Y ) sends the sub-
ring of SL2(C)F -invariant functions on SL2(C)E isomorphically onto its image, which
we denote by Funalg(SL2(C)E )SL2(C)F |Y . Hence, the composition

Funalg(SL2(C)E )SL2(C)F '
−→ Funalg(SL2(C)E )SL2(C)F |Y

ψ∗

−→ Funalg(X)
SL2(C)

provides the inverse to φ∗. ut

Recall that we denote by V1 the standard two-dimensional representation of SL2(C) and
that all finite-dimensional irreducible representations of SL2(C) are provided by Vn '
SymV⊗n1 . Let x, y be the standard basis of V1 so that x ⊗ x, 1

2 (x ⊗ y + y ⊗ x), y ⊗ y is
a basis of V2 and, more generally, Vd is spanned by the vectors

(xkyn−k)sym
:= (n!)−1

∑
π∈Sym(d)

π∗

(
x ⊗ · · · ⊗ x︸ ︷︷ ︸

k times

⊗ y ⊗ · · · ⊗ y︸ ︷︷ ︸
n− k times

)
, 0 ≤ k ≤ n.

We now define two pairings on Vn. To get the first we identify V1 ∧ V1 with C by
setting x ∧ y = 1. This gives rise to a skew-symmetric bilinear form (v,w) 7→ v ∧ w

on V1. One can extend it on V⊗n1 and then restrict to Vn. The result is a non-degenerate
(skew-symmetric if n is odd and symmetric if n is even) bilinear form on Vn, which we
still denote by v ∧ w.

The second pairing on Vn is obtained in a similar manner from the Hermitian scalar
product on V1 (which is defined by 〈x, y〉 = 0 and 〈x, x〉 = 〈y, y〉 = 1 on V1), extended
to V⊗n and then restricted to Vn. One can easily see that

(−1)n−k(xkyn−k)sym
∧ (xn−kyk)sym

= 〈(xkyn−k)sym, (xkyn−k)sym
〉 =

(
n

k

)−1

.

We need an additional notation. For a face σ ∈ F and an edge e ∈ ∂σ adjacent to it,
let Vσ,e,n be a copy of Vn. Given a multi-index n ∈ ZE

≥0 we introduce a space

Vn :=
⊗
e∈E

Vσleft(e),e,ne ⊗ Vσright(e),e,ne ;
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recall that σleft(e) is the face lying to the left of e and σright(e) is the one to the right, with
respect to the fixed orientation of e. There is a linear mapping 3E

: Vn → C given by

3E
(⊗
e∈E
(vσleft(e),e,ne ⊗ vσright(e),e,ne )

)
:=

∏
e∈E
(vσleft(e),e,ne ∧ vσright(e),e,ne ).

Define an action of the group SL2(C)E on Vn as follows:

A
[⊗
e∈E
(vσleft(e),e,ne ⊗ vσright(e),e,ne )

]
:=

⊗
e∈E

(vσleft(e),e,ne ⊗ Aevσright(e),e,ne ), (3.9)

where A = (Ae)e∈E . One can now construct a linear mapping

ϒ : V :=
⊕

n∈ZE
≥0

Vn → Funalg(SL2(C)E ),

v 7→
(
ϒ(v) : A 7→ 3E (A[v])

)
.

(3.10)

Applying Theorem 3.6 for each of the edges of E , one sees that (3.10) is an isomorphism.
In order to study the subring of SL2(C)F -invariant functions on SL2(C)E , we rear-

range the factors in the definition of Vn and define an action of SL2(C)F on Vn as

Vn =
⊗
σ∈F

⊗
e∈∂σ

Vσ,e,ne , C
[ ⊗
σ∈F

⊗
e∈∂σ vσ,e,ne

]
:=
⊗

σ∈F
⊗

e∈∂σ Cσ vσ,e,ne ,

where C = (Cσ )σ∈F .

Lemma 3.8. The mapping (3.10) commutes with the action of SL2(C)F .

Proof. Let v =
⊗

e∈E vσleft(e),e,ne ⊗ vσright(e),e,ne ∈ Vn and ϒ(v) be the corresponding
algebraic function on SL2(C)E . Note that for each v,w ∈ Vd and C ∈ SL2(C) one has
Cv ∧ w = v ∧ C−1w. Using this observation and (3.4) one gets

(ϒ(v))(C[A]) = 3E
(⊗
e∈E
(vσleft(e),e,ne ⊗ (C[A])evσright(e),e,ne )

)
=

∏
e∈E
(vσleft(e),e,ne ∧ C

−1
σleft(e)

AeCσright(e)
vσright(e),e,ne )

=

∏
e∈E
(Cσleft(e)vσleft(e),e,ne ∧ AeCσright(e)vσright(e),e,ne )

= 3E (A[C[v]]) = ϒ(C[v])(A),

thus the actions of SL2(C)F on SL2(C)E and Vn commute with ϒ . ut

One can now write

VSL2(C)F
n =

⊗
σ∈F

(⊗
e∈∂σ

Vσ,e,ne

)SL2(C)
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and apply Corollary 3.5 to each of the SL2(C)-invariant subspaces corresponding to
faces σ ∈ F . It follows that VSL2(C)F

n is one-dimensional if n ∈ L(T�), i.e. if the
lamination condition (3.3) holds true for all σ , and is trivial otherwise. Due to Lemma 3.7
and Lemma 3.8, this leads to the following decomposition of Funalg(X)

SL2(C) into a direct
sum of one-dimensional spaces:

Funalg(X)
SL2(C) ' Funalg(SL2(C)E )SL2(C)F '

⊕
n∈L(T�)

VSL2(C)F
n . (3.11)

Definition 3.9. Let g0 ∈ Funalg(X)
SL2(C) be the projection of f0 onto the subspace

corresponding to the space VSL2(C)F
n(0) in the decomposition (3.11), where n(0) ∈ L(T�)

is the multi-index corresponding to 0 as discussed in Section 3.2. We call the functions g0
the Peter–Weyl basis of Funalg(X)

SL2(C).

Remark 3.10. Since all the spaces in the decomposition (3.11) are one-dimensional, in
order to prove that the functions g0 indeed form a basis of Funalg(X)

SL2(C), it is enough
to check that they do not vanish. This follows from Lemma 3.13.

3.4. Lamination basis {f0} and Peter–Weyl basis {g0} via each other

A famous theorem due to Fock and Goncharov [8, Theorem 12.3] claims that the func-
tions f0 also form a basis in the space Funalg(X) and that the corresponding change of
basis between f0 and g0 is given by lower-triangular (with respect to the partial order
on L(T�)) matrices:

g0 =
∑
1≤0

c01f1, f0 =
∑
1≤0

c̃01g1.

The main goal of this section is to set up a framework for the analysis of the coeffi-
cients c01. While doing this we also repeat the proof of [8, Theorem 12.3].

Recall that a multi-curve is a smooth immersion c :
⊔m
i=1 S

1
→ � \ {λ1, . . . , λn} of

the union of a number of disjoint circles (m is not fixed), considered up to homotopy in
the space of immersions; in Section 4 the total winding (rotation of the tangent vector) of
multi-curves will be of importance.

Fig. 3. Nugatory self-crossing.

In particular, if some component of a multi-curve
has a nugatory self-crossing (i.e., a local twist that
can be removed by the first Reidemeister move,
see Fig. 3), then it may not be homotopic to a
multi-curve having no such twists. We call a multi-
curve minimal if it has neither nugatory self-crossings
nor homotopically trivial components. The homotopy
class of a lamination contains a unique minimal multi-curve. Conversely, not all minimal
multi-curves correspond to laminations: only those in which all intersections can be re-
moved do.
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Given a minimal multi-curve C one can view its components as non-backtracking
loops on T ◦� and define ne to be the total number of intersections between an edge e and
the loops on T ◦� thus obtained. It is easy to see that n = (ne)e∈E ∈ L(T�) and hence there
exists a lamination 0(n); cf. Fig. 2. We denote 0(C) := 0(n) and |C| := |0(C)|.

Let γ1, . . . , γm be the components of C. Define

fC(ρ) :=
m∏
k=1

Tr(ρ(γk)), fC ∈ Funalg(X)
SL2(C).

Our next goal is to study the image of fC under isomorphisms (3.11), in particular its
image φ∗(fC) ∈ Funalg(SL2(C)E ) (see Lemma 3.7). Fix a multi-index n ∈ L(T�) and let
0 be the lamination corresponding to n. Minimal multi-curves C with 0(C) = 0 can be
encoded by collections of permutations π ∈

∏
σ∈F , e∈∂σ Sym(ne) in the following way.

Let πσ,e ∈ Sym(ne) be components of π and let 0e = {pe,1, . . . , pe,ne } denote the set
of intersection points of 0 and a given edge e ∈ E , enumerated from the beginning of e
to its endpoint according to the fixed orientation of e. For each face σ ∈ F and for each
pair of points pe1,k1 , pe2,k2 connected by a chord of 0 draw a simple smooth arc inside σ
from pe1,πσ,e1 (k1) to pe2,πσ,e2 (k2). Concatenating these arcs at the points pe,k in a smooth
way one obtains a minimal multi-curve, which we denote by C(0, π).

We need even more notation. Given a multi-index n ∈ L(T�), a face σ ∈ F , an
edge e ∈ ∂σ adjacent to σ , and a number k such that 1 ≤ k ≤ ne, let Wσ,e,k be a copy
of V1. Introduce the space

Wn :=
⊗
σ∈F

⊗
e∈∂σ

⊗
1≤k≤ne

Wσ,e,k =

⊗
e∈E

⊗
1≤k≤ne

(Wσleft(e),e,k ⊗Wσright(e),e,k). (3.12)

Note that the space Vn can be realized as a subspace of Wn if one realizes Vσ,e,ne as
a result of symmetrization in the space

⊗
1≤k≤ne Wσ,e,k ' V

⊗ne
1 for each σ ∈ F and

e ∈ ∂σ . One can extend the pairing 3E and the action (3.9) of SL2(C)E from Vn to Wn
by

3E
(⊗
e∈E

⊗
1≤k≤ne

wσleft(e),e,k ⊗ wσright(e),e,k

)
:=

∏
e∈E

∏
1≤k≤ne

(wσleft(e),e,k ∧ wσright(e),e,k)

and

A
[⊗
e∈E

⊗
1≤k≤ne

wσleft(e),e,k ⊗ wσright(e),e,k

]
:=

⊕
e∈E

⊕
1≤k≤ne

(wσleft(e),e,k ⊗ Aewσright(e),e,k),

respectively. Moreover, one can also lift the mapping ϒ given by (3.10) from Vn to Wn
using the same definition ϒ(w) : A 7→ 3E (A[w]) for A ∈ SL2(C)E .

We now choose an arbitrary orientation of the components of C(0, π) and set

sign(C(0, π)) := (−1)#edges of T� crossed by C(0, π) from right to left, counted with multiplicity.

For a chord c of C(0, π) running from the k1-th point on e1 to the k2-th point on e2
inside σ , denote

uc,0,π := v
(1)
σ,e1,k1

⊗ v
(0)
σ,e2,k2

− v
(0)
σ,e1,k1

⊗ v
(1)
σ,e2,k2

∈ Wσ,e1,k1 ⊗Wσ,e2,k2 ,



Tau-functions à la Dubédat for double-dimers and CLE(4) 2805

where v(0)σ,e,k and v(1)σ,e,k correspond to the vectors x and y, respectively, under the identifi-
cation of Wσ,e,k and V1. Finally, denote

wC(0,π) := sign(C(0, π)) · ⊗
c chord ofC(0,π)

uc,0,π ∈Wn. (3.13)

It is easy to see that wC(0,π) does not depend on the choice of the orientation of C(0, π):
changing the orientation of some of its components one changes the signs of all vec-
tors uc,0,π corresponding to these components which is compensated by the same number
of changes in the signs of crossings of C(0, π) and oriented edges e ∈ E .

Lemma 3.11. Let A ∈ SL2(C)E and let ρ = φ(A) ∈ X be the corresponding SL2(C)-
representation of π1(� \ {λ1, . . . , λn}) (see (3.8)). Then

fC(0,π)(ρ) = 3
E (A[wC(0,π)]).

Proof. We begin with the special case when C(0, π) consists of a single curve γ . This
curve can be thought of as a non-backtracking loop on the dual graph T ◦� , say, crossing
edges e0, . . . , em−1, em = e0 of T� consecutively. Recall that in this case one has

fC(0,π)(ρ) = Tr(hol(A, γ )) = Tr(As0e0
As1e1

. . . A
sm−1
em−1),

where the sign si equals +1 if γ crosses the edge ei from left to right and −1 otherwise.
Let σ0, . . . , σm, σm = σ0, be the sequence of faces of T� corresponding to γ , so that ei
is adjacent to σi and σi+1. Expanding each of the vectors uc,0,π one obtains

wC(0,π) = sign(C(0, π)) ·
∑

j∈{0,1}m

m⊗
i=1
((−1)1−jiv(ji )σi ,ei−1,ki−1

⊗ v
(1−ji )
σi ,ei ,ki

)

= sign(C(0, π)) ·
∑

j∈{0,1}m

(m−1∏
i=0

(−1)1−ji ·
m−1⊗
i=0

(v
(1−ji )
σi ,ei ,ki

⊗ v
(ji+1)
σi+1,ei ,ki

)
)
.

It is easy to see that the contribution of v(1−ji )σi ,ei ,ki
⊗ v

(ji+1)
σi+1,ei ,ki

to 3E (A[wC(0,π)]) is

v
(1−ji )
σi ,ei ,ki

∧ Aeiv
(ji+1)
σi+1,ei ,ki

= (−1)1−ji (Aei )ji ,ji+1

provided that γ crosses ei from left to right. Otherwise, this contribution is given by

v
(ji+1)
σi+1,ei ,ki

∧ Aeiv
(1−ji )
σi ,ei ,ki

= (−1)ji+1(Aei )1−ji+1,1−ji = (−1)ji (A−1
ei
)ji ,ji+1 .

Therefore, all the signs cancel out and one gets

3E (A[wC(0,π)]) =
∑

j∈{0,1}m
(Asiei )ji ,ji+1 = Tr(As0e0

As1e1
. . . A

sm−1
em−1).

In the general case one simply repeats the same computation for each of the compo-
nents γ1, . . . , γm of a multi-curve C(0, π). ut
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We now apply decomposition (3.2) for each of the edges e ∈ E and obtain

Wn '
⊗
e∈E

(( ⊕
0≤me≤ne

V
⊕l(ne,me)
σleft(e),e,me

)
⊗

( ⊕
0≤me≤ne

V
⊕l(ne,me)
σright(e),e,me

))
;

recall that l(n, n) = 1 and l(m, n) = 0 if n−m is odd. Let l(n,m) :=
∏
e∈E (l(ne, me))

2,
where m = (me)e∈E . Rearranging factors we get

Wn '
( ⊕

0≤m≤n
V⊕l(n,m)

m

)
⊕W0

n, where

W0
n '

⊕
0≤m,m′≤n:m6=m′

(V
⊕l(ne,me)
σleft(e),e,me

⊗ V
⊕l(ne,m

′
e)

σright(e),e,m′e
).

Lemma 3.12. The following diagram commutes:

Wn

ϒ

��

(
⊕

0≤m≤n V⊕l(n,m)
m )⊕W0

n
'oo

��

Funalg(SL2(C)E )
⊕

m∈ZE
≥0

Vm = V'

(3.10)
oo

(3.14)

where ϒ is defined by ϒ(w) : A 7→ 3E (A[w]) while the right vertical map vanishes
on W0

n and is defined on each V⊕l(n,m)
m as

⊕l(n,m)
i=1 vi 7→

∑l(n,m)
i=1 vi .

Proof. The only non-trivial ingredient is to check that ϒ(w) = 0 for w ∈ W0
n. This

immediately follows from the fact that v∧v′ = 0 if v ∈ Vm, v′ ∈ Vm′ andm 6= m′, where
both Vm, Vm′ are identified with subspaces of V⊗n1 via (3.2). Clearly, it is enough to prove
this fact for elements vk ∈ Vm, vk′ ∈ Vm′ of the bases introduced in Proposition 3.3(i).
Let m < m′ and assume that k + k′ ≤ m. Then ek+1vk = 0 while f k+1v′

k′
6= 0 and one

can write(
m′ − k′

k + 1

)(
k′ + k + 1
k + 1

)
· v ∧ v′ = v ∧ ek+1f k+1v′ = (−1)k+1ek+1v ∧ f k+1v′ = 0

since u∧ eu′ = −eu∧ u′ for each u, u′ ∈ V⊗n1 . The case k+ k′ ≥ m+ 1 can be handled
in the same way starting with fm−k+1vk = 0 and em−k+1v′

k′
6= 0. ut

Lemma 3.13. Let n ∈ L(T�), let 0 = 0(n) be the corresponding lamination, and g0 be
given by Definition 3.9. Then

g0 =
∏

σ∈F , e∈∂σ
(ne!)

−1
·

∑
π∈
∏
σ∈F , e∈∂σ Sym(ne)

fC(0,π).

In particular, g0(Id) > 0 and hence g0 does not vanish.
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Proof. Recall that the SL2(C)F -invariant function g0 is defined as the component of f0
lying in the subspace Vn under the isomorphism (3.10). Lemma 3.11 gives

f0 = fC(0,Id) = ϒ(wC(0,Id)).

Note that the right vertical map in (3.14) acts identically on Vn and, under the upper
horizontal isomorphism of (3.14), each of the factors Vσ,e,ne ' Vne of Vn is obtained as
the symmetrization in the corresponding factor

⊗ne
k=1Wσ,e,k ' V

⊗ne
1 of Wn. The fact

that this diagram commutes yields

g0 =
∏

σ∈F , e∈∂σ
(ne!)

−1
·

∑
π∈
∏
σ∈F , e∈∂σ Sym(ne)

ϒ(π∗wC(0,Id)). (3.15)

The claim follows since ϒ(π∗wC(0,Id)) = ϒ(wC(0,π)) = fC(0,π) for each π . ut

Remark 3.14. Since all the maps involved into (3.14) commute with the action of
SL2(C)F , we obtain a similar commutative diagram for the invariant subspaces:

WSL2(C)F
n

��

(⊕
m∈L(T�)
0≤m≤n

(VSL2(C)F
m )⊕l(n,m))

⊕ (W0
n)

SL2(C)F'oo

��

Funalg(SL2(C)E )SL2(C)F ⊕
m∈L(T�) VSL2(C)F

m = VSL2(C)F'

(3.11)
oo

(3.16)

Since each of the spaces VSL2(C)F
m , m ∈ L(T�), is one-dimensional, the functions g0

form a basis in the space Funalg(X)
SL2(C)' Funalg(SL2(C)E )SL2(C)F ' Vn, which we

call the Peter–Weyl basis. We are now in a position to show that the functions f0 also
form a basis in this space.

Theorem 3.15 ([8, Theorem 12.3]). The functions f0 form a basis in Funalg(X)
SL2(C).

Moreover, the change to the basis {g0} is given by a lower-triangular (with respect to the
partial order on the set of laminations) matrix:

g0 =
∑
1≤0

c01f1, where c00 = 1. (3.17)

Proof. Since the functions g0 form a basis in Funalg(X)
SL2(C), one can write a decom-

position f0 =
∑
1 c̃01g1; note that c̃00 = 1 due to Definition 3.9. The diagram (3.16)

is commutative, hence this decomposition must be the image of a similar decomposition
of the SL2(C)F -invariant component of the vector wC(0,Id) under the top isomorphism
of (3.16). Therefore, the coefficient c̃01 vanishes unless 1 ≤ 0. Thus the matrix (c̃01)
is lower-triangular and hence its inverse is lower-triangular as well. ut

Remark 3.16. It is worth noting that c01 = c̃01 = 0 if ne(0)− ne(1) is odd for some
edge e ∈ E . This easily follows from the fact that me and ne should have the same parity
in order that Vme appears in the decomposition (3.2) of V⊗ne1 .
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3.5. Extension of f0, g0 to (C2×2)E and orthogonality on poly-balls

In this section we discuss natural extensions of the functions f0 and g0 from SL2(C)E
to (C2×2)E . We apply the analytic Peter–Weyl theorem for the group SU2(C)E in order
to show that the resulting extensions G0,m of g0 are orthogonal on poly-balls

BR := BE
R ⊂ (C

2×2)E , BR := {A ∈ C2×2
| TrAA∗ < R2

} (3.18)

with respect the Euclidean measure on (C2×2)E ' (C4)E . Then, using the interpretation
of Vn as the spaces of homogeneous polynomials of degree n we derive an exponential
lower bound for theL2-norms ofG0,d on these poly-balls which is required for the further
analysis performed in Section 5.

Since SL2(C)E is an algebraic subvariety of (C2×2)E , one has a trivial surjection

Funalg((C2×2)E )→ Funalg(SL2(C)E ).

The isomorphism (3.10) provides a way to construct a left inverse

Funalg(SL2(C)E ) ↪→ Funalg((C2×2)E ). (3.19)

Namely, there is a natural extension of the action (3.9) of SL2(C)E on Vn to an action
of (C2×2)E : to define the latter on a factor Vne of Vn one simply extends the standard
action of SL2(C) on V1 to an action of C2×2 and views Vne as the symmetrization of V⊗ne1 .
Clearly, for each v ∈ Vn, this provides a natural extension of the function ϒ(v) : A 7→
3E (A[v]) from SL2(C)E to (C2×2)E .

Note that the action (3.4) of SL2(C)F on SL2(C)E naturally extends to an action on
(C2×2)E and that (3.19) commutes with this action. Therefore, one has an injection

ι : Funalg(X)
SL2(C) ' Funalg(SL2(C)E )SL2(C)F ↪→ Funalg((C2×2)E )SL2(C)F . (3.20)

Given a lamination 0 and a multi-index m = (me)e∈E we define

G0 := ι(g0), G0,m(A) := G0(A) ·
∏
e∈E
(detAe)me . (3.21)

Remark 3.17. By construction, G0,m is a homogeneous polynomial of degree |0| +
2|m| on (C2×2)E ' C4|E |, invariant under the action of SL2(C)F on (C2×2)E . More
precisely, G0,m is a homogeneous polynomial of degree ne + 2me in the coordinates of
the space C2×2 assigned to an edge e, for each e ∈ E . Below we call such polynomials
homogeneous of multi-degree d.

Lemma 3.18. For each d ∈ Z≥0, the polynomials {G0,m | |0| + 2|m| = d} form a basis
in the space of SL2(C)F -invariant homogeneous polynomials on (C2×2)E of degree d .

Proof. Note that the action of SL2(C)F respects the degrees of homogeneity in coordi-
nates assigned to an edge e. Therefore, it is enough to show that, given d ∈ ZE

≥0, the set
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{G0,m | n(0) + 2m = d} is a basis in the space of homogeneous SL2(C)F -invariant
polynomials of multi-degree d (see Remark 3.17).

Let Fun(d)alg((C
2×2)E ) denote the space of all homogeneous polynomials on (C2×2)E

of multi-degree d. Let ⊕
m: 2m≤d

Vd−2m → Fun(d)alg((C
2×2)E ) (3.22)

send a vector v ∈ Vd−2m to the polynomial A 7→ 3E (A[v]) ·
∏
e∈E (detAe)me . Due to

the algebraic Peter–Weyl theorem, the composition of this mapping with the restriction
of functions from (C2×2)E to SL2(C)E is an injection, hence the mapping (3.22) itself is
an injection. On the other hand we have

dimC
( ⊕

m: 2m≤d
Vd−2m

)
=

∑
m: 2m≤d

∏
e∈E
(de − 2me + 1)2

=

∏
e∈E

∑
me: 2me≤de

(de − 2me + 1)2

=

∏
e∈E
((de + 1)(de + 2)(de + 3)/6)

= dimC(Fun(d)alg((C
2×2)E ))

as the dimension of the space of homogeneous polynomials of degree de on (C)2×2
' C4

is equal to
(
de+3

3

)
. Since the dimensions coincide, the mapping (3.22) is an isomorphism.

Using the fact that this mapping commutes with the action of SL2(C)F we get

⊕
m: 2m≤d

VSL2(C)F
d−2m '

⊕
m: 2m≤d

d−2m∈L(T�)

VSL2(C)F
d−2m ' Fun(d)alg((C

2×2)E )SL2(C)F .

Recall that each of the spaces V SL2(C)F
d−2m , where d − 2m ∈ L(T�), is one-dimensional

and the image of its generating vector is the polynomial G0(d−2m),m. Therefore, these
polynomials indeed form a basis in the space Fun(d)alg((C

2×2)E )SL2(C)F . ut

We now extend each of the functions f0 from SL2(C)E to (C2×2)E . For this purpose we
need to give a meaning to the holonomy

hol(A, γ ) = Asign(σ0,e0)
e0 A

sign(σ1,e1)
e1 . . . A

sign(σm−1,em−1)
em−1

of A along a loop γ (see (3.7)) for general matrices Ae ∈ C2×2, where
e0, e1, . . . , em−1 ∈ E are the edges crossed by γ . Recall that each loop γ from a lami-
nation 0 can be represented by a non-backtracking loop on T ◦� in a unique way.
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Let hol∨(·, γ ) be the extension of hol(·, γ ) on (C2×2)E defined as follows: replace
each inverse matrix A−1

e appearing in the above definition by the adjugate matrix A∨e ,
which is defined by the identity A∨e v ∧ w = v ∧ Aew; note that Ae + A∨e = TrAe · Id.

It is easy to see that Tr hol∨(A, γ ) does not depend on the orientation of γ . Moreover,
if γ is a loop, then Tr hol∨(A, γ ) also does not depend on the choice of the starting point
of γ . This allows one to extend the functions f0 from SL2(C)E to (C2×2)E as

F0(A) :=
∏
γ∈0

Tr(hol∨(A, γ )), F0,m(A) := F0(A) ·
∏
e∈E
(detAe)me ; (3.23)

note that all functions F0,m, m = (me)e∈E ∈ ZE
≥0, coincide with f0 on SL2(C)E .

Lemma 3.19. For each lamination 0 and m ∈ ZE
≥0, the following identity holds:

G0,m =
∑
1≤0

c01F1,m+ 1
2 (n(0)−n(1)),

where the coefficients c01 are the same as in Theorem 3.15.

Proof. Let f0 =
∑
1≤0 c̃01g1; recall that c̃01 = 0 if ne(0) − ne(1) is odd for some

e ∈ E . It is easy to see that

F0,m =
∑
1≤0

c̃01G1,m+ 1
2 (n(0)−n(1)).

Indeed, since this identity holds on SL2(C)E and both sides are homogeneous polynomi-
als of multi-degree n + 2m, it also holds on the open subset GL2(C)E of (C2×2)E . The
claim follows since the matrices (c01)1≤0 and (c̃01)0≤1 are inverse to each other. ut

We now move on to the analysis of the functions G0,m as elements of the Hilbert space
L2(BR) on poly-balls BR = BE

R (see (3.18)). Recall that the Euclidean measure on BR is
given by the scalar product defined on each of the components as

〈A1, A2〉C2×2 = Tr(A1A
∗

2). (3.24)

Below we use the analytic Peter–Weyl theorem, applied to the group G = SU2(C)E .

Theorem 3.20 (Analytic Peter–Weyl theorem). Let G be a compact Lie group and Ĝ
the set of all its irreducible finite-dimensional unitary representations. For each represen-
tation (V , ρ) ∈ Ĝ let vV1 , . . . , v

V
dimV be an orthonormal basis in V and

uVi,j (g) :=
√

dimV · 〈ρ(g)vVi , v
V
j 〉.

Then the set {uVi,j | V ∈ Ĝ, 1 ≤ i, j ≤ dimV } is an orthonormal basis in L2(G).

Proof. See e.g. [21, Chapter 5]. ut
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Classically, irreducible unitary representations of SU2(C) are given by the restrictions of
irreducible representations SL2(C)→ End(Vn) provided that the scalar product on Vn '
SymV⊗n1 is obtained from the standard scalar product on V1. Let 01 6= 02 be two distinct
laminations and

u1 ∈
⊗
σ∈F

⊗
e∈∂σ

Vne(01), u2 ∈
⊗
σ∈F

⊗
e∈∂σ

Vne(02).

Since ne(01) 6= ne(02) for some edge e ∈ E , it follows from Theorem 3.20 that∫
SU2(C)E

3E (U[u1])3E (U[u2]) µHaar(dU) = 0, (3.25)

where U = (Ue)e∈E ∈ SU2(C)E and µHaar(dU) =
∏
e∈E µHaar(dUe). The next step is to

deduce the following lemma from the orthogonality condition (3.25).

Lemma 3.21. For each R > 0, the polynomials G0,m are orthogonal in L2(BR):

〈G01,m1 ,G02,m2〉L2(BR) = 0 if (01,m1) 6= (02,m2).

Proof. Recall that G0,m is a homogeneous polynomial of degree |0| + 2|m|. Therefore,
one can assume R = 1 without loss of generality. Suppose n(01)+ 2m1 6= n(02)+ 2m2.
Since the ball B1 is invariant under the rotations A = (Ae)e∈E 7→ (e2πiteAe)e∈E =:
e2πitA, in this case one easily gets

〈G01,m1 ,G02,m2〉L2(B1)
=

∫
t∈[0,1]E

dt
∫
B1

G01,m1(e
2πitA)G02,m2(e

2πitA) λB1(dA)

=

∫
t∈[0,1]E

e2πit·((n(01)+2m1)−(n(02)+2m2))dt · 〈G01,m1 ,G02,m2〉L2(B1)
= 0.

Assume now that n(01)+2m1 = n(02)+2m2; then 01 6= 02 as otherwise one would
have (01,m1) = (02,m2). Let B+1 := {H ∈ B1 | H ≥ 0} be the set of non-negative
Hermitian matrices H ∈ C2×2 satisfying Tr(HH ∗) < 1. Consider the mapping

A : [0, 1] × SU2(C)× B+1 → B1, A(θ, U,H) := eπiθUH. (3.26)

This mapping is a bijection modulo zero measure sets due to the existence and uniqueness
of the polar decomposition of generic matricesA ∈ B1. Note that the scalar product (3.24)
satisfies the identity

〈A(θ,U,H),A(θ, U,H)〉C2×2 = Tr(H 2).

Therefore, the Euclidean volume λB1(dA(θ, U,H)) on B1 can be factorized as
ν(dθ, dU) · ν(dH), where ν(dH) is an absolutely continuous measure on B+1 while
the probability measure ν(dθ, dU) is invariant under the translations θ 7→ θ + θ0 and
U 7→ U0U . Factorizing ν(dθ, dU) as the product of two Haar measures we arrive at the
factorization

λB1(dA(θ, U,H)) = dθ · µHaar(dU) · ν(dH) (3.27)

for a certain absolutely continuous measure ν on B+1 .
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Let v1 ∈
⊗

σ∈F
⊗

e∈∂σ Vne(01) and v2 ∈
⊗

σ∈F
⊗

e∈∂σ Vne(02) be such that

G01(A) = 3
E (A[v1]) and G02(A) = 3

E (A[v2])

for A ∈ (C2×2)E . Denote H = (He)e∈E ∈ B+1 := (B
+

1 )
E and let ν(dH) :=

∏
e∈E ν(dHe).

Since 01 6= 02 one gets

〈G01,m1 ,G02,m2〉L2(B1)

=

∫
B+1
ν(dH) det Hm1+m2

∫
SU2(C)E

3E (UH[v1])3E (UH[v2]) µHaar(dU),

where det Hm
:=
∏
e∈E detHme

e . Applying (3.25) to the vectors u1 := H[v1] and u2 :=

H[v2] one sees that the integral over SU2(C)E vanishes for each H ∈ B+1 . ut

3.6. Exponential lower bound for the norms of functions G0,m

The goal of this section is to derive the following uniform lower bound for the L2-norms
of the functions G0,m on the poly-balls BR:

Proposition 3.22. There exists a (small) absolute constant η0 > 0 such that for all lam-
inations 0 and multi-indices m ∈ ZE

≥0, the following estimate holds:

‖G0,m‖L2(BR) ≥ (η0R)
|0|+2|m|+4|E |. (3.28)

The constant η0 is independent of T� and the number n of punctures λ1, . . . , λn ∈ �.

Remark 3.23. The proof is postponed until the end of this section. Note that G0,m is
a homogeneous polynomial of total degree |0| + 2|m| and BR is a poly-ball of the real
dimension 8|E |. Therefore, one can assume R = 1 without loss of generality.

We need some preliminaries. Recall that the space Vn can be thought of as the
space C[z,w](n) of homogeneous polynomials of degree n in two variables z,w; we
fix an isomorphism Vn ' C[z,w](n) by identifying the monomial zkwn−k with the basis
vector (xkyn−k)sym

∈ Vn (see Section 3.3). For each n ∈ ZE
≥0, this isomorphism induces

an isomorphism
Vn '

⊗
σ∈F , e∈∂σ

Vσ,e,ne ' C[z,w](n) (3.29)

of the space Vn and the space of homogeneous polynomials of multi-degree n in the
variables z = (zσ,e)σ∈F , e∈∂σ and w = (we,σ )σ∈F , e∈∂σ ; note that the total degree of
these polynomials is 2|n| since Vn contains two factors Vσ,e,ne per edge e ∈ E .

Lemma 3.24. Given n ∈ L(T�) and the lamination 0 = 0(n), let v0 ∈ Vn be the vector
corresponding to the function g0 under the isomorphism (3.10) and P0 ∈ C[z,w](n) be
the homogeneous polynomial corresponding to v0 under the isomorphism (3.29). Then

P0(z,w) = ±
∏
σ∈F

3∏
i=1

(wσ,ei zσ,ei+1 − zσ,eiwσ,ei+1

) 1
2 (nei+nei+1−nei+2 ),

where e1, e2, e3 ∈ E denote the three edges adjacent to σ and ei+3 := ei .
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Proof. By Lemma 3.13 the vector v0 equals the symmetrization of the vectors wC(0,π)
defined in (3.13) over π ∈

∏
σ∈F , e∈∂σ Sym(ne). For each face σ ∈ F the symmetrization

of the vectors ⊗
c chord ofC(0,π) in σ

uc,0,π

over
∏3
i=1 Sym(nei ) corresponds to±

∏3
i=1(wσ,ei zσ,ei+1−zσ,eiwσ,ei+1)

ki,i+1 , where ki,i+1
stands for the number of chords of 0 connecting the edges ei and ei+1 in σ . The claim
follows by taking the product over all σ ∈ F . ut

Denote

S :=
∏

σ∈F , e∈∂σ
Sσ,e, Sσ,e := {(zσ,e, wσ,e) ∈ C2

| |zσ,e|
2
+ |wσ,e|

2
= 1}.

Lemma 3.25. Let v1, v2 ∈ Vn and let P1, P2 ∈ C[z,w](n) be the corresponding homo-
geneous polynomials of multi-degree n (and of total degree 2|n|). Then

〈v1, v2〉Vn =
∏
e∈E

(ne + 1)2

4π4 ·

∫
S
P1(z,w) P2(z,w) dλS,

where dλS :=
∏
σ∈F , e∈∂σ λSσ,e is the product of the surface measures on the spheres Sσ,e.

Proof. It is enough to consider the case v1 = v2 =: v =
⊗

σ∈F , e∈∂σ vσ,e. For such
vectors the claim follows from the componentwise identity

‖v‖2Vn =
n+ 1
2π2

∫
S
|P(z,w)|2 dλS,

where v ∈ Vn and P ∈ C[z,w](n) is the homogeneous polynomial corresponding to v.
To prove this identity consider the mapping SU2(C) → S given by g 7→ v(0)g,

where v(0) = (1, 0) ∈ C2 corresponds to the basis vector x ∈ V1 in the notation of
Section 3.3. This mapping is a diffeomorphism and the pushforward of the Haar measure
on SU2(C) is (2π2)−1λS. Since P corresponds to v, one has P(v(0)g) = 〈g(x⊗n), v〉Vn .
Therefore,

1
2π2

∫
S
|P(z,w)|2 dλS =

∫
SU2(C)

|〈g(x⊗n), v〉Vn |
2 dµHaar =

‖v‖2Vn
n+ 1

,

where the last equality follows from Theorem 3.20. ut

Proof of Proposition 3.22. As already mentioned above, one can assume R = 1 for
homogeneity reasons. Let v0 ∈ Vn and P0 ∈ C[z,w](n) correspond to the function g0 as
discussed in Lemma 3.24. Using factorization (3.26) of the Euclidean measure on B1 in
the same way as in the proof of Lemma 3.21 one gets the identity

‖G0,m‖
2
L2(B1)

=

∫
B+1
ν(dH) |det H2m

|

∫
SU2(C)E

|3E (UH[v0])|2 µHaar(dU),
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and Theorem 3.20 gives∫
SU2(C)E

|3E (UH[v0])|2 µHaar(dU) =
∏
e∈E

1
(ne + 1)2

· ‖H[v0]‖2Vn
.

Applying Lemma 3.25 we arrive at the identity

‖G0,m‖
2
L2(B1)

= (4π4)−|E | ·
∫
B+1
ν(dH) |det H2m

|

∫
S
|H[P0]|2 dλS, (3.30)

where H[P0] is obtained from P0 by the change of variables (zσ,e, wσ,e) 7→

(zσ,e, wσ,e)He. Finally, there exist sufficiently small absolute constants ν0 > 0 and
ε0 = ε0(ν0) > 0 such that

ν({H ∈ B+1 | detH ≥ ν0}) ≥ ν0

and, using the explicit form of the polynomial P0 (see Lemma 3.24)),

λS({(z,w) ∈ S | |H[P0]| ≥ ε|n(0)|0 }) ≥ ε
|F |
0

provided that detHe ≥ ν0 for all edges e ∈ E . The desired uniform lower bound (3.28)
for the norm ‖G0,m‖L2(B1)

, with an appropriate η0 = η0(ν0, ε0) > 0, follows easily. ut

4. Estimate of coefficients in the Fock–Goncharov theorem

The goal of this section is to derive the estimate |c01| ≤ 4|0| for the coefficients of
the Fock–Goncharov change of basis g0 =

∑
1≤0 c01f1 discussed in Section 3.4. To

the best of our understanding, a similar exponential bound was implicitly used in [14,
p. 483] and [11, p. 957] but we have been unable to find a proof of such an estimate
in the literature. It is worth noting that an exponential bound for the coefficients c̃01 of
the inverse change of basis f0 =

∑
1≤0 c̃01g1 trivially follows from the orthogonality

of g1 since the norms ‖f0‖ are trivially exponentially bounded from above and the norms
‖g0‖ are exponentially bounded from below due to Proposition 3.22. However, this fact
does not imply an exponential estimate of c01.

In order to study the coefficients c01 we use the well-known connection be-
tween the Kauffman skein algebra with parameter q = −1 and the ring of invariants
Funalg(X)

SL2(C) (see e.g. [16]): the functions g0 and f0 correspond to some natural el-
ements of the skein algebra and the matrix c01 admits some combinatorial description
through this correspondence. One of the key ingredients of the proof given below is a
result due to D. Thurston [28] on the positivity of the so-called bracelet basis in the skein
algebra with q = 1 (see Section 4.4 for more details). Another input is a representation
of the skein algebra in the space of Laurent polynomials via Thurston’s shear coordinates
on the moduli space of hyperbolic structures on� \ {λ1, . . . , λn} (see Section 4.3). These
ideas were kindly communicated to the authors by Vladimir Fock and we believe that a
core part of the proof of Theorem 4.9 should in fact be credited to him.

Several parts of the material presented in this section are classical or well-known. As
in Section 3, we collect all them together in order to introduce a consistent notation and
for the sake of completeness.
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4.1. Definition of the Kauffman skein algebra and the Przytycki–Sikora theorem

Let q ∈ C∗, 6 := � \ {λ1, . . . , λn}, and M := [0, 1] × 6. A framed link L in M is
an embedding of a disjoint union of circles ι :

⊔
S1
→ M together with a continuous

choice of a positively oriented basis in the fiber of TM at each point of ι(
⊔
S1) (i.e., a

choice of everywhere linearly independent sections v1, v2, v3 : ι(
⊔
S1) → TMι(

⊔
S1)).

We say that an (oriented) knot is trivially framed if v1 is the tangent vector to the knot and
v3 is everywhere vertical; each framed knot is equivalent to a trivially framed one up to
a framed isotopy. Denote by Lunknot the trivially framed unknot associated with a simple
contractible loop in 6.

LetW be the C-vector space generated by framed isotopy classes of framed links. We
define a product of two links L and L′ by placing L under L′ (with respect to the direction
of the projection [0, 1]×�→ [0, 1]) and taking the union. This makesW into an algebra
with the unit represented by the empty link. We say that three framed links L1, L0 and
L∞ form a Kauffman triple if they can be drawn identically except in a ball where they
appear as shown in Figure 4. Let I be the two-sided ideal inW generated by the relations
L1 − qL0 − q

−1L∞ = 0 for all Kauffman triples and Lunknot + q
2
+ q−2

= 0. The
Kauffman skein algebra with parameter q is the quotient

Sk(M, q) := W/I.

L1 L0 L∞

Fig. 4. A Kauffman triple (L1, L0, L∞). The skein algebra relations are L1 = qL0 + q
−1L∞

(complemented by Lunknot = −q
2
− q−2).

In our paper we are interested in the particular cases q = ±1 only. Note that the rela-
tions in I immediately imply that the algebras Sk(M,±1) are commutative.The following
theorem is due to Przytycki and Sikora [19] (see also [5] for a close result).

Theorem 4.1. Given a knot K , let γK denote its projection onto 6. The mapping

ψ : Sk(M,−1)→ Funalg(X)
SL2(C)

defined on trivially framed knots by ψ(K)(ρ) := −Tr(ρ(γK)) and extended by additivity
and multiplicativity is a correctly defined isomorphism of algebras.

Proof. Recall that the algebra Sk(M,−1) is commutative. The Kauffman triple relation
for q = −1 reflects the identity

Tr(AB)+ Tr(A−1B) = Tr(A)Tr(B), A,B ∈ SL2(C).

These observations can be completed to a proof of the fact that the mapping ψ is a well-
defined homomorphism of algebras as in [5, proof of Theorem 3].
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One can now use the Fock–Goncharov theorem to prove that ψ is an isomorphism.
Namely, each lamination 0 naturally gives rise to a framed link in M: represent 0 as a
disjoint union of simple curves and attach a trivial frame to each of these curves. It is easy
to see that the image of the resulting framed link under ψ equals f0 (up to sign) and that
such links span Sk(M,−1). Using the fact that {f0} is a basis of Funalg(X)

SL2(C) one
concludes that ψ is an isomorphism. ut

4.2. Skein algebra with q = 1 and twisted representations

It is well known that each spin structure on6 provides an isomorphism between the skein
algebras Sk(M,−1) and Sk(M, 1). Below we briefly discuss this correspondence.

Recall that the unit tangent bundle U6 of 6 is defined as

U6 := (T 6 \ 0)/R>0,

where 0 stands for the zero section of T6. Since π2(6) = 0, one has a short exact
sequence 0 → π1(S

1) → π1(U6) → π1(6) → 0 and concludes that π1(U6) is a
central extension of π1(6) by Z. Let z ∈ π1(U6) denote the image of the generator of Z.
A spin structure on 6 is an element ξ ∈ H 1(U6,Z2) such that ξ(z) = 1. For a trivially
framed knotK , let γ̃K be a loop in U6 given by the points of γK ⊂ 6 and the projections
of the first (tangential) vector of the framing. It is easy to see that isotopic framed knots
define homotopic curves in U6.

It is also well known that each spin structure ξ on a compact orientable surface 6 can
be given by a vector field Vξ on 6 with isolated zeroes of even index: if K is a trivially
framed knot, then

sξ (γ̃K) := (−1)ξ(γ̃K ) = e
i
2 wind(γK ;Vξ ),

where wind(γK ;Vξ ) denotes the total rotation angle of the tangent vector to γK measured
with respect to Vξ . In fact, below one can always assume that Vξ is constant (which cor-
responds to the unique spin structure on the original simply connected domain � ⊃ 6),
so that wind(γK ;Vξ ) = wind(γK) is the usual total rotation angle of the tangent vector
along the loop γK in �.

Lemma 4.2. For each spin structure ξ on 6 the mapping

φξ : Sk(M, q)→ Sk(M,−q), φξ (L) :=
∏
K⊂L

(−sξ (γ̃K)) · L,

where the product is taken over all componentsK of a framed linkL, is a correctly defined
isomorphism of algebras.

Proof. See [1, Theorem 1]. Note that the value Spin(γ̃ , ξ) used in [1] is equal to 1−ξ(γ̃ )
in our notation. Thus, one has (−1)Spin(γ̃ ,ξ)

= (−1)1−ξ(γ̃ ) =− sξ (γ̃ ). ut

We now introduce an additional terminology that will be used in Section 4.3.

Definition 4.3. A representation ρ̃ : π1(U6)→ SL2(C) such that ρ̃(z) = −Id is called
a twisted SL2(C)-representation on 6. Let

Xtwist := {ρ̃ : π1(U6)→ SL2(C) | ρ̃ is a twisted SL2(C)-representation on 6}.
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Note that conjugating a twisted representation by an element of SL2(C) one gets another
twisted representation. Furthermore, sξ (z)ρ̃(z) = Id for each twisted representation ρ̃,
hence one can correctly define the mapping

Sξ : Xtwist → X, ρ̃ 7→ sξ · ρ̃, (4.1)

as sξ (γ̃ ) · ρ̃(γ̃ ) depends only on the projection of a loop γ̃ ∈ π1(U6) onto π1(6). Let

S∗ξ : Funalg(X)
SL2(C)→ Funalg(Xtwist)

SL2(C)

be the pullback of Sξ .

Proposition 4.4. Let ξ be a spin structure on 6 and ψ : Sk(M,−1)→ Funalg(X)
SL2(C)

be the isomorphism from Theorem 4.1. Then the algebra homomorphism

9 := S∗ξ ◦ ψ ◦ φξ : Sk(M, 1)→ Funalg(Xtwist)
SL2(C)

acts on trivially framed knots as 9(K)(ρ̃) := Tr(ρ̃(γ̃K)), ρ̃ ∈ Xtwist. In particular, 9
does not depend on the choice of the spin structure ξ on 6.

Proof. This is a trivial corollary of Theorem 4.1, Lemma 4.2 and definition (4.1). ut

Remark 4.5. It follows from Proposition 4.4 that each twisted representation ρ̃ ∈ Xtwist
gives rise to an algebra homomorphism (evaluation) 9ρ̃ : Sk(M, 1) → C defined on
trivially framed knots asK 7→ Tr(ρ̃(γ̃K)) and extended by additivity and multiplicativity.

4.3. Twisted representations associated with hyperbolic structures on 6 and the
representation of Sk(M, 1) in the algebra of Laurent polynomials

In this section we discuss the class of twisted representations ρ̃x coming from hyperbolic
structures on 6 parametrized by Thurston’s shear coordinates x = (xe)e∈E ∈ RE

+. In
particular, we show that all functions x 7→ Tr(ρ̃x(γ̃K)) associated with trivially framed
knots K ∈ Sk(M, 1) are Laurent polynomials in the variables

√
xe with sign coherent

(simultaneously positive or simultaneously negative) coefficients, the last observation was
pointed out to us by Vladimir Fock. We discuss only the case when6 = � \ {λ1, . . . , λn}

is a punctured simply connected domain; see [3] for the general construction in the case
of surfaces with free non-abelian fundamental group.

Let π : 6 → 6 be the universal cover of 6. Classically, given a hyperbolic metric
on 6 one can consider a uniformization f : H → 6 where H := {z ∈ C : Im z > 0}
stands for the upper complex half-plane; note that f is defined uniquely up to Möbius
automorphisms of H. Provided that the edges of the triangulation T� of 6 are drawn as
hyperbolic geodesics and T� := π−1(T�) denotes the corresponding triangulation of 6,
the following properties hold:

(i) the preimage under f of each triangle of T� is an ideal triangle in H;
(ii) the deck transformations of 6 form a discrete subgroup of Aut(H).
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Recall that Aut(H) ' PSL2(R) (automorphisms of H are given by Möbius trans-
forms z 7→ (az + b)/(cz + d) with a, b, c, d ∈ R defined up to a common multiple)
and that for each (z0, v0), (z1, v1) ∈ UH there exists a unique automorphism g ∈ Aut(H)
such that g(z0) = z1 and the vector g′(z0)v0 has the same direction as v1.

Given a uniformization f : H → 6 and a base point (z0, v0) ∈ UH, one can con-
struct a twisted representation ρ̃f as follows. For a smooth loop γ̃ : [0, 1] → U6 such
that γ̃ (0) = γ̃ (1) = (π ◦ f )(z0, v0), let γ : [0, 1] → U6 denote its lift on U6 and
let gγ (t) ∈ Aut(H) send (f−1

◦ γ )(0) = (z0, v0) to (f−1
◦ γ )(t). One can now lift the

path gγ : [0, 1] → Aut(H) ' PSL2(R) to g̃γ : [0, 1] → SL2(R) so that g̃γ (0) = Id and
set

ρ̃f (γ̃ ) := (g̃γ (1))−1
; (4.2)

note that this mapping is nothing but a lift to SL2(R) of the automorphism of H corre-
sponding to the deck transformation of 6 given by the projection of γ̃ onto 6. In partic-
ular, ρ̃f does not depend on the choice of the lift γ of γ̃ . It is straightforward to check
that ρ̃f is a twisted representation on 6. Moreover, the change of the base point (z0, v0)

and/or of the uniformization f amounts to an SL2(C)-conjugation of ρ̃f .
We now introduce Thurston’s shear coordinates on the space of hyperbolic structures

on6. Given a collection x = (xe)e∈E of positive parameters associated to the edges of the
triangulation T�, one can construct a hyperbolic structure on 6 such that the following
property holds for (any of) the corresponding uniformizations fx : H→ 6:

(iii) for each edge e of T�, the quadrilateral σleft(e) ∪ e ∪ σright(e) formed by two faces
adjacent to e is conformally equivalent to the ideal quadrilateral R(xe) ⊂ H with
vertices −1, 0, xe,∞ so that the edge e corresponds to the line

√
−1 · R+ ⊂ R(xe).

In fact, one can use property (iii) to draw a preimage of the triangulation T� in H. To
do this, start with two faces adjacent to an arbitrarily chosen edge and draw them so that
they form the ideal rectangle R(xe) and then extend this drawing step by step so that each
face of T� is drawn as an ideal triangle and the property (iii) is satisfied. As a result of
this procedure one obtains a diffeomorphism fx : H → 6 which can be used to define
the desired hyperbolic structure on 6 and to project it onto 6. It can be easily shown that
each hyperbolic structure on 6 can be obtained in this manner but we do not need this
fact in our paper.

Below we denote by ρ̃x the twisted SL2(C) representation corresponding to the hyper-
bolic metric on 6 and the uniformization fx : H→ 6 constructed above. Recall that ρ̃x
is defined up to an SL2(C)-conjugation only as we fix neither a base point (x0, v0) ∈ H
nor the starting edge of the construction. Nevertheless, following Proposition 4.4 and
Remark 4.5, for each x ∈ RE

+ one can correctly define the evaluation

9x : Sk(M, 1)→ C, L 7→ (9(L))(ρ̃x), (4.3)

which acts on trivially framed knots as 9x(K) = Tr(ρ̃x(γ̃K)) and is extended to the skein
algebra Sk(M, 1) by linearity and multiplicativity.

The following proposition is the key result of this section. Recall that, given a minimal
smooth multi-curve C on6 = �\{λ1, . . . , λn} (see Section 3.4 for the definition) one can
obtain an element L(C) ∈ Sk(M, 1) by framing all the components of C trivially and then
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resolving the intersections in an arbitrary way: the resulting link depends on the choice of
these resolutions but its class in Sk(M, 1) does not.

Proposition 4.6. (i) For each L ∈ Sk(M, 1) the function 9x(L) is given by evaluating
a Laurent polynomial PL ∈ C[(te, t−1

e )e∈E ] at te :=
√
xe, where

√
x denotes the

positive square root of x > 0. The mapping L 7→ PL is an algebra homomorphism.
(ii) If L = L(C) is obtained from a minimal multi-curve as described above, then PL has

positive integer coefficients.

Proof. Since for each framed link L there exists a trivially framed link L′ obtained from
a minimal multi-curve such that L = ±2mL′ in Sk(M, 1) for some m ≥ 0, one can
assume that L is obtained from a minimal multi-curve. Moreover, since 9x is an algebra
homomorphism, one can further assume that L = L(γ ) is a trivially framed knot obtained
from a minimal (i.e. having no nugatory self-crossings, see Fig. 3) loop γ .

Each minimal loop γ can be combinatorially encoded by a non-backtracking path on
the graph T ◦� . Let us assume that this path consecutively crosses edges e0, e1, . . . , em−1
of T�, and σ0, σ1, . . . , σm, with σm = σ0, is the sequence of faces of T� corresponding
to the vertices of this path, so that ei lies between σi and σi+1. For each edge ei , let
the point ai ∈ ei be defined by the following condition: ai = ϕi(

√
−1), where ϕi de-

notes the uniformization ϕi : H → 6 that maps the ideal quadrilateral with vertices
−1, 0, xei ,∞ onto σi ∪ ei ∪σi+1 so that ϕ−1

i (σi) has vertices−1, 0,∞ whilst ϕ−1
i (σi+1)

has vertices 0, xe,∞ (cf. condition (iii) above).

b

b

√
−1

ϕ−1(ai+1) =

−1 0 xei

ϕ−1
i (σi)

ϕ−1(ei) ϕ−1
i (σi+1)

xei · (
√
−1 + 1)

counterclockwise turn clockwise turn

Fig. 5. The piece γ (ei , ei+1) of a loop γ in the chart ϕ−1
i
: 6→ C.

One can now replace γ by the concatenation of smooth segments γ (ei, ei+1) crossing
the edges of E orthogonally and running from ai ∈ ei to ai+1 ∈ ei+1 inside the face σi+1.
For each i = 0, . . . , m− 1, either

(a) the preimage ϕ−1
i (ei+1) of the next edge crossed by γ connects xei and∞, in which

case we say that γ makes a counterclockwise turn inside σi+1 (see Fig. 5), or
(b) this preimage of ei+1 connects 0 and xei : a clockwise turn inside σi+1.

One easily sees that the mapping ϕ−1
i ◦ ϕi+1 (which maps the line

√
−1 · R+ onto the

preimage ϕ−1
i (ei+1)) is given by

z 7→ xei · (z+ 1) in case (a), z 7→
xei z

z+ 1
in case (b);
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moreover the lift of the corresponding path in Aut(H) ' PSL2(R) to SL2(R) leads to the
following matrix Ai representing the Möbius automorphism ϕ−1

i ◦ ϕi+1:

Ai =

(√
xei

√
xei

0 √
xei
−1

)
in case (a), Ai =

( √
xei 0

√
xei
−1 √

xei
−1

)
in case (b).

Let γ̃ be the loop in the unit tangent bundle U6 corresponding to γ and γ̃ (ei, ei+1)

be its segment corresponding to γ (ei, ei+1). From now onwards we fix the uniformiza-
tion f := ϕ0 : H→ 6. According to the definition (4.2) we have

ρ̃f (γ̃ ) = ((B
−1
m−1Am−1Bm−1) · . . . · (B

−1
1 A1B1) · A0)

−1
= Bm−1,

where the matrices Bi := (A0A1 . . . Ai−1)
−1
∈ SL2(R) represent the Möbius automor-

phisms ϕ−1
i ◦ ϕ0. Since TrBm−1 = TrB−1

m−1 we conclude that

Tr(ρ̃f (γ̃ )) = Tr(A0A1 . . . Am−1) (4.4)

is a Laurent polynomial in the variables (
√
xe)e∈E with positive integer coefficients. In

particular we have proved (ii).
The argument given above defines a required Laurent polynomial PL for each ele-

ment L = L(γ ) ∈ Sk(M, 1) obtained from a minimal loop γ . This definition can then be
extended to the whole skein algebra Sk(M, 1) by linearity and multiplicativity. Finally,
since the mapping L 7→ PL((te)e∈E ) is an algebra homomorphism for each specification
te :=

√
xe, the same is also true for the formal variables te. ut

4.4. Positivity of the bracelet basis of the skein algebra Sk(M, 1) and the estimate of
Fock–Goncharov coefficients

The last ingredient we need is the following positivity result. Let 0 be a lamination con-
sisting ofm1 copies of a simple loop l1,m2 copies of a simple loop l2, . . . ,mk copies of a
simple loop lk; we assume that the loops li are in distinct homotopy classes. The bracelet
of 0 is the multi-curve

b(0) := lm1
1 ∪ · · · ∪ l

mk
k , 0 = (m1 · l1) ∪ · · · ∪ (mk · lk),

where lmii denotes the minimal loop that travels mi times along the simple loop li ,
while mi · li stands for the mi copies of li .

Recall that we denote byL(C) the element of Sk(M, 1) obtained from a multi-curve C.
It is easy to see that, for each simple loop l, one has

L(lm+2) = L(l)L(lm+1)− 2L(lm), m ≥ 0.

By induction on m this gives L(lm) = 2Tm
( 1

2L(l)
)
, m ≥ 0, and hence

L(b(0)) =
k∏
i=1

(
2Tmi

( 1
2L(li)

))
, 0 = (m1 · l1) ∪ · · · ∪ (mk · lk). (4.5)
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where Tm(x) = cos(m arccos x) is the m-th Chebyshev polynomial of the first kind. The
elements L(0) form a basis of Sk(M, 1) (this follows e.g. from Theorem 3.15, Theo-
rem 4.1 and Lemma 4.2). Therefore, the elements L(b(0)) also form a basis of Sk(M, 1).
In particular, for each multi-curve C there exists a unique decomposition

L(C) =
∑

0 lamination

αC0L(b(0)). (4.6)

It was shown by D. Thurston that L(b(0)) is in fact a positive basis of Sk(M, 1):

Theorem 4.7. For each multi-curve C the coefficients αC0 are sign coherent: either
αC0 ≥ 0 for all 0 or αC0 ≤ 0 for all 0. If C is a minimal multi-curve, then all αC0
are non-negative.

Proof. See [28, Theorem 2]. ut

Recall that we denote by |C| the minimal number of intersections of a multi-curve homo-
topic to C with the edges of the triangulation T� and by 0(C) the corresponding lamina-
tion (see Section 3.4 for more details). The next lemma is a simple combination of the
positivity results provided by Proposition 4.6(ii) and Theorem 4.7.

Lemma 4.8. For each multi-curve C one has
∑
0 lamination |αC0| ≤ 2|C|.

Proof. As each multi-curve is homotopic to a minimal one up to nugatory self-crossings
and homotopically trivial components, one can assume that C is minimal. Let PL(C)
be the Laurent polynomial given by Proposition 4.6 and x = 1 ∈ RE

+ be the vector
consisting of units: xe = 1 for all e ∈ E . It follows from the construction of PL(C)
(see (4.4)) that PL(C)(1) ≤ 2|C|. Applying the evaluation 91 to the identity (4.6) and not-
ing that PL(b(0))(1) ≥ 1 one obtains the desired estimate. ut

We are now in a position to prove the main result of this section. Recall that we are inter-
ested in an exponential upper bound for the coefficients of the Fock–Goncharov change
of basis

g0 =
∑
1≤0

c01f1.

Theorem 4.9. For each pair of laminations 0,1 one has |c01| ≤ 4|0|.

Proof. Recall that the function f1 ∈ Funalg(X)
SL2(C) corresponds to±L(1) ∈ Sk(M, 1)

under the isomorphisms provided by Theorem 4.1 and Lemma 4.2. Due to Lemma 3.13,
the function g0 corresponds to the averaging of the signed knots ±L(C(0, π)) over per-
mutations π ∈

∏
σ∈F , e∈∂σ Sym(ne). Let

L(C) =
∑

1 lamination,1≤0

βC1L(1), C = C(0, π).

Then c01 is equal to the average of the signed coefficients βC1 over the permutations π
and it is enough to prove that |βC1| ≤ 4|C| = 4|0| for each multi-curve C = C(0, π).



2822 Mikhail Basok, Dmitry Chelkak

Using the bracelet basis of Sk(M, 1) discussed above one writes

L(C) =
∑

0′ lamination, 0′≤0

αC0′L(b(0
′)).

Now one can expand each of the bracelet links L(b(0′)) ∈ Sk(M, 1) via the func-
tions L(1) with 1 ⊂ 0′ using (4.5):

L(b(0′)) =
∑
1⊂0′

α′0′1L(1),

where each coefficient α′
0′1

is the product over homotopically distinct loops of 0′ of
some coefficients of the Chebyshev polynomials (corresponding to these loops)

2Tm
( 1

2x
)
=

bm/2c∑
k=0

(−1)k
m

m− k

(
m− k

k

)
xm−2k.

Using the trivial upper bound 2m for these coefficients one obtains the crude estimate
|α′
0′1
| ≤ 2|0

′
|
≤ 2|0|. Therefore,

|βC1| ≤ 2|0|
∑

0′:1⊂0′≤0

|αC0′ | ≤ 4|0|

due to Lemma 4.8. ut

Remark 4.10. It is worth noting that the constant 4 in the exponential upper bound pro-
vided by Theorem 4.9 is far from being optimal. For instance one can easily improve
the constant 2 in Lemma 4.8 to 1

2 (
√

5 + 1), which is the L2-norm of the matrices Ai
with xe = 1, not to speak of a huge overkill in the estimate of the coefficients α′

0′1
used

above.

5. Proof of the main results

This section is organized as follows. In Section 5.1 we discuss the expansions
of SU2(C)F -invariant functions on poly-balls BR ⊂ SL2(C)E via the functions F0,m
constructed in Section 3 (see (3.21)). Note that the exponential estimates provided by
Proposition 3.22 and Theorem 4.9 play a crucial role in the proof of Lemma 5.3. We then
pass to the analysis of holomorphic functions on the variety

Zunip := {A ∈ SL2(C)E |Tr(hol(A, λ◦i )) = 2 for all i = 1, . . . , n} (5.1)

(here and below, the holomorphicity condition is always required on the regular part
of the variety only). Section 5.2 is devoted to extensions of holomorphic functions
from Zunip ∩ BR to BR and is based upon Manivel’s Ohsawa–Takegoshi-type theorem;
it is needed for the existence part of Theorem 5.11. Section 5.3 contains a version of
Hilbert’s Nullstellensatz for holomorphic functions vanishing on Zunip ∩ BR; we need
this for the uniqueness part of Theorem 5.11. Finally, Section 5.4 is devoted to the proof
of our main result, Theorem 5.11, on the existence and uniqueness of expansions of holo-
morphic functions on Xunip in the basis {f0} indexed by macroscopic laminations 0 (i.e.,
those not containing any of the loops λ◦i surrounding only one puncture).
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5.1. Expansions of SU2(C)F -invariant holomorphic functions on BR via F0,m

Recall that the action of the group SL2(C)F on the space (C2×2)E is given by (3.4). We
start with a simple preliminary lemma.

Lemma 5.1. Let F : (C2×2)E → C be a holomorphic function invariant under the
action of SU2(C)F ⊂ SL2(C)F . Then F is also invariant under the action of SL2(C)F .

Proof. Given A ∈ (C2×2)E define a holomorphic function ϕA on SL2(C)F by

ϕA(C) := F(C[A]).

By our assumption, this function is constant on SU2(C)F . Therefore, the d-th derivative
of ϕA at the identity is a C-linear functional on the space Symd (sl2(C))F which vanishes
on the (R-linear) subspace Symd(su2(C))F . Since sl2(C) ' C ⊗R su2(C) we conclude
that all these derivatives vanish. Therefore, ϕA is constant on SL2(C)F . ut

Lemma 5.2. (i) Let p0,m (indexed by laminations 0 and tuples m ∈ ZE
≥0) be coef-

ficients satisfying |p0,m| = O(r−(|0|+2|m|+4|E |)) for some r > 0. Then the series

F(A) :=
∑
0,m

p0,mF0,m(A) (5.2)

converges absolutely and uniformly on compact subsets of Br .
(ii) Moreover, if p0,m, p̃0,m both satisfy the upper bound in (i) and the corresponding

functions F, F̃ coincide on Br , then p0,m = p̃0,m for all 0 and m.

Proof. (i) Using the simple inequalities |Tr(A1A2)|
2
≤ (Tr(A1A

∗

1))
1/2(Tr(A2A

∗

2))
1/2,

where A1, A2 ∈ C2×2, and |Tr(B1B2)| ≤ TrB1 TrB2, where B1 = B∗1 ≥ 0 and B2 =

B∗2 ≥ 0, one easily sees that

|Tr(A1 . . . An)| ≤

n∏
i=1

(Tr(AiA∗i ))
1/2 for all n ≥ 2 and A1, . . . , An ∈ C2×2.

Together with the trivial bound |detA| ≤ Tr(AA∗) this yields the following estimate:

|F0,m(A)| ≤ r |0|+2m for all A ∈ Br .

Therefore, the series (5.2) converges absolutely and uniformly on each closed poly-
ball Br ′ with r ′ < r since

∑
0,m(r

′/r)|0|+2|m|
≤ (1− r ′/r)−|E | · (1− (r ′/r)2)−|E | <∞.

(ii) Grouping the terms in (5.2) according to their degree of homogeneity d =

|0| + 2|m|, one sees that each term in the series

F̃ (εA)− F(εA) =
∑
d≥0

εdP (d)(A)

must vanish:

P (d)(A) :=
∑

0,m: |0|+2|m|=d
(p̃0,m − p0,m)F0,m(A) = 0
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for all A ∈ (C2×2)E . Due to Lemma 3.18 and Lemma 3.19, the polynomials F0,m are
linearly independent. Hence all the coefficients p̃0,m − p0,m must vanish. ut

The next lemma shows that each SU2(C)F -invariant holomorphic function defined on a
poly-ball BR necessarily admits an expansion (5.2) in a smaller poly-ball B 1

5 η0R
. Recall

that the absolute constant η0 is introduced in Proposition 3.22.

Lemma 5.3. Given r > 0, denote R := 5η−1
0 r . Let F ∈ L2(BR) be an SU2(C)F -

invariant holomorphic function on BR . Then there exist coefficients p0,m indexed by lam-
inations 0 and tuples m ∈ ZE

≥0 such that

|p0,m| ≤ r
−(|0|+2|m|+4|E |)

· ‖F‖L2(BR) (5.3)

for all 0,m, and

F(A) =
∑
0,m

p0,mF0,m(A) for all A ∈ Br . (5.4)

Remark 5.4. Recall that Lemma 5.2(ii) guarantees the uniqueness of the expansion (5.4)
provided that p0,m = O|0|+2|m|→∞(r

−(|0|+2|m|)).

Proof of Lemma 5.3. Let F(A) =
∑
d≥0 F

(d)(A) be the Taylor expansion of the
function F at the origin. Since this expansion is unique, the homogeneous polynomi-
als F (d) of degree d are SU2(C)F -invariant. Lemma 5.1 implies that these polynomials
are also SL2(C)F -invariant so one can expand them in the basis {G1,k | |1| + 2|k| = d}
due to Lemma 3.18. More precisely, Lemma 3.21 yields

F (d) =
∑

1,k: |1|+2|k|=d
q1,kG1,k, where q1,k =

〈F,G1,k〉L2(BR)

‖G1,k‖
2
L2(BR)

.

By Proposition 3.22 we have the estimate

|q1,k| ≤ ‖F‖L2(BR)
· ‖G‖−1

L2(BR)
≤ (η0R)

−(d+4|E |)
‖F‖L2(BR).

We now use the expansion G1,k =
∑
0≤1 c10F0,k+ 1

2 (n(1)−n(0)) provided by
Lemma 3.19, which leads to the identity

F (d) =
∑

0,m: |0|+2|m|=d
p0,mF0,m, where p0,m :=

∑
1:0≤1≤0+2m

c10q1,m− 1
2 (n(1)−n(0)).

One can now easily deduce (5.3) from the estimate |c10| ≤ 4|1| provided by Theo-
rem 4.9, the estimate of the coefficients q1,k given above and the following crude bound:

∑
1: |1|≤d

4|1| ≤
d∑
n=0

(
n+ |E | − 1

n

)
4n ≤ 5d+|E |.

The exponential upper bound (5.3) and Lemma 5.2(i) immediately imply (5.4). ut
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5.2. Holomorphic extensions from Zunip ∩ BR to BR
Recall that our ultimate goal is to show that each holomorphic SL2(C)-invariant function
on Xunip can be expanded (i.e., written as the sum of an infinite series) in functions f0
enumerated by macroscopic laminations. The variety Xunip is contained in the variety X,
which is related to the affine variety SL2(C)E ⊂ (C2×2)E via the map φ : A 7→ hol(A, ·)
defined by (3.8).

We already proved in Lemma 5.3 that each SU2(C)F -invariant holomorphic func-
tion F defined in a poly-ball BR ⊂ (C2×2)E can be written as the sum of a series of
functions F0,m (whose restrictions to SL2(C)E are equal to φ∗f0). However, functions
that we want to expand are defined only on Xunip ( X. If we pull such a function back
along the map φ, we get a function f defined on the subvariety Zunip ⊂ (C2×2)E only;
see (5.1). Thus, a reasonable way to use Lemma 5.3 is to solve an interpolation problem
that consists in finding a function F : BR → C such that F |Zunip∩BR = f . Once such
a function F is found, we can use Lemma 5.3 to expand F as a series in F0,m and then
restrict this expansion to Zunip to obtain an expansion of the initial function f .

Certainly, we also need to control the norm of the solution F as Theorem 1.4 requires
an explicit estimate on the coefficients of the series. Let us point out that, even without
requiring such a quantitative control (and even locally), this interpolation problem could,
a priori, be not always solvable since the variety Zunip is not smooth. Luckily, there exists
a series of results—so-called Ohsawa–Takegoshi-type theorems (we refer the interested
reader to a very helpful introduction to this subject due to Demailly [6])—which provide
an affirmative answer to the question of finding an extension of a holomorphic function
from a (non-smooth) subvariety. Roughly speaking, the interpolation problem is always
solvable provided that the ambient variety BR is a Stein manifold and that the function f
belongs to a certain weighted L2-space on Zunip∩BR . Moreover, in this case the extended
function F can also be taken from a certain weighted L2-space that naturally arises from
potential theory arguments.

It is worth noting that Ohsawa–Takegoshi-type theorems are usually formulated in a
more general context of Hermitian bundles over Stein manifolds. In this context, f should
be viewed as a section of a Hermitian line bundle L on BR while Zunip is the zero set of a
section s of another Hermitian vector bundle E; the required estimates involve curvature
forms of L and E. In what follows, we rely upon a very particular case of Manivel’s
Ohsawa–Takegoshi-type theorem [15] and do not need such generality: both L and E
will be trivial vector bundles.

Given a Hermitian manifold B and a holomorphic map s : B → Cr we denote by T B
the holomorphic tangent bundle of B, by 3mds : 3m(T B)→ 3mCr the corresponding
morphism of m-th exterior powers, and by |3mds| its operator norm.

Theorem 5.5. Let k = 4|E |, BR ⊂ (C2×2)E ' Ck be a poly-ball defined by (3.18),
and s : BR → Cr be a holomorphic map such that |s(A)| ≤ e−1 for all A ∈ BR .
Let Z := s−1(0) and assume that ds(A) is of maximal rank for a generic point A ∈ Z.
Then each holomorphic function f : Zreg

:= Z \ Zsing
→ C such that∫

Z

|f |2|3rds|−2 ωk−r <∞



2826 Mikhail Basok, Dmitry Chelkak

admits a holomorphic extension F : BR → C such that F |Zreg = f and∫
BR
|F |2(−|s|r log |s|)−2 ωk ≤ Cr,k

∫
Z

|f |2|3rds|−2 ωk−r ,

where ω = i
2
∑
e∈E Tr(dAe ∧ dA∗e) and the constant Cr,k > 0 depends only on r and k.

Proof. See [6, p. 54, Theorem 4.1]; note that the poly-ball BR is a weakly pseudo-convex
domain. Since in our case the holomorphic vector bundles L,E are trivial with a con-
stant Hermitian metric, the curvature tensors2(L),2(E) vanish and the condition (a) of
[6, p. 54, Theorem 4.1] boils down to the trivial inequality

∂∂ log |s|2 = |∂s|2 · |s|−2
− |〈∂s, s〉|2 · |s|−4

≥ 0,

which holds true for all one-dimensional restrictions z 7→ s(A+ zB) of s. ut

We now apply Theorem 5.5 to the variety Zunip ⊂ (C2×2)E defined by (5.1). For our
purposes it is enough to assume that the function f is bounded; also, we do not need the
sharp weight (−|s|r log |s|)−2

≥ 1 in the L2-norm of its extension F .

Proposition 5.6. Let R >
√

2 and f : Zreg
unip ∩ BR → C be a bounded holomorphic

function. Then there exists a holomorphic function F : BR → C such that F |Zreg
unip∩BR

= f

and
‖F‖L2(BR) ≤ const(R, T�) · ‖f ‖L∞(Zreg

unip∩BR)

for some constant depending on R and the triangulation T� but independent of f .

Proof. Denote s := ((F∅,ne − 1)e∈E , (Fλ◦i − 2)ni=1) : (C
2×2)E → C|E |+n and fix a small

positive constant c(R, T�) so that c(R, T�) · |s| ≤ e−1 on BR . Due to Theorem 5.5, the
function f admits a holomorphic extension F from Z

reg
unip ∩ BR to BR such that

‖F‖2
L2(BR) ≤ C|E |+n,4|E | ·c(R, T�)−2(|E |+n)

·

∫
Zunip∩BR

|3rds|−2ωk−r ·‖f ‖2
L∞(Z

reg
unip∩BR)

.

Therefore, it is enough to check that |3rds|−2
∈ L1

loc(Zunip).
Let T ⊂ E , |T | = n, be a spanning tree (on n + 1 vertices ∂�, λ1, . . . , λn) of the

triangulation T� such that the graph T \ {λk, . . . , λn} is connected for all k = n, . . . , 1.
Note that the mapping

A = (Ae)e∈E 7→ ((Ae)e∈E\T , (Bi)
n
i=1), Bi := hol∨(A, λ◦i ), (5.5)

is a smooth bijection in the vicinity of SL2(C)E ' SL2(C)(E\T )∪{1,...,n}: one can itera-
tively reconstruct all the missing matrices (Ae)e∈T from the holonomies Bi , i = n, . . . , 1.
To compute 3rds, we can view the mapping s as acting coordinatewise in the new coor-
dinates ((Ae)e∈E\T , (Bi)ni=1):

Ae 7→ detAe − 1, Bi 7→ s0(Bi) := (detBi − 1,TrBi − 2).



Tau-functions à la Dubédat for double-dimers and CLE(4) 2827

(More accurately, one should multiply detBi by several factors (detAe)−1 corresponding
to the edges incident to λi and possibly by factors (detBj )−1, j > i, coming from earlier
steps of the reconstruction of (Ae)e∈T , but all these additional factors do not affect 3rds
on SL2(C)E .) As the gradient of A 7→ detA does not vanish on SL2(C), there is noth-
ing to check for the first coordinates (Ae)e∈E\T . For the coordinates (Bi)ni=1, the only
degeneracy of ds0 ∧ ds0 on s−1

0 (0) is at B = Id. Writing

B =

(
t − ix y + iz

−y + iz t + ix

)
, t, x, y, z ∈ C,

and ω = i
4 (dt ∧ dt + dx ∧ dx + dy ∧ dy + dz ∧ dz), it remains to check that∫

t=1, x2+y2+z2=0, |x|,|y|,|z|≤1

ω ∧ ω

|x|2 + |y|2 + |z|2
< ∞,

which is straightforward. ut

Remark 5.7. It is easy to see that Proposition 5.6 remains true (with exactly the same
proof) if one replaces the variety Zunip by

Zk := {A ∈ SL2(C)E | Tr(hol(A, λ◦i )) = 2 for all i = 1, . . . , k} (5.6)

(note that Zunip = Zn ⊂ Zn−1 ⊂ · · · ⊂ Z1 ⊂ Z0 = SL2(C)E ).

5.3. Nullstellensatz for holomorphic functions vanishing on Zunip ∩ BR
The goal of this section is to prove the following analogue of Hilbert’s Nullstellensatz for
holomorphic functions on BR .

Proposition 5.8. Let R > R′ >
√

2 and suppose a holomorphic function F : BR → C
vanishes on Zunip ∩BR . Then there exist bounded holomorphic functions He : BR′ → C,
e ∈ E , and Hi : BR′ → C, i = 1, . . . , n, such that

F(A) =
∑
e∈E

He(A)(F∅,ne (A)− 1)+
n∑
i=1

Hi(A)(Fλ◦i (A)− 2) for all A ∈ BR′ .

Remark 5.9. (i) It is worth noting that if F were a polynomial, then the result would
follow from Hilbert’s classical Nullstellensatz as one can easily check that the radical of
the ideal I = 〈(detAe − 1)e∈E , (Tr hol∨(A, λ◦i )− 2)ni=1〉 coincides with I.

(ii) Although one can prove Proposition 5.8 by means of algebraic geometry, below
we prefer to take advantage of the analytic tools already introduced in the previous section
(namely, Proposition 5.6 and Remark 5.7) and the following simple lemma.

Lemma 5.10. Let t (B) := TrB − 2, Y := {B ∈ SL2(C) | t (B) = 0}, and V ⊂ SL2(C)
be an open subset. If a holomorphic function f : V → C vanishes on Y ∩ V , then the
ratio f/t is a locally bounded holomorphic function on V .
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Proof. If Id /∈ V , this fact easily follows from the local analysis since Y ∩ V is smooth
in V and dt does not vanish there. Otherwise, let U b V be a small neighborhood of
Id ∈ V . The same local analysis implies that f/t can be viewed as a holomorphic function
on V \U and the Hartogs extension theorem guarantees the existence of its holomorphic
extension in the whole V . ut

Proof of Proposition 5.8. Let Zunip = Zn ⊂ Zn−1 ⊂ · · · ⊂ Z1 ⊂ Z0 = SL2(C)E be
given by (5.6) and Bi := hol(A, λ◦i ) as in the proof of Proposition 5.6; recall that each Zk
is cut out by the equations t1 = · · · = tk = 0, where ti := TrBi − 2.

Consider the meromorphic function F/tn on Zn−1 ∩ BR and recall the coordi-
nates (5.5) from the proof of Proposition 5.6. If one fixes all (Ae)e∈E\T and (Bi)n−1

i=1 ,
then Lemma 5.10 guarantees that F/tn is a holomorphic function of the last coordi-
nate Bn. Therefore, there exists a holomorphic function hn : Zn−1 ∩ BR → C such
that F = tn · hn on Zn−1 ∩ BR . Due to Remark 5.7, for each Rn−1 < R one can find a
holomorphic extension Hn : BRn−1 → C of the function hn (bounded on Zn−1 ∩ BRn−1 ).
As t (Bn) = Tr hol(A, λ◦n)− 2 on SL2(C)E , one has

Fn−1(A) := F(A)−Hn(A)(Fλ◦n(A)− 2) = 0 for all A ∈ Zn−1 ∩ BRn−1

and one can iterate this procedure considering the ratio Fn−1/tn−1 on Zn−2 ∩ BRn−2

with Rn−2 < Rn−1 < Rn, etc. After n steps, one obtains the existence of holomorphic
functions Hi : BR0 → C such that

F0(A) := F(A)−
n∑
i=1

Hi(A)(Fλ◦i (A)− 2) = 0 for all A ∈ SL2(C)E ∩ BR0 ,

where R0 can be chosen so that R′ < R0 < R.
In order to complete the proof and to construct the required functions (He)e∈E in

addition to (Hi)ni=1 one simply repeats the same arguments for the collection of functions
(detAe − 1)e∈E instead of (ti)ni=1. Since the manifold SL2(C)E ⊂ (C2×2)E is smooth,
there is even no need for an analogue of Lemma 5.10 along this procedure. ut

5.4. Expansions of holomorphic functions on Xunip via f0 , 0 macroscopic

Recall that the mapping φ : A 7→ hol(A, ·) is given by (3.8) and let

DR := φ(Zunip ∩ BR) ⊂ Xunip.

Theorem 5.11. Given r >
√

2, denote R := 5η−1
0 r . Let f : DR → C be a bounded

holomorphic function on DR . Then there exist coefficients p0 indexed by macroscopic
laminations 0 such that

|p0| ≤ r
−|0|
· const(r, T�) · ‖f ‖L∞(DR) (5.7)

for all 0 and
f (ρ) =

∑
0macroscopic

p0f0(ρ) for all ρ ∈ Dr . (5.8)

Moreover, this expansion is unique provided that 1
5η0r >

√
2 and p0 = O|0|→∞(r−|0|).
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Proof. To prove the existence of the coefficients p0 consider a holomorphic function F :
BR → C obtained by applying Proposition 5.6 to the function f ◦ φ : Zunip ∩ BR → C.
Recall that

‖F‖L2(BR) ≤ const(R, T�) · ‖f ‖L∞(DR).
Note that we can in addition assume that the function F is invariant under the ac-
tion of SU2(C)F on BR ⊂ SL2(C)E . Indeed, one can always replace F by its aver-
age 〈F 〉SU2(C)F over the orbits of this action: the norm of F in L2(BR) does not increase
under this averaging due to (3.27) and one still has 〈F 〉SU2(C)F = f ◦ φ on Zunip ∩ BR
since the mapping φ is invariant under the action of SL2(C)F .

Thus we can use Lemma 5.3 to expand F in Br as

F(A) =
∑
0,m

p0,mF0,m(A), A ∈ Br ,

where |p0,m| ≤ r−(|0|+2|m|+4|E |)
· ‖F‖L2(BR) and the series converges absolutely and

uniformly on each smaller poly-ball Br ′ , r ′ < r .
Note that each lamination can be represented as a disjoint union of a macroscopic

lamination 0, k1 copies of the loop λ◦1 surrounding only the puncture λ1, k2 copies of
the loop λ◦2, and so on. For brevity, below we use the notation 0 t λ◦k to describe such a
lamination, where k = (ki)ni=1 ∈ Zn

≥0. By definition,

F0tλ◦k,m(A) = F0(A) ·
n∏
i=1

(Fλ◦i (A))
ki ·

∏
e∈E
(detAe)me .

Since detAe = 1 and Fλ◦i (A) = 2 for A ∈ Zunip, we get the identity

F(A) =
∑

0macroscopic

p0F0(A), A ∈ Zunip ∩ Br ,

where p0 :=
∑

k∈Zn
≥0,m∈ZE

≥0
p0tλ◦k,m · 2

|k|. As n(0 t λ◦k) ≥ n(0)+ 2|k|, it is easy to see
that

|p0| ≤
∑

k∈Zn
≥0,m∈ZE

≥0

2|k|r−(|0tλ
◦

k|+2|m|+4|E |)
· ‖F‖L2(BR)

≤ (1− 2r−2)n(1− r−2)|E | · r−(|0|+4|E |)
‖F‖L2(BR).

This gives the desired exponential upper bound (5.7) for |p0|.
We now move on to the uniqueness of expansion (5.8). Assume that two sequences of

coefficients p0, p̃0 satisfy |p0|, |p̃0| = O(r−|0|) as |0| → ∞ and that the corresponding
series (5.8) coincide on Dr . Denote

F(A) :=
∑

0macroscopic

(p̃0 − p0)F0(A) for A ∈ Br . (5.9)

Recall that this series converges absolutely and uniformly on compact subsets of Br due to
Lemma 5.2(i). Therefore, F is a holomorphic function on Br which vanishes along Zunip.
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By Proposition 5.8 one can find bounded holomorphic functions (He)e∈E and (Hλi )1≤i≤n,
defined on Br ′ , r ′ < r , such that

F(A) =
∑
e∈E

He(A)(F∅,ne (A)− 1)+
n∑
i=1

Hλi (A)(Fλ◦i (A)− 2), A ∈ Br ′ .

Moreover, since all the functions F , F∅,ne and Fλ◦i are SU2(C)F -invariant, one can as-
sume that all the functions Hα , α ∈ E ∪ {λ1, . . . , λn}, are invariant as well by averaging
each of them over orbits of the action of the compact group SU2(C)F on A ∈ Br .

We proceed by expanding these functions in F0,m as provided by Lemma 5.3. Namely,
for each % < 1

5η0r
′ and α ∈ E ∪ {λ1, . . . , λn} one has

Hα(A) =
∑
0,m

p
(α)
0,mF0,m(A) for A ∈ B%, where |p

(α)
0,m| = O(%

−(|0|+2|m|+4|E |)).

We arrive at the following expansion on B%:

F(A) =
∑
e∈E

∑
0,m

p
(e)
0,mF0,m(A)(F∅,ne (A)− 1)+

n∑
i=1

∑
0,m

p
(λi )
0,mF0,m(A)(Fλ◦i (A)− 2).

As F0,m(A)F∅,ne (A) = F0,m+ne (A) and F0,m(A)Fλ◦i (A) = F0tλ◦i ,m(A), the last expan-
sion must coincide with (5.9) due to the uniqueness part of Lemma 5.2. In particular, for
each macroscopic lamination 00 we get

(p̃00 − p00)F00(A) =
∑
e∈E

∑
k,m

p
(e)

00tλ
◦

k,m
F
00tλ

◦

k,m
(A)(F∅,ne (A)− 1)

+

n∑
i=1

∑
k,m

p
(λi )

00tλ
◦

k,m
F
00tλ

◦

k,m
(A)(Fλ◦i (A)− 2).

Let % be chosen so that % >
√

2. Then one can substitute A = Id = (Id)e∈E into the last
equality. The right-hand side vanishes and hence p̃00 = p00 . ut

Proof of Theorem 1.4. By the existence part of Theorem 5.11 every entire function
f ∈ Funhol(Xunip)

SL2(C) admits an expansion (1.6) on each bounded subset of Xunip. It
follows from the uniqueness part of Theorem 5.11 that the coefficients of all these expan-
sions coincide provided that the corresponding subsets of Xunip are big enough. Finally,
the estimate (5.7) implies (1.7). ut
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