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Abstract. Counting the number of Galois orbits of newforms in Sk(00(N)) and giving some arith-
metic sense to this number is an interesting open problem. The case N = 1 corresponds to Maeda’s
conjecture (still an open problem) and the expected number of orbits in this case is 1, for any k ≥ 16.
In this article we give local invariants of Galois orbits of newforms for general N and count their
number. Using an existence result of newforms with prescribed local invariants we prove a lower
bound for the number of non-CM Galois orbits of newforms for 00(N) for large enough weight k
(under some technical assumptions on N ). Numerical evidence suggests that in most cases this
lower bound is indeed an equality, thus we leave as a question the possibility that a generalization
of Maeda’s conjecture could follow from our work. We finish the paper with some natural gen-
eralizations of the problem and show some of the implications that a generalization of Maeda’s
conjecture has.
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1. Introduction

A conjecture of Maeda predicts that there is a unique Galois orbit of level 1 newforms
for all weights k ≥ 16. A natural problem is to study what happens when working with
modular forms of arbitrary level N . For small weights, the number of Galois orbits in
Sk(00(N)) is hard to understand, for example in weight 2 (which is not covered by the
original Maeda’s conjecture) there are many elliptic curves of the same conductor N .
However, while computing spaces of modular forms of a fixed level and varying the
weight k, the situation changes completely. Surprisingly, the number of orbits tends to
stabilize very fast, and the numbers obtained follow some pattern (see for example the
data in [Tsa14]).

While proving Maeda’s conjecture for newforms for SL2(Z) is a very hard problem,
it is fairly easy to prove the lower bound 1 for the number of Galois orbits when k ≥ 16,
which corresponds to the “easy” inequality. The purpose of the present article is to present
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invariants of Galois orbits of eigenforms, and use them to give a lower bound for the
number of Galois orbits of newforms in Sk(00(N)) for k large enough (i.e. for all k ≥ k0,
for some k0 ≥ 2). In many instances, the numerical data seems to indicate that such
inequality is in fact an equality.

The invariants introduced are of two different natures: a local one, namely the Galois
orbit of the local type of the automorphic representation at each prime dividing N ; and a
local-global one, coming from the Atkin–Lehner eigenvalue at p of the modular form f .
Recall that the local type can be thought of (via the local Langlands correspondence) as
the isomorphism class of the restriction of the Weil–Deligne representation to the inertia
subgroup (see Section 2). The Atkin–Lehner sign is more subtle, and it is not clear how
to obtain it from the Weil–Deligne representation.

The lower bound we prove is of the following form. Let NCM(N, k) denote the num-
ber of Galois orbits of non-CM newforms of level N and weight k. If N is a prime power
or if N is square-free, then ∏

q|N

LO(qvalq (N)) ≤ NCM(N, k) (1.1)

for all k large enough, where the values of LO(qr) are given in Theorem 3.10. Let us
explain a little all the ingredients of the formula and its proof.

In Section 2, we recall the theory of local types for GL2, and consider their Galois
conjugacy classes. Since we want to count the number of Galois orbits of modular forms,
a naive idea is that while conjugating a modular form f , one also conjugates the local
types, hence when identifying global conjugates one should do the same locally. The
section contains a detailed description of local types and their number, the main result
being a formula for the number of Galois orbits of local types of level pn for any prime
p (the case p = 2 being the hardest one!).

Section 3 considers local types coming from modular forms. There are two advantages
of doing so: first we prove (see Lemmas 3.1 and 3.2) that if a modular form f has a local
type τ̃ , then its coefficient field is an extension of Q with enough endomorphisms. In
particular, this shows that the naive approach (looking at local Galois orbits) is correct in
most instances. This is not true in general, but it is true under the hypothesis on N stated
before, i.e. N is a prime power or a square free integer (see Remark 4.2 to understand the
general case). The second advantage of working with modular forms of trivial Nebentypus
is that we have the theory of Atkin–Lehner involutions. Clearly their eigenvalues are
constant on Galois orbits (see Lemma 3.4), thus they give an extra invariant. There is an
interesting phenomenon while computing Atkin–Lehner eigenvalues: a modular form of
level p (prime) might have any Atkin–Lehner eigenvalue (for different values of p and k
both signs are attained) but its twist by the quadratic character unramified outside p does
not! Then we might have two different Galois orbits of level p (distinguished by the
Atkin–Lehner eigenvalue) whose twists (of level p2) still give two different orbits, but
both have the same Atkin–Lehner eigenvalue. This phenomenon suggests that instead of
considering the Atkin–Lehner sign as an invariant, we should consider what we call the
minimal Atkin–Lehner sign (see Definition 3.5).

An important result in this direction is the determination of what are the possible
Atkin–Lehner signs for each local type. Such a description is given in Theorem 3.6, which
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describes when the local type determines the minimal Atkin–Lehner sign uniquely, and
when it does not. Concerning the latter, we prove that the local sign varies when twisting
by the unramified quadratic character at p. Then we can count the number of pairs (τ̃ , ε)
consisting of an isomorphism class of local types of level pn and its compatible minimal
Atkin–Lehner sign. This number is denoted by LO(pn) and is the one appearing in (1.1).
An important result in this section is a precise formula for that value (see Theorem 3.10).

Section 4 considers the problem of the existence of pairs (τ̃ , ε) as before, for large
values of k. The main result is Theorem 4.1, in the case when N is a prime power or
square-free. The proof is based on results of Weinstein [Wei09] and Kim–Shin–Templier
[KST20]. The latter article proves existence of modular forms with a fixed local represen-
tation at p (not being principal series), not just its type! Such a result is very strong, but it
implies Theorem 4.1 under our hypothesis. For general N , a different approach must be
taken, as principal series would need to be included (see Remark 4.2). We want to stress
that if Theorem 4.1 holds for general N , then (1.1) holds in general.

It is natural to ask why we discard the CM modular forms in our result. The reason
is twofold: first of all, modular forms with complex multiplication do form an orbit on
their own. The second reason is that (for k large enough) when the space of newforms of
a given level N contains a CM Galois orbit, there is another Galois orbit with the same
local type without complex multiplication.

Example 1.1. Let N = 9 and k = 16. The space S16(00(9)) has dimension 13, and
the new subspace has dimension 6 (which can be easily checked using [S+13]). There
are four rational newforms, and a fifth one with coefficient field the real quadratic field of
discriminant 1480. There is a unique newform in S16(00(9))with complex multiplication,
whose q-expansion starts

f = q − 32768q4
+ 1244900q7

+O(q12).

Concretely, the form can be computed in Sage with the command

f = Newforms(9,16,names=’’a’’)[1]

and we can certify it has complex multiplication running f.has cm().
The newform f is supercuspidal at the prime 3 and it corresponds to the character

over the unramified quadratic extension of Q3, sending a generator s of F×9 to
√
−1. This

information can also be computed using a package in Sage based on the article [LW12].
Concretely,

sage: Pi=LocalComponent(f,3)
sage: Pi.species()
’Supercuspidal’
sage: Pi.characters()
[
Character of unramified extension Q_3(s)* (s^2 + 2*s + 2 = 0), of level 1,
mapping s |--> d, 3 |--> 1,
Character of unramified extension Q_3(s)* (s^2 + 2*s + 2 = 0), of level 1,
mapping s |--> -d, 3 |--> 1
]
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One needs to compute the base ring of the character to realize that d =
√
−1. The form

without rational coefficients has q-expansion q+aq2
+87112q4

+464aq5
−2591260q7

+

54344aq8
+ O(q10), where a2

= 119880 and its local character at 3 matches that of f ,
hence both representations have the same local type. Note that the latter form does not
have complex multiplication (as the 5-th coefficient is non-zero).

This same situation holds in general and is part of Theorem 4.1, whose proof uses the
fact that the number of non-CM forms with prescribed local types grows linearly in the
weight k, while the number of CM forms is constant. With all these ingredients, the proof
of the stated bound (Theorem 4.3) is straightforward.

In [Tsa14] the author proposed a generalization of Maeda’s conjecture (Conjec-
ture 2.2) to arbitrary levels N as follows:

• the function NCM(N, k) is constant in the variable k for k large enough,
• the limit function NCM(N) := limk→∞ NCM(N, k) is multiplicative,
• some values of NCM(pn) were tabulated based on numerical experiments.

The present article started from the effort to prove that the tabulated numbers have
some meaning, and to express them as Galois orbits invariants. While doing so, we real-
ized that we do not expect the function NCM(N) to be multiplicative (see Remark 4.2).
The reason is that the automorphisms of the coefficient field are not enough in general to
conjugate two different local types independently. Examples for this involve huge levels
which are still unfeasible to compute with nowadays resources (this was probably the
reason why this phenomenon went unobserved).

We end the article with some possible generalizations of the present ideas, and some
applications. We propose a question (Question 4.5) which is in the spirit of Maeda’s orig-
inal conjecture. Numerical evidence (gathered by the third named author) suggests that
in most of the cases considered, this lower bound is indeed an equality (for large enough
weight k) to the number of such Galois orbits, thus we leave as a question the possi-
bility that a generalization of Maeda’s conjecture could follow from our work; in which
case, for historical reasons, it should be called the “Maeda–Tsaknias” conjecture. In Ex-
ample 4.7 we present a discrepancy between the experimental values of NCM(256, 12)
and our lower bound which seems to persist for all weights greater than 12. We could
not find any extra invariant that justifies this discrepancy (it is an interesting problem to
investigate). In particular, if the value of NCM(256) is indeed 12, Question 4.5 needs to
be reformulated taking into account the missing invariants.

2. Inertial types for GL2

Let Ap denote the set of isomorphism classes of complex-valued irreducible admissible
representations of GL2(Qp). The local Langlands correspondence gives a bijection be-
tween Ap and the isomorphism classes of 2-dimensional Frobenius-semisimple Weil–
Deligne representations of Qp, say π ↔ τ(π). Furthermore, the equivalence preserves
L-functions and ε-factors (see [Kut80] and [BH06]). Via the local Langlands correspon-
dence, we will move to-and-from Ap indistinctly.
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Definition 2.1. A local inertial type of a Weil–Deligne representation τ is the isomor-
phism class of its restriction to the inertia subgroup. We denote it by τ̃ . We say that a type
is trivial or unramified if τ̃ is the trivial representation.

Remark 2.2. The inertial type can also be described in terms of the restriction π |GL2(Zp),
as explained in [Hen02]. See also [Wei09, Section 2.1].

While working with local inertial types, the maximal ideal is always clear from the con-
text. For this reason, and to ease notation, for the rest of the article we will use the term
conductor (of a representation, of a character, etc.) to denote the exponent of the conduc-
tor. We hope this will not create any confusion.

Definition 2.3. A global inertial type is a collection (τ̃p)p with p running over all prime
numbers, where each τ̃p is a local inertial type at p and τ̃p is trivial for all primes but
finitely many.

Theorem 2.4. An element of Ap is one of the following:

• Principal series: Given characters χ1, χ2 : Q×p → C× such that χ1χ
−1
2 6= | |

±1, the
representation π(χ1, χ2) is the induction of a 1-dimensional representation of the Borel
subgroup of GL2(Qp), with action given by χ1 ⊗ χ2. The central character of π(χ1, χ2)

equals χ1χ2 and its conductor equals cond(χ1)+ cond(χ2).

• Special representations or Steinberg: If χ1χ
−1
2 = | |, the representation π(χ1, χ2)

contains an irreducible subspace of codimension 1, while if χ1χ
−1
2 = | |

−1, the rep-
resentation π(χ1, χ2) contains an invariant 1-dimensional subspace whose quotient is
irreducible. Such representations are called Steinberg and they are twists of a “primi-
tive” (or standard) one denoted St. The central character of St⊗χ equals χ2 and its
conductor equals

cond(St⊗χ) =
{

2 cond(χ) if χ is ramified,
1 otherwise.

(2.1)

See for example [Sch02, table at the end of Sect. 1].

• Supercuspidal representations: the remaining ones; see [Kut78a, Kut78b].

Using the previous classification the local Langlands correspondence is given explicitly
as follows:

1. The Weil–Deligne representation attached to π(χ1, χ2) via the local Langlands corre-
spondence consists of the pair (χ1⊕χ2, 0), i.e. the Weil representation is given by the
direct sum χ1 ⊕ χ2 (recall that we are identifying characters of the Weil group and of
Q×p via local class field theory) and the monodromy is trivial.

2. The Weil–Deligne representation attached to the representation St⊗χ consists of the
pair

(
χω1 ⊕ χ,

(
0 1
0 0

))
, where ω1 is the unramified character giving the action of

W(Qp) on the roots of unity. This is the only case of non-trivial monodromy.
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3. If p 6= 2, the Weil representation attached to the supercuspidal representations via
the local Langlands correspondence equals IndW(E)

W(Qp) θ , where E/Qp is a quadratic
extension, and θ : W(E)→ C× is a character. Furthermore, regarding θ as a character
of E×, this representation is irreducible precisely when θ does not factor through the
norm map Norm : E×→ Q×p . Let εE denote the quadratic character of Q×p associated

by local class field theory to the extension E/Qp. The central character of Ind
W(Qp)
W(E) θ

equals θ |Q×p · εE and its conductor equals

cond(Ind
W(Qp)
W(E) θ) =

{
2 cond θ if E/Qp is unramified,
cond(θ)+ cond(εE) otherwise.

If p = 2, besides the cases described above, the projective image of the Weil repre-
sentation can be one of the sporadic groups A4 or S4 corresponding to sporadic super-
cuspidal representations (as studied by Weil [Wei74]); see 2.2.1 for more details.

Let σ ∈ Gal(C/Q) be a continuous automorphism. Then σ acts on the set of 2-
dimensional Frobenius-semisimple Weil–Deligne representations.

Definition 2.5. Given π1, π2 ∈ Ap they have Galois conjugate local inertial type if there
exists σ ∈ Gal(C/Q) such that the local inertial types of τ(π1) and σ(τ(π2)) agree.

Clearly, two elements of Ap having Galois conjugate local inertial types is an equivalence
relation. By a local type Galois orbit we mean an equivalence class of Galois conjugate
local inertial types. We will use the same definition and terminology when working with
characters (corresponding to 1-dimensional automorphic forms).

Remark 2.6. Elements in the same local type Galois orbit need not have the same central
character.

2.1. Counting local type Galois orbits

Let p be a prime number, and denote by LT(pn) the number of local type Galois orbits of
conductor n with trivial Nebentypus. For a a positive integer, let σ0(a) denote the number
of positive divisors of a.

Theorem 2.7. Let p 6= 2 be a prime number. Then the values of LT(pn) are given in
Table 1.

Table 1. Values for LT(pn) for p 6= 2.

n P.S. St S.C.U. S.C.R.
1 — 1 — —
2 σ0(p − 1)− 1 1 σ0(p + 1)− 2 —
≥ 3 odd, p 6= 3 — — — 2
≥ 3 odd, p = 3 — — — 4
≥ 3 even σ0(p − 1) — σ0(p + 1) —
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Remark 2.8. There exists a ramified supercuspidal representation of conductor 2 for p ≡
3 (mod 4), but its local type matches that of an unramified supercuspidal representation
(see for example [G75, Theorem 2.7]), which is why we do not count it in the table.

By Theorem 2.4, to compute LT(pn) it is enough to count the number of Galois orbits for
the principal series, the Steinberg and the supercuspidal types. The Steinberg type is the
easy one (they are all twists of St), while the principal series count comes from the well
known group structure of (Zp/pn)×.

Supercuspidal representations are induced from a character θ of a quadratic exten-
sion E of Qp. By Theorem 2.4 that induction has trivial Nebentypus precisely when the
restriction of θ to Q×p matches that of εE .

Lemma 2.9. Let σ ∈ Gal(C/Q) and (E, θ) give a supercuspidal representation (where
θ : W(E)→ C×). Then σ(E, θ) = (E, σ (θ)).

Proof. This follows from the fact that if σ ∈ W(E), and τ ∈ W(Qp) is such that τ 6∈
W(E) then

IndW(E)
W(Qp) σ =

(
θ(σ ) 0

0 θ(τ−1στ)

)
and IndW(E)

W(Qp)(τσ ) =

(
0 θ(σ )

θ(τστ) 0

)
. ut

In particular, two non-isomorphic supercuspidal representations have Galois conjugate
inertial types precisely when the quadratic field E is the same for both of them, and the
two characters are Galois conjugate. This occurs precisely when one is a power (prime to
the order) of the other.

LetE = Qp(
√
d)/Qp be a quadratic extension, let e denote the ramification degree of

E/Qp, and let OE denote the ring of integers of E and p its maximal ideal. Let k denote
the residual field OE/p, and q = #k. For n a positive integer let ξn denote a primitive n-th
root of unity.

Theorem 2.10. Let n be a positive integer and let d ∈ {±1,±3}. Then the group struc-
ture of (O/pn)× is the following:

• (O/2)× ' Z/2 if E/Q2 is ramified;
• if E = Q2(

√
3) or Q2(

√
2d), then (O/p3

2)
×
' Z/4 and (O/p4

2)
×
' Z/4× Z/2;

• the remaining cases are given in Table 2 where “–” means no condition, and the pair
(a, b) satisfies the following two conditions (which determine it uniquely):

– a + b = n− 1,
– a = b if n is odd,
– a = b + 1 if n is even.

Proof. The statement follows from the results in [Ran10] or [Neu99, Chapter II]. Clearly
O× ' (O/p)× × U1, where U1 denotes the units congruent to 1 modulo p. Furthermore,
from the natural isomorphism U1/(1+ pn) ' (U1/p

n)× we get

O/pn ' k× × U1/(1+ pn).

By [Neu99, Proposition 5.7], O× ' µq−1×Z/pa×Zdp, where pa is the number of roots
of unity in E and d = 2 = [E : Qp] (recall we can identify k× ' µq−1, the group of
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Table 2. Group structure of (O/pn)×.

E e p n Structure Generators

— 1 6= 2 — F×q × Z/pn−1
× Z/pn−1

{ξp2−1, 1+ p, 1+ p
√
d}

— 1 2 ≥ 2 F×4 × Z/2× Z/2n−2
× Z/2n−1

{ξ3,−1, 5+ 4
√

5,
√

5}
6= Q3(

√
−3) 2 6= 2 — F×p × Z/pa × Z/pb {ξp−1, 1+ p, 1+

√
d}

Q3(
√
−3) 2 3 ≥ 2 F×3 × Z/3× Z/3a−1

× Z/3b {−1, ξ3, 4, 1+
√
−3}

Q2(
√
−1) 2 2 ≥ 3 Z/4× Z/2b−1

× Z/2a−1
{
√
−1, 5, 1+ 2

√
−1}

Q2(
√

3) 2 2 ≥ 5 Z/2× Z/2b × Z/2a−1
{−1,
√

3, 1+ 2
√

3}
Q2(
√

2d) 2 2 ≥ 5 Z/2× Z/2b−1
× Z/2a {−1, 5, 1+

√
2d}

q−1-th roots of unity). Note that |(O/pn)×| = (q−1) ·N pn−1, and since [E : Qp] = 2,
the only roots of unity in E can be of order 4, 3 or 2. These facts (with an inductive
argument) prove the group structure.

A different proof is given in [Ran10], where generators for each quotient are pre-
sented, and also the group structure is obtained from the explicit generators. The group
U1 is denoted by H there. The precise citation is the following (by rows of the table):

1. The first row corresponds to “type 8”, the generators are given in Section 31 of [Ran10].
2. The second row corresponds to “type 9”, the generators are given in Section 32.
3. The third row corresponds to “type 3”, the generators are given in Section 13.
4. The fourth row corresponds to “type 4”, the generators are given in Section 15.
5. The fifth row corresponds to “type 6”, the generators are given in Section 25.
6. The sixth row corresponds to “type 7”, the generators are given in Section 26.
7. The last row corresponds to “type 5”, the generators are given in Section 23. ut

Lemma 2.11. Let E/Qp be a quadratic extension and let δ denote the valuation of the
discriminant of E. The number of local type Galois orbits of primitive characters θ :
E×→ C× of conductor n whose restriction to Q×p matches the character of the extension
E/Qp is given in Table 3.

Proof. Given the group structure and generators of Table 2, it is enough to to give the
character value at each generator.

Suppose that E/Qp is unramified and p 6= 2. The condition θ |(Zp)× = 1 implies
that θ is trivial on the second generator. The primitive condition implies that its value at
the third generator must be a primitive pn−1-th root of unity, and its value at ξp2−1 is an
element of order dividing p + 1. Up to conjugation, the last value is the only free one,
hence the total number equals σ0(p + 1).

For p = 2 there is 1 character for n = 1 (of order 3), 2 for n = 2 (sending
√

5→−1,
−1→ 1 and ξ3 → {1, ξ3}) and 4 for n ≥ 3 (sending

√
5→ ±1, −1→ 1, 5 + 4

√
5→

ξ2n−2 and ξ3 → {1, ξ3}).
Suppose that E/Qp is ramified and p 6= 2. Then either n = 1 (hence OE/p ' Zp/p)

in which case there is a unique character (namely θ on (OE/p)× coincides with εE on
(Zp/p)× under the above canonical isomorphism), or primitive characters only appear
for even conductors. The reason is that the quotient of (OE/p2n+1)× by (OE/p2n)× has
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Table 3. Number of primitive characters.

E e p n # prim. char.
— 1 6= 2 — σ0(p + 1)
— 1 2 1 1
— 1 2 2 2
— 1 2 ≥ 3 4
— 2 6= 2 1 1
6= Q3(

√
−3) 2 6= 2 n ≥ 2, odd | even 0 | 1

δ = 3 2 2 n ≥ 6, odd | even 0 | 1
δ = 3 2 2 n = 5 3
Q3(
√
−3) 2 3 2 1

Q3(
√
−3) 2 3 n ≥ 3, odd| even 0 | 3

δ = 2 2 2 3, 4 1
δ = 2 2 2 n ≥ 5, odd | even 0 | 2

order p and is generated by the element 1+p (see Table 2), but θ(1+p) = εE(1+p) = 1,
hence there are no primitive characters of odd conductor. For even conductors 2n, the
value of the character at the generator 1 +

√
d must be a primitive pn-th root of unity

(which are conjugate to each other), while at the other generators it takes the value 1
(from the compatibility condition).

Suppose that E = Q2(
√
−1). Then the condition θ |Q×2 = εE implies that n ≥ 3,

hence characters of conductor 3 are primitive. Note that the quotient of (OE/p2n+1)× by
(OE/p2n)× has order 2 and if n ≥ 5 it is generated by the element 5 (see Table 2), but
εE(5) = 1, hence there are no primitive characters of odd conductor if n > 3. For even
conductors 2n, the character takes the value 1 at 5, a primitive 2n−1-th root of unity at
1+ 2

√
−1 and the values ±

√
−1 at

√
−1, which gives two different conjugacy classes.

If E = Q2(
√

3), a similar argument applies, but now the quotient (OE/p2n+1)× by
(OE/p2n)× is generated by

√
3 if n ≥ 5, and since εE(3) = 1, θ(

√
3) = ±1 (which does

not depend on n), there are no primitive characters of odd conductor, and two of even
conductor.

If E = Q2(
√

2d) then εE(5) = −1 so n ≥ 5 and characters of conductor 5 are also
primitive. Applying a similar argument to the generators and the group structure given in
Table 2, it follows that there are no primitive characters of odd conductor, and a unique
one (up to conjugation) for even conductor 2n, sending −1 to ±1 (depending on E), 5 to
−1 and 1+ 2

√
d to a primitive 2n-th root of unity. ut

Let E/Qp be a quadratic extension, and θ a character of the Weil group of E. For p 6= 2,
all supercuspidal representations correspond via local Langlands to the Weil–Deligne rep-
resentation obtained as the induction of θ to the Weil group of Qp (with trivial mon-
odromy). For p = 2 there are some extra representations that will be considered in Sec-
tion 2.2. The irreducibility condition is equivalent to θ not factoring through the norm
map.
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Lemma 2.12. Let E/Qp be a quadratic extension. The local type Galois orbits of char-
acters θ that factor through the norm map whose restriction to Q×p matches the character
of the extension E/Qp are:

(i) The trivial one (of conductor 0).
(ii) One of conductor 1.

(iii) One of conductor 2 and two of conductor 3 if E/Q2 is unramified.
(iv) Two quadratic ones of conductor 5 for E = Q2(

√
2) or Q2(

√
−6).

Proof. Clearly the trivial character factors through the norm map. Let εE be the quadratic
character giving the extension E/Qp. Suppose that θ(α) = φ(Norm(α)) for some char-
acter φ of Q×p . Since θ |Q×p = εE , we have θ(a) = φ(a2) = εE(a) for any a ∈ Q×p . In
particular, εE is a square and if p 6= 2 then cond(φ) = cond(εE).

• If E/Qp is unramified, the image of the norm map contains Z×p , hence φ is uniquely
determined by θ (and vice versa). Since εE is trivial on Z×p , φ is trivial on (Z×p )2. If
p 6= 2, Z×p /(Z×p )2 is of order two, which gives two possible characters φ, namely the
trivial one (with conductor 0) and a ramified one of conductor 1.
• If E/Q2 is unramified then Z×2 /(Z

×

2 )
2 has index 4; we get one case of conductor 0 (the

trivial one), one case of conductor 2 and two cases of conductor 3.
• If E/Qp is ramified and p 6= 2, the norm map is not surjective, being the image of

O×E equal to (Z×p )2. This determines φ uniquely, since if α ∈ O×E then there exists
a ∈ Z×p such that Norm(α) = a2, hence θ(α) = φ(a2) = εE(a). In particular, φ gives
a square root of εE |Z×p so p ≡ 1 (mod 4). Clearly there are two conjugate characters φ
(of conductor p) whose square equals εE .
• IfE/Q2 is ramified, the condition εE(−1) = 1 implies that cond(εE) = 3 and εE(3) =
εE(5) = −1 (so E = Q2(

√
2) or Q2(

√
−6)). The image of the norm map contains the

squares with index 2; since ε has order 2, φ has order at most 4, hence it factors through
(Z2/16)×. Each field gives two possible quadratic characters φ as stated. ut

Proof of Theorem 2.7. The number of Galois conjugate local types of conductor n is the
following:

• Principal series: The local representation is of the form π(χ1, χ2). The Nebentypus
being trivial implies that χ2|Z×p = χ

−1
1 |Z×p , hence n = 2 cond(χ1), i.e. these forms only

appear at even exponents. Let d = n/2. The restriction to inertia of χ1 is a primitive
character of (Zp/pdZp)×, a cyclic group of order (p − 1)pd−1. The number of such
characters (up to conjugation) is precisely σ0(p − 1) for d > 1 and σ0(p − 1) − 1 for
d = 1 (for the character to be non-trivial).

• Special representations or Steinberg: Since the Nebentypus is trivial, there are ex-
actly two different types, of conductor p and p2 respectively, with one type being the
twist of the other by the quadratic character ramified at p.

• Supercuspidal representations: By Theorem 2.4 they are obtained by inducing a
character θ , that does not factor through the norm map, from a quadratic extension E
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of Qp. As before, let εE denote the character corresponding to the quadratic extension
E/Qp.

∗ If E/Qp is unramified (denoted S.C.U. in Table 1), then n = 2 cond(θ) and θ |(Zp)×
= 1. By Lemma 2.11 the total number of such characters equals σ0(p + 1), and by
Lemma 2.12 only two of them factor through the norm map (the trivial one and a conduc-
tor p one) for n = 2.

∗ If E/Qp is ramified (denoted S.C.R. in Table 1), then n = cond(θ)+ cond(εE) and
θ |(Zp)× = εE |(Zp)× . If cond(θ) = 1, there is a unique type by Lemma 2.11 and by Lemma
2.12 the one for p ≡ 1 (mod 4) factors through the norm map. If p ≡ 3 (mod 4), the
supercuspidal representation obtained by inducing the quadratic character from a rami-
fied quadratic extension equals the one obtained by inducing a quadratic character from
the unramified quadratic extension (see [G75, Theorem 2.7]). The reason is that in this
case the dihedral group obtained has order 4 so there are more than one (cyclic) index 2
subgroup. In particular, the local type can be counted by considering only an unramified
supercuspidal representation.

If cond(θ) ≥ 2, Lemma 2.11 implies that primitive characters have even conductor
(hence n is odd) and there is a unique Galois inertial type orbit for each conductor except
when p = 3 and E = Q3(

√
−3), in which case there are three. ut

2.2. The case p = 2

This case is more delicate, and includes the types corresponding to the sporadic super-
cuspidal series.

2.2.1. Sporadic supercuspidal representations. The projective image of the Weil group
of Q2 lies in PGL2(C), whose finite subgroups are: cyclic, dihedral, or the sporadic cases
A4, S4 or A5. The A5 group cannot be the image of a Weil group, since Gal(Q2/Q2) is
solvable. The sporadic groups appearing as the projective image of a Weil representation
were studied by Weil [Wei74], who proved that the caseA4 does not occur over Q2, while
the case S4 does. He also proved that there are precisely three extensions of Q2 with
Galois group isomorphic to S4, namely the ones with defining polynomial (see [JR06])

x4
+ 4x2

+ 4x + 2, x4
+ 2x + 2 or x4

+ 4x + 2. (2.2)

Let S̃4 ' GL2(F3) denote the quadratic extension of S4, where transpositions lift to
involutions (see [Ser84, p. 654]). There are precisely eight different extensions of Q2
with Galois group S̃4 and projective image S4; they correspond to the field extension of
Q2 obtained by adding the 3-torsion points of the elliptic curves

E
(r)
1 : ry

2
= x3

+ 3x + 2, r ∈ {±1,±2}, (2.3)

E
(r)
2 : ry

2
= x3

− 3x + 1, r ∈ {±1,±2}. (2.4)

A way to understand the problem is as follows: given an S4 extension (equivalently, a rep-
resentation ρ : G→ S4 ⊂ PGL2(C), whereG = Gal(K/K) forK = Q or Q2), compute
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all (if any) representations ρ̃ ofK into GL2(C) whose projectivization is isomorphic to ρ.
This general problem was studied by Serre [Ser84]. Note that two different lifts differ by
a twist.

The extensions given by the last two polynomials of (2.2) lift to eight different exten-
sions L of Q2 with Galois group S̃4 (corresponding to the extensions obtained by adding
the 3-torsion points of (2.3) and (2.4)) while while the extension corresponding to the first
polynomial does not have such a lift (see [BR99, Section 8]).

The group GL2(F3) has a unique (up to complex conjugation) faithful representation
ρ : GL2(F3) → GL2(C), hence for each L/Q2 we get a complex 2-dimensional Weil
representation:

ρL : Gal(Q2/Q2)→ Gal(L/Q2)→ GL2(C). (2.5)

Recall that two representations ρi : G→ GLn(K), i = 1, 2, whose projectivizations ρ̃i :
G → PGLn(K) are isomorphic are twists of each other, i.e. there exists a character χ :
G→ K× such that ρ1 ' ρ2 ⊗ χ . Since we only consider forms with trivial Nebentypus,
all sporadic supercuspidal representations are unramified twists of (2.3) and (2.4) so they
cover all local types. The conductor of such types is computed in [Rio06, Section 6]. It
equals 27 for the curves E(r)1 , 24 for E(1)2 , 23 for E(−1)

2 and 26 for E(±2)
2 .

Theorem 2.13. The values of LT(2n) are given in Table 4.

Table 4. Types for p = 2.

d P.S. Stb S.C.U. S.C.R.(2) S.C.R.(3) Sporadic
1 — 1 — — — —
2 — — 1 — — —
3 — — — — — 1
4 1 1 1 — — 1
5 — — — 2 — —
6 2 2 2 2 — 2
7 — — — — — 4
8 2 — 4 4 — —
≥ 9, odd — — — — 4 —
≥ 10, even 2 — 4 4 — —

Proof. The strategy is the same as before, but more delicate.

• Principal series: This case mimics the odd prime case with the difference that (Z/2n)×
is cyclic for n = 2 but isomorphic to Z/2 × Z/2n−2 if n ≥ 3. Hence there is a unique
local type of conductor 4, and two types for all other even exponents.

• Special representations or Steinberg: There is a unique automorphic form St of con-
ductor 2. There is one quadratic character of conductor 2 and two of conductor 3; twisting
by such characters, and using (2.1), we get forms of conductor 4 and 6 respectively.
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• Supercuspidal representations: As in the odd case, we distinguish each possible ex-
tension E/Q2.

∗ If E/Q2 is unramified (denoted S.C.U. in Table 4), the conductor of the form equals
2 cond(θ). There is one local type Galois orbit for cond(θ) = 1 (θ being a cubic char-
acter), one for cond(θ) = 2 (as the other one factors through the norm map), two for
cond(θ) = 3 (both factor through the norm map) and four for cond(θ) > 3 (see Lem-
mas 2.11 and 2.12).

∗ If E/Q2 is ramified with conductor 2 (denoted S.C.R.(2) in Table 4), the conductor
of the form equals 2 + cond(θ). There are two such fields E, namely Q2(

√
−1) and

Q2(
√

3). By Lemmas 2.11 and 2.12, the number of such types equals
0 if cond(θ) = 1, 2 or cond(θ) ≥ 4 and odd,
1 if cond(θ) = 3,
1 if cond(θ) = 4,
2 if cond(θ) ≥ 5 and even.

∗ If E/Q2 is ramified with conductor 3 (denoted S.C.R.(3) in Table 4), the conductor
of the form equals 3 + cond(θ). There are four such fields, namely Q2(

√
2),Q2(

√
−2),

Q2(
√

6) and Q2(
√
−6). By Lemma 2.11 the number of Galois orbits equals

0 if cond(θ) = 2 or cond(θ) odd,
3 if cond(θ) = 5,
1 if cond(θ) ≥ 5 and even.

Recall that for odd primes p ≡ 3 (mod 4), a ramified type matches an unramified type.
When p = 2, the same phenomenon occurs in many cases. We refer to [BH06, Section
41.3] for a detailed description. Following their terminology, all supercuspidal represen-
tations are imprimitive (see [BH06, Definition on p. 255 and Lemma 41.3]) and the way
to test whether a local type appears for different quadratic extensions is by computing
the number of quadratic twists that give isomorphic representations (denoted by I (ρ)).
In particular, if the form is triply imprimitive (i.e. it comes from more than one quadratic
extension), it must be the case that θ/θσ is a quadratic character, where σ generates
Gal(E/Q2). With this criterion, the following types are simply imprimitive:

• representations induced from E/Q2 ramified with discriminant valuation 2 and
cond(θ) ≥ 7;
• representations induced from E/Q2 ramified with discriminant valuation 3 and

cond(θ) ≥ 6.

The case of E/Q2 with discriminant 3 and cond(θ) = 5 is of particular interest. For
any E, εE(5) = −1. Each field has three different local Galois orbits (by Lemma 2.11),
two of order 2 and one of order 4; if E = Q2(

√
2) or Q2(

√
−6), then by Lemma 2.12

two characters factor through the norm map for each of them (when θ has order 2) which
we discard.
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Let θ be quadratic and let φ be any order 4 character of (Z/16)×. In particular, we
have φ(9) = −1, so θ · (φ ◦ Norm) is trivial at 5, hence gives a character of con-
ductor 3 of E (or the trivial character in the discarded cases). In particular, the twist
Ind

W(Qp)
W(E) θ ⊗ φ = IndW(Q2)

W(E) (θ · (φ ◦ Norm)) has conductor 3 (with non-trivial Nebenty-
pus), so by [BH06, Proposition 41.4] it matches the supercuspidal unramified type, which
was counted before.

If θ has order 4, the representation IndW(Q2)
W(E) θ is triply imprimitive. An easy compu-

tation proves that the set I (IndW(Q2)
W(E) θ) equals:

• {1, χ3, χ2, χ6} if E = Q2(
√

2),
• {1, χ3, χ−2, χ−6} if E = Q2(

√
−6),

• {1, χ3, χ−2, χ−6} if E = Q2(
√
−2),

• {1, χ3, χ2, χ6} if E = Q2(
√

6),

where χi denotes the quadratic character of the extension Q2(
√
i). In particular, all those

local types match those from Q2(
√

3), hence we do not need to count them again.

• Sporadic supercuspidal representations: By the discussion at the beginning of the
section, we know that all such representations come from a Weil representation of the
form ρL (see (2.5)), where L is an extension coming from the 3-torsion points of the
curves E(r)1 or E(r)2 , r ∈ {±1,±2}. By the stated results of [Rio06, Section 6], the repre-
sentations attached to the first four have conductor 7, the one from E

(1)
2 has conductor 4,

the one from E
(−1)
2 has conductor 3, while those from E

(±2)
2 have conductor 6. ut

3. Types from modular forms

Let f =
∑
n≥1 anq

n
∈ Sk(00(N)) be a newform, and let πf be the attached automor-

phic representation of GL2(AQ). It is well known that πf is a restricted tensor product⊗
′

p πf,p⊗πf,∞, where πf,p ∈ Ap is a representation of GL2(Qp). Then for each prime p,
the form f has a local type attached (that of πf,p). LetKf = Q(an) denote the coefficient
field of f . Let ξN denote an N -th primitive root of unity and Q(ξN )+ the maximal totally
real subextension of Q(ξN ).

Lemma 3.1. Let f ∈ Sk(00(N)) and let p be a prime number. If πf,p is isomorphic to a
principal series π(χ1, χ2), where χ1|Z×p has order d, then Q(ξd)+ ⊂ Kf .

Proof. Let L = Kf ∩ Q(ξd). Suppose that L ( Q(ξd)+ and let ` 6= p be a prime such
that there exists a prime ideal λ of OL (the ring of integers of L) whose inertial degree
in Q(ξd)+ is not 1. Let ρf,λ : Gal(Q/Q) → GL2(Kf,λ) be the Galois representation
attached to f (by [Del71]). The restriction to the decomposition group at p matches (up
to isomorphism) the representation χ1⊕χ

−1
1 χk−1

` (where χ` denotes the `-th cyclotomic
character). Evaluating at elements of Z×p (corresponding via local Langlands to elements
in the inertia group) we see that L contains ξd + ξ−1

d , which generates Q(ξd)+. But our
assumption on λ implies that the completion of Q(ξd)+ (at a prime dividing λ) and Kf,λ
(at λ) are different, giving a contradiction. ut
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Lemma 3.2. Let f ∈ Sk(00(N)) and let p be a prime number. If πf,p is isomorphic to a
non-sporadic supercuspidal representation, say πf,p = IndW(E)

W(Qp) θ , where θ has order d ,
then Q(ξd)+ ⊂ Kf .

Proof. The restriction of ρf,λ to W(E) equals θ ⊕ θ ′, where if σ ∈ W(Qp) \W(E), then
θ ′(µ) = θ(σµσ−1). The result follows from the same argument as in the principal series
case, via evaluating at elements of Z×p ; note that the trivial Nebentypus condition implies
that on such elements, θ ′ = θ−1. ut

Lemmas 3.1 and 3.2 imply that the coefficient field contains many automorphisms to
conjugate the form f . If we fix a prime p dividing the level, the global Galois orbit of the
modular form f contains representatives for all elements of the same local type Galois
orbit of πf,p.

Theorem 3.3. Let f ∈ Sk(00(N)) be a newform and p |N a prime number. Then the set
{πσ(f ),p : σ ∈ Gal(C/Q)} of local types at p of the Galois conjugates of f equals the
local type Galois orbit of πf,p.

Proof. Note that if σ ∈ Gal(C/Q) and πf is the automorphic representation attached
to the newform f , then πσ(f ) = σ(πf ), and via the local Langlands correspondence,
τ(σ (πf ))=σ(τ(πf )) (see [Hen01, Propriété 3]), in particular, {πσ(f ),p : σ ∈ Gal(C/Q)}
is contained in the local type Galois orbit of πf,p.

The result is clear when the local type of πf,p is Steinberg or sporadic supercuspidal,
as there is a unique element in the Galois orbit. In the principal series case, note that
π(χ1, χ2) and π(χ2, χ1) are isomorphic. Furthermore, the trivial Nebentypus hypothesis
implies that χ2|Z×p = χ

−1
1 |Z×p . Suppose πf,p = π(χ1, χ2), where χ1 is a primitive char-

acter of order d and conductor n/2 (hence its values at elements of Z×p lie in Q(ξd)). The
local type Galois orbit of π(χ1, χ2) has ϕ(d) elements. Among those conjugates, ϕ(d)/2
are non-isomorphic when d 6= 2 and contain a unique element when d = 2. Lemma 3.1
implies that Kf contains Q(ξd)+.

Claim. Let σ ∈ Gal(C/Q). Then the local inertial type of πσ(f ),p is isomorphic to that
of π(σ(χ1), σ (χ2)).

Let πσ(f ),p=π(ψ1, ψ2). The restriction to the inertia subgroup of the characters (ψ1, ψ2)

is determined by σ(f ): if x ∈ Z×p , the values {ψ1(x), ψ2(x)} are roots of the polynomial
T 2
−σ(χ1(x)+χ2(x))T +χ1(x)χ2(x) ∈ Q(ξd)+[T ]. In particular they match the values

{σ(χ1)(x), σ (χ2)(x)}. If p 6= 2, then (Z/pk)× is cyclic, so taking x to be a generator, the
restriction of the characters to the inertia subgroup is uniquely determined by their values
on x. In particular, ψ1 = σ(χ1) or ψ1 = σ(χ2). For p = 2, (Z/2k)× = Z/2 × Z/2k−2,
and the trivial Nebentypus hypothesis implies that both characters ψ1 and ψ2 take the
same value at the generator of the Z/2-part. Thus again ψ1 = σ(χ1) or ψ1 = σ(χ2).
Note that the two choices of (ψ1, ψ2) are conjugate to each other, and give isomorphic
inertial local types (which explains the discrepancy between the action on characters of
the groups Gal(Q(ξd)/Q) and Gal(Q(ξd)+/Q)).
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The supercuspidal case follows from a similar computation using Lemma 3.2 to get
the different conjugates of the character θ . ut

While working with Galois orbits of modular forms, there is another natural invariant
to consider, namely the Atkin–Lehner eigenvalue at each prime p |N . By the theory of
Atkin and Lehner (see [AL70]), if f ∈ Sk(00(N)) is a newform and p |N , then f is an
eigenform for the A-L involution Wp, i.e. Wp(f ) = λpf , with λp = ±1. For ε ∈ {±1}
let Sk(00(N))

ε denote the subspace of cuspidal forms where the A-L involution acts with
eigenvalue ε.

Lemma 3.4. Let f ∈ Sk(00(N)) and let p |N be a prime number with Wp(f ) = λpf .
If σ ∈ Gal(C/Q) then Wp(σ (f )) = λpσ(f ).

Proof. Since Wp is an involution, Sk(00(N),Q) = Sk(00(N),Q)+ ⊕ Sk(00(N),Q)−.
SinceWp commutes with the Hecke operators, both spaces are Hecke invariant. The result
follows from the fact that the spaces Sk(00(N),Q)± are Galois invariant. ut

There is a delicate situation when computing A-L operators. If f ∈ Sk(00(N)), it need not
be minimal among twists with trivial Nebentypus. For example, if f ∈ Sk(00(p)), and we
look at forms in its Galois orbit {σ(f )}, we can twist them by χp (the quadratic character
unramified outside p) and get a Galois orbit of newforms {σ(f )⊗χp} in Sk(00(p

2)). All
such forms will have a predetermined A-L eigenvalue, namely χp(−1) (see [AL70, The-
orem 6]), while the A-L eigenvalue of f at p might take any value ±1, so we have “lost”
the invariant. Our final goal is to determine invariants of Galois orbits of eigenforms, so
we can either look at forms which have minimal level up to (quadratic) twists, or add the
A-L eigenvalue of a minimal twist.

Definition 3.5. Let f ∈ Sk(00(N)) be a newform, and let p |N . Consider the set of
quadratic twists Tf = {f ⊗ ψ} where ψ ranges over all quadratic characters unramified
outside p. Then either

• all elements in Tf have level greater than or equal to that of f , or
• there exists a unique form g ∈ Tf of minimal level smaller than N .

We define the minimal Atkin–Lehner eigenvalue of f at p to be that of f in the first case,
and that of g in the second one.

The minimal A-L sign at p of a newform f is sometimes determined by the local type
π̃f,p of f at p.

Theorem 3.6. Let p be a prime number and let τ ∈ Ap be such that τ̃ = π̃f,p for
f ∈ Sk(00(N)) a newform.

(1) If τ̃ is principal series, a ramified twist of Steinberg or a supercuspidal unramified
representation (i.e. induced from an unramified quadratic extension of Qp), then the
eigenvalue of the Atkin–Lehner involution Wp is the same for all modular forms f
with local type τ̃ at p.



On the number of Galois orbits of newforms 2849

(2) If τ̃ is Steinberg, or if p 6= 2 and τ̃ is a ramified supercuspidal representation induced
from a character with even conductor, then there are two possible signs for the Atkin–
Lehner eigenvalue for modular forms with local type τ̃ at p. Furthermore, the two
values are interchanged when twisting by the quadratic unramified character (which
clearly preserves inertial types).

(3) If p = 2 and τ̃ is a ramified supercuspidal representation induced from a character
θ of a quadratic extension E/Q2 with discriminant valuation 2, then:

• there are two possible A-L eigenvalues (interchanged by the unramified quadratic
twist) when cond(θ) = 3,
• there is a unique possible A-L eigenvalue when cond(θ) is even.

If E/Q2 has discriminant valuation 3, then

• there is a unique possible A-L eigenvalue for cond(θ) = 5,
• there are two possible A-L eigenvalues for even conductors.

(4) If p = 2 and τ̃ is a sporadic supercuspidal representation, then the situation is as
follows:

• If τ̃ has level 27 or 23, then both Atkin–Lehner eigenvalues appear, and they are
exchanged by the quadratic unramified twist.
• If τ̃ has level 24 or 26, then the quadratic unramified twist preserves the local

A-L eigenvalue, but these types are not minimal, they are twists of the level 23

representation.

Proof. The result is well known to experts, and follows from the characterization of the
local sign of automorphic forms given by Deligne (see [Del73] and also [Sch02]). In the
1-dimensional case it is clear that the local root number is determined by the restriction to
inertia of the character as well as its value at a local uniformizer (see for example [Del73,
(3.4.3.2)]).

• Suppose that τ̃ is principal series, and π̃(χ1, χ2) ∈ τ̃ . Then the local sign of π(χ1, χ2)

equals the product of the two local signs. But the trivial Nebentypus hypothesis implies
that the product of the two characters evaluated at p is uniquely determined, hence their
restriction to inertia determines the sign of π(χ1, χ2) uniquely.

• The Steinberg case is well understood. In this case the Atkin–Lehner involution at p
is related to the p-th Fourier coefficient λp(f )p(k−2)/2

= −ap(f ). Note that the Weil
representation equals ωk/2−1(ψ ⊕ψω), where ω is the unramified quasi-character giving
the action of W(Qp) on the roots of unity and ψ is a quadratic unramified character.
Then λp(f ) = −ψ(p). Clearly twisting by the character corresponding to the unramified
quadratic extension of Qp changes the A-L eigenvalue.

The ramified twist of the Steinberg case is well known (see for example [AL70, The-
orem 6]). It can also be recovered by studying the local sign variation under twisting (see
[Del73, (3.4.3.5) and Theorem 4.1(1)]).

• If τ̃ is a supercuspidal representation, the local factor can be explicitly computed (fol-
lowing [Del73]). Recall that one of the local sign properties (see [Del73, 3.12(C)]) is

ε(Ind
W(Qp)
W(E) θ, ψ, dx) = ε(θ, ψ ◦ Tr, dx).
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The Swan conductor of θ , denoted sw(θ), equals 0 if θ is unramified and cond(θ) − 1
otherwise. Let s = cond(ψ ◦Tr)+ sw(θ)+1 and let π be a local uniformizer. By [Del73,
p. 528],

ε(Ind
W(Qp)
W(E) θ, ψ, dx) = θ(π)

s

∫
O×
θ−1(x)ψ ◦ Tr

(
x

π s

)
d
x

π s
. (3.1)

In particular, the local sign depends on the restriction of θ to O× and its value at a local
uniformizer. Recall that the determinant of the representation equals εEθ |Q×p , hence the
value of θ(p) is uniquely determined. If E/Qp is unramified, p is a local uniformizer,
hence the local sign only depends on the Weil–Deligne type.

If E/Qp is ramified and π is a local uniformizer, the trivial Nebentypus condition
determines the value of θ(p) = θ(π2), but not that of θ(π). Choose ψ to be an additive
character with conductor 0 (i.e. it is trivial on Zp but non-trivial on (1/p)Zp). Then clearly
cond(ψ ◦ Tr) ≡ vp(Disc(E)) (mod 2).

– If p 6= 2, then vp(Disc(E)) ≡ 1 (mod 2), hence if cond(θ) = 1, then s is even and the
local sign is uniquely determined since (as mentioned in the proof of Theorem 2.7) this
case equals the induction of a character from an unramified extension, and this case
was considered before. If cond(θ) is even, then s is odd (by Lemma 2.11), hence there
are two possible signs. Furthermore, we can move from one sign to the other, twisting
by the unramified quadratic character (which changes the sign of θ(π)).

– If p = 2 and v2(Disc(E/Q2)) = 2, then s ≡ cond(θ) (mod 2), hence the sign is
uniquely determined for all θ of even conductor. If cond(θ) = 3, there are two possibil-
ities (corresponding to modular forms of level 25). The forms of level 26 are quadratic
twists of these, hence although the local sign is uniquely determined, they have two
possible minimal Atkin–Lehner signs at 2.

Finally, if v2(Disc(E/Q2)) = 3, then s ≡ cond(θ) + 1 (mod 2), so the sign is
uniquely determined for cond(θ) = 5 (recall that this case matches the unramified
one), while there are two possible values for even conductors (and both signs change
by a local twist).

• Suppose p = 2 and τ is a sporadic supercuspidal representation, so the Weil rep-
resentation ρ attached to it has image isomorphic to S̃4, i.e. there exists E/Q2 with
Gal(E/Q2) ' S̃4.

The character table of S̃4 ' GL2(F3) is recalled in Table 5. The representations Sg,
St2 and St3 are the representations obtained from quotients of PGL2(F3) ' S4, and they
are the sign representation, the 2-dimensional standard representation obtained from the
isomorphism S4/〈(12)(34), (13)(24)〉 ' S3, and the 3-dimensional representation of S4.
The representation V is alluded to in Section 2.2.1.

Another description of such representations comes from the group GL2(F3): the two
1-dimensional ones are those factoring through the determinant. The last three repre-
sentations come from “principal series”: if χ is the non-trivial character of F×3 , π(χ, 1)
gives the irreducible 4-dimensional representation; π(1, 1) and π(χ, χ) have an irre-
ducible quotient/subspace of dimension three (the “Steinberg” cases). Finally, the 2-
dimensional ones can be constructed as follows: identify F×9 with the non-split Car-
tan Cns =

{(
a −b
b a

)
∈ GL2(F3)

}
; pick a non-trivial additive character ψ of F3 and let
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θ : F×9 → C× be a character. Let θψ be the character in M =
{
Z(GL2(F3)) ·

( 1 F3
0 1

)}
given by θψ

((
a 0
0 a

) (
1 u
0 1

))
= θ(a)ψ(u). If θ is neither trivial nor quadratic, then the virtual

representation IndGL2(F3)
M θψ − IndGL2(F3)

Cns θ is an irreducible representation independent
of ψ (see [BH06, Theorem 6.4]). If θ has order 8, we get the representation V and its
twist, while θ of order 4 gives the representation St2.

Table 5. Character table for GL2(F3).( 1 0
0 1
) ( 2 0

0 2
) ( 0 1

2 0
) ( 0 1

1 2
) ( 0 1

1 1
) ( 1 1

0 1
) ( 2 1

0 2
) ( 1 0

0 2
)

1 1 1 1 1 1 1 1 1
Sg 1 1 1 −1 −1 1 1 −1
St2 2 2 2 0 0 −1 −1 0
V 2 −2 0

√
−2 −

√
−2 −1 1 0

V ⊗ Sg 2 −2 0 −
√
−2

√
−2 −1 1 0

St3 3 3 −1 −1 −1 0 0 1
St3 ⊗ Sg 3 3 −1 1 1 0 0 −1
W 4 −4 0 0 0 1 −1 0

Consider the following subgroups of GL2(F3): C4 =
〈(

0 1
2 0

)〉
, C6 =

〈(
2 1
0 2
)〉

and C8 =〈(
0 1
1 2

)〉
. Using the character table and Frobenius reciprocity, it is easy to verify the fol-

lowing formulas:

IndGL2(F3)
C4

χ4 ' V ⊕ (V ⊗ Sg)⊕ 2W, (3.2)

IndGL2(F3)
C6

χ6 ' V ⊕ (V ⊗ Sg)⊕W, (3.3)

IndGL2(F3)
C8

χ8 ' (V ⊗ Sg)⊕W, (3.4)

where χj is a character of order j in the corresponding group and we choose χ8
((

0 1
1 2

))
= exp(−πi/4). Then

V ' IndGL2(F3)
C8

χ8 − IndGL2(F3)
C4

χ4 + IndGL2(F3)
C6

χ6. (3.5)

To compute the sign variation, we can consider the formal representation κV −V , where
κ is the quadratic unramified character of Q2. Using (3.5) and the local sign formalism
[Del73, Theorem 4.1] we obtain

ε(κV − V,ψ, dx) =
ε(κχ8, ψ ◦ TrKC8

, dx)

ε(χ8, ψ ◦ TrKC8
, dx)

ε(χ4, ψ ◦ TrKC4
, dx)

ε(κχ4, ψ ◦ TrKC4
, dx)

·
ε(κχ6, ψ ◦ TrKC6

, dx)

ε(χ6, ψ ◦ TrKC6
, dx)

. (3.6)

The characters in (3.6) are understood as class field characters, giving the corresponding
field extension. Recall that each sign variation depends only on the value κ(Norm(π2))

s ,
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where π2 is a local uniformizer and s = val2(Disc(Ki)) + sw(χi) + 1. In particular, we
need to compute the inertial degree of Ki and s for each field. The extensions KC4 , KC6

andKC8 are contained in the fixed field of
(
−1 0
0 −1

)
, a Galois extension with Galois group

isomorphic to S4. The ramification indices are f (KC4/Q2) = 2, f (KC6/Q2) = 2 and
f (KC8/Q2) = 1. Then the sign contribution is trivial for the first two (as Norm(π2) is a
square), and only depends on the first term of (3.6). Furthermore, 2 | val2(Disc(KC8)),
hence s ≡ sw(χ8)+ 1 (mod 2).

To compute sw(χ8), we consider the field extensions Q2 ⊂ KC8 ⊂ KC4 ⊂ K−1 ⊂ E.
The group C8 has characters of orders: 1, 2 (both unramified), 4 and 8. The conductor
discriminant formula gives the equality

Disc(E/KC8) =
∏
θ

cond(θ).

Let θi denote the corresponding character of order i (so θ8 = χ8). The relative discrimi-
nant formula provides the equations

Disc(E/KC8) = cond(θ8)
2 cond(θ4)

2, (3.7)

Disc(K−1/KC8) = cond(θ4)
2, (3.8)

Disc(K−1/Q2) = Norm(Disc(K−1/KC8))Disc(KC8/Q2)
4, (3.9)

Disc(E/Q2) = Norm(Disc(E/KC8))Disc(KC8/Q2)
8. (3.10)

Then computing for each of the eight fields the values Disc(E/Q2), Disc(K−1/Q2) and
Disc(KC8/Q2), a simple manipulation determines sw(χ8).

Equations for the eight extensions appear in the online tables of [JR06]. Note that in
GL2(F3) there are two non-conjugate subgroups of order 8, hence each extension can be
obtained by two different degree 8 polynomials. The extensions are obtained as the Galois
closure of the polynomials:

� x8
+ 20x2

+ 20, x8
+ 28x2

+ 20, x8
+ 6x6

+ 20 and x8
+ 2x6

+ 20;
� x8
+4x7

+4x2
+14, x8

+4x7
+12x2

+2, x8
+4x7

+12x2
+14 and x8

+4x7
+12x2

+10.

Table 6. Discriminant and conductor table.

Polynomial val2(Disc(E/Q2)) val2(Disc(K−1/Q2)) val2(Disc(KC8/Q2)) val2(cond(χ8))

x8
+20x2

+20 64 28 6 1
x8
+28x2

+20 76 28 6 18
x8
+6x6

+20 100 28 6 2
x8
+2x6

+20 100 28 6 2
x8
+4x7

+4x2
+14 136 52 10 11

x8
+4x7

+12x2
+2 136 52 10 11

x8
+4x7

+12x2
+14 136 52 10 11

x8
+4x7

+12x2
+10 136 52 10 11
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The values of Disc(E/Q2) (for each extension) already appeared in [Rio06, Table 10]),
and equal 64, 76, 100 and 100 for the first four fields and 136 for all fields in the second
list. The other discriminants as well as the value of sw(χ8) are given in Table 6, which
proves the stated result. ut

Remark 3.7. We expect the Atkin–Lehner eigenvalue of sporadic supercuspidal repre-
sentations of level 24 and 26 to be +1; probably the proof of a similar statement in the
Steinberg case can be adapted to prove this (using the trivial Nebentypus hypothesis), but
we have not pursued that goal.

Remark 3.8. The local Atkin–Lehner sign statement in [Pac13, Remark 11] is not cor-
rect. In the case of a supercuspidal representation, the correct local computation is the one
in the previous proof.

There is a natural map 8 from newforms in Sk(00(N)) to LT(pvp(N))× {±1}, given by

8(f ) = (π̃f,p, λp),

where π̃f,p is the local inertial type of f at p, and λp is its minimal Atkin–Lehner eigen-
value. Theorem 3.6 implies that the map is not always surjective, as for some local inertial
types τ̃ , only one possible A-L eigenvalue can appear.

Definition 3.9. Given a local type Galois orbit τ̃ , a compatible minimal Atkin–Lehner
eigenvalue is a value ε ∈ {±1} such that Theorem 3.6 does not imply that the pair (τ̃ , ε)
is not in the image of 8.

Let LO(pn) denote the number of pairs (τ̃ , ε) where τ̃ is a local type Galois orbit of
level pn and ε is a compatible minimal Atkin–Lehner eigenvalue.

Theorem 3.10. The values of LO(pn) are given in Table 7.

Table 7. The values of LO(pn).

n gcd(p, 6) = 1 p = 3 p = 2
0 1 1 1
1 2 2 2
2 σ0(p + 1)+ σ0(p − 1)− 1 9 1
3 4 8 2
4 σ0(p + 1)+ σ0(p − 1) 10 6
5 4 8 4
6 σ0(p + 1)+ σ0(p − 1) 10 16
≥ 7, odd 4 8 8
≥ 8, even σ0(p + 1)+ σ0(p − 1) 10 10

Proof. The result comes from Theorems 2.7, 2.13 and 3.6. ut



2854 Luis Dieulefait et al.

4. Existence of local types with compatible Atkin–Lehner sign

Theorem 4.1. Let N be a positive integer such that N is a prime power or N is square-
free. For each prime q |N , let τ̃q be a local type of level qvalq (N) and let εq ∈ {±1} be a
compatible Atkin–Lehner sign for τ̃q . Then there exists a positive integer k0 such that for
any k ≥ k0, there exists a newform f ∈ Sk(00(N)) such that

(1) π̃f,q ' τ̃q for all primes q,
(2) the minimal Atkin–Lehner eigenvalue of f at q equals εq ,
(3) f does not have complex multiplication.

Proof. A very similar result in this direction is [Wei09, Theorem 1.1] (see also Theo-
rem 4.3 below), where an asymptotic formula for the number of types in the space of
cusp forms of levelN is given for k large enough. An important feature of its proof is that
the number grows linearly in the weight k (for k large enough). Unfortunately, the result
only counts types, not the whole local representation (so we do not get any information on
the Atkin–Lehner signs); still, in the cases where there is a unique Atkin–Lehner sign at
each local type, for example the case of modular forms whose local types are all principal
series (see Theorem 3.6), Weinstein’s result is indeed enough for our purposes.

In [Mar18, Theorem 3.3] the existence of forms with any combination of local Atkin–
Lehner signs is proven for N square-free (i.e. only Steinberg local types). A different
approach is given in [Gro11, Section 10], where using the trace formula, the existence of
automorphic forms for the group PGL2 with any supercuspidal local representations at
a finite set of primes (of PGL2(Qp)) is proven. Gross’ result is generalized in [KST20].
Using the trace formula ideas (as in Gross’ article), [KST20, Theorem 1.2] proves that
if G is any connected reductive group over a totally real field, then the number of auto-
morphic forms of weight k and level N with prescribed local representations (which are
supercuspidal at ramified primes) grows linearly with k (recall that dim(ξ) = k − 1 if ξ
is a discrete series representation of weight k, which gives linear growth). Furthermore,
the result can be extended to include Steinberg types as done in [KST20, Theorem 6.4],
where a similar result is proven.

The results in the aforementioned articles prove the first two claims of the theorem,
and in most situations this is also enough to get the last one (as complex multiplication
forms are supercuspidal at all primes). In the general setting, the number of complex
multiplication forms with a fixed level N is bounded as a function of the weight (see for
example [Tsa14, Corollary 4.5]). On the other hand, the existence results stated above
imply that the number of forms satisfying the first two conditions grows linearly in k,
hence for k large enough the space always contains a non-CM modular form (of any
given local inertial type). ut

Remark 4.2. The constant k0 in the last theorem can be made explicit by computing all
the constants involved in the cited articles; we have not pursued this objective. We expect
the previous result to hold in general, but we have not found a suitable reference. Note
that the proof given looks stronger than the theorem itself, as it involves control of the
whole local representation. The control does not hold in general, namely we cannot fix
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a principal series representation and expect it to appear in a modular form. The reason
is that fixing a principal series “involves” fixing the value of the p-th eigenvalue as well
(if the representation is unramified, this implies fixing the Hecke eigenvalue, while in
the ramified case it implies fixing the Hecke eigenvalue of a base change of the form),
which is a very strong condition. However, once we know that local types do exist (by
Weinstein’s result) we are only asking for unramified twists of a type that appears in the
space of modular forms to appear as well. This weaker statement should be easier to
prove, but we do not have a direct proof.

Theorem 4.3. Let N be a prime power or square-free. Then there exists k0 such that for
k ≥ k0, ∏

p|N

LO(pvp(N)) ≤ NCM(N, k). (4.1)

Proof. By Theorem 4.1 there exists k0 such that for k ≥ k0 and for each local type with a
compatible A-L sign, a modular form f of weight k and level N exists with the specified
local type and Atkin–Lehner eigenvalue. Theorem 3.3 implies that Galois conjugate local
types appear in the same Galois orbit of f , which gives the desired inequality. ut

Remark 4.4. If Theorem 4.1 holds in general as explained in Remark 4.2, then for any
positive integer N we get∏

p|N

LO(pvalp(N)) ≤ NCM(N, k) for k large enough. (4.2)

A natural question is to study how sharp the inequality in (4.2) is for general N . It is not
true that the inequality is an equality in general! The reason is that when N is a prime
power (or a prime power times a square-free integer), there are enough automorphisms
in the coefficient field to conjugate each of the local types so as to get the whole local
Galois orbit for each of them. The problem arises when the automorphisms needed for
two different primes correspond to the same extension (see Lemmas 3.1 and 3.2). Here is a
concrete example: Suppose thatN = 112

·312. Let τ11 be a principal series representation
corresponding to an order 5 character, and τ31 be a principal series representation of an
order 5 character as well. Let f ∈ Sk(00(112

· 312)) be a newform with the chosen local
types at 11 and 31. Lemma 3.1 implies that Q(ξ5)

+ is contained in the coefficient field
of f , so conjugating we can fix a local type at 11 in the orbit. Once we fix the type at
11, we cannot conjugate the type at 31 (globally), so we get two different types at 31
in the Galois orbit of f . In this case, using Theorem 4.1 we get 2 as a lower bound for
NCM(112

· 312, k) (for k large enough) instead of 1.
With this example in mind, and the techniques developed before, one can give a better

but more involved lower bound for the number of Galois orbits of modular forms of
general level N and large enough weight k, assuming that Theorem 4.1 holds in general.
However, in many instances (for example when N has a unique prime whose square
divides it, or if gcd((p− 1)p, (q − 1)q) = 1 whenever pr |N and qs |N ), the product of
local Galois types is the best possible bound with our method. This is precisely the case
for the data gathered in [Tsa14].
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Another natural question is the existence of other Galois orbit invariants. Based on
numerical computations by the third author [Tsa14] it seems that the answer should be
negative, hence we propose the following problem.

Question 4.5. If N is a prime power or square-free, is (4.1) an equality? That is, is it
true that for k large enough the number of Galois orbits of modular forms of level N
equals the number of Galois conjugate local types with compatible Atkin–Lehner signs?

Remark 4.6. Due to the existence result (Theorem 4.2) an affirmative answer to Ques-
tion 4.5 is equivalent to a uniqueness result (for k large enough) for the Galois orbits of
newforms with given Galois conjugate local type and compatible Atkin–Lehner signs.

Clearly such a statement is in the spirit of Maeda’s original conjecture, hence it seems
natural to expect that if there is no reason for forms to be non-conjugate, then they should
be conjugate. Numerical experiments suggest that the answer to Question 4.5 might be
positive (see [Tsa14]) as the values of LO(pn) seem to match the number of orbits of
non-CM newforms in the relevant space of modular forms of weight k starting at very
small values of k.

However, for p = 2 and n ≥ 8 even, there is a discrepancy that we cannot explain.

Example 4.7. Let N = 28 and k = 12. The space S12(00(256)) contains 17 Galois or-
bits. Five of them correspond to CM forms (four with rational coefficients, and one whose
coefficient field is quadratic). The remaining 12 orbits have dimensions 2, 2, 4, 4, 6, 6, 8,
8, 8, 10, 10, 12. Computing a few Hecke operators, the following can be checked:

• The 2-dimensional orbits are twists of each other (via χ−1) and each orbit is stable
under twisting by χ−2. Their local type matches the unramified supercuspidal repre-
sentation.
• The 4-dimensional orbits are stable under twisting by χ−1, hence are induced from
E = Q2(

√
−1) and are twists of each other by χ2.

• The same is true for the 6-dimensional orbits.
• Two of the 8-dimensional orbits have Galois orbits invariant under twisting by χ−2.

They are induced from the unramified quadratic extension.
• The other 8-dimensional orbit is induced from Q2(

√
3).

• The two 10-dimensional orbits are principal series at 2.
• The 12-dimensional orbit is also induced from Q2(

√
3).

Note that we obtain four Galois orbits of newforms from the field Q2(
√
−1), while we

expect only two of them. This phenomenon seems to persist for higher weights. The value
NCM(28) seems to be 12 (we have computed up to weight 28), while our lower bound
equals 10.

It would be interesting to have some statistical data on the size of the smallest k for
equality to hold (which in particular is related to an effective proof of Theorem 4.1).

Note that a suitable variant of Question 4.5 makes sense for general N . If a more
involved formula (as the example explained for level N = 112

· 312) is obtained via
the study of the local types for primes dividing N (and the coefficient fields of such
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modular forms) one could also ask whether the inequality obtained is best possible. The
cases not covered by Theorem 4.3 involve very large levels, so we could not gather any
computational data which might suggest a positive or negative answer to the generalized
Maeda problem on general levels N .

5. Possible generalizations

There are many similar situations to study. The first natural question is what happens
when working with modular forms with non-trivial Nebentypus. The situation is more
subtle, and there are two different problems to consider. One is that we are forced to look
at minimal twists (and we only considered minimal quadratic twists in the trivial Neben-
typus situation). The second problem is that there are no Atkin–Lehner involutions! One
has to replace them by the operators defined by Atkin and Li [AL78]. We will consider
this situation in a sequel to the present article. There is an obstacle in studying the number
of orbits of modular forms with non-trivial Nebentypus coming from its computational
complexity. Still, it is true in this situation that the number of CM modular forms is inde-
pendent of the weight.

A second reasonable generalization is to study the case of Hilbert modular forms,
i.e. changing the base field Q to a totally real field F . To study CM modular forms,
the same ideas as in [Tsa14] give a bound of their number independent of their weight.
The same techniques as developed in this article can be used to compute the number of
local types of level pn for p a prime ideal. Still, the formula is more involved in each
case, as it depends on the degree [F : Q], on the inertial degree of p over p ∩ Z and its
ramification degree. Then there are other invariants appearing, related to the class number
of F . An interesting question is if there are other types of Galois invariants besides the
ones described in this article and the ones coming from the class group (it also seems
natural, in the same way that CM forms were treated separately in the present article, to
treat separately special cases of Hilbert modular forms such as those coming from base
change, or from base change up to twist, from a smaller field). The toy example should
be that of a real quadratic field, where base change forms are easy to handle by the results
of the present article.

Finally, it is natural to consider a similar question for other algebraic reductive groups
G over Q to see if there are more invariants than those appearing for GL2. For example
if G is the group obtained from a rational quaternion algebra ramified at an even num-
ber of finite places, by the Jacquet–Langlands correspondence automorphic forms for G
correspond to (some particular) automorphic forms on GL2. In particular, all the results
of this article work for such algebraic groups, and we do not expect new invariants for
such groups (as we do not expect them for GL2). As suggested to the first author by
M. Harris, it would also be interesting to test other groups like GLn(AQ) (or over a to-
tally real number field) or GSpn(AQ) to see if these phenomena persist. Again, in such a
context it seems natural to exclude all “special” forms (i.e., those coming from automor-
phic forms from a smaller reductive group via Langlands functoriality) before checking
if there is uniqueness for orbits with given local constraints for sufficiently large weight
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(existence results are known in this generality, as was mentioned in Section 4). We must
admit that we have not considered any of these problems from a theoretical point of view,
nor gathered any computational evidence, but it is our hope that this article may spark
some research interest in this direction.

5.1. Applications of Question 4.5

It is well known that Maeda’s conjecture has many applications to different problems in
number theory. The affirmative answer to Question 4.5 has as many applications as the
original conjecture. Let us recall some of them.

5.1.1. Inner twists. The affirmative answer to Question 4.5 implies that the existence of
inner twists for a newform is a purely local property, depending on the local types of the
form.

Proposition 5.1. Assume that Question 4.5 has an affirmative answer. Let f ∈

Sk(00(p
r)) be a newform of prime power level whose local type and Atkin–Lehner sign

are (τ, ε). Let µ be an inner twist of f (i.e. a finite order character such that f ⊗ µ is
Galois conjugate to f ). Then for any k′ ≥ k0 (where k0 is the weight after which the
answer to Question 4.5 is yes) and any newform g ∈ Sk′(00(p

r)) whose local type equals
τ and whose Atkin–Lehner sign equals ε, µ is an inner twist of g.

Furthermore, if µ is any finite order character ramified only at one prime p, then for
any pair (τ, ε) as before, invariant (up to Galois conjugation) under twisting by µ, and
for every k′ ≥ k0, all newforms g ∈ Sk′(00(p

r)) with local data (τ, ε) have inner twist
given by µ.

Proof. The proof is automatic due to the uniqueness result implied by Question 4.5 (see
Remark 4.6). If we assume that f has an inner twist by µ this implies that µ ramifies
only at p and that the local type and Atkin–Lehner signs of f are invariant (up to Galois
conjugation) under twisting by µ. Therefore the same is true for any g with the same local
data. Since Maeda’s conjecture implies uniqueness of the Galois orbit with a fixed local
data (at prime power level and weight greater than or equal to k0), the twist g⊗µmust lie
in the same orbit as g. The last claim follows from the same argument with the existence
result given by Theorem 4.1. ut

5.1.2. Base change. The proof of (non-solvable) base change for classical modular forms
and other cases of Langlands functoriality given in [Die15] relies on the construction of
a “safe” chain of congruences linking arbitrary pairs of modular Galois representations.
For the construction of such a chain in the aforementioned article, it is crucial to “pass
through” a space of newforms having a unique Galois orbit: the space used there is a
space of forms of prime level with non-trivial Nebentypus of fixed order and relatively
large weight, a space that was computed in order to check that it indeed contains a unique
Galois orbit of newforms. The conjecture proposed in Question 4.5 (i.e., the truth of
the claim stated therein) gives an alternative and more theoretical way to complete the
proof of base change (a proof not requiring computations): in fact, for the construction
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of the “safe chain” instead of a space with a unique Galois orbit (which is an option, but
requires non-trivial Nebentypus) it is enough to know that in certain spaces of newforms
of sufficiently large weight (and prime power level) there is a unique orbit with a specific
supercuspidal local inertial type at the prime in the level, a fact that is implied by our
conjecture.

This strategy for the construction of safe chains is explained in [DP15], in the more
general context of Hilbert modular forms over a given totally real number field F . The
construction of a safe chain connecting the Galois representations attached to any pair of
Hilbert newforms over F , from whose existence relative non-solvable base change would
follow immediately, can be reduced following the strategy described in loc. cit. to a case
where the two Hilbert newforms have the same level, the same (large) parallel weight,
and common inertial types at primes in their common level; thus a suitable generalization
to Hilbert modular forms of the uniqueness claim proposed in Question 4.5 gives a way
of completing the safe chain described in loc. cit., completing the proof of relative base
change.
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