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1. Introduction

The aim of this article, which is a sequel to [3], is to prove the following theorem.

Theorem 1.1. Let f : X→ Y be a quasi-isometric map between two pinched Hadamard
manifolds. Then there exists a unique harmonic map h : X → Y which stays within
bounded distance of f , i.e.

sup
x∈X

d(h(x), f (x)) <∞.

We first recall a few definitions. A pinched Hadamard manifold X is a complete sim-
ply connected Riemannian manifold of dimension at least 2 whose sectional curvature is
pinched between two negative constants: −b2

≤ KX ≤ −a
2 < 0. A map f : X → Y

between two metric spaces X and Y is said to be quasi-isometric if there exist constants
c ≥ 1 and C ≥ 0 such that f is (c, C)-quasi-isometric, which means that

c−1d(x, x′)− C ≤ d(f (x), f (x′)) ≤ cd(x, x′)+ C (1.1)

for all x, x′ inX. A C2 map h : X→ Y between Riemannian manifoldsX and Y is said to
be harmonic if it satisfies the elliptic nonlinear partial differential equation tr(D2h) = 0
where D2h is the second covariant derivative of h.

Partial results towards the existence statement were obtained in [31], [41], [17],
[27], [5]. A major breakthrough was achieved by Markovic who solved the Schoen con-
jecture, i.e. the case where X = Y is the hyperbolic plane H2

R, and by Lemm–Markovic
who proved the existence for X = Y = HkR in [28], [29] and [23]. The existence when
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both X and Y are rank one symmetric spaces, which was conjectured by Li and Wang
[25, Introduction], was proved in our paper [3]. We refer to [3, Section 1.2] for more
motivations and a precise historical perspective on this result.

As explained in [11], the harmonic map h is not always a diffeomorphism even when
f is a diffeomorphism.

Partial results towards the uniqueness statement were obtained by Li and Tam [24],
and by Li and Wang [25]. All these papers were dealing with rank one symmetric spaces.

Note that Theorem 1.1 was conjectured by Markovic during a 2016 Summer School
in Grenoble. According to our knowledge, Theorem 1.1 is new even in the case where
both X and Y are assumed to be surfaces.

The strategy of the proof of the existence follows the lines of the proof in [3]. As in [3],
we replace the quasi-isometric map f by a C∞ map whose first two covariant derivatives
are bounded. But we need to modify the barycenter argument we used in [3] for this
smoothing step. See Subsection 2.2.1 for more details on this step. As in [3], we then
introduce the harmonic maps hR that coincide with f on a sphere of X with large radius
R and we need a uniform bound for the distances between the maps hR and f . The heart
of our argument is in Section 3 which contains the boundary estimates, and in Section 4
which contains the interior estimates, for d(hR, f ). The proof of the interior estimates is
based on a new simplification of an idea by Markovic [29]. Indeed we will introduce a
point x where d(hR(x), f (x)) is maximal and focus on a subset U`0 of a sphere S(x, `0)

whose definition (4.10) is much simpler than in [29] or [3]. This simplification is the key
point which allows us to extend the arguments of [3] to pinched Hadamard manifolds.
In this proof we use uniform control on the harmonic measures on all the spheres of X,
which is given in Proposition 4.9. We refer to Section 4.1 for more details on our strategy
of the proof of existence.

In order to prove uniqueness, we need to introduce Gromov–Hausdorff limits of the
pointed metric spaces X and Y with respect to base points going to infinity and therefore
to deal with C2 Riemannian manifolds with C1 metrics. This will be done in Section 5.
We refer to Subsection 5.1 for more details on our strategy of the proof of uniqueness.

In Section 7, we extend Theorem 1.1 to coarse embeddings (see Definition 6.2 and
Theorem 7.1). The proof is similar but relies on the existence of a boundary map for
coarse embeddings. We also show that Theorem 1.1 cannot be extended to Lipschitz
maps (Example 7.3).

Section 6 is dedicated to the existence of this boundary map which, for a coarse em-
bedding, is well-defined outside a set of zero Hausdorff dimension (Theorem 6.5). The
existence of such a boundary map seems to be new.

2. Smoothing

In this section, we recall a few basic facts on Hadamard manifolds, and we explain how
to replace our quasi-isometric map f by a C∞ map whose first two covariant derivatives
are bounded.
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2.1. The geometry of Hadamard manifolds

We first recall basic estimates on Hadamard manifolds for triangles, for images of trian-
gles under quasi-isometric maps, and for the Hessian of the distance function.

All the Riemannian manifolds will be assumed to be connected. We will denote by d
their distance function.

A Hadamard manifold is a complete simply connected Riemannian manifold X of
dimension k ≥ 2 whose curvature is non-positive, KX ≤ 0. For instance, the Euclidean
space Rk is a Hadamard manifold with zero curvature 0, and the real hyperbolic space
HkR is a Hadamard manifold with constant curvature −1. We will say that X is pinched if
there exist constants a, b > 0 such that

−b2
≤ KX ≤ −a

2 < 0.

For instance, non-compact rank one symmetric spaces are pinched Hadamard manifolds.
Let x0, x1, x2 be three points on a Hadamard manifold X. The Gromov product of the

points x1 and x2 seen from x0 is defined as

(x1|x2)x0 := (d(x0, x1)+ d(x0, x2)− d(x1, x2))/2. (2.1)

We recall the basic comparison lemma which is one of the motivations for introducing
the Gromov product.

Lemma 2.1. Let X be a Hadamard manifold with −b2
≤ KX ≤ −a

2 < 0. Let T be a
geodesic triangle in X with vertices x0, x1, x2, and let θ0 be the angle of T at x0. Then:

(a) (x0|x2)x1 ≥ d(x0, x1) sin2(θ0/2).
(b) θ0 ≤ 4e−a(x1|x2)x0 .

(c) If min((x0|x1)x2 , (x0|x2)x1) ≥ b
−1, one has θ0 ≥ e

−b(x1|x2)x0 .

Proof. This is classical. See for instance [3, Lemma 2.1]. ut

We now recall the effect of a quasi-isometric map on the Gromov product.

Lemma 2.2. LetX, Y be Hadamard manifolds with−b2
≤ KX,KY ≤ −a

2 < 0, and let
f : X → Y be a (c, C)-quasi-isometric map. There exists A = A(a, b, c, C) > 0 such
that, for all x0, x1, x2 in X,

c−1(x1|x2)x0 − A ≤ (f (x1)|f (x2))f (x0) ≤ c(x1|x2)x0 + A. (2.2)

Proof. This is a general property of quasi-isometric maps between Gromov δ-hyperbolic
spaces which is due to M. Burger. See [13, Prop. 5.15]. ut

When x0 is a point in a Riemannian manifold X, we denote by dx0 the distance function
defined by dx0(x) = d(x0, x) for x in X. We denote by d2

x0
the square of this function.

When F : X → R is a C2 function, we denote by DF its differential and by D2F its
second covariant derivative.
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Lemma 2.3. Let X be a Hadamard manifold and x0 ∈ X. Assume that −b2
≤ KX ≤

−a2
≤ 0. The Hessian of the distance function dx0 satisfies

a coth(adx0)g0 ≤ D
2dx0 ≤ b coth(bdx0)g0 (2.3)

on X \ {x0}, where g0 := gX −Ddx0 ⊗Ddx0 and gX is the Riemannian metric on X.

When a = 0 the left-hand side of (2.3) must be interpreted as d−1
x0
g0.

Proof. This is classical. See for instance [3, Lemma 2.3]. ut

2.2. Smoothing rough Lipschitz maps

The following proposition will allow us to assume in Theorem 1.1 that the quasi-isometric
map f we start with is C∞ with bounded derivative and bounded second covariant
derivative.

2.2.1. Rough Lipschitz maps. A map f : X→ Y between metric spaces X and Y is said
to be rough Lipschitz if there exist constants c ≥ 1 and C ≥ 0 such that, for all x, x′ in X,

d(f (x), f (x′)) ≤ cd(x, x′)+ C. (2.4)

Proposition 2.4. Let X, Y be Hadamard manifolds with bounded curvatures, −b2
≤

KX,KY ≤ 0. Let f : X → Y be a rough Lipschitz map. Then there exists a C∞ map
f̃ : X → Y within bounded distance of f and whose first two covariant derivatives Df̃
and D2f̃ are bounded on X.

We denote k = dimX and k′ = dimY . We will first construct in 2.2.2 a regularized map
f̃ : X→ Y which is Lipschitz continuous. This construction is the same as for rank one
symmetric spaces in [3, Proposition 2.4]. The construction will not allow us to control the
second covariant derivative, hence we will have to combine this first construction with an
iterative smoothing process in local charts that we will explain in 2.2.3.

2.2.2. Lipschitz continuity. The first part of the proof of Proposition 2.4 relies on the
following classical lemma (see [20, Section 2]).

Lemma 2.5. Let Y be a Hadamard manifold.

(a) Let µ be a positive finite Borel measure on Y supported by a closed ball B(y0, R).
The function Qµ on Y defined by

Qµ(y) =

∫
Y

d(y,w)2 dµ(w)

has a unique minimum point yµ in Y , called the center of mass of µ; it belongs to
B(y0, R).
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(b) Let µ1, µ2 be positive finite Borel measures on Y . Assume that

(i) µ1(Y ) ≥ m and µ2(Y ) ≥ m for some m > 0,
(ii) both µ1 and µ2 are supported on B(y0, R),

(iii) ‖µ1 − µ2‖ ≤ ε.

Then
d(yµ1 , yµ2) ≤ 4εR/m. (2.5)

Proof. (a) Since Y is a proper space, i.e. its balls are compact, the function Qµ is proper
and admits a minimum, say at yµ. Since Y has non-positive curvature, the median in-
equality holds: for all y, y1, y2, y3 in Y where y3 is the midpoint of y1 and y2,

1
2d(y1, y2)

2
≤ d(y, y1)

2
+ d(y, y2)

2
− 2d(y, y3)

2. (2.6)

Integrating (2.6) with respect to µ, one checks that Qµ has the following uniform con-
vexity property: if y3 is the midpoint of y1 and y2 then

m
2 d(y1, y2)

2
≤ Qµ(y1)+Qµ(y2)− 2Qµ(y3).

Applying this inequality with y1 = yµ and y2 = y one gets, for each y in Y ,

m
2 d(yµ, y)

2
≤ Qµ(y)−Qµ(yµ), (2.7)

so that yµ is the unique minimum point of Qµ.
We now check that yµ ∈ B(y0, R). By the median inequality (2.6), the ball B(y0, R)

is convex, every point y in Y admits a unique nearest point y′ inB(y0, R), and this point y′

also satisfies the inequality

d(y′, w) ≤ d(y,w) for all w in B(y0, R).

Therefore,Qµ(y
′) ≤ Qµ(y). This proves that the center of mass yµ belongs to B(y0, R).

(b) Applying (2.7) twice, one gets

m
2 d(yµ1 , yµ2)

2
≤ Qµ1(yµ2)−Qµ1(yµ1),

m
2 d(yµ1 , yµ2)

2
≤ Qµ2(yµ1)−Qµ2(yµ2).

Summing these inequalities yields

md(yµ1 , yµ2)
2
≤ (Qµ1 −Qµ2)(yµ2)− (Qµ1 −Qµ2)(yµ1)

≤ ε sup
w∈B(y0,R)

|d(yµ1 , w)
2
− d(yµ2 , w)

2
| ≤ 4εRd(yµ1 , yµ2),

which proves (2.5). ut

We now choose a non-negative C∞ function χ : R → R with support in ]−1, 1[, which
is equal to 1 on a neighborhood of [−1/2, 1/2] and satisfies |χ ′| ≤ 4.

Proof of Proposition 2.4. First step: Lipschitz continuity. We now explain this first con-
struction. We can assume b = 1. Since a rough Lipschitz map f : X → Y is always
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within bounded distance of a Borel measurable map, we can assume that f itself is Borel
measurable. For x in X, we introduce the positive finite measure µx on Y such that

µx(ϕ) =

∫
X

ϕ(f (z)) χ(d(x, z)) dvolX(z)

for any positive function ϕ on Y . The measure µx is the image by f of a measure sup-
ported in B(x, 1). We define f̃ (x) ∈ Y to be the center of mass of µx . Lemma 2.5(a) tells
us that the map x 7→ f̃ (x) is well-defined. The Lipschitz continuity of f̃ will follow from
Lemma 2.5(b) applied to µ1 := µx1 and µ2 := µx2 with x1, x2 in X. Let us check that
the three assumptions in Lemma 2.5(b) are satisfied.

(i) Because of the pinching of the curvature of X, the Bishop volume estimates tell us
that there exist positive constants 0 < m0 < M0 such that, for all x,

m0 ≤ vol(B(x, 1/2)) ≤ µx(Y ) ≤ vol(B(x, 1)) ≤ M0.

(ii) When x1, x2 ∈ X with d(x1, x2) ≤ 1, the bound (2.4) ensures that both µx1 and
µx2 are supported in B(f (x1), 2c + C).

(iii) We have

‖µx1 − µx2‖ ≤ M0 sup
z∈X

|χ(d(x1, z))− χ(d(x2, z))| ≤ 4M0 d(x1, x2).

Thus Lemma 2.5 applies and yields a bound on the Lipschitz constant of f̃ , namely

Lip(f̃ ) := sup
x1 6=x2

d(f̃ (x1), f̃ (x2))/d(x1, x2) ≤
16(2c + C)M0

m0
. ut

2.2.3. Bound on the second derivative. The second step of the proof of Proposition 2.4
relies on three lemmas. The first lemma provides a nice system of charts on Y .

Lemma 2.6. Let Y be a Hadamard manifold with−b2
≤ KY ≤ 0 and k′ = dimY . There

exist constants r0 = r0(k′, b) > 0 and c0 = c0(k
′, b) > 1 such that, for each y in Y , there

exists a C∞ chart 8y for the open ball,

8y : B̊(y, r0)
∼
−→ Uy ⊂ Rk

′

with 8y(y) = 0, (2.8)

such that

‖D8y‖ ≤ c0, ‖D8−1
y ‖ ≤ c0, ‖D28y‖ ≤ c0, ‖D28−1

y ‖ ≤ c0. (2.9)

In particular, for all r < r0,

8y(B(y, c
−1
0 r)) ⊂ B(0, r) and B(0, c−1

0 r) ⊂ 8y(B(y, r)). (2.10)

We have endowed Rk′ with the standard Euclidean structure.
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Proof of Lemma 2.6. This is classical. One can for instance choose the so-called almost
linear coordinates, as in [19, Section 2] or [32, Section 3]. They are defined in the fol-
lowing way. We fix an orthonormal basis (ei)1≤i≤k′ for the tangent space TyY and set
yi := expy(−ei) ∈ Y . The map 8y is defined by the formula

8y(z) = (d(z, y1)−1, . . . , d(z, yk′)−1),

where z belongs to a sufficiently small ball B̊(y, r0). See [19, pp. 43 and 58] for a detailed
proof. ut

There exist better systems of coordinates, the so-called harmonic coordinates. We will not
need them in this section, but we will need them in Section 5 to prove uniqueness (see
Lemma 5.2).

The second lemma explains how to modify a Lipschitz map g inside a tiny ballB(x, r)
ofX so that the new map gx,r is constant on B(x, r/2) and the first two derivatives of gx,r
are controlled by those of g. We recall that χ : R → R is a non-negative C∞ function
with support included in ]−1, 1[, which is equal to 1 on a neighborhood of [−1/2, 1/2]
and 4-Lipschitz, i.e. |χ ′| ≤ 4.

Lemma 2.7. Let X and Y be Hadamard manifolds with bounded curvatures −b2
≤

KX,KY ≤ 0. Let r0 > 0 and c0 ≥ 1 be as in Lemma 2.6. Let g : X → Y be a Lip-
schitz map, x a point in X, y = g(x) and 0 < r < r0. Assume that

Lip(g) <
r0

c2
0r
. (2.11)

Then the following formula defines a Lipschitz map gr,x : X→ Y :

gr,x(z) =


g(x) if d(z, x) ≤ r/2,
8−1
y

((
1− χ

(
d(z,x)
r

))
8y(g(z))

)
if r/2 ≤ d(z, x) ≤ r,

g(z) if d(z, x) ≥ r.

We have
LipB(x,r)(gr,x) ≤ 5c2

0 LipB(x,r)(g). (2.12)

In particular,
Lip(gr,x) ≤ 5c2

0 Lip(g). (2.13)

Moreover, if g is C2 in a neighborhood of a point z in X, then gr,x is also C2 in this
neighborhood and

‖D2gr,x(z)‖ ≤
(
‖D2g(z)‖ + LipB(x,r)(g)

2
+ 1

)
Mr , (2.14)

where the constant Mr ≥ 1 depends only on r, b, k, k′ and χ .

Proof. Condition (2.11) ensures that, for any z in B(x, r), the image g(z) belongs to
B̊(y, c−2

0 r0). Therefore, by (2.10), the vector 8y(g(z)) belongs to B̊(0, c−1
0 r0) ⊂ Rk′ .

When we multiply this vector by the scalar 1 − χ(·), the new vector is still in the same
ball. That is why, using again (2.10), the element gr,x(z) is well-defined and belongs
to B(y, r0).
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The upper bound (2.12) follows from the chain rule. Indeed, when z is a point in
B(x, r) where g is differentiable, the bound (2.9) yields

‖Dgr,x(z)‖ ≤ c0

(
4
r
‖8y(g(z))‖ + ‖D(8y ◦ g)(z)‖

)
≤ 5c0 LipB(x,r)(8y ◦ g) ≤ 5c2

0 LipB(x,r)(g).

The upper bound (2.14) follows from similar and longer computations left to the
reader, which also use the bounds (2.3) for D2dx . ut

We will also need a third lemma. We recall that a subset X0 of a metric space X is said to
be r-separated if the distance between two distinct points of X0 is at least r .

Lemma 2.8. Let X be a Hadamard manifold with −b2
≤ KX ≤ 0. Let k = dimX and

N0 := 100k . There exists a radius r0 = r0(k, b) > 0 such that, for any r < r0, every
r/2-separated subset X0 of X can be decomposed as a union of at most N0 subsets which
are 2r-separated.
Proof. The bound on the curvature of X and the Bishop volume estimates ensure that we
can choose r0 > 0 such that

vol(B(x, 4r)) ≤ N0 vol(B(x, r/4)) for all r < r0 and x in X. (2.15)

This r0 works. Indeed, let X1, . . . , XN0 be a sequence of disjoint 2r-separated subsets
of X0 with X1 maximal in X0, X2 maximal in X0 r X1, and so on. Every point x of
X0 must be in one of the Xi’s with i ≤ N0 because if not, each Xi contains a point in
B(x, 2r), contradicting (2.15). ut

Proof of Proposition 2.4. Second step: bound on D2f̃ . According to the first step of this
proof, we can now assume that the map f : X→ Y is c-Lipschitz with c ≥ 1.

We can choose a new radius r0 = r0(k, k
′, b) that satisfies both conclusions of

Lemma 2.8 for X and of Lemma 2.6 for Y . We will freely use the notations of these
two lemmas. Now let

r1 =
r0

5N0c
2N0+2
0 c

and pick a maximal r1/4-separated subset X0 of X. Thanks to Lemma 2.8, we write this
set X0 as a union

X0 = X1 ∪ · · · ∪XN0

of N0 subsets Xi which are 2r1-separated.
In order to construct f̃ from f , we will use a finite iterative process based on

Lemma 2.7. Starting with f0 = f , we construct by induction a finite sequence of maps fi
for i ≤ N0 and we set f̃ := fN0 . In the notations of Lemma 2.7, the map fi is defined
from fi−1 by letting

fi(z) =

{
(fi−1)r1,x(z) if d(z, x) ≤ r1 for some x in Xi+1,

fi−1(z) otherwise,

so that the Lipschitz constants of these maps satisfy

Lip(fi) ≤ 5c2
0 Lip(fi−1) ≤ 5ic2i

0 c. (2.16)
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Indeed, once fi is known to be well-defined and to satisfy (2.16), it also satisfies the
bound (2.11): Lip(fi) <

r0
c2

0 r1
. Therefore Lemma 2.7 ensures that fi+1 is well-defined

and, using (2.12), that fi+1 also satisfies (2.16):

Lip(fi+1) ≤ 5c2
0 Lip(fi) ≤ 5i+1c

2(i+1)
0 c.

Let 3 := Mr1 + 25c4
0 + 1. By (2.14) and (2.16), for any i ≤ N0 and z in X,

‖D2fi(z)‖ + Lip(fi)2 + 1 ≤ 3
(
‖D2fi−1(z)‖ + Lip(fi−1)

2
+ 1

)
. (2.17)

Since X0 is a maximal r1/4-separated subset of X, every z in X belongs to at least one
ball B̊(x, r/2) where x is in one of the sets Xi0 . But then the function fi0 is constant in a
neighborhood of z. Therefore, using (2.16) and applying the bound (2.17) N0 − i0 times
one deduces that f̃ is a C2 map that satisfies the uniform upper bound

‖D2f̃ (z)‖ ≤ ((5i0c2i0
0 c)2 + 1)3N0−i0 ≤ 3N0c2. ut

3. Harmonic maps

In this section we begin the proof of the existence part in Theorem 1.1. We first recall
basic facts concerning harmonic maps. We explain why a standard compactness argument
reduces this existence part to proving a uniform upper bound on the distance between f
and the harmonic map hR which is equal to f on the sphere S(O,R). Then we provide
this upper bound near S(O,R).

3.1. Harmonic functions and the distance function

We recall basic facts on the Laplace operator on Hadamard manifolds.
The Laplace–Beltrami operator1 on a Riemannian manifoldX is defined as the trace

of the Hessian. In local coordinates, the Laplacian of a function ϕ is

1ϕ = tr(D2ϕ) =
1
v

∑
i,j

∂

∂xi

(
vg
ij
X

∂

∂xj
ϕ

)
(3.1)

where v =
√

det(gXij ) is the volume density. The function ϕ is said to be harmonic if
1ϕ = 0 and subharmonic if 1ϕ ≥ 0.

We will need the following basic lemma.

Lemma 3.1. Let X be a Hadamard manifold with KX ≤ −a2
≤ 0 and let x0 ∈ X. Then

the function dx0 is subharmonic. More precisely, the distribution1dx0−a is non-negative.

Proof. This is [3, Lemma 2.5]. ut

3.2. Harmonic maps and the distance function

In this subsection, we recall two useful facts satisfied by a harmonic map h: the subhar-
monicity of the functions dy0 ◦ h, and Cheng’s estimate for the differential Dh.
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Definition 3.2. Let h : X→ Y be a C2 map between Riemannian manifolds. The tension
field of h is the trace of the second covariant derivative, τ(h) := tr(D2h). The map h is
said to be harmonic if τ(h) = 0.

Note that the tension field τ(h) is a Y -valued vector field on X, i.e. it is a section of the
pull-back of the tangent bundle T Y → Y under the map h : X→ Y .

For instance, an isometric immersion with minimal image is always harmonic. The
problem of the existence, regularity and uniqueness of harmonic maps under various
boundary conditions is a very classical topic (see [10], [38], [19], [9], [40], [37] or [26]).
In particular, when Y is simply connected and has non-positive curvature, a harmonic
map is always C∞, and is a minimum of the energy functional among maps that agree
with h outside a compact subset of X.

Lemma 3.3. Let h : X→ Y be a harmonic C∞ map between Riemannian manifolds. Let
y0 ∈ Y and let ρh := dy0 ◦ h : X → R. If Y is Hadamard, then the continuous function
ρh is subharmonic on X.
Proof. See [3, Lemma 3.2]. ut

Another crucial property of harmonic maps is the following bound for their differential
due to Cheng.

Lemma 3.4. Let X, Y be Hadamard manifolds with −b2
≤ KX ≤ 0. Let k = dimX,

z ∈ X, r > 0 and let h : B(z, r)→ Y be a harmonic C∞ map such that h(B(z, r)) lies
in a ball of radius R0. Then

‖Dh(z)‖ ≤ 25k
1+ br
r

R0.

In applications, we will use this inequality with r = b−1.
Proof. This is a simplified version of [8, Formula 2.9]. ut

3.3. Existence of harmonic maps

In this subsection we prove Theorem 1.1, taking for granted Proposition 3.5 below.
Let X and Y be Hadamard manifolds with −b2

≤ KX,KY ≤ −a
2 < 0. Let k =

dimX and k′ = dimY . Let f : X → Y be a (c, C)-quasi-isometric C∞ map whose first
two covariant derivatives are bounded.

We fix a point O in X. For R > 0, we write BR := B(O,R). Since Y is a Hadamard
manifold, according to Hamilton [16] (see also Schoen and Uhlenbeck [35], [36]) there
exists a unique harmonic map hR : BR → Y which is C∞ onBR and satisfies the Dirichlet
condition hR = f on ∂BR . We denote

d(hR, f ) = sup
x∈B(O,R)

d(hR(x), f (x)).

The main step for proving existence in Theorem 1.1 is the following uniform estimate.

Proposition 3.5. There exists a constant ρ ≥ 1 such that d(hR, f ) ≤ ρ for any R ≥ 1.

The constant ρ is a function of a, b, c, C, k and k′. More precisely, when f satisfies (4.1),
ρ only needs to satisfy (4.6)–(4.8).
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We briefly recall the classical argument used to deduce Theorem 1.1 from this propo-
sition.

Proof of Theorem 1.1. As explained in Proposition 2.4, we may assume that the (c, C)-
quasi-isometric map f is C∞ with bounded first two covariant derivatives. Pick an un-
bounded increasing sequence of radii Rn and let hRn : BRn → Y be the harmonic C∞
map that agrees with f on the sphere ∂BRn . Proposition 3.5 ensures that the sequence
of maps (hRn) is locally uniformly bounded. Using the Cheng Lemma 3.4 it follows that
their first derivatives are also locally uniformly bounded. The Ascoli–Arzelà theorem im-
plies that, after extracting a subsequence, the sequence (hRn) converges uniformly on
every ball BS towards a continuous map h : X → Y . Using the Schauder estimates, one
also gets a uniform bound for the C2,α-norms of hRn on BS . These classical estimates will
be recalled in formulas (5.32) and (5.33) in Section 5.6. Therefore, by the Ascoli–Arzelà
theorem again, the sequence (hRn) converges in the C2-norm and the limit map h is C2

and harmonic. By construction, this limit harmonic map h stays within bounded distance
of the quasi-isometric map f . ut

Remark 3.6. By the uniqueness part of our Theorem 1.1 that we will prove in Section 5,
the harmonic map h which stays within bounded distance of f is unique. Hence the
above argument also proves that the whole family of harmonic maps hR converges to h
uniformly on compact subsets of X when R goes to infinity.

3.4. Boundary estimate

In this subsection, we begin the proof of Proposition 3.5: we bound the distance between
hR and f near the sphere ∂BR .

Proposition 3.7. Let X, Y be Hadamard manifolds and k = dimX. Assume moreover
that KX ≤ −a2 < 0 and −b2

≤ KY ≤ 0. Let c ≥ 1 and f : X → Y be a C∞ map
with ‖Df (x)‖ ≤ c and ‖D2f (x)‖ ≤ bc2. Let O ∈ X, R > 0 and set BR := B(O,R).
Let hR : BR → Y be the harmonic C∞ map whose restriction to the sphere ∂BR is equal
to f . Then, for every x in BR ,

d(hR(x), f (x)) ≤
3kbc2

a
d(x, ∂BR). (3.2)

An important feature of this upper bound is that it does not depend on the radius R,
provided the distance d(x, ∂BR) remains bounded. This is why we call (3.2) the boundary
estimate. The proof relies on an idea of Jost [19, Section 4].

Proof of Proposition 3.7. This proposition is already in [3, Proposition 3.8]. We give a
slightly shorter proof. Let x ∈ BR and let y ∈ Y be chosen so that d(y, f (BR)) ≥ b−1

and

dy(hR(x))− dy(f (x)) = d(f (x), hR(x)). (3.3)
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This point y is far away on the geodesic ray starting at hR(x) and containing f (x). Let ϕ
be the C∞ function on the ball BR defined by

ϕ(z) := dy(hR(z))− dy(f (z))−
3kbc2

a
(R − dO(z)) for all z in BR . (3.4)

This is the sum of three functions, ϕ = ϕ1 + ϕ2 + ϕ3.
The first function ϕ1 : z 7→ dy(hR(z)) is subharmonic on BR , i.e. 1ϕ1 ≥ 0. This

follows from Lemma 3.3 and the harmonicity of the map hR .
The second function ϕ2 : z 7→ −dy(f (z)) has a bounded Laplacian, |1ϕ2| ≤ 3kbc2.

Indeed, since y is far away, formula (2.3) yields the bound ‖D2dy‖ ≤ 2b on f (BR) so
that

|1ϕ2| = |1(dy ◦ f )| ≤ k‖D
2dy‖ ‖Df ‖

2
+ k‖Ddy‖ ‖D

2f ‖ ≤ 3kbc2.

The third function ϕ3 : z 7→ −
3kbc2

a
(R − dO(z)) has a Laplacian bounded below,

1ϕ3 ≥ 3kbc2. This follows from Lemma 3.1 which says that 1dO ≥ a.
Hence the function ϕ is subharmonic: 1ϕ ≥ 0. Since ϕ is zero on ∂BR , one gets

ϕ(x) ≤ 0 as required. ut

4. Interior estimate

In this section we complete the proof of Proposition 3.5.

4.1. Strategy

We first explain more precisely the notations and the assumptions that we will use in the
whole section.

Let X and Y be Hadamard manifolds whose curvatures are pinched, −b2
≤ KX,KY

≤ −a2 < 0. Let k = dimX and k′ = dimY . We start with a C∞ quasi-isometric map
f : X → Y whose first and second covariant derivatives are bounded. We fix constants
c ≥ 1 and C > 0 such that, for all x, x′ in X:

‖Df (x)‖ ≤ c, ‖D2f (x)‖ ≤ bc2, (4.1)

c−1d(x, x′)− C ≤ d(f (x), f (x′)) ≤ cd(x, x′). (4.2)

Note that the additive constant C in the right-hand side term of (1.1) has been removed
since the derivative of f is now bounded by c.

4.1.1. Choosing the radius `0. We fix a point O in X. We introduce a fixed radius `0
depending only on a, b, k, k′, c and C. This radius `0 is only required to satisfy the three
inequalities (4.3)–(4.5) that will be needed later on.

The first condition we impose on the radius `0 is

b`0 > 1. (4.3)
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The second condition is

`0 >
(A+ b−1)c

sin2(ε0/2)
where ε0 := (3c2M)−N , (4.4)

where A is the constant given by Lemma 2.2, andM ,N are the constants given by Propo-
sition 4.9. The third condition we impose on `0 is

16eaC/2e−a`0/(4c) < θ0 where θ0 := e
−bA(ε0/4)bc/a . (4.5)

4.1.2. Assuming ρ to be large. We want to prove Proposition 3.5. For R > 0, recall that
hR : B(O,R) → Y is the harmonic C∞ map whose restriction to the sphere ∂B(O,R)
is equal to f . We let

ρ := sup
x∈B(O,R)

d(hR(x), f (x)).

We argue by way of contradiction. If this supremum ρ is not uniformly bounded with
respect to R, we can fix a radius R such that ρ satisfies the three inequalities (4.6)–(4.8)
below that we will use later on.

The first condition we impose on the radius ρ is

aρ > 8kbc2`0. (4.6)

The second condition is
27(aρ)2

sinh(aρ/2)
< θ0. (4.7)

The third condition is
ρ > 4c`0M(210eb`0k)N (4.8)

where M , N are the constants given by Proposition 4.9.
We denote by x a point of B(O,R) where the supremum (4.1.2) is achieved:

d(hR(x), f (x)) = ρ.

According to the boundary estimate in Proposition 3.7, condition (4.6) yields

d(x, ∂B(O,R)) ≥
aρ

3kbc2 ≥ 2`0.

Combined with (4.3), this ensures that B(x, `0) ⊂ B(O,R−b−1). This inclusion will
allow us to apply Cheng’s Lemma 3.4 at each point z of B(x, `0).

4.1.3. Getting a contradiction. We will focus on the restrictions of f and hR to B(x, `0).
We set y := f (x). For y1, y2 in Y r {y}, we denote by θy(y1, y2) the angle at y of the
geodesic triangle with vertices y, y1, y2. For z ∈ S(x, `0), we will analyze the triangle
inequality

θy(f (z), hR(x)) ≤ θy(f (z), hR(z))+ θy(hR(z), hR(x)) (4.9)
and prove that on a subset U`0 of the sphere, each term on the right-hand side is small
(Lemmas 4.5 and 4.6) while the measure of U`0 is large enough (Lemma 4.4) to ensure
that the left-hand side is not that small (Lemma 4.8), giving rise to a contradiction. These
arguments rely on uniform lower and upper bounds for the harmonic measures on spheres
of X that will be given in Proposition 4.9.
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We denote by ρh the function on B(x, `0) given by ρh(z) = d(y, hR(z)) where again
y = f (x). By Lemma 3.3, this function is subharmonic.

Definition 4.1. We set

U`0 = {z ∈ S(x, `0) | ρh(z) ≥ ρ − `0/(2c) }. (4.10)

4.2. Measure estimate

We first observe that one can control the size of ρh(z) and of DhR(z) on B(x, `0). We
then derive a lower bound for the measure of U`0 .

Lemma 4.2. For z in B(x, `0), one has

ρh(z) ≤ ρ + c`0.

Proof. The triangle inequality and (4.2) give, for any z in B(x, `0),

ρh(z) ≤ d(hR(z), f (z))+ d(f (z), y) ≤ ρ + c`0. ut

Lemma 4.3. For z in B(x, `0), one has

‖DhR(z)‖ ≤ 28kbρ.

Proof. For all z, z′ in B(O,R) with d(z, z′) ≤ b−1, the triangle inequality and (4.2) yield

d(hR(z), hR(z
′)) ≤ d(hR(z), f (z))+ d(f (z), f (z

′))+ d(f (z′), hR(z
′))

≤ ρ + b−1c + ρ ≤ 2ρ + c`0 ≤ 3ρ.

For these last two inequalities, we have used (4.3) and (4.6). Applying Cheng’s Lem-
ma 3.4 with R0 = 3ρ and r = b−1, one then gets for all z in B(O,R−b−1) the bound
‖DhR(z)‖ ≤ 28kbρ. ut

We now give a lower bound for the measure of U`0 .

Lemma 4.4. Let σ = σx,`0 be the harmonic measure on the sphere S(x, `0) at the center
point x. Then

σ(U`0) ≥
1

3c2 . (4.11)

Proof. By Lemma 3.3, the function ρh is subharmonic on B(x, `0). Hence ρh is not
larger than the harmonic function on the ball with the same boundary values on S(x, `0).
Comparing these functions at the center x, one gets∫

S(x,`0)
(ρh(z)− ρ) dσ(z) ≥ 0. (4.12)

By Lemma 4.2, the function ρh is bounded by ρ + c`0. Hence (4.12) and the definition
of U`0 imply

c`0σ(U`0)−
`0

2c
(1− σ(U`0)) ≥ 0

so that σ(U`0) ≥
1

3c2 . ut
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4.3. Upper bound for θy(f (z), hR(z))

For all z in U`0 , we give an upper bound for the angle between f (z) and hR(z) seen from
the point y = f (x).

Lemma 4.5. For z in U`0 , one has

θy(f (z), hR(z)) ≤ 4eaC/2e−a`0/(4c). (4.13)

Proof. For z in U`0 , we consider the triangle with vertices y, f (z) and hR(z). Its side
lengths satisfy

d(hR(z), f (z)) ≤ ρ, d(y, f (z)) ≥
`0

c
− C, d(y, hR(z)) ≥ ρ −

`0

2c
,

where we use successively the definition of ρ, the quasi-isometry lower bound (4.2) and
the definition of U`0 . Hence, one gets the following lower bound for the Gromov product:

(f (z)|hR(z))y ≥
`0

4c
−
C

2
.

Since KY ≤ −a2, Lemma 2.1 now yields (4.13). ut

4.4. Upper bound for θy(hR(z), hR(x))

For all z in S(x, `0), we give an upper bound for the angle between hR(z) and hR(x) seen
from y = f (x).

Lemma 4.6. For all z in S(x, `0), one has

θy(hR(z), hR(x)) ≤
25(aρ)2

sinh(aρ/2)
. (4.14)

The proof will rely on the following lemma which also ensures that θy(hR(z), hR(x)) is
well-defined.

Lemma 4.7. For all z in B(x, `0), one has ρh(z) ≥ ρ/2.

Proof. Assume by way of contradiction that there exists a point z1 in B(x, `0) such that
ρh(z1) = ρ/2. Set r1 := d(x, z1). One has 0 < r1 ≤ `0. According to Lemma 4.3, one
can bound the differential of hR on B(x, `0) as

sup
B(x,`0)

‖DhR‖ ≤ 28kbρ.

Hence

ρh(z) ≤ 3ρ/4 for all z in S(x, r1) ∩ B
(
z1,

1
210kb

)
.

By comparison with the hyperbolic plane with curvature −b2, this intersection contains
the trace on the sphere S(x, r1) of a cone Cα with vertex x and angle α as long as
sin(α/2) ≤ sinh(2−11/k)

sinh(br1)
. For instance we will choose α := e−b`0 2−10/k.
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Let σ ′ = σx,r1 be the harmonic measure on S(x, r1) at the center point x. Using the
subharmonicity of ρh as in the proof of Lemma 3.3, one gets∫

S(x,r1)
(ρh(z)− ρ) dσ ′(z) ≥ 0. (4.15)

By Lemma 4.2, the function ρh is bounded by ρ + c`0. Using the bound ρh(z) ≤ 3
4ρ

when z is in the cone Cα , (4.15) now implies that

c`0 −
ρ

4
σ ′(Cα) ≥ 0.

Using the uniform lower bounds for the harmonic measures on the spheres ofX in Propo-
sition 4.9, one gets

ρ ≤ 4c`0Mα
−N
= 4c`0M(210eb`0k)N ,

which contradicts (4.8). ut

Proof of Lemma 4.6. Let us first sketch the proof. Let z ∈ S(x, `0). We denote by t 7→ zt ,
for 0 ≤ t ≤ `0, the geodesic segment between x and z. By Lemma 4.7, the curve
t 7→ hR(zt ) lies outside B(y, ρ/2) and by Cheng’s bound on ‖DhR(zt )‖ one controls
the length of this curve.

We now detail the argument. We denote by (ρ(y′), v(y′)) ∈ ]0,∞[×T 1
y Y the polar

exponential coordinates centered at y. For a point y′ in Y r {y}, they are defined by the
equality y′ = expy(ρ(y

′)vρ(y
′)). Since KY ≤ −a2, the Alexandrov comparison theorem

for infinitesimal triangles and the Gauss lemma [12, 2.93] yield

sinh(aρ(y′))‖Dv(y′)‖ ≤ a.

Writing vh := v ◦ hR , we thus have, for any z′ in B(x, `0),

sinh(aρh(z′)) ‖Dvh(z′)‖ ≤ a‖DhR(z′)‖.

Hence, Lemma 4.7 yields

θy(hR(z), hR(x)) ≤ `0 sup
0≤t≤`0

‖Dvh(zt )‖ ≤
a`0

sinh(aρ/2)
sup

0≤t≤`0

‖DhR(zt )‖.

Therefore, using Lemma 4.3 and (4.6), one gets

θy(hR(z), hR(x)) ≤
28kbρ a`0

sinh(aρ/2)
≤

25(aρ)2

sinh(aρ/2)
. ut

4.5. Lower bound for θy(f (z), hR(x))

We find a point z in U`0 for which the angle between f (z) and h(x) seen from y = f (x)

has an explicit lower bound.

Lemma 4.8. There exist points z1, z2 in U`0 such that

θy(f (z1), f (z2)) ≥ θ0,

where θ0 is the angle given by (4.5).
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Proof. Let σ0 :=
1

3c2 . According to Lemma 4.4, one has σ(U`0) ≥ σ0 > 0 Thus, using
the uniform upper bounds for harmonic measures on spheres of X in Proposition 4.9, one
can find z1, z2 in U`0 such that

σ0 ≤ Mθx(z1, z2)
1/N .

This can be rewritten as

θx(z1, z2) ≥ ε0, (4.16)

where ε0 is the angle introduced in (4.4) by the equality σ0 = Mε
1/N
0 . Therefore, using

Lemma 2.1(a) and (4.4), we get the following lower bound on the Gromov products:

min((x|z1)z2 , (x|z2)z1)) ≥ `0 sin2(ε0/2) ≥ (A+ b−1)c.

Using then Lemma 2.2, one gets

min((y|f (z1))f (z2), (y|f (z2))f (z1)) ≥ b
−1. (4.17)

This inequality allows us to apply Lemma 2.1(c), which gives

θy(f (z1), f (z2)) ≥ e
−b(f (z1)|f (z2))y .

Therefore, by Lemma 2.2,

θy(f (z1), f (z2)) ≥ e
−bAe−bc (z1|z2)x .

Using Lemma 2.1(b) and (4.16), one gets

θy(f (z1), f (z2)) ≥ e
−bA(θx(z1, z2)/4)bc/a ≥ e−bA(ε0/4)bc/a = θ0,

according to the definition (4.5) of θ0. ut

End of proof of Proposition 3.5. Using Lemmas 4.5 and 4.6 and the triangle inequality
(4.9) one gets, for any two points zi = z1 or z2 in U`0 ,

θy(f (zi), hR(x)) ≤ 4eaC/2e−a`0/(4c) +
25(aρ)2

sinh(aρ/2)

< 1
2θ0 by (4.5) and (4.7).

Therefore, using again a triangle inequality, one has θy(f (z1), f (z2)) < θ0, which con-
tradicts Lemma 4.8. ut
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4.6. Harmonic measures

The following proposition gives the uniform lower and upper bounds for the harmonic
measure on a sphere at the center which were used in the proof of Lemmas 4.7 and 4.8.

Proposition 4.9. Let 0 < a < b and k ≥ 2 be an integer. There exist positive constants
M , N depending only on a, b, k such that for every k-dimensional Hadamard manifoldX
with pinched curvature −b2

≤ KX ≤ −a
2, for every point x in X, every radius r > 0

and every angle θ ∈ [0, π] one has

1
M
θN ≤ σx,r(Cx,θ ) ≤ Mθ

1/N (4.18)

where σx,r denotes the harmonic measure on S(x, r) at the point x and where Cx,θ stands
for any cone with vertex x and angle θ .

We recall that, by definition, σx,r is the unique probability measure on S(x, r) such that,
for every continuous function h on B(x, r) which is harmonic in the interior B̊(x, r), one
has

h(x) =

∫
S(x,r)

h(z) dσx,r(z).

A proof of Proposition 4.9 is given in [4]. It relies on various technical tools of poten-
tial theory on pinched Hadamard manifolds: the Harnack inequality, the barrier functions
constructed by Anderson and Schoen [2] and upper and lower bounds for the Green func-
tions due to Ancona [1]. Related estimates are the one by Kifer–Ledrappier [21, Theorem
3.1 and 4.1] where (4.18) is proven for the sphere at infinity or by Ledrappier–Lim [22,
Proposition 3.9] where the Hölder regularity of the Martin kernel is proven.

5. Uniqueness of harmonic maps

In this section we prove the uniqueness part in Theorem 1.1.

5.1. Strategy

In other words we will prove the following proposition.

Proposition 5.1. Let X, Y be pinched Hadamard manifolds and let h0, h1 : X → Y be
quasi-isometric harmonic maps that stay within bounded distance of one another:

sup
x∈X

d(h0(x), h1(x)) <∞.

Then h0 = h1.

WhenX = Y = H2, this proposition was proven by Li and Tam [24]. When bothX and Y
admit a cocompact group of isometries, it was proven by Li and Wang [25, Theorem 2.3].
The aim of this subsection is to explain how to get rid of these extra assumptions.
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Note that the assumption that the hi are quasi-isometric is useful. Indeed, there do
exist non-constant bounded harmonic functions on X. Note that there also exist bounded
harmonic maps with open images. Here is a very simple example. Let 0 < λ < 1. The
map hλ from the Poincaré unit disk D of C into itself given by z 7→ λz is harmonic. More
generally, for any harmonic map h : D → D, the map hλ : D → D : z 7→ h(λz) is
harmonic with bounded image.

Before going into technical details, we first explain the strategy of the proof of unique-
ness.

Strategy of proof of Proposition 5.1. We recall that x 7→ d(h0(x), h1(x)) is a subhar-
monic function on X and that, by the maximum principle, a subharmonic function that
achieves its maximum value is constant. Unfortunately sinceX is non-compact we cannot
a priori ensure that this bounded function achieves its maximum. That is why we will use
a recentering argument. This will force us to deal with Riemannian manifolds which are
not C∞ (see Section 5.4).

We assume, towards a contradiction, that h0 6= h1, we choose a sequence of points pn
in X for which

d(h0(pn), h1(pn))→ δ := sup
x∈X

d(h0(x), h1(x)) > 0 (5.1)

and we set qn := h0(pn).
The pinching conditions on X and Y ensure that, after extracting a subsequence, the

pointed metric spaces (X, pn) and (Y, qn) converge in the Gromov–Hausdorff topology
to pointed metric spaces (X∞, p∞) and (Y∞, q∞) which are C2 Hadamard manifolds
with C1 Riemannian metrics satisfying the same pinching conditions (Proposition 5.14).
Moreover, extracting again a subsequence, the harmonic map h0 (resp. h1) seen as a se-
quence of maps between the pointed Hadamard manifolds (X, pn) and (Y, qn) converges
locally uniformly to a map h0,∞ (resp h1,∞) between the pointed C2 Hadamard mani-
folds (X∞, p∞) and (Y∞, q∞). These harmonic maps h0,∞ and h1,∞ are still harmonic
quasi-isometric maps (Lemma 5.15).

The limit distance function x 7→ d(h0,∞(x), h1,∞(x)) is a subharmonic function
on X∞ that now achieves its maximum δ > 0 at the point p∞. Hence, by the maximum
principle, this distance function is constant and equal to δ (Lemma 5.16). Generalizing
[25, Lemma 2.2], we will see in Corollary 5.19 that this equidistance property implies that
both h0,∞ and h1,∞ take their values in a geodesic of Y∞. This contradicts the fact that
h0,∞ and h1,∞ are quasi-isometric maps, and concludes this description of the strategy
of proof. ut

In the following subsections of Section 5, we fill in the details of the proof.

5.2. Harmonic coordinates

We first introduce the so-called harmonic coordinates, which improve the quasilinear co-
ordinates introduced in Lemma 2.6. We refer to [15] or [19] for more details.

The harmonic coordinates have been introduced by DeTurk and Kazdan and exten-
sively used by Cheeger, Jost, Karcher, Petersen and others to prove various compactness
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results for compact Riemannian manifolds. Besides being harmonic, the main advantage
of these coordinates is that, for every α ∈ ]0, 1[, they are uniformly bounded in the C2,α-
norm, i.e. they are uniformly bounded in the C2-norm and one also has uniform control
of the α-Hölder norm of their second covariant derivatives. Moreover, one has uniform
control on the size of balls on which these harmonic charts are defined. This is what the
following lemma tells us.

We endow Rk with the standard Euclidean structure.

Lemma 5.2. Let X be a k-dimensional Hadamard manifold with bounded curvature,
−1 ≤ KX ≤ 0. Let 0 < α < 1. There exist constants r0 = r0(k) > 0 and c0 =

c0(k, α) > 0 such that, for every x in X, there exists a C∞ diffeomorphism

9x : B̊(x, r0)
∼
−→ Ux ⊂ Rk with 9x(x) = 0, (5.2)

‖D9x‖ ≤ c0, ‖D9−1
x ‖ ≤ c0, ‖D29x‖ ≤ c0, ‖D29−1

x ‖ ≤ c0 (5.3)

and such that each component z1, . . . , zk of 9x is a harmonic function.
In particular, for all r < r0 one has

9x(B(x, c
−1
0 r)) ⊂ B(0, r) and B(0, c−1

0 r) ⊂ 9x(B(x, r)). (5.4)

The second covariant derivatives of all 9x are also uniformly α-Hölder:

‖D29x‖Cα ≤ c0. (5.5)

This α-Hölder seminorm ‖D29x‖Cα is defined as follows. Using the vector fields
∂
∂z1
, . . . , ∂

∂zk
on B̊(x, r0) associated to our coordinate system 9x = (z1, . . . , zk), we

reinterpret the tensor D29x as a family of vector valued functions on B̊(x, r0). Indeed,
we set

T
ij
x (z) = D

29x(z)
(
∂
∂zi
, ∂
∂zj

)
∈ Rk for i, j in {1, . . . , k},

and the bound (5.5) means that

‖D29x‖Cα := max
i,j

sup
z,z′

‖T
ij
x (z)− T

ij
x (z

′)‖

d(z, z′)α
≤ c0. (5.6)

The uniform bounds (5.3) and (5.5) have three consequences.
First, in the harmonic coordinate systems 9x = (z1, . . . , zk), the Christoffel coeffi-

cients 0`ij are uniformly bounded in the Cα-norm. Indeed, these coefficients (0`ij )1≤`≤k
are the components of the vector −D29x

(
∂
∂zi
, ∂
∂zj

)
∈ Rk .

Second, on their domain of definition, the transition functions

9x′ ◦9
−1
x are uniformly bounded in the C2,α-norm. (5.7)

Third, in the coordinate systems 9x = (z1, . . . , zk), the coefficients of the metric
tensor

gij := g
(
∂
∂zi
, ∂
∂zj

)
are uniformly bounded in the C1,α-norm. (5.8)

Proof of Lemma 5.2. See [19, pp. 62 and 65] or [32, Section 4]. ut
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5.3. Gromov–Hausdorff convergence

In this subsection, we recall the definition of Gromov–Hausdorff convergence for pointed
metric spaces and some of its key properties. We refer to [7] for more details.

5.3.1. Definition. When X is a metric space, we will denote by d or dX the distance
onX. Recall that B(x,R) denotes the closed ball with center x and radius R, and B̊(x, R)
the open ball. Also recall that a metric space X is proper if all its balls are compact or,
equivalently, if X is complete and for all R > 0 and ε > 0 every ball of radius R can be
covered by finitely many balls of radius ε.

We also recall the notion of Gromov–Hausdorff distance between two (isometry
classes of proper) pointed metric spaces.

Definition 5.3. The Gromov–Hausdorff distance between pointed metric spaces (X, p)
and (Y, q) is the infimum of the ε > 0 for which there exists a subset R of X × Y , called
a correspondence, such that

(i) the correspondence R contains the pair (p, q),
(ii) for all x in B(p, ε−1), there exists y in Y with (x, y) in R,

(iii) for all y in B(q, ε−1), there exists x in X with (x, y) in R,
(iv) for all (x, y) and (x′, y′) in R, one has |d(x, x′)− d(y, y′)| ≤ ε.

Heuristically, this correspondence R can be thought of as an ε-rough isometry between
these two balls with radius ε−1.

Based on this definition, a sequence (Xn, pn) of pointed metric spaces converges to
a pointed metric space (X∞, p∞) if, for all ε > 0, there exists n0 such that for n ≥ n0,
there exists a map fn : B(pn, ε−1)→ X∞ such that

(α) d(fn(pn), p∞) ≤ ε,
(β) |d(fn(x), fn(x

′))− d(x, x′)| ≤ ε for all x, x′ in B(pn, ε−1),
(γ ) the ε-neighborhood of fn(B(pn, ε−1)) contains B(p∞, ε−1

− ε).

Definition 5.3 is only useful for complete metric spaces. Indeed, the Gromov–Haus-
dorff topology does not distinguish between a metric space and its completion. It does not
distinguish either between two pointed metric spaces that are isometric: it is a distance on
the set of isometry classes of proper pointed metric spaces. See [7, Theorem 8.1.7].

The following equivalent definition of Gromov–Hausdorff convergence is useful
when one wants to get rid of the ambiguity coming from the group of isometries of
(X∞, p∞).

Fact 5.4. Let (Xn, pn), for n ≥ 1, and (X∞, p∞) be pointed proper metric spaces. The
sequence (Xn, pn) converges to (X∞, p∞) if and only if there exists a complete metric
space Z containing isometrically all the metric spaces Xn and X∞ as disjoint closed
subsets, and such that

(a) pn converges to p∞ in Z,
(b) Xn converges to X∞ in the Hausdorff topology.



2882 Yves Benoist, Dominique Hulin

Statement (b) means that

- every point z of X∞ is the limit of a sequence (xn)n≥1 with xn ∈ Xn,
- every cluster point z ∈ Z of a sequence (xn)n≥1 with xn ∈ Xn belongs to X∞.

Sketch of proof of Fact 5.4. Assume that (Xn, pn) converges to (X∞, p∞). We want to
construct the metric space Z. We choose a sequence εn ↘ 0 and correspondences Rn

on Xn × X∞ as in Definition 5.3 with p = pn, q = p∞ and ε = εn. This allows us to
construct, for every n ≥ 1, a metric space Yn which is the disjoint union of Xn and X∞,
which contains isometrically both Xn and X∞ and such that the distance between x in
Xn and y in X∞ is given by

dYn(x, y) = inf {dXn(x, x
′)+ ε + dX∞(y

′, y)}, (5.9)

where the infimum is over all pairs (x′, y′) which belong to Rn.
The space Z is defined as the disjoint union of all the Xn and of X∞. The distance on

Z is given on each union Yn := Xn ∪X∞ by (5.9) and the distance between x in Xm and
z in Xn with m 6= n is

dZ(x, z) = inf {dYm(x, y)+ dYn(y, z)}, (5.10)

where the infimum is over all y in X∞.
Then (a) follows from (i), and (b) follows from (ii)–(iv). ut

The choice of such isometric embeddings of all Xn and X∞ in a fixed metric space Z
will be called a realization of Gromov–Hausdorff convergence. Such a realization is not
unique. It is useful since it allows us to define the notion of a converging sequence of
points xn in Xn to a limit x∞ in X∞ by the condition dZ(xn, x∞) −−−→

n→∞
0.

5.3.2. Compactness criterion. A fundamental tool in this topic is the following compact-
ness result for uniformly proper pointed metric spaces due to Cheeger–Gromov:

Fact 5.5. Let (Xn, pn)n≥1 be a sequence of pointed proper metric spaces. Suppose that,
for all R > 0 and ε > 0, there exists an integer N = N(R, ε) such that, for all n ≥ 1,
the ball B(pn, R) of Xn can be covered by N balls of radius ε. Then there exists a subse-
quence of (Xn, pn) which converges to a proper pointed metric space (X∞, p∞).

For the proof see [7, Theorem 8.1.10].
The following lemma gives a compactness property for sequences of Lipschitz func-

tions between pointed metric spaces.

Lemma 5.6. Let (Xn, pn)n≥1 and (Yn, qn)n≥1 be sequences of pointed proper metric
spaces which converge respectively to proper pointed metric spaces (X∞, p∞) and
(Y∞, q∞). As in Fact 5.4, we choose metric spaces ZX and ZY which realize these
Gromov–Hausdorff convergences as Hausdorff convergences.

Let c > 1 and let (fn : Xn → Yn)n≥1 be a sequence of c-Lipschitz maps such that
fn(pn) = qn. Then there exists a c-Lipschitz map f∞ : X∞ → Y∞ such that, after
extracting a subsequence, the sequence of maps fn converges to f∞. This means that
for each sequence xn ∈ Xn which converges to x∞ ∈ X∞, the sequence fn(xn) ∈ Yn
converges to f∞(x∞) ∈ Y∞.
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Proof. This follows from basic topological arguments.
First step. We first choose a point x∞ in X∞ and a sequence xn in Xn converging

to x∞. Since the metric space ZY is proper and the sequence fn(xn) is bounded in ZY ,
we can assume after extracting a subsequence that fn(xn) converges to a point y∞ ∈ Y∞.
Since the fn are c-Lipschitz, this limit y∞ does not depend on the choice of the sequence
xn converging to x∞. We define f∞(x∞) := y∞.

Second step. We choose a countable dense subset S∞ ⊂ X∞ and use Cantor’s diag-
onal argument to ensure that the first step is valid simultaneously for all x∞ in S∞.

Last step. One checks that the limit map f∞ : S∞ → Y∞ is c-Lipschitz. Hence it
extends uniquely as a c-Lipschitz map f∞ : X∞ → Y∞ and the sequence fn converges
locally uniformly to f∞. ut

5.3.3. Length spaces and Alexandrov spaces. We recall a few well-known definitions
(see [7]).

A length space is a complete metric space for which the distance δ between two points
is the infimum of the lengths of curves joining them. When X is proper, any two points at
distance δ can be joined by a curve of length δ. Such a curve is called a geodesic segment.

Let K ≤ 0. A CAT(K)-space or CAT-space with curvature at most K is a length
space in which any geodesic triangle (P,Q,R) is thinner than a comparison triangle
(P ,Q,R) in the planeX of constant curvatureK . Let us explain what this means. A com-
parison triangle is a triangle in X with the same side lengths. For every point P ′ on the
geodesic segment [P,Q] we denote by P

′
the corresponding point on the geodesic seg-

ment [P ,Q], i.e. the point such that d(P, P ′) = d(P , P
′
). Thinner means that always

d(P ′, R) ≤ d(P
′
, R). Note that a CAT(0)-space is always simply connected (see [6,

Corollary II.1.5]). We also recall that in a proper CAT(0)-space, any two points can be
joined by a unique geodesic.

Similarly, a metric space with curvature at least K is a length space in which any
geodesic triangle (P,Q,R) is thicker than a comparison triangle (P ,Q,R) in the planeX
of constant curvature K . Thicker means that always d(P ′, R) ≥ d(P

′
, R).

The following proposition tells us that these properties are closed for the Gromov–
Hausdorff topology.

Fact 5.7. Let (Xn, pn)n≥1 and (X∞, p∞) be pointed proper metric spaces. Let K ≤ 0.
Assume that the sequence (Xn, pn) converges to (X∞, p∞).

(i) If the Xn’s are length spaces, then X∞ is also a length space.
(ii) If the Xn’s are CAT(K)-spaces, then X∞ is also a CAT(K)-space.

(iii) If the Xn’s have curvature at least K , then X∞ too.

Proof. For (i), see [7, Theorem 8.1.9]; for (ii), see [6, Corollary II.3.10]; and for (iii), see
[7, Theorem 10.7.1]. ut
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5.4. Hadamard manifolds with C1 metrics

In this subsection we focus on C2 Hadamard manifolds when the Riemannian metric
is only assumed to be C1. These Hadamard manifolds will occur in Subsection 5.5 as
Gromov–Hausdorff limits of pinched C∞ Hadamard manifolds.

5.4.1. Definition. We need first to clarify the definitions. We will deal with C2 mani-
foldsX. This means thatX has a system of charts x 7→ (x1, . . . , xk) into Rk for which the
transition functions are of class C2. These manifolds will be endowed with a C1 Rieman-
nian metric g. This means that in any C2 chart, the functions g

(
∂
∂xi
, ∂
∂xj

)
are continuously

differentiable.
In general, on such a Riemannian manifold, there might exist two different geodesics

which are tangent at some point (see [18] for an example with a C1,α Riemannian metric).
The following lemma tells us that this kind of example will not occur here since we are
dealing only with CAT(0)-spaces whose curvature is bounded below. Note that since the
metric tensor is not assumed to be twice differentiable, the expression “curvature bounded
below” refers to the definitions in Section 5.3.

Definition 5.8. By a C2 Hadamard manifold with a C1 metric, we mean a C2 manifold
endowed with a C1 Riemannian metric which is CAT(0) and complete.

5.4.2. Exponential map

Lemma 5.9. Let X be a C2 Hadamard manifold with a C1 metric of bounded curvature.

(a) For all x in X and v in TxX there is a unique geodesic t 7→ expx(tv) starting from x

at speed v. This geodesic is of class C2.
(b) This exponential map induces a homeomorphism 9 : TX

∼
−→ X × X given by

9(x, v) = (x, expx(v)) for x in X and v in TxX.

Proof. This lemma looks very familiar. But, since the Christoffel coefficients might not
be Lipschitz continuous, we cannot apply the Cauchy–Lipschitz theorem on existence
and uniqueness of solutions of differential equations.

(a) Since the Christoffel coefficients are continuous, we can apply the Peano–Arzelà
theorem. It tells us that there exists at least one geodesic of class C2 starting from x at
speed v. Uniqueness follows from the lower bound on the curvature.

(b) Since X is CAT(0), the map 9 is a bijection. Since a uniform limit of geodesics
on X is also a geodesic, the map 9 is continuous. This map 9 is also proper, so it is a
homeomorphism. ut

5.4.3. Geodesic interpolation of h0 and h1. In the rest of this section we prove a few
technical properties of the interpolation ht of two equidistant Lipschitz maps h0 and
h1 with values in a Hadamard manifold (Lemma 5.10). In Section 5.8, we will apply
this lemma to two equidistant harmonic maps h0 and h1 obtained by a limit process.
Lemma 5.10 will be used to compare the energy of h0 and h1 with the energy of some
small perturbations of h0 and h1. However, in Section 5.4, we do not need to assume that
h0 and h1 are harmonic. Here are the precise assumptions and notations for Lemma 5.10.
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LetX be a C2 Riemannian manifold with C1 metric and Y be a C2 Hadamard manifold
with C1 metric. Let h0, h1 : X→ Y be C1 maps such that

d(h0(x), h1(x)) = 1 for all x in X. (5.11)

Since Y is a Hadamard manifold, there exists a unique map

h : [0, 1] ×X → Y, (t, x) 7→ h(t, x) = ht (x), (5.12)

such that, for all x in X, the path t 7→ ht (x) is the unit-speed geodesic joining h0(x)

and h1(x). This map h is called the geodesic interpolation of h0 and h1. By convexity
of the distance function, h is Lipschitz continuous. Therefore, by Rademacher’s theorem,
the map h is differentiable on a subset of full measure (with respect to the Riemannian
measure on X). In particular, there exists a subset X′ ⊂ X of full measure such that, for
all x in X′, the map h is differentiable at (x, t) for almost all t in [0, 1]. In particular, for
all tangent vectors V ∈ TxX at a point x ∈ X′, the derivative

t 7→ JV (t) := Dxht (V ) ∈ Tht (x)Y (5.13)

is well-defined for almost all t in [0, 1]. Such a measurable vector field JV on the geodesic
t 7→ ht (x) will be called a Jacobi field. We denote by

t 7→ τx(t) := ∂tht (x) ∈ Tht (x)Y (5.14)

the unit tangent vector to the geodesic t 7→ ht (x).

Lemma 5.10. We keep the above assumptions and notations. Let x ∈ X′ and V ∈ TxX.

(a) There exists a constant αV ∈ R such that

〈JV (t), τx(t)〉 = αV for all t in [0, 1] where JV (t) is defined. (5.15)

(b) There exists a convex function t 7→ ϕV (t) on [0, 1] such that

ϕV (t) = ‖JV (t)‖ for all t in [0, 1] where JV (t) is defined. (5.16)

(c) The function ψV := (ϕ2
V − α

2
V )

1/2 is also convex on [0, 1].

Proof. When Y is a C∞ Hadamard manifold, the vector field JV is a classical Jacobi field
and this lemma is well-known. Indeed, ψV is the norm of the orthogonal component KV
of the Jacobi field JV , and (5.12) follows from the Jacobi equation satisfied by KV . We
now explain how to adapt the classical proof when Y is only assumed to be a C2 Hadamard
manifold with a C1 metric.

(a) Since t 7→ ht (x) is a unit-speed geodesic, one has d(hs(x), ht (x)) = |t − s| for
all s, t in [0, 1]. Differentiating this equality gives, when JV (s) and JV (t) are defined,

〈JV (s), τx(s)〉 = 〈JV (t), τx(t)〉.

Hence this scalar product is almost surely constant.
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(b) Let c : [−ε0, ε0] → X be a C1 curve with c(0) = x and ∂sc(0) = V . Since the
space Y is CAT(0), when s > 0 the functions

t 7→ ϕs(t) :=
1
s
d(ht (c(0)), ht (c(s))

are convex on [0, 1]. The set SV := {t ∈ [0, 1] | JV (t) is defined} has full measure and
contains the endpoints 0 and 1. For all t in SV , one can compute the limit lims→0 ϕs(t) =

‖JV (t)‖. Since the functions ϕs are convex, the limit ϕV (t) := lims→0 ϕs(t) exists for all
t in [0, 1] and is a convex function.

(c) We slightly change the parametrization of the geodesic interpolation: the function
k : (t, s) 7→ kt (s) := ht−sαV (c(s)) is well-defined when t−sαV is in [0, 1], and the paths
t 7→ kt (s) are also unit-speed geodesics. Hence, for almost all t in [0, 1], the vector field

t 7→ KV (t) := ∂skt (0) ∈ Tkt (0)Y (5.17)

is well-defined and one has the orthogonal decomposition

JV (t) = KV (t)+ αV τx(t).

In particular,
ψV (t) = ‖KV (t)‖. (5.18)

The same argument as in (b) with the Jacobi field KV proves that ψV is also convex. ut

5.4.4. Geodesic interpolation in negative curvature. Lemma 5.11 below improves Lem-
ma 5.10 when the curvature of Y is uniformly negative. Indeed, it tells us that the norm
t 7→ ψV (t) of the Jacobi field KV is uniformly convex.

Lemma 5.11. We keep the assumptions and notations of Lemma 5.10. Moreover, assume
that Y is a CAT(−a2)-space with a > 0. Then the function ψV has the following uniform
convexity property:

ψV (t) ≤
sinh(a(1− t))

sinh(a)
ψV (0)+

sinh(at)
sinh(a)

ψV (1) for all t in [0, 1]. (5.19)

Remark 5.12. One can reformulate (5.19) as the following inequality between positive
measures:

d2

dt2
ψV ≥ a

2ψV .

Proof of Lemma 5.11. The inequality (5.19) will follow from an upper bound for the
norm of the Jacobi field t 7→ KV (t) by the norm of a well-chosen Jacobi field t 7→ K(t)

along a geodesic segment in the hyperbolic plane of curvature −a2. Here are the details
of the construction of K .

Using a slight rescaling, we can assume without loss of generality that the geodesics
t 7→ kt (s) are defined for t in [0, 1] and that the Jacobi field KV (t) is well-defined for
t = 0 and for t = 1. We choose s > 0. Later on we will let s go to 0. We set Pt := kt (0)
and Qs,t := kt (s), and we apply Reshetnyak’s Lemma 5.13 below to the four points P0,
P1, Qs,1, Qs,0. According to that lemma, there exists a convex quadrilateral Cs in the
hyperbolic plane Y of curvature −a2 with vertices P 0, P 1, Qs,1, Qs,0, and a 1-Lipschitz
map j : Cs → Y whose restriction to each of the four geodesic sides P 0P 1, P 1Qs,1,
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Qs,1Qs,0, Qs,0P 0 is an isometry onto each of the four geodesic segments P0P1, P1Qs,1,
Qs,1Qs,0, Qs,0P0. Indeed, since d(P 0, P 1) = 1, we can assume that the vertices P 0
and P 1 do not depend on s and that the quadrilateral Cs is positively oriented.

Since the vectorsKV (0) andKV (1) are orthogonal to the geodesic segment t 7→kt (0),
by Lemma 5.9 each of the four successive angles θi (for i = 1, . . . , 4) between the
four successive geodesic segments P0P1, P1Qs,1, Qs,1Qs,0, Qs,0P0 in Y is equal to
π/2 + o(1), where o(1) goes to 0 when s goes to 0. Since j is 1-Lipschitz, each of the
corresponding angles θ i between the geodesic sides P 0P 1, P 1Qs,1,Qs,1Qs,0,Qs,0P 0 in
the hyperbolic plane Y is no smaller than θi . Since the sum of the angles θ i is bounded
above by 2π , each of them also satisfies, when s goes to 0,

θ i = π/2+ o(1). (5.20)

Denote by t 7→ P t and t 7→ Qs,t the unit-speed parametrizations of the sides P 0P 1

and Q0Q1. For t in [0, 1], one has j (P t ) = Pt and j (Qs,t ) = Qs,t , and also

d(Pt ,Qs,t ) ≤ d(P t ,Qs,t ) (5.21)

with equality when t = 0 or 1:

d(P0,Qs,0) = d(P 0,Qs,0) and d(P1,Qs,1) = d(P 1,Qs,1). (5.22)

We now focus on these convex quadrilaterals Cs in the hyperbolic plane Y of curva-
ture −a2. We write Qs,t = expP t (sKs,t ) where Ks,t belongs to TP tY . Since KV (0) and
KV (1) are well-defined, by (5.17), (5.18), (5.20) and (5.22) the limits

K(0) = lim
s→0

Ks,0 and K(0) = lim
s→0

Ks,1

exist and satisfy
‖K(0)‖ = ψV (0) and ‖K(1)‖ = ψV (1). (5.23)

Therefore, the limit
K(t) = lim

s→0
Ks,t

exists for all t in [0, 1]. Moreover, by (5.17), (5.18) and (5.21),

ψV (t) ≤ ‖K(t)‖. (5.24)

Since t 7→ K(t) is a Jacobi field along the geodesic segment t 7→ P t , which is orthogonal
to the tangent vector, its norm

ψ(t) := ‖K(t)‖

satisfies the Jacobi differential equation

d2

dt2
ψ = a2ψ.

Hence,

ψ(t) =
sinh(a(1− t))

sinh(a)
ψ(0)+

sinh(at)
sinh(a)

ψ(1) for all t in [0, 1]. (5.25)

We now deduce (5.19) directly from (5.23)–(5.25). ut
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We have used the following existence result for a majorizing quadrilateral, due to Reshet-
nyak [34]. More precisely we have used the boundary of the majorizing quadrilateral C.

Lemma 5.13. Let Y be a CAT(−a2)-space and Y be the hyperbolic plane of curvature
−a2. Then, for any four points P0, P1, Q1, Q0 in Y there exists a convex quadrilateral C
in Y with vertices P 0,P 1, Q1,Q0 and a 1-Lipschitz map j : C → Y which is an isometry
on each of the four geodesic sides of C, and which sends each of these four vertices Ri to
the corresponding given point Ri in Y .

5.5. Limits of Hadamard manifolds

In this subsection we describe the Gromov–Hausdorff limits of pinched Hadamard mani-
folds.

The following proposition is a variation on the Cheeger compactness theorem.

Proposition 5.14. Let (Xn, pn)n≥1 be a sequence of k-dimensional pointed Hadamard
manifolds with pinched curvature −1 ≤ KXn ≤ −a

2
≤ 0.

(a) There exists a subsequence of (Xn, pn) which converges to a pointed proper CAT-
space (X∞, p∞) with curvature between −1 and −a2.

(b) The space X∞ has the structure of a C2 Hadamard manifold such that the distance
on X∞ comes from a C1 Riemannian metric.

The same proof shows thatX∞ has the structure of a C2,α Hadamard manifold with a C1,α

Riemannian metric, for every 0 < α < 1. We will not use this improvement.
Even though this proposition follows from [33, Theorem 72, p. 311], we give a sketch

of proof below.

Proof of Proposition 5.14. (a) The assumption on the curvature of Xn ensures that for
each R > 0, one has uniform estimates for the volumes of balls with radius R in Xn: for
all n ≥ 1 and x in Xn, one has

vol(BRk (O,R)) ≤ vol(BXn(x, R)) ≤ vol(BHk (O,R)).

Therefore, for each 0 < ε < R, there exists an integer N = N(R, ε) such that every
ball BXn(pn, R) can be covered by N balls of radius ε. Hence, according to Fact 5.5,
there exists a subsequence of (Xn, pn) which converges to a proper pointed metric
space (X∞, p∞). According to Fact 5.7, X∞ is a CAT-space with curvature between
−1 and −a2.

(b) It remains to check that X∞ is a C2 manifold with a C1 Riemannian metric. We
isometrically imbed the converging sequence (Xn, pn) in a proper metric space Z as in
Fact 5.4. We fix r0, c0 > 0 as in Lemma 5.2 where we introduced the harmonic coordi-
nates, and we choose a maximal r0

2c0
-separated subset S∞ of X∞. For each x∞ in S∞, we

choose a sequence xn of points in Xn that converges to x∞. By (5.3), the harmonic charts

9xn : B̊(xn, r0/c0)→ Rk (5.26)
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are uniformly bi-Lipschitz. More precisely, for all z, z′ in B̊(xn, r0/c0),

c−1
0 d(z, z′) ≤ ‖9xn(z)−9xn(z

′)‖ ≤ c0 d(z, z
′).

Hence after extracting a subsequence, 9xn converges to a bi-Lipschitz map

9x∞ : B̊(x∞, r0/c0)→ Rk. (5.27)

The extraction can be done simultaneously for all the points x∞ in the countable set S∞.
The collection of maps 9x∞ endows X∞ with the structure of a Lipschitz manifold.

We now prove that X∞ is a C2 manifold. Indeed, we will check that, for any x∞ and
x′∞ in S∞, the transition functions 8x′∞ ◦ 8

−1
x∞

are of class C2. This just follows from
the fact that these functions are uniform limits on compact sets of the transition functions
8x′n ◦8

−1
xn

which are, by (5.7), uniformly bounded in the C2,α-norm.
Finally, we check that the distance d on X∞ comes from a C1 Riemannian metric

on X∞. By (5.8), the Riemannian metrics (gn)ij on Xn, seen as functions in the charts
9xn of Xn, are uniformly bounded in the C1,α-norm. Extracting again a subsequence,
there exists a C1 Riemannian metric (g∞)ij in the charts 9x∞ of X∞ such that

(gn)ij converges to (g∞)ij in the C1 topology. (5.28)

Let d∞ be the distance onX∞ associated with g∞. We check that d∞ = d onX∞. Let x′∞
and x′′∞ be points inX∞. They are limits of points x′n and x′′n inXn. Let cn be the geodesic
segment joining x′n to x′′n . Extracting once more a subsequence, we find that the curves cn
converge uniformly to a curve joining x′∞ and x′′∞. This curve must be a geodesic for g∞.
This proves that d∞(x′∞, x

′′
∞) = d(x

′
∞, x

′′
∞). ut

5.6. Convergence of harmonic maps

We now explain how to obtain the limit harmonic maps.
We first notice that we can extend Definition 3.2: A C2 map h : X → Y between

C2 Riemannian manifolds with C1 metrics X and Y is said to be harmonic if its tension
field is zero, τ(h) := tr(D2h) = 0. Indeed, the tension field of a C2 map h at a point x
depends only on the 2-jet of h and on the 1-jet of the metrics of X and Y at x and h(x).
More precisely, if we write h in a coordinate system, h : (x1, . . . , xk) 7→ (h1, . . . , hk′),
the equation trD2h = 0 reads

1hλ = −
∑
ijµν

gij0λµν
∂hµ

∂xi

∂hν

∂xj
(λ ≤ k′) (5.29)

where 0λµν are the Christoffel coefficients on Y and where1 is the Laplace operator onX
defined as in (3.1):

1 : ϕ 7→
1
v

∂

∂xi

(
vgij

∂ϕ

∂xj

)
(5.30)

where v =
√

det(gij ) denotes the volume density on X. See [19, Section 1.3] for more
details.
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Lemma 5.15. Let (Xn, pn)n≥1 and (Yn, qn)n≥1 be sequences of equidimensional pointed
Hadamard manifolds with curvature between −1 and 0. Let c, C > 0 and let
hn : Xn → Yn be a sequence of (c, C)-quasi-isometric harmonic maps such that
supn d(hn(pn), qn) < ∞. After extracting a subsequence, the sequences of pointed met-
ric spaces (Xn, pn) and (Yn, qn) converge respectively to pointed C2 manifolds with C1

Riemannian metrics (X∞, p∞) and (Y∞, q∞), and hn converges to a c-quasi-isometric
map h∞ : X∞→ Y∞. The map h∞ is of class C2 and is harmonic.

Proof. Being harmonic, the maps hn are C∞. Since they are also (c, C)-quasi-isometric,
according to Cheng’s Lemma 3.4 there exists some constant C′ > 0 such that the
maps hn are C′-Lipschitz. The first two statements then follow from Proposition 5.14
and Lemma 5.6.

It remains to show that the limit map h∞ is of class C2 and harmonic. The key point
will be a uniform bound for the C2,α-norm of hn in suitable harmonic coordinates. Let
k := dimXn and k′ := dimYn. Let x∞ be a point in X∞ and y∞ := h∞(x∞). Let xn be
a sequence in Xn converging to x∞ and let yn := hn(xn).

We look at the maps hn through the harmonic charts 9xn of Xn and 9yn of Yn as
in (5.26). By (5.27), these charts converge respectively to charts 9x∞ of X∞ and 9y∞
of Y∞. By (5.28), in these charts, the Riemannian metrics of Xn and Yn converge to the
Riemannian metrics of X∞ and Y∞ in the C1,α-norm.

Let 0 < α < 1. Writing (5.29) for h = hn in these harmonic coordinates on a small
open ball � := B̊

(
0, r0

c0C′

)
of Rk that does not depend on n, one gets∑

ij

gij
∂2hλ

∂zi∂zj
= −

∑
ijµν

gij0λµν
∂hµ

∂zi

∂hν

∂zj
. (5.31)

The coefficients of this equation depend on n, but Lemma 5.2 ensures that they are uni-
formly bounded in the Cα-norm. The Schauder estimates for functions u on � and com-
pact subsets K of � as in [33, Theorem 70, p. 303] thus tell us that

‖u‖C1,α,K ≤ M(‖1u‖C0,� + ‖u‖Cα,�), (5.32)

‖u‖C2,α,K ≤ M(‖1u‖Cα,� + ‖u‖Cα,�), (5.33)

for some constantM = M(k,�,K). Therefore, since the maps hn areC′-Lipschitz, com-
bining (5.29), (5.32) and (5.33) yields a uniform bound for the C2,α-norm of the maps hn.
Hence the Ascoli lemma ensures that, after extracting a subsequence, hn converges to
a C2 map in the C2 topology. This proves that the limit map h∞ is C2 and is harmonic. ut

5.7. Construction of the limit equidistant harmonic maps

We now explain why the limit harmonic maps h0,∞ and h1,∞ constructed in the strategy
of Proposition 5.1 are equidistant.

We first sum up the construction of these limit maps.
We start with two Hadamard manifolds X, Y of bounded curvature, and with two dis-

tinct quasi-isometric harmonic maps h0, h1 : X → Y such that δ := d(h0, h1) is finite
and non-zero. We choose a sequence of points pn in X such that d(h0(pn), h1(pn)) con-
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verges to δ and we set q0,n := h0(pn) and q1,n := h1(pn). We will frequently replace
this sequence by subsequences without mentioning it. By Proposition 5.14, there exist C2

Hadamard manifolds with C1 metrics (X∞, p∞) and (Y∞, q0,∞) which are the Gromov–
Hausdorff limits of the pointed metric spaces (X, pn) and (Y, q0,n). These limit Hadamard
manifolds also have bounded curvature. We denote by q1,∞ the limit in Y∞ of the se-
quence q1,n. By the Cheng Lemma 3.4, the harmonic quasi-isometric maps h0 and h1
are Lipschitz continuous. By Lemma 5.6, there exists a limit map h0,∞ : (X∞, p∞) →

(Y∞, q0,∞) of the sequence of Lipschitz continuous maps h0 : (X, pn) → (Y, q0,n).
There also exists a limit map h1,∞ : (X∞, p∞) → (Y∞, q1,∞) of the sequence of Lip-
schitz continuous maps h1 : (X, pn)→ (Y, q1,n). By Lemma 5.15, these limit maps h0,∞
and h1,∞ are still harmonic quasi-isometric maps.

Lemma 5.16. With the above notation, the two limit harmonic quasi-isometric maps
h0,∞, h1,∞ are equidistant. More precisely, for all x inX∞, one has d(h0,∞(x), h1,∞(x))

= δ > 0 where δ := d(h0, h1).

We will apply this lemma to two pinched Hadamard manifolds X, Y . In this case, the
limit C2 Hadamard manifolds X∞, Y∞ will also be pinched.

Proof of Lemma 5.16. Let 1∞ be the Laplace operator on X∞ defined as in (5.30). We
first check that the function ϕ∞ : x 7→ d(h0,∞(x), h1,∞(x)) is subharmonic onX∞. This
means that1∞ϕ∞ is a positive measure onX∞. Assume first that the Riemannian metric
on Y∞ is C∞. In this case, ϕ∞ is the composition of a harmonic map h = (h0, h1) :

X∞ → Y∞ × Y∞ and of a convex C∞ function F = d : Y∞ × Y∞ → R, so that the
function ϕ∞ is subharmonic on X∞ because of the formula

1∞(F ◦ h) =

k∑
i=1

D2F(Deih,Deih)+ 〈DF, τ(h)〉,

where (ei)ki=1 is an orthonormal basis of the tangent space to X.
Since the Riemannian metric on Y might not be of class C∞, we will use instead a

limit argument. We fix a point x∞ in X∞. In a chart (x1, . . . , xk), the Laplace operator
1∞ of the Riemannian metric (g∞)ij of X∞ reads

ψ 7→ 1∞ψ =
1
v∞

∂

∂xi

(
v∞g

ij
∞

∂ψ

∂xj

)
, (5.34)

where v∞ is the volume density. We want to prove that for every C2 function ψ ≥ 0 with
compact support in a small neighborhood of x∞, one has∫

Rk
ϕ∞1∞ψv∞ dx ≥ 0. (5.35)

The function ϕ∞ on the pointed metric space (X∞, p∞) is equal to the limit of the
sequence of functions ϕn : x 7→ d(h0(x), h1(x)) on the pointed metric spaces (X, pn),
as defined in Lemma 5.6. Note that the dependence on n comes from the base point pn



2892 Yves Benoist, Dominique Hulin

which varies with n. We choose a sequence xn in Xn converging to x∞. As in the proof
of Lemma 5.15, we look at the functions ϕn through the harmonic charts 9xn of Xn. By
(5.27), these charts converge to a chart9x∞ ofX∞. By (5.28), in these charts (x1, . . . , xk)

the Riemannian metrics (gn)ij of Xn converge to the Riemannian metric (g∞)ij of X∞
in the C1 topology.

Since, by the above argument, the functions ϕn are subharmonic for the metric (gn)ij ,
for every C2 function ψ ≥ 0 with compact support in these charts one has, at each step n,∫

ϕn1nψvn dx ≥ 0 (5.36)

where 1n and vn are the Laplace operator and the volume density of the metric (gn)ij .
Letting n go to∞ in (5.36) gives (5.35). This proves that the function ϕ∞ is subharmonic.

By construction, this subharmonic function ϕ∞ onX∞ achieves its maximum δ > 0 at
the point p∞. By (5.34), the Laplace operator is an elliptic linear differential operator with
continuous coefficients. Hence, by the strong maximum principle in [14, Theorem 8.19,
p. 198], this function ϕ∞ is constant and equal to δ. ut

The aim of Subsections 5.8 and 5.9 is to prove that such equidistant harmonic quasi-
isometric maps h0,∞ and h1,∞ cannot exist (Corollary 5.19) when Y∞ is pinched. This
will conclude the proof of Proposition 5.1.

5.8. Equidistant harmonic maps

We first study equidistant harmonic maps without any pinching assumption.
The following lemma extends [25, Lemma 2.2] to the case where the source space X

is only assumed to be a C2 Hadamard manifold. We include a complete proof to deal with
this weaker regularity assumption.

Lemma 5.17. Let X, Y be C2 Hadamard manifolds with C1 Riemannian metrics of
bounded curvature. Let h0, h1 : X → Y be harmonic maps such that the distance func-
tion x 7→ d(h0(x), h1(x)) is constant. For t in [0, 1], let ht be the geodesic interpolation
of h0 and h1 as in (5.12). Then for almost all x in X, t in [0, 1] and V in TxX, one has

‖Dh0(V )‖ = ‖Dht (V )‖ = ‖Dh1(V )‖. (5.37)

Note that we cannot conclude that (5.37) is valid for all x and t since the interpolation ht
might not be of class C1.

We will use the following straightforward inequality for convex functions.

Lemma 5.18. Let t 7→ 8t be a non-negative convex function on [0, 1]. Then, for all t in
[0, 1/2], one has

8t +81−t ≤ 80 +81 − 2t (80 +81 − 281/2). (5.38)

Proof. We just add the following two convexity inequalities: 8t ≤ (1− 2t)80 + 2t81/2
and 81−t ≤ (1− 2t)81 + 2t81/2. ut
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Proof of Lemma 5.17. The idea is to construct two small perturbations fε and gε of the
harmonic maps h0 and h1 with support in a compact set K of X, and to compare the sum
of the energies of fε and gε with the sum of the energies of h0 and h1.

Let 0 ≤ ε ≤ 1. Here is the definition of fε, gε : X→ Y . We fix a C1 cut-off function
η : X→ [0, 1], x 7→ ηx , with compact support K , and we let, for all x in X,

fε(x) := hεηx (x) and gε(x) := h1−εηx (x). (5.39)

These functions are Lipschitz continuous, hence almost everywhere differentiable. In or-
der to compute their differentials, we use the notations (5.13) and (5.14): for all x in a
subset X′ ⊂ X of full measure, all V in TxX, and almost all t in [0, 1], we let

JV (t) := Dxht (V ) and τx(t) := ∂tht (x).

For such a tangent vector V , it follows from Lemma 5.10(b) that there exists a convex
function t 7→ ϕV (t) such that ϕV (t) = ‖JV (t)‖ for all t where the derivative JV (t)
exists. By the chain rule, for almost all ε in [0, 1], the differentials of fε and gε are given,
for almost all x in X and all V in TxX, by

Dfε(V ) = JV (εηx)+ ε V .η τx(εηx), (5.40)
Dgε(V ) = JV (1− εηx)− ε V .η τx(1− εηx) (5.41)

where V.η = dη(V ) is the derivative of the function η in the direction V .
According to Lemma 5.10(a), for almost all x in X and all V in TxX, the scalar prod-

uct 〈JV (t), τx(t)〉 is almost surely constant. Therefore, for almost all ε in [0, 1], x in X
and V in the unit tangent bundle T 1

x X, one has the equality

‖Dfε(V )‖
2
+ ‖Dgε(V )‖

2
= ϕV (εηx)

2
+ ϕV (1− εηx)2 + 2ε2(V .η)2. (5.42)

We introduce the convex function t 7→ 8Vt := ϕV (t)
2. Using (5.38), one gets for almost

all ε in [0, 1], x in X and V in T 1
x X the bound

‖Dfε(V )‖
2
+ ‖Dgε(V )‖

2
≤ 8V0 +8

V
1 − 2εηx(8V0 +8

V
1 − 28V1/2)+ 2ε2(V .η)2.

We recall that the energy over K of a Lipschitz map h : X→ Y is

EK(h) :=

∫
K

‖Dxh‖
2 dx =

∫
T 1K
‖Dh(V )‖2 dV,

where dx is the Riemannian measure on X and dV the Riemannian measure on T 1X.
Integrating the previous inequality on the unit tangent bundle ofK , one gets the following
inequality relating the energy over K of fε, gε, h0 and h1:

EK(fε)+ EK(gε)− EK(h0)− EK(h1) ≤ −ε

∫
T 1K

A(V ) dV +O(ε2) (5.43)

where A is the function on T 1X defined, for almost all x in X and V in T 1
x X, by

A(V ) := 2ηx(8V0 +8
V
1 − 28V1/2).
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Since the harmonic maps h0 and h1 are critical points for the energy functional, (5.43)
implies that ∫

T 1K
A(V ) dV ≤ 0. (5.44)

Since 8V is convex, the function A is non-negative. Therefore (5.44) implies that A is
almost surely zero. Since the function η was arbitrary, this tells us that, for almost all V
in T 1X, one has

28V1/2 = 8
V
0 +8

V
1 .

Since 8V is the square of the convex function ϕV , it follows that for almost all V in TX,
the function ϕV is constant. This proves (5.37). ut

5.9. Equidistant harmonic maps in negative curvature

The following corollary improves the conclusion of Lemma 5.17 when the curvature of Y
is uniformly negative.

Corollary 5.19. Let a > 0. Let X, Y be C2 Hadamard manifolds with C1 Riemannian
metrics. Assume moreover that Y is CAT(−a2). Let h0, h1 : X → Y be harmonic maps
such that x 7→ d(h0(x), h1(x)) is constant. Then either h0 = h1, or

h0 and h1 take their values in the same geodesic 0 of Y . (5.45)

This means that, when h0 6= h1, there exists a geodesic t 7→ γ (t) in Y and harmonic
functions u0, u1 on X such that h0 = γ ◦ u0, h1 = γ ◦ u1 and u1−u0 is a bounded
harmonic function on X.

Note that this case is ruled out when h0 and h1 are within bounded distance of a
quasi-isometric map f : X→ Y since X has dimension k ≥ 2.

Proof of Corollary 5.19. We can assume that the distance between h0 and h1 is equal to 1.
We recall a few notations that we have already used. For t in [0, 1], let ht be the geodesic
interpolation of h0 and h1. For x inX, let τx(t) := ∂tht (x). Since the map (t, x) 7→ ht (x)

is Lipschitz continuous, the vector JV (t) := Dht (V ) is well-defined for almost all t in
[0, 1], x in X and V in TxX. For all such t , x, V , we set

αV (t) := 〈JV (t), τx(t)〉, ϕV (t) := ‖JV (t)‖, ψV (t) := (ϕV (t)
2
− αV (t)

2)1/2.

By Lemmas 5.10(a) and 5.17, one has

αV (0) = αV (t) = αV (1) and ϕV (0) = ϕV (t) = ϕV (1) (5.46)

for almost all t in [0, 1] and almost all V in TX, so that

ψV (0) = ψV (t) = ψV (1).

Comparing these equalities with the uniform convexity of the function ψV in (5.19), one
infers that ψV (t) = 0. Hence, when JV (t) is defined, one has

JV (t) = αV (0)τx(t). (5.47)
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We now explain why (5.47) implies (5.45). It is enough to check that, for every C1

curve
c : [0, 1] → X, s 7→ cs,

with speed at most 1/3, the images

h0(c[0,1]) and h1(c[0,1]) are both included in the geodesic 0 (5.48)

of Y containing both h0(c0) and h1(c0).
The idea is to construct an auxiliary curve C with zero derivative. Let β : [0, 1] →

[−1/3, 1/3] be given by s 7→ βs :=
∫ s

0 αc′r (0) dr . For t0 in [1/3, 2/3], consider the curve

C : [0, 1] → Y, s 7→ C(s) := ht0−βs (cs).

Since the speed of c is bounded by 1/3, the curve C is well-defined. By construction, C
is a Lipschitz continuous path, and by (5.46) and (5.47), for almost all s, its derivative is

C′(s) =
(
αc′s (t0 − βs)− αc′s (0)

)
τcs (t0 − βs) = 0.

Therefore, C(s) = C(0) for all s in [0, 1], that is,

ht0−βs (cs) = ht0(c0).

Using this equality for two distinct values of t0, we deduce that the geodesic segments
h[0,1](c0) and h[0,1](cs) meet in at least two points. This proves (5.48) and ends the proof
of Corollary 5.19. ut

This also ends the proof of Proposition 5.1.

6. Boundary maps for weakly coarse embeddings

This section is independent of the previous ones. We prove that a weakly coarse embed-
ding between pinched Hadamard manifolds admits a boundary map which is well-defined
outside a set of zero Hausdorff dimension. We prove that the fibers of this boundary map
also have zero Hausdorff dimension (Theorem 6.5). More precisely, we will prove quan-
titative versions of these facts (Propositions 6.13 and 6.15) that we will use in Section 7.

6.1. Weakly coarse embeddings

In this subsection, we introduce various classes of rough Lipschitz maps f : X → Y

between pinched Hadamard manifolds generalizing quasi-isometric maps.
Let X and Y be Hadamard manifolds with pinched sectional curvatures, −b2

≤

KX,KY ≤ −a
2 < 0. Let k = dimX and k′ = dimY .

Definition 6.1. Let c > 0. A map f : X → Y is rough c-Lipschitz if for all x, x′ ∈ X
with d(x, x′) ≤ 1 one has d(f (x), f (x′)) ≤ c.



2896 Yves Benoist, Dominique Hulin

When f : X→ Y is a rough c-Lipschitz map, one has, for all x, x′ in X,

d(f (x), f (x′)) ≤ cd(x, x′)+ c.

Definition 6.2. A map f : X → Y is a coarse embedding if there exist non-decreasing
unbounded functions ϕ1, ϕ2 such that, for all x, x′ ∈ X,

ϕ1(d(x, x
′)) ≤ d(f (x), f (x′)) ≤ ϕ2(d(x, x

′)). (6.1)

Note that a map which is within bounded distance of a coarse embedding is also a coarse
embedding. In Definition 6.2 one may always assume that ϕ2 is affine, that is, f is rough
Lipschitz. A quasi-isometric map is a special case of a coarse embedding, where ϕ1 is
also an affine function.

Definition 6.3. A weakly coarse embedding is a rough Lipschitz map f : X → Y for
which there exist c0, C0 > 0 such that, for all x, x′ in X,

d(f (x), f (x′)) ≤ c0 =⇒ d(x, x′) ≤ C0. (6.2)

Equivalently, this means that there exist non-decreasing non-negative and non-zero func-
tions ϕ1, ϕ2 such that (6.1) holds. Of course, any coarse embedding f : X → Y is a
weakly coarse embedding.

Example 6.4. There exist many coarse and weakly coarse embeddings f from H2 to H3.
More precisely, for any non-decreasing 1-Lipschitz function ϕ1 : [0,∞[→ [0,∞[ with
ϕ1(0) = 0 one can choose a 1-Lipschitz map f for which ϕ1 is the best lower bound
in (6.1).

Proof. Indeed, one first constructs a unit-speed C1 curve f0 : R→ H2 such that ϕ1(t) =

mins∈R d(f0(s + t), f0(s)) for every t ≥ 0. We set H1
:= R and, for k ≥ 1, we embed

each space Hk as a totally geodesic hyperplane in Hk+1 and denote by x 7→ nx a unit
normal vector field to Hk in Hk+1. We now define the Lipschitz map f : H2

→ H3 as
f (exp(tns)) := exp(tnf0(s)) for all s in H1 and t ∈ R. ut

For any point x0 ∈ X and r > 0, we identify through the exponential map each sphere
S(x0, r) with the unit tangent sphere

Sx0 := {ξ ∈ Tx0X | ‖ξ‖ = 1}.

More precisely, when ξ ∈ Sx0 , we denote by r 7→ ξr := expx0
(rξ) the corresponding

unit-speed geodesic ray (so that ξ0 = x0).
We denote by X = X ∪ ∂X the visual compactification of X. The boundary ∂X is

the set of (equivalence classes of) rays in X. The map ψx0 : ξ 7→ limr→∞ ξr gives a
homeomorphism from the unit tangent sphere Sx0 onto the sphere at infinity ∂X. We say
that a subset A of ∂X has zero Hausdorff dimension if, seen in Sx0 , it has zero Hausdorff
dimension. One can check that this property does not depend on the choice of x0, because
for any other point x1 ∈ X, the homeomorphism ψ−1

x1
◦ ψx0 is bi-Hölder.

In this subection we will prove the following theorem.
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Theorem 6.5. Let f : X → Y be a weakly coarse embedding between pinched Hada-
mard manifolds.
(a) There exists a subset A ⊂ ∂X of zero Hausdorff dimension such that, for all ξ ∈

∂X r A, the limit ∂f (ξ) := limr→∞ f (ξr) exists in ∂Y .
(b) For every ξ ∈ ∂X r A, the fiber {η ∈ ∂X r A | ∂f (η) = ∂f (ξ)} has zero Hausdorff

dimension.

The map ∂f : ∂X r A→ ∂Y is called the boundary map of f .
The proof of Theorem 6.5 will last up to the end of this section. The quantitative

estimates (6.8) and (6.10) that we will obtain during this proof will be used again in
Section 7.

6.2. Hausdorff dimension and Frostman measures

In this subsection we introduce classical notations and definitions from geometric mea-
sure theory.

Definition 6.6. LetM, ν > 0. A Borel probability measure σ on a compact metric space
S is said to be (M, ν)-Frostman if, for all ξ ∈ S and all r > 0,

σ(B(ξ, r)) ≤ Mrν . (6.3)

Proposition 4.9 tells us that all the harmonic measures σx,r of a pinched Hadamard man-
ifold are (M, 1/N)-Frostman, where the constants (M,N) do not depend on the center x
or the radius r > 0.

Let ν, δ > 0. For a subset A ⊂ S, we denote

H ν
δ (A) = inf

{∑
i≥1

diam(Ui)ν
∣∣∣ A ⊂⋃

i

Ui, diam(Ui) ≤ δ
}
.

When δ = ∞, we denote similarly

H ν
∞(A) = inf

{∑
i≥1

diam(Ui)ν
∣∣∣ A ⊂⋃

i

Ui

}
. (6.4)

We recall that the ν-dimensional Hausdorff measure of A is defined as

H ν(A) = sup
δ>0

H ν
δ (A)

and the Hausdorff dimension of A is

dimH (A) = inf {ν > 0 | H ν(A) = 0}.

Observe that also
dimH (A) = inf {ν > 0 | H ν

∞(A) = 0}. (6.5)
The following easy lemma relates H ν

∞(A) to Frostman measures.

Lemma 6.7. Let σ be a (M, ν)-Frostman measure on a compact metric space S and
A ⊂ S. Then σ(A) ≤ MH ν

∞(A).
Proof. Observe that σ(A) ≤

∑
i≥1 σ(Ui) ≤ M

∑
i≥1 diam(Ui)ν for any covering (Ui)

of A. ut



2898 Yves Benoist, Dominique Hulin

6.3. Image of a large sphere

In this subsection we focus on those points of a sphere S(x0, r) whose images under a
weakly coarse embedding are too close to a given point.

The following definition will play a key role in the proof of Theorem 6.5.

Definition 6.8. Let c, C1, C2 > 0. A rough c-Lipschitz map f : X → Y has property
CC1,C2 if, for all x0 ∈ X, y0 ∈ Y and r, s > 0, the set

Ax0,y0,r,s := {ξ ∈ Sx0 | d(y0, f (ξr)) ≤ s} (6.6)

can be covered by at most C1e
bk′s balls of radius C2e

−ar , where k′ = dimY .
If such constants C1, C2 exist, we say that f has property C.

In this definition the unit-sphere Sx0 is endowed with the distance induced by the Rie-
mannian norm on Tx0X.

The bound on the size of a covering of the set (6.6) will be very useful for Hausdorff
dimension estimations. The precise value bk′ for the exponential growth in Definition 6.8
is not particularly important. It is obtained in the next proposition and it merely avoids
the introduction of another parameter.

Proposition 6.9. Every weakly coarse embedding f : X→ Y has property C.

In particular, Propositions 6.13 and 6.15 below apply to all weakly coarse embeddings f .
We will use the Bishop volume estimates (see for example [12]) which compare the

volume of balls in X and in the hyperbolic space Hk .

Lemma 6.10. Let X be a pinched Hadamard manifold with dimension k and sectional
curvature −b2

≤ KX ≤ −a
2 < 0. Then, for R > 0,

a−k vol(BHk (O, aR)) ≤ vol(BX(x, R)) ≤ b−k vol(BHk (O, bR)).

We will also need to bound angles by Gromov products as in Lemma 2.1.

Lemma 6.11. Let Y be a Hadamard manifold with KY ≤ −a2 < 0. Then, for all y0 ∈ Y

and y1, y2 ∈ Y r {y0},
θy0(y1, y2) ≤ 4e−a(y1,y2)y0 ,

where θy0(y1, y2) is the angle at y0 of the geodesic triangle (y0, y1, y2) and (y1, y2)y0 :=

1
2 (d(y0, y1)+ d(y0, y2)− d(y1, y2)) is the Gromov product.

Proof of Proposition 6.9. We will see that f has property CC1,C2 where the constants
C1, C2 depend only on a, b, k′, and on c0, C0 from (6.2).

It follows from the volume estimates of Lemma 6.10 that there exists a constant
C1 > 0 such that for each ball B(y0, s) ⊂ Y (s > 0) and each covering of minimal
cardinality of this ball by balls with radii c0/2,

B(y0, s) ⊂
⋃
i∈I

B(yi, c0/2),

this cardinality is at most C1e
bk′s .
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Since f is a (c0, C0)-weakly coarse embedding, for each i ∈ I the inverse image
f−1(B(yi, c0/2)) is either empty or lies in B(xi, C0) ⊂ X. By Lemma 6.11, the set
B(x, C0) ∩ S(x0, r) lies in a cone with vertex x0 and angle θr = C2e

−ar . ut

Remark 6.12. Any map f̃ : X→ Y within bounded distance of a map f : X→ Y with
property C also has property C.

6.4. Construction of the boundary map

We now investigate the long-term behavior of the images of geodesic rays under a rough
Lipschitz map satisfying property C.

Let X, Y be pinched Hadamard manifolds and f : X → Y be a rough Lipschitz
map with property C. Proposition 6.13 below tells us that, except for a set of rays of zero
Hausdorff dimension, the image under f of a ray goes to infinity in Y at positive speed
and this image converges to a point in ∂Y .

We need some notations. For x0 ∈ X, let Ax0 be the set of rays whose image does not
go to infinity at positive speed:

Ax0 :=

{
ξ ∈ Sx0

∣∣∣ lim inf
n→∞

1
n
d(f (x0), f (ξn)) = 0

}
.

Then Ax0 =
⋂
α>0Ax0,α , where, for α > 0,

Ax0,α :=

{
ξ ∈ Sx0

∣∣∣ lim inf
n→∞

1
n
d(f (x0), f (ξn)) < α

}
.

One has Ax0,α ⊂
⋂
n0≥1Ax0,α(n0), where, for n0 ≥ 1,

Ax0,α(n0) := {ξ ∈ Sx0 | d(f (x0), f (ξn)) ≤ nα for some n ≥ n0}.

With the definition (6.6), one has Ax0,α(n0) =
⋃
n≥n0

Ax0,f (x0),n,nα.

Proposition 6.13. Let X, Y be pinched Hadamard manifolds with sectional curvatures
−b2

≤ K ≤ −a2 < 0. Let c, C1, C2 > 0 and f : X → Y be a rough c-Lipschitz
map with property CC1,C2 . Let α > 0, k′ = dimY and να := bk′α/a. For ν > να , set
C3,α,ν := C1C

ν
2/(1− e

−a(ν−να)). Then for any x0 ∈ X and n0 ≥ 1:

(a) One has
H ν
∞(Ax0,α(n0)) ≤ C3,α,νe

−a(ν−να)n0 . (6.7)

(b) For every (M, ν)-Frostman measure σ on Sx0 ,

σ(Ax0,α(n0)) ≤ MC3,α,νe
−a(ν−να)n0 . (6.8)

(c) dimH (Ax0,α) ≤ να .
(d) dimH (Ax0) = 0.
(e) For every ξ ∈ Sx0 r Ax0 , the limit ∂f (ξ) := limr→∞ f (ξr) exists in ∂Y .
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The bound (6.8) can be interpreted as a large deviation inequality for the random path
f (ξt ) when the ray ξ is chosen randomly with law σ . A key point is that the constants
involved in (6.8) do not depend on the (M, ν)-Frostman measure σ . We will apply it later
to various harmonic measures σ = σx0,r on X.

Proof of Proposition 6.13. (a) Since f has property CC1,C2 ,

H ν
∞(Ax0,α(n0)) ≤

∑
n≥n0

H ν
∞(Ax0,f (x0),n,nα)

≤

∑
n≥n0

C1e
aναn Cν2 e

−aνn
= C3,α,νe

−a(ν−να)n0 .

(b) follows from (a) and Lemma 6.7.
(c) Letting n0 go to infinity in (6.7), one gets H ν

∞(Ax0,α) = 0 for all ν > να . There-
fore, (6.5) yields dimH (Ax0,α) ≤ να .

(d) One has dimH (Ax0) ≤ infα>0 dimH (Ax0,α) = 0.
(e) Since f is rough Lipschitz, one may assume that the parameters r are integers and

apply Lemma 6.14 below to the sequence yn = f (ξn). ut

Lemma 6.14. Let Y be a Hadamard manifold with KY ≤ −a2 < 0. Let (yn)n∈N be a
sequence in Y such that

sup
n≥0

d(yn, yn+1) <∞ and lim inf
n→∞

1
n
d(y0, yn) > 0.

Then the limit y∞ := limn→∞ yn exists in the visual boundary ∂Y .

Proof. Choose c, α > 0 and n0 ≥ 1 such that

d(yn, yn+1) ≤ c and d(y0, yn) ≥ nα for all n ≥ n0.

By Lemma 6.11, θy0(yn, yn+1) ≤ 4eac/2e−aαn for any n ≥ n0. Since this series con-
verges, there exists a geodesic ray γ+ ⊂ Y with origin y0 such that limn→∞ θy0(yn, γ+)

= 0. ut

Unlike quasi-isometric maps, a coarse embedding may not have boundary values in every
direction. See Example 6.4 where we could begin with a curve f0 that spirals away in H2.

6.5. The fibers of the boundary map

We now investigate the fibers of the boundary map ∂f of a rough Lipschitz map with
property C.

Proposition 6.15 below tells us that the fibers of the boundary map have zero Haus-
dorff dimension.

We keep the notations of Subsection 6.4 and introduce more notations. As before,
X, Y are pinched Hadamard manifolds and f : X → Y is a rough c-Lipschitz map with
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property C. For x0 ∈ X and ξ ∈ Sx0 , let Bξx0 be the set of rays η that “do not go away from
ξ at positive speed”:

Bξx0
:=

{
η ∈ Sx0

∣∣∣ lim
n0→∞

inf
n,p≥n0

1
n+p

d(f (ξn), f (ηp)) = 0
}
.

Then Bξx0 =
⋂
α>0 B

ξ
x0,α , where, for α > 0, we set βα := α2

2α+c and let

Bξx0,α
:=

{
η ∈ Sx0

∣∣∣ lim
n0→∞

inf
n,p≥n0

1
n+p

d(f (ξn), f (ηp)) < βα

}
.

Then Bξx0,α ⊂
⋂
n0≥1 B

ξ
x0,α(n0), where for any n0 ≥ 1 we let

Bξx0,α
(n0) := {η ∈ Sx0 | d(f (ξn), f (ηp)) ≤ (n+ p)βα for some n, p ≥ n0}.

This specific value for βα has been chosen in order to obtain the same exponent in (6.7)
and in (6.9) below.

Proposition 6.15. Let X, Y be pinched Hadamard manifolds with sectional curvatures
−b2
≤ K ≤ −a2 < 0. Let c, C1, C2 > 0 and f : X → Y be a rough c-Lipschitz map

with property CC1,C2 . Let α > 0, k′ = dimY , να := bk′α/a and βα := α2/(2α + c). For

ν > να , set C4,α,ν :=
C1C

ν
2

(1−e−bk′βα )(1−e−a(ν−να))
. Then for any x0 ∈ X and n0 ≥ 1 one has:

(a) For ξ ∈ Sx0 r Ax0,α(n0),

H ν
∞(B

ξ
x0,α

(n0)) ≤ C4,α,νe
−a(ν−να)n0 . (6.9)

(b) For ξ ∈ Sx0 r Ax0,α(n0) and any (M, ν)-Frostman measure σ on Sx0 ,

σ(Bξx0,α
(n0)) ≤ MC4,α,νe

−a(ν−να)n0 . (6.10)

(c) For ξ ∈ Sx0 r Ax0,α , one has dimH (B
ξ
x0,α) ≤ να .

(d) For ξ ∈ Sx0 r Ax0 , one has dimH (B
ξ
x0) = 0.

(e) Assume n0 ≥
4e2ac

1−e−aβα . For ξ, η ∈ Sx0 r Ax0,α(n0) with η 6∈ Bξx0,α(n0) and for all
n, p ≥ `0 := 4n0c/α,

θf (x0)(f (ξn), f (ηp)) ≥
1
2e
−2n0bc. (6.11)

(f) For ξ, η ∈ Sx0 r Ax0 with η 6∈ Bξx0 , one has ∂f (η) 6= ∂f (ξ).

We begin with a technical covering lemma.

Lemma 6.16. We keep the notations of Proposition 6.15. Fix n0 ≥ 1. For ξ ∈ Sx0 and
p ≥ n0, let

Bξx0,α,p
(n0) := {η ∈ Sx0 | (f (ξn), f (ηp)) ≤ (n+p)βα for some n ≥ n0}.

If ξ /∈ Ax0,α(n0), then Bξx0,α,p(n0) can be covered by at most C1e
bk′αp

1−e−bk′βα
balls of radius

C2e
−ap.
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Proof. Using the notation (6.6), we have

Bξx0,α,p
(n0) =

⋃
n≥n0

Ax0,f (ξn),p,(n+p)βα .

The key point is that, since f is rough c-Lipschitz and ξ 6∈ Ax0,α(n0), this union is finite.
Indeed, assume that an integer n ≥ n0 satisfies

d(f (ξn), f (ηp)) ≤ (n+p)βα

for some η ∈ Sx0 . Since d(f (x0), f (ξn)) ≥ nα and d(f (x0), f (ηp)) ≤ p c, one must
have

nα − pc ≤ (n+ p)βα.

By our choice of βα , this is equivalent to

(n+p)βα ≤ pα.

Therefore, using Definition 6.8, one can cover Bξx0,α,p(n0) by at most C1
∑
n e

bk′(n+p)βα

balls of radius C2e
−ap, where the sum is over n ≥ n0 such that (n + p)βα ≤ pα.

Computing this sum, one deduces that Bξx0,α,p can be covered by at most C1e
bk′αp

1−e−bk′βα
balls

of radius C2e
−ap. ut

Proof of Proposition 6.15. (a) Since Bξx0,α(n0) =
⋃
p≥n0

B
ξ
x0,α,p(n0), Lemma 6.16 yields

H ν
∞(B

ξ
x0,α

(n0)) ≤
∑
p≥n0

H ν
∞(B

ξ
x0,α,p

(n0))

≤

∑
p≥n0

C1e
aναp

1− e−βαbk′
Cν2 e
−aνp
= C4,α,νe

−a(ν−να)n0 .

(b) follows from (a) and Lemma 6.7.
(c) Letting n0 go to infinity in (6.9) one getsH ν

∞(B
ξ
x0,α) = 0 for all ν > να . Therefore,

using (6.5), it follows that dimH (B
ξ
x0,α) ≤ να .

(d) One has dimH (B
ξ
x0) ≤ infα>0 dimH (B

ξ
x0,α) = 0.

(e) This is a consequence of Lemma 6.17 below applied to the sequences yn = f (ξn)
and zp = f (ηp).

(f) This follows from (e). ut

6.6. Two sequences going away from one another

The aim of this subsection is to prove the following lemma which provides, in a pinched
Hadamard manifold, a lower bound for the angle between points in two sequences with
bounded speed that “go away from one another at positive speed”.
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Lemma 6.17. Let Y be a Hadamard manifold with −b2
≤ KY ≤ −a

2 < 0. Let c ≥ α ≥
β > 0 and n0 ≥

4e2ac

1−e−aβ . Let (yn)n∈N and (zp)p∈N be two sequences of points in Y with
y0 = z0 such that

d(yn, yn+1) ≤ c and d(zp, zp+1) ≤ c for n, p ≥ 0, (6.12)
d(y0, yn) ≥ nα, d(y0, zp) ≥ pα and d(yn, zp) ≥ (n+ p)β for n, p ≥ n0.

(6.13)

Then, for any integers n, p ≥ `0 := 4n0c/α,

θy0(yn, zp) ≥
1
2e
−2n0bc. (6.14)

We will need two geometric lemmas.
We know that the orthogonal projection from a Hadamard manifold onto a geodesic

is a 1-Lipschitz map. The following lemma gives more precise information when the
curvature is bounded from above.

Lemma 6.18. Let Y be a Hadamard manifold with KY ≤ −a2 < 0. Let γ ⊂ Y be a
geodesic. Then the orthogonal projection π : Y → γ is smooth and, for y ∈ Y ,

‖Dyπ‖ ≤
1

cosh(ad(y, γ ))
≤ 2e−ad(y,γ ).

Proof. The proof relies on a Jacobi field estimate (see [12]).
Let y ∈ Y \ γ , let ȳ = π(y) ∈ γ and ` = d(y, γ ) = d(y, ȳ). Denote by c : s ∈

[0, `] → c(s) ∈ Y the unit-speed parametrization of the geodesic segment [ȳ, y] with
c(0) = ȳ and c(`) = y.

Let v ∈ TyY . We want to bound ‖Dyπ(v)‖/‖v‖. We may assume that v is orthogonal
to KerDyπ , i.e. to the geodesic c at y.

Choose a smooth curve t 7→ y(t) ∈ Y with y(0) = y and y′(0) = v, and let ȳ(t) =
π(y(t)) ∈ γ . We can assume that d(y(t), ȳ(t)) = ` for all t . For each parameter t ,
introduce the constant-speed geodesic ct : [0, `] → Y such that ct (0) = ȳ(t) and ct (`) =
y(t). By construction, each vector u(t) := d

ds
ct (s)

∣∣
s=0 ∈ Tȳ(t)Y is normal to γ at the

point ȳ(t).
The map (s, t) 7→ ct (s) is a variation of geodesics, so that J : [0, `] → d

dt
ct (s)

∣∣
t=0 ∈

[0, `] ∈ Tc(s)Y is a Jacobi field along the geodesic c. We have J (0) = Dyπ(v) and
J (`) = v. Since both J (0) and J (`) are normal to c, it follows that J is a normal Jacobi
field. Since γ is a geodesic and each u(t) is normal to γ , we infer from the equality
J ′(0) = u′(0) that J ′(0) is normal to γ , i.e. orthogonal to J (0). The Jacobi field equation
J ′′ + R(c′, J )c′ = 0 and the hypothesis on the curvature now yield

(‖J‖2)′′ = 2‖J ′‖2 − 2R(c′, J, c′, J ) ≥ 2(‖J‖′)2 + 2a2
‖J‖2

and therefore
‖J‖′′ ≥ a2

‖J‖.

Since ‖J‖′(0) = 〈J (0), J ′(0)〉/‖J (0)‖ = 0, one deduces that ‖J (t)‖ ≥ ‖J (0)‖ cosh(at)
for all t ≥ 0. In particular, ‖Dyπ(v)‖ ≤ ‖v‖/cosh(a`). ut

The second lemma is an easy angle comparison lemma.
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Lemma 6.19. Let Y be a Hadamard manifold with −b2
≤ KY ≤ 0. Let γ ⊂ Y be

a geodesic, y0 ∈ γ , y ∈ Y and ȳ = π(y) be the projection of y on γ . Assume that
d(y0, ȳ) ≤ R and d(ȳ, y) ≥ R. Then θy0(y, ȳ) ≥

1
2e
−bR .

Proof. The angles of a triangle in H2(−b2) with the same side lengths are smaller than
the angles of the triangle (y0yȳ). It follows that θy0(y, ȳ) ≥ ϕ, where ϕ is the angle of
an isosceles right triangle in H2(−b2) with adjacent sides of length R, which is ϕ =
arctan

( 1
cosh(bR)

)
≥

1
2e
−bR . ut

Proof of Lemma 6.17. Let γ+ be a geodesic ray starting from y0 = z0. Denote by π :
Y → γ the orthogonal projection onto the geodesic γ that contains γ+. Identify γ ∼ R
so that γ+ ∼ [0,∞[. Introduce, for n, p ∈ N, the points ȳn = π(yn) and z̄p = π(zp),
and the subintervals In = [ȳn, ȳn+1] and Jp = [z̄p, z̄p+1] of γ .

Let R := 2n0c. We claim that

min(ȳN , z̄P ) ≤ R for all N,P ≥ 0. (6.15)

According to (6.12), max(ȳn0 , z̄n0) ≤ n0c. Hence it is enough to check that the interval
I := [ȳn0 , ȳN ] ∩ [z̄n0 , z̄P ] has length |I| ≤ n0c.

Let q ∈ I. This point lies in some non-empty interval In ∩ Jp with n, p ≥ n0. Since
the projection π is 1-Lipschitz, using (6.12) again yields d(ȳn, z̄p) ≤ 2c. According to
(6.13) one has d(yn, zp) ≥ β(n+ p) so that

either d(yn, ȳn) ≥ nβ − c or d(zp, z̄p) ≥ pβ − c,

and Lemma 6.18 now provides a bound for the length of one of the intervals In or Jp:

either |In| ≤ 2ce2ac−naβ or |Jp| ≤ 2ce2ac−paβ .

It follows that

|I| ≤
∑
n≥n0

2ce2ac−naβ
+

∑
p≥n0

2ce2ac−paβ

≤
4ce2ac

1− e−aβ
e−n0aβ ≤ n0c.

This proves (6.15).
Now, let n, p ≥ `0 := 4n0c/α so that, by (6.13), one has d(y0, yn) ≥ 2R and

d(y0, zp) ≥ 2R. The claim (6.15) tells us that

either d(y0, ȳn) ≤ R or d(y0, z̄p) ≤ R.

Hence by Lemma 6.19,

either θy0(yn, γ+) ≥
1
2e
−bR or θy0(zp, γ+) ≥

1
2e
−bR.

Since this is true for any ray γ+ based at y0, one gets θy0(yn, zp) ≥
1
2e
−bR . ut

Proof of Theorem 6.5. Point (a) follows from Propositions 6.13(d, e); and (b) follows
from Propositions 6.15(d, f). ut

Remark 6.20. It follows from the proof that Theorem 6.5 also holds for any rough Lip-
schitz map f : X→ Y between pinched Hadamard manifolds with property C.
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7. Beyond quasi-isometric maps

The aim of this subsection is the following extension of Theorem 1.1 to all weakly coarse
embeddings f , and in particular to all coarse embeddings f (see Definitions 6.2 and 6.3).

7.1. Weakly coarse embeddings and harmonic maps

Theorem 7.1. Every weakly coarse embedding f : X→ Y between pinched Hadamard
manifolds is within bounded distance of a unique harmonic map h : X→ Y .

Indeed, we will prove a more general proposition using Definition 6.8.

Proposition 7.2. Every rough Lipschitz map f : X → Y with property C between
pinched Hadamard manifolds is within bounded distance of a unique harmonic map
h : X→ Y .

The main new ingredients in the proof are the construction and properties of a boundary
map of f . Those new ingredients which do not involve harmonic maps were explained
in Section 6. We now explain how to adapt the proof of Theorem 1.1 using these new
ingredients.

7.2. Rough Lipschitz harmonic maps

We first want to point out that Theorem 7.1 cannot be extended to all rough Lipschitz
maps.

Example 7.3. There exists an injective Lipschitz map f : H2
→ H2 from the hyperbolic

plane to itself that extends continuously to the visual boundary as the identity map, and
which is not within bounded distance of any harmonic map.

Proof. We will consider a map f : H2
→ H2 that commutes with a parabolic subgroup

of Isom(H2). Let us work in the upper half-plane model. The map f is defined by

f (u, v) = (u, v + v2), u ∈ R, v > 0,

so that f ◦ st = st ◦ f where st (u, v) = (t − u, v) for any t ∈ R. Observe that f
extends continuously to the visual compactification of H2 by the identity, and that f is
2-Lipschitz.

Assume by way of contradiction that there exists a harmonic map h : H2
→ H2

within bounded distance of f .

First case: the map h is unique. In this case h also commutes with the isometries st , so
that there exists a continuous function g : [0,∞] → [0,∞] such that

h(u, v) = (u, g(v)), u ∈ R, v > 0,

and g(0) = 0, g(∞) = ∞. Saying that h is harmonic is equivalent to requiring that g
satisfies the differential equation

gg′′ = (g′)2 − 1.
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It follows that the harmonic map h coincides with one of the maps ha : H2
→ H2 defined

by
ha(u, v) =

(
u, 1

a
sinh(av)

)
for some constant a ≥ 0. Observe that none of the maps ha is within bounded distance
of f , hence the contradiction.

Second case: the map h is not unique. Let h0, h1 be two distinct harmonic maps within
bounded distance of f . We want again to find a contradiction. We will use arguments
similar to those in Section 5. Let x0 := (0, 1) ∈ H2. We choose a sequence of points xn
in H2 for which

d(h0(xn), h1(xn))→ δ := sup
x∈H2

d(h0(x), h1(x)) > 0

and we set yn := f (xn). Let ϕn and ψn be the isometries of H2 fixing ∞ ∈ ∂H2 and
such that ϕn(x0) = xn and ψn(x0) = yn. After passing to a subsequence, ψ−1

n ◦ f ◦ ϕn
converges to one of the maps fβ : H2

→ H2 with β ∈ [0,∞] where

fβ : (u, v) 7→

(
u

1+ β
,
v + βv2

1+ β

)
when 0 ≤ β <∞,

f∞ : (u, v) 7→ (0, v2) when β = ∞.

For i = 0 and 1, the sequence of harmonic maps hi,n := ψ−1
n ◦ hi ◦ ϕn converges, after

extraction, to a harmonic map hi,∞ : H2
→ H2 within bounded distance of fβ . The

subharmonic function x 7→ d(h0,∞(x), h1,∞(x)) achieves its maximum value at x = x0,
hence is a constant function equal to δ. Therefore, by Corollary 5.19, the harmonic maps
h0,∞ and h1,∞ take their values in the same geodesic 0. This forces β = ∞ and the
geodesic 0 is the image of f∞. Now we write

f∞(u, v) = (0, e2F∞(u,v)) and h0,∞(u, v) = (0, e2H0,∞(u,v)),

where F∞(u, v) = log v and where H0,∞ is a harmonic function.
The function G∞ := F∞ − H0,∞ is then a bounded function on H2 such that

1G∞ = 1. Such a functionG∞ does not exist. Indeed,G : x 7→ 2 log(cosh(d(x0, x)/2))
also satisfies 1G = 1 and the function G−G∞ would be proper and harmonic, contra-
dicting the maximum principle. ut

7.3. An overview of the proof of Proposition 7.2

Proof of Proposition 7.2. The strategy is the same as for Theorem 1.1:

Step 1: smoothing f out. By Proposition 2.4 there exists a smooth map f̃ : X → Y

within bounded distance of f and whose first and second covariant derivatives are
bounded onX. This function f̃ is Lipschitz and still has property C. Hence we can assume
that f = f̃ .
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Step 2: solving a bounded Dirichlet problem. We fix O ∈ X. For any radius R we con-
sider the unique harmonic map hR : B(O,R) → Y satisfying the Dirichlet condition
hR = f on S(O,R).

Step 3: estimating d(hR, f ). In Subsection 7.4 we will check

Proposition 7.4. There exists a constant ρ ≥ 1 such that d(hR, f ) ≤ ρ for any R ≥ 1.

Step 4: letting hR → h. We prove this convergence as in Section 3.3. ut

The proofs of Steps 1, 2 and 4, as well as the proof of uniqueness, require only minor
modifications of the ones for quasi-isometric maps. Thus, the remainder of this paper will
be devoted to the proof of Step 3.

7.4. Interior estimate for rough Lipschitz

In this subsection we complete the proof of Proposition 7.4 whose structure is exactly
the same as the proof of Proposition 3.5. We will just quickly repeat the arguments of
Section 4 pointing out the changes in the choice of the numerous constants involved in
the proof.

7.4.1. Strategy. Let X and Y be Hadamard manifolds whose curvatures are pinched,
−b2
≤ K ≤ −a2 < 0. Let k = dimX and k′ = dimY . We fix constants M,N > 0 as

in Proposition 4.9. We set α = a/(2bk′N) so that, with the notation of Propositions 6.13
and 6.15, one has να = 1/(2N). We set ν = 2να = 1/N .

We start with a C∞ Lipschitz map f : X → Y whose first and second covariant
derivatives are bounded. We fix constants c, C1, C2 ≥ 1 such that f has property CC1,C2

as in Definition 6.8 and for all x in X,

‖Df (x)‖ ≤ c, ‖D2f (x)‖ ≤ bc2. (7.1)

We let C3 = C3,α,ν ≤ C4 = C4,α,ν be as in Proposition 6.13 and 6.15:

C3 =
C1C

1/N
2

1− e−a/(2N)
, C4 =

C1C
1/N
2

(1− e−bk′β)(1− e−a/(2N))
where β =

α2

2α + c
.

Choosing `0 very large. We fixO inX. We introduce a fixed integer radius `0 depending
only on a, b, k, k′, c, C1 and C2. The integer `0 ≥ 1 is only required to satisfy (7.2)–(7.4):

b`0 > 1, (7.2)

`0 > 4n0c/α, where n0 ≥
4e2ac

1− e−aβ
is chosen with MC4e

−an0α ≤
α

8c
, (7.3)

16e−aα`0/4 < θ0 where θ0 := e
−2n0bc/2. (7.4)

Choosing ρ very large. For R > 0, let hR : B(O,R) → Y be the harmonic C∞ map
whose restriction to ∂B(O,R) is f . We let ρ := supx∈B(O,R) d(hR(x), f (x)). If this
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supremum ρ is not uniformly bounded, we can fix a radius R such that ρ satisfies the
inequalities (4.6)–(4.8), which we rewrite below:

aρ > 8kbc2`0, (7.5)

27(aρ)2

sinh(aρ/2)
< θ0. (7.6)

ρ > 4c`0M(210eb`0k)N . (7.7)

We denote by x a point ofB(O,R)where the supremum is achieved: d(hR(x), f (x))=ρ.
According to the boundary estimate (3.2) one has, using (7.5),

d(x, ∂B(O,R)) ≥
aρ

3kbc2 ≥ 2`0.

Getting a contradiction. We focus on the restrictions of f and hR to B(x, `0). Set
y := f (x). For ξ on the unit tangent sphere Sx , we analyze the triangle inequality

θy(f (ξ`0), hR(x)) ≤ θy(f (ξ`0), hR(ξ`0))+ θy(hR(ξ`0), hR(x)), (7.8)

and prove that on a subset U`0 r Ax,α(n0) of the sphere, each term on the right-hand
side is small (Lemmas 7.9 and 7.10) while the left-hand side is not always that small
(Lemma 7.12), giving rise to a contradiction.

Definition 7.5. Let U`0 = {ξ ∈ Sx | d(y, hR(ξ`0)) ≥ ρ − `0α/2 }.

7.4.2. Measure estimate

Lemma 7.6. For ξ in Sx , one has d(y, hR(ξ`0)) ≤ ρ + c`0.

Proof. This is Lemma 4.2. ut

Lemma 7.7. For ξ in Sx , and r ≤ `0, one has ‖DhR(ξr)‖ ≤ 28kbρ.

Proof. This is Lemma 4.3. It uses (7.2) and (7.5). ut

Lemma 7.8. Let σ = σx,`0 be the harmonic measure on the sphere Sx ' S(x, `0) at the
center point x. Then σ(U`0) ≥ α/(3c).

Proof. Same as that of Lemma 4.4, using Lemma 7.6. ut

7.4.3. Estimating the angles

Lemma 7.9. For ξ in U`0 rAx,α(n0), one has θy(f (ξ`0), hR(ξ`0)) ≤ 4e−aα`0/4 < θ0/4.

Proof. Same as that of Lemma 4.5, using (7.4). ut

Lemma 7.10. For ξ in Sx , one has

θy(hR(ξ`0), hR(x)) ≤
25(aρ)2

sinh(aρ/2)
<
θ0

4
.

Proof. Same as that of Lemma 4.6, relying on Lemma 7.11 and using (7.5) and (7.6). ut
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Lemma 7.11. For all ξ in Sx and r ≤ `0, one has d(y, hR(ξr)) ≥ ρ/2.

Proof. Same as that of Lemma 4.7, using Lemma 7.7 and (7.7). ut

Lemma 7.12. There exist ξ , η in U`0 r Ax,α(n0) with θy(f (ξ`0), f (η`0)) ≥ θ0.

Proof. Recall that σ := σx,`0 denotes the harmonic measure at x for S(x, `0). Let σ0 :=

α/(4c). According to Lemma 7.8, one has

σ(U`0) > σ0 > 0.

Since the harmonic measure σ is (M, 1/N)-Frostman (Proposition 4.9), one may apply
(6.8) of Proposition 6.13 to σ and get, using (7.3),

σ(Ax,α(n0)) ≤ MC3e
−
an0
2N ≤

α

8c
= σ0/2.

Therefore, there exists an element ξ ∈ U`0 r Ax,α(`0). On may now apply (6.10) to the
harmonic measure σ = σx,`0 to get, using (7.3) again,

σ(Bξx,α(n0)) ≤ MC4e
−
an0
2N ≤

α

8c
= σ0/2.

Therefore, there exists an element η ∈ U`0 r (Ax,α(n0) ∪ B
ξ
x,α(n0)). It satisfies

θy(f (ξ`0), f (η`0) ≥ e
−2n0bc/2 = θ0

because of (7.3), (7.4) and Proposition 6.15(e). ut

End of proof of Proposition 7.4. Let ξ , η ∈ U`0 r Ax,α(n0) be given by Lemma 7.12.
Applying Lemmas 7.9 and 7.10 to ξ and η, one gets

θy(f (ξ`0), f (η`0)) ≤ θy(f (ξ`0), hR(x))+ θy(hR(x), f (η`0)) < θ0,

which contradicts Lemma 7.12. ut

The first version of this paper containing Sections 1 to 5 was released in February 2017. In this
second version, Sections 6 and 7 were added. In between, two related preprints were posted on the
arXiv: [30] and [39].

Acknowledgments. We thank the MSRI for its hospitality during the Fall 2016 where this project was
developed. We are also very grateful to A. Ancona, U. Hamenstadt, M. Kapovich and F. Ledrappier
for sharing their insight with us.
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