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Abstract. A connected Kuga–Sato variety Wr parametrizes tuples of r points on elliptic curves
(with level structure). A special point of Wr is a tuple of torsion points on a CM elliptic curve.
A sequence of special points is strict if any CM elliptic curve appears at most finitely many times
and no relation between the points in the tuple is satisfied infinitely often. The genus orbit of a spe-
cial point is the Gal(Q̄/Qab)-orbit. We show that genus orbits of special points in a strict sequence
equidistribute in Wr (C), assuming a congruence condition at two fixed primes.

A genus orbit can be very sparse in the full Galois orbit. In particular, the number of torsion
points on each elliptic curve in a genus orbit is not bounded below by the torsion order.

A genus orbit corresponds to a toral packet in an extension of SL2 by a vector representation.
These packets also arise in the study by Aka, Einsiedler and Shapira of grids orthogonal to lattice
points on the 2-sphere. As an application we establish their joint equidistribution assuming two split
primes.
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1. Introduction

Our results can be presented from a viewpoint of either arithmetic geometry or homoge-
neous dynamics. We first discuss the arithmetic statements.
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1.1. Equidistribution of genus orbits of special points

1.1.1. Kuga–Sato varieties. Let Y be a connected complex modular curve with neat level
structure, i.e. Y is a manifold. Assume that Y can be defined over Q, e.g. Y = Y1(N) for
N ≥ 4. Denote byW r

→ Y the r-fold complex Kuga–Sato variety over Y . A point (A, l)
on Y corresponds to a complex elliptic curve A with level structure l. A point of W r

above (A, l) corresponds to a tuple of r complex points X1, . . . , Xr ∈ A. In particular,
the fiber of W r

→ Y over (A, l) is isomorphic to Ar . The universal elliptic curve E → Y

coincides with W 1
→ Y .

1.1.2. Special points and genus orbits. A special point of Y is an elliptic curve with CM
and appropriate level structure. A special point ofW r coincides with r torsion points over
a special point of Y .

The theory of complex multiplication implies that special points of W r are algebraic,
and defined over an abelian extension of an imaginary quadratic field. In this paper we
study Gal(Q̄/Qab)-orbits of special points on W r . We baptize them genus orbits due to
the evident relation to principal genus theory of quadratic fields. In particular, the genus
orbit is always defined over the genus field of the imaginary quadratic field.

Genus orbits also arise naturally in geometric questions about lattice points on the
2-sphere and their orthogonal grids as studied by Einsiedler, Aka and Shapira [AES16b].
The first motivation to study genus orbits is a conjecture of [AES16b]; a partial resolution
of this conjecture is elaborated upon in §1.3. The second motivation stems from homoge-
neous dynamics—understanding the asymptotic distribution of periodic torus orbits.

1.1.3. Equidistribution. The complex variety W r carries a natural uniform probability
measure—m. The push-forward of m to Y is the normalized hyperbolic volume measure
and the conditional measure on each fiber Ar is the probability Haar measure. Equiva-
lently, the uniform measure can be constructed using the uniformization of W r . Denote
V := G×2

a and let Pr ' SL2 nV⊕r where SL2 acts on V⊕r diagonally. Fix an embedding
SL2 ↪→ Pr , e.g. using the semidirect product structure. This embedding defines the zero
section. There is a lattice 0 < Pr(R) such that

W r
' 0\P

r(R)/K∞,

where K∞ = SO2(R) < SL2(R) ↪→ Pr(R) is a maximal compact subgroup. The iso-
morphism holds in the category of real analytic manifolds and the probability Haar mea-
sure on 0\Pr(R) descends to the uniform measure m on W r .

Definition 1.1. Write a point of W r as (A, l;X1, . . . , Xr). A sequence of points

{(Ai, li;X
i
1, . . . , X

i
r)}i ⊂ W

r

is strict if no fixed elliptic curve appears infinitely often in the sequence and for all 0 6=
(m1, . . . , mr) ∈ Zr the equation m1X

i
1 + · · · + mrX

i
r = 0 holds finitely many times at

most. If r = 1 the latter condition is equal to ordAi (X
i
1) −−→i→∞ ∞, where ordAi (X

i
1) is the

order of the torsion point Xi1 in Ai .
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Notice that a non-strict sequence always has a subsequence that is trapped in a weakly
special subvariety of W r . The weakly special subvariety in question is either the fiber
over a point of Y or a closed embedding W r−1 ↪→ W r whose image is the geometric
locus of an equationm1X1+· · ·+mrXr = 0. In particular, a general sequence of special
points can be decomposed into sequences each of which is appropriately strict in a weakly
special subvariety.

The following is a version of our main theorem stated in the language of Galois orbits.

Theorem 1.2. Let {xi = (Ai, li;X
i
1, . . . , X

i
r)}i ⊂ W r be a strict sequence of special

points. Denote the discriminant of the CM order of Ai by Di and let Ni be the order of
(Xi1, . . . , X

i
r) inAr . WriteDi = Dfund

i f 2
i whereDfund

i is a fundamental discriminant and
fi is the conductor. Fix two distinct primes p1, p2 and assume that for all i,(

Dfund
i

p1

)
=

(
Dfund
i

p2

)
= 1 and valp1(fi), valp2(fi)� 1,(1)

valp1(Ni), valp2(Ni)� 1.(2)

Then for every continuous compactly supported f : Wr → C,
1∣∣Gal(Q̄/Qab).xi

∣∣ ∑
y∈Gal(Q̄/Qab).xi

f (y) −−→
i→∞

∫
W r

f dm.

In other words, the normalized counting measures on the genus orbits of xi converge
weak-∗ to the uniform measure on W r when i →∞.

1.1.4. Full Galois orbits. A genus orbit can be very sparse in the full Galois orbit of a
special point. For example, a special point (A, l;X) ∈ W 1, when A has CM by an order
of prime discriminant D and X is of order |D|, has a genus orbit in which over each
elliptic curve there is a single torsion point. The full Galois orbit has�ε |D|

1−ε torsion
points over each elliptic curve in the orbit.

This makes proving equidistribution of full Galois orbits significantly simpler.
A. Venkatesh has observed that in the full Galois orbit of a special point (A, l;X) ∈ W 1

the fiber of Gal(Q̄/Q).(A, l;X) over most elliptic curves Aσ ∈ Gal(Q̄/Q).A becomes
equidistributed in Aσ in a quantitative and uniform way. Writing down the full Galois
orbit as an orbit of the full idèle class group of the CM field we can identify exactly the
torsion points of Aσ appearing in the fiber. This turns out to be a set big enough that
its equidistribution in Aσ can be verified in an elementary way. The same statement or
method cannot in general apply to the genus orbit, as in the example above it contains a
single torsion point over each elliptic curve in the orbit. Equidistribution of genus orbits
in the total space W r is somewhat delicate as it fails fiberwise.

1.1.5. Methods. The proof of Theorem 1.2 combines measure rigidity for diagonal ac-
tions, specifically [EL19, Theorem 1.6]; the relative trace method for bounding accumula-
tion on intermediate orbits—first introduced by the author in [Kha19]; and the subconvex
bound in the level aspect of Duke, Friedlander and Iwaniec [DFI02]. This paper has two
main novel contributions.
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1.1.5.1. Arithmetic invariants. The first one is the fine arithmetic analysis of the orbit
space of the quotient of the two-dimensional affine space V by a rational anisotropic torus
T < SL2. Specifically, T is the norm-1 torus of the imaginary quadratic field associated
to an elliptic curve with CM. The GIT quotient of V by a torus T is nothing but the affine
line. Yet this quotient does not suffice for our purposes as it can at best parametrize orbits
of T(Q) on Q2. We need to parametrize orbits of a certain compact open subgroup of
T(Af ). We achieve such a parametrization by constructing an explicit invariant function
valued in invertible fractional ideals of a quadratic order, with some extra level structure
and a restriction on the Picard class. This invariant-theoretic problem is related to the
question of understanding T (Z)-orbits for an integral non-smooth model T of T. This
analysis is carried out in §5 with complementary local computations in the Appendix.

1.1.5.2. Subconvexity. The second new ingredient that is applicable specifically to the
setting at hand is subconvexity of certain Hecke L-functions, which is used to bound the
arithmetic sums produced by the relative trace method. The application of subconvexity
can be seen as a substitute for the sieve method used in [Kha19]; it has a significant
advantage of not requiring any assumptions about exceptional Landau–Siegel zeros. The
use of subconvexity is described in §6.

1.1.5.3. Orthogonal grids as intersection of periodic orbits. We also present a new view-
point on the construction of grids orthogonal to lattice points in Z3 as studied by Aka,
Einsiedler and Shapira [AES16b] (cf. §1.3). We demonstrate that their construction is
equivalent to the intersection of two periodic orbits in SL3(Z)\SL3(R). This viewpoint is
mostly used to re-prove well-known results. Nevertheless, the benefit of the intersection
representation is an elegant explicit description of a joint adelic torus action on the lattice
points and their orthogonal grids. This can probably be achieved also by classical means,
but I believe the intersection pictures demystifies many properties of the construction—
including the squaring of the Picard action as described in Remark 8.15.

1.1.6. Results without a congruence assumption. The congruence assumption at the
primes p1, p2 in Theorem 1.2 provides invariance of any weak-∗ limit measure under
a split torus at two places. This invariance is required to apply measure rigidity results of
Einsiedler and Lindenstrauss [EL19]. It is important to note that the methods of this paper
provide useful information even without a congruence assumption.

The complex universal elliptic curve E is uniformized by H × C. For any point x =
(xH, xC) ∈ H × C denote by B(x,R, r) the product of the hyperbolic ball of radius R
in H around xH and the Euclidean ball of radius r in C around xC. By abuse of notation
we also denote by B(x,R, r) its projection to E under the quotient map—this is an open
neighborhood of the point x ∈ E .

Theorem 1.3. Let {xi}i ⊂ W 1
= E be a strict sequence of special points and denote by

µi the Borel probability measure on E defined by

µi =
1

|Gal(Q̄/Qab).xi |

∑
y∈Gal(Q̄/Qab).xi

δy .
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Let A ⊂ E be a torsion section and denote by νA the uniform probability measure on A.
Then

lim sup
i→∞

∫
µi(B(x, R, r)) dνA(x)� (cosh(2R)− 1)r2.

Moreover, if µi
weak-∗
−−−→
i→∞

µ then µ(A) = 0.

The torsion section A is also a modular curve itself, of level higher than Y or equal to it;
the probability measure νA is the normalized hyperbolic volume measure on the modular
curve A. The expression (cosh(2R) − 1)r2 is proportional to the product of the area of
a hyperbolic disk of radius R and a Euclidean disk of radius r . This theorem may be
interpreted as stating that the mass a genus orbit of a special point puts in a ball around
a typical point on a torsion section is eventually bounded by the uniform measure of this
ball; where typical is with respect to the volume measure on the torsion section.

1.1.7. Further discussion

1.1.7.1. The Weil pairing on a genus orbit. For any integer N and elliptic curve A the
Weil pairing w : A[N ] ×A[N ] → µn is a non-degenerate bilinear alternating and Galois
equivariant pairing valued in roots of unity of orderN . As Qab is the cyclotomic extension
of Q, we have, for any σ ∈ Gal(Q̄/Qab) and P,Q ∈ A[N ],

w( Pσ , Qσ ) = w(P,Q) ∈ µN .

In particular, the genus orbit of a special point (A, l;X1, . . . , Xr) ∈ W
r of torsion order

N has the pleasant property that for any 1 ≤ i 6= j ≤ r the Weil pairing w(Xi, Xj ) is a
well-defined invariant of the orbit. This is of course meaningful only for r ≥ 2.

1.1.7.2. Genus orbits on the modular curve. The situation for genus orbits on Y and W r

for r ≥ 1 is very different. In the modular curve the genus orbit is rather large in the
full Galois orbit, due to the fact that the index of a principal genus subgroup in the Pi-
card group of a quadratic order of discriminant D < 0 is of size� 2ω(D). In particular,
equidistribution of genus orbits on the modular curve is closely related to equidistribu-
tion of full orbits proven by Duke [Duk88]. Under the extra assumption of a fixed split
prime, equidistribution of genus orbits of CM points has already been established by Lin-
nik [Lin68]. Without a split prime assumptions it follows from the Waldspurger formula
[Wal81] and the subconvex bounds of [DFI94a, DFI00, Har03, Mic04].

1.2. Equidistribution of torus orbits

We proceed to describe our results in terms of periodic torus orbits and homogeneous
dynamics. This is the framework used in the proofs. Our description is adelic due to the
fact that the periodic torus orbits in question are cumbersome to define classically.
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1.2.1. Adelic homogeneous space. A connected complex modular curve Y can be uni-
formized by the complex upper half-plane H. This provides a diffeomorphism

Y ' SL2(Q)\SL2(A)/K∞Uf ,

where K∞ = SO2(R) < SL2(R) is an archimedean maximal compact subgroup and
Uf < SL2(Af ) is a neat compact open subgroup contained in SL2(Ẑ).

For any r ∈ N we have defined Pr := SL2 n V⊕r where V := G×2
a . Moreover, we

have a fixed embedding SL2 ↪→ Pr corresponding to the zero section. Denote Un
f
:=

Uf n V(Ẑ)⊕r—this is a compact open subgroup of Pr(Af ). The connected complex r
Kuga–Sato variety above Y satisfies

W r
' Pr(Q)\P

r(A)/K∞Un
f
,

where the isomorphism is in the category of real analytic manifolds. The lattice 0 from
§1.1.3 is equal to Pr(Q) ∩ Un

f . Notice that this is not the standard presentation of a
Kuga–Sato variety as a mixed Shimura variety. The mixed Shimura model of W r is a
double quotient of GL2 n V⊕r . The presentation using SL2 is adapted to the setting of
genus orbits, as maximal tori in SL2 are norm-1 tori of quadratic fields. A norm-1 torus
is mapped by the Artin reciprocity map of class field theory to a quotient of Gal(Q̄/Qab).

Instead of studying the double quotient W r we shall establish equidistribution in the
adelic homogeneous space

[Pr(A)] := Pr(Q)\P
r(A).

The pertinent statement for W r with any level structure will then follow by push-forward
of measures from the adelic quotient to the double quotient.

1.2.2. Homogeneous toral sets. Every maximal torus T < SL2 defined and anisotropic
over Q is of the form T ' Res1

E/QGm for a quadratic field extension E/Q. Fix ξ =
(l, x) ∈ Pr(A) with l ∈ SL2(A) and x ∈ V(A)⊕r . The closed subset

H = [T(A)ξ ] ⊂ [Pr(A)]

is called a homogeneous toral set [EL+11] and carries a unique Adξ−1 T(A)-invariant
Borel probability measure that we call the periodic measure. We say that H is K∞-
invariant if Ad

ξ−1
∞

T(R) = K∞. In this case the splitting field E/Q of T is imaginary
and x∞ = 0.

In §2.5 we attach to a K∞-invariant homogeneous toral set an order 3 in the split-
ting field E/Q. If the homogeneous toral set arises by class field theory from a genus
orbit of a special point then this order coincides with the endomorphism ring of the as-
sociated CM elliptic curve. The discriminant D of a homogeneous toral set is defined to
be the discriminant of that order. The torsion order N ∈ N of a homogeneous toral set
[T(A)(l, x)] is the order of the non-archimedean part xf ∈ V⊕r(Af ) in the torsion group
V⊕r(Af )/ lf .V⊕r(Ẑ).
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1.2.3. Main theorems. We state our main results in their final form.

Definition 1.4. A sequence {[Ti(A)(li, xi)]}i of K∞-invariant homogeneous toral sets
in [Pr(A)] with discriminants {Di}i is strict if |Di | −−→i→∞ ∞ and for every 0 6= m =

(m1, . . . , mr) ∈ Qr the sequence of elements

l−1
i .
( r∑
k=1

mkxik
)
∈ V(A)

escapes all compact sets in V(A).
Let Nm,i be the order of the non-archimedean part

∑r
k=1mkx

i
k,f ∈ V(Af ) in the

torsion group V(Af )/ li,f .V(Ẑ). The last condition is equivalent to Nm,i −−→i→∞ ∞ for
every 0 6= m ∈ Qr . In particular, for r = 1 the latter condition is equivalent toNi −−→i→∞ ∞
where Ni is the torsion order of the ith homogeneous toral set.

Theorem 1.5. Let Hi ⊂ [Pr(A)] be a strict sequence of K∞-invariant homogeneous
toral sets. LetDi be the discriminant of Hi andNi the torsion order. WriteDi = Dfund

i f 2
i

where Dfund
i is a fundamental discriminant and fi is the conductor. Denote by µi the

periodic measure supported on Hi .
Fix two distinct primes p1, p2 and assume that for all i,(

Dfund
i

p1

)
=

(
Dfund
i

p2

)
= +1, valp1(fi), valp2(fi)� 1,(♠)

valp1(Ni), valp2(Ni)� 1.(♠♠)

Then µi
weak-∗
−−−→
i→∞

m where m is the probability Haar measure on [Pr(A)].

I suspect that the theorem holds without the congruence conditions (♠) and (♠♠) above,
yet these conditions are crucial to the proof method in this article. Towards removing the
congruence conditions we have the following.

Theorem 1.6. Let Hi ⊂ [P1(A)] be a strict sequence of K∞-invariant homogeneous
toral sets. Denote by µi the periodic measure supported on Hi and assume µi

weak-∗
−−−→
i→∞

µ.
Then for any y ∈ V(A),

µ([SL2(A)(e, y)]) = 0.

If y∞ = 0 denote by νy the Ad(e,−y) SL2(A)-invariant probability measure on
[SL2(A)(e, y)]. Then

lim sup
i→∞

∫
µi(xB(RG, RV )) dνy(x)� (cosh(2RG)− 1)R2

V ,

where B(RG, RV ) = B∞(RG, RV ) · P1(Ẑ) ⊂ P1(A) and B∞(RG, RV ) is the product of
a ball of radius RG in SL2(R) and a ball of radius RV in V(R).
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1.3. Grids orthogonal to integral points

As an application of our results we present a partial resolution of a conjecture about joint
equidistribution of lattice points on spheres and their orthogonal grids.

1.3.1. The orthogonal complement construction. The following construction has been
studied extensively by Aka, Einsiedler and Shapira [AES16b, AES16a] in all dimensions
d ≥ 3. In some cases this construction had already been investigated by Maass [Maa56,
Maa59]; see also the appendix by R. Zhang to the arXiv version of [AES16b].

Let d ≥ 3. Denote by 〈 , 〉 : Rd × Rd → R≥0 the Euclidean inner product. For each
D ∈ N consider the primitive integral points of norm

√
D in Zd ,

HD := {x ∈ Zdprimitive | 〈x, x〉 = D}.

Denote D(d) := {D ∈ N |HD 6= ∅} and assumeD ∈ D(d). For each x ∈HD we denote
by x⊥(Z) the integral lattice orthogonal to x,

x⊥(Z) := {y ∈ Zd | 〈y, x〉 = 0}.

We also denote by x⊥ the affine scheme defined over Q representing the linear subspace
of the affine d-space perpendicular to x, i.e. x⊥(F ) := {y ∈ F d | 〈y, x〉 = 0} for any
algebra F/Q. The group x⊥(Z) is a lattice of rank d − 1 in the d − 1-dimensional space
x⊥(R) := {y ∈ Rd | 〈y, x〉 = 0}. The space x⊥(R) carries a volume form defined by the
restriction of the inner product 〈 , 〉. The covolume of x⊥(Z) in x⊥(R) is then

√
D. Let

x1
∈ Zd satisfy 〈x1, x〉 = 1. The point x1 always exists because x is primitive but is not

unique. Rather it defines a coset x1
+ x⊥(Z). The orthogonal projection of x1

+ x⊥(Z)
to x⊥(R) is xtors

+ x⊥(Z) where

xtors
:= x1

−
x

D
.

It is easy to check that xtors
+ x⊥(Z) defines a single torsion point of orderD in the torus

x⊥(R)/x⊥(Z).
Set ê ∈ Zd to be the unique integral unit vector whose stabilizer in SOd is SOd−1. Fix

an orientation-preserving isomorphism of inner-product spaces ê⊥(R) ' Rd−1 which
sends ê⊥Z to Zd−1. The isomorphism is unique up to composition with an element of
SOd−1(Z). This isomorphism identifies the space of unimodular lattices of rank d − 1 in
ê⊥(R)with SLd−1(Z)\SLd−1(R). Moreover, define ASLd−1 := SLd−1nG×(d−1)

a . Then
the space of pairs (L,X) where L ⊂ ê⊥(R) is a unimodular lattice and X ∈ ê⊥(R)/L
is identified with ASLd−1(Z)\ASLd−1(R). In several sources, including [AES16a], pairs
(L,X) as above are named grids. We often replace the pair (L,X) by the equivalent
datum of the lattice coset X + L.

Choosing any element g ∈ SOd(R) such that g.x = ê we construct a well-defined

SOd−1(R)-orbit SOd−1(R)g.D−
1

2(d−1) (x⊥(Z), xtors) of a unimodular lattice in ê⊥(R) and
a torsion point of order D. This is a well-defined class in ASLd−1(Z)\ASLd−1(R)/
SOd−1(R).
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To summarize, to each element x ∈HD we have associated a class

Grid(x) ∈ ASLd−1(Z)\ASLd−1(R)/SOd−1(R)

corresponding to a lattice of rank d − 1 in ê⊥(R), up to rotation by SOd−1(R), and
a torsion point of order D. This correspondence between HD and SOd−1(R)-orbits on
ASLd−1(Z)\ASLd−1(R) does not depend on any choice involved in the process.

1.3.2. The joint equidistribution conjecture. The equidistribution of the sets D−1/2HD

in the unit sphere Sd−1(R) for D(d) 3 D → ∞ is well-known. For d = 3 this is
Duke’s theorem [Duk88], see also the pertinent work of Iwaniec [Iwa87], and earlier
results of Linnik [Lin57, Lin60, Lin68] that required a congruence condition on the se-
quence D → ∞. For d ≥ 4 this can be proved by the circle method and is attributed
to Kloosterman [Klo27]. The following is a conjecture of Aka, Einsiedler and Shapira
[AES16b, AES16a].

Conjecture 1.7 (Joint equidistribution). Define for each D ∈ D(d) the following finite
set and Borel probability measure:

JD := {(D
−1/2x,Grid(x)) | x ∈HD}

⊂ Sd−1(R)× ASLd−1(Z)\ASLd−1(R)/SOd−1(R),

µGrid
D :=

1
|JD|

∑
z∈JD

δz.

As D → ∞ along D(d) the measures µGrid
D converge weak-∗ to the normalized Haar

measure on Sd−1(R)× ASLd−1(Z)\ASLd−1(R)/SOd−1(R).

In [AES16a] the conjecture has been fully resolved for d ≥ 6, and assuming a congruence
condition at a single prime for d = 4, 5. The method uses measure rigidity for unipotent
flows and homogeneous dynamics. It relies heavily on the fact that points in JD are
equivalent to orbits on a homogeneous space with stabilizer SOd−1 which for d ≥ 4 is a
semisimple group; hence SOd−1(Qp) is virtually generated by unipotents for all primes p
where SOd−1 splits.

1.3.3. Joint equidistribution in three dimensions. The case d = 3 is substantially differ-
ent due to the fact that SOd−1 = SO2 is a torus and Ratner’s theorems do not apply. In
[AES16b] progress is made for the following weaker conjecture.

Conjecture 1.8 (Weaker joint equidistribution). For d = 3 consider the push-forward
µLat
D of µGrid

D to S2(R)×SL2(Z)\SL2(R)/SO2(R). This is the normalized counting mea-
sure on pairs of points in D−1/2HD and their orthogonal lattices, with the order D tor-
sion point discarded. Then as D(3) 3 D →∞ the sequence of measures µLat

D converges
weak-∗ to the normalized Haar measure on S2(R)× SL2(Z)\SL2(R)/SO2(R).
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The push-forward of µGrid
D to Sd−1(R) is obviously the normalized counting measure on

D−1/2HD whose equidistribution has been established by Duke [Duk88]. Less obvious
is that the push-forward of µGrid

D to ASL2(Z)\ASL2(R)/SO2(R) is a genus orbit of a
special point, or equivalently, of a K∞-invariant homogeneous toral set for a maximal
torus T < SL2 defined and anisotropic over Q. This is established in §8. The fact that
µLat
D is a packet of torus orbits, i.e. projection of a homogeneous toral set to the real

quotient, is well-known.
The equidistribution of the push-forward µLat

D is known either by analytic methods
(see discussion in §1.1.7.2), or assuming a split prime using Linnik’s ergodic method
[Lin68]. In [AES16b] these two results in combination with the joining rigidity theorem
of Einsiedler and Lindenstrauss [EL19] are used to establish

Theorem 1.9 ([AES16b]). Let {Di} ⊂ D(3) be such that Di −−→i→∞ ∞. Assume there are
distinct primes p1, p2 such that for all i,(

Di

p1

)
=

(
Di

p2

)
= 1.

Then µLat
Di

converges to the Haar measure on S2(R) × SL2(Z)\SL2(R)/SO2(R) as
i →∞.

The congruence condition at p1 and p2 is required for the associated orbits to be invariant
under a split torus at two places so that the joining rigidity theorem of [EL19] applies.
The original theorem of [AES16b] required the discriminant to be fundamental, but this
restriction is superfluous as the equidistribution theorems on each factor are known for
general discriminants. Under the assumption of a fixed split prime they go back to Linnik.
A similar result for d = 4, 5 without a congruence condition has been established by
[ERW19] using effective methods in unipotent dynamics.

We demonstrate in §8 that the push-forward of the full joint measure µGrid
D to

ASL2(Z)\ASL2(R)/SO2(R) is a genus orbit of a special point. The method of [AES16b]
in conjunction with Theorem 1.5 imply the following theorem.

Theorem 1.10. Let {Di} ⊂ D(3) be such that Di −−→i→∞ ∞. Assume there are distinct
primes p1, p2 such that for all i, (

Di

p1

)
=

(
Di

p2

)
= 1.

Then the sequence µGrid
Di

converges weak-∗ to the Haar measure on S2(R) ×
ASL2(Z)\ASL2(R)/SO2(R) as i →∞.

Notice that removing the congruence conditions at p1 and p2 in Theorem 1.5 would not
allow us to strengthen Theorem 1.10 as this condition is still required for the application
of the joining rigidity theorem of [EL19].
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1.4. Organization of the paper

In §2 we rigorously introduce homogeneous toral sets and describe their fundamental
properties.

In §3 we apply measure rigidity theorems of Einsiedler and Lindenstrauss for higher
rank toral actions to reduce the equidistribution question to the problem of showing non-
concentration on intermediate orbits. In this section we also reduce the general case to
r = 1.

In §4 we describe the geometric expansion of the cross-correlation for Bowen ball test
functions, which was first introduced as a tool for controlling concentration in [Kha19].
We demonstrate that the cross-correlation between a homogeneous toral set and a periodic
orbit of SL2 can be understood in terms of orbits of a compact subgroup of an adelic torus
on the unipotent radical.

In §5 we introduce arithmetic invariants parametrizing the orbits introduced in the
previous section and study their properties.

In §6 we use the results of the previous two sections to bound the cross-correlation
by a short sum over integral ideals in a quadratic order with level structure. The gist of
this section is the application of the subconvex bound of Duke, Friedlander and Iwaniec
[DFI02] to find an asymptotic upper bound for these sums.

In §7 we combine results from previous sections to prove the main theorems about
equidistribution of homogeneous toral sets and genus orbits.

In §8 we present a description of the orthogonal grid correspondence as an intersection
of two periodic orbits in a homogeneous space. We show that the orthogonal grids form
a genus orbit and prove our theorem about joint equidistribution of lattice points and
orthogonal grids.

In the Appendix we compute local properties of modified Hecke L-functions which
are used in §6.

2. Preliminaries

2.1. Notations

(1) Algebraic varieties are denoted by bold face letters. They are defined over Q unless
stated otherwise.

(2) If B is an algebra over a commutative ring A with a well-defined norm map
Nr : B → A, e.g. a field extension E/Q, then we denote by B× the invertible el-
ements in B and by B(1) the elements of norm 1 in B.

(3) If E/Q is a field extension we denote by OE the maximal order in E. For any rational
place v < ∞ we set Ev := E ⊗Q Qv '

∏
w|v Ew. The maximal order in the étale

algebra Ev is denoted by OEv .
(4) For a field E/Q we denote by AE the adèle ring of E and let A×E be the group

of invertible adèles. We shall use the subscript f to denote the non-archimedean
part, e.g. AE,f and A×E,f are the ring of finite adèles and the group of finite idèles
respectively.
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Abusing the previous notation, let A(1)E denote the adèles which are of norm 1
everywhere, i.e. A(1)E :=

∏
′

v E
(1)
v where v runs over the places of Q and the restricted

direct product is with respect to the compact subgroups O(1)
Ev

for v <∞.
(5) For an affine algebraic group M defined over Q we denote [M(A)] :=M(Q)\M(A).

Moreover, for any subset K ⊂M(A) let [K] ⊂ [M(A)] be the image of K under the
quotient map. For an element g ∈M(A) we denote by gv the v-local part of g for any
rational place v. We also use the notation gf ∈M(Af ) for the non-archimedean part.

(6) For M an affine perfect group defined and anisotropic over Q we denote by mM(A)
the covolume 1 Haar measure on M(A) and by mM the probability Haar measure on
[M(A)]. For any local field Qv we denote by mM(Qv) a Haar measure on M(Qv).

2.2. Homogeneous sets and periodic measures

For brevity we denote henceforth G := SL2.

Definition 2.1. For any linear subgroup H < Pr defined and anisotropic over Q an H-
homogeneous set is a closed subset of [Pr(A)] of the form

H = [H(A)g],

where g ∈ Pr(A). The homogeneous set H is invariant under the right action of
Adg−1 H(A) and supports a unique Adg−1 H(A)-invariant Borel probability measure
which we call the periodic measure. This measure is the push-forward by the right trans-
lation by g of the Haar measure on [H(A)] which is finite because H is assumed to be
anisotropic over Q.

If H = T is a maximal torus in Pr then H is called a homogeneous toral set. Re-
call from §1.2.1 that K∞ = SO2(R) < G(R) ↪→ Pr(R) is a fixed maximal compact
subgroup. A homogeneous toral set is K∞-invariant if Ad

g−1
∞

T(R) = K∞.

Remark 2.2. Notice that for any γ ∈ Pr(Q) the data (H, g) and (Adγ H, γg) define the
same homogeneous set with an identical periodic measure.

Remark 2.3. A homogeneous toral set [T(A)(l, x)] satisfying T < G is K∞-invariant if
and only if Ad−1

l∞
T(R) = K∞ in G(R) and x∞ = 0.

Our interest lies in homogeneous toral sets in Pr . Homogeneous sets for the subgroup
G < P1 will arise in the process of analyzing the possible limits of periodic measures on
homogeneous toral sets.

Definition 2.4. Let H = [T(A)(l, x)] be a K∞-invariant homogeneous toral set. The
projection of H to W r is called a genus packet. It is a finite collection of CM elliptic
curves with torsion points (cf. §2.5.1).

Let E/Q be the imaginary quadratic extension splitting T ' Res1
E/QGm. The main

theorem of complex multiplication implies that a genus packet is a single orbit of the
Galois subgroup Gal(Q̄/Qab) < Gal(Q̄/E) which corresponds by Artin reciprocity to
the subgroup of the idèle class group of E of elements that are everywhere of norm 1.
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2.3. Standard form of homogeneous sets

We show that homogeneous sets for reductive groups can be represented in a form that
simplifies computations.

Lemma 2.5. Let H < Pr be a reductive algebraic group defined over Q. Then H is
conjugate to a subgroup of G by an element of Pr(Q).

Proof. Consider the composite map

H ↪→ Pr → G, (1)

where the last map is the quotient by the unipotent radical. The action of G on V⊕r
composed with (1) defines a rational representation of H on V⊕r .

Next consider the composite map

H ↪→ Pr → V⊕r , (2)

where the last map is the projection onto the second coordinate of Pr = G n V⊕r . This
map is a rational cocycle inZ1(H,V⊕r)with respect to the action induced by (1). Because
H is assumed to be reductive over Q its rational cohomology is trivial [Hoc61]. The fact
that the cocycle (2) is a coboundary implies the claim. ut

Definition 2.6. Let H < Pr be a reductive subgroup defined and anisotropic over Q.
A standard form of an H-homogeneous set H is a linear subgroup H0 < G that is Pr(Q)-
conjugate to H and group elements l∞ ∈ G(R), x∞ ∈ V(R), X ∈ V⊕r(Q), k ∈ Pr(Ẑ)
such that

H = [H0(e,X)(l∞, x∞ −X)∞k],

where (l∞, x∞ − X)∞ is an element of Pr(R). Notice that if H = T is a maximal torus
anisotropic over R then H isK∞-invariant if and only if x∞ = 0 and Ad

l−1
∞

T(R) = K∞.

Corollary 2.7. Every reductive homogeneous set in Pr has a standard form.

Proof. Any reductive homogeneous set is equivalent by Lemma 2.5 to an H0-homoge-
neous set with H0 < G. The claim follows from strong approximation for SL2 and Ga.

ut

2.4. Volume of homogeneous set

Definition 2.8. Fix a compact K∞-invariant neighborhood of the identity �∞ ⊂ Pr(R).
Let H = [H(A)g] be a homogeneous set in [Pr(A)] and denote bymH(A) the covolume-1
Haar measure on H(A). The volume of H (with respect to �∞) is defined as

vol(H) := mH(A)
(
Adg(�∞ × Pr(Ẑ))

)−1
.
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Remark 2.9. Notice that although the volume depends on the choice of �∞, for any
K∞-invariant compact identity neighborhoods �∞, �′∞ ⊂ Pr(R) we have

vol�∞(H)��∞,�′∞
vol�′∞(H)��∞,�′∞

vol�∞(H),

where the implicit constants do not depend on H. Moreover, for aK∞-invariant homoge-
neous toral set H = [T(A)g],

vol(H) = mT(Af )(Adgf Pr(Ẑ))

for any choice of K∞-invariant identity neighborhood �∞, where we have normalized
mT(Af ) so that mT(A) = mT(R) ×mT(Af ) with mT(R) a probability measure.

2.5. The quadratic order of a homogeneous toral set

Definition 2.10. Let H = [T(A)(l, x)] ⊂ [Pr(A)] be a K∞-invariant homogeneous
toral set such that T < G. The torus T < G satisfies T ' Res1

E/QGm where E/Q is
the quadratic imaginary extension splitting T. Moreover, there is a commutative algebra
scheme E < M2 defined over Q such that E(F) ' E ⊗Q F for any algebra F/Q and
T = SL1(E). We fix once and for all an isomorphism E(Q) ' E and identify these fields.

(1) For any finite place v <∞ define

3v := E(Qv) ∩ Adlv M2(Zv).

The ring 3v is an order in the quadratic étale algebra E(Qv) ' E ⊗Qv .
(2) Notice that 3v is the v-adic closure of the order E(Q) ∩ M2(Z) whenever lv is in

SL2(Zv). In particular, 3v = OEv for almost all v and we can define the following
intersection in E(Q) = E:

3 :=
⋂
v<∞

3v < E.

The lattice 3 is an order in E that is singular exactly at the primes where 3v is
non-maximal.

(3) The discriminant of H is defined by disc(H) := disc(3) =
∏
v |disc(3v)|−1

v . Notice
that the product is well-defined because |disc(3v)|−1

v = 1 for almost all places v.

Notice that the quadratic order depends only on the homogeneous toral set [T(A)l] ⊂
[G(A)] which is the image of H in [G(A)].

Proposition 2.11. Let [T(A)l] ⊂ [G(A)] be aK∞-invariant homogeneous toral set with
quadratic order 3 < E. The push-forward P of [T(A)l] to G(Z)\G(R)/K∞ is a finite
set of complex tori of the form C/a where a is a proper fractional ideal of 3.

Proof. This claim is standard. The finiteness result follows from the finiteness of the class
number of the torus T and—essentially—the finiteness of the class group of an imaginary
quadratic field. An argument analogous to [EL+09, Corollary 4.4] for imaginary quadratic
fields establishes the second part. ut
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2.5.1. Torsion points. Let H = [T(A)(l, x)] ⊂ [Pr(A)] be aK∞-invariant homogeneous
toral set satisfying T < G. We discuss how the element x ∈ V⊕r gives rise to a tuple of
torsion points in C/3.

Definition 2.12. Fix k ∈ N. For any x ∈ V⊕k(A) we define the order ordH(x) to
be the torsion order of the non-archimedean part xf ∈ V⊕k(Af ) in the torsion group
V⊕k(Af )/ lf .V⊕k(Ẑ). Similarly, for any prime p we set ordH(xp) to be the torsion order
of xp in V⊕k(Qp)/ lp.V⊕k(Z). We always have

ordH(x) =
∏
p

ordH(xp).

Definition 2.13. (a) The action of M2 on V makes V(Q) a 1-dimensional vector space
for the field E = E(Q). We can check locally that the order of E stabilizing the
lattice

⋂
v<∞ lv.Z2

v ⊂ V(Q) is exactly 3. Any quadratic order is monogenic, hence
all proper fractional 3-ideals are principal. This implies that we can choose a linear
E-isomorphism  : V(Q) → E mapping

⋂
v<∞ lv.Z2

v to 3; this isomorphism is
unique up to composition with multiplication by an element of 3×.

(b) The linear isomorphism  induces by base change for all rational places v a linear
isomorphism v : V(Qv) → Ev = E ⊗ Qv sending lv.Z2

v to 3v for v < ∞. These
isomorphisms combine to an adelic isomorphism

A : V(A)→ AE

that sends V(Q) to E and the compact subgroup lv.Z2
v to 3v for all v < ∞. Again,

this isomorphism is defined up to global multiplication by an element of 3×.
(c) We derive an isomorphism of quotients

/3 : V(Q)\V(A)/lf .
∏
v<∞ Z2

v
→ E\AE/

∏
v<∞3v

. (3)

Fixing one of the two possible field isomorphisms E ⊗ R ' C the right-hand side
of (3) is naturally identified with the complex torus C/3.

(d) If x = (x1, . . . , xr) ∈ V(A)⊕r then

/3(x) := (/3(x1), . . . , /3(xr)) ∈ (C/3)⊕r

is a tuple of r points in C/3. This tuple is uniquely defined up to mutual complex
conjugation and diagonal multiplication by an element of3×. Moreover, if H isK∞-
invariant then the classes of xi in the left-hand side of (3) have a zero archimedean
component, equivalently, the /3(xi) are torsion points in C/3, i.e. /3(xi) ∈ E/3.
The torsion order of /3(xi) is equal to ordH(xi).

(e) For any rational place v the isomorphism v : V(Qv)→ Ev induces an isomorphism

v : EndQv (Ev)→M2(Qv).

This isomorphism sends End(3v) to Adlv M2(Zv) and Aut1(3v) to Adlv G(Zv),
where Aut1(3v) is the group of Qv-automorphisms of 3v of determinant 1.
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2.6. Local stabilizers and the class number formula

Definition 2.14. (1) Define, for any v <∞,

3×v (x) := {λ ∈ 3
×
v | λ.xv − xv ∈ 3⊕rv }

= {λ ∈ 3×v | λ./3(x)− /3(x) ≡ 0 mod 3⊕rv },

3(1)v (x) := 3
(1)
v ∩3

×
v (x).

In the second line above we consider /3(x) as an element of (Ev/3v)⊕r . Moreover,
set

3×f (x) :=
∏
v<∞

3×v (x) < A×E,f , 3
(1)
f (x) :=

∏
v<∞

3(1)v (x) < A(1)E,f = T(Af ).

(2) Define
Pic(3, x) := E×\AE,f /3×f (x).

This is a finite abelian group (a quotient of a ray class group of E). For /3(x) =
0 mod 3⊕r the group Pic(3, x) coincides with the regular Picard group of 3 and
generally it is a finite extension of it. When 3 = OE is the maximal order and
r = 1, the group Pic(OE, x) is a standard ray class group of E with modulus equal
to (OE : /3(x)).

(3) Set Picpg(3, x) to be the image of A(1)E,f in Pic(3, x). As a group,

Picpg(3, x) ' E(1)\A
(1)
E,f /3

(1)
f (x).

Notice that when r = 1 and 3 = OE is the maximal order Picpg(OE, x) is the prin-
cipal genus subgroup of the ray class group Pic(OE, x) as defined by Hasse [Has27].
Moreover when /3(x) ≡ 0 mod OE it coincides with the classical principal genus
subgroup of Gauss.

Lemma 2.15. For any place v <∞,

Adlv G(Zv) ∩ T(Qv) = 3(1)v , Ad(lv,xv) Pr(Zv) ∩ T(Qv) = 3(1)v (x).

In particular, vol(H) = mT(Af )(3
(1)
f (x)). ut

Proposition 2.16 (Class number formula). Let T < G be a maximal torus defined
and anisotropic over Q. The volume of a K∞-invariant homogeneous toral set H =
[T(A)(l, x)] ⊂ [Pr(A)] is equal to

vol(H) =
wE

2π |O×E |[Pic(3, x) : Picpg(3, x)]

√
|D|L(1, χE)

∏
p|f

(
1−

χE(p)

p

) ∏
v<∞

[3×v : 3
×
v (x)],

where χE is the real Dirichlet character attached to the quadratic extension E/Q by
class field theory, wE is the number of roots of unity in E, and f is the conductor of the
order 3.
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Proof. Let 3×(x) := {λ ∈ 3× | λ · /3(x)− /3(x) ≡ 0 mod 3⊕r}. Using Lemma 2.15
and the short exact sequence

1→ 3×(x)\3
(1)
f (x)→ T(Q)\T(A)→ Picpg(3, x)→ 1,

we deduce that vol(H) = |Picpg(3, x)| |3×(x)|−1. Hence we can write

vol(H) =
|Pic(OE)|[Pic(3) : Pic(OE)][Pic(3, x) : Pic(3)]

[Pic(3, x) : Picpg(3, x)]|3×(x)|
. (4)

To compute the first term in the numerator of (4) we use the analytic class number formula

|Pic(OE)| =
wE

2π

√
|DE |L(1, χE),

where DE is the discriminant of OE . We evaluate the term [Pic(3) : Pic(OE)] using the
exact sequence

1→ O×E\
∏
v<∞O×Ev/

∏
v<∞3

×
v
→ Pic(3)→ Pic(OE)→ 1,

which implies, using Corollary A.5,

[Pic(3) : Pic(OE)] =
|3×|

|O×E |

∏
v<∞

[O×Ev : 3
×
v ] =

|3×|

|O×E |
f
∏
p|f

(
1−

χE(p)

p

)
.

Finally, to compute [Pic(3, x) : Pic(3)] we consider the short exact sequence

1→ 3×\
∏
v<∞3

×
v /
∏
v<∞3

×
v (x)→ Pic(3, x)→ Pic(3)→ 1

to see that

[Pic(3, x) : Pic(3)] =
|3×(x)|
|3×|

∏
v<∞

[3×v : 3
×
v (x)].

The final claim follows by combining all the formulae above with (4) and the relation
D = DEf

2. ut

3. Structure of limits of periodic measures

3.1. Invariance of limits

In the following proposition we show how the congruence assumptions at two primes for
the discriminants and torsion order imply that any weak-∗ limit must be invariant under a
split torus at two places. We also present some relevant consequences of Duke’s theorem
for SL2.
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Proposition 3.1. Let {Hi ⊂ [Pr(A)]}i be a sequence of K∞-invariant homogeneous
toral sets. Let µi be the periodic measure on Hi . Denote by Di and Ni the discriminant
and torsion order of Hi . WriteDi = Dfund

i f 2
i whereDfund

i is a fundamental discriminant
and fi is the conductor. Fix p1,p2 and assume that for all i,(

Dfund
i

p1

)
=

(
Dfund
i

p2

)
= 1, valp1(fi), valp2(fi)� 1.(1)

valp1(Ni), valp2(Ni)� 1.(2)

Then there is a pre-compact sequence {ξi}i ⊂ Pr(A) such that Hiξi isAp1×Ap2 -invariant
for all i. The sequence µi is tight and if µi

weak-∗
−−−→
i→∞

µ then there is ξ ∈ {ξi}i such that the
measure ξ∗.µ is Ap1 × Ap2 -invariant and projects to the Haar measure on [G(A)].

Proof. Write Hi in standard form as [Ti(e, xi)(li,∞,−xi)∞] ⊂ [Pr(A)ki]. The push-
forwards of µi to [G(A)] form a sequence of periodic measures on homogeneous toral
sets with volume going to infinity. A generalization of Duke’s theorem [Duk88] to ho-
mogeneous toral sets in [SL2(A)] implies that the push-forwards converge to the Haar
measure (cf. discussion in §1.1.7.2 in general or [Lin68] assuming a splitting condition at
a single prime). Because [Pr(A)] is a compact extension of [G(A)], the sequence {µi}i
is tight and a weak-∗ limit µ is necessarily a probability measure whose push-forward to
[G(A)] is the Haar measure.

Fix p ∈ {p1, p2} and i ∈ N. The assumption
(Dfund

i

p

)
= 1 implies that p splits at

E = Ei(Q) and Ti(Qp) = E(1)p is a split rank-1 torus. The local discriminant map from
the variety of split tori in G(Qp) to Q×p is proper (cf. the definition of local discriminant
in [EL+11]). Hence the assumption valp(fi) � 1 implies that there is a fixed compact
set Cp ⊂ G(Qp), independent of i, such that for all i there is some gp,i ∈ Cp satisfying
Ti(Qp) = Adgp,i Ap.

The assumption valp(Ni)� 1 implies that there is somemp ≥ 0 such that pmpxi,p ∈
V(Zp)⊕r for all i. In particular, for each i there is an element wp,i ∈ p−mpV(Zp1)

⊕r

satisfying Ad
k−1
i (e,−xi,p)

Ti(Qp) = Ad(gp,i ,wp,i )Ap.
Define ξi ∈ Pr(A) to coincide with (gp,i,wp,i) ∈ Pr(Qp) at the places p = p1, p2

and set the local component of ξi at all other places to be the identity. The sequence {ξi}i
is then contained in the compact set

∏
p∈{p1,p2}

Cp × p
−kpV(Zp)⊕r . It obviously has the

claimed properties. ut

3.2. Measure rigidity for r = 1

In this section we present the consequences of measure rigidity for higher rank diagonal-
izable actions to limits of periodic measures of homogeneous toral sets. The main theo-
rem we use from homogeneous dynamics is due to Einsiedler and Lindenstrauss [EL19].
This theorem establishes that a measure on the homogeneous space of a perfect alge-
braic group—invariant under a split torus at two places and whose push-forward to the
homogeneous space of the semisimple part is Haar—is necessarily algebraic.
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Theorem 3.2. Let µ be a probability measure on [P1(A)] such that the push-forward
of µ to [G(A)] is the Haar measure. If µ is Ap1 × Ap2 -invariant and ergodic then µ is
either the Haar measure on [P1(A)], or the periodic measure supported on [G(A)(e, y)]
for some y ∈ V(A) such that yp1 = yp2 = 0.

Corollary 3.3. For each y ∈ V(A) denote by νy the periodic measure supported on
[G(A)(e, y)] ⊂ [P1(A)]. Assume r = 1 in the setting of Proposition 3.1. Then there is a
Borel probability measure P on V(A) and c ≥ 0 such that

ξ∗.µ = (1− c)mP1 + c

∫
V(A)

νy dP(y)

and yp1 = yp2 = 0 for P-almost every y ∈ V(A).

Proof. Apply Theorem 3.2 to the Ap1 × Ap2 -ergodic decomposition of ξ∗.µ. ut

To prove Theorem 3.2 we need the following standard lemma which is an application of
Goursat’s Lemma.

Lemma 3.4. Let S be a finite set of rational places. The groups P1(QS) and SL2(QS)
contain no non-trivial closed subgroups of finite index.

Proof. Let v be any rational place. The only non-trivial normal subgroup of SL2(Qv)
isµ2(Qv) [Dic01], hence it has no non-trivial subgroups of finite index. The abelian group
V(Qv) ' Q2

v also has no non-trivial closed finite index subgroups. This is equivalent to
the statement that the Pontryagin dual of Q2

v has no closed torsion subgroups, which is
the case because Q2

v is self-dual.
We would like to deduce that P1(Qv) has no non-trivial closed subgroups of finite

index. If H0 < P1(Qv) is closed and has finite index then H0 surjects onto SL2(Qv).
Hence if ω1, . . . , ωn are representatives for the classes of P1(Qv)/H0 then there are some
h1, . . . , hn ∈ H0 so that for all i the image of ωihi in SL2(Qv) is the identity. The ele-
ments ω1h1, . . . , ωnhn are then also representatives for the classes of V(Qv)/V(Qv)∩H0.
We deduce that V(Qv) ∩H0 = V(Qv) and H0 = P1(Qv).

Finally, set H to be either SL2 or P1 and letH < H(QS) be a closed subgroup of finite
index. We prove the claim by induction on the size of S; the case of S being a singleton has
already been demonstrated. Fix v ∈ S and set G1 = H(Qv) and G2 =

∏
v 6=s∈S H(Qs).

The projection of H onG1 andG2 is a finite index subgroup, hence it is surjective by the
induction hypothesis. Write

∏
s∈S H(Qs) ' G1 × G2. Goursat’s Lemma implies that if

N1 := G1×{e} ∩H and N2 := {e}×G2 ∩H then the image ofH inG1/N1×G2/N2 is
the graph of a group isomorphism. This image is a finite index subgroup, which implies
that G1/N1 ' G2/N2 are finite groups. Because all finite index subgroups of G1 and G2
are the whole group we deduce that G1 × {e}, {e} × G2 ⊂ H and H = G1 × G2 as
claimed. ut

Proof of Theorem 3.2. Let S be any set of places for Q containing∞, p1, p2 and set

W 1
S := 0

1\P1(QS) ' P1(Q)\P
1(A)/KS, (5)
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where KS :=
∏
v 6∈S P1(Zv) and 01 := P1(Q) ∩ KS is a congruence lattice embedded

diagonally in P1(QS) =
∏
s∈S P1(Qs). The isomorphism in (5) holds because P1

=

SL2 nG×2
a has the strong approximation property. This follows from strong approxima-

tion for SL2 and Ga. Denote by µS the push-forward of the measure µ to W 1
S under the

quotient by KS . This is an Ap1 × Ap2 -invariant and ergodic probability Borel measure
on W 1

S .
There is a quotient map

W 1
S → YS := 0\SL2(QS),

where 0 := SL2
(
Q
[∏
∞6=p∈S

1
p

])
= SL2(Q) ∩

∏
v 6∈S SL2(Zv). The push-forward of µS

to YS is the Haar measure.
Apply [EL19, Theorem 1.6] to deduce that the measure µS is the algebraic measure

supported on [Lg] where L < L(QS) is a closed finite index subgroup, L < P1 is an
algebraic subgroup defined over Q, g ∈ P1(QS) and Ap1 × Ap2 < g−1Lg. Because the
push-forward of µS to YS is the Haar measure we deduce that the map from L to SL2 is
surjective.

We have a short exact sequence

1→ V ∩ L→ L→ SL2 → 1.

Hence V ∩ L is the radical of L, and SL2 is its semisimple factor. In particular, L '
SL2 n (V ∩ L) and V ∩ L is an SL2-subrepresentation of V. The only possible sub-
representations are either 0 or V itself. In the latter case L ' P1 and because P1 is
connected, this implies L = P1.

If V∩L = 0 then L ' SL2. By Lemma 2.5 the subgroup L is then conjugate to G by
an element of P1(Q)

Whether L ' G or L = P1 Lemma 3.4 implies that L = L(QS). Taking an inverse
limit over S, by a standard argument (cf. [Kha19, Proof of Theorem 4.4]) we deduce that
µ is either the Haar measure, or the periodic measure on [G(A)ξ ] for some ξ ∈ P1(A)
such that Ap < Ad−1

ξp
G(Qp) for all p ∈ {p1, p2}. Replacing ξ by (g, e)ξ for some

g ∈ G(A) we can assume without loss of generality that ξ = (e, y) for some y ∈ V(A).
The condition Ap1,2 < Ad

ξ−1
p1,2

G(Qp1,2) implies yp1 = yp2 = 0. ut

3.3. Reduction to the r = 1 case

In this section we show how Theorem 1.5 for r ≥ 2 reduces to the case of r = 1. The
proof is another application of measure rigidity for higher rank diagonal actions.

Definition 3.5. For each 0 6= m = (m1, . . . , mr) ∈ Qr define a surjective homomor-
phism πm : Pr → P1 of algebraic groups over Q by

πm(g, y1, . . . , vr) =

(
g,

r∑
k=1

mkyk

)
.
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Theorem 3.6. Let µ be a probability measure on [Pr(A)] such that for each 0 6= m ∈ Qr
the push-forward πm∗µ is the Haar measure on [P1(A)]. If µ is Ap1 ×Ap2 -invariant then
µ is the Haar measure on [Pr(A)].

Lemma 3.7. The Haar measure mP1 on [P1(A)] is Ap1 -ergodic.

Proof. Let a ∈ Ap1 be an element that generates an unbounded subgroup. The group
P1(Qp1) is topologically generated by the stable and unstable horospherical subgroups
of a. The Mautner phenomenon implies that any a-invariant vector inL2([P1(A)], mP1) is
P1(Qp1)-invariant. A standard argument using strong approximation (cf. [GMO08, Lem-
ma 3.22]) says that any P1(Qp1)-invariant vector is in C · 1. ut

Lemma 3.8. Let V0 < V⊕r be a rational SL2 subrepresentation. If πm(V0) = V for all
0 6= m ∈ Qr then V0 = V⊕r .

Proof. The endomorphism ring EndG(V) is by definition ZM2(Q)(SL2(Q)) ' Q. In par-
ticular HomG(V⊕k,V) ' EndG(V)k ' Qk for any k ∈ N. The map m 7→ πm is an
injective Q-linear map from Qr to HomG(V⊕r ,V). Hence it is also an isomorphism.

The inclusion V0 < V induces a linear map

HomG(V⊕r ,V)→ HomG(V0,V).

The assumption in the claim implies that this map is injective. This implies that
dimQ HomG(V0,V) ≥ r and dimQ V0 ≥ 2r , which completes the proof. ut

Proof of Theorem 3.6. Let

µ =

∫
[Pr (A)]

µx dµ(x)

be the Ap1 × Ap2 -ergodic decomposition of µ. For any 0 6= m ∈ Qr the push-forward
by πm of the ergodic decomposition to [P1(A)] is a decomposition of the Haar measure
to Ap1 -invariant measures. The Haar measure on [P1(A)] is Ap1 -ergodic by Lemma 3.7.
This implies that for almost every x the push-forward of µx to [P1(A)] is Haar. In partic-
ular, for almost every x the push-forward of µx to [G(A)] is Haar.

By the same argument as in the proof of Theorem 3.2 we deduce that almost each µx
is the invariant measure supported on [L(A)ξ ] where L < Pr is an algebraic subgroup
defined over Q, ξ ∈ Pr(A) and L surjects onto P1 under πm for any 0 6= m ∈ Qr .
Consequently, L ' SL2 n V0 where V0 < V⊕r is an SL2-subrepresentation such that
πm(V0) = V for any m 6= 0 and Lemma 3.8 implies V0 = V⊕r . ut

Corollary 3.9. Assume Theorem 1.5 holds for r = 1. Then it holds for r > 1.

Proof. We use the notations of Theorem 1.5 and write Hi = [Ti(A)(li, xi)] where
x ∈ V⊕r(A). Consider for any 0 6= m ∈ Qr the sequence of push-forward measures
πm∗.µi . These are the periodic measures on the homogeneous toral sets

πm(Hi) = [Ti(A)(li, 〈m, xi〉)] ⊂ [P1(A)],
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where 〈m, xi〉 =
∑r
k=1mkx

i
k ∈ V(A). We would like to apply Theorem 1.5 with r = 1 to

the sequence {πm(Hi)}i ; we need to verify the strictness assumptions and the congruence
conditions (♠) and (♠♠).

The homogeneous toral set πm(Hi) has the same discriminant as Hi , in particular, its
discriminant goes to infinity and (♠) holds. To verify (♠♠) for p ∈ {p1, p2} notice first

ordHi
(xi1,f , . . . , xir,f ) = lcm

(
ordHi

(xi1,f ), . . . , ordHi
(xir,f )

)
,

ordπm(Hi )〈m, xi〉 ≤ lcd(m1, . . . , mr) lcm
(
ordHi

(xi1,f ), . . . , ordHi
(xir,f )

)
,

where lcd is the lowest common denominator. We deduce that (♠♠) holds for any fixedm.
The strictness assumption for {πm(Hi)}i follows immediately from the strictness assump-
tion for {Hi}i . The assumption that Theorem 1.5 holds for r = 1 now implies that πm,∗.µi
converges weak-∗ to mP1 .

Let µ be any weak-∗ limit point of µi . Proposition 3.1 says that µ is a probabil-
ity measure and there is some ξ ∈ Pr(A) such that ξ∗.µ is Ap1 × Ap2 -invariant. The
discussion above implies for any 0 6= m ∈ Qr that πm∗.µ is the Haar measure, hence
πm∗.ξ∗.µ = πm(ξ)∗.πm,∗.µ is also the Haar measure on [P1(A)]. Theorem 3.6 now im-
plies that ξ∗.µ is the Haar measure on [Pr(A)]; thus any weak-∗ limit point of {µi}i is the
Haar measure. ut

In view of this result we shall be interested henceforth only in homogeneous toral sets
in [P1(A)].

4. Geometric expansion of the cross-correlation

In this section we discuss the cross-correlation and its geometric expansion as a relative
trace. This is our main tool in excluding the possibility in Theorem 3.2 of concentration
on periodic orbits of G(A).

4.1. Standing assumptions

Throughout this section we fix a K∞-invariant T-homogeneous set H = [T(A)(l, x)] ⊂
[P1(A)] such that T < G is a maximal torus. We denote by µ the periodic measure on H.
In addition, we fix a G-homogeneous set [G(A)(e, y)] ⊂ [P1(A)] and denote by ν the
periodic measure supported on it.

4.2. Geometric expansion

Definition 4.1. (1) For any compactly supported bounded measurable function
f : P1(A)→ C define Kf : [P1(A)]×2

→ C by

Kf (x, y) =
∑

γ∈P1(Q)
f (x−1γy).
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Notice that for any compact subset C ⊂ P1(A) if x, y ∈ C then all summands above
vanish except perhaps for the finitely many summands corresponding to P1(Q) ∩
C supp(f )C−1. In particular, the function Kf is bounded on compact sets.

(2) For any Borel probability measures λ1, λ2 on [P1(A)] and f as above, set

Cor(λ1, λ2)[f ] :=

∫
dλ1(x)

∫
dλ2(y)Kf (x, y)

whenever the integral is defined. We will be interested exclusively in non-negative
real functions for which the integral is always defined and takes values in R ∪ {∞}.

The cross-correlation is closely related to the notion of “pair correlation” from statisti-
cal mechanics. Indeed, if B ⊂ P1(A) is a symmetric neighborhood of the identity and
f = 1B then it is immediate to see that

Cor(λ1, λ2)[f ] ≤ λ1 × λ2({(x, y) ∈ [P1(A)] | x ∈ yB}) .

Moreover, the inequality above is actually an equality if the map x 7→ xB is injective
on supp λ1 ∩ supp λ2. Classical “pair-correlation” functions can be recovered from this
definition when λ1 = λ2 and f is a suitable potential function. For us, it will be important
to work with different measures λ1, λ2 and the test function f will be the characteristic
function of a Bowen ball. Probabilistically, the cross-correlation then measures the prob-
ability that x is B-close to y when x is chosen according to the law λ1 and y is chosen
according to λ2 independently of x.

The reason the cross-correlation is useful to us is that this probabilistic quantity can
actually be studied by methods from automorphic forms. If λ1 and λ2 are periodic mea-
sures then the cross-correlation is a relative trace in disguise.

The cross-correlation between two different measures has been first introduced in
[Kha19] as a tool to establish non-accumulation of periodic orbits on intermediate mea-
sures. It was inspired by the relation between the self-correlation of a measure, the rate of
large deviations and the Kolmogorov–Sinai entropy. This connection is implicit already
in the work of Linnik [Lin68] as the translation between his basic lemma and the rate of
large deviations is essentially the geometric expansion of a relative trace.

Proposition 4.2. Fix f : P1(A)→ R≥0 measurable and compactly supported. Let µ and
ν be the periodic measures from §4.1. Then

Cor(µ, ν)[f ] = ROf (0)+
∑

[0]6=[v]∈T(Q)\V(Q)
ROf (v),

where we denote

ROf (v) :=

{∫
T×G (A) d(t, g) f ([t (l, x)]−1(e, v)g(e, y)), v 6= 0,∫
G(A) dg f ((l, x)−1g(e, y)), v = 0.
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Remark 4.3. Notice that a change of variables g 7→ l−1t−1g and t 7→ t−1 implies, for
v 6= 0,

ROf (v) =
∫

T×G (A)
d(t, g) f (g, g.y+ l−1t.v− l−1.x). (6)

Similarly,

ROf (0) =
∫

G(A)
dg f (g, g.y− l−1.x). (7)

For the proof of Proposition 4.2 we need to understand elementary properties of the group
action from the following definition.

Definition 4.4. Set M := T×G. We let M act on P1 using the left action of T on P1 and
the right action of G.

Lemma 4.5. Let γ ∈ P1(Q). Then the stabilizer subgroup for the action from Defini-
tion 4.4 is

Mγ '

{
e, γ 6∈ G(Q),
T, γ ∈ G(Q),

where in the second case the isomorphism is given by t 7→ (t, γ−1tγ ).

Proof. The stabilizer of any non-zero point of V under the G = SL2-action is a unipotent
subgroup, hence it intersects T trivially. In particular, T acts faithfully on V. The formula
for the stabilizer is an immediate computation using this fact. ut

Proof of Proposition 4.2. This is a geometric expansion of a relative trace. The situation
is rather simple because for all γ ∈ P1(Q) the stabilizers Mγ are isotropic over Q, i.e.
all γ are elliptic. In what follows the restrictive assumption that f is non-negative renders
all series absolutely convergent.

Let f0 : P1(A) → C be defined by f0(h) := f ((l, x)−1h(e, y)) and for each coset
[mQ] ∈ Mγ \M(Q) fix an arbitrary representative mQ ∈ M(Q). Then Tonelli’s theorem
for non-negative functions implies

Cor(µ, ν)[f ] =
∫
[T(A)]

dt
∫
[G(A)]

dg Kf0(t, g)

=

∑
γ∈P1(Q)

∫
[T(A)]

dt
∫
[G(A)]

dg f0(t
−1γg) =

∑
γ∈P1(Q)

∫
[M(A)]

dmf0(m
−1.γ )

=

∑
[γ ]∈T(Q)\P1(Q)/G(Q)

∑
mQ∈Mγ \M(Q)

∫
[M(A)]

dmf0(m
−1mQ.γ )

=

∑
[γ ]∈T(Q)\P1(Q)/G(Q)

∑
mQ∈Mγ \M(Q)

∫
mQF

dmf0(m
−1.γ ),

where F ⊂ M(A) is a fundamental domain for the left action of M(Q) on M(A).
Consider the inner sum above for each fixed double coset [γ ]. Notice that the func-
tion m 7→ f0(m

−1.γ ) is invariant under the action of Mγ (A) on the left. The set
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⊔
mQ∈Mγ \M(Q)mQF is a fundamental domain for the left action of Mγ (Q) on M(A).

In particular, the inner sum is a single integral over Mγ (Q)\M(A).
Because the right action of G(Q) on P1(Q) is transitive on the G-coordinate and keeps

the V-coordinate invariant, for each double coset [γ ] one can choose a representative
[γ ] = [(e, v)] with v ∈ V(Q) unique up to the action of T(Q) on V(Q). The inner
summand above is then equal to∫

Mγ (Q)\M(A)
dmf0(m

−1.γ ) = mMγ ([Mγ (A)])
∫

Mγ \M(A)
dmf0(m

−1.γ )

= mMγ ([Mγ (A)])
∫

Mγ \T×G(A)
d(t, g) f0(t

−1g, t−1.v).

If v = 0 then by Lemma 4.5 the stabilizer Mγ is the torus T embedded diagonally in
T×G and the integral above reduces to an integral over G(A). Otherwise, the stabilizer
is trivial and the integral is over T(A) × G(A). In both cases, the measure of [Mγ (A)]
is 1 in our normalization. The claim follows by substituting the definition of f0. ut

4.3. The trivial orbital integral

The following proposition shows that the contribution of the [0] relative orbital integral
eventually vanishes in any strict sequence of K∞-invariant homogeneous toral sets.

Proposition 4.6. Fix f : P1(A)→ R≥0 measurable and supported on BG×BV for some
compact subsets BG ⊂ G(A) and BV ⊂ V(A). If

l−1.x 6∈ −BV + BG.y ⊂ V(A)

then ROf (0) = 0.

Proof. Consider formula (7) for ROf (0). If (l, x) satisfies the condition in the claim then
(g, g.y− l−1.x) 6∈ supp f for any g ∈ G(A). ut

4.4. Decomposition of orbital integrals

The following definition is slightly non-standard.

Definition 4.7. A compactly supported f : P1(A) → R≥0 is a standard test function if
f =

∏
v fv where fv : P1(Qv)→ R≥0 is compactly supported for all v and fv = 1P1(Zv)

for almost all v. Denote also ff =
∏
v<∞ fv : P1(Af )→ R≥0.

Lemma 4.8. Let f be a standard test function. The relative orbital integral of v 6= 0
decomposes as a product of an archimedean contribution and a finite one in the following
way:
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ROf (v) = ROf (v)∞ ROf (v)f ,

ROf (v)∞ :=
∫

T×G (R)
d(t, g)f ([t (l∞, 0)]−1(e, v)g(e, y∞))

=

∫
K∞×G(R)

d(k, g)f (k(l∞, 0)−1(e, v)g(e, y∞))

=

∫
K∞×G(R)

d(k, g)f (g, g.y∞ + kl−1
∞ .v),

ROf (v)f :=
∫

T×G (Af )
d(t, g)f ([t (lf , xf )]−1(e, v)g(e, yf ))

=

∫
T×G (Af )

d(t, g)f (g, g.yf + l−1
f t.v− l−1

f .xf ).

Proof. The decomposition follows from the product structure of the Haar measures on
G(A) and T(A). The explicit formulae are derived in the same manner as (6) and (7). ut

4.5. The archimedean orbital integral

We compute a simple bound on the archimedean contribution.

Proposition 4.9. Let f =
∏
v fv be a standard test function with archimedean fac-

tor f∞. Fix left K∞-invariant compact subsets BG,∞ ⊂ G(R) and BV,∞ ⊂ V(R) and
set B∞ = BG,∞ × BV,∞ ⊂ P1(R). Assume f∞ = 1B∞ . Then

ROf (v)∞ ≤ mG(R)
(
(e, y∞) · B−1

∞ B∞ · (e,−y∞)
)
.

Moreover ROf (v)∞ vanishes unless

l−1
∞ .v ∈ BV,∞ − BG,∞.y∞.

Proof. The vanishing condition follows from the formula in Lemma 4.8 and by examin-
ing the support of f∞. Assume henceforth ROf (v)∞ 6= 0. It follows that there is some
b ∈ K∞B∞ = B∞ and g0 ∈ G(R) such that (l∞, 0)−1(e, v)g0(e, y∞) = b.

Using the K∞-invariance we deduce

ROf (v)∞ =
∫
K∞×G(R)

d(k, g) f (k(l∞, 0)−1(e, v)g(e, y∞))

=

∫
G(R)

dg f (b(e,−y∞)g−1
0 g(e, y∞)) =

∫
G(R)

dg f (b(e,−y∞)g(e, y∞))

= mG(R)
(
(e, y∞)b−1B∞(e,−y∞)

)
≤ mG(R)

(
(e, y∞) · B−1

∞ B∞ · (e,−y∞)
)
.

ut

Definition 4.10. Denote by ‖•‖2 the standard Euclidean norm on V(R2) = R2. This
is the unique inner product norm that is K∞-invariant and such that the covolume of
V(Z) = Z2 in V(R2) is 1.
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For any RG, RV ≥ 0 we use the following notations for the open balls around the
identity:

BG,∞(RG) := K∞

{
exp

(
H

(
1/2 0
0 −1/2

)) ∣∣∣∣ |H | < RG

}
K∞,

BV,∞(RV ) := {w∞ ∈ V(R) | ‖w∞‖2 < Rv}.

Corollary 4.11. In the setting of Proposition 4.9 with BG,∞ = BG,∞(RG) and BV,∞ =
BV,∞(RV ) for some RG, RV ≥ 0, if ROf (v) 6= 0 then

max {exp(−RG/2)‖y∞‖2 − RV , 0} < ‖l−1
∞ .v‖2 < exp(RG/2)‖y∞‖2 + RV .

Proof. This follows from the condition l−1
∞ .v ∈ BV,∞ − BG,∞.y∞ in Proposition 4.9

above. The set BV,∞ − BG,∞.y∞ is easy to write down explicitly with this choice
of BG,∞ and BV,∞—it is an annulus centered at the origin with outer radius equal to
exp(RG/2)‖y∞‖2 + RV and inner radius max {exp(−RG/2)‖y∞‖2 − RV , 0}. ut

4.6. The non-archimedean contribution

4.6.1. Bowen balls. Our test function at a non-archimedean place will be the character-
istic function of a homogeneous Bowen ball.

Definition 4.12. Let p be a rational prime and denote by Ap < G(Qp) the standard
diagonal subgroup. Fix a ∈ Ap a generator of Ap/A◦p ' Z where A◦p < Ap is the
maximal compact open subgroup. Let τ > 0 be an integer.

Let H be either G,V or P1 and define the H(Zp) Bowen ball of level 2τ to be

H(Zp)(−τ,τ ) :=
τ⋂

k=−τ

akH(Zp)a−k.

Notice that the definition above does not depend on the specific choice of the genera-
tor a. Moreover the subgroup G(Zp)(−τ,τ ) stabilizes the Zp-lattice V(Zp)(−τ,τ ) under the
standard action of G on V.

Lemma 4.13. Let v be a finite rational place. Recall from Lemma 2.15 that 3(1)v (x) =
Ad(lv,xv) P1(Zv) ∩ T(Qv). If Ad(lv,xv)−1 T(Qv) = A(Qv) then a direct verification shows
that

3(1)v (x)(lv, xv)P
1(Zv)(−τ,τ ) = (lv, xv)P1(Zv)(−τ,τ )

for all n. ut

Lemma 4.14. Let v <∞ and assume Ad(lv,xv)−1 T(Qv) = A(Qv), in particular, v splits
in E. If p is the rational prime associated to v write p = π πσ ∈ Ev =

∏
w|v Ew where

π, πσ are uniformizers of Ew for w | v. For any n ∈ Z≥0,

v(lv.V(Zv)(−τ,τ )) =
τ⋂

k=−τ

πk

πσ k
3v ⊂ 3v,

v(Adlv G(Zv)(−τ,τ )) =
τ⋂

k=−τ

End
(
πk

πσ k
3v

)
⊂ End(3v).

Proof. Follows directly from Definition 2.13. ut
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Proposition 4.15. Assume Ad(lp1 ,xp1 )
−1 T(Qp1) = A(Qp1). Let f = f∞ ·

∏
v<∞ 1Bv

where Bv = P1(Zv) for all v 6∈ {∞, p1} and Bp1 = P1(Zp1)
(−τ,τ ) for a fixed τ > 0. De-

note Bf =
∏
v<∞ Bv and write Bf = BGf n BV,f . The compact groups BG,f < G(Af )

and BV,f < V(Af ) are products of the standard maximal subgroups at all places ex-
cept p1 and a Bowen ball of level 2τ at p1.

Define the following 3(1)f (x)-invariant compact open subset of V(Af ):

BV,f (x, y) := xf + lf .(BV,f − BG,f .yf ).

Then the cross-correlation is given by the following counting formula:

Cor(µ, ν)[f ] = ROf (0)+ vol([T(A)(l, x)])−1mG(Af )(Ad(e,yf ) Bf )

·

∑
[0]6=[v]∈T(Q)\V(Q)

ROf (v)∞ · #{[t] ∈ T(Af )/3(1)f (x) | t−1.v ∈ BV,f (x, y)}.

Proof. The function t 7→ f ([t (lf , xf )]−1(e, v)g(e, yf )) is 3(1)f (x)-invariant for all g in
G(Af ), hence by Fubini

ROf (v)f = mT(Af )(3
(1)
f (x))

∑
[t]∈T(Af )/3(1)f (x)

RO(v, t),

RO(v, t) :=
∫

G(Af )
f ([t (lf , xf )]−1(e, v)g(e, yf )),

where in the sum on the right we can pick an arbitrary representative of each class [t].
Consider a single summand RO(v, t) and denote L = t (lf , xf ), R = (e, yf ). The

integrand is the characteristic function of LBfR−1. For the integral not to vanish there
must exist some g0 ∈ LBfR

−1. This condition is equivalent to t−1.v ∈ BV,f (x, y). As-
sume this condition holds. Then because Bf is a group, the change of variable g 7→ g−1

0 g

implies
RO(v, t) = mG(Af )(RBfR

−1). ut

5. Orbit space for the action of a torus on the unipotent radical

In this section we continue to consider a fixed K∞-invariant T-homogeneous set
[T(A)(l, x)] ⊂ [P1(A)] for T < G defined and anisotropic over Q. Our aim is to describe
the orbit space 3(1)f (x)\V(Af ) using fractional 3-ideals with level structure associated
to x.

Recall from §2.5.1 that we have constructed a linear isomorphism A : V(A) → AE
that maps V(Q) to E and lv.Zv to 3v for all v < ∞. Moreover, this isomorphism is
equivariant with respect to the action of T(AE) = A(1)E on both sides.

Definition 5.1. (1) Define
J (3, x) := A×E,f /3×f (x).

Notice that J (3, x) depends only on the class of /3(x) modulo 3.
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(2) For x = 0 we denote J (3) := J (3, 0) which we identify with the set of invertible
fractional 3-ideals through the map

J (3) 3 (αv3×v )v<∞ 7→
⋂
v<∞

αv3v ⊂ E.

(3) For any rational place v <∞ we define ‖ • ‖v : Ev → Z by writing Ev '
∏
w|v Ew

and setting
‖(αw)w|v‖v =

∏
w|v

|αw|w,

where we normalize | • |w so that the absolute value of a uniformizer in OEw is
reciprocal to the size of the residue field of Ew.

(4) For each x ∈ AE there is a finite-to-one quotient map J (3, x) → J (3). It is
natural to consider J (3, x) as the invertible fractional 3-ideals with level structure
associated to /3(x) ∈ E/3. We define for each a ∈ J (3, x) the norm Nr a to be the
norm of the fractional 3-ideal associated to a via the map J (3, x) → J (3). This
norm coincides with the adelic character

Nr((αv3×v (x))v<∞) =
∏
v<∞

‖αv‖
−1
v .

(5) We use the notation a 7→ [a] for the quotient map

J (3, x) = A×E,f /3×f (x)→ E×\A
×

E,f /3×f (x) = Pic(3, x).

Definition 5.2. (1) Define

V(Af )accessible := T(Af ).V(Q) ⊂ V(Af ),
V(Af )×accessible := V(Af )accessible \ {0}.

Notice that

A(V(Af )accessible) = E · A(1)E,f , A(V(Af )×accessible) = E
×
· A(1)E,f .

In particular, if an element of V(Af )accessible is zero at some place v then it vanishes
globally.

(2) Define the map inv : V(Af )×accessible → J (3, x) by

inv(wf ) := A(wf ) mod 3×f (x).

Recall that the subgroup Picpg(3, x) < Pic(3, x) was defined in Definition 2.14 as the
image of A(1)E,f in Pic(3, x).

Lemma 5.3. All wf = (wv)v<∞ ∈ V(Af )×accessible satisfy [inv(wf )] ∈ Picpg(3, x).
Moreover, for any place v <∞,

Nr(inv(wf )) = Nr(v(wv)),

where the norm map on the right-hand side is the local norm Ev → Qv . In particular, the
claim implies Nr(v(wv)) ∈ Q.
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Proof. The first claim follows immediately from Definition 5.2. For the second part write
A(wf ) = c(αv)v with c ∈ E× and αv ∈ E

(1)
v for all v <∞. The product formula for E

and the fact Nrαv = 1 imply

Nr(inv(wf )) =
∏
v<∞

‖cαv‖
−1
v =

∏
v<∞

‖c‖−1
v = Nr c = Nr(cαv) = Nr(v(wv))

as claimed. ut

Proposition 5.4. The invariant map inv : V(Af )×accessible → J (3, x) separates the
3
(1)
f (x)-orbits.

Proof. On account of the isomorphism A the claim is equivalent to the following as-
sertion. For any c, c′ ∈ E× and (αv)v<∞, (α′v)v<∞ ∈ A(1)E,f , if cf = c(αv)v<∞ and

c′f = c
′(α′v)v<∞ satisfy c′f ∈ cf3

×

f (x) then c′f ∈ cf3
(1)
f (x).

Assume now c′f ∈ cf3
×

f (x) and write c′α′v = cαvkv for some kv ∈ 3×v (x) for all
v < ∞. Because the reciprocal of the norm of an element in E× coincides with the
restriction of the adelic character on A×E,f to E×, we have Nr c = Nr c′. Hence

kv =
c′

c

α′v

αv

is a norm-1 element for all v <∞ as claimed. ut

Remark 5.5. The image in J (3, x) of the invariant map is exactly all elements a in
J (3, x) such that [a] ∈ Picpg(3, x).

The following proposition shows how to compute the norm of an element in J (3, x)
using the archimedean place.

Proposition 5.6. Let wf = tf v ∈ V(Af )×accessible where tf ∈ T(Af ) and v ∈ V(Q). Then

Nr(inv(wf )) =
√
|D| ‖l−1

∞ .v‖
2
2,

where the norm on the right-hand side is the usual Euclidean norm on V(R) = R2.

Proof. Write Af (w) = c(αv)v where c =  (v) ∈ E and αv = v(tv) ∈ E
(1)
v for

all v < ∞. The proof of Lemma 5.3 implies that Nr(inv(wf )) = Nr c = Nr(∞(v)).
Consider the composite map

S : R2
= V(R) l∞

−→ V(R)
∞
−→ C.

This is a linear isomorphism over R that intertwines the K∞-action on the left-hand side
with multiplication by ∞(E

(1)
∞ ) = C(1) on the right-hand side. In particular, S is a Eu-

clidean similitude and we deduce that

Nr(inv(wf )) = Nr(∞(v)) = Nr(S(l−1
∞ v)) = S S∗ ‖l−1

∞ .v‖
2
2,
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where S S∗ is a scalar because S is a similitude. This scalar is non-negative because both
the field norm of an imaginary quadratic field and the Euclidean norm on R2 are positive
functions.

To show that S S∗ =
√
|D| we use the equality

(S S∗ )2 = det S S∗ = |det S|2, so S S∗ = |det S|.

The map ∞ maps the lattice
⋂
v<∞ lv.Zv to 3. Because lv ∈ SL2(Qv) for all v < ∞,

we can check locally that the lattice
⋂
v<∞ lv.Zv ⊂ V(Q) ⊂ V(R) is unimodular. As

l∞ ∈ SL2(R), the map S sends the unimodular lattice l−1
∞ .(

⋂
v<∞ lv.Zv) to the lattice 3

of covolume
√
|D|. Hence |det S| =

√
|D| as required. ut

6. The subconvex bound

In this section we tie the different threads of the proof together. Using the previous two
sections we rewrite the cross-correlation as a sum over 3-ideals with level structure that
are integral in an appropriate sense. This sum is then controlled using the subconvex
bound of Duke, Friedlander and Iwaniec [DFI02].

As in §4.1, we fix a K∞-invariant T-homogeneous set H = [T(A)(l, x)] such that
T < G is a maximal torus. We denote by µ the periodic measure on H. In addition, we
fix a G-homogeneous set [G(A)(e, y)] and denote by ν the periodic measure supported
on it.

We are now in a position to rewrite the geometric expansion as presented in Proposi-
tion 4.15 using the orbit space developed in §5.

Definition 6.1. Let τ ∈ Z≥0 and RV , RG > 0. A Bowen ball test function f =

fτ,RG,RV : P1(A)→ R>0 is a function of the form f =
∏
v fv where

∀v 6= ∞, p1 : fv = 1P1(Zv), fp1 = 1P1(Zp1 )
(−τ,τ ) , f∞ = 1BG,∞(RG) · 1BV,∞(RV ).

Here P1(Zp1)
(−τ,τ ) is the Bowen ball as defined in Definition 4.12, and BG,∞(RG) and

BV,∞(RV ) are the open balls around the identity from Definition 4.10.

Proposition 6.2. Let f = fτ,RG,RV = 1B be a Bowen ball test function. If τ > 0 then
assume in addition yp1 = 0 and

(lp1 , xp1)
−1T(Qp1)(lp1 , xp1) = A(Qp1).

In particular, xp1 = 0 if τ > 0. Set

Xmin = max {exp(−RG/2)‖y∞‖2 − RV , 0}, Xmax = exp(RG/2)‖y∞‖2 + RV .

Then the cross-correlation is bounded above by

Cor(µ, ν)[f ] ≤ ROf (0)+ vol([T(A)(l, x)])−1mG(A)(Ad(e,y)(B−1B))

·

√
|D|X2

max∑
N=
√
|D|X2

min

∣∣∣∣{J (3, x) 3 a ⊂ 3f (x, y)
∣∣∣∣ Nr a = N
[a] ∈ Picpg(3, x)

}∣∣∣∣,
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where

3f (x, y) :=
∏
v<∞

3v(x, y),

∀v 6= ∞, p1 : 3v(x, y) = v(xv)+3v − Aut1(3v).v(lv.yv),

3p1(x, y) =
{
p1(xp1)+3p1 − Aut1(3p1).p1(lp1 .yp1), τ = 0,⋂τ
k=−τ

πk

πσ k3p1 , τ > 0,

where π is a uniformizer of Ep for p1 = p pσ .

Proof. Recall from Proposition 4.15 the definitionBV,f (x, y)=xf+lf .(BV,f−BG,f .yf )
⊂ V(Af ) where BG,f n BVf is the support of

∏
v<∞ fv . By definition BV,f =∏

v 6=∞,p1
V(Zv) × V(Zp1)

(−τ,τ ). Using Lemma 4.14 we deduce that A(BV,f (x, y)) =
3f (x, y).

The claim then follows by rewriting the summation in Proposition 4.15 as a sum
over 3(1)f (x)\V(Af )×accessible and translating it to a sum over J (3, x) using the invariant
map of Definition 5.2 in conjunction with Lemma 5.3, Proposition 5.4, Proposition 4.9,
Corollary 4.11 and Proposition 5.6. ut

Definition 6.3. For any unitary character χ : Pic(3, x) → C× define the meromorphic
function

L3(x,y)(s, χ) =
∑

J (3,x)3a⊂3f (x,y)

χ(a)

(Nr a)s
.

Because χ is multiplicative, and J (3, x) and3f (x, y) split into products of local factors,
the function L3(x,y)(s, χ) has a formal Euler product

L3(x,y)(s, χ) =
∏
v<∞

∑
E×v /3

×
v (x)3αv⊂3v(x,y)

χ(αv)‖αv‖
s
v.

For almost all places v < ∞ the Euler factor coincides with the Euler factor at v of
the Hecke L-function L(s, χ) with Grossencharakter χ . This happens in particular when
v 6= p1, 3v = OEv and xv, yv ∈ OEv . The other Euler factors are non-vanishing holo-
morphic functions for <s > 0 as seen in the Appendix. Hence L3(x,y)(s, χ) is mero-
morphic for <s > 0. It is holomorphic if χ 6= 1 and has a single simple pole at s = 1
otherwise.

Remark 6.4. Proposition A.6 implies that the L-function L3(x,y) is an L-series of the
form ∑

n∈ 1
(ordH(x) ordH(l.y))2

Z

an

ns
.

The non-integral denominators arise due to the fact that whenever either xv 6∈ OEv or
yv 6∈ OEv then3v(x, y) 6⊂ OEv . One could easily convert this to a standard L-series with
an integral summation range by multiplying by (ordH(x) ordH(l.y))2s . Yet this trans-
formation is unnecessary as all the arguments we employ using the Perron formula are
evidently also valid for L-series with non-integral summands.
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Definition 6.5. Fix a smooth function ϕ(x, α) : R × [0, 1) → [0, 1] such that for all
α ∈ [0, 1),

(1) ϕ(x, α) is a compactly supported function of x,
(2) ϕ(x, α) ≥ 1[α,1](x),
(3)

∫
R ϕ(x, α) dx � 1− α.

For any 0 ≤ α < 1 we denote the Mellin transform of ϕα(x, α) in the x variable by
Mϕ(s, α).

Remark 6.6. An explicit construction is

ϕ(x, α) = η

(
x − α

1− α

)
,

where η : R→ [0, 1] is any smooth compactly supported function satisfying η ≥ 1[0,1].

Remark 6.7. For any 0 ≤ α < 1, because ϕ(·, α) is smooth and compactly supported,
the Mellin transform Mϕ(s, α) decays faster than any polynomial in the vertical direction
uniformly in any vertical strip a ≤ <s ≤ b. Moreover, as ϕ(x, α) is a smooth function of
two variables, the decay rate depends continuously on α.

Proposition 6.8. In the setting of Proposition 6.2 the following inequality holds for any
c > 1:

Cor(µ, ν)[f ] ≤ ROf (0)+
vol([T(A)(l, x)])−1mG(A)(Ad(e,y)(B−1B))

[Pic(3, x) : Picpg(3, x)]

·

∑
χ∈Picpg(3,x)⊥

1
2πi

∫ c+i∞

c−i∞

L3(x,y)(s, χ)Mϕ

(
s,

(
Xmin

Xmax

)2)
(
√
|D|X2

max)
s ds.

Proof. Denote α = (Xmin/Xmax)
2. We first apply an elementary transformation∑

J (3,x)3a⊂3f (x,y)
√
|D|X2

min≤Nra≤
√
|D|X2

max
[a]∈Picpg(3,x)

1 ≤
∑

J (3,x)3a⊂3f (x,y)
[a]∈Picpg(3,x)

ϕ

(
Nr a

√
|D|X2

max
, α

)

= [Pic(3, x) : Picpg(3, x)]−1
∑

χ∈Picpg(3,x)⊥

∑
J (3,x)3a⊂3f (x,y)

χ(a)ϕ

(
Nr a

√
|D|X2

max
, α

)
.

(8)

The following is a smoothed version of Perron’s formula which holds in our case because
L3(x,y)(s, χ) is meromorphic with at most a single simple pole at s = 1: for all Y > 0,∑

J (3,x)3a⊂3f (x,y)
χ(a)ϕ

(
Nr a
Y
, α

)
=

1
2πi

∫ c+i∞

c−i∞

L3(x,y)(s, χ)Mϕ(s, α)Y s ds.

The claim follows by applying Perron’s formula to each summand in (8). ut
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We are now prepared to establish the main bound from which all our results follow. The
most important aspect is that the main term of the correlation, which we denote by MT,
decays as p−2τ

1 for large τ . This is exactly the behavior we expect if we replace µ by the
Haar measure m, because then the correlation is comparable to the volume of a p1-adic
tube of width p−τ1 around the fixed periodic G-orbit. Because G is of codimension 2 in P1,
the Haar volume of such a tube should be proportional to p−2τ

1 . Most of the work goes into
showing that the main term dominates the error term which we denote by ST. It is here
that the subconvex bound plays a crucial role. There is a technical difficulty because the
L-functions that appear in the pertinent counting problem, L3(x,y)(s, χ), differ from the
canonical class group L-functions in finitely many Euler terms. Because the number of
differing terms is not uniformly bounded, we also need to show that this local contribution
to the error term is negligible. This calculation is done in the Appendix.

Theorem 6.9. Let f = fτ,RG,RV = 1B be a Bowen ball test function. If τ > 0 then
assume in addition yp1 = 0 and

(lp1 , xp1)
−1T(Qp1)(lp1 , xp1) = Ap1 .

In particular, if τ > 0 then xp1 = 0 and valp1(f ) = 1. Set

Xmin = max {exp(−RG/2)‖y∞‖2 − RV , 0}, Xmax = exp(RG/2)‖y∞‖2 + RV .

Then there is an explicit computable constant δ > 0 and a continuous function
8 : [0, 1)→ R such that

Cor(µ, ν)[f ] − ROf (0)� mG(A)(Ad(e,y)(B−1B)) ordH(l.y)2(MT+ ST),

where

MT := (X2
max −X

2
min)p

−2τ
1 ,

|ST| �ε 8

((
Xmin

Xmax

)2)
(f ordH(l.y))ε|D|−δ+εXmax p

−τ
1

·

(
ordH(x)

gcd(ordH(x), f )

)−1/4−δ+ε

.

Remark 6.10. Because ordH(l.y) is the order of lf .yf in V(Af )/ lf .V(Ẑ), it is also the
torsion order of yf in V(Af )/V(Ẑ). In particular, ordH(l.y) depends only on y and not
on the homogeneous toral set H or its datum l.

Remark 6.11. The dependence on ε is ineffective due to the application of Siegel’s lower
bound for L(1, χE).

Remark 6.12. The constant δ > 0 is the best known constant for subconvexity of GL2
L-functions in the level aspect. A positive value of δ has been originally established by
[DFI02] and δ = 1/4 would follow from the Lindelöf Hypothesis for these L-functions.
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The classical convexity bound provides δ = 0 and would suffice for our needs as long as
there is some η > 0 such that(

ordH(x)
gcd(ordH(x), f )

)
� |D|η.

This is the case, in particular, for the joint equidistribution problem studied by Aka, Ein-
siedler and Shapira [AES16b] whenever D is fundamental.

For the proof we will need the following upper bound from principal genus theory.

Lemma 6.13.
[Pic(3, x) : Picpg(3, x)] � 4ω(f ordH(x)).

Proof. We shall compute the index using Pontryagin duality:

[Pic(3, x) : Picpg(3, x)] = |Picpg(3, x)⊥|.

The commutative diagram

E(1)\A(1)E E×\A×E

Picpg(3, x) Pic(3, x)

implies that any character in Picpg(3, x)⊥ = ker[ ̂Pic(3, x) → ̂Picpg(3, x)] defines a
character of E×\A×E vanishing on E(1)\A(1)E . Hilbert’s Satz 90 implies that any such
character is real valued, hence Picpg(3, x)⊥ is a 2-torsion group.

Global class field theory and the Hasse norm theorem provide an exact sequence

1→ E(1)\A
(1)
E → E×\A

×

E
Nr
−→ Q×\A

× χE
−→ {±1} → 1.

This sequence descends to an exact sequence

1→ Picpg(3, x)→ Pic(3, x)
Nr
−→ Q×\A

×
/R>0

∏
v<∞ Nr3×v (x)

χE
−→ {±1} → 1

and a dual exact sequence

1← ̂Picpg(3, x)← ̂Pic(3, x)
N̂r
←−

̂
Q×\A

×
/R>0

∏
v<∞ Nr3×v (x)

χ̂E
←− {±1} ← 1.

The exactness of the latter sequence implies that the following sequence is also exact:

1→ 〈χE〉 → 1→ Picpg(3, x)⊥→ 1, (9)

where 1 is the Pontryagin dual of Q×\A×/R>0
∏
v<∞ Nr(3×v (x)). Since Picpg(3, x)⊥

is 2-torsion and ordχE = 2 we deduce from (9) that1 is 4-torsion. Hence1 is contained
in the group of characters χ : Q×\A× → S1 with ordχ | 4 and conductor contained in
R>0

∏
v<∞ Nr3×v (x).
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For any v - f ordH(x) we have 3×v (x) = O×Ev and Ev/Qv is an unramified extension
of étale algebras. Local class field theory implies Nr(3×v (x)) = NrO×Ev = Z×v for these v.
We deduce that all χ ∈ 1 are unramified outside f ordH(x). The multiplicative structure
of idèle class group characters implies

1 ⊂
∏

p|f ordH(x)

Ẑ×p [4].

The isomorphism Z×p ' µp−1 × Zp implies Ẑ×p ' µp−1 × Qp/Zp and Ẑ×p [4] '
µp−1[4] ×Qp/Zp[4]. Using the equalities

µp−1[4] '


1, p = 2,
µ2, p ≡ 3 mod 4,
µ4, p ≡ 1 mod 4,

Qp/Zp[4] '
{

1, p 6= 2,
Z/4Z, p = 2,

and (9) we conclude

|Picpg(3, x)⊥| =
1
2
|1| ≤

1
2

∏
p|f ordH(x)

|Ẑ×p [4]| � 4ω(f ordH(x)). ut

Proof of Theorem 6.9. Denote α = (Xmin/Xmax)
2 and fix c > 1. Apply Proposition 6.8.

We need to evaluate for each χ ∈ Picpg(3, x) the integral
∫ c+i∞
c−i∞

Fχ (s) ds where the
integrand is

Fχ (s) := L3(x,y)(s, χ)Mϕ(s, α)(
√
|D|X2

max)
s .

The function Fχ (s) is meromorphic in the strip <s > 0 with at most a simple pole at
s = 1 with residue

Ress=1 Fχ (s) =Mϕ(1, α)
√
|D|X2

max Ress=1 L3(x,y)(s, χ)

� (1− α)
√
|D|X2

max Ress=1 L3(x,y)(s, χ)

=
√
|D| (X2

max −X
2
min)Ress=1 L3(x,y)(s, χ),

where we have used the property that Mϕ(1, α) =
∫
ϕ(x, α) dx � 1 − α. This

residue vanishes unless χ is trivial. We would like to shift the contour of integration
of Fχ (s) to the vertical line

∫ 1/2+i∞
1/2−i∞ using the residue theorem. In the process we

collect the potential residue at s = 1 and the contribution from the horizontal lines
limT→∞(

∫ c−iT
1/2−iT −

∫ c+iT
1/2+iT ). We argue that the horizontal contribution vanishes.

Because ϕ is smooth and compactly supported, its Mellin transform decays faster
than any polynomial in the vertical direction uniformly for 1/2 ≤ <s ≤ c. The convexity
bound for quadratic Hecke L-functions, Lemma A.2 and the trivial bound |1−p−s |−1

≥

(1+ p−<s)−1 imply that

|L3(x,y)(s, χ)| �3,x,y 1+ |=s| (10)

for any<s ≥ 1/2. Hence in the strip 1/2 ≤ <s ≤ c the function |Fχ (s)| decays uniformly
to 0 when |=s| → ∞. This implies the vanishing of the horizontal contribution.
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Next we need to evaluate each integral
∫ 1/2+i∞

1/2−i∞ Fχ (s) ds. We can bound L3(x,y) on
the critical line<s = 1/2 using the subconvexity bound of Duke, Friedlander and Iwaniec
for Hecke L-functions. If L(s, χ) is the Hecke L-function of the Grossencharakter χ then
L3(x,y) differs from L(s, χ) in only finitely many terms of the Euler product which are
evaluated explicitly in the Appendix. Specifically, Proposition A.19 implies∣∣∣∣∫ 1/2+i∞

1/2−i∞
Fχ (s) ds

∣∣∣∣�ε

∫ 1/2+i∞

1/2−i∞
|L(s, χ)Mϕ(s, α)| ds |D|1/4Xmax p

−τ
1

· ordH(l.y)2(f ordH(l.y))ε12ω(ordH(x))

· (Nr (OE : /3(x)))−1/2
∏

v|ordH(x)

[3×v : 3
×
v (x)].

Because χ is a character of Pic(3, x) = E×\A×E,f /3
×

f (x), the classical Grossen-
charakter associated to χ has conductor ideal dividing the ideal c(3×f (x)) from Lem-
ma A.18. The theta lift of χ is an SL2 modular form with level dividing |DE |Nr c(3×f (x)),
weight 1 and Nebentypus χE [Iwa97, Proposition 12.5]. The subconvex bound [DFI02,
Theorem 2.4] when χ is non-trivial and the Burgess bound [Bur63] for χ trivial imply
that there is some explicit δ > 0 such that∫ 1/2+i∞

1/2−i∞
|L(s, χ)Mϕ(s, α)| ds

� (|DE |Nr c(3×f (x)))
1/4−δ

∫ 1/2+i∞

1/2−i∞
(1+ |s|)10

|Mϕ(s, α)| ds.

We now define

8(α) :=

∫ 1/2+i∞

1/2−i∞
(1+ |s|)10

|Mϕ(s, α)| ds.

Because ϕ(x, α) is smooth and compactly supported in x for each α, the Mellin transform
Mϕ(s, α) decays faster than any polynomial on the vertical line <s = 1/2 uniformly in
α on compact sets ⊂ [0, 1). Hence the integral

∫ 1/2+i∞
1/2−i∞ (1+ |s|)

10
|Mϕ(s)| ds converges

to a finite positive constant that depends continuously on α ∈ [0, 1). Applying Lemma
A.18 to bound Nr c(3×f (x)) we deduce∣∣∣∣∫ 1/2+i∞

1/2−i∞
Fχ (s) ds

∣∣∣∣�ε 8(α)(f ordH(l.y))ε|D|1/2−δXmax p
−τ
1

· 12ω(ordH(x))(Nr (OE : /3(x)))−1/4−δ

· ordH(l.y)2
∏

v|ordH(x)

[3×v : 3
×
v (x)].

Combining these results with Proposition 6.8 and using Propositions 2.16 and A.17
we deduce the required expression

Cor(µ, ν)[f ] − ROf (0)� mG(A)(Ad(e,y)(B−1B)) ordH(l.y)2(MT+ ST),
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where

MT := (X2
max −X

2
min)p

−2τ
1 ,

|ST| �ε 8(α)(f ordH(l.y))ε[Pic(3, x) : Picpg(3, x)]L(1, χE)−1

· |D|−δXmax p
−τ
1 12ω(ordH(x))(Nr (OE : /3(x)))−1/4−δ.

To conclude the proof we need only show the correct upper bound on |ST|. Notice that
up till now all dependence on the parameter ε is effective and can be made completely
explicit. The second order term ST should be negligible compared to the main order
term MT whenever |D| → ∞ and ordH(x) → ∞. To see this we apply Siegel’s bound
to deduce L(1, χE)� |D|−ε ineffectively. This and Lemma 6.13 imply

|ST| �ε 8(α)(f ordH(l.y))ε|D|−δ+εXmax p
−τ
1 ·48ω(ordH(x))(Nr (OE : /3(x)))−1/4−δ.

(11)

We are left with bounding the dependence of the second order term on x. Recall from
Lemma A.18 that

(Nr (OE : /3(x)))−1
=

∏
v<∞

∏
w|v

min {|xw|−1
w , 1}.

Let v | ordH(x). Notice that if xv 6∈ OEv , which is always the case if 3v = OE,v , then∏
w|v min {|xw|−1

w , 1} ≤ ordH(xv)−1. If3v is non-maximal and xv ∈ OEv then necessar-
ily fvxv ∈ 3v and ordH(xv) | fv . Hence

∏
w|v

min {|xw|−1
w , 1} ≤

(
ordH(xv)

gcd(ordH(xv), fv)

)−1

for any v | ordH(x). Thus

(Nr (OE : /3(x)))−1
≤

(
ordH(x)

gcd(ordH(x), f )

)−1

and

48ω(ordH(x))(Nr (OE : /3(x)))−1/4−δ

�ε f
ε48ω(

ordH(x)
gcd(ordH(x),f ) )

(
ordH(x)

gcd(ordH(x), f )

)−1/4−δ

�ε f
ε

(
ordH(x)

gcd(ordH(x), f )

)−1/4−δ+ε

.

The claim follows by substituting this inequality into (11). ut
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7. Equidistribution of genus orbits

7.1. Equidistribution of torus orbits

Definition 7.1. For any element y ∈ V(A) denote by ordV(Af )(y) the torsion order
of the non-archimedean part yf in the torsion group V(Af )/V(Ẑ). Similarly, we let
ordV(Qp)(yp) be the torsion order of yp in V(Qp)/V(Zp). If y =

( a/b
c/d

)
is a rational

element in lowest terms then ordV(Af ) = lcm(b, d).
Recall from Remark 6.10 that for a homogeneous toral set H = [T(A)(l, x)] we have

ordH(l.y) = ordV(Af )(y) for all y ∈ V(A).

Lemma 7.2. For any prime p and yp ∈ V(Qp) with yp 6∈ V(Zp),

mG(Qp)
(
Ad(e,yp)(P

1(Zp)−1P1(Zp))
)
=

1
ordV(Qp)(yp)2(1− p−2)

mG(Qp)(P
1(Zp)).

If yp ∈ V(Zp) then

mG(Qp)
(
Ad(e,yp)(P

1(Zp)−1P1(Zp))
)
= mG(Qp)(P

1(Zp)).

Proof. The second statement is trivial while the first is a standard computation that we
include for the sake of completeness. Write ordV(Qp)(yp) = pm ≥ p. There is some
k ∈ G(Zp) such that k.pmyp =

(
1
0
)
. Computing we see

mG(Qp)
(
Ad(e,yp)(P

1(Zp)−1P1(Zp))
)
= mG(Qp)({b ∈ SL2(Zp) | b.yp − yp ∈ Z2

p})

= mG(Qp)

({
b ∈ SL2(Zp)

∣∣∣∣ bk.(1
0

)
− k.

(
1
0

)
∈ pmZ2

p

})
= mG(Qp)

({
b ∈ SL2(Zp)

∣∣∣∣ b.(1
0

)
−

(
1
0

)
∈ pmZ2

p

})
.

The last measure is inverse proportional to the index of the upper triangular unipotent
subgroup in SL2(Z/pmZ). ut

Lemma 7.3. Fix RG, RV > 0. Let B∞ = BG∞(RG) × BV,∞(RV ) ⊂ P1(R) as in Defi-
nition 4.10. Then for any y∞ ∈ V(R),

mG(R)(Ad(e,y∞)(B
−1
∞ B∞)) ≤ mG(R)(BG∞(2RG)).

Remark 7.4. With a slightly more delicate analysis it is possible to establish the better
estimate

mG(R)(Ad(e,y∞)(B
−1
∞ B∞)) ≤ mG(R)(BG∞(R

′

G)),

where

R′G = min
{
RG, log

(
1+

2 exp(RG/2)RV
‖y∞‖2

)}
.

Notice that for large ‖y∞‖2 the value of mG(R)(BG∞(R
′

G)) is proportional to ‖y∞‖−2
2 —

similarly to the p-adic case.
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Proof of Lemma 7.3. From Definition 4.10 it follows that BG∞(RG)
−1
= BG∞(RG)

and −BV,∞(RV ) = BV,∞(RV ). The triangle inequality on the hyperbolic plane implies
that BG∞(RG)BG∞(RG) = BG∞(2RG) and from the Euclidean triangle inequality we
deduce BV,∞(RV ) + BV,∞(RV ) = BV,∞(2RV ). Moreover, BG∞(RG).BV,∞(2RV ) =
BV,∞(2 exp(RG/2)RV ) and

B−1
∞ B∞ = BG∞(RG)

−1
· [BG∞(RG)× (BV∞(RV )− BV∞(RV ))]

⊂ BG∞(2RG)× BV,∞(2 exp(RG/2)RV ).

We can then write

Ad(e,y∞)(B
−1
∞ B∞)

⊂ {(b,w+ y∞ − b.y∞) | b ∈ BG∞(2RG),w ∈ BV,∞(2 exp(RG/2)RV )},

so
mG(R)(Ad(e,y∞)(B

−1
∞ B∞)) ≤ mG(R)(B(2RG, 2 exp(RG/2)RV , y∞)),

where
B(R1, R2, r) := {b ∈ BG∞(R1) | b.r− r ∈ BV,∞(R2)} ⊂ G(R).

The proof concludes by noticing that B(R1, R2, r) ⊂ BG,∞(R1) for all R1, R2 > 0 and
r ∈ R2. The more delicate estimate in the remark can be proven by evaluating the integral∫

BG,∞(R1)
1[0,R2](‖b.r− r‖2) dmG(R)(b)

using the Cartan decomposition formula for the Haar measure. ut

Corollary 7.5. Let f = fτ,RG,RV = 1B be a Bowen ball test function. If τ > 0 then
assume in addition yp1 = 0. Then for any y ∈ V(A),

mG(A)(Ad(e,y)(B−1B))� ordV(Af )(y)
−2mG(R)(BG∞(2RG))p

−4τ
1 .

Proof. From Definition 6.1 and Lemmata 7.2 and 7.3 we deduce

mG(A)(Ad(e,y)(B−1B))� mG(R)(BG∞(R
′

G))mG(Qp1 )
(P1(Zp1)

(−τ,τ ))

·

∏
p|ordV(Af )(y)

ordV(Qp)(yp)
−2(1− p−2)−1

≤ mG(R)(BG∞(R
′

G))mG(Qp1 )
(G(Zp1)

(−τ,τ )) ordV(Af )(y)
−2ζ(2).

We need only show mG(Qp1 )
(G(Zp1)

(−τ,τ ))� p−4τ
1 . This last inequality is easy to prove

using B, the Bruhat–Tits tree of SL2(Qp1). Observe that if SL2(Zp1) is the stabilizer of
the vertex x0 then SL2(Zp1)

(−τ,τ ) is the stabilizer of a path of length 4τ centered at x0.
Using the strong transitivity of the action of SL2(Qp1) on B it is easy to compute the
index

[SL2(Zp1) : SL2(Zp1)
(−τ,τ )

] = (p1 + 1)p4τ−1
1 . ut
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Proposition 7.6. Let f = fτ,RG,RV = 1B be a Bowen ball test function and let
{Hi ⊂ [P1(A)]} be a strict sequence of K∞-invariant homogeneous toral sets. If τ > 0
then assume in addition that all Hi are Ap1 -invariant. Denote by µi the periodic mea-
sure supported on Hi . Fix Q a compactly supported probability measure on V(A) and if
τ > 0 assume that yp1 = 0 for Q-almost every y. Denote by νy the periodic measure on
[G(A)(e, y)] ⊂ [P1(A)].

Set
Xmin = max {exp(−RG/2)‖y∞‖2 − RV , 0},
Xmax = exp(RG/2)‖y∞‖2 + RV .

Then

lim sup
i→∞

Cor
(
µi,

∫
νy dQ(y)

)
[f ] � mG(R)(BG∞(2RG))(X

2
max −X

2
min)p

−6τ
1 .

Proof. Using the linearity of cross-correlation observe that for all i,

Cor
(
µi,

∫
νy dQ(y)

)
[f ] =

∫
Cor(µi, νy)[f ] dQ(y).

We write Hi = [Ti(A)(li, xi)] and bound the integral over cross-correlation using Theo-
rem 6.9:∫

Cor(µi, νy)[f ] dQ(y)−
∫

ROif (0) dQ(y)

�

∫
mG(A)(Ad(e,y)(B−1B)) ordV(Af )(y)

2(MT+ ST) dQ(y), (12)

where

MT := (X2
max −X

2
min)p

−2τ
1 ,

|ST| �ε 8(α)(fi ordV(Af )(y))
ε
|Di |

−δ+εXmax p
−τ
1

(
ordHi

(xi)
gcd(ordHi

(xi), fi)

)−1/4−δ+ε

,

where Di = Dfund
i f 2

i is the discriminant of Hi and α = X2
min/X

2
max. Write supp f =

B = BG×BV where BG ⊂ G(A) and BV ⊂ V(A). From Proposition 4.6 we deduce that
ROif (0) = 0 for all y ∈ suppQ whenever li .xi 6∈ −BV + BG. suppQ. Thus because the
sequence Hi is strict,

∫
ROif (0) dQ(y) = 0 for i �suppQ,RG,RV 1.

The strictness assumption also implies that |Di | −−→i→∞ ∞. Moreover,

8(α)(ordV(Af )(y))
εXmax

is a continuous function of y, hence it is bounded on suppQ. Thus |ST| −−→
i→∞

0 uniformly
in suppQ. These facts in conjunction with (12) imply that

lim sup
i→∞

Cor
(
µi,

∫
νy dQ(y)

)
[f ]�MT

∫
mG(A)(Ad(e,y)(B−1B)) ordV(Af )(y)

2 dQ(y).

The claim follows by substituting Corollary 7.5 into the inequality above. ut
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Proof of Theorem 1.5. Due to Corollary 3.9 it is enough to consider the case r = 1. Let
{Hi ⊂ [P1(A)]} be a strict sequence of homogeneous toral sets such that the congruence
conditions (♠) and (♠♠) of Theorem 1.5 are satisfied. Denote by µi the periodic measure
supported on Hi . By Theorem 3.2 there is a pre-compact sequence {ξi}i ⊂ P1(A) such
that the periodic measure ξi.∗µi on the homogeneous toral set Hiξi isAp1×Ap2 -invariant
for all i. Let µ be any weak-∗ limit point of {µi}i . Corollary 3.3 implies that there is some
ξ ∈ {ξi}i and c ≥ 0 such that

ξ∗.µ = (1− c)mP1 + c

∫
νy dP(y), (13)

where νy is the periodic measure supported on [G(A)(e, y)] and P is a probability mea-
sure on V(A) such that yp1 = yp2 = 0 for P-almost all y. The claim will follow if we
show that c = 0.

For any τ ∈ Z≥0 and RV , RG > 0 let f = fτ,RG,RV = 1B(τ) be the Bowen ball
test function from Definition 6.1. Fix a compact set CV ⊂ V(A) large enough so that
P(CV ) > 0 and define a new compactly supported probability measure on V(A) by
conditioning on CV ,

Q(A) :=
P(CV ∩ A)
P(CV )

.

The function f is the characteristic function of an open set, hence weak-∗ convergence
and (13) imply

cP(CV )Cor
(∫

νy dQ(y),
∫
νy dQ(y)

)
[f ] ≤ Cor

(
ξ∗.µ,

∫
νy dQ(y)

)
[f ]

≤ lim sup
i→∞

Cor
(
ξi,∗.µi,

∫
νy dQ(y)

)
. (14)

We would like to apply Proposition 7.6 to the lim sup above. We need to show that the
sequence ofK∞-invariant homogeneous toral sets Hiξi is strict. It is already known to be
Ap1 -invariant. Write Hiξi = [Ti(A)(l′i, x′i)] and let D′i = D

′fund
i f ′2i be the discriminant

of the homogeneous toral set Hiξi . We compute the discriminant and torsion order of Hiξi
in terms of the discriminant and torsion order of Hi . Recall from the proof of Theorem 3.2
that ξi is non-trivial only at the places p1 and p2. This immediately implies thatDi andD′i
agree at all primes except p1, p2; the same holds for the torsion order.

At the primes p = p1, p2 we know that Hiξi is invariant under Ap. Because Ap
intersects G(Zp) in a maximal compact open subgroup ofAp we see from Definition 2.10
that the local order of Hiξi at p = p1, p2 is maximal. Hence

D′i = Di
∏

p∈{p1,p2}

p−2 valp(fi ),

where fi is the conductor of the order attached to disc(Hi). The congruence assump-
tion (♠) and the strictness condition for {Hi}i now imply that D′i −−→i→∞ ∞. The fact that
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Hiξi isAp1×Ap2 -invariant implies that the torsion order of Hiξi is 1 at the primes p1, p2
and we have

ordHiξi (x
′i) = Ni

∏
p∈{p1,p2}

p− valp(Ni ).

Again the congruence condition (♠♠) now implies ordHiξi (x
′i) −−→

i→∞
∞, hence li .x′

i

escapes from every compact set in V(A) when i → ∞ and the sequence is strict as
claimed. We conclude using Proposition 7.6 that

lim sup
i→∞

Cor
(
ξi,∗.µ,

∫
νy dQ(y)

)
�CV ,RG,RV p

−6τ
1 .

Assume for contradiction that c > 0. Then the inequality above and (14) imply

Cor
(∫

νy dQ(y),
∫
νy dQ(y)

)
[f ] �CV ,RG,RV c

−1p−6τ
1 .

Definitions 4.1 and 6.1 of the cross-correlation and the Bowen ball test function imply
immediately that∫

νy dQ(y)×
∫
νy dQ(y) ({x, y ∈ [P1(A)]2 | y ∈ xB(τ)})

≤ Cor
(∫

νy dQ(y),
∫
νy dQ(y)

)
[f ] �CV ,RG,RV c

−1p−6τ
1 , (15)

where B(τ) is the support of f . Recall from Definition 4.12 that B(τ) ⊂ P1(A) is a
Bowen ball of level 2τ for a ∈ Ap1 , where a generates Ap1/A

◦
p1
' Z. There is a

direct relation between the decay rate of Bowen balls for a as proven in (15) and the
Kolmogorov–Sinai entropy h∫ νy dQ(a). A standard adaption of [EL+09, Proposition 3.2]
to the S-arithmetic1 setting says that (15) implies

h∫ νy dQ(y)(a) ≥ 3 logp1. (16)

On the other hand, entropy is a linear function of measure, hence

h∫ νy dQ(y)(a) =
∫
hνy(a) dQ(y) ≤ 2 logp1. (17)

To prove the last inequality we use the fact that for every y ∈ V(A) with yp1 = 0 the
periodic measure is a measure of maximal entropy on the measurable dynamical system
[G(A)(e, y)] with the left action of a; and that the entropy of the periodic measure is
2 logp1. Notice that this dynamical system is isomorphic to [G(A)] with the left action
of a. This isomorphism sends the periodic measure to the Haar measure. The fact that the
Haar measure has maximal entropy and its value is 2 logp1 is a corollary of the relation
between entropy and leafwise measures in the stable direction [EL10, Theorem 7.9]. The
inconsistent inequalities (16) and (17) contradict the assumption c > 0. ut

1 This statement is closely related to the Brin–Katok theorem [BK83].
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Proof of Theorem 1.6. Let f = fτ=0,RG,RV = 1B(RG,RV ) be a Bowen ball test function
with τ = 0. Set Q to be the point mass at y. Then Proposition 7.6 implies

Cor(µ, νy)[f ] ≤ lim sup
i→∞

Cor(µi, νy)[f ] � mG(R)(BG∞(2RG))(X
2
max −X

2
min)

� mG(R)(BG∞(2RG))


2‖y∞‖22 sinh(RG)+ 4‖y∞‖2 cosh(RG/2)RV ,

‖y∞‖2 ≥ exp(RG/2)RV ,
(exp(RG/2)‖y∞‖2 + RV )2, ‖y∞‖2 < exp(RG/2)RV .

In case y∞ = 0 we are in the second case. This proves the second claimed statement.
To see that µ([G(A)(e, y)]) = 0 we first observe that

lim
(RG,RV )→0

Cor(µ, νy)[f0,RG,RV ]

mG(R)(BG∞(2RG))
= 0. (18)

Assume µ([G(A)(e, y)]) > 0. We will establish a contradiction with the fact that on
[G(A)(e, y)] the uniform νy-mass of any archimedean ball decays with the same rate
when the center is restricted to a compact set. The latter restriction is required to avoid
non-injectivity problems at the cusp.

Let C ⊂ [G(A)(e, y)] be a compact subset such that µ(C) > 0. For RG, RV �C,y 1
the quotient map2 G(A)(e, y)→ [G(A)(e, y)] is injective on G(A)(e, y) ∩ xB(RG, RV )
for all x ∈ C. The latter set contains an archimedean ball around x ∈ G(A)(e, y)
of radius �y RG. In particular, if RG, RV �C,y 1 then there is some K(y) ≥ 0
such that νy(xB(RG, RV )) ≥ mG(R)(BG,∞(K(y)RG)) for all x ∈ C. This implies, for
RG, RV �C,y 1,

Cor(µ, νy)[f0,RG,RV ] ≥

∫
C

νy
(
x(BG,∞(RG)× BV,∞(RV )

)
· P1(Ẑ)) dµ(x)

≥ µ(C)mG(R)(BG,∞(K(y)RG)).

This contradicts (18). ut

7.2. Equidistribution of genus Galois orbits
Proof of Theorem 1.2. For an imaginary quadratic extension E/Q we need to compute
the preimage of Gal(Eab/Qab) under the Artin reciprocity map E×\A×E → Gal(Eab/E).
The argument uses the following commutative diagram of class field theory:

E×\A×E Gal(Eab/E)

Gal(Qab/E)

Q×\A× Gal(Qab/Q)

Nr

2 A restriction of the quotient map P1(A)→ [P1(A)].
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where the horizontal maps are reciprocity maps, the left vertical map is the norm map,
the top right vertical map is the restriction map and the bottom right vertical map is an
inclusion. The Hasse norm theorem implies that E(1)\A(1)E is the kernel of the left vertical
map while Galois theory says that Gal(Eab/Qab) is the kernel of the right vertical map.
As the diagram commutes, the preimage of Gal(Eab/Qab) is E(1)\A(1)E .

Combining this fact with the main theorem of complex multiplication for elliptic
curves [Shi71, Theorem 5.4], we see that a genus orbit of a special point Gal(Q̄/Qab).xi
is aK∞-invariant homogeneous toral set Hi ⊂ [Pr(A)]. Proposition 2.11 implies that the
endomorphism ring of a CM elliptic curve in the genus orbit is exactly the quadratic
order from §2.5. In particular, the strictness assumption from Definition 1.1 implies
|disc(Hi)| → ∞ and the congruence condition (♠) follows from the congruence as-
sumptions in Theorem 1.2. The second part of the strictness assumption of Definition 1.4
follows from the strictness assumption of Definition 1.1 using the map /3 from §2.5.1
and the characterization of strictness using torsion order of Definition 1.4. The congru-
ence condition (♠♠) follows as well from the congruence assumptions in Theorem 1.2
using the map /3.

Theorem 1.5 for the sequence {Hi}i implies the claim. ut

Proof of Theorem 1.3. Torsion sections of E are quotients of homogeneous sets of the
form [G(A)(e, y)] where y∞ = 0 and yf ∈ V(Af ) ∩ V(Q). The claim now follows from
Theorem 1.6 by the argument in the proof of Theorem 1.2. ut

8. Joint equidistribution of points on spheres and orthogonal grids

We begin by describing the orthogonal grid construction using an intersection of two
periodic orbits in SL3(Z)\SL3(R). The benefit of this description is that it introduces the
toral action naturally.

We use the notations from the introduction (§1.3). Recall that

HD := {y ∈ Z3
primitive | 〈y, y〉 = D}.

For any y ∈ Z3 we denote by y⊥ the affine variety over Q representing the 2-dimensional
rational linear subspace orthogonal to y. Moreover, y⊥(Z) := {z ∈ Z3

| 〈z, y〉 = 0}. For
any y ∈ HD we fix an integral point y1

∈ Z3 such that 〈y1, y〉 = 1. This point is not
unique, but the coset y1

+ y⊥(Z) is uniquely defined.

Definition 8.1. Denote by 2 : SL3 → SL3 the Cartan involution g 7→ gt −1, the fixed
points of which are SO3. We use the notation g2 = gt −1 for the action of 2 on SL3. Fix
x ∈ Z3

primitive with 〈x, x〉 = D ∈ N and define

T := StabSO3(x), H := StabSL3(x), H2 := 2(H).

Notice that 2 acts trivially on T and T < H ∩ H2 . The group T is a rank-1 torus defined
over Q and anisotropic over R.
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We will study the following two periodic orbits and see how their intersection gives rise
to the orthogonal grid construction:

[SO3(R)], [ H2 (R)] ⊂ SL3(Z)\SL3(R).

We begin by discussing the orbit of the group H2 and its relation to lattice cosets in the
orthogonal plane.

8.1. The periodic orbit of the special affine group

Proposition 8.2. (1) For any y ∈ Q3 the group H2 stabilizes the affine plane y + x⊥ =
〈y, x〉x+x⊥. If 〈y, x〉 6= 0 then any affine Q-isomorphism of y+x⊥ with the standard
affine 2-plane induces an isomorphism of H2 with ASL2.

If 〈y, x〉 = 0 then the unipotent radical of H2 acts trivially on y + x⊥ = x⊥

and a linear Q-isomorphism of x⊥ with the affine 2-plane induces an isomorphism
of H2 /Ru( H2 ) with SL2.

(2) Define
H2 (Z) := SL3(Z) ∩ H2 (R).

Then H2 (Z) is a lattice in H2 (R). In particular, the set

[ H2 (R)] ⊂ SL3(Z)\SL3(R)

is a closed periodic orbit of the group H2 (R).

Proof. Notice first that for all geometric points y, z of the affine 3-space, if 〈y−z, x〉 = 0
then 〈h.y − h.z, x〉 = 〈y − z, ht .x〉 = 〈y − z, x〉 = 0 for any point of H2 ; hence the
plane y + x⊥ is H2 -stable. Assume 〈y, x〉 6= 0; we reduce to the case y = ê. There is
γ ∈ SL3(Q) such that γ.〈y, x〉x = ê. This γ then satisfies γ2 .x⊥ = ê⊥ and γ.(y+x⊥) =
ê + ê⊥. We have γHγ−1

= StabSL3(ê) and γ2 H2 γ2 −1
= Stab2

SL3
(ê). Conjugation

by γ2 intertwines the action of Stab2
SL3
(ê) on ê+ ê⊥ with the action of H2 on y+ x⊥.

We now need to show that a rational affine isomorphism of ê + ê⊥ with the affine 2-
plane induces an isomorphism of Stab2

SL3
(ê) with ASL2. This is obvious when writing

Stab2
SL3
(ê) in matrix form:

Stab2
SL3
(ê) =


∗ ∗ ∗∗ ∗ ∗

0 0 1

 .
The case of 〈y, x〉 = 0 is proven similarly by taking any γ ∈ SL2(Q) such that γ.x = ê.

For y = x the affine isomorphism can be chosen to send the lattice ASL2(Z) to
Stab2

SL3
(ê)(Z) := SL3(Z) ∩ Stab2

SL3
(ê)(R). Hence the latter is also a lattice and

Stab2
SL3
(ê)(Z)\ Stab2

SL3
(ê)(R) supports a finite Haar measure.

We can write

[ H2 (R)] = [ γ2 −1 Stab2
SL3
(ê)(R) γ2 ] = [ Stab2

SL3
(ê)(R) γ2 ] ⊂ SL3(Z)\SL3(R).
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This implies [ H2 (R)] = H2 (Z)\ H2 (R) supports a finite γ2 −1 Stab2
SL3
(ê)(R) γ2 -

invariant measure. This is a finite Haar measure on H2 (Z)\ H2 (R), proving that the
discrete subgroup H2 (Z) is a lattice. ut

Lemma 8.3. For any y, y′ ∈HD and g ∈ SL3(R), if

g.(y1
+ y⊥(Z)) = (y′)1 + y′⊥(Z)

then g ∈ SL3(Z).

Proof. Because y⊥(Z) = (y1
+ y⊥(Z)) − (y1

+ y⊥(Z)), and the same for y′, the
group element g also satisfies g.y⊥(Z) = y′⊥(Z). Fix a basis v1, v2 for y⊥(Z)
over Z. Then y1, v1, v2 span Z3 over Z. The vectors g.v1, g.v2 span y′⊥(Z) over Z and
g.y1
∈ g.(y′)1 + y′⊥(Z). Hence g.y1, g.v1, g.v2 also form a Z-basis of Z3. This implies

g.Z3
= Z3, so g ∈ SL3(Z). ut

Lemma 8.4.
H2 (Z) = Stab H2 (R)(x

1
+ x⊥(Z)).

Moreover, for any y ∈ Z3,

H2 (Z) ⊂ Stab H2 (R)(y + x
⊥(Z)).

Proof. If h ∈ H2 (Z) = H2 (R)∩SL3(Z) then h.Z3
= Z3 and h.x⊥ = x⊥; consequently,

h.x⊥(Z) = x⊥(Z). Moreover, if y ∈ Z3 then 〈h.y, x〉 = 〈y, ht .x〉 = 〈y, x〉 and h.y ∈ Z3,
hence h.y− y ∈ x⊥(Z). This implies that h.(y+ x⊥(Z)) = y+ x⊥(Z). Hence H2 (Z) ⊂
Stab H2 (R)(y + x

⊥(Z)).
The reverse inclusion for y = x1 follows from Lemma 8.3 with y = y′ = x. ut

Definition 8.5. (1) For any y, z ∈ Q3 and d > 0 denote by Ld•(y + z⊥) the space of
cosets of rank-2 Z-lattices of covolume

√
d contained in the affine space y + z⊥(R).

(2) Proposition 8.2 implies that the group H2 (R) acts transitively on the space
LD• (x1

+ x⊥). Fixing x1+ x
⊥(Z) ∈ LD• (x1

+ x⊥) as a base point we use Lemma 8.4
to construct an H2 (R)-equivariant isomorphism

H2 (Z)\ H2 (R)→ LD• (x1
+ x⊥).

(3) The map P +L 7→
(
P − x

D

)
+L is a bijection LD• (x1

+ x⊥)→ LD• (x⊥). Using this
bijection we define a sequence of H2 (R)-equivariant isomorphisms

H2 (Z)\ H2 (R)→ LD• (x1
+ x⊥)→ LD• (x⊥),

where the action of H2 (R) on LD• (x⊥) is the twisted action defined by h.(P +L) =(
h. x
D
−

x
D

)
+ h.P + h.L. In what follows we will not be using the twisted action.
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8.2. The intersection of periodic orbits

We turn to discuss the intersection of [ H2 (R)] and [SO3(R)].
Proposition 8.6.

SL3(Z)\SL3(R) ⊃ [ H2 (R)] ∩ [SO3(R)] =
⊔

y∈SO3(Z)\HD

[gx→yT(R)],

where for each y ∈HD the coset gx→yT(R) is the set of all elements in SO3(R)mapping
x to y.

Proof. Notice first that the union on the right-hand side is indeed disjoint. Two T(R)
orbits [gx→yT(R)] and [gx→y′T(R)] intersect if there are γ ∈ SL3(Z) and t, t ′ ∈ T(R)
such that

γ = gx→y t t
′−1g−1

x→y′
∈ SO3(R).

Then γ ∈ SO3(Z) and γ.y′ = y, hence SO3(Z)y = SO3(Z)y′.
We now establish that the right-hand side is contained in the left-hand side. Fix

y ∈ HD . It is obvious that [gx→yT(R)] ⊂ [SO3(R)] because gx→yT(R) ⊂ SO3(R).
Fix γ ∈ SL3(Z) such that γ2 .x = y; this is possible because x, y ∈ Z3

primitive and
SL2

3(Z) = SL3(Z). For any g ∈ gx→yT(R) note that (g−1γ )2 .x = g−1 γ2 .x = x.
Thus (g−1γ )2

∈ H(R) and g−1γ ∈ H2 (R). We conclude that g ∈ [ H2 (R)], proving
that the right side is included in the left one.

In the other direction we argue as follows. For any point SL3(Z)g ∈ [SO3(R)] that
also belongs to [ H2 (R)] there are γ ∈ SL3(Z) and h ∈ H2 (R) such that γ h = g. In
particular g.x = g2 .x = γ2 .x. Notice that γ2 .x ∈ Z3

primitive because x ∈ Z3
primitive and

γ2 ∈ SL3(Z). On the other hand 〈g.x, g.x〉 = D, hence g.x = γ2 .x ∈HD .
Any other intersection point SL3(Z)g′, g′ ∈ SO3(R), such that g′.x = g.x satisfies

g′ ∈ T(R)g. ut

Remark 8.7. A slightly more conceptual presentation of the proof is by using the fact
that the ring of regular functions on SL3 invariant under the right action of H and the left
action of SO3 is generated by the single polynomial g 7→ 〈g.x, g.x〉.

Proposition 8.8. The image of [ H2 (R)] ∩ [SO3(R)] under the isomorphism from Defi-
nition 8.5,

H2 (Z)\ H2 (R)→ LD• (x⊥),
is ⊔

y∈SO3(Z)\HD

T(R)g−1
x→y .(y

tors
+ y⊥(Z)).

where ytors
= y1

−
y
D

as in §1.3 and the action is the standard action of SO3(R) on R3.
Equivalently, the image of the intersection under the isomorphism

H2 (Z)\ H2 (R)→ LD• (x1
+ x⊥)

is ⊔
y∈SO3(Z)\HD

T(R)g−1
x→y .(y

1
+ y⊥(Z)). (19)
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Proof. We prove the second version of the claim. That the union in (19) is disjoint follows
by a computation from Lemma 8.3.

Notice that for every y ∈HD the orbit T(R)g−1
x→y .(y

1
+ y⊥(Z)) is indeed contained

in LD• (x1
+ x⊥) because

〈T(R)g−1
x→y .(y

1
+ y⊥(Z)), x〉 = 〈y1

+ y⊥(Z), gx→yT(R).x〉 = 〈y1
+ y⊥(Z), y〉 = 1.

Lemma 8.3 can be used to show that the orbit T(R)g−1
x→y .(y

1
+ y⊥(Z)) is contained in

the image of
[ H2 (R)] ∩ [SO3(R)] ↪→ H2 (Z)\ H2 (R).

We have shown that (19) is contained in the intersection. To prove that it is the whole
intersection we notice from Proposition 8.6 that the intersection is a collection of
|SO3(Z)\HD| disjoint orbits of T(R) and the same holds for (19), hence they are equal.

ut

Definition 8.9. Let gx→ê ∈ SO3(R) satisfy gx→ê.x = D1/2ê. Any element g in
SO2(R)gx→ê defines a bijection

LD• (x⊥)
g
−→ L1

•(ê
⊥)

by L + P 7→ D−1/4g.(L + P). This map depends on the specific representative g in
SO2(R)gx→ê but the induced bijection of quotients

T(R)\L
D
• (x
⊥)

g
−→ SO2(R)\L

1
•(ê
⊥)

is uniquely defined.
We denote by GD ⊂ L1

•(ê
⊥) the image of [ H2 (R)] ∩ [SO3(R)] under the composite

map
[ H2 (R)] → LD• (x1

+ x⊥)→ LD• (x⊥)→ L1
•(ê
⊥).

It is a finite collection of SO2(R)-orbits of lattice cosets in L1
•(ê
⊥). Each SO2(R)-orbit

in GD is equal to Grid(y) for some y ∈HD .

The picture emerging thus far is rather elegant. The image of [ H2 (R)] ∩ [SO3(R)] in
SO3(Z)\S2(R) ' SO3(Z)\SO3(R)/SO2(R) is D−1/2SO3(Z)\HD . Each point in HD

can be lifted to a T(R)-orbit in the intersection; the image of this orbit in SO2(R)\L1
•(ê
⊥)

is exactly Grid(x) from §1.3.

8.3. The adelic description of the intersection

The real advantage of the intersection picture is that the joint action of the Picard group,
equivalently the adelic torus T(A), on the correspondence between lattice points on the
sphere and their orthogonal grids is evident from the next proposition. In particular, it
establishes that8([ H2 (R)]∩ [SO3(R)])g∞ is the projection of aK∞-invariant homoge-
neous toral set.
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Proposition 8.10. The image of [T(A)] ⊂ SL3(Q)\SL3(A) under the quotient map

SL3(Q)\SL3(A) /SL3(Ẑ)
−−−−→ SL3(Z)\SL3(R)

is [ H2 (R)] ∩ [SO3(R)].

This proposition is the well-known statement that the primitive integral points on the
2-sphere of radius

√
D form a single toral packet (cf. [EMV13] for the case of D square-

free). For the proof we will use the Hamilton quaternions and a few preparatory lemmata.
This proof is different from the one in [EMV13]; I have preferred arguments which may
better generalize to higher rank torus orbits.

Definition 8.11. (1) Denote by B the Hamilton quaternion algebra B defined over Q.
Denote by Z ' Gm the center of B×. The group PB× := Z\B× acts faithfully by
conjugation on the traceless quaternions B0. The group PB× is exactly the group of
linear automorphisms of B0 preserving the reduced norm and its polarization which
is proportional to the trace form.

The quaternion algebra B is ramified exactly at ∞ and 2. For p > 2 there is
a group isomorphism PB×(Qp) ' PGL2(Qp) where the action of PB×(Qp) on
B0(Qp) is intertwined with the adjoint action3 of PGL2(Qp) on pgl2(Qp).

(2) Fix a Q-linear isomorphism of the traceless quaternions with the 3-dimensional Eu-
clidean space sending the quaternion norm squared to the Euclidean norm squared;
we henceforth identify these two spaces. This induces an isomorphism PB× ' SO3
over Q and a closed embedding PB× ↪→ SL3. We identify henceforth PB× with SO3
and consider it as a closed subgroup of SL3.

(3) For each prime p define KB,p = PB×(Qp) ∩ SL3(Zp). Using the identification of
PB× and SO3 the group KB,p is identified with SO3(Zp).

(4) Let B0,D be the affine variety of quaternions of norm D and trace 0. It is a homoge-
neous space for the group PB×. Denote the stabilizer of x ∈ B0,D(Q) by PB×x ' T.
Then B0,D

' PB×/PB×x .

Lemma 8.12. For any y ∈HD there is g ∈ SO3(Q) such that g.x = y.

We present two proofs. The first uses quadratic spaces and the second Galois cohomology
of tori.

First proof. Consider x⊥(Q) and y⊥(Q) as rational quadratic spaces equipped with the
restriction of the Euclidean inner product 〈 , 〉. The restriction of the norm ‖ • ‖2 to x⊥(Z)
and y⊥(Z) is in both cases a primitive integral binary quadratic form of discriminant
−D or −4D [AES16b, §4.1.2]. Hence it is a norm form of a lattice in the quadratic
field Q(

√
D). This shows that both quadratic spaces (x⊥(Q), 〈 , 〉) and (y⊥(Q), 〈 , 〉) are

isometric over Q to Q(
√
D), equipped with the trace form. By Witt’s extension theorem

there is a rational isometry of Q3 sending x⊥(Q) to y⊥(Q). We have thus constructed
an element g ∈ O3(Q) such that g.x⊥ = y⊥, hence g.x = ±y. By post-composing g

3 For this we identify the trace zero 2× 2 matrices with the Lie algebra of PGL2.
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with the reflection through the vector y we can assume g.x = y. If det g = −1 then we
post-compose it with an element h ∈ O3(R) with deth = −1 and h.y = y. Such an
element h can be constructed as follows: first construct an orientation reversing rational
isometry of y⊥(Q) (reflection through a vector), extend it using Witt’s extension theorem
to an isometry h of Q3 and if h.y = −y then compose it with the reflection through y. ut

Second proof. The points x and y are in the same SO3(Q)-orbit if the following kernel
of the map of pointed Galois cohomologies is trivial:

ker[H 1(Q,T)→ H 1(Q,SO3)] = 1.

To prove that this kernel is trivial we use the Hamilton quaternion algebra B. We need to
show that ker[H 1(Q,PB×x ) → H 1(Q,PB×)] = 1. We consider the non-faithful action
of B× on B0 by conjugation and denote the stabilizer of x by B×x .

We have the following commutative diagram with exact rows:

1 B×x B× B0,D 1

1 PB×x PB× B0,D 1

It induces a commutative diagram of pointed Galois cohomology sets with exact rows

· · · B0,D(Q) H 1(Q,B×x ) H 1(Q,B×)

· · · B0,D(Q) H 1(Q,PB×x ) H 1(Q,PB×)

Because the leftmost vertical map is the identity, the vanishing of

ker[H 1(Q,PB×x )→ H 1(Q,PB×)]

is a consequence of H 1(Q,B×x ) = 1. This last equality holds because B×x '

ResQ(
√
−D)/QGm and the Galois cohomology of this torus vanishes as it is a quasi-split

torus (its character group is a permutation module for the Galois group). ut

Lemma 8.13. For all primes p the group KB,p is a maximal compact open subgroup of
PB×(Qp). In particular, KB,2 = PB×(Q2).

Proof. Denote by O ⊂ B(Q) the Hurwitz quaternions—all quaternions such that either
all coordinates are integral or all are half-integral. This is a maximal order in B(Q), hence
for any prime p its p-adic completion Op is a maximal order in B(Qp). In coordinate
form,

Op =


{a + bi + cj + dk | a, b, c, d ∈ Z2} t

1
2 {a + bi + cj + dk | a, b, c, d ∈ Z×2 },

p = 2,
{a + bi + cj + dk | a, b, c, d ∈ Zp}, p > 2.

Denote O0
p := B0(Qp) ∩Op; we see that O0

p = Z3
p for all p.
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For p = 2 there is a unique maximal order invariant under conjugation. The claim for
p = 2 follows because the trace is also invariant for the conjugation action of PB×(Q2).

Assume p > 2. Any element M ∈M2×2(Qp) can be written as M = M − 1
2 TrM +

1
2 TrM . Because 2 is invertible in Zp we see that any maximal order O′ ⊂M2×2(Qp) sat-
isfies O′ = O′0+Zp, where O′0 is the set of traceless elements of O′. Thus StabPGL2(O′)
= StabPGL2(O′

0
). Recall that the maximal orders in M2×2(Qp) are in bijection with the

vertices of the Bruhat–Tits tree of PGL2(Qp) and the conjugation action of PGL2(Qp) on
maximal orders corresponds to the action of PGL2(Qp) on the Bruhat–Tits tree. Hence
StabPGL2(O′

0
) is the stabilizer of a vertex in the Bruhat–Tits tree which is a maximal

compact open subgroup.
The groupKB,p is by definition the stabilizer in PB×(Qp) of Z3

p = O0
p ⊆ B(Qp). Be-

cause B is unramified at p > 2, there is an isomorphism of central simple algebras B(Qp)
and M2×2(Qp). This isomorphism sends Op to some maximal order O′ ⊂ M2×2(Qp)
and KB,p to StabPGL2(O′

0
), which is a maximal compact open subgroup. ut

Lemma 8.14. For all primes p there is an element k ∈ KB,p = SO3(Zp) satisfying
k.x = y.

Proof. For p = 2 this is immediate from Lemmata 8.13 and 8.12. Assume p > 2 and fix
an isomorphism B(Qp) ' M2×2(Qp) sending the Hurwitz maximal order Op from the
proof of Lemma 8.13 to M2(Zp). Use this isomorphism to identify the former spaces and
identify PB×(Qp) with PGL2(Qp). Then KB,p = PGL2(Zp) and x, y are two points in
Op with trace 0. The assumption that x and y are primitive implies that x, y 6∈ pM2(Zp).

We abuse the notation and define tentatively PGL2 as an affine scheme over Zp using
the adjoint representation. Denote by 3y→x the closed affine subscheme of PGL2 of
group elements g such that gyg−1

= x. This scheme can be evidently defined over Zp
and

3y→x(Zp) = {k ∈ KB,p | k
−1.x = y}.

We will show next that the reduction of 3y→x modulo p is a smooth variety with a point
over Fp. Hensel’s lemma then implies that there is a point in 3y→x(Zp), finishing the
proof of the claim.

The scheme 3x→y is a torsor for the stabilizer T of x which is a torus in PGL2. We
denote reduction modulo p by an overline. The reduction of 3x→y is a torsor for the
reduction T = StabPGL2

x. Hence if 3x→y(Fp) is non-empty then 3x→y is isomorphic
to T over Fp. We then need to show that x and y are conjugate over Fp and that T is
smooth.

The elements x, y have the same norm and trace so the characteristic polynomials of
x and y are the same. We distinguish between two cases: p - D, the case of multiplicative
reduction, and p |D, the case of additive reduction.

If p |D then det x = det y = 0 but x, y 6= 0 because x, y ∈ Z3
primitive ⇒ x, y 6∈

pM2(Zp). If p - D then x, y are both regular semisimple elements in GL2(Fp). The
centralizer T of a regular semisimple element is a maximal torus, hence smooth.



Torsion points on CM elliptic curves 3001

In both cases using the Jordan normal form over the algebraic closure Fp we see
that x, y are conjugate over Fp. Assume for the moment p |D. There is a single non-
trivial nilpotent conjugacy class over Fp, the class of N :=

(
0 1
0 0

)
∈ Fp. The stabilizer

StabPGL2
N is isomorphic to Ga as it is the group of upper triangular unipotent matrices.

It is also a smooth group. To show that there is a single non-trivial nilpotent conjugacy
class over Fp we need to establish ker[H 1(Fp,StabPGL2

N) → H 1(Fp,PGL2)] = 1.
This follows from Lang’s theorem as StabPGL2

N ' Ga is smooth and connected and
H 1(Fp,StabPGL2

N) = 1. This also implies for p |D that T is conjugate to StabPGL2
N

over Fp and is smooth.
The claim that x, y are conjugate over Fp if p - D follows similarly, as Lang’s theorem

implies the vanishing of H 1(Fp,T). ut

Proof of Proposition 8.10. We first show the inclusion of the image of [T(A)] in the
intersection of the real periodic orbits. Because SO3(Af ) ∩ SL3(Ẑ) = SO3(Ẑ) and the
quadratic form x2

+y2
+z2 has class number 1 (it is the unique form in its genus), the im-

age of [SO3(A)] under the quotient map is exactly [SO3(R)]. The group H2 ' ASL2 =

P1 has strong approximation, hence the image of [ H2 (A)] under the quotient map is
[ H2 (R)]. Obviously we have [T(A)] ⊂ [ H2 (A)] ∩ [SO3(A)], hence the quotient image
of [T(A)] is contained in the intersection of the images of the last two homogeneous sets,
which is exactly [ H2 (R)] ∩ [SO3(R)].

To establish the inverse inclusion it is enough to show for every y ∈HD that

SL3(Q) · gx→yT(R) ⊂ SL3(Q) · T(A) · SO3(Ẑ).

Lemma 8.12 furnishes the existence of gQ ∈ SO3(Q) such that gQ.x = y. Using this
element we write

SL3(Q) · gx→yT(R) = SL3(Q) · T(R) · g−1
Q,f ,

where gQ,f ∈ SO3(Af ) is the diagonal embedding of g−1
Q . Lemma 8.14 implies that for

any p there is an element kp ∈ SO3(Zp) such that kp.x = y, so g−1
Q ∈ T(Qp)k−1

p . Hence

gQ,f ∈ T(Af ) · SO3(Ẑ). ut

Remark 8.15. The proposition above implies that the finite abelian group

CD := T(Q)\T(A)/T(R) · T(Af ) ∩ SO3(Ẑ)

acts simply transitively on the correspondence JD from Conjecture 1.7. Recall tht T '
Gm\ResE/QGm for some quadratic imaginary extension E/Q, and for all primes p 6= 2
the group KB,p is the projective group of units of a maximal order. This implies that CD
is a quotient of a Picard group of an order4 3 ⊂ E.

4 It is not necessarily the Picard group itself because the compact group KB,2 is all of SO3(Q2),
which is bigger than the image of the integral elements O×2 in the projective group of units. Specif-
ically, if 2 ramifies in E then CD is a quotient of Pic(3) by the order-2 group generated by the
prime above 2. Otherwise, CD = Pic(3).
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In [EMV13] it is shown that if x ∈ HD then (λ.x)⊥(Z) = λ2.x⊥(Z) for each λ ∈ CD .
This squaring of the action is evident in our description because the intersection is a
homogeneous toral set in ASL2, rather than in AGL2. The group SO3 ' PB× is of adjoint
type while SL2 is simply connected. The intersection construction provides a map T ↪→

H2 ' ASL(x1
+ x⊥). We claim that this map is the isomorphism Gm\ResE/QGm →

Res1
E/QGm defined by λ 7→ λ

λσ
which descends to a square of λ in CD . To see this

identify B0
= Lie(PB×) in the standard fashion; then the space x⊥ is spanned by the

non-trivial roots of T in Lie(PB×). In particular, T acts in x⊥ with weights λ 7→ λ
λσ

and λ 7→ λσ

λ
. The weights of T and the fact T.x = x characterize the embedding T ↪→

ASL(x1
+ x⊥). On the level of tori this embedding is seen to coincide with the map

Gm\ResE/QGm → Res1
E/QGm from above.

8.4. Adelic torus action on orthogonal grids

Our last step is to present the collection of orthogonal grids GD ⊂ L1
•(ê
⊥) as a pro-

jection of an adelic homogeneous toral set. Fix an orientation preserving rational linear
isomorphism ϕ of ê⊥ with the affine 2-space mapping the lattice ê⊥(Z) to Z2. This map
is uniquely defined up to post-composition with an element of SL2(Z). This induces a
unique isomorphism

ϕ : L1
•(ê
⊥)→ ASL2(Z)\ASL2(R)

mapping the lattice ê⊥(Z) to the identity coset on the right. To see the action of ASL2(R)
on L1

•(ê
⊥) as an action of a subgroup of SL3(R) we first define an affine isomorphism

ê⊥→ ê + ê⊥ by P 7→ P + ê. This induces a bijection

L1
•(ê
⊥)→ L1

•(ê + ê
⊥)

defined by P +L 7→ (ê+P)+L. By composing with ϕ we derive an affine isomorphism
of ê + ê⊥ with the affine 2-space. This affine isomorphism intertwines the action of the
group StabSLe (ê)

2 on ê+ ê⊥ with the action of ASL2 on the affine 2-space. In particular,
we henceforth identify ASL2 = StabSL3(ê)

2 .

Proposition 8.16. Let δ ∈ SL3(R) be any element satisfying δ.x = ê and fix g∞ in
ASL2(R) ⊂ SL3(R) such that Ad

g−1
∞ δ2

T(R) = SO2(R). Then the homogeneous toral
set

HD := [(Ad δ2 T)(A)g∞] ⊂ [ASL2(A)]

projects to ϕ(GD) ⊂ ASL2(Z)\ASL2(R). The discriminant of HD is −4D if D ≡
1, 2 mod 4 and −D if D ≡ 3 mod 4. The torsion order is D.

Remark 8.17. Notice that there is no canonically defined homogeneous toral set pro-
jecting to ϕ(GD) because only the coset ASL2

2(Z)δ is uniquely defined. Nevertheless,
all the possible homogeneous toral sets have the same projection—essentially because

ASL2
2(Z) is contained in SL3(Zp) for all primes p.
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Proof of Proposition 8.16. First notice that Adδ T< StabSL3(ê) implies Ad δ2 T<ASL2.
Because ASL2 has class number one, to compute the projection of HD to
ASL2(Z)\ASL2(R) it is enough to compute the projection of

H̃D := [ δ
2 T(A) δ2 −1g∞] = [T(A) δ2 −1g∞] ⊂ [SL3(A)]

to SL3(Z)\SL3(R). For all finite places v < ∞ we have δ2 −1
∈ SL3(Z) ⊂ SL3(Zv).

Hence the real projection of H̃D is the same as that of [T(A) δ2 −1
∞ g∞] where δ2 −1

∞

is the image of δ2 −1 in SL3(R). Yet this projection is the right translation by

g = δ2 −1
∞g∞ ∈ SL3(R)

of the real projection of [T(A)].
From Proposition 8.10 we deduce that HD projects to ([ H2 (R)] ∩ [SO3(R)])g in

SL3(Z)\SL3(R). The element g−1
∈ SL3(R) conjugates T(R) to SO2(R). Let gx→ê

in SO3(R) satisfy gx→ê.x = D1/2ê; then gx→ê also conjugates T(R) to SO2(R). This
implies that gx→êg normalizes SO2(R).

To learn what are the possibilities for gx→êg we compute NSL3(R)(SO2(R)). Because
SO2(R) is a torus with non-singular elements, ZSL3(R) SO2(R) is the maximal torus

S := exp(∗H) · SO2(R), H :=

1 0 0
0 1 0
0 0 −2

 .
The normalizer of SO2(R) is contained in the normalizer of S. The group N(S)/S is
contained in the absolute Weyl group of S. The absolute Weyl group is the permutation
group on the three absolute characters of S corresponding to the three eigenvalues. If k in
SO2(R) has eigenvalues exp(±iθ) then exp(tH)k has eigenvalues exp(t± iθ), exp(−2t).
The real group N(S)/S must keep the unique real eigenvalue exp(−2t) invariant. Hence
the only non-trivial possibility for N(S)/S is the group Z/2Z permuting exp(t ± iθ). We
deduce that if there is a non-trivial element in N(S)/S it is represented by an element
g0 ∈ SL2(R) ↪→ SL3(R) where SL2(R) is embedded in the upper left block. Such
an element should also normalize SO2(R), but SO2(R) is self-normalizing in SL2(R)
because it is maximal compact. We conclude that NSL3(R)(SO2(R)) = S.

Finally, we see that there is some λ ∈ R such that g ∈ g−1
x→ê

SO2(R) exp(λH). To
compute λ note that

exp(λH) ∈ SO3(R) δ2 −1ASL2(R), so

exp(−λH) = exp(λH)2
∈ SO3(R)δ−1 StabSL3(R)(ê), so

exp(4λ) = 〈exp(−λH).ê, exp(−λH).ê〉 = 〈δ−1.ê, δ−1.ê〉 = 〈x, x〉 = D.

Hence exp(λ) = D1/4.
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The projection ([ H2 (R)] ∩ [SO3(R)])g is a collection of SO2(R)-orbits contained in
[ASL2(R)]. To find the corresponding lattice cosets in L1

•(ê+ ê
⊥) we use Proposition 8.8

to write the projection in terms of rank-2 lattices in R3:

([ H2 (R)] ∩ [SO3(R)])g 7→
⊔

y∈SO3(Z)\HD

g−1T(R)g−1
x→y .(y

1
+ y⊥(Z))

=

⊔
y∈SO3(Z)\HD

SO2(R)(gx→yg)−1.(y1
+ y⊥(Z))

=

⊔
y∈SO3(Z)\HD

exp(−λH)SO2(R)gy→ê.(y1
+ y⊥(Z)).

We see that these lattice cosets are the rotations of the orthogonal cosets to some plane
orthogonal to ê. The element exp(−λH) acts on a plane orthogonal to ê as homothety by
the scalar exp(−λ) = D−1/4. The plane y1

+ y⊥ is equal to y/D + y⊥, thus all these
lattice cosets are rotated to the plane ê + e⊥(R) as expected. Observing the bijection
between LD• (x1

+ x⊥) and LD• (x⊥) we deduce that the projection of the homogeneous
toral set is exactly as claimed.

To compute the discriminant, notice that it depends only on the projection of the
homogeneous toral set to SL2(Z)\SL2(R) and this discriminant can be computed us-
ing Proposition 2.11. In particular, the discriminant coincides with the discriminant of a
primitive integral representative of the quadratic form 〈 , 〉 restricted to x⊥(Z). This can
be computed elementarily and shown to be equal to the claimed value [AES16b, §4.1.2].
The torsion order is D exactly because xtors is an order-D torsion point. ut

8.5. Proof of the joint equidistribution theorem

Proof of Theorem 1.10. Using the methods of [AES16b] it is enough to show that
the normalized counting measures on ϕ(GD) converge weak-∗ to the Haar measure on
ASL2(Z)\ASL2(R)whenD→∞. The joint equidistribution then follows by the joining
rigidity theorem of Einsiedler and Lindenstrauss [EL19]. The equidistribution of ϕ(GD)
is an immediate corollary of Theorem 1.5 and Proposition 8.16. ut

Appendix. Modified Hecke L-functions

Fix an imaginary quadratic field E/Q and an order 3 < OE . Denote by DE the discrim-
inant of E. Then D = DEf 2 where f ∈ N is the conductor.

This appendix is dedicated to studying theL-functions defined in Definition 6.3 which
coincide with some Hecke L-functions of the field E/Q modified at finitely many places.

A.1. Local Euler factors

Fix a non-archimedean place v and denote the residue characteristic of Qv by p. Let mv
be the additive Haar measure onEv normalized so thatm(OEv ) = 1. By abuse of notation
we will write m for mv when the rational place v is understood from the context.
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Exactly as in Definition 5.1, we extend the non-archimedean absolute value from local
fields to a norm on local étale algebras by taking the product of the absolute values of all
coordinates,

‖•‖v :=

∏
w|v

|•|w.

Whenever v is fixed by the context we may drop the v subscript in ‖•‖v . This definition
coordinates well with the change of variable formula which reads m(aB) = ‖a‖vm(B)
for any a ∈ Ev and all Borel sets B ⊆ Ev . The general change of variables formula is
g∗.m = |det g|v · m for all g ∈ EndQv (Ev). If Ev/Qv is a quadratic étale algebra then
‖pk‖v = p

−2k for all k ∈ Z.
We introduce a definition to be employed only in this appendix.

Definition A.1. For any w ∈ AE denote by ord(w) the order of the non-archimedean part
wf ∈ AE,f in the torsion group AE,f /3f .

Notice that if E and 3 are associated to a homogeneous toral set H = [T(A)(l, x)]
then ord(A(y)) = ordH(y) for all y ∈ V(A).
Fix x, y ∈ AE . We are interested in counting elements of a ∈ J (3, x) satisfying a ∈
xv +3v −Aut1(3v).yv weighted by a character χ : E×\A×E → S1. The local factor at v
is described by

L3v(x,y)(s, χ) = m(3
×
v (x))

−1
∫

xv+3v−Aut1(3v).yv
χ(z)‖z‖s−1 dm(z). (20)

The function χ : Ev → C is defined using the composition E×v ↪→ A×E
χ
−→ S1 and

extended to all of Ev by letting it vanish on non-invertible elements.
If χ = 1 we shall omit it from the notation. If yv = 0 we denote L3v(x) = L3v(x,y).

Moreover, if xv = yv = 0 then we write L3v(x,y) = L3v .
The following elementary lemma shows that each local factor is bounded in vertical

strips. This is useful when applying Perron’s formula.

Lemma A.2. For all s ∈ C and all characters χ ,

|L3v(x,y)(s, χ)| ≤ L3v(x,y)(<s).

Proof. We have

|L3v(x,y)(s)| ≤ m(3
×
v (x))

−1
∫

xv+3v−Aut1(3v).yv
|χ(z)| ·

∣∣‖z‖s−1∣∣ dm(z)

= L3v(x,y)(<s). ut

A.1.1. Structure of a non-maximal quadratic order. We assume 3v < OEv is a non-
maximal order of conductor fv . To simplify the notation we assume without loss of gen-
erality that the conductor is a power of p and write

fv = p
n.

We fix the standard set of representatives in {0, 1, . . . , pn−1
} ⊂ Z for Z/pnZ and use

them also as representatives for Zv/fvZv ' Z/pnZ.
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Lemma A.3. One has

3v = Zv + fvOEv = Z+ fvOEv =

⊔
a∈Z/fvZ

a + fvOEv ,

3×v = Z×v + fvOEv = Z× + fvOEv =

⊔
a∈Z/fvZ×

a + fvOEv .

Proof. The second equality in both statements is a corollary of weak approximation.
The first statement is proven exactly as for orders in quadratic number fields. For the

second statement the inclusion3×v ⊆ Z×v +fvOEv is immediate. For the reverse inclusion
it is enough to show that 1 + fvOEv ⊆ 3×v . This follows by writing (1 + fvα)−1

=∑
∞

k=0(−fvα)
k and noticing that 3v is closed, hence the power series converges to a

value in 3v . ut

Lemma A.4. The following formulae hold:

m(O×Ev ) = (1− p
−1)(1− χE(p)p−1) = LOEv

(1)−1,

m(3×v ) = f
−1
v (1− p−1),

m(3v) = f
−1
v .

Proof. The formula for m(O×Ev ) follows by subtracting the measure of the maximal ide-
als using the inclusion-exclusion principle. There is one maximal ideal in the inert and
ramified cases and two in the split one.

The second formula follows from Lemma A.3 in the following manner:

m(3×v ) = m(Z
×
+ fvOEv ) =

∑
a∈(Z/fvZ)×

m(a + fvOE)

=

∑
a∈(Z/fvZ)×

‖fv‖ = fv

(
1−

1
p

)
‖fv‖.

The third formula is proved in a similar manner. ut

Corollary A.5. The ratio of the volumes of the groups of units satisfies

[O×Ev : 3
×
v ] =

m(O×Ev )
m(3×v )

= fv(1− χE(p)p−1). ut

A.1.2. First properties of the local factor

Proposition A.6.

‖ord(x) ord(y)‖sL3v(x,y)(s, χ) ∈ C[[p−s]].
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Proof. Denote3v(x, y)′ := ord(x) ord(y)(xv+3v−Aut1(3v).yv). Then3v(x, y) ⊂ 3v
and

m(3×v (x))L3v(x,y)(s, χ)

=

∫
3v(x,y)′

χ

(
z

ord(x) ord(y)

)
·

∥∥∥∥ z

ord(x) ord(y)

∥∥∥∥s−1

dm
(

z

ord(x) ord(y)

)
= ‖ord(x) ord(y)‖−sχ(ord(x) ord(y))−1

∫
3v(x,y)′

χ(x)‖z‖s−1 dm(z)

∈ ‖ord(x) ord(y)‖−sC[[p−s]]. ut

The following results reduce our further work to the case where we need only evaluate
L3v(x)(s).

Proposition A.7.

|L3v(x,y)(s, χ)| ≤ ‖ord(y)‖−<s
m(3×v (ord(y)x))
m(3×v (x))

L3v(ord(y)x)(<s).

Proof. Notice first that ord(y) ·yv ∈ 3v , so xv+3v−Aut1(3v).yv ⊂ xv+ord(y)−13v .
We deduce

m(3×v (x))|L3v(x,y)(s, χ)| ≤
∫

xv+ord(y)−13v

|χ(z)| ·
∣∣‖z‖s−1∣∣ dm(z)

=

∫
ord(y)xv+3v

∥∥∥∥ z

ord(y)

∥∥∥∥<s−1

dm
(

z

ord(y)

)
= ‖ord(y)‖−<sm(3×v (ord(y)x))L3v(ord(y)x)(<s). ut

We can now evaluate the local factor when s = 1 and χ = 1.

Proposition A.8. For any x ∈ AE ,

L3v(x)(1) = (m(3
×
v (x))fv)

−1

= [3×v : 3
×
v (x)](1− p

−1)−1
·

{
(1− χE(p)p−1)−1, fv = 1,
1, fv > 1.

In particular,

L3v(x,y)(1) ≤ (m(3
×
v (x))‖ord(y)‖fv)−1

= ‖ord(y)‖−1
[3×v : 3

×
v (x)](1− p

−1)−1
·

{
(1− χE(p)p−1)−1, fv = 1,
1, fv > 1.

Proof. The first claim follows directly from (20) and Lemma A.4. The second follows
from the first and Proposition A.7. ut
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A.1.3. Local factor when xv = 0. In this section we compute L3v which coincides with
L3v(x) whenever xv ∈ 3v .

Lemma A.9. Let a ∈ Zv . Then

∫
a+fvOEv

‖z‖s−1 dm(z) =
{
‖fv‖ ‖a‖

s−1, ‖a‖ > ‖fv‖,

‖fv‖
sm(O×Ev )LOEv

(s), a = 0.

Proof. If ‖a‖ > ‖fv‖ then ‖a + x‖ = ‖a‖ for all x ∈ fvOEv , thus∫
a+fvOEv

‖z‖s−1 dm(z) =
∫
fvOEv

|a + z|s−1 dm(z) =
∫
fvOEv

‖a‖s−1 dm(z)

= ‖a‖s−1m(fvOEv ) = ‖a‖
s−1
‖fv‖.

The equality in the case a = 0 is an immediate application of the change of variable
x 7→ x/fv and (20). ut

Proposition A.10. Assume3v ( OEv is non-maximal. The local factor of L3 at v is for
all s 6= 1/2 equal to

L3v (s) =
1− f−(2s−1)

v

1− p−(2s−1) + f
−(2s−1)
v

(
1−

(
DE

p

)
1
p

)
LOEv

(s)

=
1− f−(2s−1)

v

1− p−(2s−1) +
f
−(2s−1)
v

1− p−1

LOEv
(s)

LOEv
(1)
,

while for s = 1/2,

L3v (1/2) = n+
1

1− p−1

LOEv
(1/2)

LOEv
(1)

.

Proof. We use the integral representation (20) and Lemma A.9 to write

L3v (s) = m(3
×
v )
−1
∫
fvOEv

‖z‖s−1 dm(z)

+m(3×v )
−1

∑
0 6=a∈Z/fvZ

∫
a+fvOEv

‖z‖s−1 dm(z). (21)

By Lemma A.9 and Corollary A.5 the first term on the right-hand side is equal to

m(O×Ev )
m(3×v )

f−2s
v LOEv

(s) = f−(2s−1)
v (1− χE(p)p−1)LOEv

(s).
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To evaluate the second term on the right-hand side of (21) we use Lemma A.9:

∑
0 6=a∈Z/fvZ

∫
a+fvOEv

‖z‖s−1 dm(z) =
∑

0 6=a∈Z/fvZ
‖fv‖ ‖a‖

s−1

= f−2
v

n−1∑
k=0

pn−k
(

1−
1
p

)
p−2k(s−1)

= f−1
v

(
1−

1
p

) n−1∑
k=0

p−k(2s−1)

= f−1
v

(
1−

1
p

)
1− f−(2s−1)

v

1− p−(2s−1) = m(3
×
v )

1− f−(2s−1)
v

1− p−(2s−1) .

To pass to the sum over k above we have collected all non-trivial elements of Z/fvZ
according to their p-valuation—pk . In the last equality we have used Lemma A.4. Notice
that the formula for the geometric sums only holds for s 6= 1/2 while for s = 1/2 this
sum is equal to n.

The claim follows by combining the expressions for all the summands in (21). ut

Corollary A.11.
0 < m(3×v )fvL3v (1/2) ≤ n+ 3.

Proof. Assume first 3v ( OEv . Insert the formula for LOEv
into Proposition A.10 to get

L3v (1/2) = n(1− p
−1)+

(1− p−1)(1− χE(p)p−1)

(1− p−1/2)(1− χE(p)p−1/2)
.

The same formula holds with n = 0 when 3v = OEv . The claim follows by considering
the three possible cases χE(p) = 0, 1,−1 and applying the inequality p ≥ 2. ut

A.1.4. Local factor with xv not in the order. In this section we handle the case xv 6∈ 3v .

Proposition A.12. Assume xv 6∈ 3v . Then

m(3×v (x))fvL3v(x)(s) = f
−1
v

∑
a∈Z/fvZ

∏
w|v

{
|xw + a|s−1

w , xw + a 6∈ fvOEw ,

|fv|
s−1
w

1−p−1

1−p−s , xw + a ∈ fvOEw ,

where the second option can happen only when v is split in E and at most for a single
a ∈ Z/fvZ for eachw | v. Moreover, it is impossible for the second option to happen with
the same a for both w | v.

If 3v = OEv then a simpler formula holds:

m(3×v (x))fvL3v(x)(s) =
∏
w|v

{
|xw|s−1

w , xw 6∈ OEw ,

1−p−1

1−p−s , xw ∈ OEw .

Here as well, the second option can happen only if v splits and at most for one w | v.
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Proof. Formula (20) implies

m(3×v (x))L3v(x) =
∑

a∈Z/fZ

∫
xv+a+fvOEv

‖z‖s−1 dm(z)

=

∑
a∈Z/fZ

∏
w|v

∫
fvOEw

|xw + a + zw|s−1
w dmw(zw).

The assumption xv 6∈ 3v implies xv+a 6∈ fvOEv for all a ∈ Zv , hence if xw+a ∈ fvOEw

then v must be split in E. For each a ∈ Z/fZ we consider two cases. If v is split and
xw + a ∈ fvOEw then∫
fvOEw

|xw + a + zw|s−1
w dmw(zw) =

∫
fvZv
|zw|

s−1
w dmw(zw)

=

∫
Zv
|fvzw|

s−1
w dmw(fvzw) = |fv|sw

1− p−1

1− p−s
= |fv|w|fv|

s−1
w

1− p−1

1− p−s
.

On the other hand if xw+a 6∈ fvOEw then |xw+a+zw|w = |xw+a|w for all zw ∈ fvOEw

and∫
fvOEv

|xw + a + zw|s−1
w dmw(zw) = |xw + a|s−1

w mw(fvOEw ) = |fv|w|xw + a|
s−1
w .

This and Proposition A.8 imply the first claimed formula. If xw + ai ∈ fvOEw for some
a1, a2 ∈ Z/fvZ then a1 − a2 = 0, thus the second option in the first claimed formula
can occur at most for one a ∈ Z/fvZ for each w | v. Also it cannot occur for the same
a ∈ Z/fvZ for both w | v because otherwise xv ∈ −a + fvOEv ⊂ 3v , contradicting the
assumption.

The second claimed formula is a simple specialization of the first one. ut

Corollary A.13. If v splits in E then

0 < m(3×v (x))fvL3v(x)(1/2) ≤
∏
w|v

{
|xw|

−1/2
w , xw 6∈ OEw ,

2
√
n, xw ∈ OEw .

Otherwise,

0 < m(3×v (x))fvL3v(x)(1/2) ≤
{
|xv|
−1/2
v , xv 6∈ OEv ,

4n, xv ∈ OEv .

Proof. Notice first that
1− p−1

1− p−1/2 = 1+ p−1/2 < 2.

We can deduce from Proposition A.12 that

m(3×v (x))fvL3v(x)(1/2) ≤ f
−1
v

∑
a∈Z/fvZ

∏
w|v

max {|xw + a|w, |fv|w}−1/2(1+ δxw∈OEw
),

where we have used the fact that if xw + a ∈ fvOEw then xw ∈ OEw .
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If v is split, write ‖•‖v = |•|w1 |•|w2 as usual. For this proof only, we introduce a
non-standard definition ‖•‖v = |•|w1 |•|w2 even if v is not split and denote accordingly
wi | v for i = 1, 2. If v is either inert or ramified we define |•|wi :=

√
‖•‖v . Applying

Cauchy–Schwarz to the inequality above we arrive at

m(3×v (x))fvL3v(x)(1/2) ≤
∏
w|v

(1+ δxw∈OEw
)

√
f−1
v

∑
a∈Z/fvZ

max{|xw + a|w, |fv|w}−1.

(22)

We continue by bounding the sum in (22) for each w | v independently. Fix w | v. If
xw 6∈ OEw then

f−1
v

∑
a∈Z/fvZ

max {|xw + a|w, |fv|w}−1
= |xw|−1

w .

Otherwise, we bound how many elements a ∈ Z/fvZ there exist with a fixed value
of |xw + a|w. Let a1, a2 ∈ Z/fvZ. If |xw + ai |w ≤ |fv|w for i = 1, 2 then a1 ≡

a2 mod fvOEw ⇒ a1 = a2. Thus at most one element a ∈ Z/fvZ satisfies |xw + a|w
≤ |fv|w.

Assume |xw + a1|w = |xw + a2|w = p
−k/2 > |fv|w where 0 ≤ k < 2n. The non-

archimedean triangle inequality then implies |a1−a2|w ≤ p
−k/2 and a1 ≡ a2 mod pdk/2e.

In Z/fvZ there are pn−dk/2e elements that reduce to the same element modulo pdk/2e.
Hence there are at most pn−dk/2e summands for which |xw + a|w = p−k/2. We deduce∑

a∈Z/fvZ
max {|xw + a|w, |fv|w}−1

≤

2n∑
k=0

pn−k/2pk/2 = 2npn = 2nfv.

The claim follows by substituting this bound in (22). ut

A.1.5. Local factor with Bowen level structure. Recall that in Definition 6.3 we have a
fixed prime p1 and an integer τ ≥ 0. Let v be the place corresponding to p1 and assume
v splits in E. If τ > 0 then3p1(x, y) =

⋂τ
k=−τ π

k πσ −k3p1 where π is a uniformizer of
Ew for some w | v.

Lemma A.14. Assume τ > 0. Then
τ⋂

k=−τ

πk

πσ k
3v = p

τ
1fvOEv .

Proof. The definition does not depend on the choice of uniformizer so we may as well
write v = w1w−1 and π = p ∈ Ew1 , then πσ = p ∈ Ew−1 . Use Lemma A.3 to write

τ⋂
k=−τ

πk

πσ k
3v =

τ⋂
k=−τ

⊔
a∈Z/fvZ

∏
i∈{±1}

(pika + fvp
ikOEwi

). (23)

In the intersection above consider two cosets corresponding to a ∈ Z/fvZ and −τ ≤
k ≤ τ and b ∈ Z/fvZ and −τ ≤ l ≤ τ ; without loss of generality assume k ≥ l. The
corresponding cosets can intersect only if

pk−la ≡ b mod fv and a ≡ pk−lb mod fv.
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This can happen only if either k = l and a = b, or a = b = 0. Hence only the cosets with
a = 0 can contribute to the intersection in (23) and

τ⋂
k=−τ

πk

πσ k
3v = fv

τ⋂
k=−τ

∏
i∈{±1}

fpikOEwi
= fvp

τ
1OEv . ut

If τ > 0 the local Euler factor is

L3p1 (x,y)(s, χ) = L3(−τ,τ )p1
(s, χ) := m(3×p1

)−1
∫
pτ1fvOEv

χ(z)‖z‖s−1 dz.

It is easy to express L
3
(−τ,τ )
p1

in terms of LOEv
.

Lemma A.15.

L
3
(−τ,τ )
p1

(s, χ) = χ(fvp
τ
1 )
−1(fvp1)

−2τsm(O
×

Ev
)

m(3×v )
LOEv

(s, χ).

In particular,

L
3
(−τ,τ )
p1

(1) = f−2
v p−2τ

1 m(3×v )
−1
= p

−2τ−valp1 (fv)

1 L3p1
(1).

Proof. Follows by the change of variable z 7→ π−τ z where we treat multiplication by
π−τ as a Qp1 -endomorphism of Ep1 with determinant p−τ1 . ut

A.2. The global L-function

We now study the global L-function L3(x,y)(s, χ) as defined in Definition 6.3. Our aim
is to bound the residue at 1 of L3(x,y)(s) and the absolute value of L3(x,y)(s, χ) on the
line <s = 1/2.

First we state the basic structure result for the L-functions L3(x,y)(s, χ).

Proposition A.16. Let L(s, χ) be the Hecke L-function attached to χ : E×\A×E → S1.
Assume χ is unramified outside of ord(x) ord(y)f . Then the following functions are equal
as meromorphic functions for <s > 0:

L3(x,y)(s, χ) = L(s, χ)
∏

v|ord(x) ord(y)f

L3v(x,y)(s, χ)Lv(s, χ)
−1,

where

Lv(s, χ) =

{
1, v | conductor(χ),∏
w|v(1− χ(πw)

−1
|πw|

−s
w )
−1, v - conductor(χ),

and πw is a uniformizer of Ew.

Proof. The formal Euler product of L3(x,y)(s, χ) coincides with that of L(s, χ) for all
v - ord(x) ord(y)f . This implies the convergence of the Euler product of L3(x,y)(s, χ)
for <s > 1 and that it coincides with the Euler product following Definition 6.3. The
claimed equality follows because the finitely many factors for v | ord(x) ord(y)f are all
holomorphic for <s > 0. The expression for the local factors of L(s, χ) is standard and
follows from (20). ut
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A.2.1. The residue at 1

Proposition A.17.

0< Ress=1 L3(x,y)(s)≤ L(1, χE)p−2τ
1 ord(y)2

∏
p|f

(1−χE(p)p−1)
∏

v|ord(x)

[3×v :3
×
v (x)].

Proof. Recall that Ress=1 ζE(s) = L(1, χE). The claim then follows from Propositions
A.16, A.8 and Lemma A.15. ut

A.2.2. The line <s = 1/2. The following lemma is useful in order to bound the Hecke
L-function L(s, χ) on the line <s = 1/2 as the subconvexity bound involves the norm of
the conductor of the character χ .

Lemma A.18. For a prime p of E let Upn = 1 + pnOEp ⊂ Ep be the principal unit
group of order n > 0 and set U0 := O×Ep

. For any decomposable compact open subgroup
K =

∏
p Kp < AE,f the conductor of K is an ideal c(K) =

∏
pnp of E such that Upnp is

the maximal principal unit subgroup contained in Kp for each prime p.
The conductor c(3×f (x)) satisfies

c(3×f (x)) | f (OE : /3(x)),

where

(OE : /3(x)) := {z ∈ OE | z · /3(x) ∈ OE} =

⋂
v<∞

∏
w|v

{
OEw , xw ∈ OEw ,

x−1
w OEw , xw 6∈ OEw .

In particular,

Nr c(3×f (x)) ≤ f
2
∏
v<∞

Nr (OE : /3(x)),

Nr (OE : /3(x)) =
∏
w|v

xw 6∈OEw

|xw|w.

Proof. For any v <∞ we need to show that the following subgroup is contained in 3×v :

∏
w|v


O×Ew , xw ∈ OEw and fv = 1,
1+ fvOEw , xw ∈ OEw and fv 6= 1,
1+ fv

xw
OEw , xw 6∈ OEw .

Without loss of generality, we can arrange that xv ∈ E×v by adding an element of 3v
to xv . Then there is a simple expression for 3×v (x):

3×v (x) = 1+
3v

xv
∩3×v .
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If 3v = OEv then

O×Ev (x) = 1+
OEv

xv
∩O×Ev =

∏
w|v

{O×Ew , xw ∈ OEw ,

1+ OEw

xw
, xw 6∈ OEw ,

as required.
Assume next 3v = Zv + fvOEv is a non-maximal order. Then

3×v (x) = 1+
3v

xv
∩3×v ⊇ 1+

fvOEv

xv
∩ 1+ fvOEv = 1+ fv

(
OEv

xv
∩OEv

)
=

∏
w|v

{
1+ fvOEw , xw ∈ OEw ,

1+ fv
xw

OEw , xw 6∈ OEw .
ut

Proposition A.19. If <s = 1/2 and valp1(f ) = 0 then

|L3(x,y)(s)| �ε (f ord(y))ε|L(s, χ)|p−τ1 ord(y)212ω(ord(x))(Nr (OE : /3(x)))−1/2

·

∏
v|ord(x)

[3×v : 3
×
v (x)],

where the definition of (OE : /3(x)) is as in Lemma A.18 above and in particular

Nr (OE : /3(x)) =
∏
v<∞

∏
w|v

xw 6∈OEw

|xw|w.

Proof. Assume<s = 1/2. The trivial bound |Lv(s, χ)−1
| ≤ 3 holds for any place v <∞

because |χE(p)| ≤ 1 and p ≥ 2 for p the residue characteristic for Qv . This bound in
conjunction with Propositions A.16, A.7 and Lemma A.15 then implies

|L3(x,y)(s)| ≤ |L(s, χ)|p
−τ
1 ord(y)3ω(f ord(x) ord(y))

·

∏
v|f ord(x) ord(y)

mv(3
×
v (ord(y)x))fvL3v(ord(y)x)(1/2)

mv(3
×
v (x))fv

. (24)

We bound the numerators in the product above using Corollaries A.11 and A.13:∏
v|f ord(x) ord(y)

mv(3
×
v (ord(y)x))fvL3v(ord(y)x)(1/2) ≤ 4ω(f )

∏
pn|f

n

·

∏
v|ord(x)

∏
w|v

{
|ord(y)xw|

−1/2
w , |xw|w ≥ |ord(y)|−1

w ,

1, |xw|w < |ord(y)|−1
w ,

�ε f
ε ord(y)

∏
v|ord(x)

∏
w|v

xw 6∈OEw

|xw|−1/2
w ,

where we have used the inequality n + 3 ≤ 4n which is valid for all n ≥ 1 and the
elementary inequality

∏
pn|f n ≤ d(f ) � f ε, where d(f ) is the number of divisors

of f .
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Lemma A.4 implies that the product of the denominators is equal to∏
v|f ord(x) ord(y)

(mv(3
×
v (x))fv)

−1
=

∏
v|ord(x)

[3×v : 3
×
v (x)]

·

∏
p|f ord(x) ord(y)

(1− p−1)−1(1− χE(p)p−1)−1
∏
p|f

(1− χE(p)p−1)

� 4ω(f ord(x) ord(y))
∏

v|ord(x)

[3×v : 3
×
v (x)].

Combining these inequalities for the numerator and denominator of the product in (24)
and Lemma A.18 we arrive at the claimed inequality. ut
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