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Abstract. We show that a tessellation generated by a small number of random affine hyperplanes
can be used to approximate Euclidean distances between any two points in an arbitrary bounded
set T , where the random hyperplanes are generated by subgaussian or heavy-tailed normal vectors
and uniformly distributed shifts. The number of hyperplanes needed for constructing such tessella-
tions is determined by natural metric complexity measures of the set T and the wanted approxima-
tion error. In comparison, previous results in this direction were restricted to Gaussian hyperplane
tessellations of subsets of the Euclidean unit sphere.

As an application, we obtain new reconstruction results in memoryless one-bit compressed
sensing with non-Gaussian measurement matrices: by quantizing at uniformly distributed thresh-
olds, it is possible to accurately reconstruct low-complexity signals from a small number of one-
bit quantized measurements, even if the measurement vectors are drawn from a heavy-tailed dis-
tribution. These reconstruction results are uniform in nature and robust in the presence of pre-
quantization noise on the analog measurements as well as adversarial bit corruptions in the quanti-
zation process. Moreover, if the measurement matrix is subgaussian then accurate recovery can be
achieved via a convex program.

Keywords. Hyperplane tessellations, compressed sensing, quantization, empirical processes

1. Introduction

In what follows we study the following geometric question: can distances between points
in a given set T ⊂ Rn be accurately encoded using a small number of random hyper-
planes? To formulate the question more precisely, letHXi ,τi ={x ∈ Rn : 〈Xi, x〉+τi=0},
i = 1, . . . , m, be a collection of affine hyperplanes with normal vectors Xi and shift pa-
rameters τi . These hyperplanes tessellate the set T into (at most) 2m cells and, for any
x ∈ T , the bit string (sign(〈Xi, x〉 + τi))mi=1 ∈ {−1, 1}m encodes the cell in which x is
located (see Figures 1 and 2). Moreover, for any two points x, y ∈ T , the normalized
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Fig. 1. An illustration of the hyperplane cut generated by the vector X1 (and shift parameter 0).
The homogeneous hyperplane HX1 divides Rn into two parts, a “+” and a “−” side. The red and
green points are assigned the bit 1, the orange point is assigned −1.

b

b

b

++

−+

−−

+−

HX1

HX2

1

Fig. 2. The homogeneous hyperplanesHX1 andHX2 divide Rn into four parts. The red, green, and
orange points are assigned the bit sequences {1, 1}, {1,−1} and {−1,−1}, respectively.

Hamming distance between their bit strings,

1
m
|{i : sign(〈Xi, x〉 + τi) 6= sign(〈Xi, y〉 + τi)}|, (1.1)

counts the fraction of hyperplanes separating x and y. In what follows the goal is to
quantify the number of random hyperplanes that suffice to ensure that (1.1) approximates
the distance between any two points in T that are not ‘too close’.

A beautiful result due to Plan and Vershynin [22] essentially solves this question for
subsets of the Euclidean unit sphere with respect to the geodesic distance, using homo-
geneous Gaussian hyperplanes (i.e., τi = 0 for all i). They showed that if T ⊂ Sn−1

and the normal vectorsX1, . . . , Xm are independent standard Gaussian vectors, then with
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probability at least 1− 2e−cmρ
2
, for all x, y ∈ T ,

dSn−1(x, y)− ρ ≤
1
m
|{i : sign(〈Xi, x〉) 6= sign(〈Xi, y〉)}| ≤ dSn−1(x, y)+ ρ, (1.2)

provided that m & ρ−6`2
∗(T ); here

`∗(T ) := E sup
x∈T

|〈G, x〉|

and G is the standard Gaussian random vector in Rn. Thus, `∗(T ) is the Gaussian mean-
width of T—a natural geometric parameter that is of central importance in geometry (e.g.
in Dvoretzky type theorems, see for instance [2]) and in statistics, where it is used to
capture the difficulty of prediction problems.

It follows from (1.2) that if x and y are ‘far-enough apart’, then the fraction of ho-
mogeneous Gaussian hyperplanes that separate them concentrates sharply around their
geodesic distance.

As far as random homogeneous Gaussian tessellations of T ⊂ Sn−1 are concerned,
it was conjectured in [22] that m ' ρ−2`2

∗(T ) is necessary and sufficient for (1.2) to
hold. The best known sufficient condition for an arbitrary T ⊂ Sn−1 is m & ρ−4`2

∗(T ),
established in [19], while for certain ‘simple’ subsets of the Euclidean sphere (e.g., if T
is the intersection of a subspace and the sphere) m & ρ−2`2

∗(T ) is known to be sufficient
[19, 22].

It is natural to ask whether approximating distances via random tessellations is pos-
sible in more general situations, most notably, using other distributions for generating
the normal vectors rather than the standard Gaussian distribution, and considering sets T
that need not be subsets of Sn−1. As it happens, these are not only natural extensions
but, in fact, are of extreme importance in signal processing—specifically, when studying
signal reconstruction problems from quantized measurements. The connection between
the extended version of the random tessellation problem and signal recovery is explained
in detail in Section 1.1.

Unfortunately, it is clear that the two extensions one is interested in are not possi-
ble when considering tessellations generated by homogeneous hyperplanes. First of all, it
is impossible to separate points lying on a ray originating from 0 using a homogeneous
hyperplane. And second, it is easy to find very natural distributions for which (1.2) is
false. As an extreme case, observe that there are vectors in Sn−1 that are far apart but still
cannot be separated using HXi if X1, . . . , Xm are selected according to the uniform dis-
tribution on {−1, 1}n. In fact, the points cannot be separated even if one uses all possible
hyperplanes generated by points in {−1, 1}n.

A possible solution to both problems stems in a phenomenon that appears in engineer-
ing literature: there is extensive experimental evidence that signal recovery from quan-
tized measurements improves substantially if one adds appropriate ‘noise’ to the mea-
surements before quantizing. The operation of adding noise before quantization, which
was first proposed in [23], is called dithering (see also the survey [12]).

In the context of random tessellations, the geometric interpretation of dithering is
adding random parallel shifts to the hyperplanes. We show that adding such random shifts
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allows one to address the two problems, and as a result, random tessellations of arbitrary
sets T that are generated by rather general distributions can be used to approximate dis-
tances in T . Moreover, the reason why dithering is such an effective method in signal
recovery problems becomes clear thanks to the analysis presented in what follows (see
Section 1.1 for more details).

To formulate the main results of this article, consider i.i.d. shifts τi that are uniformly
distributed in [−λ, λ] for a well chosen λ, let RBn2 be the Euclidean ball of radius R, and
let T ⊂ RBn2 . Set X to be a random vector in Rn and let X1, . . . , Xm be independent
copies of X that are also independent of (τi)mi=1.

Although the method introduced in what follows can be used in other situations (see
in particular Remark 1.15), the focus here is on two scenarios.

The first scenario is called the L-subgaussian scenario, in which X is isotropic, sym-
metric, and L-subgaussian.1 The following result is a special case of Theorem 2.3 below,
and to formulate it, denote by conv(T ) the convex hull of the set T .
Theorem 1.1. Set

d(x, y) =
1
m
|{i : sign(〈Xi, x〉 + τi) 6= sign(〈Xi, y〉 + τi)}|.

There exist constants c0, . . . , c4 depending only on L such that the following holds. Fix
0 < ρ < R. If T ⊂ RBn2 , λ = c0R and

m ≥ c1
R log(eR/ρ)

ρ3 `2
∗(T ),

then with probability at least 1 − 2 exp(−c2mρ/R), for any x, y ∈ conv(T ) such that
‖x − y‖2 ≥ ρ, one has

c3
‖x − y‖2

R
≤ d(x, y) ≤ c4

√
log(eR/ρ) ·

‖x − y‖2

R
. (1.3)

Theorem 1.1 shows that if one wishes to approximate Euclidean distances in T , it suffices
to use a number of hyperplanes that is proportional to the squared Gaussian mean-width
of T . And, as was mentioned previously, the Gaussian mean-width is a natural measure
of the ‘intrinsic dimension’ of the set. For instance:
• Let E be a d-dimensional subspace and T = E ∩ Bn2 ; then `2

∗(T ) ' d.
• Let T = 6s,n be the set of all s-sparse vectors in the Euclidean unit ball. It is standard to

verify that `2
∗(T ) ' log

(
n
s

)
' s log(en/s). Let Bn1 be the unit ball in `n1 and recall that

conv(6s,n) is equivalent to
√
s Bn1 ∩B

n
2 (see [20, Lemma 3.1]), the set of approximately

s-sparse vectors in the Euclidean unit ball. Thus, Theorem 1.1 implies that only

c(L)
log(2/ρ)
ρ3 s log(en/s)

random hyperplanes are needed to approximate distances in
√
s Bn1 ∩ B

n
2 .

1 Recall that a random vector is isotropic if it is centred and its covariance matrix is the identity;
thus, for every x ∈ Rn, E〈X, x〉2 = ‖x‖22. A centred random vector is L-subgaussian if for every
x ∈ Rn and p ≥ 2, ‖〈X, x〉‖Lp ≤ L

√
p ‖〈X, x〉‖L2 . Thus, the ψ2 norms and the L2 norms of

linear forms are equivalent.
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Remark 1.2. Note that the lower estimate in (1.3) implies that the hyperplanes endow a
ρ-uniform tessellation: any cell of the tessellation of T has diameter at most ρ.

In the second scenario the focus is on heavy-tailed random vectors: again X is isotropic
and symmetric, but in addition one only assumes that linear forms satisfy an L1-L2 equiv-
alence:

‖〈X, x〉‖L2 ≤ L‖〈X, x〉‖L1 for every x ∈ Rn. (1.4)

In the heavy-tailed scenario a different complexity parameter dictates the required number
of hyperplanes. Let X1, . . . , Xm be independent copies of X and for K ⊂ Rn set

E(K) := E sup
x∈K

∣∣∣∣〈 1
√
m

m∑
i=1

εiXi, x

〉∣∣∣∣,
where (εi)i≥1 is a sequence of independent, symmetric {−1, 1}-valued random variables
that is independent of X1, . . . , Xm.

Remark 1.3. If X1, . . . , Xm happen to be isotropic, symmetric and L-subgaussian, then
E(K) ≤ c(L)`∗(K) for a constant c that depends only on L. This is one of the features of
subgaussian processes and an outcome of Talagrand’s majorizing measures theorem [25].
However, finding upper bounds on E(K) when X is not subgaussian is a challenging
question that has been studied extensively over the last 30 years or so and which will not
be pursued here.

Theorem 1.4 is a special case of Theorem 2.2 below. In what follows, given K ⊂ Rn and
r > 0, denote by N (K, r) the smallest number of Euclidean balls of radius r that are
needed to cover K .

Theorem 1.4. There exist constants c0, . . . , c4 that depend only on L for which the fol-
lowing holds. Fix 0 < ρ < R, let T ⊂ RBn2 and set U = conv(T ). Let λ = c0R,
r = c1ρ

2/R, Ur = (U − U) ∩ rBn2 and assume that

m ≥ c2

((
R E(Ur)

ρ2

)2

+
R logN (U, r)

ρ

)
.

Then with probability at least 1 − 2 exp(−c3m(ρ/R)
2), for every x, y ∈ U that satisfy

‖x − y‖2 ≥ ρ,

c3
‖x − y‖2

R
≤ d(x, y) ≤ c4

R

ρ
·
‖x − y‖2

R
. (1.5)

Remark 1.5. The upper bound in (1.5) features the factor R/ρ; it replaces
√

log(eR/ρ)
which appears in the upper estimate in (1.3). This should come as no surprise: the uniform
upper estimate on d(x, y) deteriorates the more ‘heavy-tailed’ the random vectorX is. At
the same time, the lower bound is universal—reflecting the fact that such lower bounds
are due to a small-ball property and have nothing to do with tail estimates.

The universal lower bound implies that almost regardless of the choice of X, if x and
y are reasonably ‘far apart’ then their distance is exhibited by the fraction of tessellation
hyperplanes that separate the points.
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The connection between the number of hyperplanes m and the accuracy ρ is less explicit
in Theorem 1.4, because E(Ur) depends onm. And even though the uniform central limit
theorem shows that E(Ur) converges to `∗(Ur) as m tends to infinity, one is interested
in quantitative estimates, which are, in general, nontrivial. Since estimating E(Ur) is not
the main focus of this article, we shall not pursue the question of controlling E(Ur) for
general sets U any further. Instead, and just to illustrate the outcome of Theorem 1.4, let
us consider the set T = 6s,n.

Example 1.6. Let T = 6s,n and observe that U,Ur ⊂ 4(
√
s Bn1 ∩ B

n
2 ) ⊂ 8 conv(6s,n).

By Sudakov’s inequality (see, e.g., [16]),

logN (T , r) ≤ c1
`2
∗(Ur)

r2 ≤ c2
s log(en/s)

ρ4 .

Moreover, E(Ur) ≤ 4E(conv(6s,n)) = 4E(6s,n), and there are many generic cases in
which

E(6s,n) . s log(en/s). (1.6)

For example, following [15, 17], one may show that (1.6) holds when X is isotropic, un-
conditional and log-concave; and also whenX has i.i.d. coordinates distributed according
to a mean-zero, variance 1 random variable ξ that satisfies (E|ξ |p)1/p . pα for some
α > 0 and for every p ≤ log n. We refer to [9, Section V] for proofs of these facts and
for other examples of a similar nature.

When (1.6) holds, then Theorem 1.4 implies that it is enough to use

m = c(L)
s log(en/s)

ρ4

hyperplanes to estimate distances in
√
s Bn1 ∩ B

n
2 . And although the way m scales with ρ

is worse than in the subgaussian case, the scaling with s and n is the same.

Before presenting the proofs of Theorems 1.1 and 1.4, let us explore the connection be-
tween random hyperplane tessellations and signal recovery problems. Readers that are
solely interested in hyperplane tessellations can safely skip straight to Section 2, where
the proofs of the two theorems may be found.

1.1. Application to one-bit compressed sensing

One good reason for studying non-Gaussian random hyperplane tessellations of arbitrary
sets comes from signal recovery problems involving quantized measurements. By quan-
tization we mean converting analog measurements of a signal into a finite number of
bits. This essential step is part of any signal processing procedure and allows one to digi-
tally transmit, process, and reconstruct signals. The area of quantized compressed sensing
investigates how to design a measurement procedure, quantizer, and reconstruction algo-
rithm that together recover low-complexity signals—such as signals that have a sparse
representation in a given basis. An efficient system has to be able to reconstruct signals
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based on a minimal number of measurements, each of which is quantized to the smallest
number of bits, and to do so via a computationally efficient reconstruction algorithm. In
addition, the system should be reliable: it should be robust to both pre-quantization noise
(noise in the analog measurements process) and post-quantization noise (bit corruptions
that occur during the quantization process).

Our interest here is in the popular one-bit compressed sensing model, in which one
observes quantized measurements of the form

q = sign(Ax + νnoise + τthres), (1.7)

where A ∈ Rm×n, m � n, sign is the sign function applied elementwise, νnoise ∈ Rm
is a vector modelling the noise in the analog measurement process and τthres ∈ Rm is a
(possibly random) vector consisting of quantization thresholds. We restrict ourselves to
memoryless quantization, meaning that the thresholds are set in a non-adaptive manner. In
this case, the one-bit quantizer sign(· + τthres) can be implemented efficiently in practice,
and because of its efficiency it has been very popular in engineering literature—especially
in applications in which analog-to-digital converters represent a significant factor in the
energy consumption of the measurement system (see e.g. [5, 18]).

In spite of its popularity, there are only a few rigorous results that show that one-bit
compressed sensing is viable: the vast majority of mathematical literature (see e.g. [3,
13, 14, 20, 21]) on one-bit compressed sensing has focused on the special case in which
A is a standard Gaussian matrix, and the practical relevance of such results is limited—
Gaussian matrices cannot be realized in a real-world measurement setup. As an additional
difficulty, it is well known that one-bit compressed sensing may perform poorly outside
the Gaussian setup. In fact, it can very easily fail, even if the measurement matrix is known
to perform optimally in ‘unquantized’ compressed sensing. For example, if the threshold
vector τthres is zero, there are 2-sparse vectors that cannot be distinguished based on their
one-bit Bernoulli measurements (see Figure 3).

As an application of the new hyperplane tessellation results described in the previous
section, we show that one-bit compressed sensing can actually perform well in scenarios
that are far more general than the Gaussian setting. What makes all the difference is the
rather striking effect that dithering (that is, adding well-designed ‘noise’ to the measure-
ments before quantizing) has on the one-bit quantizer. Indeed, thanks to dithering, accu-
rate recovery from one-bit measurements is possible even if the measurement vectors are
drawn from a heavy-tailed distribution. Moreover, the recovery results are robust to both
adversarial and potentially heavy-tailed stochastic noise on the analog measurements, as
well as to adversarial bit corruptions that may occur during quantization.

In what follows we explain why dithering has such an effect: the geometric interpre-
tation of dithering leads to random tessellations that can be used to approximate distances
between signals. The ability to approximate distances has a crucial impact on the perfor-
mance of recovery procedures.

To understand the connection between hyperplane tessellations and signal recovery
from one-bit quantized measurements, let us first assume that no bit corruptions occur
in the quantization process, and that there is no pre-quantization noise (νnoise = 0). In
this case, one observes q = sign(Ax + τthres). If X1, . . . , Xm denote the rows of A and
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Fig. 3. Symmetric Bernoulli vectors in R2 can only generate two different homogeneous hyper-
planes. As a result, there exist two points on the sphere (here, e1 and (e1 + λe2)/

√
1+ λ2 for

−1 < λ < 0, both marked in red) that are far apart, but cannot be separated by a Bernoulli
hyperplane. This problem persists in high dimensions. In addition, any two points lying on a ray
originating from 0 (e.g., the points that are marked in green) cannot be separated by a homogeneous
hyperplane (the latter problem is not specific to the Bernoulli case). Both problems can be solved
by using parallel shifts of the hyperplanes instead of the homogeneous ones.

τ1, . . . , τm are the entries of τthres, then q encodes the cell of the hyperplane tessellation
in which the signal x is located. A popular strategy used for recovering x is searching for
a vector x#

∈ T that is quantization consistent, i.e., q = sign(Ax#
+ τthres). For instance,

if T = 6s,n, the set of all s-sparse vectors in the Euclidean unit ball, then one can find
such a vector by solving

min
z∈Rn
‖z‖0 s.t. q = sign(Az+ τthres), ‖z‖2 ≤ 1. (1.8)

Geometrically, a quantization consistent vector is simply a vector lying in the same cell
as x, and one can ensure that ‖x#

−x‖2 ≤ ρ by showing that ‖x−y‖2 ≤ ρ for any y ∈ T
located in the same cell as x. Since there is no additional information on the identity of
the cell in which x is located, one has to ensure that any pair of points in T located in the
same cell are at distance at most ρ from each other, i.e., the hyperplanesHXi ,τi must form
a ρ-uniform tessellation of T . Phrased differently, if x, y ∈ T are at distance at least ρ,
then that fact must be exhibited by the hyperplanesHXi ,τi : at least one of the hyperplanes
must separate x and y. In particular, if one has access to a ρ-uniform tessellation of T ,
one can uniformly recover signals from T using only sign(Ax+ τthres) as data. Moreover,
the reverse direction is clearly true: the degree of accuracy in uniform recovery results
in T is determined by the largest diameter (in T ) of a cell of the tessellation formed by
the hyperplanes HXi ,τi .

Unfortunately, even if (HXi ,τi )
m
i=1 forms a uniform tessellation of T there is still the

question of pre- and post-quantization noise one has to contend with. To understand the
effect of post-quantization noise (i.e., bit corruptions that occur during quantization), as-
sume that one observes a corrupted sequence of bits qcorr ∈ {−1, 1}m, where the i-th bit
being corrupted means that instead of receiving qi = sign(〈Xi, x〉 + τi) from the quan-
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tizer, one observes (qcorr)i = − sign(〈Xi, x〉 + τi); thus, one is led to believe that x is
on the ‘wrong side’ of the i-th hyperplane HXi ,τi . As a consequence, recovery methods
that search for a quantization consistent vector can easily fail even if a single bit is cor-
rupted. For instance, the program (1.8) (with q replaced by qcorr) will, in the best case
scenario, search for a vector in the wrong cell of the tessellation, and in the worse case,
the corrupted bit may cause a conflict and there will be no sparse vector z satisfying
qcorr = sign(Az+ τthres) (see Figure 4 for an illustration).

b
x

b

HXi,τi

b
x

HXi,τi

1

Fig. 4. The effect of a bit corruption associated with the dashed, red hyperplane HXi ,τi . Either the
bit corruption leads the program (1.8) (with q replaced by qcorr) to search in the wrong cell of the
tessellation marked by the red dot (left) or causes the program to be infeasible (right).

The effect of pre-quantization noise (i.e., noise in the analog measurement process)
is equally problematic: noise simply causes a parallel shift of the hyperplane HXi ,τi , and
one has no control over the size of this ‘noise-induced’ shift. Again, the recovery program
(1.8) (with q = sign(Ax+νnoise+τthres)) can easily fail if pre-quantization noise is present
(see Figure 5).

b
x

b

HXi,τiHXi,νi+τi

b
x

HXi,τiHXi,νi+τi

1

Fig. 5. The effect of a noise-induced parallel shift of the dashed, blue hyperplane HXi ,τi onto
the dashed, red hyperplane HXi ,νi+τi . The program (1.8) (with q = sign(Ax + νnoise + τthres))
searches for a vector zwith sign(〈Xi , z〉+τi) = sign(〈Xi , z〉+νi+τi). This means that the program
incorrectly searches for a solution located to the right of the dashed, blue hyperplane HXi ,τi ; as a
consequence, a solution is found in the wrong cell of the tessellation marked by the red dot (left) or
it can even happen that no feasible point exists (right).
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One possible way of overcoming this ‘infeasibility problem’ due to noise is by de-
signing a recovery program that is stable: its output does not change by much even if
some of the given bits are misleading. For example, one may try searching for a vector
z ∈ T whose uncorrupted quantized measurements sign(Az + νnoise + τthres) are closest
to the observed corrupted vector qcorr. However, since one does not have access to νnoise,
one can only try to match its proxy sign(Az+ τthres) to qcorr, i.e., to solve

min
z∈Rn

dH (qcorr, sign(Az+ τthres)) s.t. z ∈ T , (1.9)

where dH denotes the Hamming distance. In the context of sparse recovery, the latter
program is

min
z∈Rn

dH (qcorr, sign(Az+ τthres)) s.t. ‖z‖0 ≤ s, ‖z‖2 ≤ 1. (1.10)

Remark 1.7. Note that this program requires (a good estimate of) the signal sparsity as
input, in contrast to (1.8).

To ensure that (1.9) yields an accurate reconstruction, the uniform tessellation has to be
finer than in the corruption-free case: even if some signs are ‘flipped’, the distance be-
tween points in the resulting cell and points in the true one should still be small. And
indeed, our results ensure that the hyperplane tessellation is sufficiently fine: for any
x, y ∈ T that are at least ρ-separated there are many hyperplanes that separate the two
points—of the order of ‖x − y‖2m. Thus, even after corrupting ' ρm bits one may still
detect that x and y are ‘far away’ from one another.

Finally, although (1.9) can guarantee robust signal recovery, there are no guarantees
that it can be solved efficiently. In addition, since (1.9) matches sign(Az + τthres), rather
than sign(Az+ νnoise + τthres), to qcorr, it is still quite sensitive to pre-quantization noise.
Both problems can be mended by convexification. Indeed, observe that

dH (qcorr, sign(Az+ νnoise + τthres)) =
1
2

m∑
i=1

(1− (qcorr)i sign(〈Xi, z〉 + νi + τi)).

One may relax this objective function by replacing sign(〈Xi, z〉 + νi + τi) by 〈Xi, z〉 +
νi + τi and relax the constraint z ∈ T to z ∈ conv(T ) leading to the convex program

min
z∈Rn

1
2

m∑
i=1

(1− (qcorr)i(〈Xi, z〉 + νi + τi)) s.t. z ∈ conv(T ).

An equivalent formulation of this program, which only requires the known data qcorr
and A, is

max
z∈Rn

1
m
〈qcorr, Az〉 s.t. z ∈ conv(T ), (1.11)

and in contrast to (1.9), (1.11) does not require the threshold vector τthres as input.
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The recovery program (1.11) was proposed in [21]; and in what follows we explore a
regularized version of that program: for λ > 0 consider

max
z∈Rn

1
m
〈qcorr, Az〉 −

1
2λ
‖z‖22 s.t. z ∈ conv(T ), (1.12)

which, in the context of sparse recovery, corresponds to the tractable program

max
z∈Rn

1
m
〈qcorr, Az〉 −

1
2λ
‖z‖22 s.t. ‖z‖1 ≤

√
s, ‖z‖2 ≤ 1.

Remark 1.8. We refer the reader to [21] for an extensive discussion of the connections
between the recovery program (1.11) and the literature on regression with a binary re-
sponse variable.

Let us formulate the main signal recovery results of this article, which are direct outcomes
of the results on random tessellations.

Fix a target reconstruction error ρ, recall that the quantization thresholds τi are i.i.d.
uniformly distributed in [−λ, λ], assume that the entries νi of νnoise are i.i.d. copies of a
random variable ν and that at most βm of the bits are arbitrarily corrupted during quan-
tization, i.e., the observed corrupted vector qcorr satisfies dH (qcorr, q) ≤ βm. The adver-
sarial component of the pre-quantization noise ν is |Eν|, σ 2 is its variance and ‖ν‖L2 is
its L2 norm. We write Tr = (T − T ) ∩ rBn2 for any r > 0.

The first recovery result concerns the recovery program (1.9) in the L-subgaussian
scenario, in which the rows Xi of A are i.i.d. copies of a symmetric, isotropic, L-sub-
gaussian vector X. In addition, assume that ν also satisfies ‖ν‖Lp ≤ L

√
p ‖ν‖L2 for

every p ≥ 2.

Theorem 1.9. There exist constants c0, . . . , c4 > 0 depending only on L such that the
following holds. Let T ⊂ RBn2 , set λ ≥ c0(R+‖ν‖L2)+ρ and put r = c1ρ/

√
log(eλ/ρ).

Assume that

m ≥ c2λ

(
`2
∗(Tr)

ρ3 +
logN (T , r)

ρ

)
,

and that |Eν| ≤ c3ρ, σ ≤ c3ρ/
√

log(eλ/ρ) and β ≤ c3ρ/λ. Then with probabil-
ity at least 1 − 2 exp(−c4mρ/λ), for every x ∈ T , any solution x# of (1.9) satisfies
‖x#
− x‖2 ≤ ρ.

Example 1.10. To put Theorem 1.9 in some context, consider an arbitrary T ⊂ Bn2 and
assume ‖ν‖L2 ≤ 1, so that λ is a constant that depends only on L. By Sudakov’s inequal-
ity,

logN (T , r) ≤ c `
2
∗(T )

r2 ≤ c(L)
log(e/ρ)
ρ2 `2

∗(T ), (1.13)

and trivially `∗(Tr) ≤ `∗(T ), which means that a sample size of

m = c′(L)
log(e/ρ)
ρ3 `2

∗(T )
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suffices for recovery. In the special case of T = 6s,n a much better estimate is possible.
Indeed, it is standard to verify that there is an absolute constant c such that for any 1 ≤
s ≤ n,

`∗(6s,n) '
√
s log(en/s) and logN (6s,n, r) ≤ cs log

(
en

sr

)
. (1.14)

Moreover, since (6s,n −6s,n) ∩ rBn2 ⊂ r62s,n it follows that

`∗(Tr) ≤ cr
√
s log(en/s) = c(L)

ρ√
log(e/ρ)

·
√
s log(en/s),

implying that a sample size of

m = c′(L)ρ−1s log
(
en

sρ

)
(1.15)

guarantees that with high probability one can recover any s-sparse vector in Bn2 with
accuracy ρ via (1.9).

In the heavy-tailed scenario, one only assumes thatX is isotropic, symmetric, and satisfies
the L1-L2 equivalence (1.4), and that ν has finite variance σ 2 and satisfies an L1-L2

equivalence.

Theorem 1.11. There exist constants c0, . . . , c4 > 0 depending only on L such that the
following holds. Assume that T ⊂ RBn2 . Let λ ≥ c0(R + ‖ν‖L2) + ρ, set r = c1ρ

2/λ,
and suppose that

m ≥ c2

((
λE(Tr)

ρ2

)2

+ λ
logN (T , r)

ρ

)
. (1.16)

Assume further that |Eν| ≤ c3ρ, σ ≤ c3ρ
3/2/
√
λ and β ≤ c3ρ/λ. Then with probability

at least 1 − 2 exp(−c4m(ρ/λ)
2), for every x ∈ T , any solution x# of (1.9) satisfies

‖x#
− x‖2 ≤ ρ.

Example 1.12. To illustrate the outcome of Theorem 1.11, assume that ‖ν‖L2 ≤ 1 and
consider T = 6s,n; hence, λ is a constant that depends only on L. Since Tr ⊂ r62s,n,
the first term in (1.16) is bounded by E2(62s,n). As noted previously, there are many
natural random vectors that are more heavy-tailed than subgaussian, and stillE2(62s,n) '

s log(en/s). In such cases, the sample size (1.15) is sufficient for recovery.

Let us compare Theorems 1.9 and 1.11 to existing work. As was mentioned previously,
almost all the signal reconstruction results in (memoryless) one-bit compressed sensing
are based on the assumption that the measurement matrix is Gaussian (see e.g. [8] for
an overview). Among those, the work that is closest to ours is [13], where there is no
dithering involved in the recovery procedure (τthres = 0) and thus it is only possible
to recover signals located on the unit sphere. It was shown in [13, Theorem 2] that if
A ∈ Rm×n is standard Gaussian and m & ρ−1s log(n/ρ) then, with high probability,
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any s-sparse x, x′ ∈ Sn−1 for which sign(Ax) = sign(Ax′) satisfy ‖x − x′‖2 ≤ ρ. In
particular, one can approximate x with accuracy ρ by solving the nonconvex program

min
z∈Rn
‖z‖0 s.t. sign(Ax) = sign(Az), ‖z‖2 = 1.

In comparison, Theorem 1.9 shows that a similar result holds in the subgaussian
scenario—and at the same time extends it to sparse vectors in the unit ball and makes
it robust to pre- and post-quantization noise. Clearly, such a generalization is possible
thanks to the effect of dithering. Remarkably, Theorem 1.11 shows that this result can
be extended further to a large class of heavy-tailed measurements. In fact, Theorem 1.11
is the first recovery result of its kind—involving quantized measurements that can be
heavy-tailed.

In [3, 14] the authors study sparse recovery with Gaussian measurements and intro-
duce standard Gaussian dithering to derive recovery results for sparse vectors in the Eu-
clidean unit ball. The idea behind these results is to use a ‘lifting trick’: for instance, in [3]
one interprets the dithered measurements sign(Ax + τ) as sign([A τ ][x, 1]/‖[x, 1]‖2),
where [A τ ] is obtained by appending τ to A as an additional column. Since [A τ ]

is a standard Gaussian again, recovery methods for sparse vectors on the Euclidean
unit sphere can be used to find an approximation of [x, 1]/‖[x, 1]‖2 of the form
[x#, 1]/‖[x#, 1]‖2. Afterwards, one can bound ‖x−x#

‖2 by the distance between the last
two vectors. Since this lifting argument is based on a reduction to the one-bit compressed
sensing with zero thresholds model, it ‘imports’ the strong limitations of that model; in
particular, it cannot be used to derive recovery results for non-Gaussian measurements.
In addition, since the recovery methods in [3, 14] rely on enforcing quantization consis-
tency, they are not robust to post-quantization noise. In contrast, thanks to the geometric
interpretation of dithering, the recovery results presented here are robust, hold for non-
Gaussian measurements matrices and for general signal sets.

Finally, let us formulate the main recovery result for the program (1.12) in the L-
subgaussian scenario. Here, ν is centred and L-subgaussian with variance σ 2. Set U =
conv(T ) and Uρ = (U − U) ∩ ρBn2 .

Theorem 1.13. There exist constants c0, . . . , c4 that depend only on L for which the
following holds. Let T ⊂ RBn2 , fix ρ > 0, set

λ ≥ c0(σ + R)
√

log(c0(σ + R)/ρ)

and let r = c1ρ/log(eλ/ρ). If m and β satisfy

m ≥ c2

((
λ`∗(Uρ)

ρ2

)2

+ λ2 logN (T , r)
ρ2

)
, β

√
log(e/β) = c3

ρ

λ
,

then, with probability at least 1 − 2 exp(−c4mρ
2/λ2), for any x ∈ T the solution x# of

(1.12) satisfies ‖x#
− x‖2 ≤ ρ.
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Example 1.14. Let T =
√
s Bn1 ∩ B

n
2 and assume that σ ≤ 1. Observe that T = U and

that one may set λ = c0(L)
√

log(e/ρ). Also, for 0 < ρ ≤ 1, Uρ ⊂ 2(
√
s Bn1 ∩ ρB

n
2 ),

and it is standard to verify that `∗(Uρ) '
√
smax {log(enρ2/s), 1}. Taking the estimate

(1.13) for logN (T , r) into account, it is evident that if

m = c(L)
s log(en/s)log3(e/ρ)

ρ4

then with high probability one may recover any x ∈ T using the convex recovery proce-
dure (1.12), even in the presence of pre- and post-quantization noise.

In the context of Gaussian measurement matrices, Theorem 1.13 improves upon the work
of Plan and Vershynin [21], who considered the situation when there is no dithering
(τthres = 0). They introduced the convex program (1.11) and proved recovery results
for signal sets T ⊂ Sn−1 of two different flavours. In a nonuniform recovery setting2 they
showed that m & ρ−4`2

∗(T ) measurements suffice to reconstruct a fixed signal, even if
pre-quantization noise is present and quantization bits are randomly flipped with a prob-
ability that is allowed to be arbitrarily close to 1/2. In the uniform recovery setting, they
showed that if m & ρ−12`2

∗(T ), one can achieve a reconstruction error ρ even if a frac-
tion β = ρ2 of the received bits are corrupted in an adversarial manner while quantizing.
Theorem 1.13 extends the latter result to subgaussian measurements with a better condi-
tion on m and β, and at the same time incorporates pre-quantization noise and allows the
reconstruction of signals that need not be located on the unit sphere.

As noted previously, there are very few reconstruction results available when the
measurements are not standard Gaussian. The work [1] generalizes the nonuniform re-
covery results from [21] to subgaussian measurements under additional restrictions. For
T ⊂ Sn−1 and a fixed x ∈ T it is shown that m & ρ−4`2

∗(T ) measurements suffice to
reconstruct x up to error ρ via (1.11), provided that either ‖x‖∞ ≤ ρ4 (meaning that
the signal must be well-spread) or the total variation distance between the subgaussian
measurements and the standard Gaussian distribution is at most ρ16. Theorem 1.13 is a
considerable improvement of those results.

Remark 1.15. At the expense of substantial additional technicalities, the proof strategies
developed in this work lead to recovery results for sparse vectors whenA is a random par-
tial circulant matrix generated by a subgaussian random vector. The latter model occurs
in several practical measurement setups, including SAR radar imaging, Fourier optical
imaging and channel estimation (see e.g. [24] and the references therein). To keep this
work accessible to a general audience and in an attempt to clearly present the main ideas
used in the proofs, we choose to defer the additional technical developments needed for
the circulant case to a companion work [10].

2 In the uniform recovery setting one attains a high probability event on which recovery is pos-
sible for all x ∈ T , whereas in nonuniform recovery the event depends on the signal x ∈ T .
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1.2. Notation

We use ‖x‖p to denote the `p norm of x ∈ Rn and Bnp denotes the `p-unit ball in Rn. For
a subgaussian random variable ξ let

‖ξ‖ψ2 := sup
p≥1

‖ξ‖Lp
√
p
;

thus, a random variable is L-subgaussian in the sense stated in the introduction precisely
when ‖ξ‖ψ2 ≤ L‖ξ‖L2 . This is equivalent to

P(|ξ | ≥ t) ≤ c1e
−c2t

2/(L‖ξ‖
L2 )

2
, t ≥ 0,

for some absolute constants c1, c2 > 0.
In what follows, U denotes the uniform distribution. For k ∈ N set [k] = {1, . . . , k}

and for a set S let |S| denote its cardinality. dH is the (unnormalized) Hamming distance
on the discrete cube and 6s,n = {x ∈ Rn : ‖x‖0 ≤ s, ‖x‖2 ≤ 1} is the set of s-sparse
vectors in the Euclidean unit ball. For T ⊂ Rn set Tr = (T − T ) ∩ rBn2 and denote by
conv(T ) its convex hull. The Gaussian mean-width of T is denoted by `∗(T ) and for any
r > 0 let N (T , r) be the smallest number of Euclidean balls of radius r that are needed
to cover T . Finally, c and C denote absolute constants; their value may change from line
to line. cα or c(α) are constants that depend only on the parameter α, a .α b implies that
a ≤ cαb, and a 'α b means that both a .α b and a &α b hold.

2. Random tessellations

This section is devoted to the proof of our main tessellation results, Theorems 2.2 and 2.3,
which are generalizations of Theorems 1.1 and 1.4 respectively.

Before formulating the results let us define a mild structural property of a subset of a
metric space.

Definition 2.1. Let (X , d) be a metric space. A set T ⊂ X is (r, γ )-metrically convex
in X if for every x, y ∈ T with d(x, y) ≥ r there are z1, . . . , z` ∈ X such that

γ r ≤ d(zi, zi+1) ≤ r and
∑̀
i=0

d(zi, zi+1) ≤ γ
−1d(x, y),

where we set z0 = x, z`+1 = y. If X = T , then we say that T is (r, γ )-metrically convex.

The idea behind this notion is straightforward: it implies that controlling ‘local oscilla-
tions’ of a function f ensures that it satisfies a Lipschitz condition for long distances.
Indeed, assume that sup{w,v∈X : d(w,v)≤r} |f (w)− f (v)| ≤ κ and for any x, y ∈ T that
satisfy d(x, y) ≥ 2r let (zi)`+1

i=0 be as in Definition 2.1. Then

|f (x)− f (y)| ≤

∣∣∣∑̀
i=0

(f (zi)− f (zi+1))

∣∣∣ ≤ κ(`+ 1) ≤
κ

γ r

∑̀
i=0

d(zi, zi+1)

≤
κ

γ 2r
d(x, y). (2.1)

Therefore, f satisfies a Lipschitz condition for long distances with constant κ/(γ 2r).
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Observe that if T is a convex subset of a normed space then it is (r, 1)-metrically con-
vex for any r > 0; also, every subset of a normed space is (r, 1)-metrically convex in its
convex hull. Finally, 6s,n is (r, γ )-metrically convex in 62s,n for an absolute constant γ .
We omit the straightforward proofs of these claims.

Let us first state the main result in the heavy-tailed scenario. Consider a random vector
X that is isotropic, symmetric, and satisfies an L1-L2 norm equivalence: for every t ∈ Rn,

‖t‖2 = ‖〈X, t〉‖L2 ≤ L‖〈X, t〉‖L1 . (2.2)

Theorem 2.2. There exist constants c0, . . . , c4 that depend only on L for which the fol-
lowing holds. Let T ⊂ RBn2 and set λ ≥ c0R. Suppose that 0 < r < ρ < λ satisfy
r ≤ c1ρ

2/λ and assume that

logN (T , r) ≤ c2
mρ

λ
and E(Tr) ≤ c2

ρ2

λ

√
m.

Then with probability at least 1 − 8 exp(−c3m(ρ/λ)
2), for every x, y ∈ T that satisfy

‖x − y‖2 ≥ ρ,

|{i : sign(〈Xi, x〉 + τi) 6= sign(〈Xi, y〉 + τi)}| ≥ c4m
‖x − y‖2

λ
.

Moreover, if T is (r, γ )-metrically convex then on the same event, if ‖x − y‖2 ≥ 2r ,

|{i : sign(〈Xi, x〉 + τi) 6= sign(〈Xi, y〉 + τi)}| ≤
c5λ

ργ 2 ·m
‖x − y‖2

λ
.

Proof of Theorem 1.4. Apply Theorem 2.2 to the set U = conv(T ), which is (r, 1)-
metrically convex for any r > 0, and for the parameters λ = c0R and r = c1ρ

2/R. With
these choices Theorem 1.4 follows immediately. ut

When X is L-subgaussian one may establish a sharper result.

Theorem 2.3. There exist constants c0, . . . , c5 that depend only on L for which the fol-
lowing holds. Let T ⊂ RBn2 , set λ ≥ c0R and consider an isotropic, symmetric, L-
subgaussian random vector X. Let m and 0 < r < ρ < λ satisfy

ρ ≥ c1r
√

log(eλ/ρ), m ≥ c2 max
{
λ

ρ
logN (T , r), λ`

2
∗(Tr)

ρ3

}
.

Then with probability at least 1− 8 exp(−c3mρ/λ), for all x, y ∈ T such that ‖x − y‖2
≥ ρ, one has

|{i : sign(〈Xi, x〉 + τi) 6= sign(〈Xi, y〉 + τi)}| ≥ c4m
‖x − y‖2

λ
.

Moreover, if T is (r, γ )-metrically convex then on the same event, if ‖x − y‖2 ≥ 2r ,

|{i : sign(〈Xi, x〉 + τi) 6= sign(〈Xi, y〉 + τi)}| ≤
c5
√

log(eλ/ρ)
γ 2 ·m

‖x − y‖2

λ
.
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Proof of Theorem 1.1. Theorem 1.1 is an immediate outcome of Theorem 2.3 for U =
conv(T ). Indeed, conv(T ) is (r, 1)-metrically convex for any r > 0, `∗(Ur) ≤ `∗(T ),
and by Sudakov’s inequality, logN (U, r) ≤ c`2

∗(T )/r
2. The claim follows by setting

r = cρ/
√

log(eλ/ρ) and λ = c′R for suitable absolute constants c and c′. ut

In the context of tessellations, Theorem 2.2 and the first part of Theorem 2.3 improve
the estimate from (1.2) in several ways: firstly, Theorem 2.2 holds for a very general
collection of random vectors: X has to satisfy a small-ball condition rather than being
Gaussian. Secondly, both are valid for any subset of Rn and not just for subsets of the
sphere; and, finally, if X happens to be L-subgaussian, it yields the best known estimate
on the diameter of each ‘cell’ in the random tessellation—even when X is Gaussian and
T is a subset of Sn−1.

2.1. The heavy-tailed scenario

A fundamental question that is at the heart of our arguments has to do with stability: given
two points x and y, how ‘stable’ is the set

{i : sign(〈Xi, x〉 + τi) 6= sign(〈Xi, y〉 + τi)} = (∗)

to perturbations? If one believes that the cardinality of (∗) reflects the distance ‖x − y‖2,
it stands to reason that if r is significantly smaller than ‖x − y‖2 and ‖x − x′‖2 ≤ r ,
‖y − y′‖2 ≤ r , then |{i : sign(〈Xi, x′〉 + τi) 6= sign(〈Xi, y′〉 + τi)}| should not be very
different from |(∗)|.

Unfortunately, stability is not true in general. If either x or y are ‘too close’ to many
of the separating hyperplanes, then even a small shift in either one of them can have
a dramatic effect on the signs of 〈Xi, ·〉 + τi and destroy the separation. Thus, to ensure
stability one requires a stronger property than mere separation: points need to be separated
by a large margin.

Definition 2.4. The hyperplane HXi ,τi θ -well-separates x and y if

• sign(〈Xi, x〉 + τi) 6= sign(〈Xi, y〉 + τi),
• |〈Xi, x〉 + τi | ≥ θ‖x − y‖2, and
• |〈Xi, y〉 + τi | ≥ θ‖x − y‖2.

Denote by Ix,y(θ) ⊂ [m] the set of indices for which HXi ,τi θ -well-separates x and y.

The condition that |〈Xi, x〉+τi |, |〈Xi, x〉+τi | ≥ θ‖x−y‖2 is precisely what ensures that
perturbations of x or y of the order of ‖x − y‖2 do not spoil the fact that the hyperplane
HXi ,τi separates the two points.

We begin by showing that even in the heavy-tailed scenario and with high probability,
|Ix,y(θ)| is proportional tom‖x−y‖2 for any two (fixed) points x and y. Let us stress that
the high probability estimate is crucial: it will lead to uniform control on a net of large
cardinality.
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Theorem 2.5. There are constants c1, . . . , c4 that depend only on L for which the fol-
lowing holds. Let x, y ∈ RBn2 and set λ ≥ c1R. With probability at least

1− 4 exp(−c2mmin{‖x − y‖2/λ, 1}),

we have
|Ix,y(c3)| ≥ c4m‖x − y‖2/λ.

The proof of Theorem 2.5 requires two preliminary observations. Consider a random
variable τ that satisfies the small-ball estimate

sup
u∈R

P(|τ − u| ≤ ε) ≤ Cτ ε for all ε ≥ 0, (2.3)

and let Z be independent of τ . Then clearly

P(|Z + τ | ≤ ε) ≤ Cτ ε for all ε ≥ 0. (2.4)

If τ ∼ U[−λ, λ] then (2.3) holds for Cτ = 1/λ. Therefore, by the Chernoff bound, if
(Zi)

m
i=1 and (τi)mi=1 are independent copies of Z and τ respectively, then with probability

at least 1− 2 exp(−cmε/λ),

|{i : |Zi + τi | ≥ ε}| ≥

(
1−

2ε
λ

)
m. (2.5)

The second observation is somewhat more involved. Consider a random variable τ
that satisfies

P(α < τ ≤ β) ≥ cτ (β − α) (2.6)

for all −λ ≤ α ≤ β ≤ λ. Let Z and W be square integrable whose difference satisfies a
small-ball condition: there are constants κ and δ such that

P(|Z −W | ≥ κ‖Z −W‖L1) ≥ δ.

Lemma 2.6. There are absolute constants c0 and c1 and constants c2, c3 ' cτκδ such
that the following holds. Assume that Z and W are independent of τ and that

λ ≥ (c0/
√
δ)max{‖Z‖L2 , ‖W‖L2}.

If (τi)mi=1, (Zi)mi=1 and (Wi)
m
i=1 are independent copies of τ , Z and W respectively, then

with probability at least

1− 2 exp(−c1mδ)− 2 exp(−c2m‖Z −W‖L1),

we have
|{i : sign(Zi + τi) 6= sign(Wi + τi)}| ≥ c3m‖Z −W‖L1 .
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Proof. Let θ be a constant to be specified later and observe that P(|Z|≥‖Z‖L2/
√
θ)≤θ .

Hence, with probability at least 1− 2 exp(−c1θm),

|{i : |Zi | ≥ ‖Z‖L2/
√
θ}| ≤ 2θm,

where c1 is an absolute constant; a similar estimate holds for (Wi)
m
i=1.

At the same time, recall that P(|Z − W | ≥ κ‖Z − W‖L1) ≥ δ, implying that with
probability at least 1− 2 exp(−c2δm),

|{i : |Zi −Wi | ≥ κ‖Z −W‖L1}| ≥ δm/2.

Set θ = δ/16 and let λ ≥ 4 max{‖Z‖L2/
√
δ, ‖W‖L2/

√
δ}. The above shows that there

is an event A of (Z,W)-probability at least 1 − 2 exp(−c3δm) on which the following
holds: there exists J ⊂ [m] of cardinality at least δm/4 such that for every j ∈ J ,

|Zj | ≤ λ, |Wj | ≤ λ, |Zj −Wj | ≥ κ‖Z −W‖L1 .

Now fix two sequences of numbers (zi)mi=1 and (wi)mi=1 and consider the independent
events

Ei = {sign(zi + τi) 6= sign(wi + τi)}, 1 ≤ i ≤ m.

Recall that by (2.6), for every i ∈ [m], if |zi | ≤ λ and |wi | ≤ λ then

Pτ (sign(zi + τi) 6= sign(wi + τi))

= Pτ (zi + τi > 0, wi + τi ≤ 0)+ Pτ (zi + τi ≤ 0, wi + τi > 0)
= Pτ (−zi < τ ≤ −wi)+ Pτ (−wi < τ ≤ −zi)

≥ cτ |zi − wi |.

Hence, for every realization of (Zi)mi=1 and (Wi)
m
i=1 from the event A,

|{j : Pτ (Ej ) ≥ cτκ‖Z −W‖L1}| ≥ δm/4.

It follows that there are absolute constants c4 and c5 such that with τ -probability at least
1− 2 exp(−c4cτκδm‖Z −W‖L1),

m∑
i=1

1Ei ≥

∑
j∈J

1Ej ≥
|J |

2
· cτκ‖Z −W‖L1 ≥ c5cτκδm‖Z −W‖L1 .

Thus, with the wanted probability with respect to (Zi)mi=1, (Wi)
m
i=1 and (τi)mi=1, one has

|{i : sign(Zi + τi) 6= sign(Wi + τi)}| ≥ c5cτκδm‖Z −W‖L1 ,

as claimed. ut

Next, let us consider the random variable τ and the random vector X from Theorem 2.2:
τ ∼ U[−λ, λ] and X is isotropic, symmetric and satisfies an L1-L2 norm equivalence
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with constant L. By the Paley–Zygmund inequality (see, e.g., [6]) there are constants κ
and δ that depend only on L for which, for every t ∈ Rn,

P(|〈X, t〉| ≥ κ‖〈X, t〉‖L1) ≥ δ.

Therefore, τ satisfies (2.6) with constant cτ = 1/(2λ) and the random variables Z =
〈X, x〉 and W = 〈X,w〉 satisfy Lemma 2.6 with constants κ and δ that depend only on
the equivalence constant L.

Proof of Theorem 2.5. Clearly, by Lemma 2.6,

|{i : sign(〈Xi, x〉 + τi) 6= sign(〈Xi, y〉 + τi)}| ≥ c(L)m‖x − y‖2/λ

with the promised probability, using the fact that

max {‖Z‖L2 , ‖W‖L2} = max {‖〈X, x〉‖L2 , ‖〈X, y〉‖L2} ≤ R.

One has to show that in addition, |〈Xi, x〉 + τi | and |〈Xi, x〉 + τi | are also reasonably
large. To that end, one may apply (2.4) twice, for Z = 〈X, x〉 and Z = 〈X, y〉, to see that
for any ε > 0,

max {P(|〈X, x〉 + τ | ≤ ε), P(|〈X, y〉 + τ | ≤ ε)} ≤ ε/λ.

Therefore, with probability at least 1−2 exp(−cεm/λ), there are at most 4εm/λ indices i
for which

min {|〈Xi, x〉 + τ |, |〈Xi, y〉 + τ |}≤ε;

hence, setting ε = (c(L)/8)‖x − y‖2 completes the proof. ut

Next, one has to use the individual high probability estimate from Theorem 2.5 to obtain
a uniform estimate in T . The idea is to use a covering argument combined with a simple
stability property:

Lemma 2.7. Fix a realization of X and τ and fix r ′ > 0. Assume that ‖w− v‖2 ≥ r ′ and
that

|〈X, x − v〉| ≤ θr ′/3, |〈X, y − w〉| ≤ θr ′/3.

If v and w are θ -well-separated by HX,τ then x and y are separated by HX,τ .

Proof. Since v and w are θ -well-separated by HX,τ , one has

sign(〈X, v〉+τ) 6= sign(〈X,w〉+τ), |〈X, v〉+τ | ≥ θ‖v−w‖2, |〈X,w〉+τ | ≥ θ‖v−w‖2.

Therefore, if
|〈X, x − v〉| ≤ θr ′/3 and |〈X, y − w〉| ≤ θr ′/3

it follows that sign(〈X, x〉 + τ) 6= sign(〈X, y〉 + τ) (see Figure 6 for an illustration). ut
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bbbb

HXi,τi

y wx v

1

Fig. 6. A ‘good’ hyperplane HXi ,τi that well-separates v and w. On the one hand, one needs to
shift the hyperplane in parallel by a distance proportional to θ‖v−w‖2 to hit w (the shift is marked
in red). On the other hand, the parallel shift needed to hit y when starting from w is less than half
this distance (shift marked in blue). As a consequence, a good hyperplane separates x and y.

The key component in the proof of Theorem 2.2 is the following fact:

Theorem 2.8. There exist constants c0, . . . , c6 that depend only on L for which the fol-
lowing holds. Let λ ≥ c0R, r ′ ≤ λ/2, and r ′′ ≤ r ′/4. Assume that

logN (T , r ′′) ≤ c1mr
′/λ, (2.7)

and that
E sup
z∈(T−T )∩r ′′Bn2

|{i : |〈Xi, z〉| ≥ c2r
′
}| ≤ mc3r

′/λ. (2.8)

Then with probability at least 1 − 8 exp(−c4m(r
′/λ)2), for every x, y ∈ T such that

‖x − y‖2 ≥ 2r ′,

|{i : sign(〈Xi, x〉 + τi) 6= sign(〈Xi, y〉 + τi)}| ≥ c5mr
′/λ,

and for every x, y ∈ T such that ‖x − y‖2 ≤ r ′′/2,

|{i : sign(〈Xi, x〉 + τi) 6= sign(〈Xi, y〉 + τi)}| ≤ c6mr
′/λ. (2.9)

Proof. Let V ⊂ T be an r ′′-cover of T . We apply (2.5) to every Z = 〈X, v〉, v ∈ V , and
Theorem 2.5 to every pair of points from V . Let c1 ≤ min{c, c2}/2, where c and c2 are
as in the probability estimates of (2.5) and Theorem 2.5, respectively. If

log |V | ≤ c1mr
′/λ

then by the union bound there is an event A1 of probability at least 1− 6 exp(−c2mr
′/λ)

such that for every v ∈ V ,

|{i : |〈Xi, v〉 + τi | ≥ r
′
}| ≥

(
1−

2r ′

λ

)
m (2.10)

and if v,w ∈ V satisfy ‖v − w‖2 ≥ r ′ then

|Iv,w(c3)| ≥ c4m‖v − w‖2/λ,

where the constants c2, c3 and c4 depend only on L.
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Now fix x, y ∈ T that satisfy ‖x − y‖2 ≥ 2r ′ and let v,w be the nearest points in V
to x and y respectively. By Lemma 2.7, if i ∈ Iv,w(c3) and

|〈Xi, x − v〉|, |〈Xi, y − w〉| ≤
c3

3
r ′,

then x and y are separated by HXi ,τi .
Note that x − v, y − w ∈ (T − T ) ∩ r ′′Bn2 , let c̃3 = min{c3, 1} and set A2 to be the

event

sup
z∈(T−T )∩r ′′Bn2

|{i : |〈Xi, z〉| ≥ (c̃3/3)r ′}| ≤
c4

2
·
mr ′

λ
. (2.11)

Hence, on A1 ∩A2, if ‖x − y‖2 ≥ r ′ then

|{i : sign(〈Xi, x〉 + τi) 6= sign(〈Xi, y〉 + τi)}| ≥
c4

2
·
mr ′

λ
,

which is the wanted lower bound.
At the same time, if ‖x − v‖2 ≤ r ′′ then by combining (2.10) and (2.11), one has the

upper bound

|{i : sign(〈Xi, x〉 + τi) 6= sign(〈Xi, v〉 + τi)}| ≤ c5
mr ′

λ
.

All that is left is to estimate the probability of the event A2. Note that

|{i ∈ [m] : |〈Xi, w〉| ≥ (c3/3)r ′}| =
m∑
i=1

1{|〈Xi ,w〉|≥(c3/3)r ′′} =: Hw,

and by the bounded differences inequality (see e.g. [4, Theorem 6.2]),

P
(

sup
w∈(T−T )∩r ′′Bn2

Hw ≥ E sup
w∈(T−T )∩r ′′Bn2

Hw +mt
)
≤ 2 exp(−cmt2)

for a suitable absolute constant c. The claim follows with the choice of t = (c4/4)·(r ′/λ).
ut

Proof of Theorem 2.2. We apply Theorem 2.8 for the choice r ′ = ρ/2. Let us identify
the conditions on r ′′ one has to impose to ensure that (2.8) is satisfied.

By the Giné–Zinn symmetrization theorem [11] and the contraction inequality for
Bernoulli processes [16], one has

E sup
z∈(T−T )∩r ′′Bn2

|{i : |〈Xi, z〉| ≥ cρ}| ≤ E sup
z∈(T−T )∩r ′′Bn2

1
cρ

m∑
i=1

|〈Xi, z〉|

≤ E sup
z∈(T−T )∩r ′′Bn2

2
cρ

∣∣∣ m∑
i=1

εi〈Xi, z〉

∣∣∣+ mr ′′
cρ
=: (1)+ (2).

To satisfy (2.8) it suffices to bound both terms by cmρ/λ. The required estimate on (2)
holds once

r ′′ ≤ c(L)ρ2/λ,
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and to ensure a suitable estimate on (1) it suffices that

E(Tr ′′) ≤ c(L)
√
mρ2/λ.

The claim follows by setting r = r ′′.
This immediately yields the lower bound in Theorem 2.2. To complete the proof of the

upper bound, recall that T is (r, γ )-metrically convex. For given x, y with ‖x− y‖2 ≥ 2r
let (zj )`j=1 be as in Definition 2.1. Then

|{i : sign(〈Xi, x〉 + τi) 6= sign(〈Xi, y〉 + τi)}|

≤

∑̀
j=0

|{i : sign(〈Xi, zj 〉 + τi) 6= sign(〈Xi, zj+1〉 + τi)}|,

and the claim follows from the ‘local’ upper bound (2.9). ut

2.2. The subgaussian scenario

When X is an L-subgaussian random vector one may establish an improved version of
Theorem 2.8: first, by showing that one may take r ′′ to be of the order of r ′ up to a
logarithmic factor; and second, by providing a better probability estimate on the outcome.
Moreover, thanks to the subgaussian property, one may replace the empirical parameter
E(Tr) by its Gaussian counterpart, `∗(Tr).

Theorem 2.9. There exist constants c0, . . . , c5 that depend only on L for which the fol-
lowing holds. Assume that λ ≥ c0R; that

r ′′ ≤ c1
r ′√

log(eλ/r ′)
;

that

logN (T , r ′′) ≤ c2
mr ′

λ
; (2.12)

and that

`∗(Tr ′′) ≤ c3
√
m
(r ′)3/2
√
λ
. (2.13)

Then with probability at least 1−8 exp(−c4mr
′/λ), for every x, y ∈ T such that ‖x−y‖2

≥ 2r ′,

|{i : sign(〈Xi, x〉 + τi) 6= sign(〈Xi, y〉 + τi)}| ≥ c5
mr ′

λ
,

and for every x, y ∈ T such that ‖x − y‖2 ≤ r ′′/2,

|{i : sign(〈Xi, x〉 + τi) 6= sign(〈Xi, y〉 + τi)}| ≤ c6
mr ′

λ
.

The only difference between the proof of Theorem 2.9 and that of Theorem 2.8 is the
control one has on the probability that

sup
z∈(T−T )∩r ′′Bn2

|{i : |〈Xi, z〉| ≥ cr
′
}| ≤ Cmr ′/λ. (2.14)
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When X merely satisfies an L1-L2 norm equivalence, one has to resort to the bounded
differences inequality for a high probability estimate. However, whenX is L-subgaussian
there is more information on the behaviour of the supremum. Specifically, we use the
following fact.

Theorem 2.10. Let X be an isotropic L-subgaussian random vector and let S ⊂ Rn. If
1 ≤ k ≤ m and u ≥ 1 then with probability at least 1− 2 exp(−c1u

2k log(em/k)),

sup
z∈S

max
|I |≤k

(∑
i∈I

〈Xi, z〉
2
)1/2
≤ c2

(
`∗(S)+ udS

√
k log(em/k)

)
,

where c1 and c2 depend only on L and dS = supz∈S ‖z‖2.

We omit the proof of Theorem 2.10, which is standard. It is based on generic chaining (see
e.g. [7, Theorem 3.2]) combined with Talagrand’s majorizing measures theorem [25].

Proof of Theorem 2.9. Observe that if (ai)mi=1 is a sequence of nonnegative numbers then
the k-largest element satisfies

a∗k ≤ max
|I |≤k

(
1
k

∑
i∈I

a2
i

)1/2

.

With that in mind, one has to ensure that for k = Cmr ′/λ,

sup
z∈(T−T )∩r ′′Bn2

max
|I |≤k

(
1
k

∑
i∈I

〈Xi, z〉
2
)1/2

≤ cr ′,

and by Theorem 2.10, it suffices to verify that(√
λ `∗(Tr ′′)
√
mr ′

+ r ′′
√

log(eλ/r ′)
)
≤ c1(L)r

′.

Clearly, the wanted estimate follows if

r ′′ ≤ c2(L)
r ′√

log(eλ/r ′)
and m ≥ c3(L)λ

(`∗(Tr ′′))
2

(r ′)3
;

and in that case, (2.14) holds with probability at least 1− 2 exp(−c4m(r
′/λ) log(eλ/r ′)).

The rest of the proof of Theorem 2.9 is identical to that of Theorem 2.8 and is omitted.
ut

Now one may complete the proof of Theorem 2.3, by setting ρ = 2r ′ and r = r ′′/2, and
noting that Theorem 2.9 yields the lower bound and the ‘local’ upper bound. The upper
bound follows directly from the local upper bound and the metric convexity assumption
(see the end of the proof of Theorem 2.2 for this argument). ut
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3. Random tessellations: noisy measurements

With the machinery developed for the proofs of Theorems 2.2 and 2.3 at our disposal, let
us present the proofs of Theorems 1.9 and 1.11.

Recall that T ⊂ RBn2 and that X is an isotropic and symmetric random vector, while
τ ∼ U[−λ, λ]. The rows of the measurement matrix A are (Xi)mi=1 and the given obser-
vations are the coordinates of the vector qcorr, which is a corrupted version of

sign(Ax + νnoise + τthres) = (〈Xi, x〉 + νi + τi)
m
i=1,

by at most βm ‘sign flips’. In the first scenario, X and ν satisfy an L1-L2 norm equiva-
lence with constant L, while in the second they are L-subgaussian.

The goal is to show that there is a constant C depending only on λ and L so that with
high probability, for any x, y ∈ T that satisfy ‖x − y‖2 ≥ ρ,

|{i : sign(〈Xi, x〉 + νi + τi) 6= sign(〈Xi, y〉 + τi)}| ≥ Cm‖x − y‖2, (3.1)

and at the same time,

|{i : sign(〈Xi, x〉 + νi + τi) 6= sign(〈Xi, x〉 + τi)}| < Cmρ/4. (3.2)

Together these conditions imply that the recovery program (1.9), which minimizes the
Hamming distance between qcorr and (sign(〈Xi, z〉 + τi))mi=1 with respect to z ∈ T ,
achieves reconstruction accuracy ρ as long as the fraction of the corrupted bits is at most
β ≤ Cρ/4. Indeed, (3.2) implies that any solution x# of (1.9) must satisfy

dH (qcorr, (sign(〈Xi, x#
〉 + τi))

m
i=1) < Cmρ/2

and then (3.1) shows that ‖x#
− x‖2 ≤ ρ.

The proofs of (3.1) in both scenarios follow from minor modifications of the results
established in the previous section. Rather than repeating the arguments, let us sketch the
adjustments one has to make.

First, one has to consider a modified notion of being ‘well-separated’ by a hyperplane:

Definition 3.1. The hyperplane HXi ,τi θ -well-separates x and y if

• sign(〈Xi, x〉 + νi + τi) 6= sign(〈Xi, y〉 + τi),
• |〈Xi, x〉 + νi + τi | ≥ θ‖x − y‖2, and
• |〈Xi, y〉 + τi | ≥ θ‖x − y‖2.

Denote by Jx,y(θ) ⊂ [m] the set of indices for which HXi ,τi θ -well-separates x and y.

Next, one has to establish the analog of Theorem 2.5 and show that every pair x, y is
well-separated by a fraction of the hyperplanes that is proportional to ‖x − y‖2.

Theorem 3.2. There are constants c1, . . . , c4 that depend only on L for which the fol-
lowing holds. Let x, y ∈ RBn2 and fix λ ≥ c1 max {R, ‖ν‖L2}. With probability at least
1− 4 exp(−c2m‖x − y‖2/λ),

|Jx,y(c3)| ≥ c4m‖x − y‖2/λ.
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Just as in Theorem 2.5, the proof is an outcome of Lemma 2.6, only this time with the
choice Z = 〈X, x〉 + ν and W = 〈X, y〉. To that end, one has to verify that Z − W
satisfies a small-ball condition, and that is immediate from the following observation and
the Paley–Zygmund inequality.

Lemma 3.3. Let Z and W be as above. Then

‖Z −W‖L1 ≥
1

2L
‖Z −W‖L2 .

Proof. Let α, β ∈ R and set ε to be a symmetric, {−1, 1}-valued random variable.
Clearly,

Eε|εα + β| ≥ 1
2 (|α| + |β|).

SinceX is a symmetric random vector, 〈X, x−y〉 has the same distribution as ε〈X, x−y〉,
where ε is independent of X and of ν. Hence,

‖Z −W‖L1 = ‖〈X, x − y〉 + ν‖L1 = EX,νEε|ε〈X, x − y〉 + ν|

≥
1
2
(E|〈X, x − y〉| + E|ν|) ≥

1
2L
(‖〈X, x − y〉‖L2 + ‖ν‖L2)

≥
1

2L
‖〈X, x − y〉 + ν‖L2 . ut

The other components needed to ensure separation in the sense of Definition 3.1 follow
from an identical argument used in the proof of Theorem 2.5, by conditioning on Xi and
νi rather than just on Xi .

Theorem 3.2 allows one to control the set V of ‘centres’ of a cover of T , and all that
remains now is to show that if x′ is close to a centre x and y′ is close y then there will be
few indices for which

sign(〈Xi, x〉 + νi + τi) 6= sign(〈Xi, x′〉 + νi + τi)

or
sign(〈Xi, y〉 + τi) 6= sign(〈Xi, y′〉 + τi).

In both cases, and using the notation of the previous section, one may follow the argument
in the proof of Theorem 2.8. Thus, it suffices to show that

sup
z∈(T−T )∩r ′′Bn2

|{i : |〈Xi, z〉| ≥ c1r
′
}| ≤ c2mr

′/λ, (3.3)

and that concludes the proof of the bound (3.1) with C ∼L 1/λ. ut

Let us turn to (3.2). In the heavy-tailed case, one may invoke the proof of Theorem 2.8 to
show that with probability at least 1− 8 exp(−cm(ρ/λ)2), for every x ∈ T ,

|{i : |〈Xi, x〉 + τi | ≥ ρ/2}| ≥ m
(

1−
ρ

λ

)
.

If |Eν| ≤ ρ/16 and σ 2
≤ (1/64)ρ3/λ, it follows that

P(|ν| ≥ ρ/4) ≤ P(|ν − Eν| ≥ ρ/8) ≤ ρ/λ.
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Hence, with probability at least 1− 2 exp(−cmρ/λ),

|{i : |νi | ≥ ρ/4}| ≤ 2ρm/λ.

On the intersection of the two events, for every x ∈ T one has

|{i : sign(〈Xi, x〉 + νi + τi) 6= sign(〈Xi, x〉 + τi)}| ≤ 3ρm/λ,

as required.
The proof in the subgaussian case is analogous and therefore omitted. ut

4. Robust recovery via a convex program

This section is devoted to the proof of Theorem 1.13. Set

φ(z) =
1
m
〈qcorr, Az〉 −

1
2λ
‖z‖22, (4.1)

then the convex optimization procedure (1.12) is exactly

max
z∈conv(T )

φ(z).

Recall that U = conv(T ) and that Uρ = (U − U) ∩ ρBn2 ; X1, . . . , Xm are the rows of
the matrix A which are distributed according to an isotropic, symmetric, L-subgaussian
random vector X; and τ ∼ U[−λ, λ]. Here we assume for the sake of simplicity that
ν has mean zero and variance σ 2, though the modifications needed to handle the case
in which ν has a nontrivial adversarial component are straightforward. Finally, as before
qcorr ∈ {−1, 1}m satisfies

dH (qcorr, sign(Ax + νnoise + τthres)) ≤ βm. (4.2)

As in most regularized procedures, the idea is to study the ‘excess functional’ φ(z)−
φ(x): for a reconstruction error ρ, we determine a sufficient condition on the number of
measurements m which guarantees that φ(z)− φ(x) < 0 whenever z ∈ U and ‖x − z‖2
≥ ρ. Clearly, that implies that the solution x# to (4.1) satisfies ‖x#

− x‖2 ≤ ρ. As before,
the goal is to obtain a uniform estimate, i.e., the high probability event for which the
above holds should not depend on the identity of x ∈ T .

The first step towards a uniform estimate is a decomposition of the excess functional.
Note that

φ(z)− φ(x) =
1
m
(〈qcorr, Az〉 − 〈qcorr, Ax〉)−

1
2λ
‖z‖22 +

1
2λ
‖x‖22

=
1
m
〈qcorr−sign (Ax+νnoise+τthres), A(z−x)〉

+
1
m

(
〈sign (Ax+νnoise+τthres), A(z−x)〉−E〈sign (Ax+νnoise+τthres), A(z−x)〉

)
+

1
m
E〈sign (Ax+νnoise+τthres), A(z−x)〉−

1
2λ
‖z‖22+

1
2λ
‖x‖22

=: (1)+(2)+(3),
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We use this decomposition to find constants C and ρ > 0 and a high probability event
on which, for every x ∈ T and z ∈ U ,

|(1)| ≤ C‖x − z‖22, |(2)| ≤ C‖x − z‖22, (3) ≤ −4C‖x − z‖22, (4.3)

provided that ‖x − z‖2 ≥ ρ.

Estimating (3). The starting point is a straightforward observation: for τ ∼ U[−λ, λ]
and any z ∈ R,

E sign(z+ τ) =
z

λ
1{|z|≤λ} + 1{z>λ} − 1{z<−λ}. (4.4)

Lemma 4.1. There exist absolute constants C and c for which the following holds. Let Z
and W be random variables and let τ ∼ U[−λ, λ] be independent of Z and W . Then∣∣∣∣EW sign(Z + τ)−

1
λ
EWZ

∣∣∣∣ ≤ C‖W‖L2 max
{

1,
‖Z‖ψ2

λ

}
exp(−cλ2/‖Z‖2ψ2

).

Proof. By (4.4),

EτW sign(Z + τ) = W
(
Z

λ
1{|Z|≤λ} + 1{Z>λ} − 1{Z<−λ}

)
= W

(
Z

λ
−
Z

λ
1{|Z|>λ} + 1{Z>λ} − 1{Z<−λ}

)
=:

WZ

λ
+ (∗).

Hence, E sign(Z + τ)W = 1
λ
EWZ + E(∗), and all that is left to show is

E|(∗)| ≤ C‖W‖L2 max
{

1,
‖Z‖ψ2

λ

}
exp(−cλ2/‖Z‖2ψ2

)

for absolute constants C and c.
Note that E|WZ1{|Z|>λ}| ≤ ‖W‖L2(EZ2

1{|Z|>λ})
1/2. By tail integration,

EZ2
1{|Z|>λ} ≤ λ

2P(|Z| > λ)+ 2
∫
∞

λ

tP(|Z| > t) dt

≤ (λ2
+ ‖Z‖2ψ2

) exp(−c1λ
2/‖Z‖2ψ2

),

where c1 is a suitable absolute constant. The estimate on the other two terms follows
because 1{|Z|>λ} ≤ (|Z|/λ)1{|Z|>λ}. ut

Corollary 4.2. There exist absolute constants c and C for which the following holds. For
every x, z ∈ Rn,

1
m
E〈sign(Ax + νnoise + τthres), A(z− x)〉

≤
1
λ
〈x, z− x〉 + C‖z− x‖2 max

{
1,
L(σ + ‖x‖2)

λ

}
exp

(
−c

λ2

L2(‖x‖22 + σ
2)

)
,
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where, as always, L is the subgaussian constant of X and of ν. In particular,

1
m
E〈sign (Ax + νnoise + τthres), A(z− x)〉 −

1
2λ
‖z‖22 +

1
2λ
‖x‖22

≤ −
1

2λ
‖z− x‖22 + C‖z− x‖2 max

{
1,
L(σ + R)

λ

}
exp

(
−c

λ2

L2(R2 + σ 2)

)
.

Proof. The first statement follows from Lemma 4.1 for the choices of Zi = 〈Xi, x〉 +
νi and Wi = 〈Xi, z − x〉: recalling that the νi are centred, have variance σ 2 and are
independent of Xi ,

‖Zi‖
2
ψ2
≤ c(‖〈Xi, x〉‖

2
ψ2
+ ‖νi‖

2
ψ2
) ≤ cL2(‖x‖22 + σ

2) ≤ cL2(R2
+ σ 2);

and, because X is isotropic,

‖〈Xi, z− x〉‖L2 = ‖z− x‖2 and
1
λ
E(〈Xi, x〉 + νi)〈Xi, z− x〉 =

1
λ
〈x, z− x〉.

The ‘in particular’ part is evident because

1
λ
〈x, z− x〉 −

1
2λ
‖z‖22 +

1
2λ
‖x‖22 = −

1
2λ
‖z− x‖22. ut

Corollary 4.2 leads to the wanted estimate on (3):

Corollary 4.3. There are constants c1 and c2 that depend only on L such that if

λ ≥ c1(σ + R)
√

log(c2/ρ) (4.5)

and ‖x − z‖2 ≥ ρ then

1
m
E〈sign(Ax+νnoise+ τthres), A(z−x)〉−

1
2λ
‖z‖22+

1
2λ
‖x‖22 ≤ −

1
4λ
‖z−x‖22. (4.6)

Estimating (1). Next, let us estimate |(1)| from above, by studying

sup
x∈T

sup
{z∈U : ‖z−x‖2≥ρ}

∣∣∣∣ 1
m
〈qcorr − sign(Ax + νnoise + τthres), A(z− x)/‖z− x‖

2
2〉

∣∣∣∣ =: (∗).
Observe that for every x, z, and ηi = (qcorr)i − sign(〈Xi, x〉 + νi + τi), one has∣∣∣∣ 1

m

m∑
i=1

ηi〈Xi, z− x〉

∣∣∣∣ ≤ 2
m

∑
{i: ηi 6=0}

|〈Xi, z− x〉|

and (ηi)mi=1 has at most βm nonzero coordinates. Hence, for any X1, . . . , Xm,

(∗) ≤ max
|I |≤βm

sup
{x,z∈U : ‖z−x‖2≥ρ}

1
m

∑
i∈I

|〈Xi, (z− x)/‖z− x‖
2
2〉|.
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Therefore, taking into account the estimate (4.6) on (3), it suffices to show that for every
x, z ∈ U such that ‖x − z‖2 ≥ ρ,

max
|I |≤βm

1
m

∑
i∈I

|〈Xi, (z− x)/‖z− x‖
2
2〉| ≤

1
16λ

.

To that end, observe that if f : Rn → R+ is positive homogeneous and W ⊂ Rn is
star-shaped around 0, i.e., θw ∈ W for all w ∈ W and 0 < θ < 1, then

sup
{w∈W : ‖w‖2≥ρ}

f (w/‖w‖22) = sup
{w∈W : ‖w‖2=ρ}

f (w)/ρ2.

We will refer to this argument, which reflects the general fact that star-shaped sets become
‘relatively richer’ close to their centres, as a ‘star-shape argument’.

Theorem 4.4. There exist constants c1, c2, and c3 depending only on L for which the
following holds. Assume that

ρ ≥ c1λβ
√

log(e/β) and `∗(Uρ) ≤ c2

√
m

β
·
ρ2

λ
. (4.7)

Then with probability at least 1 − 2 exp(−c3βm log(e/β)), for every x, z ∈ U such that
‖z− x‖2 ≥ ρ one has

max
|I |≤βm

1
m

∑
i∈I

|〈Xi, z− x〉| ≤
1

16λ
‖z− x‖22.

Proof. Since U −U is star-shaped around 0, the star-shape argument implies that for any
I ⊂ [m],

sup
{x,z∈U : ‖z−x‖2≥ρ}

1
m

∑
i∈I

∣∣∣∣〈Xi, z− x

‖z− x‖22

〉∣∣∣∣ = sup
w∈(U−U)∩ρSn−1

1
mρ2

∑
i∈I

|〈Xi, w〉|.

Apply Theorem 2.10 for k = βm and note that ‖w‖1 ≤
√
k ‖w‖2 forw ∈ Rk . This shows

that, with probability at least 1− 2 exp(−c(L)βm log(e/β)),

sup
w∈(U−U)∩ρSn−1

1
mρ2

∑
i∈I

|〈Xi, w〉| ≤
C(L)

mρ2

(√
βm`∗(Uρ)+ ρβm

√
log(e/β)

)
≤

1
16λ

,

provided that (4.7) holds. ut

Estimating (2). Finally, let us derive an upper estimate on∣∣∣∣ 1
m

(
〈sign(Ax + νnoise + τthres), A(z− x)〉 − E〈sign(Ax + νnoise + τthres), A(z− x)〉

)∣∣∣∣
that holds uniformly for all x ∈ T and z ∈ U such that ‖x − z‖2 ≥ ρ.
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Theorem 4.5. There exist constants c1, . . . , c4 that depend only on L for which the fol-
lowing holds. Let λ ≥ c1 and assume that

logN (T , ρ log−1(eλ/ρ)) ≤ c2m ·
ρ2

λ2 and `∗(Uρ) ≤ c3
ρ2

λ

√
m.

Then with probability at least 1− 5 exp(c4mρ
2/λ2), for every x ∈ T and z ∈ U such that

‖x − z‖2 ≥ ρ,

|(2)| ≤
ρ2

16λ
.

The proof of Theorem 4.5 is based on a covering argument. Let V ⊂ T be an r-cover for
a well-chosen r . A crucial part of the proof is to show that for every v ∈ V the (random)
set of sign patterns

Sv := {sign(Ax + νnoise+τthres) : x ∈ U, ‖x − v‖2 ≤ r}

is relatively simple: it consists of small perturbations of sign(Av + νnoise + τthres).
Since this observation is essentially the second part of Theorem 2.9, we formulate it

in the way that it will be applied and omit its proof—which is almost identical to the proof
of Theorem 2.9.

Lemma 4.6. There are constants c0, c1 and c2 that depend only on L for which the fol-
lowing holds. Let 0 < r ′ ≤ λ/2 and r ′′ ≤ c0r

′/
√

log(eλ/r ′). Assume that

logN (T , r ′′) ≤ c1
r ′

λ
m, (4.8)

and that

`∗(Ur ′′) ≤ c1
(r ′)3/2

λ1/2

√
m. (4.9)

If V is a minimal r ′′-cover of T , then with probability at least 1− 2 exp(−c2mr
′/λ), for

every v ∈ V ,
Sv ⊂ sign(Av + νnoise + τthres)+ 2Z,

where Z is the set of all {−1, 0, 1}-valued vectors in Rm that have at most 3(r ′/λ)m
nonzero coordinates.

Proof of Theorem 4.5. By a standard symmetrization argument it suffices to estimate the
probability that

sup
x∈T

sup
{z∈U : ‖z−x‖2≥ρ}

∣∣∣∣ 1
m

m∑
i=1

εi sign(〈Xi, x〉 + νi + τi)
〈
Xi,

x − z

‖x − z‖22

〉∣∣∣∣ ≤ 1
32λ

,

where (εi)mi=1 are independent, symmetric, {−1, 1}-valued random variables that are also
independent of (Xi, νi, τi)mi=1.



2944 Sjoerd Dirksen, Shahar Mendelson

Let r ′, r ′′, and V be as in Lemma 4.6 and observe that

sup
x∈T

sup
{z∈U : ‖z−x‖2≥ρ}

∣∣∣∣ 1
m

m∑
i=1

εi sign(〈Xi, x〉 + νi + τi)
〈
Xi,

x − z

‖x − z‖22

〉∣∣∣∣
= max

v∈V
sup

{x∈T : ‖x−v‖2≤r ′′}

sup
{z∈U : ‖z−x‖2≥ρ}

∣∣∣∣ 1
m

m∑
i=1

εi sign(〈Xi, x〉+νi+τi)

〈
Xi,

x − z

‖x − z‖22

〉∣∣∣∣∣ .
Let A be the event from Lemma 4.6. Recall that P(A) ≥ 1 − 2 exp(−cmr ′/λ) and that
on A, for any v ∈ V and x ∈ T such that ‖x − v‖2 ≤ r ′′, sign(〈Xi, x〉 + νi + τi) differs
from sign(〈Xi, v〉 + νi + τi) on at most (3r ′/λ)m indices. Therefore, for every v ∈ V ,

sup
{x∈T : ‖x−v‖2≤r ′′}

sup
{z∈U : ‖z−x‖2≥ρ}

∣∣∣∣ 1
m

m∑
i=1

εi sign(〈Xi, x〉 + νi + τi)
〈
Xi,

x − z

‖x − z‖22

〉∣∣∣∣
≤ sup
{x∈T : ‖x−v‖2≤r ′′}

sup
{z∈U : ‖z−x‖2≥ρ}

∣∣∣∣ 1
m

m∑
i=1

εi sign(〈Xi, v〉 + νi + τi)
〈
Xi,

x − z

‖x − z‖22

〉∣∣∣∣
+ 2 sup
{x∈T : ‖x−v‖2≤r ′′}

sup
{z∈U : ‖z−x‖2≥ρ}

max
|I |≤(3r ′/λ)m

1
m

∑
i∈I

∣∣∣∣〈Xi, x − z

‖x − z‖22

〉∣∣∣∣
=: (a)v + (b)v.

Observe that both (a)v and (b)v are homogeneous in x − z; therefore, by a star-shape
argument

(a)v ≤
1
ρ2 sup
{z,x∈U : ‖z−x‖2=ρ}

∣∣∣∣ 1
m

m∑
i=1

εi sign(〈Xi, v〉 + νi + τi)〈Xi, x − z〉
∣∣∣∣, (4.10)

(b)v ≤
1
ρ2 sup
{z,x∈U : ‖z−x‖2=ρ}

max
|I |≤(3r ′/λ)m

1
m

∑
i∈I

|〈Xi, x − z〉| . (4.11)

Let us begin by estimating the right hand side of (4.10). For every fixed v ∈ V and
conditioned on (Xi, νi, τi)mi=1, this is the supremum of a Bernoulli process indexed by a
set of the form { m∑

i=1

aiwi : w ∈ W
}
,

where (ai)mi=1 is a fixed vector of signs and

W ⊂ {(〈Xi, u〉)
m
i=1 : u ∈ Uρ}.

By the contraction inequality for Bernoulli processes [16] applied conditionally on
(Xi, νi, τi)

m
i=1, it follows that

P
(

sup
u∈Uρ

∣∣∣ m∑
i=1

εiai〈Xi, u〉

∣∣∣ ≥ t) ≤ 2P
(

sup
u∈Uρ

∣∣∣ m∑
i=1

εi〈Xi, u〉

∣∣∣ ≥ t).
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Since 1
√
m

∑m
i=1 εiXi is cL-subgaussian, it follows by generic chaining (see e.g. [7, The-

orem 3.2]) combined with Talagrand’s majorizing measures theorem [25] that∥∥∥∥ sup
u∈Uρ

1
√
m

m∑
i=1

εi〈Xi, u〉

∥∥∥∥
Lp

≤ c(L)
(
`∗(Uρ)+

√
p sup
u∈Uρ

‖u‖2

)
.

Hence, for any t ≥ 1, with probability at least 1− e−t ,

1
ρ2 sup

u∈Uρ

∣∣∣∣ 1
m

m∑
i=1

εi〈Xi, u〉

∣∣∣∣ ≤ c0

ρ2

(
`∗(Uρ)
√
m
+ ρ

√
t

m

)
.

Taking t = c1mρ
2/λ2, it follows that if

`∗(Uρ) .L
ρ2

λ

√
m, (4.12)

then for any fixed v ∈ V ,

(a)v ≤
1

64λ
with probability at least 1− exp(−c1mρ

2/λ2). (4.13)

By the union bound, (4.13) holds uniformly for all v ∈ V as long as

log |V | = logN (T , r ′′) ≤ c1

2
·
mρ2

λ2 . (4.14)

Next, observe that by (4.11),

sup
v∈V

(b)v ≤
1
ρ2 sup

u∈Uρ

max
|I |≤(3r ′/λ)m

1
m

∑
i∈I

|〈Xi, u〉| .

By Theorem 2.10 for k = 3r ′m/λ, with probability at least 1 − 2 exp(−c2(r
′/λ)

· log(eλ/r ′)m),

1
ρ2 sup

u∈Uρ

max
|I |≤(3r ′/λ)m

1
m

∑
i∈I

|〈Xi, v〉| .L

(√
r ′

λm

`∗(Uρ)

ρ2 +
r ′

λρ

√
log(eλ/r ′)

)
≤

1
64λ

,

where the last inequality holds as long as

`∗(Uρ) .L
ρ2
√
r ′λ

√
m and r ′

√
log(eλ/r ′) .L ρ. (4.15)

It remains to select r ′ and r ′′, taking into account the conditions formulated along the
way, specifically, (4.8), (4.9), (4.12), (4.14) and (4.15).

Our starting point is (4.12), which is a condition on ρ and does not involve r ′ or r ′′.
Next, the second condition in (4.15) is satisfied by setting

r ′ 'L
ρ√

log(eλ/ρ)
, (4.16)

and one may assume without loss of generality that r ′ ≤ ρ by the choice of λ ≥ c(L).
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With this choice for r ′, the first condition in (4.15) holds if

`∗(Uρ) .L
ρ3/2
√
λ

log1/4(eλ/ρ) ·
√
m,

which is automatically satisfied if (4.12) holds.
With the choice of r ′ in place, set r ′′ according to the condition in Lemma 4.6, i.e.,

r ′′ 'L
r ′√

log(eλ/r ′)
'L

ρ

log(eλ/ρ)
. (4.17)

Moreover, since r ′′ ≤ ρ, (4.9) holds if

`∗(Uρ) .L
ρ3/2

λ1/2log3/4(eλ/ρ)

√
m,

which is satisfied thanks to (4.12) and the choice λ ≥ c(L).
Finally, to satisfy (4.8) it suffices that

log |V | = logN (T , r ′′) .L
r ′

λ
m 'L

mρ

λ
√

log(eλ/ρ)
,

which is true by (4.14). ut

The proof of Theorem 1.13 is concluded by combining the estimates on (1), (2) and (3).
ut
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