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Abstract. This paper is devoted to semiclassical estimates of the eigenvalues of the Pauli operator
on a bounded open set with Dirichlet conditions on the boundary. Assuming that the magnetic field
is positive and a few generic conditions, we establish the simplicity of the eigenvalues and provide
accurate asymptotic estimates involving Segal-Bargmann and Hardy spaces associated with the
magnetic field.
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1. Introduction

In this article we consider the magnetic Pauli operator defined on a bounded and simply
connected domain 2 C R? subject to Dirichlet boundary conditions. This operator is
the model Hamiltonian of a non-relativistic spin—% particle, constrained to move in €2,
interacting with a magnetic field that is perpendicular to the plane.

Formally the Pauli operator acts on two-dimensional spinors and it is given by

Py = o - (—ihV — A))%,

where h > 0 is a semiclassical parameter and o is a two-dimensional vector whose compo-
nents are the Pauli matrices o1 and 0,. The magnetic field B enters in the operator through
an associated magnetic vector potential A = (Aj, A,) that satisfies d; A, — d, A1 = B.
Assuming that the magnetic field is positive and a few other mild conditions we provide
precise asymptotic estimates for the low energy eigenvalues of &7, in the semiclassical
limit (i.e., as h — 0).

Let us roughly explain our results. Let A (%) be the k-th eigenvalue of &7;, counting
multiplicity. Assuming that the boundary of € is €2, we show that there exist @ > 0 and
0o € (0, 1] such that the following holds: For all k € N*, there exists Cx > 0 such that,
ash — 0,

BoCrch™* e/ (1 4 0(1)) < Ak (h) < Ceh ¥ e/ (1 + 0(1)).

In particular, this result establishes the simplicity of the eigenvalues in this regime. The
constants « > 0 and Cy, are directly related to the magnetic field, and the geometry of €2
and Cy, is expressed in terms of Segal-Bargmann and Hardy norms that are naturally asso-
ciated to the magnetic field. When €2 is a disk and B is radially symmetric we compute C
explicitly and find that 8y = 1. This substantially improves the known results about the
Dirichlet—Pauli operator [0, 1 1] (for details see Section 1.3.2).

These results may be reformulated in terms of the large magnetic field limit by a
simple scaling argument. Indeed,

1i(h) = b*Ar(1/b),
where uz (b) is the k-th eigenvalue of [o - (=i V — bA)]?.
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Our results can also be used to describe the spectrum of the magnetic Laplacian
with constant magnetic field By. For instance, when €2 is bounded, strictly convex with
a boundary of class €7 (y > 0), the k-th eigenvalue of (—ihV — A)? with Dirichlet
boundary conditions, denoted by g (h), satisfies, for some ¢, C > 0 and & small enough,

Boh + ch™**1e™2¢/h < 1, (h) < Boh + Chk+1e720/h, (1.1)

In particular, the first eigenvalues of the magnetic Laplacian are simple in the semiclassi-
cal limit. This asymptotic simplicity was not known before and (1.1) is the most accurate
known estimate of the magnetic eigenvalues in the case of the constant magnetic field and
Dirichlet boundary conditions (see [10, Section 4] and Section 1.3.2).

Our study presents a new approach that establishes several connections with various
aspects of analysis like Cauchy—Riemann operators, uniformization, and, to some extent,
Toeplitz operators. We may hope that this work will cast a new light on the magnetic
Schrodinger operators.

1.1. Setting and main results
Let @ C R2 be an open set. All along the paper © will satisfy the following assumption.
Assumption 1.1. €2 is bounded and simply connected.

Consider a magnetic field B € €%°(Q, R). An associated vector potential A : Q — R?
is a function such that
B = 81142 — 82141.

We will use the following special choice of vector potential.
Definition 1.2. Let ¢ be the unique (smooth) solution of

Ap=B inQ,

¢=0 ondQ. (12)

The vector field A = (—d2¢, 31¢)7 := V¢ is a vector potential associated with B.

In this paper, B will be positive (and thus ¢ subharmonic) so that

max ¢ = max ¢ = 0.

xeQ ¢ x€iQ ¢
In particular, the minimum of ¢ will be negative and attained in 2. Note also that the
exterior normal derivative of ¢, denoted by d,¢, is positive on dQ if Q is €2 [7, Hopf’s
Lemma, Section 6.4.2].

Notation 1. We denote by (-, -) the C" (n > 1) scalar product (antilinear with respect
to the left argument), by (-, -) ;2 the L? scalar product on the set U, by | - 22wy the
L?-norm on U and by || - || Leo(y) the L>-norm on U. We use 0 and & for the standard
Landau symbols.
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1.2. The Dirichlet—Pauli operator

This paper is devoted to the Dirichlet—Pauli operator (Z7,, Dom(%?%,)) defined for all 2 > 0
on
Dom(Z) := H*(Q:C?) N HOl (Q;C?),

and whose action is given by the second order differential operator

_ > (lp—A*—hB 0
Pp=lo-(p—A)] —( 0 |p—A|2+hB)
<z 0 )
= ) (1.3)
(%

Here p = —ihV, and
p—AP:=(p—-A4)-(p—A) =—°A—A-p—p-A+|AP,

and 0 = (07, 02, 03) are the Pauli matrices:

(01 (0 —i (1 0
1=\1 o) 227\i o) 2T\o 1)

and 0 - X = 01X1 + 02X + 03X3 for X = (X1, Xp,X3) and 0 - X = 01X + 02X, for x =
(x1,X2). In terms of quadratic forms, we have by partial integration, for all ¥ € Dom(%?%,),

“//? ’@hl//)Lz(Q) = ”0 “(p— A)W”]%Z(Q)
= (0 = DYl 2q) — (V. 03hBY) 12 (q)- (1.4)

Note that for all x,y € R3,
(0-x)(0-y) =x-yly +io-(xxYy), (1.5)

where 1, is the 2 x 2 identity matrix. The operator &7, is selfadjoint and has compact
resolvent. This paper is mainly devoted to the investigation of the lower eigenvalues

of gh-

Notation 2. Let (A (h))ren+ (B > 0) denote the increasing sequence of eigenvalues of
the operator 7, each repeated according to its multiplicity. By the min-max theorem,

lo - (0= Y122,

Ae(hy = inf  sup > : (1.6
Vgiiog(;@;h)u/eV\{o} ”W”]}(Q)

Under the assumption that B > 0 on Q, the lowest eigenvalues of &, are the eigenvalues
of .Z,". More precisely, our main result states that for any fixed k € N* and & > 0 small
enough, Ay (h) is the k-th eigenvalue of the Schrodinger operator ..
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1.3. Results and relations to the existing literature
1.3.1. Main theorem

Notation 3. Let us denote by 77 (2) and 5#(C) the sets of holomorphic functions on €2
and C. We consider the (anisotropic) Segal-Bargmann space

B*(C) ={u e #(C): Ng(u) < +00},
where
1/2
Nﬂ(u) = (/Rz |u(y1 + iy2)|2e_HeSSxmi" o(r,y) dy) .
We also introduce a weighted Hardy space
%Z(Q) = {u S %(Q) : N%(u) < +OO},
where

1/2
Noe o) = ( /3 -+ 172 dy) .

Here, xmin € © and Hessy,, ¢ € R?*2 are defined in Theorem 1.3 below, n(s) is the

outward pointing unit normal to €2, and d,¢(s) is the normal derivative of ¢ on 92 at
s € 0. We also define for P € J#%(Q), A C H#?*(Q),

distge (P, A) = inf{Ng (P — Q) : Q € A},
and for P € #%(C), A C #*(C),
distg(P, A) = inf{Ng(P — Q) : Q € A}.
The main results of this paper are gathered in the following theorem.

Theorem 1.3. Define

Pmin = min .
XEQ

Assume that Q is €2, satisfies Assumption 1.1, and
(@) Bg:=inf{B(x):x € Q} >0,
(b) the minimum of ¢ is attained at a unique point X;p,

(c) the minimum is non-degenerate, i.e., the Hessian matrix Hessy,,, ¢ at Xmin (O Zmin if
seen as a complex number) is positive definite.

Then there exists 0y € (0, 1] such that for all fixed k € N* ,
(i) A (h) < Cap(k)h™*F1e2min h(1 4 0} ,o(1)) with

dist g ((Z - Zmin)k_1 ’ %2(9)) )2
distg (zk—1, Pr_s) ’

Csup(k) = 2(

where Px_, = span(l,...,z%¥72) c #*(C), P_; = {0} and
Q) = {u e Q) : u™ (zmin) = Oforn €{0,... .k —1}}. (1.7)
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(i) Ak(h) = Cinp(k)h ™ F1e20min/ B (1 4 0_,0(1)) with
Cint(k) = Coup(k)0o.

A precise definition of 8y is given in Remark 1.10.

Assuming that 2 is the disk of radius 1 centered at 0, and that B is radial, we have
B(0)*®

2k=2(k — 1)!

1 1
@:—/B(x)dx:—f On¢ ds.
2 Q 2w Q

Remark 1.4. Assume that B = By > 0 and that €2 is strictly convex. Then ¢ has a unique
and non-degenerate minimum (see [13, 14] and also [11, Proposition 7.1 and below]).
Thus, our assumptions are satisfied in this case.

Csup(k) = Cinf(k) = Crad(k) = (00 = 1)7

Remark 1.5. The main properties of the space s#2(R2) can be found in [4, Chapter 10].
Note that whenever 92 is supposed to be Dini-continuous (in particular €% bound-
aries, with @ > 0, are allowed), the set W1 (Q) N #%(RQ) is dense in S2%(Q) (see
Lemma C.1). This assumption is in particular needed in the proof of Theorem 1.3(i) (see
Remark 3.4)." The definition of Dini-continuous functions is recalled in the context of the
boundary behavior of conformal maps in [15, Section 3.3]. It is essentially an integrability
property of the derivative of a parametrization of 0<2.

Remark 1.6. The Cauchy formula [4, Theorem 10.4] and the Cauchy—Schwarz inequal-
ity ensure that

1/2
1™ (znin)| < ”—!Ngf(w( / %) / :
27 \/mingg dp¢ 9@ 12 = Zmin2OFD

for n € N and u € #%(Q) (see also the proof of Lemma 3.5). This ensures
that %’f(Q) defined in (1.7) is a closed vector subspace of .7#2(2) and that

distge ((z — Zmin)* ™1, J62(Q)) > 0 (see [3, Corollary 5.4]) since (z — Zmin)* ™1 ¢ J2(Q).

Remark 1.7. When B is radial on the unit disk 2 = D(0, 1), we find, using Fourier series,

that (z"), >0 is an orthogonal basis for Ng and Nz which are up to normalization factors,

the Szeg6 polynomials [4, Theorem 10.8]. In particular, %”kz (2) is Ng-orthogonal to
k—1

z so that

dmmﬁ*jgamzzmﬂﬁ”ﬁzéﬂm¢=ha

INote also that we do not use here the stronger notion of Smirnov domain in which the set of
polynomials in the complex variable is dense in 77 2(2) (see [4, Theorem 10.6]). Starlike domains
and domains with analytic boundary are Smirnov domains.
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In addition, $_, is Ng-orthogonal to z¥~! so that

2k (k — 1)

distg (X7, Prn)? = Ng(zF" 12 =2
8( k—2) 8(z") BO)F

)

and the radial part of Theorem 1.3 follows.

Remark 1.8. The proof of the upper bound can easily be extended to the case where 2
is not necessarily simply connected (see Remark 3.4).

Remark 1.9. Theorem 1.3 is concerned with the asymptotics of each eigenvalue A (%)
of the operator &, (k € N*) as h — 0. In particular, Ax (%) tends to 0 exponentially. Of
course, this does not mean that all the eigenvalues go to 0 uniformly with respect to k.
For h > 0, consider for example

(u,f,fu)

vi(h) = in > ,
veH @ON0} V72,

the lowest eigenvalue of the operator $h+. For fixed & > 0, there exists k(h) € N* such
that vy (h) = Ak (h). By (1.3), we have vy (h) > 2Boh and thus v; () does not converge
to 0 with exponential speed. Actually, Theorem 1.3 ensures that

}}im card{j € N* : 1;(h) < vy(h)} = +o0, I}im k(h) = +o0.
—0 —0

This accumulation of eigenvalues near O in the semiclassical limit is related to the fact
that the corresponding eigenfunctions are close to be functions in the Segal-Bargmann
space %2 (C) which is of infinite dimension.

Remark 1.10. The constant 8y introduced in Theorem 1.3 does not depend on k € N*
and is equal to 1 in the radial case. We conjecture that the upper bounds in Theorem 1.3
(i) are optimal, that is, 6y = 1 in the general case.

More precisely, let Q be a €2 set satisfying Assumption 1.1. We introduce

Mg :={G : Q@ — D(0, 1) biholomorphic : ¢; < |G'(-)| < ¢, for some ¢y, c; > 0}.

Note that Mg is non-empty by the Riemann mapping theorem. Then the constant 6y can
be defined by

gy . M0 (G OIIG ) o

maxyp(o,1) [(G~1) (»)[0np (G~ ()

for some G € Mg (see Lemma 5.6).

2We can even choose

fo = sup mingp(o,1) (G~ (1)19ad (G~ ()
07 Gemo Maxap.n (G~ 1) (1)[nd (G~ (1))
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Actually, we can even see from our analysis that there is a class of magnetic fields for
which 6y = 1. We introduce

B:={B e €D, 1);R*):
3¢ € HI(D(0,1);R), A¢ = B on D(0, 1), 32,¢ = 0 on dD(0,1)}.  (1.8)

Here, d; denotes the tangential derivative. Then, for any B e Band G € Mg, we get
0p = 1 and
lim inf e 28w/ Apk=13, (h) > Cypp(k)
h—0

for the magnetic field B = |G'(z)|? Bo G (z). This follows from the fact that the function
aD(0,1) 3 y = [(GTH ()[3ud (G (1))

is constant. Here, ¢ is defined in (1.2).

Using the Riemann mapping theorem, we can deduce the following lower bound for €2
with Dini-continuous boundary. Its proof can be found in Section 5.4.

Corollary 1.11. Assume that Q is bounded, simply connected and that 02 is Dini-con-
tinuous. Assume also (a)—(c) of Theorem 1.3. Let k € N*. Then there exist ¢y, Cy > 0 and
ho > 0 such that, for all h € (0, hy),

Ckh_k+1€2¢mi"/h < /‘\,k(h) < Ckh_k+1€2¢min/h-

Remark 1.12. Note also that our proof ensures that the constants Cy, cx can be chosen
so that Cy /ci does not depend on k € N*,

Our results can be used to describe the spectrum of the magnetic Laplacian with con-
stant magnetic field (see Remark 1.4).

Corollary 1.13. Assume that Q2 is bounded, strictly convex and that 02 is Dini-contin-
uous. Assume also that (a)—(c) of Theorem 1.3 hold and that B is constant. Then the
k-th eigenvalue of (—ihV — A)? with Dirichlet boundary conditions, denoted by . (h),
satisfies, for some ¢, C > 0 and h small enough,

Bh + ch™*+1e2®min/ b < 11 (h) < Bh + Ch*+1e20mn/ b (1.9)

In particular, the first eigenvalues of the magnetic Laplacian are simple in the semiclas-
sical limit.

1.3.2. Relations to the literature. Let us compare our result with the existing literature.

(1) When B = 1, our results improve the bound obtained by Erdds for A1 (k) [6, Theorem
1.1 & Proposition A.1] and also the bound by Helffer and Morame [ 10, Propositions
4.1 and 4.4]. Indeed, (1.9) gives us the optimal behavior of the remainder. When
B =1and Q& = D(0, 1), the asymptotic expansion of the next eigenvalues is con-
sidered in [11, Theorem 5.1(c)]. Note that, in this case, ¢ = (|x|2 —1)/4 and that
Theorem 1.3 allows one to recover [11, Theorem 5.1(c)] by considering radial mag-
netic fields.
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(ii)

(iii)

1.4.

In [11] (simply connected case) and [12] (general case), Helffer and Persson
Sundqvist have proved, under assumption (a), that

lim 2ln Ay (h) = 2Pmin-
h—0

Moreover, under the assumptions (a), (b) and (c) of Theorem 1.3, their theorem [11,
Theorem 4.2] implies the following upper bound for the first eigenvalue

A1(h) < 4@ det(Hessy, . ¢)/2(1 + o(1))e?¢min/ B,

Note that Theorem 1.3(i) provides a better upper bound even for k = 1.
They also establish the following lower bound by means of rough considerations:

Vh >0, Ay(h) = h2ADr(Q)e2#nin/ B

where AD(Q) is the first eigenvalue of the corresponding magnetic Dirichlet Lapla-
cian. This estimate is itself an improvement of [5, Theorem 2.1].

Corollary 1.11 is an optimal improvement in terms of the order of magnitude of
the pre-factor of the exponential. It also improves the existing results by consider-
ing the excited eigenvalues. Describing the behavior of the prefactor is not a purely
technical question. Indeed, it is directly related to the simplicity of the eigenvalues
and even governs the asymptotic behavior of the spectral gaps. This simplicity was
not known before, except in the case of constant magnetic field on a disk.

The problem of estimating the spectrum of the Dirichlet—Pauli operator is closely
connected to the spectral analysis of the Witten Laplacian (see for instance [11,
Remark 1.6] and the references therein). For example, in this context, the ground
state energy is

Jq |hVv|2e=20/ dx

min , 1.10
vA0  [qe72¢/ |2 dx (1.10)
veHL(Q)
whereas in the present paper we will focus on
h(dx, +i0y,)v[2e 29/ dx
min Ja 11, x2)Y| (1.11)
v#£0 Jo €729/ |v|2 dx
veH](Q)

(see also Lemma 2.4). Considering real-valued functions v in (1.11) reduces to
(1.10). In this sense, (1.11) gives rise to a “less elliptic” minimization problem.

The intuition and strategy of the proof

In this subsection we discuss the main lines of our strategy. It is intended to reveal the
intuition behind some of our proofs. We will focus mostly on the ground state energy,
which is given by (1.6) as

Ar(h) = min
verj@cMo V7,

(1.12)
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It is easy to guess from (1.3) that the ground state energy has to have the form v = (u,0)T.
This is consistent with the physical intuition that, for low energies, the spin of the particle
should be parallel to the magnetic field.

The variational problem above can be rewritten by means of a suitable transformation

as
207v|%e20/h qx F
A(h) = h?  min Ja 2070 —0? min P (1.13)
vA0 [ [v|?e2¢/h dx v#£0  Gp(v, @)
veH Q) veHL(Q)

where 0z = (91 + i02)/2 and ¢ is the unique solution to A¢ = B in Q2 with Dirichlet
boundary conditions (see Definition 1.2). This connection between the spectral analysis
of the Dirichlet—Pauli and Cauchy—Riemann operators is known in the literature (see e.g.
[2,6,11] and [17]), and we describe it in Section 2.

In order to study the problem in (1.13) it is helpful to consider the following heuristics
concerning Fj (v, ¢).

Observation 1.14. A minimizer vy wants to be an analytic function in the interior of 2
but, due to the boundary conditions, has to have a different behavior close to the boundary.
So, if we set Qg := {x € Q : dist(x,dRQ) > 8} for § > 0, we expect that vy behaves almost
as an analytic function on U with Qs C U C 2. Moreover, this tendency is enhanced in
the semiclassical limit when the presence of the magnetic field becomes stronger. Hence,
we also expect that § — 0 as & — 0 in some way.

We comment below on how we make Observation 1.14 more precise; for the moment
let us just mention that throughout this discussion we work with § such that

§2/h -0 and 8/h—oo ash— 0. (1.14)

As a consequence of Observation 1.14 we expect that
Fp(vp. §) ~/ 120704229/ M dx, (1.15)
Ts

where T5 := Q \ Q5.

An essential ingredient in our method is the analysis of the minimization problem
associated with the RHS of (1.15). The main ideas go as follows: Assume first that €2
is the disk D(0, 1). By writing the integrand |dzvy|2e~2%/" in tubular coordinates (see
item (i) from the proof of Lemma 3.7) and Taylor expanding ¢ around any point at the
boundary 02 we get, for § satisfying (1.14),

120zv|2e2¢/ " dx
Ts

2 b
(l+0(h))/ / e2hd/h (3, —id)v|?dsdr  (1.16)
0 0

(14 o(h)Jp(v) (1.17)

(see also the proof of Lemma 5.5), where dp¢p = dp¢p(s) is the normal derivative at the
boundary (see Notation 3).
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Observe that if d,¢ is a constant along the boundary, then it equals the flux ®. In
this case, as explained in item (iv) of the proof of Lemma 5.5, the problem of finding a
non-trivial solution of

inf  Jp(v) with vy =vs, vlyg =0, (1.18)
veH 1 (Ts)
can be reduced to a sum (labeled by the Fourier index) of one-dimensional problems that
we solve explicitly in Lemma A.1.
For the particular case of v having only the non-negative Fourier modes on 025 (i.e.,
Vs = Y 0 Us.me™*) we find that (see Lemma 5.5)

®/h
Jp(v) = l_e_—zsc}%“vuiz(a])(o,l_&) =+ O(h))ZCD/h”v||22(aD(0’1_8)) (1.19)

where the last equality is a trivial consequence of (1.14). Moreover, by Lemma A.1, the
latter inequality is saturated when vs = 05 9. Concerning the assumption on v, recall that
analytic functions on the disk have only Fourier modes for m > 0.

Notice that if B is rotationally symmetric then dp¢ is constant. If d,¢ is not a constant
we can give a suitable estimate using minyg d,¢ > 0. We extend the previous analysis to
more general geometries by using the Riemann mapping theorem.

There is another important point to take into account, this time concerning Gy (v, ¢).

Observation 1.15. Recall that ¢ < 0 has an absolute, non-degenerate, minimum at
Xmin- Hence, the weighted norm of vy, Gy (v, ¢), should have a tendency to concentrate
around Xp,i,. This is made precise in Lemma 5.3 below. Moreover, observe that using
Laplace’s method, one formally deduces that, as i — 0,

Gh(v, ) ~ h7t|v(Xmin)|>e 2o/ (det Hess,, . ¢) /2. (1.20)

Observations 1.14 and 1.15 reveal the importance of the behavior of a minimizer
around the boundary and close to xn,, respectively. In addition, this behavior is naturally
captured through the norms Ng and Ng given in Definition 3, which, in turn, provide a
natural Hilbert space structure to select linear independent test functions which are used
to estimate the excited energies.

In order to show our result we give upper and lower bounds for the variational problem
(1.13). This is done in Sections 3 and 5, respectively. Concerning the upper bound: In view
of the previous discussion it is natural to choose a trial function (at least for the disk, see
Remark 3.2) v = wy where w is an analytic function in €2 and  is such that ylqo =1
and decays smoothly to zero towards 9€2. We pick y['7, as an optimizer of the problem
(1.18). For A (h), we choose w to be a polynomial of degree k — 1. In particular, for the
ground-state energy, w is constant and in view of (1.22) and (1.20) we readily see how the
claimed upper bound (at least for the disk with radial magnetic field) is obtained.

As for the lower bound, as a preliminary step, we discuss in Section 4 some elliptic-
ity properties related to the magnetic Cauchy—Riemann operators. Our main result there
is Theorem 4.6. It provides elliptic estimates for the magnetic Cauchy—Riemann oper-
ators on the orthogonal complement of the kernel which consists, up to an exponential
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weight, of holomorphic functions. The findings of Section 4 are crucial to proving Propo-
sition 5.4, which gives estimates on the behavior described in Observation 1.14. Indeed,
Proposition 5.4, together with the upper bound, roughly states that the non-analytic part
of vy, on any open set contained in €2 is, in the semiclassical limit, exponentially small in
a sufficiently strong norm. At least for the disk with radial magnetic field, we can argue
on how to get the lower bound if we assume that vy is analytic on an open set U with
D(0,1—6) C U C D(0,1). Notice that (1.22) holds. Moreover, by Cauchy’s Theorem
we have 277 |vj, (Xmin)|? = 27 |vx(0)|? < (1 + o(h))||vp ||§D(0,1_8). In this way we see that
the lower bound appears by combining (1.22) and (1.20).

Let us finally remark that actually, since the function v in (1.20) depends on 7,
Laplace’s method cannot be applied so easily. Instead, after the change of scale y =

X 7 7o one has formally the Bargmann norm appearing:

G (v, §) ~ he 2wl k / 10 (Xamin + 72 y) Pe eSS xmin 9000 (1.21)

Ultimately, in the case of the disk with radial magnetic field, problem (1.13) reduces
formally to

A1(h) 2 @2Pmin/hinf 2( (1.22)

v#0
()

which can be computed easily due to the orthogonality of the polynomials (z"),>¢ in the
Hilbert spaces .7#2(2) and #?(C) (see Remark 1.7). Of course, special attention has to
be paid to the domains of integration and the sets where the holomorphic test functions
live. In the non-radial case, however, we strongly use the multi-scale structure of (1.22) to
get the result of Theorem 1.3 (see Section 5.3). Note that the constant 8y of Theorem 1.3
which appears in the computation of (1.22) somehow measures a symmetry breaking rate
(see Remark 1.10 and Lemma 5.6).

Nge (v) 2
Ng(v(Xmin + h'/? ‘))) ’

2. Change of gauge

The following result allows us to remove the magnetic field up to sandwiching the Dirac
operator with a suitable matrix.
Proposition 2.1. We have

093¢/ b .pea3¢/h =o0-(p—A), (2.1)
as operators acting on H'(Q; C?) functions.

This follows from the next two lemmas and Definition 1.2 (see also [17, Theo-
rem 7.3]).

Lemma 2.2. Let f : C — C be an entire function and A, B be square matrices such that
AB = —BA. Then

Af(B) = f(=B)A.
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Lemma 2.3 (Change of gauge for the Dirac operator). Let ® : Q2 — R be a regular
function. Then
e300 -p)e®® =0 (p—hVoh)

as operators acting on H'(Q; C?) functions and where V ® is defined in Definition 1.2.
Proof. By Lemma 2.2, for k = 1,2 we have
e?3%0;, = ope 32,

Thus, by the Leibniz rule,

e%(0 - p)e®® = (6e7 3. p)e®3® =05 - (p—iho3 VD).

It remains to notice that —ico3 = o+ 1= (—02,01) so that
e -pe”®=0.-p+hot - VO =0-p—ho- VoL [
We let ) )
g, = iy dxtidy
2 2

We then obtain the following result.

Lemma 2.4. Let k € N* be such that Ay (h) < 2Boh. Then

4 [ e 2/ M| hozv|? dx

Ar(h) = inf sup (2.2)
VCHM(@:C) vev\ioy  Jg V[2e72#/ M dx
dimV=k
Recall that Ay (h) is defined in (1.6).
Proof. By (1.3) and (1.6), since .i”th > 2Boh we get
lo-(p— A7
Ae(h)= inf  sup . )12
VCHL(Q:C) uev\{0) llll7 2 q)
dimV =k
Letu € H}(Q2:;C) and h > 0. Letting u = e~%/"v we have, by Proposition 2.1,
u\ | v\ |?
o= (p) =i
0 LZ(Q) O L2(Q)
= 4/ e 72/ hdzv|? dx,
Q
and
u)?5, 0y = f lv|2e2¢/ " dx. .
L2(R) Q
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3. Upper bounds

This section is devoted to the proof of the following upper bounds.

Proposition 3.1. Assume that Q is €2 and satisfies Assumption 1.1. For all k € N*,
Ai(h) < Cap()h™*H 120l B(1 4 0(1)), (3.1)

where Ay (h) and Cqyp(k) are defined in (1.6) and in Theorem 1.3 respectively.

3.1. Choice of test functions

Letk € N* and m € N. By (2.2), we look for a k-dimensional subspace V}, of Hg (€2; C)
such that
4h2 [ |0zv|2e2¢/ 1 dx

sup — e < Cop()RFT(1 + 0(1)).
vev0) g [v[2e72@~ @)/ A dx P

By the min-max principle, this would give (3.1). Formula (2.2) suggests taking functions
of the form

v(x) = y(w(x).
where
(i) w is holomorphic on a neighborhood on €2,

(ii) y:Q — [0, 1] is a Lipschitzian function satisfying the Dirichlet boundary condition
and equal to 1 away from a fixed neighborhood of the boundary.

In particular, there exists £y € (0, d(xXpin, €2)) such that
x(x) =1 forall x € Q such that d(x, dR2) > £y, (3.2)

where d is the usual Euclidean distance.

Remark 3.2. The most naive test functions set could be
Vi = span(xs(2), - ., xn(X)(Z = Zmin)* 1),
where (xr)ne(o,1] satisfy (3.2). With this choice, one would get

4h? [ |0zv|2e ™28/ 1 dx

sup Ze—2@—dun)/h dx

vev o} Jq IV

< Caup(K)R7FF1(1 + 0(1)),

where
Nge((z — Zmin)k_l)
distg (251, Px_»)

2
Copk) = 2( ) > Cyp(k).

Note however that in the radial case Cf';;(k) = Cyp(k). We will rather use functions com-
patible with the Hardy space structure to get the bound of Proposition 3.1, as explained
below.
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Notation 4. Let (Py,),en denote the Ng-orthogonal family such that P,(Z) = Z" +

Z;:(l) by,; Z/ obtained from a Gram-Schmidt process applied to (1, Z, ..., Z",...).

Since P, is Ng-orthogonal to #,_;, we have
distg(Z", Pn—1) = distg(Pn, Pn—1) = inf{Ng(Pn — Q) : Q € Pp—1}
=inf{y/Ng(P,)2 + Ng(Q)?>: Q € P,_1} = Ng(P,) forneN. (3.3)
Let O, € %ﬁf(Q) be the unique function such that
distge (2 — Zmin)", 742(R)) = Nae((z = Zain)" — Qn(2))

forn € {0,...,k — 1} (see Remark 1.6). We recall that Ng, Ny, $,_1, and jﬁf(Q) are
defined in Section 1.3.1.

Lemma 3.3. Foralln €{0,...,k — 1}, there exists a sequence (Qn m)meN C j‘ff(Q) N
W L°(Q) that converges to Q, in H#*(Q).

Proof. We can write Q,,(2) = (2 — Zmin)* @n (). Here, @n is a holomorphic function
on €. Since z > (z — Zmin) ' 7F € L®(0Q), we get 0, € H#2(Q). By Lemma C.1, there
exists a sequence (Qn.m)meN C H2(Q) N WH2(Q) converging to O, in 5(2). We
have

Nge (2 = Zmin)* 1 (OQnim — On)) < 112 = Zamin)* Lo 02) Noe (o — On),

so that the sequence (Qpm)meN = (2 = Zuin)* ! Qn.m)men C H42(2) converges to O
in J2(Q). Since z > (2 — Zyin) ! € L®(3RQ), we have Qpm € HZ(RQ). "

Let us now define the k-dimensional vector space V}, k cup by
Vik,sup = span(Wo s - - . s We—1,1), (3.4)

wn,h(z) = h_l/zpn(

Z — Zmin
h1/2

) —h~ ™20 () forn €{0.... .k —1}.

At the end of the proof, m will be sent to +oco. Note that we will not need the unifor-
mity of the semiclassical estimates with respect to m. That is why the parameter m does
not appear in our notations. Note that w, ;, being a non-trivial holomorphic function,
does not vanish identically at the boundary. To fulfill the Dirichlet condition, we have to
add a cutoff function (see below).

Remark 3.4. Consider

~ _ Z — Zmin _
Bnp(2) = h ”ZPn( 7z )—h W20, (2).

Since Q, belongs to #%(2) ¢ H'(2; C), the functions Wy j, : X > @y p (X1 + ix2) and
XWn.n do not belong necessarily to H!(2; C) and H( (2; C) respectively. That is why
we have introduced Q. Note that to get Hy (2; C) test functions, it suffices to require
that y be compactly supported in €2. With this strategy, our proof can be adapted to the
case where €2 is not necessarily simply connected.
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3.2. Estimate of the L?-norm

The aim of this section is to prove the following estimate.

Lemma 3.5. Leth € (0,1], vy, = x Zf;(l) cjwjp witheg,. .., cx—1 € C, x satisfying (3.2)
and (Wj p)jefo,....k—1) defined in (3.4). Then

k—1
/ |vh|26—2(¢(x)—¢min)/h dx = (1 + 0(1)) Z |Cj |2N£—8(Pj)27 (35)
Q .
J=0
where Ng is defined in Notation 3 and o(1) does not depend on ¢ = (cg, . ..,Cr—1) or .

Proof. Leta € (1/3,1/2)andn,n’ € {0,...,k —1}.

In the proof, three types of terms will appear after a change of scale around Xxpi:
(Pn, Pu) g, (Pn, On,m) g and (Qn m, On’.m) g Where (-, -) g is the scalar product asso-
ciated with N g. Since the polynomials (Py,)neN are Ng-orthogonal, we have (P, Py/) g
=0if n # n’ and we will prove that (Q, m. On',m) g = O (h) and by the Cauchy—Schwarz
inequality (Pn, Op'm)g = O (h'/?). More precisely, we proceed as follows:

(i) Let us estimate the weighted scalar products related to P, for the weighted L2-
norm. Using the Taylor expansion of ¢ at xp;,, we get, for all x € D (X, 1Y),

— Pmi 1
M = S eSS, B0 — X, X — ¥oia) + (). (36)
By using the change of coordinates

X — Xmin

Ah X > ]/ZIT’ (37)
we find
/D( ) )h—l Py Py (W)e—wu)—m)/k dc
Xmin,h%
— (1 + ﬁ(h3ot—l)) h—l Pn Pn/ (XI +iX2 _Zmin)e_}T Hessx,,, @ (¢ —XminsX—Xmin) dx
D(xminsha) hl/z
= (14+ 0 Po Par ()~ FE5500 209) gy
D(O,h‘)‘_l/2)
=1+ ﬁ(h““l))((Pn, Py)g— / Py Py () e~ Hessamin 9029) dy)
C\D(0,h—1/2)
= (1L+ 00" (Pa. Pwr) s+ O (h*), (3.8)

where the last equality follows from Assumption (c) in Theorem 1.3.
We recall assumptions (b) and (c) of Theorem 1.3. Then, by the Taylor expansion of ¢
at Xmin, We deduce that

)";“ h2*(1 + O(h%)), (3.9)

inf > Pmin +
Q\D (Xnin» ha)d) Z $min
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where Anin > 0 is the lowest eigenvalue of Hessy, ,, ¢. Since P, is of degree n, there exists
C > 0 such that

sup < Ch~ntD/2,

xeQ

hl/2

h_l/an (xl + iX2 - Zmin)

Using this with (3.9), we get

1 g2 P, Py (N2 T Zin ) 2@~ g
Q o nen hl/2
\D (Xmin,h%)

< Ch= D2~ +D/2,=hmah 2 00 — 5(h) (3.10)

From (3.8) and (3.10), we find

“1.2 X1+ X2 = Zmin \ —2(6(x)—dmin)/
Lh X PnPn’(T)e dx

= (14 OH* )Py, Pw)g + Oh™®). (3.11)

(i1) Let us now deal with the weighted scalar products related to the O ,,. Let u €
H%(Q) and zg € D(Zpmin, h%). By the Cauchy formula (see [4, Theorem 10.4]) and the
Cauchy—Schwarz inequality,

k! u(z)
/asz (z — zo)kH! dz‘

®) (o | —
[ (20)] .
k! |dz| 1/2
- Noe (u) 20k+1)
27 \/minygg dy¢ a9 12 — 2ol

IA

k! |dz| 12
< ———=Nx(u) / =
27 \/minygg dn¢ 32 (12 — Zmin| — h%)2Gk+D

< CNygx(u). (3.12)
With the Taylor formula for ¥ = Q, , at Zyin, this gives

10nm(20)| < Cl20 = Zminl* Nt (Qnm)-

Using (3.6), this implies
/ 0420 (1 4 i) e 2@@—dmn) g
D (xmin,h%)

S Ch_(1+n) / |(x1 + ixz) —_ Zmin|2ke_2(¢(x)_¢min)/h dx
D (xXmin,h%)

< Ch*"Ng(z%)? < Ch. (3.13)
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Using (3.9) and Q. € W1®(Q) C L2(Q), we get

/ 20, (e 4 i) 2e2@@—min) g
Q\ D (Xmin,h%)

— 3. pa—1 o
< Ch™ D Qp 72 (qpe OO — oh*™). (3.14)

With (3.13) and (3.14), we deduce
/ |20, (31 + ix2)[Pe 2@ 0m) B g — (h). (3.15)
Q
Applying the Cauchy—Schwarz inequality and (3.15), we obtain

/szh—“*")”Qn,m (x1 +ix)) =20 G ixg)e @@ —dmin) h qx = G (h).
(3.16)

(iii) Let us now consider the scalar products involving the P, and the Q, . Using
(3.11), (3.16), and the Cauchy—Schwarz inequality, we get

/ 2P, (—XI - :32__ Znin )h(1+n/)/2m82(¢(x)¢mm)/h dx
Q
=0h'?. (317

The conclusion follows by expanding the square in the left-hand side of (3.5) and by using
(3.11), (3.16), (3.17) . L]

Remark 3.6. From Lemma 3.5, we deduce that the vectors {yw;, : 0 < j <k — 1} are
linearly independent for # small enough.

3.3. Estimate of the energy
The aim of this section is to bound from above the energy on an appropriate subspace.
Lemma 3.7. There exists a family (xp)ne(o,1] of functions which satisfy (3.2) and such

that, for all wy, = Zj-:(l) cjWjh € Vik,sup With o, ..., cx—1 € C,

4 / 122/ ()| dx
Q
< 20" Kok 1 PNge ((2 = Zmin)* ™" = Qkm1.m) + o (DR K e ||,

Here, 0(1) does not depend on cy, . . ., Cr—1.
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Proof. Let x be any function satisfying (3.2). We have
4/ h2e™ /195 ywp)? dx = h2/ lwp|2e ™2/ 7|V y |2 dx
Q Q
=0 [ PR
suppV x

where we have used |V x|?> = 4|05 x|? since y is real and dzwy, = 0.
The proof is now divided into three steps. First, we introduce tubular coordinates near
the boundary, then we make an explicit choice of y, and finally we control the remainders.
(1) We only need to define y in a neighborhood of I' = 9. To do this, we use the
tubular coordinates given by the map

n:R/(T|Z) x (0,t9) —> 2, (s,1) — y(s) —tn(s),

for t9 small enough, y being a parametrization of I" with |y’(s)| = 1 for all s, and n(s)
the unit outward pointing normal at y(s) (see e.g. [8, §F]). We let

' (x) = (s(x).1(x))  forall x € n(R/(|T|Z) x (0. 10)),

the inverse map to 7. We let, for all x € €,

p(s(x),d(x,02)) ifd(x,dR) <,
x(x) = )
1 otherwise.
The parameter ¢ > 0 and the function p are to be determined. We assume that p(s,0) = 0
and p(s, ) = 1 when ¢ > . We will choose ¢ = o(h'/?).

Since the metric induced by the change of variable is the Euclidean metric mod-
ulo O'(e), we get

% / TP
suppV x

< (1+ O(e)h? /F / [ia| e =220/ (10,2 + |0 p[?) ds dt,
0

where W), = wy o n and ¢ = ¢ o 1. Thus, by using the Taylor expansion of ¢ atr = 0 we
get, uniformly ins € T,

H(s.1) = 13,¢(s,0) + O(t?) = —1dn(s,0) + O(£?),

and

% / ey
suppV x

&
5(1+ﬁ(s+sz/h))hzfrfo [y 2210219, p|* + |95p|?) ds dr.
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Since Q. € WH(Q), we have 9, Qn,m on e L%®°(T" x (0, ¢)) and by using the Taylor
expansion of W near t = 0, we get

k—1 t
Wp (s, 1) ( c,»w,-,h) o n(s,1) = (s, 0) +/0 3, n (s, ') de’
=0

Wy (s,0) + O(&)llcnll 2.

where
cpn = (hVco, ..., h % %c,_y), (3.18)

and | - || 2 is the canonical Euclidean norm on Ck. Then
2 / lwaPe2/ 4V P dx
suppV x
&
< (1+O(e + e/ h)h? / | (s, 0)]? / 21?13, p* + 195p]7) ds dt
r 0

&
rCnelenlly [ [ 000, + (2,91 ds . (3.19)
rJo

(ii) For the right-hand side of (3.19) to be small, we choose p to minimize d,p far
from the boundary. The optimization of

&
p *—>/ 2115, 0] dt
0

gives us the weight d,¢. More precisely, Lemma A.1 with o = 20,¢/h > 0 suggests
considering the trial state defined, for < ¢, by

| — o—2tnd(s)/h
p(s,t) = 1 e—26000)/ 1’

and by 1 otherwise. By Lemma A.1, we get

€ 2000/ h
2t0nd/ h 2 4 n
/0 e [0:p|° dt = T o—2mdlh"

and

& &
/ 2O/ o5p)* di = |3Sa|2/ 29Iy pas|? dt < Ch™2 (@™ + e ™)

0 0
< C(h+ 20/ he2p=1h),

We can choose ¢ = h|In k| so that

// [ (s, 0)|2e2 &/ 15,012 dsdr = (1 —i—o(l))h_l/28,,¢>|1I)h(s,0)|2ds,
rJo T
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and (3.19) becomes
W[ ey ax
suppV x
< @+ oh( [ 20aglinGs 0 ds + Celenl ). 320
r

(iii) Let us consider, for all 4 > 0,

Nh:Ckacw(/BnqS
T

k—1 . 2 12
Z e hATD2p, (s, 0)‘ ds) ,
j=0

where we recall that

_ Z — Zmin —(i
@) = W2y () 20, )

The map Ck x [0, 1] (¢, h) — Nj(c) is well defined and continuous (since the degree
of P; is j). Note in particular that

k—1 ) 2 1/2
No(e) = ( [ SCICEERNE IO ds) .
j=0

Notice that
Ni(cn)? = /F 8|51 (5. )7 ds = Nye (wp)?. (3.21)

where ¢y, is defined in (3.18). Since Ng is a norm, and recalling Remark 3.6, we see that
the map N}, is a norm when & € (0, hg]; Ny is also a norm (as we can see by using the
Hardy norm and Q;,,, € Jff(Q)).
Let us define
Co = in N, > 0.
0=, )
lelp2—,

so that, for all 4 € [0, ho] and all ¢ € Ck,

Collcllgz < Np(c). (3.22)

Using (3.20), (3.21), and replacing ¢ by ¢y, in (3.22), we conclude that
B [ e g dx < 201+ o(1)hNac ()
suppV x

Let us now estimate N g (wy,). From the triangle inequality, we get

k—2

Nye(wp) < lex—1|Naewe—1.0) + Y lej | Nae (wjp).
j=0
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Then, from degree considerations and the triangle inequality, we get, for 1 < j <k —2,

Ny (wjp) = OH10/2),

and
Nae(Wi—14) = (1 + o)A 2Ny ((z = Zin)* ™ = Q—1.m)-
Then
_ _ 2 _
Nge(wn)* < lex—1 P Nye((z = zmin)* ™ = Qkm1m)” + 0k F)lc]12.
This ends the proof. ]

3.4. Proof of Proposition 3.1
Let us define Vh,k,sup = {xnwp : Wy € Vp k sup)> Where Vj, i o is defined in (3.4) and yp,
in Lemma 3.7. By Lemmas 3.5 and 3.7, we get
4 [ h2e 2010 (wp xp)|? dx
o [wnxn|2e=2@=0ui)h dx
i lek—1 PN (2 = Zmin) ™! — Ok—1,m)?
Y20 lesPNs(P;)?

<2h! + o(h'7F)

for all wy, = Z?;(l) cjwjp € Vi k,sup With ¢ € Ck \ {0}. From the min-max principle,”’ it
follows that

A (B) < 20" Ny (2 = Zmin)* ™" = Qk—1m)”

|Ck—1|2

X sup y— @2Pmin/ B o(hl_k).
ceCk\(oy D_j—o I¢j > Na(F;)?
Since 5
[y -2
sup T = Ng(Pr-1)"",
ceCk\(0} Y=g l¢;[*N8(P;)?
we deduce

li;ln sup hk=Le™20min/ 1) (h) <2
—0

(N;g«z A - Qk_l,m))z'

distg (zk—1, Px_2)
Taking the limit as m — 400 we get

lim sup ¥~ 1e2®nin/ B3, (h) < Cypp (k).
h—0

3By Remark 3.6, dim vh,k,sup = k for h small enough.
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3.5. Computation of Cyp(k) in the radial case

Let k € N*. Assume that €2 is the disk of radius R centered at 0, and that B is radial. In
this case Xmin = 0, dn¢ is constant and Hessy , ¢ = B(0)1d/2. Thus,

distye ((z — zmin)* ™", A2 (RQ)) = distye (2571, A2 (Q)) = Naye(2*71)? = 270 RP*,
and we notice that P,(z) = z" (see Notation 4) so that

distg(z" 71, Pr_z) = Ng(Pr_1)?

+
= f |y|2(k—1) e—Hessxmin¢(y,y) dy = 27t/ OOPZk—le—B(O)pZ/z dp
R2 0
27T2k /+OO k1 2 27T2k_lr(k) 27T2k_1(k _ 1)!
= Bk IO e dp == = ,
BO* Jo BOF BOF

We get

B(O)k DR2Kk—2

k=2 — 1)1

Note that this formula extends the upper bound obtained in [11] for constant magnetic
fields on the disk.

Csup (k) =

4. On the magnetic Cauchy—Riemann operators

In this section, U will denote an open bounded subset of R2. It will be either  itself, or
a smaller open set.

As we already observed (see (1.3)), the Dirichlet—Pauli operator, considered only as
a differential operator, is the square of the magnetic Dirac operator o - (p — A). It can be
written as

g.(p_A):( ) 4.1)
d,f,A 0
where dj, 4 and d , are the magnetic Cauchy—Riemann operators:

dpa = —2ihd; — Ay +iAy, d};(,A = —2ihdz — A1 —iA>.

Let (dp 4, Dom(dy, 4)) be the operator on L2(U; C) acting as dj, 4 on Dom(dj, 4) =
HJ(U;C).

4.1. Properties of d1,0 and df

In this part, we study the operators dj_4 and d ;: 4 in the non-magnetic case B = 0 with
h =1 in order to describe their properties in this simplified setting in which —A =
d{ od1,0. Various aspects of this section can be related to the spectral analysis of the
“zig-zag” operator (see [16]). The next section will be related to the magnetic case that is
needed in our study.
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Lemma 4.1. Assume that U is of class €2. The following properties hold.
(a) The operator (dy,0,Dom(d,0)) is closed with closed range.
(b) The domain of df , is given by
Dom(dyy) = {u € L?>(U;C): dzu € L>(U;C)}
={uel?U;C):du =0+ HY(U;C),
and dl*,O acts as dlx,o. In particular,
ker(dfy) = {u € L*(U;C) : dzu = 0}.
(c) We have
ker(d} o)™ N Dom(dfy) = {d1,ow :w € Hy(U;C)N H*(U;C)} C H'(U:C),
and there exists C > 0 such that, for all v € ker(dl*,o)J- N Dom(dy ),
Il wy < Clldf ovll2wy-
Proof. Letu € Dom(dy,0) = H}(U;C). One easily checks that
ldroul2, = 1Vul22 0,

Hence, the Poincaré inequality ensures that (d; 9, Dom(d;,)) is a closed operator with
closed range. Then, by definition of the domain of the adjoint,

Dom(d{ ) C {u € L?>(U;C): dzu € L>(U;C)}.
Conversely, if v € {u € L*(U:;C):0zu € L2(U;(C)}, then, for all w € €5°(U),
(l), —2i82w>L2(U) = <—2l.871), w>L2(U) .

By density, this equality can be extended to w € HJ (U; C). This shows, by definition,
that v € Dom(d},) and d yv = —2i dzv.
Moreover, we have
ker(d;y)" N Dom(d; ) = ran(dy,9) N Dom(dy,)
= {diow :w € Hy(U;C) and —2idz(dy pw) = —Aw € L*(U;C)}
={dow:we H}(U;C)N H*(U;C)} c H'(U;C),
where the last equality follows from the elliptic regularity of the Laplacian. In particular,
forallw € H}(U;C) N H*(U;C),
lwll 2wy = ClAw]2@w)-
Now, take v € ker(dl*,O)J- N Dom(dy ). We can write v = dq,ow with w € H?(U;C)n
H{(U:C). We have df yv = —Aw so that

vl @)y < CldfovliL2w)- "
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4.2. Properties of dp 4 and d;; ,

Let us introduce some notations related to the Riemann mapping theorem.
In the following, we gather some standard properties related to dj, 4 and d; ,. We will
use the following lemma.

Lemma 4.2. Forallu € 65°(U;C), we have
Ity = 10— Az, + 4 [ Blulax.
147 a2y = 1= Az~ [ Bluf dx.

These formulas can be extended to u € HO1 (U;C).

Proof. This follows by integration by parts and the fact that dj 4d; , = [p — A|> —hB
and d; ;dp 4 = |p — A|> + hB. The extension to u € Hy (U; C) follows by density. =

Remark 4.3. From Lemma 4.2, we deduce* that for allu € H} (U; C),
0= AnlEsq, = [ nBuPax.

Proposition 4.4. Assume that U is of class €>.
(a) The operator (dy 4, Dom(dy, 4)) is closed with closed range.
(b) The adjoint (d; ,,Dom(d}’ ,)) acts as d;’ , on

Dom(d;; 4) = {u € L*(U) : dzu € L*>(U)} = ker(d; ,) + H'(U:C)

and
ker(dy ,) = {e™®"v :v e L2(U), dzv = 0}.

(c) We have ker(d;:A)J- NDom(dy 4) = {dpaw :w € H}(U;C)n H*(U;C)}.

Notation 5. The notation dj 4,y for dp, 4 emphasizes the dependence on U. We denote
by Ilj 4,y (or simply Il 4 if there is no ambiguity) the orthogonal projection on
ker(dy ,).

Proof of Proposition 4.4. (a) By Lemma 4.2, the graph norm of dj, 4 and the usual H'-

norm are equivalent. Thus, the graph of dj, 4 is a closed subspace of L2(U) x L2(U).
From Lemma 4.2 and Remark 4.3, we get, for all u € HO1 U),

Il = b [ 2Bl
U

4This may also be found in [8, Lemma 1.4.1].
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By assumption (a) of Theorem 1.3 and the fact that the operator is closed, the range is
closed.

(b) We have Dom(dj; ,) = Dom(d), and d;’ , acts as d;’ ,. By Proposition 2.1 and
Lemma 4.1, we deduce

ker(dyt ,) = {e™?"v :v e L2(U), 0zv = 0}
(c) As in the proof of Lemma 4.1, we get

ker(d); ,) N Dom(d; ,) = ran(dy 4) N Dom(d; ,)
= {dpaw:w € Hy(U;C) and d,’:Adh,Aw = (lp—AP> + hB)w € L*>(U;C)}
= {dpaw:w e H}(U;C) and —Aw € L*(U;C)}
={dh’Aw:weHol(U;(C)ﬂHZ(U;(C)}. |
Definition 4.5. We define the self-adjoint operators (.ZF, Dom(fhi)) to act as
Ly =dpadyy =P~ AP —hB. L7 =djdpa=Ip— AP’ +hB.  (42)
on the respective domains
Dom(Z},) = {u € Dom(dy, ,) : dj; 4u € Dom(dp,4)},
Dom($h+) = {u € Dom(dp, 4) : dp,au € Dom(dy 4)}
= Hy(U;C)Nn H*(U;C).

4.3. Semiclassical elliptic estimates for the magnetic Cauchy—Riemann operator

Notation 6. By the Riemann mapping theorem, and since 9<2 is assumed to be €2, it is
Dini-continuous (see [15, Theorem 2.1, and Section 3.3]) and we can consider a biholo-
morphic function F between D(0, 1) and € such that F(dD(0, 1)) = d2. We write
x = F(y). We notice that

By, + iy, = F/(0)(0, +i0x,) and dx =|F'(y)*dy.

By [15, Theorem 3.5], this biholomorphism can be continuously extended to D(0, 1), and
there exist ¢y, c; > 0 such that, for all y € D(0, 1),

c1 < |F'(y)| < ca.

For § € (0, 1), we also let
Qs = F(D(0,1—9)).
Note that 25 is actually an analytic manifold.
The following theorem is a crucial ingredient in the proof of the lower bound of A (/).

It is intimately related to the spectral supersymmetry of Dirac operators [17, Theorem 5.5
and Corollary 5.6].
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Theorem 4.6. There exist &g, ho, ¢ > 0 such that, for all § € [0, 8y), all h € (0, hy), and
allu € Dom(d;:,A’Qa) N ker(d}’l",A’Qs)J-,
ldy 4.054llz205) = V2hBo ] 12(qy)-
||d:,A,g28u||L2(sz§) > Ch2(||vu||L2(Qs) + ||”||L2(as25))’
where we use Notation 6.
Theorem 4.6 follows from the next two lemmas.

Lemma 4.7. For all u € Dom(d;’ , Qa) Nker(dy , QS)J-’ we have

”d}T,A,Q(Su”Lz(U) > V2hBo ||lull2w)-

Proof. For notational simplicity, we let U = Qs and we write dj_4 for dp 4,y. Letu €
Dom(d;" ,) Nker(d;* ,)*. By Proposition 4.4, there exists w € Hy (U;C) N H*(U; C)
such thatu = dj 4w and d] ,u = $h+w. The spectrum of $h+ is a subset of [2h By, +00)
(see Remark 4.3). Thus, we get

1L w2y = 2hBollw |l 2w
By integration by parts and the Cauchy—Schwarz inequality, we have

2hBO||dh,Aw||i2(U) < 2hBo (w, % w) < 2hBo|wl L2l w2

L2(U)
< 1L w22
This ensures that
V2hBo |dpawl2wy < 1L wlizw) = ldpy 4(dnaw)llz2w)

and the conclusion follows. [

Lemma 4.8. There exist 8o, ho, c > 0 such that, for all § € [0, 8y), all h € (0, hy), and all
u e Dom(d;:,A’QS) N ker(d}:"A Qs)J_’

||d;T,A,gzsu||L2(sz,g) = Ch2||V”||L2(sz,g) + Chz”””LZ(Z)Qg)'

Proof. For notational simplicity, we let U = Q5 and we write dj,_4 for dj 4,u.
With the same notations as in the proof of Lemma 4.7 (u = dj_4w), we have

dy qu =dj qdpaw = 2w, weHJU)NH>U).
(i) From Lemma 4.2,
ldn,aw| 22y = 110 — Awl2sq, + 1 /U Blw|? dx

= <d}T,Au’w)L2(U) = ”d;:,Au”LZ(U)||w||L2(U)-
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Using assumption (a), we get

Boh||w||iz(U) =< h/UB|w|2 dx < |ldj qull2@ylwlizwy
and
hlwlr2wy < By ldy qullL2w)- 4.3)
Since

| BlP dx < 10— vl

we deduce that
1/2
BO/ h1/2||w||L2(U) <l - Dwl 2w

and
1@~ ADwlZa, < I ul 2o wl2w,

< |ldj qullo@)By PV - Dwlawy. @b

so that in view of (4.3) and (4.4), there exists C > 0 such that
hY2)(p — Dwll2@y + hllwlr2wy < Clldy gull 2wy
Since A is bounded,
W2Vl 2wy < Clldy qull 2wy + Ch P w2
< Ch™'2)dy yull 2.

Thus,
h2||vw”L2(U) +hlwlr2wy < Clldy gullL2w)- 4.5)

(i1) Let us now deal with the derivatives of order two. From the explicit expression of
,Zh+ w, we get

—h*Aw = djf ju—2ihA-Vw — |A[*w + hBw.
Taking the L2-norm and using (4.5), we get
R | Aw| 2wy

< ldj qull2@wy + -2k A - Vwll 2@y + I[APwl 2@y + [1BBwll L2y
< C(1+h H|ldy 4ull2@).

Using a standard ellipticity result for the Dirichlet Laplacian, we find
R wl g2y + P IVwl2@y + hlwl2@y < Cldy qull2w)- (4.6)

The uniformity of the constant with respect to § € (0, o) can be checked as in the classical
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proof of elliptic regularity. Alternatively, using the Riemann mapping theorem, we map 2
onto the unit disk. Then we perform a change of scale for each § to send D(0, 1 — §)
onto D(0, 1) and use a standard ellipticity result on D(0, 1). Here, § appears as a regular
parameter in the coefficients of the elliptic operator. Note that dj 4 = L1 — iL, where
L; = —ihdj — A;. Using (4.6), we deduce that

[Vdpawll 2wy < Chllwllgzwy + Cllwllrz@wy + ClIVwl 2w
=< Ch_2||d;,Au||L2(U)v

and since u = dj_4w,
R Vull 2@y < Clidy qull2w)- 4.7)

(iii) A classical trace result combined with (4.7) and Lemma 4.7 gives

lullz20y < Cllullgr @) < Ch_2||di,k,A”||L2(U),

where it can again be checked using the same techniques that C does not depend on
8 € (0, 8o). |

5. Lower bounds

The aim of this section is to establish the following proposition.

Proposition 5.1. Assume that Q is €2 and satisfies Assumption 1.1. There exists a con-
stant 0y € (0, 1] such that for all k € N*,

li}rlrl)igfe_z""“i“/ R0 (h) > Cap(k)Bo = Cing(k).

If @ = D(0,1) and B is radial, we have

40
lim inf e 2#min/ 2 k=13, (h) > ——— det(Hess,, . ¢)/2.
1}1;11)1(1)1 e k( )— (k_l)' e( Xmm¢)
5.1. Inside approximation by the zero-modes

Let k € N*. Let us consider an orthonormal family (v; 5)1<;<¢ (for the scalar product of
L2(e~2#/" dx)) associated with the eigenvalues (A; (h));<,<k. We define

&p = span vjp.
1<j<k

In this section, we will see that the general upper bound proved in the last section implies
that all vy, € &, want to be holomorphic inside 2.
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5.1.1. Concentration of the ground state

Lemma 5.2. There exist C, hg > 0 such that for all vy, € &, and h € (0, hy),

oAz gy = Ch™1H0e2om/ /Q 72/ h |y, 2 dx.

This result will be used in the proof of Lemma 5.3 to compute the weighted L2-norm
of v, on  in term of its weighted L?-norm on a shrinking neighborhood of xpy.

Proof of Lemma 5.2. We have Ax(h) = h™*k+10(e?¥min/h) (see Proposition 3.1). By
using the orthogonality of the v; , one gets

/ e 729/ M 2035, dx < /\k(h)/ ™29/ yy 12 dx
Q Q
< Ch7k+1g20min/ b / e_2¢/h|vh|2dx. 5.1
Q
Now, we use ¢ < 0to get
/ |207v5 )% dx < Ch_(1+k)ez¢'“i"/h/ e 72/ |y, 2 dx.
Q Q
Since vy, satisfies the Dirichlet boundary condition and by integration by parts, we find

/ |Vvh|2 dx < Ch_(1+k)ez¢‘“i“/h/ e_2¢/h|vh|2dx.
Q Q

It remains to use the Poincaré inequality. ]

We can now prove a concentration lemma.

Lemma 5.3. Let o € (0,1/2). Then

DG ha)€72¢/hlvh(x)|2dx ~ ‘ o

lim s
Dot o e 2 R0 dx

h=04, e5,\{0}

and

lim sup sup

Ja, 2 Mlop@)Pdx ‘ -
h—0§¢(0,80] v, €6, \{0} ’

Jo e=2¢/h |y, (x)|2 dx

where 8 is defined in Proposition 4.4.

Proof. Let us remark that the second limit is a consequence of the first one. We have

fD(xmin,h“) e_zd)/hlvh (x)|2 dx —1_ fQ\D(Xmin, he) e_2¢/h |Uh (x)|2 dx
Jo e=2¢/ |y, (x)|? dx Jo e=2¢/h|y, (x)|2 dx
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By (3.9) and Lemma 5.2, we deduce that

/ e_2¢/h|vh(x)|2 dx < e—2¢min/h—lminh2“_'(1+ﬁ(h°‘))[ lup(x)]? dx
Q\ D (xmin, %) Q
< Ch—<1+’<)e—lminh2"‘““WW))/ e 20/, 2 dx = ﬁ(h“)/ e 20/ |y, 2 dx,
N Q Q
and the conclusion follows. [

5.1.2. Interior approximation. Now that we know that vj is localized inside €2, let us
explain why it is close to be a holomorphic function.

Notation 7. Let ﬁh,g denote the orthogonal projection on the kernel of —idz (i.e. the
Segal-Bargmann functions on g, which is defined in Notation 6) for the L2-scalar prod-
uct (', e_2¢/h'>L2(§25)'

We notice that if u = e~®/"v, we have
My, 4,054 = e_"b/hﬁh,,gv,
where I1j, 4,0, was defined in Notation 5.

Proposition 5.4. There exist C, hg > 0 such that for all § € (0, 8¢] and h € (0, hy), and
all vy € &, we have

@) [le=/"(1d — Tps)vall2y) < Ch™V2/Ac(h) e vyl 12y,
®) le™®/"(1d — Tlh s vl 120, < Ch2 Ak lle™® vl 12y
(c) dimTl,s&, = k.

Here, 8¢ is defined in Theorem 4.6.

Proof. For all vy, € &}, we have
4le= " hdzupll7 2, < Hle™® P hdzuall}2q)
< dMlle™ M vpl172q) < A+ 0Bl o7, -
where we use Lemma 5.3 to get the last inequality. With u;, = e~®/"v;,, we have
e hozopl72 g, = 4le? " hdz(1d — T 5)val 72 g
= ”d}T,A,QS (Id - Hh,A,Qg)uh “22(98)

Applying Theorem 4.6, we get (a) and (b).
Let v, € &), be such that ITj sv, = 0. Recalling Proposition 3.1, we have

le™ Mol 12y < e (1d — Ths)vnllz2ay) + e~ " T svall L2y

< Ch=kI2ePminl 1| g=0/ Ry 11500,



J.-M. Barbaroux, L. Le Treust, N. Raymond, E. Stockmeyer 3310

so that
le™®" onl L2y (1 = CH™F2ePminl M) <0,

and v, = 0 on Qg so that ﬁh’g is injective on & and (c) follows. ]

5.2. A reduction to a holomorphic subspace
In the following, we assume that § € (0, 8¢) and & € (0, hg).

Notation 8. We will use the Szegd projection

My L2(D(0.1)) 3 Y _an(r)e'™ = Y an(r)e'™ e L*(D(0, 1)).
nezZ neN

Note that the Szeg6 projection preserves the L2 holomorphic functions.

Notation 9. We let

E = ag}(i)r,ll) |F'(»)10ap(F()) = c1 min(V¢ - m).

where F, ¢y are defined in Notation 6.

Lemma 5.5. Assume that §/ h — +o00 and § — 0. Then, for all vy, € &,
2hE|| T4 (v © F) 1} 25p0.1—sy) (1 + (1) < 41 /Q e 29/ 195v, |2 dx.
Proof. (i) Forallv € H}(Q), weletd =vo F € H}(D(0,1)) andqvﬁ = ¢ o F. We get
4h2/;2e_2¢/h|83v|2dx - 4h2/ 2?1355 dy.

D(0,1)

(i) In polar coordinates, the Cauchy—Riemann operator is

i . i —iy’ ds .
5(31+l82)— 2 (1—l+lat).

We write (s, 1) = ¥ (n(s, ) for any function ¥ defined on D(0, 1). For all ¥ in
HJ(D(0, 1)), we have

4h2/ "2/ M3 512 dx > 4h2/ "2/ 13 512 dx
D(0,1) D(0,1)\D(0,1—8)

21 8 -
= h2/ / A=) (1 =03, —id)0|* e 2" ds dr.
0 0
(5.2)

(iii) Let us notice that

() = [F'(0)|9ap (F(1)), (5.3)



Spectrum of the Dirichlet—Pauli operator 3311

where x € 02, n(x) is the outward unit normal to  at x, and n(y) is the outward unit
normal to D(0, 1) at y. 5

By using the Taylor expansion of ¢, there exists C > 0 such that, for all (s,?) in
I' x (0,9),

—p(s.1) = —13;$(5.0) + O(t?) > (1 — CS)Et,

where 0 < £ = mingp(o,1) 8;,¢V>. We have
4h2/ e"28/ 113 512 dx
D(0,1)

27 §
zhzf / A=) (1 =1)d, —idy)0|* 2U—CHE B g5 4
0 0

Consider the new variable T = —In |1 — ¢|. Then we get
4h? / e/ 552 dx
D(0,1)

27 p—In|1-5] .
> hZ/ / |(0; — i 05)v(s, 7)|? 2U—CHEA=eT R g g,
0 0

where v(s,7) = 0(s, 1 —e™"). Since 1 —e™* =1 + 0(t?) = 1t + O(87), there exists

C > 0 such that -
ez(l—CS)E(l—e_f)/h > eZE(l—CS)t/h.

Let E = E(1—C8)and § = —In|1 — §| so that
. 2n § .
4h2/ e 2971502 dx > h2/ / |(8; —i05)v(s, 7)|* 2E*/ " ds dr.
D(0,1) 0 0

(iv) Using Fourier series and the Parseval formula, we get

2n § ~ § ~
/ / |87 — i 3s)V(s, 7)|? 2EFT/ " dsdr = 27 Z / |(8, + m)\A/m(t)|2 2Btk gr,
o Jo 0

meZ

where
1 2w .
Um (1) = —/ e "™Sv(s, 7) ds.
2 0
Let us consider the quadratic form

§ )
Om(w) =/ |(0; + m)yw|? e*ET/ " dr
0

with boundary conditions w(0) = 0 and w(g) = 1.
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Notice that
; o
On(w) = Gn(p) = [ 10cp X E/H426-0m g,
0

where w(t) = e™¢=p(z) forall 7 € (0,8), p(0) = 0 and p(8) = 1.
Since m — Q,,(p) is an increasing function, we get Q,,(p) > Qo(p) for all m > 0
and, by Lemma A.1,

Om(w) > Ao(h),
where

2E/h
Mol = ——55 2

By forgetting the negative m, we find

4h2/ e 2910702 dx = 2mh2 Ao (h) Y [vm(8) [
Q

m=>0

= h2A0(h)||H+(U o F)”iz(BD(O,l—S))' un

In the following, we choose § = h3/4.
__ Using Proposition 5.4, we show in the following lemma that we can replace vy, by
IT svp, in Lemma 5.5.

Lemma 5.6. Assume that § = h3/* and that o € (%, %) Then

290h€2¢mi"/h“ﬁh,8vh”Lz;gﬂZ(QS)(I + 0(1))
< )Lk(h)”e_ﬁ Hessxmi“¢(x_xmi"’x_xmin)ﬁh,8vh”iz(l)(x k)

where

o = mingp,1) [F'(y)|9a (F(y)) € (0,1],

maxap(o,1) | F'(y)|0np (F(y))

and where we use the notation

lw]? :=/ |w o F|*(3n¢ o F)|F’|ds.
() aD(0,1—8) "

Remark 5.7. Taking § = 0 in the definition of ||w|| above gives

2

H2(Qs)

ol =/ wo F2@ ¢oF>|F’|ds=/ w2806 dy = Ny (w)?
72(R0) aD(0,1) " IR "

for w € J?%(Q).
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Proof of Lemma 5.6. (i) From Lemma 5.5 and the definition of vj, we have
2ER| T4 (v 0 F)||22(3D(0,1_3))(1 +0(1)) < h? /Q e 72/ 950,12 dx

< 2 (h) / 20/, 2 dx,
Q

Thus, by Lemma 5.3,

2Eh| 4 (vp 0 F)”iz(aD(O,l—S))(l +o(1)) < Ak (h) /;)( €_2¢/h|vh|2 dx. (5.4)

Xmin,h%)

(ii) Let ITj.s be the orthogonal projection on 2 (D(0, 1 — §)) for the L2(e729/1 dy)
scalar product. Note that I1, sI14 = I11 11,5 = I s (see Notation 8). Let us now
replace IT4 by lllh,(g. Proposition 5.4 ensures that

le=*/"(1d ~ Ths)vn © Fll2ne,i-sy < Ch™>V e lle™ M upll 20,
Using the Taylor expansion of q; near the boundary and (5.3), we have, on 0D (0, 1 — §),
e—(fv’/h > (1 +0(1))6‘Eh_1/4,

so that
- - _ER-V4A,
1(1d = TT5.5)vi © Fllz20p,1-8y < Ch 2V Ay e EF 7 e/ uy |12, (5.5)
Since I1 is a projection and I 1,8 18 valued in the holomorphic functions,
[dd — ps)va © Fll22pc0,1-8))
> T4+ (Id — Tp,8)va © Fll20p0,1-8))
> [Ty 0 F —Tpsvn 0 Fll123pc0,1-8))
> [T v 0 Fliz2@pc0.1-8) — 1TTksvn © FllL2@p0.1-8)-
Then, with (5.5),
I4+vh © Fllz23p(0,1-5))
> [Thsvh © Fll2@p.1-8y — OB™)Varh) e opllL2 gy
By (5.4) and Lemma 5.3,
V2ER [Th5vn © Fllz2p,1-s) (1 +0(1)
< VAr(h) ||e—¢/hvh”LZ(D(xmin,h“))‘ (5.6)
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Thus, coming back to 25 (without forgetting the Jacobian of F),

V2ER|||F'(F()|™ 2 Thsvnll 120y (1 + 0(1))
< V@) lle™ vl L2 (Do) -
Then, by using the (weighted) Hardy norm, we have
V2001 [Ty svall w2y (1 + 0(D) < V() e Popll 2o ey 57
(iii) Using Proposition 5.4 and Lemma 5.3, we get
le™" " vall L2 (D Gen i)
< e " T 50l L2(D (o) + lle™® " (Ad = T4 5 Va1l 12D (r ey
< e " Ty 5vnll L2 (D ey + lle™ M (Ad = Ty 6)vall 2y
< e " 51l L2 (D gy b))
+ Ch Y22 le™® "ol 2D (e oy -
Combing this with (5.7) and Proposition 3.1, we find
2600h]| T 5VAl1 320, (1 + (1)) < Ak (W) le™ " T 50al13 2 ps oy

(iv) Using the Taylor expansion of ¢ at xpi,, we get, for all x € D (xyn, h%) ,

(x) — Pmin 1 3a—1
=—H i — Amins X 7 Xmin ,
; 5, HesSxun ¢ (X — Xmin, X — Xmin) + O(h )

and the conclusion follows. ]
Remark 5.8. Lemma 5.6 shows in particular that

2(1 + 0(1)6ohd (h) < Ak (h),
where

1By

Ae(h) = inf su .
k( ) Vea2(Q) UEV\P{O} ||€_ﬁ HeSSXmin¢(x_xmi“’x_x‘“i“)v||22
dim V=k LZ(D (xmin,h*))

In the next section, we will essentially provide a lower bound of Ak (h). Note that if we
could replace .7#%(2;) by the set of polynomials, then we would get the bound presented
in Remark 3.2. However, there is no hope to do so, since in general

distge (2 — Zmin) ™1, G2(Q)) < Ng((2 — Zmin)* 1),

(this inequality is an equality in the radial case). We still have to work to get the lower
bound of Theorem 1.3.
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5.3. Reduction to a polynomial subspace: Proof of Proposition 5.1

We can now prove Proposition 5.1.
(1) By (3.12), there exist C, ho > 0 such that, for all 4 € (0, hg), all w € H2(Qs), all
z9 € D(Xmin, h%), and all n € {0, ..., k},

W™ (z0)| < Cllwll y2(gy)- (5.8)
Define, for all w € 72 (Q5),

1 . —_
Nh (U)) — ”e_ﬂ Hessx i & (X—Xmin,Xx xmm)w ||L2(D(xmin,h°‘))'

Let wy, = ﬁh’g vp,. By the Taylor formula, we can write
wy, = Tayl, _; wp + Ri—1(wp),

where

N 2y i)
1
Tayle_y wy = y_ T

n=0

n! (Z - Zmin)n’

and, for all z € D(zyn, h%),

k
|Rk—1(wp)(2)] < Clz — zmin|®  sup Iw,g ).

D (Zmin,h®)
With (5.8) and a rescaling, the Taylor remainder satisfies
Ni(R—1(wp) < CH 1Y wy | 12 gy
Thus, by the triangle inequality,
Ni(wp) < Np(Tayl_; wp) + CHF2RY2 w20y

Thus, with Lemma 5.6, we get

(1 + o(1))e? " \/200h | whl| 2y
< V() Ny(Tayly_y wy) + C /A (h) ROTO2 w2

so that, thanks to Proposition 3.1,

(1+ 0(1)e' " \/260h [[wl 22y < vAk(h) Ni(Tayl_y wp)
< VAr(h) Ny(Tayl,_, wy),  (5.9)
with A :
Niy(w) = [|e™ 20 HosSamin @O mins¥=Sui) | 5 ).
This inequality shows in particular that Tayl, _, ﬁg,h is injective on &} and

dim Tayl,_, (TI5 1&) = k. (5.10)
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(i1) Let us recall that
HE(Qs) =Y € #(Qs) :Vn €{0,....k =1}, ¥ (xmin) = O}

Since wy, — Tayl,_; wy, € 3573(93), we have, by the triangle inequality,

w(k_l)(zmin)
lwnll e @q) = H h(k_—l).(z = Zmin)* ™! 4 (W — Tayle_; wp)

H2(Qs)
— [ITaylx—, wall se2(4)
k_
|w;(, 1)(Zmin)|
= T k=D

— [ITaylx_, wall se2(2y)

distge,g ((Z - Zmin)kila %Z(QS))

where

distye 5 ((z — zmn)* ™", H2(25))
= inf {1z — zuin) ! — Q@) 20y O € HG2 ().

Using again the triangle inequality, we get

k—2
ITaylg_s will ez < C D Wi (Zain)-
n=0

Moreover,

k=2 k—2 k—1
> 1w Gun) < h7E2 Y02 il ()| < b7 EP2 Y 2w ()|
n=0

n=0 n=0

< ch k2212, (Tayl,_; wp),

where we use the rescaling property

k—1 k-1
(D etz = zmn)") = 1280 (3 ™2 = z)"). G
n=0 n=0

and the equivalence of norms in finite dimension:

k—1 k—1 k—1
3C >0.vd eCk, 7MY dy| < Nl(z dn(z —zmm)") <C Y ldl.
n=0 n=0 n=0

We find

|w}(,k_1)(zmin)| . k—1 2
lwall 24 = Wdlsw,s((z = Zmin)" ()

— Ch=* 2212 N (Tayly,_y wy,).
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and thus, by (5.9),

(k—1)
(1 + o(1))en/ " \/265h %d sty 5((2 — Zmin)* ™1, A2 (Q5))

< (VAk(h) + ChCR/2ebuinl 1y Ny (Tayl, | wy).  (5.12)

(>iii) Since we have (5.10), we deduce that

. Cl—
(1+o(1))e® /. \/260h distge 5 (2 — zmin) ', 42 (Qs)) sup — k,l S
ceck Np(Q_,—o cn(Z = Zmin)")

< Ak(h)+ch(2_k)/2e¢min/h_ (5.13)

By (5.11), we infer that

p1/2 sup |Ck 1] ~ w ACZEI Y

A

P = — .
ceCk Nh (Zn =0Cn (Z Zmin)n) ceCk Nl (er:=}) Cn (Z - Zmin)n)

Since Ny is related to the Segal-Bargmann norm Ng via a translation, and recalling
Notation 4, we get

lck—1] lck—1] 1
sup — sup

ceCk Nl(zn Ocn(z zmm)") ceCk N@(Zn 0cnz”) N!B(Pk—l).

Thus,

k—1 2
(1 + o(1)) =012ttt [y B8 = 2nin) T A C00) - s (s 1
Ng(Pk-1)

(iv) Since €2 is regular enough, the Riemann mapping theorem ensures that

Jim distye 5 ((z = zmin) ™, 42(R25)) = distye (2 = Zmin) ™", ().
—0

The conclusion follows.

5.4. Proof of Corollary 1.11

We recall Notation 6 where F, ¢1 and ¢, are defined. Let us notice that we can choose F
such that F(0) = xpin.
Forallv € H}(Q), weletd =vo F € H}(D(0, 1)), and we get
1 fD(o,l) e_2¢/h|8y17|2 dy - fD(o,l) e_2¢/h|8y17|2 dy _ fg e_2¢/h|87v|2 dx
Ipw.n e 20/ M52 dy Ipw.n =2/ h[52| F'(y)[2 dy Jae 2/ v dx

whereqvb = ¢ o F has a unique and non-degenerate minimum at y = 0 and 43(0) = @min-
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In the same way, we get

fQ€_2¢/h|87U|2dX < 1 fD(Ojl)e—2¢/h|ayi§|2dy
er—2¢/h|v|2dx - fD(o l)e—zq's/h|,;|2dy .

These inequalities, the min-max principle, and Theorem 1.3 imply Corollary 1.11.

Appendix A. A unidimensional optimization problem
The goal of this section is to minimize, for each fixed s, the quantity
/862’8“"5(3)/}' |0, p|? dt.
0
This leads to the following lemma.
Lemma A.l. Foroa,e >0, let I = (0,¢) and
V ={peH'(I):p0) =0, p(e) =1},

and for all p € V, consider

€
Fuco)i= [ el @ .

(a) The minimization problem
inf{Foe(p) : p €V}

has a unique minimizer

1 —e ot
Pa,e(t) = T
(b) We have
. a
inf{For(p):p€V} = [ o—ca’

(¢c) Letcog > 0. Assume 1 — e=* > c¢q. Then there exists C > 0 such that
&
/ e 0 puc|? Al < Cla™ + e % s2a71).
0

Proof. (i) Since @ > 0, we have Fy .(p) > f(f |0’ (£)|?dl for all p € ¥ There exists C > 0
such that, forall p € 7,

/ POPd > C / Ip(0)2 de.
0 0

This ensures that any minimizing sequence (0, )nen C ¥ is bounded in H!(I) and any
H'-weak limit is a minimizer of inf { F, . (p) : p € ¥}.
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(i) Fo},{gz is a Euclidean norm on ¥ so that Fy . is strictly convex and the minimizer
is unique.
(iii) At a minimum p, the Euler-Lagrange equation is
(eozl ,O/)/ —0.
Thus, there exists (¢,d) € R2 such that, forall £ € I,
p(f) =d —ca~le ™,

so that from the boundary conditions we find the function pq .
(iv) We have
& & o
/ e (07 dl = o?(1 — e—sa)—zf A= ——
0 0 I —em®
(v) We also have

1

e (e A=) = (1 e ee™™),

O Po,e (f) =

for £ € (0, ¢) and

€ 1 € €
/ eaﬁlaapa,dz dl < —_4(/ Eze_aﬁ dﬁ(l _ e—aa)l + / e—ozf de(ge—ota)Z
0 (1 —e=*)*\Jo 0

&
+/ e“(dﬁ(se_“s)z)
0

<Ca> +e 2™, [

Appendix B. Hopf’s lemma with Dini-regularity

In the following lemma, we present a simple proof of an extension of Hopf’s lemma
to the case when €2 is Dini-regular. The standard version of Hopf’s lemma given for
instance in [7, Hopf’s Lemma, Section 6.4.2] requires essentially € regularity. However,
the regularity can be lowered down to Dini (see [1] and the references therein).

Lemma B.1. Let Q2 be a simply connected, Dini-regular, bounded open set. If ¢ is the
solution of (1.2), then the function 2 > s +— 0,0 (5) is continuous and

O >0 onof2.

Proof. Let ¢ be the solution of (1.2). By the Riemann mapping theorem [15], there exists
a bi-holomorphic map F: D(0,1) — € such that F’ is continuous on D(0, 1). The
functiongE = ¢ o F is the solution of (1.2) on D(0, 1) for B = |F'|>B o F.By [9, Corol-
lary 8.36], ¢ is €'~ on D(0, 1) and Hopf’s lemma [7, Hopf’s Lemma, Section 6.4.2]
ensures that 8,,([5 > 0. The result follows from the fact that

Ind = [(F1)|dndp o F'. n
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Appendix C. A density result

Lemma C.1. Assume that Q2 is bounded, simply connected and d<2 is Dini-continuous.
Then the set 7#%(Q) N W1°(Q) is dense in H#%(Q).

Proof. We recall Notation 6. Let u € s#?(Q2). Thenu o F = Zkzo az* is holomorphic
on D(0, 1) and (ag)g=o € £>(N). Let & € (0, 1). The function

U :DO0,1)32z—uoF((1—-¢)z) eC

is holomorphic on D(0, 1/(1 — ¢)). We denote u, =, o F~!. We have
=gy = [ 16 = ()P
= [ o ) —uo F(=)PIF () long o FO) Ay
aD(0,1)

< calldupllLeo fa o F)—ue (1 -y

s

< col|OnllLoe Y laxl1 = (1— &) 2.

k>1

Note that d,¢ is bounded by Lemma B.1. By Lebesgue’s theorem, (u,)ze(0,1) converges
to u in 7#%(2). Since also (Us)ee(0,1) C W °(£2), the result follows. n
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