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Abstract. This paper is devoted to semiclassical estimates of the eigenvalues of the Pauli operator
on a bounded open set with Dirichlet conditions on the boundary. Assuming that the magnetic field
is positive and a few generic conditions, we establish the simplicity of the eigenvalues and provide
accurate asymptotic estimates involving Segal–Bargmann and Hardy spaces associated with the
magnetic field.
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1. Introduction

In this article we consider the magnetic Pauli operator defined on a bounded and simply
connected domain � � R2 subject to Dirichlet boundary conditions. This operator is
the model Hamiltonian of a non-relativistic spin-1

2
particle, constrained to move in �,

interacting with a magnetic field that is perpendicular to the plane.
Formally the Pauli operator acts on two-dimensional spinors and it is given by

Ph D Œ� � .�ihr � A/�
2;

where h> 0 is a semiclassical parameter and � is a two-dimensional vector whose compo-
nents are the Pauli matrices �1 and �2. The magnetic fieldB enters in the operator through
an associated magnetic vector potential A D .A1; A2/ that satisfies @1A2 � @2A1 D B .
Assuming that the magnetic field is positive and a few other mild conditions we provide
precise asymptotic estimates for the low energy eigenvalues of Ph in the semiclassical
limit (i.e., as h! 0).

Let us roughly explain our results. Let �k.h/ be the k-th eigenvalue of Ph counting
multiplicity. Assuming that the boundary of � is C 2, we show that there exist ˛ > 0 and
�0 2 .0; 1� such that the following holds: For all k 2 N�, there exists Ck > 0 such that,
as h! 0,

�0Ckh
�kC1e�2˛=h.1C o.1// � �k.h/ � Ckh

�kC1e�2˛=h.1C o.1//:

In particular, this result establishes the simplicity of the eigenvalues in this regime. The
constants ˛ > 0 and Ck are directly related to the magnetic field, and the geometry of �
and Ck is expressed in terms of Segal–Bargmann and Hardy norms that are naturally asso-
ciated to the magnetic field. When� is a disk andB is radially symmetric we compute Ck
explicitly and find that �0 D 1. This substantially improves the known results about the
Dirichlet–Pauli operator [6, 11] (for details see Section 1.3.2).

These results may be reformulated in terms of the large magnetic field limit by a
simple scaling argument. Indeed,

�k.b/ D b
2�k.1=b/;

where �k.b/ is the k-th eigenvalue of Œ� � .�ir � bA/�2.
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Our results can also be used to describe the spectrum of the magnetic Laplacian
with constant magnetic field B0. For instance, when � is bounded, strictly convex with
a boundary of class C 1;
 (
 > 0), the k-th eigenvalue of .�ihr � A/2 with Dirichlet
boundary conditions, denoted by �k.h/, satisfies, for some c;C > 0 and h small enough,

B0hC ch
�kC1e�2˛=h � �k.h/ � B0hC Ch

�kC1e�2˛=h: (1.1)

In particular, the first eigenvalues of the magnetic Laplacian are simple in the semiclassi-
cal limit. This asymptotic simplicity was not known before and (1.1) is the most accurate
known estimate of the magnetic eigenvalues in the case of the constant magnetic field and
Dirichlet boundary conditions (see [10, Section 4] and Section 1.3.2).

Our study presents a new approach that establishes several connections with various
aspects of analysis like Cauchy–Riemann operators, uniformization, and, to some extent,
Toeplitz operators. We may hope that this work will cast a new light on the magnetic
Schrödinger operators.

1.1. Setting and main results

Let � � R2 be an open set. All along the paper � will satisfy the following assumption.

Assumption 1.1. � is bounded and simply connected.

Consider a magnetic fieldB 2 C1.�;R/. An associated vector potentialA W�!R2

is a function such that
B D @1A2 � @2A1:

We will use the following special choice of vector potential.

Definition 1.2. Let � be the unique (smooth) solution of

�� D B in �;
� D 0 on @�:

(1.2)

The vector field A D .�@2�; @1�/T WD r�? is a vector potential associated with B .

In this paper, B will be positive (and thus � subharmonic) so that

max
x2�

� D max
x2@�

� D 0:

In particular, the minimum of � will be negative and attained in �. Note also that the
exterior normal derivative of �, denoted by @n�, is positive on @� if � is C 2 [7, Hopf’s
Lemma, Section 6.4.2].

Notation 1. We denote by h�; �i the Cn (n � 1) scalar product (antilinear with respect
to the left argument), by h�; �iL2.U / the L2 scalar product on the set U , by k � kL2.U / the
L2-norm on U and by k � kL1.U / the L1-norm on U . We use o and O for the standard
Landau symbols.
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1.2. The Dirichlet–Pauli operator

This paper is devoted to the Dirichlet–Pauli operator .Ph;Dom.Ph// defined for all h> 0
on

Dom.Ph/ WD H
2.�IC2/ \H 1

0 .�IC
2/;

and whose action is given by the second order differential operator

Ph D Œ� � .p � A/�2 D
�
jp � Aj2 � hB 0

0 jp � Aj2 C hB

�
D

�
L �
h

0

0 L C
h

�
: (1.3)

Here p D �ihr, and

jp � Aj2 WD .p � A/ � .p � A/ D �h2� � A � p � p � AC jAj2;

and � D .�1; �2; �3/ are the Pauli matrices:

�1 D

�
0 1

1 0

�
; �2 D

�
0 �i

i 0

�
; �3 D

�
1 0

0 �1

�
;

and � � x D �1x1 C �2x2 C �3x3 for x D .x1; x2; x3/ and � � x D �1x1 C �2x2 for x D
.x1;x2/. In terms of quadratic forms, we have by partial integration, for all 2Dom.Ph/,

h ;Ph iL2.�/ D k� � .p � A/ k
2
L2.�/

D k.p � A/ k2
L2.�/

� h ; �3hB iL2.�/: (1.4)

Note that for all x; y 2 R3,

.� � x/.� � y/ D x � y12 C i� � .x � y/; (1.5)

where 12 is the 2 � 2 identity matrix. The operator Ph is selfadjoint and has compact
resolvent. This paper is mainly devoted to the investigation of the lower eigenvalues
of Ph.

Notation 2. Let .�k.h//k2N� (h > 0) denote the increasing sequence of eigenvalues of
the operator Ph, each repeated according to its multiplicity. By the min-max theorem,

�k.h/ D inf
V�Dom.Ph/

dimVDk

sup
 2V n¹0º

k� � .p � A/ k2
L2.�/

k k2
L2.�/

: (1.6)

Under the assumption that B > 0 on�, the lowest eigenvalues of Ph are the eigenvalues
of L �

h
. More precisely, our main result states that for any fixed k 2 N� and h > 0 small

enough, �k.h/ is the k-th eigenvalue of the Schrödinger operator L �
h

.
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1.3. Results and relations to the existing literature

1.3.1. Main theorem

Notation 3. Let us denote by H .�/ and H .C/ the sets of holomorphic functions on �
and C. We consider the (anisotropic) Segal–Bargmann space

B2.C/ D ¹u 2H .C/ W NB.u/ < C1º;

where

NB.u/ D

�Z
R2
ju.y1 C iy2/j

2e�Hessxmin �.y;y/ dy
�1=2

:

We also introduce a weighted Hardy space

H 2.�/ D ¹u 2H .�/ W NH .u/ < C1º;

where

NH .u/ D

�Z
@�

ju.y1 C iy2/j
2@n� dy

�1=2
:

Here, xmin 2 � and Hessxmin � 2 R2�2 are defined in Theorem 1.3 below, n.s/ is the
outward pointing unit normal to �, and @n�.s/ is the normal derivative of � on @� at
s 2 @�. We also define for P 2H 2.�/, A �H 2.�/,

distH .P;A/ D inf ¹NH .P �Q/ W Q 2 Aº;

and for P 2 B2.C/, A � B2.C/,

distB.P;A/ D inf ¹NB.P �Q/ W Q 2 Aº:

The main results of this paper are gathered in the following theorem.

Theorem 1.3. Define
�min D min

x2�

�:

Assume that � is C 2, satisfies Assumption 1.1, and

(a) B0 WD inf ¹B.x/ W x 2 �º > 0,

(b) the minimum of � is attained at a unique point xmin,

(c) the minimum is non-degenerate, i.e., the Hessian matrix Hessxmin � at xmin .or zmin if
seen as a complex number/ is positive definite.

Then there exists �0 2 .0; 1� such that for all fixed k 2 N� ,

(i) �k.h/ � Csup.k/h
�kC1e2�min=h.1C oh!0.1// with

Csup.k/ D 2

�
distH ..z � zmin/

k�1;H 2
k
.�//

distB.zk�1;Pk�2/

�2
;

where Pk�2 D span.1; : : : ; zk�2/ � B2.C/, P�1 D ¹0º and

H 2
k .�/ D ¹u 2H 2.�/ W u.n/.zmin/ D 0 for n 2 ¹0; : : : ; k � 1ºº: (1.7)
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(ii) �k.h/ � Cinf.k/h
�kC1e2�min=h.1C oh!0.1// with

Cinf.k/ D Csup.k/�0:

A precise definition of �0 is given in Remark 1.10.
Assuming that � is the disk of radius 1 centered at 0, and that B is radial, we have

Csup.k/ D Cinf.k/ D C
rad.k/ D

B.0/kˆ

2k�2.k � 1/Š
.�0 D 1/;

ˆ D
1

2�

Z
�

B.x/ dx D
1

2�

Z
@�

@n� ds:

Remark 1.4. Assume thatB DB0 > 0 and that� is strictly convex. Then � has a unique
and non-degenerate minimum (see [13, 14] and also [11, Proposition 7.1 and below]).
Thus, our assumptions are satisfied in this case.

Remark 1.5. The main properties of the space H 2.�/ can be found in [4, Chapter 10].
Note that whenever @� is supposed to be Dini-continuous (in particular C 1;˛ bound-
aries, with ˛ > 0, are allowed), the set W 1;1.�/ \H 2.�/ is dense in H 2.�/ (see
Lemma C.1). This assumption is in particular needed in the proof of Theorem 1.3(i) (see
Remark 3.4).1 The definition of Dini-continuous functions is recalled in the context of the
boundary behavior of conformal maps in [15, Section 3.3]. It is essentially an integrability
property of the derivative of a parametrization of @�.

Remark 1.6. The Cauchy formula [4, Theorem 10:4] and the Cauchy–Schwarz inequal-
ity ensure that

ju.n/.zmin/j �
nŠ

2�
p

min@� @n�
NH .u/

�Z
@�

jdzj
jz � zminj

2.nC1/

�1=2
;

for n 2 N and u 2 H 2.�/ (see also the proof of Lemma 3.5). This ensures
that H 2

k
.�/ defined in (1.7) is a closed vector subspace of H 2.�/ and that

distH ..z � zmin/
k�1;H 2

k
.�// > 0 (see [3, Corollary 5:4]) since .z � zmin/

k�1 …H 2
k
.�/.

Remark 1.7. WhenB is radial on the unit disk�DD.0;1/, we find, using Fourier series,
that .zn/n�0 is an orthogonal basis forNB andNH which are up to normalization factors,
the Szegö polynomials [4, Theorem 10:8]. In particular, H 2

k
.�/ is NH -orthogonal to

zk�1 so that

distH .z
k�1;H 2

k .�//
2
D NH .z

k�1/2 D

Z
@�

@n� D 2�ˆ:

1Note also that we do not use here the stronger notion of Smirnov domain in which the set of
polynomials in the complex variable is dense in H 2.�/ (see [4, Theorem 10:6]). Starlike domains
and domains with analytic boundary are Smirnov domains.
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In addition, Pk�2 is NB-orthogonal to zk�1 so that

distB.z
k�1;Pk�2/

2
D NB.z

k�1/2 D 2�
2k�1.k � 1/Š

B.0/k
;

and the radial part of Theorem 1.3 follows.

Remark 1.8. The proof of the upper bound can easily be extended to the case where �
is not necessarily simply connected (see Remark 3.4).

Remark 1.9. Theorem 1.3 is concerned with the asymptotics of each eigenvalue �k.h/
of the operator Ph (k 2 N�) as h! 0. In particular, �k.h/ tends to 0 exponentially. Of
course, this does not mean that all the eigenvalues go to 0 uniformly with respect to k.
For h > 0, consider for example

�1.h/ D inf
v2H1

0
.�IC/n¹0º

hu;L C
h
ui

kvk2
L2.�/

;

the lowest eigenvalue of the operator L C
h

. For fixed h > 0, there exists k.h/ 2 N� such
that �1.h/D �k.h/.h/. By (1.3), we have �1.h/ � 2B0h and thus �1.h/ does not converge
to 0 with exponential speed. Actually, Theorem 1.3 ensures that

lim
h!0

card ¹j 2 N� W �j .h/ � �1.h/º D C1; lim
h!0

k.h/ D C1:

This accumulation of eigenvalues near 0 in the semiclassical limit is related to the fact
that the corresponding eigenfunctions are close to be functions in the Segal–Bargmann
space B2.C/ which is of infinite dimension.

Remark 1.10. The constant �0 introduced in Theorem 1.3 does not depend on k 2 N�

and is equal to 1 in the radial case. We conjecture that the upper bounds in Theorem 1.3
(i) are optimal, that is, �0 D 1 in the general case.

More precisely, let � be a C 2 set satisfying Assumption 1.1. We introduce

M� WD ¹G W �! D.0; 1/ biholomorphic W c1 � jG0.�/j � c2 for some c1; c2 > 0º:

Note that M� is non-empty by the Riemann mapping theorem. Then the constant �0 can
be defined by

�0 WD
min@D.0;1/ j.G�1/0.y/j@n�.G

�1.y//

max@D.0;1/ j.G�1/0.y/j@n�.G�1.y//
2 .0; 1�;

for some G 2M� (see Lemma 5.6).2

2We can even choose

Q�0 WD sup
G2M�

min@D.0;1/ j.G�1/0.y/j@n�.G
�1.y//

max@D.0;1/ j.G�1/0.y/j@n�.G�1.y//
:
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Actually, we can even see from our analysis that there is a class of magnetic fields for
which �0 D 1. We introduce

B WD ¹ LB 2 C1.D.0; 1/IR�C/ W

9 L� 2 H 1
0 .D.0; 1/IR/; � L� D LB on D.0; 1/; @2ns L� D 0 on @D.0; 1/º: (1.8)

Here, @s denotes the tangential derivative. Then, for any LB 2 B and G 2 M�, we get
�0 D 1 and

lim inf
h!0

e�2�min=hhk�1�k.h/ � Csup.k/

for the magnetic field B D jG0.z/j2 LB ıG.z/. This follows from the fact that the function

@D.0; 1/ 3 y 7! j.G�1/0.y/j@n�.G
�1.y//

is constant. Here, � is defined in (1.2).

Using the Riemann mapping theorem, we can deduce the following lower bound for�
with Dini-continuous boundary. Its proof can be found in Section 5.4.

Corollary 1.11. Assume that � is bounded, simply connected and that @� is Dini-con-
tinuous. Assume also (a)–(c) of Theorem 1.3. Let k 2N�. Then there exist ck ;Ck > 0 and
h0 > 0 such that, for all h 2 .0; h0/,

ckh
�kC1e2�min=h � �k.h/ � Ckh

�kC1e2�min=h:

Remark 1.12. Note also that our proof ensures that the constants Ck ; ck can be chosen
so that Ck=ck does not depend on k 2 N�.

Our results can be used to describe the spectrum of the magnetic Laplacian with con-
stant magnetic field (see Remark 1.4).

Corollary 1.13. Assume that � is bounded, strictly convex and that @� is Dini-contin-
uous. Assume also that (a)–(c) of Theorem 1.3 hold and that B is constant. Then the
k-th eigenvalue of .�ihr � A/2 with Dirichlet boundary conditions, denoted by �k.h/,
satisfies, for some c; C > 0 and h small enough,

BhC ch�kC1e2�min=h � �k.h/ � BhC Ch
�kC1e2�min=h: (1.9)

In particular, the first eigenvalues of the magnetic Laplacian are simple in the semiclas-
sical limit.

1.3.2. Relations to the literature. Let us compare our result with the existing literature.
(i) WhenB D 1, our results improve the bound obtained by Erdős for �1.h/ [6, Theorem

1.1 & Proposition A.1] and also the bound by Helffer and Morame [10, Propositions
4.1 and 4.4]. Indeed, (1.9) gives us the optimal behavior of the remainder. When
B D 1 and � D D.0; 1/, the asymptotic expansion of the next eigenvalues is con-
sidered in [11, Theorem 5.1(c)]. Note that, in this case, � D .jxj2 � 1/=4 and that
Theorem 1.3 allows one to recover [11, Theorem 5.1(c)] by considering radial mag-
netic fields.
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(ii) In [11] (simply connected case) and [12] (general case), Helffer and Persson
Sundqvist have proved, under assumption (a), that

lim
h!0

h ln�1.h/ D 2�min:

Moreover, under the assumptions (a), (b) and (c) of Theorem 1.3, their theorem [11,
Theorem 4.2] implies the following upper bound for the first eigenvalue

�1.h/ � 4ˆ det.Hessxmin �/
1=2.1C o.1//e2�min=h:

Note that Theorem 1.3(i) provides a better upper bound even for k D 1.
They also establish the following lower bound by means of rough considerations:

8h > 0; �1.h/ � h
2�Dir
1 .�/e

2�min=h;

where �Dir
1 .�/ is the first eigenvalue of the corresponding magnetic Dirichlet Lapla-

cian. This estimate is itself an improvement of [5, Theorem 2.1].
Corollary 1.11 is an optimal improvement in terms of the order of magnitude of

the pre-factor of the exponential. It also improves the existing results by consider-
ing the excited eigenvalues. Describing the behavior of the prefactor is not a purely
technical question. Indeed, it is directly related to the simplicity of the eigenvalues
and even governs the asymptotic behavior of the spectral gaps. This simplicity was
not known before, except in the case of constant magnetic field on a disk.

(iii) The problem of estimating the spectrum of the Dirichlet–Pauli operator is closely
connected to the spectral analysis of the Witten Laplacian (see for instance [11,
Remark 1.6] and the references therein). For example, in this context, the ground
state energy is

min
v¤0

v2H1
0
.�/

R
�
jhrvj2e�2�=h dxR
�
e�2�=hjvj2 dx

; (1.10)

whereas in the present paper we will focus on

min
v¤0

v2H1
0
.�/

R
�
jh.@x1 C i@x2/vj

2e�2�=h dxR
�
e�2�=hjvj2 dx

(1.11)

(see also Lemma 2.4). Considering real-valued functions v in (1.11) reduces to
(1.10). In this sense, (1.11) gives rise to a “less elliptic” minimization problem.

1.4. The intuition and strategy of the proof

In this subsection we discuss the main lines of our strategy. It is intended to reveal the
intuition behind some of our proofs. We will focus mostly on the ground state energy,
which is given by (1.6) as

�1.h/ D min
 2H1

0
.�IC2/n¹0º

k� � .p � A/ k2
L2.�/

k k2
L2.�/

: (1.12)
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It is easy to guess from (1.3) that the ground state energy has to have the form D .u;0/T.
This is consistent with the physical intuition that, for low energies, the spin of the particle
should be parallel to the magnetic field.

The variational problem above can be rewritten by means of a suitable transformation
as

�1.h/ D h
2 min

v¤0

v2H1
0
.�/

R
�
j2@zvj

2e�2�=h dxR
�
jvj2e�2�=h dx

DW h2 min
v¤0

v2H1
0
.�/

Fh.v; �/

Gh.v; �/
; (1.13)

where @z D .@1 C i@2/=2 and � is the unique solution to �� D B in � with Dirichlet
boundary conditions (see Definition 1.2). This connection between the spectral analysis
of the Dirichlet–Pauli and Cauchy–Riemann operators is known in the literature (see e.g.
[2, 6, 11] and [17]), and we describe it in Section 2.

In order to study the problem in (1.13) it is helpful to consider the following heuristics
concerning Fh.v; �/.

Observation 1.14. A minimizer vh wants to be an analytic function in the interior of �
but, due to the boundary conditions, has to have a different behavior close to the boundary.
So, if we set�ı WD ¹x 2� W dist.x; @�/ � ıº for ı > 0, we expect that vh behaves almost
as an analytic function on U with �ı � U � �. Moreover, this tendency is enhanced in
the semiclassical limit when the presence of the magnetic field becomes stronger. Hence,
we also expect that ı ! 0 as h! 0 in some way.

We comment below on how we make Observation 1.14 more precise; for the moment
let us just mention that throughout this discussion we work with ı such that

ı2=h! 0 and ı=h!1 as h! 0: (1.14)

As a consequence of Observation 1.14 we expect that

Fh.vh; �/ �

Z
Tı

j2@zvhj
2e�2�=h dx; (1.15)

where Tı WD � n�ı .
An essential ingredient in our method is the analysis of the minimization problem

associated with the RHS of (1.15). The main ideas go as follows: Assume first that �
is the disk D.0; 1/. By writing the integrand j@zvhj2e�2�=h in tubular coordinates (see
item (i) from the proof of Lemma 3.7) and Taylor expanding � around any point at the
boundary @� we get, for ı satisfying (1.14),Z

Tı

j2@zvj
2e�2�=h dx D .1C o.h//

Z 2�

0

Z ı

0

e2t@n�=hj.@� � i@s/vj
2 ds d� (1.16)

DW .1C o.h//Jh.v/ (1.17)

(see also the proof of Lemma 5.5), where @n� � @n�.s/ is the normal derivative at the
boundary (see Notation 3).
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Observe that if @n� is a constant along the boundary, then it equals the flux ˆ. In
this case, as explained in item (iv) of the proof of Lemma 5.5, the problem of finding a
non-trivial solution of

inf
v2H1.Tı/

Jh.v/ with v�@�ı D vı ; v�@� D 0; (1.18)

can be reduced to a sum (labeled by the Fourier index) of one-dimensional problems that
we solve explicitly in Lemma A.1.

For the particular case of v having only the non-negative Fourier modes on @�ı (i.e.,
vı D

P
m�0 Ovı;me

ims) we find that (see Lemma 5.5)

Jh.v/ �
ˆ=h

1 � e�2ıˆ=h
kvk2

L2.@D.0;1�ı//
D .1C o.h//2ˆ=hkvk2

L2.@D.0;1�ı//
(1.19)

where the last equality is a trivial consequence of (1.14). Moreover, by Lemma A.1, the
latter inequality is saturated when vı D Ovı;0. Concerning the assumption on v, recall that
analytic functions on the disk have only Fourier modes for m � 0.

Notice that if B is rotationally symmetric then @n� is constant. If @n� is not a constant
we can give a suitable estimate using min@� @n� > 0. We extend the previous analysis to
more general geometries by using the Riemann mapping theorem.

There is another important point to take into account, this time concerning Gh.v; �/.

Observation 1.15. Recall that � � 0 has an absolute, non-degenerate, minimum at
xmin. Hence, the weighted norm of vh, Gh.v; �/, should have a tendency to concentrate
around xmin. This is made precise in Lemma 5.3 below. Moreover, observe that using
Laplace’s method, one formally deduces that, as h! 0,

Gh.v; �/ � h�jv.xmin/j
2e�2�min=h.det Hessxmin �/

�1=2: (1.20)

Observations 1.14 and 1.15 reveal the importance of the behavior of a minimizer
around the boundary and close to xmin, respectively. In addition, this behavior is naturally
captured through the norms NH and NB given in Definition 3, which, in turn, provide a
natural Hilbert space structure to select linear independent test functions which are used
to estimate the excited energies.

In order to show our result we give upper and lower bounds for the variational problem
(1.13). This is done in Sections 3 and 5, respectively. Concerning the upper bound: In view
of the previous discussion it is natural to choose a trial function (at least for the disk, see
Remark 3.2) v D !� where ! is an analytic function in � and � is such that ���ı D 1
and decays smoothly to zero towards @�. We pick ��Tı as an optimizer of the problem
(1.18). For �k.h/, we choose ! to be a polynomial of degree k � 1. In particular, for the
ground-state energy, ! is constant and in view of (1.22) and (1.20) we readily see how the
claimed upper bound (at least for the disk with radial magnetic field) is obtained.

As for the lower bound, as a preliminary step, we discuss in Section 4 some elliptic-
ity properties related to the magnetic Cauchy–Riemann operators. Our main result there
is Theorem 4.6. It provides elliptic estimates for the magnetic Cauchy–Riemann oper-
ators on the orthogonal complement of the kernel which consists, up to an exponential
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weight, of holomorphic functions. The findings of Section 4 are crucial to proving Propo-
sition 5.4, which gives estimates on the behavior described in Observation 1.14. Indeed,
Proposition 5.4, together with the upper bound, roughly states that the non-analytic part
of vh on any open set contained in � is, in the semiclassical limit, exponentially small in
a sufficiently strong norm. At least for the disk with radial magnetic field, we can argue
on how to get the lower bound if we assume that vh is analytic on an open set U with
D.0; 1 � ı/ � U � D.0; 1/. Notice that (1.22) holds. Moreover, by Cauchy’s Theorem
we have 2�jvh.xmin/j

2 D 2�jvh.0/j
2 � .1C o.h//kvhk

2
@D.0;1�ı/

. In this way we see that
the lower bound appears by combining (1.22) and (1.20).

Let us finally remark that actually, since the function v in (1.20) depends on h,
Laplace’s method cannot be applied so easily. Instead, after the change of scale y D
x�xmin
h1=2

, one has formally the Bargmann norm appearing:

Gh.v; �/ � he
�2�min=h

Z
jv.xmin C h

1=2y/j2e�Hessxmin �.y;y/ dy: (1.21)

Ultimately, in the case of the disk with radial magnetic field, problem (1.13) reduces
formally to

�1.h/ & e2�min=h inf
v¤0

v2H .�/

2

�
NH .v/

NB.v.xmin C h1=2 �//

�2
; (1.22)

which can be computed easily due to the orthogonality of the polynomials .zn/n�0 in the
Hilbert spaces H 2.�/ and B2.C/ (see Remark 1.7). Of course, special attention has to
be paid to the domains of integration and the sets where the holomorphic test functions
live. In the non-radial case, however, we strongly use the multi-scale structure of (1.22) to
get the result of Theorem 1.3 (see Section 5.3). Note that the constant �0 of Theorem 1.3
which appears in the computation of (1.22) somehow measures a symmetry breaking rate
(see Remark 1.10 and Lemma 5.6).

2. Change of gauge

The following result allows us to remove the magnetic field up to sandwiching the Dirac
operator with a suitable matrix.

Proposition 2.1. We have

e�3�=h� � pe�3�=h D � � .p � A/; (2.1)

as operators acting on H 1.�IC2/ functions.

This follows from the next two lemmas and Definition 1.2 (see also [17, Theo-
rem 7.3]).

Lemma 2.2. Let f W C! C be an entire function and A;B be square matrices such that
AB D �BA. Then

Af .B/ D f .�B/A:
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Lemma 2.3 (Change of gauge for the Dirac operator). Let ˆ W � ! R be a regular
function. Then

e�3ˆ.� � p/e�3ˆ D � � .p � hrˆ?/

as operators acting onH 1.�IC2/ functions and where rˆ? is defined in Definition 1.2.

Proof. By Lemma 2.2, for k D 1; 2 we have

e�3ˆ�k D �ke
��3ˆ:

Thus, by the Leibniz rule,

e�3ˆ.� � p/e�3ˆ D .�e��3ˆ � p/e�3ˆ D � � .p � ih�3rˆ/:

It remains to notice that �i��3 D �? WD .��2; �1/ so that

e�3ˆ.� � p/e�3ˆ D � � pC h�? � rˆ D � � p � h� � rˆ?:

We let

@z WD
@x � i@y

2
; @z WD

@x C i@y

2
:

We then obtain the following result.

Lemma 2.4. Let k 2 N� be such that �k.h/ < 2B0h. Then

�k.h/ D inf
V�H1

0
.�IC/

dimVDk

sup
v2V n¹0º

4
R
�
e�2�=hjh@zvj

2 dxR
�
jvj2e�2�=h dx

: (2.2)

Recall that �k.h/ is defined in (1.6).

Proof. By (1.3) and (1.6), since L C
h
� 2B0h we get

�k.h/ D inf
V�H1

0
.�IC/

dimVDk

sup
u2V n¹0º

k� � .p � A/
�
u
0

�
k2
L2.�/

kuk2
L2.�/

:

Let u 2 H 1
0 .�IC/ and h > 0. Letting u D e��=hv we have, by Proposition 2.1,



� � .p � A/�u0

�



2
L2.�/

D





e�3�=h� � p�v0
�



2

L2.�/

D 4

Z
�

e�2�=hjh@zvj
2 dx;

and
kuk2

L2.�/
D

Z
�

jvj2e�2�=h dx:
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3. Upper bounds

This section is devoted to the proof of the following upper bounds.

Proposition 3.1. Assume that � is C 2 and satisfies Assumption 1.1. For all k 2 N�,

�k.h/ � Csup.k/h
�kC1e2�min=h.1C o.1//; (3.1)

where �k.h/ and Csup.k/ are defined in (1.6) and in Theorem 1.3 respectively.

3.1. Choice of test functions

Let k 2 N� andm 2 N. By (2.2), we look for a k-dimensional subspace Vh ofH 1
0 .�IC/

such that

sup
v2Vhn¹0º

4h2
R
�
j@zvj

2e�2�=h dxR
�
jvj2e�2.���min/=h dx

� Csup.k/h
�kC1.1C o.1//:

By the min-max principle, this would give (3.1). Formula (2.2) suggests taking functions
of the form

v.x/ D �.x/w.x/;

where
(i) w is holomorphic on a neighborhood on �,

(ii) � W �! Œ0; 1� is a Lipschitzian function satisfying the Dirichlet boundary condition
and equal to 1 away from a fixed neighborhood of the boundary.

In particular, there exists `0 2 .0; d.xmin; @�// such that

�.x/ D 1 for all x 2 � such that d.x; @�/ > `0; (3.2)

where d is the usual Euclidean distance.

Remark 3.2. The most naive test functions set could be

Vh D span.�h.z/; : : : ; �h.x/.z � zmin/
k�1/;

where .�h/h2.0;1� satisfy (3.2). With this choice, one would get

sup
v2Vhn¹0º

4h2
R
�
j@zvj

2e�2�=h dxR
�
jvj2e�2.���min/=h dx

� eCsup.k/h
�kC1.1C o.1//;

where

eCsup.k/ D 2

�
NH ..z � zmin/

k�1/

distB.zk�1;Pk�2/

�2
� Csup.k/:

Note however that in the radial case eCsup.k/D Csup.k/. We will rather use functions com-
patible with the Hardy space structure to get the bound of Proposition 3.1, as explained
below.
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Notation 4. Let .Pn/n2N denote the NB-orthogonal family such that Pn.Z/ D Zn CPn�1
jD0 bn;jZ

j obtained from a Gram–Schmidt process applied to .1; Z; : : : ; Zn; : : : /.
Since Pn is NB-orthogonal to Pn�1, we have

distB.Z
n;Pn�1/ D distB.Pn;Pn�1/ D inf ¹NB.Pn �Q/ W Q 2 Pn�1º

D inf ¹
p
NB.Pn/2 CNB.Q/2 W Q 2 Pn�1º D NB.Pn/ for n 2 N: (3.3)

Let Qn 2H 2
k
.�/ be the unique function such that

distH ..z � zmin/
n;H 2

k .�// D NH ..z � zmin/
n
�Qn.z//

for n 2 ¹0; : : : ; k � 1º (see Remark 1.6). We recall that NB , NH , Pn�1, and H 2
k
.�/ are

defined in Section 1.3.1.

Lemma 3.3. For all n 2 ¹0; : : : ; k � 1º, there exists a sequence .Qn;m/m2N �H 2
k
.�/\

W 1;1.�/ that converges to Qn in H 2.�/.

Proof. We can write Qn.z/ D .z � zmin/
k�1eQn.z/. Here, eQn is a holomorphic function

on�. Since z 7! .z � zmin/
1�k 2 L1.@�/, we get eQn 2H 2.�/. By Lemma C.1, there

exists a sequence .eQn;m/m2N �H 2.�/ \W 1;1.�/ converging to eQn in H 2.�/. We
have

NH ..z � zmin/
k�1.eQn;m � eQn// � k.z � zmin/

k�1
kL1.@�/NH .eQn;m � eQn/;

so that the sequence .Qn;m/m2N D ..z � zmin/
k�1eQn;m/m2N �H 2

k
.�/ converges toQn

in H 2.�/. Since z 7! .z � zmin/
k�1 2 L1.@�/, we have Qn;m 2H 2

k
.�/.

Let us now define the k-dimensional vector space Vh;k;sup by

Vh;k;sup D span.w0;h; : : : ; wk�1;h/; (3.4)

wn;h.z/ D h
�1=2Pn

�
z � zmin

h1=2

�
� h�.1Cn/=2Qn;m.z/ for n 2 ¹0; : : : ; k � 1º:

At the end of the proof, m will be sent to C1. Note that we will not need the unifor-
mity of the semiclassical estimates with respect to m. That is why the parameter m does
not appear in our notations. Note that wn;h, being a non-trivial holomorphic function,
does not vanish identically at the boundary. To fulfill the Dirichlet condition, we have to
add a cutoff function (see below).

Remark 3.4. Consider

e!n;h.z/ D h�1=2Pn�z � zmin

h1=2

�
� h�.1Cn/=2Qn.z/:

SinceQn belongs to H 2.�/ 6�H 1.�IC/, the functions ewn;h W x 7!e!n;h.x1C ix2/ and
�ewn;h do not belong necessarily to H 1.�IC/ and H 1

0 .�IC/ respectively. That is why
we have introduced Qn;m. Note that to get H 1

0 .�IC/ test functions, it suffices to require
that � be compactly supported in �. With this strategy, our proof can be adapted to the
case where � is not necessarily simply connected.
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3.2. Estimate of the L2-norm

The aim of this section is to prove the following estimate.

Lemma 3.5. Let h 2 .0; 1�, vh D �
Pk�1
jD0 cjwj;h with c0; : : : ; ck�1 2C, � satisfying (3.2)

and .wj;h/j2¹0;:::;k�1º defined in (3.4). ThenZ
�

jvhj
2e�2.�.x/��min/=h dx D .1C o.1//

k�1X
jD0

jcj j
2NB.Pj /

2; (3.5)

where NB is defined in Notation 3 and o.1/ does not depend on c D .c0; : : : ; ck�1/ or �.

Proof. Let ˛ 2 .1=3; 1=2/ and n; n0 2 ¹0; : : : ; k � 1º.
In the proof, three types of terms will appear after a change of scale around xmin:

hPn; Pn0iB , hPn;Qn0;miB and hQn;m;Qn0;miB where h�; �iB is the scalar product asso-
ciated withNB . Since the polynomials .Pn/n2N areNB-orthogonal, we have hPn; Pn0iB
D 0 if n¤ n0 and we will prove that hQn;m;Qn0;miB DO.h/ and by the Cauchy–Schwarz
inequality hPn;Qn0;miB D O.h1=2/. More precisely, we proceed as follows:

(i) Let us estimate the weighted scalar products related to Pn for the weighted L2-
norm. Using the Taylor expansion of � at xmin, we get, for all x 2 D.xmin; h

˛/,

�.x/ � �min

h
D

1

2h
Hessxmin �.x � xmin; x � xmin/C O.h3˛�1/: (3.6)

By using the change of coordinates

ƒh W x 7!
x � xmin

h1=2
; (3.7)

we findZ
D.xmin;h˛/

h�1PnPn0

�
x1 C ix2 � zmin

h1=2

�
e�2.�.x/��min/=h dx

D .1CO.h3˛�1//

Z
D.xmin;h˛/

h�1PnPn0

�
x1C ix2�zmin

h1=2

�
e�

1
h

Hessxmin �.x�xmin;x�xmin/ dx

D .1CO.h3˛�1//

Z
D.0;h˛�1=2/

PnPn0.y/e
�Hessxmin �.y;y/ dy

D .1CO.h3˛�1//

�
hPn; Pn0iB�

Z
CnD.0;h˛�1=2/

PnPn0.y/e
�Hessxmin �.y;y/ dy

�
D .1CO.h3˛�1//hPn; Pn0iBCO.h1/; (3.8)

where the last equality follows from Assumption (c) in Theorem 1.3.
We recall assumptions (b) and (c) of Theorem 1.3. Then, by the Taylor expansion of �

at xmin, we deduce that

inf
�nD.xmin; h˛/

� � �min C
�min

2
h2˛.1C O.h˛//; (3.9)
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where �min > 0 is the lowest eigenvalue of Hessxmin �. Since Pn is of degree n, there exists
C > 0 such that

sup
x2�

ˇ̌̌̌
h�1=2Pn

�
x1 C ix2 � zmin

h1=2

�ˇ̌̌̌
� Ch�.nC1/=2:

Using this with (3.9), we getˇ̌̌̌Z
�nD.xmin;h˛/

h�1�2PnPn0

�
x1 C ix2 � zmin

h1=2

�
e�2.�.x/��min/=h dx

ˇ̌̌̌
� Ch�.nC1/=2h�.n

0C1/=2e��minh
2˛�1.1CO.h˛//

D O.h1/: (3.10)

From (3.8) and (3.10), we findZ
�

h�1�2PnPn0

�
x1 C ix2 � zmin

h1=2

�
e�2.�.x/��min/=h dx

D .1C O.h3˛�1//hPn; Pn0iB C O.h1/: (3.11)

(ii) Let us now deal with the weighted scalar products related to the Qn;m. Let u 2
H 2.�/ and z0 2 D.zmin; h

˛/. By the Cauchy formula (see [4, Theorem 10:4]) and the
Cauchy–Schwarz inequality,

ju.k/.z0/j D
kŠ

2�

ˇ̌̌̌Z
@�

u.z/

.z � z0/kC1
dz
ˇ̌̌̌

�
kŠ

2�
p

min@� @n�
NH .u/

�Z
@�

jdzj
jz � z0j2.kC1/

�1=2
�

kŠ

2�
p

min@� @n�
NH .u/

�Z
@�

jdzj
.jz � zminj � h˛/2.kC1/

�1=2
� CNH .u/: (3.12)

With the Taylor formula for u D Qn;m at zmin, this gives

jQn;m.z0/j � C jz0 � zminj
kNH .Qn;m/:

Using (3.6), this impliesZ
D.xmin;h˛/

jh�.1Cn/=2Qn;m.x1 C ix2/j
2e�2.�.x/��min/=h dx

� Ch�.1Cn/
Z
D.xmin;h˛/

j.x1 C ix2/ � zminj
2ke�2.�.x/��min/=h dx

� Chk�nNB.z
k/2 � Ch: (3.13)
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Using (3.9) and Qn;m 2 W 1;1.�/ � L2.�/, we getZ
�nD.xmin;h˛/

jh�.1Cn/=2�Qn;m.x1 C ix2/j
2e�2.�.x/��min/=h dx

� Ch�.nC1/kQn;mk
2
L2.�/

e��minh
2˛�1.1CO.h˛//

D O.h1/: (3.14)

With (3.13) and (3.14), we deduceZ
�

jh�.1Cn/=2�Qn;m.x1 C ix2/j
2e�2.�.x/��min/=h dx D O.h/: (3.15)

Applying the Cauchy–Schwarz inequality and (3.15), we obtainZ
�

�2h�.1Cn/=2Qn;m.x1C ix2//h
�.1Cn0/=2Qn0;m.x1C ix2/e

�2.�.x/��min/=h dx DO.h/:

(3.16)

(iii) Let us now consider the scalar products involving the Pn and the Qn0;m. Using
(3.11), (3.16), and the Cauchy–Schwarz inequality, we getZ

�

�2h�1=2Pn

�
x1 C ix2 � zmin

h1=2

�
h�.1Cn

0/=2Qn0;m.x1 C ix2/e
�2.�.x/��min/=h dx

D O.h1=2/: (3.17)

The conclusion follows by expanding the square in the left-hand side of (3.5) and by using
(3.11), (3.16), (3.17) .

Remark 3.6. From Lemma 3.5, we deduce that the vectors ¹�wj;h W 0 � j � k � 1º are
linearly independent for h small enough.

3.3. Estimate of the energy

The aim of this section is to bound from above the energy on an appropriate subspace.

Lemma 3.7. There exists a family .�h/h2.0;1� of functions which satisfy (3.2) and such
that, for all wh D

Pk�1
jD0 cjwj;h 2 Vh;k;sup with c0; : : : ; ck�1 2 C,

4

Z
�

h2e�2�=hj@z.�hwh/j
2 dx

� 2h1�kjck�1j
2NH

�
.z � zmin/

k�1
�Qk�1;m

�
C o.1/h1�kkck2

`2
:

Here, o.1/ does not depend on c0; : : : ; ck�1.
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Proof. Let � be any function satisfying (3.2). We have

4

Z
�

h2e�2�=hj@z�whj
2 dx D h2

Z
�

jwhj
2e�2�=hjr�j2 dx

D h2
Z

suppr�
jwhj

2e�2�=hjr�j2 dx;

where we have used jr�j2 D 4j@z�j2 since � is real and @zwh D 0.
The proof is now divided into three steps. First, we introduce tubular coordinates near

the boundary, then we make an explicit choice of �, and finally we control the remainders.
(i) We only need to define � in a neighborhood of � D @�. To do this, we use the

tubular coordinates given by the map

� W R=.j�jZ/ � .0; t0/! �; .s; t/ 7! 
.s/ � tn.s/;

for t0 small enough, 
 being a parametrization of � with j
 0.s/j D 1 for all s, and n.s/
the unit outward pointing normal at 
.s/ (see e.g. [8, §F]). We let

��1.x/ D .s.x/; t.x// for all x 2 �.R=.j�jZ/ � .0; t0//;

the inverse map to �. We let, for all x 2 �,

�.x/ D

´
�.s.x/; d.x; @�// if d.x; @�/ � ";

1 otherwise.

The parameter " > 0 and the function � are to be determined. We assume that �.s; 0/ D 0
and �.s; t/ D 1 when t � ". We will choose " D o.h1=2/.

Since the metric induced by the change of variable is the Euclidean metric mod-
ulo O."/, we get

h2
Z

suppr�
jwhj

2e�2�=hjr�j2 dx

� .1C O."//h2
Z
�

Z "

0

j Qwhj
2e�2

Q�.s;t/=h.j@t�j
2
C j@s�j

2/ ds dt;

where Qwh D wh ı � and Q� D � ı �. Thus, by using the Taylor expansion of Q� at t D 0 we
get, uniformly in s 2 � ,

Q�.s; t/ D t@t Q�.s; 0/C O.t2/ D �t@n�.s; 0/C O."2/;

and

h2
Z

suppr�
jwhj

2e�2�=hjr�j2 dx

� .1C O."C "2=h//h2
Z
�

Z "

0

j Qwhj
2e2t@n�.s/=h.j@t�j

2
C j@s�j

2/ ds dt:
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Since Qn;m 2 W 1;1.�/, we have @t QQn;m ı � 2 L1.� � .0; "// and by using the Taylor
expansion of Qw near t D 0, we get

Qwh.s; t/ D
�k�1X
jD0

cjwj;h

�
ı �.s; t/ D Qwh.s; 0/C

Z t

0

@t Qwh.s; t
0/ dt 0

D Qwh.s; 0/C O."/kchk`2 ;

where
ch D .h

�1=2c0; : : : ; h
�k=2ck�1/; (3.18)

and k � k`2 is the canonical Euclidean norm on Ck . Then

h2
Z

suppr�
jwhj

2e�2�=hjr�j2 dx

� .1C O."C "2=h//h2
Z
�

j Qwh.s; 0/j
2

Z "

0

e2t@n�.s/=h.j@t�j
2
C j@s�j

2/ ds dt

C Ch2"kchk
2
`2

Z
�

Z "

0

e2t@n�.s/=h.j@t�j
2
C j@s�j

2/ ds dt: (3.19)

(ii) For the right-hand side of (3.19) to be small, we choose � to minimize @t� far
from the boundary. The optimization of

� 7!

Z "

0

e2t@n�=h j@t�j
2 dt

gives us the weight @n�. More precisely, Lemma A.1 with ˛ D 2@n�=h > 0 suggests
considering the trial state defined, for t � ", by

�.s; t/ D
1 � e�2t@n�.s/=h

1 � e�2"@n�.s/=h
;

and by 1 otherwise. By Lemma A.1, we getZ "

0

e2t@n�=h j@t�j
2 dt D

2@n�=h

1 � e�"2@n�=h
;

andZ "

0

e2t@n�=h j@s�j
2 dt D j@s˛j2

Z "

0

e2t@n�=hj@˛�˛;"j
2 dt � Ch�2.˛�3 C e�˛""2˛�1/

� C.hC e�"2@n�=h"2h�1/:

We can choose " D hjln hj so thatZ
�

Z "

0

j Qwh.s; 0/j
2e2t@n�.s/=h j@t�j

2 ds dt D .1C o.1//h�1
Z
�

2@n�j Qwh.s; 0/j
2 ds;
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and (3.19) becomes

h2
Z

suppr�
jwhj

2e�2�=hjr�j2 dx

� .1C o.1//h

�Z
�

2@n�j Qwh.s; 0/j
2 ds C C"kchk2`2

�
: (3.20)

(iii) Let us consider, for all h � 0,

Nh W C
k
3 c 7!

�Z
�

@n�
ˇ̌̌k�1X
jD0

cjh
.1Cj /=2

Qwj;h.s; 0/

ˇ̌̌̌2
ds
�1=2

;

where we recall that

wj;h.z/ D h
�1=2Pj

�
z � zmin

h1=2

�
� h�.jC1/=2Qj;m.z/:

The map Ck � Œ0; 1� 3 .c; h/ 7! Nh.c/ is well defined and continuous (since the degree
of Pj is j ). Note in particular that

N0.c/ D

�Z
�

@n�
ˇ̌̌k�1X
jD0

cj Œ.z � zmin/
j
�Qj;m.z/�

ˇ̌̌2
ds
�1=2

:

Notice that
Nh.ch/

2
D

Z
�

@n�j Qwh.s; 0/j
2 ds D NH .wh/

2; (3.21)

where ch is defined in (3.18). Since NH is a norm, and recalling Remark 3.6, we see that
the map Nh is a norm when h 2 .0; h0�; N0 is also a norm (as we can see by using the
Hardy norm and Qj;m 2H 2

k
.�/).

Let us define
C0 D min

h2Œ0;h0�
kck

`2D1

Nh.c/ > 0:

so that, for all h 2 Œ0; h0� and all c 2 Ck ,

C0kck`2 � Nh.c/: (3.22)

Using (3.20), (3.21), and replacing c by ch in (3.22), we conclude that

h2
Z

suppr�
jwhj

2e�2�=hjr�j2 dx � 2.1C o.1//hNH .wh/
2:

Let us now estimate NH .wh/. From the triangle inequality, we get

NH .wh/ � jck�1jNH .wk�1;h/C

k�2X
jD0

jcj jNH .wj;h/:



J.-M. Barbaroux, L. Le Treust, N. Raymond, E. Stockmeyer 3300

Then, from degree considerations and the triangle inequality, we get, for 1 � j � k � 2,

NH .wj;h/ D O.h.1�k/=2/;

and
NH .wk�1;h/ D .1C o.1//h

�k=2NH

�
.z � zmin/

k�1
�Qk�1;m

�
:

Then

NH .wh/
2
� jck�1j

2h�kNH

�
.z � zmin/

k�1
�Qk�1;m

�2
C o.h�k/kck2

`2
:

This ends the proof.

3.4. Proof of Proposition 3.1

Let us define eV h;k;sup D ¹�hwh W wh 2 Vh;k;supº; where Vh;k;sup is defined in (3.4) and �h
in Lemma 3.7. By Lemmas 3.5 and 3.7, we get

4
R
�
h2e�2�=hj@z.wh�h/j

2 dxR
�
jwh�hj2e�2.���min/=h dx

� 2h1�k
jck�1j

2NH ..z � zmin/
k�1 �Qk�1;m/

2Pk�1
jD0 jcj j

2NB.Pj /2
C o.h1�k/

for all wh D
Pk�1
jD0 cjwj;h 2 Vh;k;sup with c 2 Ck n ¹0º. From the min-max principle,3 it

follows that

�k.h/ � 2h
1�kNH

�
.z � zmin/

k�1
�Qk�1;m

�2
� sup
c2Ckn¹0º

jck�1j
2Pk�1

jD0 jcj j
2NB.Pj /2

e2�min=h C o.h1�k/:

Since

sup
c2Ckn¹0º

jck�1j
2Pk�1

jD0 jcj j
2NB.Pj /2

D NB.Pk�1/
�2;

we deduce

lim sup
h!0

hk�1e�2�min=h�k.h/ � 2

�
NH ..z � zmin/

k�1 �Qk�1;m/

distB.zk�1;Pk�2/

�2
:

Taking the limit as m!C1 we get

lim sup
h!0

hk�1e�2�min=h�k.h/ � Csup.k/:

3By Remark 3.6, dimeV h;k;sup D k for h small enough.
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3.5. Computation of Csup.k/ in the radial case

Let k 2 N�. Assume that � is the disk of radius R centered at 0, and that B is radial. In
this case xmin D 0, @n� is constant and Hessxmin � D B.0/ Id=2. Thus,

distH ..z � zmin/
k�1;H 2

k .�// D distH .z
k�1;H 2

k .�// D NH .z
k�1/2 D 2�@n�R

2k�1;

and we notice that Pn.z/ D zn (see Notation 4) so that

distB.z
k�1;Pk�2/ D NB.Pk�1/

2

D

Z
R2
jyj2.k�1/ e�Hessxmin �.y;y/ dy D 2�

Z C1
0

�2k�1e�B.0/�
2=2 d�

D
2�2k

B.0/k

Z C1
0

�2k�1e��
2

d� D
2�2k�1�.k/

B.0/k
D
2�2k�1.k � 1/Š

B.0/k
;

We get

Csup.k/ D
B.0/kˆR2k�2

2k�2.k � 1/Š
:

Note that this formula extends the upper bound obtained in [11] for constant magnetic
fields on the disk.

4. On the magnetic Cauchy–Riemann operators

In this section, U will denote an open bounded subset of R2. It will be either � itself, or
a smaller open set.

As we already observed (see (1.3)), the Dirichlet–Pauli operator, considered only as
a differential operator, is the square of the magnetic Dirac operator � � .p � A/. It can be
written as

� � .p � A/ D
�
0 dh;A
d�
h;A

0

�
(4.1)

where dh;A and d�
h;A

are the magnetic Cauchy–Riemann operators:

dh;A D �2ih@z � A1 C iA2; d�h;A D �2ih@z � A1 � iA2:

Let .dh;A;Dom.dh;A// be the operator on L2.U IC/ acting as dh;A on Dom.dh;A/ D
H 1
0 .U IC/.

4.1. Properties of d1;0 and d�1;0

In this part, we study the operators dh;A and d�
h;A

in the non-magnetic case B D 0 with
h D 1 in order to describe their properties in this simplified setting in which �� D
d�1;0d1;0. Various aspects of this section can be related to the spectral analysis of the
“zig-zag” operator (see [16]). The next section will be related to the magnetic case that is
needed in our study.
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Lemma 4.1. Assume that U is of class C 2. The following properties hold.

(a) The operator .d1;0;Dom.d1;0// is closed with closed range.

(b) The domain of d�1;0 is given by

Dom.d�1;0/ D ¹u 2 L
2.U IC/ W @zu 2 L

2.U IC/º

D ¹u 2 L2.U IC/ W @zu D 0º CH
1.U IC/;

and d�1;0 acts as d�1;0. In particular,

ker.d�1;0/ D ¹u 2 L
2.U IC/ W @zu D 0º:

(c) We have

ker.d�1;0/
?
\ Dom.d�1;0/ D ¹d1;0w W w 2 H

1
0 .U IC/ \H

2.U IC/º � H 1.U IC/;

and there exists C > 0 such that, for all v 2 ker.d�1;0/
? \ Dom.d�1;0/,

kvkH1.U / � Ckd
�
1;0vkL2.U /:

Proof. Let u 2 Dom.d1;0/ D H 1
0 .U IC/. One easily checks that

kd1;0uk
2
L2.U /

D kruk2
L2.U /

:

Hence, the Poincaré inequality ensures that .d1;0; Dom.d1;0// is a closed operator with
closed range. Then, by definition of the domain of the adjoint,

Dom.d�1;0/ � ¹u 2 L
2.U IC/ W @zu 2 L

2.U IC/º:

Conversely, if v 2 ¹u 2 L2.U IC/ W @zu 2 L2.U IC/º, then, for all w 2 C10 .U /,

hv;�2i@zwiL2.U / D h�2i@zv;wiL2.U / :

By density, this equality can be extended to w 2 H 1
0 .U IC/. This shows, by definition,

that v 2 Dom.d�1;0/ and d�1;0v D �2i@zv.
Moreover, we have

ker.d�1;0/
?
\ Dom.d�1;0/ D ran.d1;0/ \ Dom.d�1;0/

D ¹d1;0w W w 2 H
1
0 .U IC/ and �2i@z.d1;0w/ D ��w 2 L2.U IC/º

D ¹d1;0w W w 2 H
1
0 .U IC/ \H

2.U IC/º � H 1.U IC/;

where the last equality follows from the elliptic regularity of the Laplacian. In particular,
for all w 2 H 1

0 .U IC/ \H
2.U IC/,

kwkH2.U / � Ck�wkL2.U /:

Now, take v 2 ker.d�1;0/
? \ Dom.d�1;0/. We can write v D d1;0w with w 2 H 2.U IC/ \

H 1
0 .U IC/. We have d�1;0v D ��w so that

kvkH1.U / � Ckd
�
1;0vkL2.U /:
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4.2. Properties of dh;A and d�
h;A

Let us introduce some notations related to the Riemann mapping theorem.
In the following, we gather some standard properties related to dh;A and d�

h;A
. We will

use the following lemma.

Lemma 4.2. For all u 2 C10 .U IC/, we have

kdh;Auk
2
L2.U /

D k.p � A/uk2
L2.U /

C h

Z
U

Bjuj2 dx;

kd�h;Auk
2
L2.U /

D k.p � A/uk2
L2.U /

� h

Z
U

Bjuj2 dx:

These formulas can be extended to u 2 H 1
0 .U IC/.

Proof. This follows by integration by parts and the fact that dh;Ad�h;A D jp � Aj
2 � hB

and d�
h;A
dh;A D jp � Aj2 C hB . The extension to u 2 H 1

0 .U IC/ follows by density.

Remark 4.3. From Lemma 4.2, we deduce4 that for all u 2 H 1
0 .U IC/,

k.p � A/uk2
L2.U /

�

Z
U

hBjuj2 dx:

Proposition 4.4. Assume that U is of class C 2.

(a) The operator .dh;A;Dom.dh;A// is closed with closed range.

(b) The adjoint .d�
h;A
;Dom.d�

h;A
// acts as d�

h;A
on

Dom.d�h;A/ D ¹u 2 L
2.U / W @zu 2 L

2.U /º D ker.d�h;A/CH
1.U IC/

and
ker.d�h;A/ D ¹e

��=hv W v 2 L2.U /; @zv D 0º:

(c) We have ker.d�
h;A
/? \ Dom.d�

h;A
/ D ¹dh;Aw W w 2 H

1
0 .U IC/ \H

2.U IC/º.

Notation 5. The notation dh;A;U for dh;A emphasizes the dependence on U . We denote
by …h;A;U (or simply …h;A if there is no ambiguity) the orthogonal projection on
ker.d�

h;A
/.

Proof of Proposition 4.4. (a) By Lemma 4.2, the graph norm of dh;A and the usual H 1-
norm are equivalent. Thus, the graph of dh;A is a closed subspace of L2.U / � L2.U /.
From Lemma 4.2 and Remark 4.3, we get, for all u 2 H 1

0 .U /,

kdh;Auk
2
L2.U /

� h

Z
U

2Bjuj2 dx:

4This may also be found in [8, Lemma 1.4.1].
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By assumption (a) of Theorem 1.3 and the fact that the operator is closed, the range is
closed.

(b) We have Dom.d�
h;A
/ D Dom.d�1;0/, and d�

h;A
acts as d�

h;A
. By Proposition 2.1 and

Lemma 4.1, we deduce

ker.d�h;A/ D ¹e
��=hv W v 2 L2.U /; @zv D 0º:

(c) As in the proof of Lemma 4.1, we get

ker.d�h;A/
?
\ Dom.d�h;A/ D ran.dh;A/ \ Dom.d�h;A/

D ¹dh;Aw W w 2 H
1
0 .U IC/ and d�h;Adh;Aw D .jp � Aj

2
C hB/w 2 L2.U IC/º

D ¹dh;Aw W w 2 H
1
0 .U IC/ and ��w 2 L2.U IC/º

D ¹dh;Aw W w 2 H
1
0 .U IC/ \H

2.U IC/º:

Definition 4.5. We define the self-adjoint operators .L ˙
h
;Dom.L ˙

h
// to act as

L �h D dh;Ad
�
h;A D jp � Aj

2
� hB; L C

h
D d�h;Adh;A D jp � Aj

2
C hB; (4.2)

on the respective domains

Dom.L �h / D ¹u 2 Dom.d�h;A/ W d
�
h;Au 2 Dom.dh;A/º;

Dom.L C
h
/ D ¹u 2 Dom.dh;A/ W dh;Au 2 Dom.d�h;A/º

D H 1
0 .U IC/ \H

2.U IC/:

4.3. Semiclassical elliptic estimates for the magnetic Cauchy–Riemann operator

Notation 6. By the Riemann mapping theorem, and since @� is assumed to be C 2, it is
Dini-continuous (see [15, Theorem 2.1, and Section 3.3]) and we can consider a biholo-
morphic function F between D.0; 1/ and � such that F.@D.0; 1// D @�. We write
x D F.y/. We notice that

@y1 C i@y2 D F
0.y/.@x1 C i@x2/ and dx D jF 0.y/j2 dy:

By [15, Theorem 3.5], this biholomorphism can be continuously extended toD.0; 1/, and
there exist c1; c2 > 0 such that, for all y 2 D.0; 1/,

c1 � jF
0.y/j � c2:

For ı 2 .0; 1/, we also let
�ı D F.D.0; 1 � ı//:

Note that �ı is actually an analytic manifold.

The following theorem is a crucial ingredient in the proof of the lower bound of �k.h/.
It is intimately related to the spectral supersymmetry of Dirac operators [17, Theorem 5.5
and Corollary 5.6].
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Theorem 4.6. There exist ı0; h0; c > 0 such that, for all ı 2 Œ0; ı0/, all h 2 .0; h0/, and
all u 2 Dom.d�

h;A;�ı
/ \ ker.d�

h;A;�ı
/?,

kd�h;A;�ıukL2.�ı/ �
p
2hB0 kukL2.�ı/;

kd�h;A;�ıukL2.�ı/ � ch
2.krukL2.�ı/ C kukL2.@�ı//;

where we use Notation 6.

Theorem 4.6 follows from the next two lemmas.

Lemma 4.7. For all u 2 Dom.d�
h;A;�ı

/ \ ker.d�
h;A;�ı

/?, we have

kd�h;A;�ıukL2.U / �
p
2hB0 kukL2.U /:

Proof. For notational simplicity, we let U D �ı and we write dh;A for dh;A;U . Let u 2
Dom.d�

h;A
/ \ ker.d�

h;A
/?. By Proposition 4.4, there exists w 2 H 1

0 .U IC/ \H
2.U IC/

such that uD dh;Aw and d�
h;A
uDL C

h
w. The spectrum of L C

h
is a subset of Œ2hB0;C1/

(see Remark 4.3). Thus, we get

kL C
h
wkL2.U / � 2hB0kwkL2.U /:

By integration by parts and the Cauchy–Schwarz inequality, we have

2hB0kdh;Awk
2
L2.U /

� 2hB0 hw;L
C

h
wi
L2.U /

� 2hB0kwkL2.U /kL
C

h
wkL2.U /

� kL C
h
wk2

L2.U /
:

This ensures thatp
2hB0 kdh;AwkL2.U / � kL

C

h
wkL2.U / D kd

�
h;A.dh;Aw/kL2.U /

and the conclusion follows.

Lemma 4.8. There exist ı0; h0; c > 0 such that, for all ı 2 Œ0; ı0/, all h 2 .0; h0/, and all
u 2 Dom.d�

h;A;�ı
/ \ ker.d�

h;A;�ı
/?,

kd�h;A;�ıukL2.�ı/ � ch
2
krukL2.�ı/ C ch

2
kukL2.@�ı/:

Proof. For notational simplicity, we let U D �ı and we write dh;A for dh;A;U .
With the same notations as in the proof of Lemma 4.7 (u D dh;Aw), we have

d�h;Au D d
�
h;Adh;Aw D L C

h
w; w 2 H 1

0 .U / \H
2.U /:

(i) From Lemma 4.2,

kdh;Awk
2
L2.U /

D k.p � A/wk2
L2.U /

C h

Z
U

Bjwj2 dx

D hd�h;Au;wiL2.U / � kd
�
h;AukL2.U /kwkL2.U /:
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Using assumption (a), we get

B0hkwk
2
L2.U /

� h

Z
U

Bjwj2 dx � kd�h;AukL2.U /kwkL2.U /;

and
hkwkL2.U / � B

�1
0 kd

�
h;AukL2.U /: (4.3)

Since
h

Z
U

Bjwj2 dx � k.p � A/wk2
L2.U /

;

we deduce that
B
1=2
0 h1=2kwkL2.U / � k.p � A/wkL2.U /;

and
k.p � A/wk2

L2.U /
� kd�h;AukL2.U /kwkL2.U /

� kd�h;AukL2.U /B
�1=2
0 h�1=2k.p � A/wkL2.U /; (4.4)

so that in view of (4.3) and (4.4), there exists C > 0 such that

h1=2k.p � A/wkL2.U / C hkwkL2.U / � Ckd
�
h;AukL2.U /:

Since A is bounded,

h3=2krwkL2.U / � Ckd
�
h;AukL2.U / C Ch

1=2
kwkL2.U /

� Ch�1=2kd�h;AukL2.U /:

Thus,
h2krwkL2.U / C hkwkL2.U / � Ckd

�
h;AukL2.U /: (4.5)

(ii) Let us now deal with the derivatives of order two. From the explicit expression of
L C
h
w, we get

�h2�w D d�h;Au � 2ihA � rw � jAj
2w C hBw:

Taking the L2-norm and using (4.5), we get

h2k�wkL2.U /

� kd�h;AukL2.U / C k�2ihA � rwkL2.U / C kjAj
2wkL2.U / C khBwkL2.U /

� C.1C h�1/kd�h;AukL2.U /:

Using a standard ellipticity result for the Dirichlet Laplacian, we find

h3kwkH2.U / C h
2
krwkL2.U / C hkwkL2.U / � Ckd

�
h;AukL2.U /: (4.6)

The uniformity of the constant with respect to ı 2 .0; ı0/ can be checked as in the classical
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proof of elliptic regularity. Alternatively, using the Riemann mapping theorem, we map�
onto the unit disk. Then we perform a change of scale for each ı to send D.0; 1 � ı/
onto D.0; 1/ and use a standard ellipticity result on D.0; 1/. Here, ı appears as a regular
parameter in the coefficients of the elliptic operator. Note that dh;A D L1 � iL2 where
Lj D �ih@j � Aj . Using (4.6), we deduce that

krdh;AwkL2.U / � ChkwkH2.U / C CkwkL2.U / C CkrwkL2.U /

� Ch�2kd�h;AukL2.U /;

and since u D dh;Aw,
h2krukL2.U / � Ckd

�
h;AukL2.U /: (4.7)

(iii) A classical trace result combined with (4.7) and Lemma 4.7 gives

kukL2.@U / � CkukH1.U / � Ch
�2
kd�h;AukL2.U /;

where it can again be checked using the same techniques that C does not depend on
ı 2 .0; ı0/.

5. Lower bounds

The aim of this section is to establish the following proposition.

Proposition 5.1. Assume that � is C 2 and satisfies Assumption 1.1. There exists a con-
stant �0 2 .0; 1� such that for all k 2 N�,

lim inf
h!0

e�2�min=hhk�1�k.h/ � Csup.k/�0 D Cinf.k/:

If � D D.0; 1/ and B is radial, we have

lim inf
h!0

e�2�min=hhk�1�k.h/ �
4ˆ

.k � 1/Š
det.Hessxmin �/

k=2:

5.1. Inside approximation by the zero-modes

Let k 2 N�. Let us consider an orthonormal family .vj;h/1�j�k (for the scalar product of
L2.e�2�=h dx/) associated with the eigenvalues .�j .h//1�j�k . We define

Eh D span
1�j�k

vj;h:

In this section, we will see that the general upper bound proved in the last section implies
that all vh 2 Eh want to be holomorphic inside �.
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5.1.1. Concentration of the ground state

Lemma 5.2. There exist C; h0 > 0 such that for all vh 2 Eh and h 2 .0; h0/,

kvhk
2
L2.�/

� Ch�.1Ck/e2�min=h

Z
�

e�2�=hjvhj
2 dx:

This result will be used in the proof of Lemma 5.3 to compute the weighted L2-norm
of vh on � in term of its weighted L2-norm on a shrinking neighborhood of xmin.

Proof of Lemma 5.2. We have �k.h/ D h�kC1O.e2�min=h/ (see Proposition 3.1). By
using the orthogonality of the vj;h, one getsZ

�

e�2�=hj2h@zvhj
2 dx � �k.h/

Z
�

e�2�=hjvhj
2 dx

� Ch�kC1e2�min=h

Z
�

e�2�=hjvhj
2 dx: (5.1)

Now, we use � � 0 to getZ
�

j2@zvhj
2 dx � Ch�.1Ck/e2�min=h

Z
�

e�2�=hjvhj
2 dx:

Since vh satisfies the Dirichlet boundary condition and by integration by parts, we findZ
�

jrvhj
2 dx � Ch�.1Ck/e2�min=h

Z
�

e�2�=hjvhj
2 dx:

It remains to use the Poincaré inequality.

We can now prove a concentration lemma.

Lemma 5.3. Let ˛ 2 .0; 1=2/. Then

lim
h!0

sup
vh2Ehn¹0º

ˇ̌̌̌ R
D.xmin; h˛/

e�2�=hjvh.x/j
2 dxR

�
e�2�=hjvh.x/j2 dx

� 1

ˇ̌̌̌
D 0;

and

lim
h!0

sup
ı2.0;ı0�

sup
vh2Ehn¹0º

ˇ̌̌̌ R
�ı
e�2�=hjvh.x/j

2 dxR
�
e�2�=hjvh.x/j2 dx

� 1

ˇ̌̌̌
D 0;

where ı0 is defined in Proposition 4.4.

Proof. Let us remark that the second limit is a consequence of the first one. We haveR
D.xmin;h˛/

e�2�=hjvh.x/j
2 dxR

�
e�2�=hjvh.x/j2 dx

D 1 �

R
�nD.xmin; h˛/

e�2�=hjvh.x/j
2 dxR

�
e�2�=hjvh.x/j2 dx

:
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By (3.9) and Lemma 5.2, we deduce thatZ
�nD.xmin; h˛/

e�2�=hjvh.x/j
2 dx � e�2�min=h��minh

2˛�1.1CO.h˛//

Z
�

jvh.x/j
2 dx

� Ch�.1Ck/e��minh
2˛�1.1CO.h˛//

Z
�

e�2�=hjvhj
2 dx D O.h1/

Z
�

e�2�=hjvhj
2 dx;

and the conclusion follows.

5.1.2. Interior approximation. Now that we know that vh is localized inside �, let us
explain why it is close to be a holomorphic function.

Notation 7. Let e…h;ı denote the orthogonal projection on the kernel of �i@z (i.e. the
Segal–Bargmann functions on�ı , which is defined in Notation 6) for the L2-scalar prod-
uct h�; e�2�=h�iL2.�ı/.

We notice that if u D e��=hv, we have

…h;A;�ıu D e
��=he…h;ıv;

where …h;A;�ı was defined in Notation 5.

Proposition 5.4. There exist C; h0 > 0 such that for all ı 2 .0; ı0� and h 2 .0; h0/, and
all vh 2 Eh, we have

(a) ke��=h.Id � Q…h;ı/vhkL2.�ı/ � Ch
�1=2

p
�k.h/ ke

��=hvhkL2.�ı/,

(b) ke��=h.Id � e…h;ı/vhkL2.@�ı/ � Ch
�2
p
�k.h/ ke

��=hvhkL2.�ı/,

(c) dim e…h;ıEh D k.

Here, ı0 is defined in Theorem 4.6.

Proof. For all vh 2 Eh, we have

4ke��=hh@zvhk
2
L2.�ı/

� 4ke��=hh@zvhk
2
L2.�/

� �k.h/ke
��=hvhk

2
L2.�/

� .1C o.1//�k.h/ke
��=hvhk

2
L2.�ı/

;

where we use Lemma 5.3 to get the last inequality. With uh D e��=hvh, we have

4ke��=hh@zvhk
2
L2.�ı/

D 4ke��=hh@z.Id � Q…h;ı/vhk
2
L2.�ı/

D kd�h;A;�ı .Id �…h;A;�ı /uhk
2
L2.�ı/

:

Applying Theorem 4.6, we get (a) and (b).
Let vh 2 Eh be such that e…h;ıvh D 0. Recalling Proposition 3.1, we have

ke��=hvhkL2.�ı/ � ke
��=h.Id � e…h;ı/vhkL2.�ı/ C ke

��=he…h;ıvhkL2.�ı/

� Ch�k=2e�min=hke��=hvhkL2.�ı/;
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so that
ke��=hvhkL2.�ı/.1 � Ch

�k=2e�min=h/ � 0;

and vh D 0 on �ı so that e…h;ı is injective on Eh and (c) follows.

5.2. A reduction to a holomorphic subspace

In the following, we assume that ı 2 .0; ı0/ and h 2 .0; h0/.

Notation 8. We will use the Szegö projection

…C W L
2.D.0; 1// 3

X
n2Z

an.r/e
ins
7!

X
n2N

an.r/e
ins
2 L2.D.0; 1//:

Note that the Szegö projection preserves the L2 holomorphic functions.

Notation 9. We let

E WD min
@D.0;1/

jF 0.y/j@n�.F.y// � c1 min
�
.r� � n/;

where F , c1 are defined in Notation 6.

Lemma 5.5. Assume that ı=h!C1 and ı ! 0. Then, for all vh 2 Eh,

2hEk…C.vh ı F /k
2
L2.@D.0;1�ı//

.1C o.1// � 4h2
Z
�

e�2�=hj@zvhj
2 dx:

Proof. (i) For all v 2 H 1
0 .�/, we let Lv D v ı F 2 H 1

0 .D.0; 1// and L� D � ı F . We get

4h2
Z
�

e�2�=hj@zvj
2 dx D 4h2

Z
D.0;1/

e�2
L�=h
j@y Lvj

2 dy:

(ii) In polar coordinates, the Cauchy–Riemann operator is

�
i

2
.@1 C i@2/ D

�i
 0

2

�
@s

1 � t
C i@t

�
:

We write Q .s; t/ D L .�.s; t// for any function L defined on D.0; 1/. For all Lv in
H 1
0 .D.0; 1//, we have

4h2
Z
D.0;1/

e�2
L�=h
j@z Lvj

2 dx � 4h2
Z
D.0;1/nD.0;1�ı/

e�2
L�=h
j@z Lvj

2 dx

D h2
Z 2�

0

Z ı

0

.1 � t /�1 j..1 � t /@t � i@s/ Qvj
2 e�2

Q�=h ds dt:

(5.2)

(iii) Let us notice that

@Ln L�.y/ D jF
0.y/j@n�.F.y//; (5.3)
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where x 2 @�, n.x/ is the outward unit normal to � at x, and Ln.y/ is the outward unit
normal to D.0; 1/ at y.

By using the Taylor expansion of Q�, there exists C > 0 such that, for all .s; t/ in
� � .0; ı/,

� Q�.s; t/ D �t@t Q�.s; 0/C O.t2/ � .1 � Cı/Et;

where 0 < E D min@D.0;1/ @Ln L�. We have

4h2
Z
D.0;1/

e�2
L�=h
j@z Lvj

2 dx

� h2
Z 2�

0

Z ı

0

.1 � t /�1 j..1 � t /@t � i@s/ Qvj
2 e2.1�Cı/Et=h ds dt:

Consider the new variable � D � ln j1 � t j. Then we get

4h2
Z
D.0;1/

e�2
L�=h
j@z Lvj

2 dx

� h2
Z 2�

0

Z � ln j1�ıj

0

j.@� � i@s/v.s; �/j
2 e2.1�Cı/E.1�e

�� /=h ds d�;

where v.s; �/ D Qv.s; 1 � e�� /. Since 1 � e�� D � C O.�2/ D � C O.ı�/, there exists
QC > 0 such that

e2.1�Cı/E.1�e
�� /=h

� e2E.1�
QCı/�=h:

Let QE D E.1 � QCı/ and Qı D � ln j1 � ıj so that

4h2
Z
D.0;1/

e�2
L�=h
j@z Lvj

2 dx � h2
Z 2�

0

Z Qı
0

j.@� � i@s/v.s; �/j
2 e2

QE�=h ds d�:

(iv) Using Fourier series and the Parseval formula, we getZ 2�

0

Z Qı
0

j.@� � i@s/v.s; �/j
2 e2

QE�=h ds d� D 2�
X
m2Z

Z Qı
0

ˇ̌
.@� Cm/Ovm.�/

ˇ̌2
e2
QE�=h d�;

where

Ovm.�/ D
1

2�

Z 2�

0

e�imsv.s; �/ ds:

Let us consider the quadratic form

Qm.w/ D

Z Qı
0

j.@� Cm/wj
2 e2

QE�=h d�

with boundary conditions w.0/ D 0 and w. Qı/ D 1.
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Notice that

Qm.w/ D QQm.�/ D

Z Qı
0

j@��j
2 e2�

QE=hC2.Qı��/m d�;

where w.�/ D em.Qı��/�.�/ for all � 2 .0; Qı/, �.0/ D 0 and �. Qı/ D 1.
Since m 7! QQm.�/ is an increasing function, we get QQm.�/ � QQ0.�/ for all m � 0

and, by Lemma A.1,
Qm.w/ � ƒ0.h/;

where

ƒ0.h/ D
2 QE=h

1 � e�2
Qı QE=h

� 0:

By forgetting the negative m, we find

4h2
Z
�

e�2�=hj@zvj
2 dx � 2�h2ƒ0.h/

X
m�0

jvm.ı/j
2

D h2ƒ0.h/k…C.v ı F /k
2
L2.@D.0;1�ı//

:

In the following, we choose ı D h3=4.
Using Proposition 5.4, we show in the following lemma that we can replace vh bye…h;ıvh in Lemma 5.5.

Lemma 5.6. Assume that ı D h3=4 and that ˛ 2
�
1
3
; 1
2

�
. Then

2�0he
2�min=hke…h;ıvhk

2
H 2.�ı/

.1C o.1//

� �k.h/ke
� 1
2h

Hessxmin �.x�xmin;x�xmin/e…h;ıvhk
2
L2.D.xmin;h˛//

;

where

�0 D
min@D.0;1/ jF 0.y/j@n�.F.y//

max@D.0;1/ jF 0.y/j@n�.F.y//
2 .0; 1�;

and where we use the notation

kwk2
H 2.�ı/

WD

Z
@D.0;1�ı/

jw ı F j2.@n� ı F /jF
0
j ds:

Remark 5.7. Taking ı D 0 in the definition of kwk2
H 2.�ı/

above gives

kwk2
H 2.�0/

D

Z
@D.0;1/

jw ı F j2.@n� ı F /jF
0
j ds D

Z
@�

jwj2@n� dy D NH .w/
2

for w 2H 2.�/.



Spectrum of the Dirichlet–Pauli operator 3313

Proof of Lemma 5.6. (i) From Lemma 5.5 and the definition of vh, we have

2Ehk…C.vh ı F /k
2
L2.@D.0;1�ı//

.1C o.1// � h2
Z
�

e�2�=hj@zvhj
2 dx

� �k.h/

Z
�

e�2�=hjvhj
2 dx:

Thus, by Lemma 5.3,

2Ehk…C.vh ı F /k
2
L2.@D.0;1�ı//

.1C o.1// � �k.h/

Z
D.xmin;h˛/

e�2�=hjvhj
2 dx: (5.4)

(ii) Let L…h;ı be the orthogonal projection on H .D.0; 1 � ı// for the L2.e�2 L�=h dy/
scalar product. Note that L…h;ı…C D …C L…h;ı D

L…h;ı (see Notation 8). Let us now
replace …C by L…h;ı . Proposition 5.4 ensures that

ke�
L�=h.Id � L…h;ı/vh ı F kL2.@D.0;1�ı// � Ch

�2
p
�k.h/ ke

��=hvhkL2.�ı/;

Using the Taylor expansion of L� near the boundary and (5.3), we have, on @D.0; 1 � ı/,

e�
L�=h
� .1C o.1//eEh

�1=4

;

so that

k.Id � L…h;ı/vh ı F kL2.@D.0;1�ı// � Ch
�2
p
�k.h/ e

�Eh�1=4
ke��=hvhkL2.�ı/: (5.5)

Since …C is a projection and L…h;ı is valued in the holomorphic functions,

k.Id � L…h;ı/vh ı F kL2.@D.0;1�ı//

� k…C.Id � L…h;ı/vh ı F kL2.@D.0;1�ı//

� k…Cvh ı F � L…h;ıvh ı F kL2.@D.0;1�ı//

� jk…Cvh ı F kL2.@D.0;1�ı// � k L…h;ıvh ı F kL2.@D.0;1�ı//j:

Then, with (5.5),

k…Cvh ı F kL2.@D.0;1�ı//

� k L…h;ıvh ı F kL2.@D.0;1�ı// � O.h1/
p
�k.h/ ke

��=hvhkL2.�ı/:

By (5.4) and Lemma 5.3,

p
2Eh k L…h;ıvh ı F kL2.@D.0;1�ı//.1C o.1//

�
p
�k.h/ ke

��=hvhkL2.D.xmin;h˛//
: (5.6)
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Thus, coming back to �ı (without forgetting the Jacobian of F ),

p
2Eh kjF 0.F.�//j�1=2e…h;ıvhkL2.@�ı/.1C o.1//

�
p
�k.h/ ke

��=hvhkL2.D.xmin;h˛//
:

Then, by using the (weighted) Hardy norm, we havep
2�0h ke…h;ıvhkH 2.�ı/

.1C o.1// �
p
�k.h/ ke

��=hvhkL2.D.xmin;h˛//
: (5.7)

(iii) Using Proposition 5.4 and Lemma 5.3, we get

ke��=hvhkL2.D.xmin;h˛//

� ke��=he…h;ıvhkL2.D.xmin;h˛//
C ke��=h.Id � e…h;ı/vhkL2.D.xmin;h˛//

� ke��=he…h;ıvhkL2.D.xmin;h˛//
C ke��=h.Id � e…h;ı/vhkL2.�ı/

� ke��=he…h;ıvhkL2.D.xmin;h˛//

C Ch�1=2
p
�k.h/ ke

��=hvhkL2.D.xmin;h˛//
:

Combing this with (5.7) and Proposition 3.1, we find

2�0hke…h;ıvhk
2
H2.�ı/

.1C o.1// � �k.h/ke
��=he…h;ıvhk

2
L2.D.xmin;h˛//

:

(iv) Using the Taylor expansion of � at xmin, we get, for all x 2 D.xmin; h
˛/ ,

�.x/ � �min

h
D

1

2h
Hessxmin �.x � xmin; x � xmin/C O.h3˛�1/;

and the conclusion follows.

Remark 5.8. Lemma 5.6 shows in particular that

2.1C o.1//�0h Q�k.h/ � �k.h/;

where

Q�k.h/ D inf
V�H 2.�ı/

dimVDk

sup
v2V n¹0º

kvk2
H2.�ı/

ke�
1
2h

Hessxmin �.x�xmin;x�xmin/vk2
L2.D.xmin;h˛//

:

In the next section, we will essentially provide a lower bound of Q�k.h/. Note that if we
could replace H 2.�ı/ by the set of polynomials, then we would get the bound presented
in Remark 3.2. However, there is no hope to do so, since in general

distH ..z � zmin/
k�1;H 2

k .�// < NB..z � zmin/
k�1/;

(this inequality is an equality in the radial case). We still have to work to get the lower
bound of Theorem 1.3.
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5.3. Reduction to a polynomial subspace: Proof of Proposition 5.1

We can now prove Proposition 5.1.
(i) By (3.12), there exist C; h0 > 0 such that, for all h 2 .0; h0/, all w 2H 2.�ı/, all

z0 2 D.xmin; h
˛/, and all n 2 ¹0; : : : ; kº,

jw.n/.z0/j � CkwkH 2.�ı/
: (5.8)

Define, for all w 2H 2.�ı/,

Nh.w/ D ke
� 1
2h

Hessxmin �.x�xmin;x�xmin/wkL2.D.xmin;h˛//
:

Let wh D e…h;ıvh. By the Taylor formula, we can write

wh D Taylk�1wh CRk�1.wh/;

where

Taylk�1wh D
k�1X
nD0

w
.n/

h
.zmin/

nŠ
.z � zmin/

n;

and, for all z 2 D.zmin; h
˛/,

jRk�1.wh/.z/j � C jz � zminj
k sup
D.zmin;h˛/

jw
.k/

h
j:

With (5.8) and a rescaling, the Taylor remainder satisfies

Nh.Rk�1.wh// � Ch
k=2h1=2kwhkH 2.�ı/

:

Thus, by the triangle inequality,

Nh.wh/ � Nh.Taylk�1wh/C Ch
k=2h1=2kwhkH 2.�ı/

:

Thus, with Lemma 5.6, we get

.1C o.1//e�min=h
p
2�0h kwhkH 2.�ı/

�
p
�k.h/Nh.Taylk�1wh/C C

p
�k.h/ h

.1Ck/=2
kwhkH 2.�ı/

;

so that, thanks to Proposition 3.1,

.1C o.1//e�min=h
p
2�0h kwhkH 2.�ı/

�
p
�k.h/Nh.Taylk�1wh/

�
p
�k.h/ ONh.Taylk�1wh/; (5.9)

with
ONh.w/ D ke

� 1
2h

Hessxmin �.x�xmin;x�xmin/wkL2.R2/:

This inequality shows in particular that Taylk�1 e…ı;h is injective on Eh and

dim Taylk�1.e…ı;hEh/ D k: (5.10)
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(ii) Let us recall that

H 2
k .�ı/ D ¹ 2H 2.�ı/ W 8n 2 ¹0; : : : ; k � 1º;  

.n/.xmin/ D 0º:

Since wh � Taylk�1wh 2H 2
k
.�ı/, we have, by the triangle inequality,

kwhkH 2.�ı/
�





w.k�1/h
.zmin/

.k � 1/Š
.z � zmin/

k�1
C .wh � Taylk�1wh/






H 2.�ı/

� kTaylk�2whkH 2.�ı/

�
jw
.k�1/

h
.zmin/j

.k � 1/Š
distH ;ı..z � zmin/

k�1;H 2
k .�ı//

� kTaylk�2whkH 2.�ı/
;

where

distH ;ı..z � zmin/
k�1;H 2

k .�ı//

D inf ¹k.z � zmin/
k�1
�Q.z/kH 2.�ı/

W Q 2H 2
k .�ı/º:

Using again the triangle inequality, we get

kTaylk�2whkH 2.�ı/
� C

k�2X
nD0

jw
.n/

h
.zmin/j:

Moreover,

k�2X
nD0

jw
.n/

h
.zmin/j � h

�.k�2/=2

k�2X
nD0

hn=2jw
.n/

h
.zmin/j � h

�.k�2/=2

k�1X
nD0

hn=2jw
.n/

h
.zmin/j

� Ch�.k�2/=2h�1=2 ONh.Taylk�1wh/;

where we use the rescaling property

ONh

�k�1X
nD0

cn.z � zmin/
n
�
D h1=2 ON1

�k�1X
nD0

cnh
n=2.z � zmin/

n
�
; (5.11)

and the equivalence of norms in finite dimension:

9C > 0;8d 2 Ck ; C�1
k�1X
nD0

jdnj � ON1

�k�1X
nD0

dn.z � zmin/
n
�
� C

k�1X
nD0

jdnj:

We find

kwhkH 2.�ı/
�
jw
.k�1/

h
.zmin/j

.k � 1/Š
distH ;ı..z � zmin/

k�1;H 2
k .�ı//

� Ch�.k�2/=2h�1=2 ONh.Taylk�1wh/;
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and thus, by (5.9),

.1C o.1//e�min=h
p
2�0h

jw
.k�1/

h
.zmin/j

.k � 1/Š
distH ;ı..z � zmin/

k�1;H 2
k .�ı//

� .
p
�k.h/C Ch

.2�k/=2e�min=h/ ONh.Taylk�1wh/: (5.12)

(iii) Since we have (5.10), we deduce that

.1Co.1//e�min=h
p
2�0h distH ;ı..z�zmin/

k�1;H 2
k .�ı// sup

c2Ck

jck�1j

ONh.
Pk�1
nD0 cn.z�zmin/n/

�
p
�k.h/C Ch

.2�k/=2e�min=h: (5.13)

By (5.11), we infer that

h1=2 sup
c2Ck

jck�1j

ONh.
Pk�1
nD0 cn.z � zmin/n/

D sup
c2Ck

h.1�k/=2jck�1j

ON1.
Pk�1
nD0 cn.z � zmin/n/

:

Since ON1 is related to the Segal–Bargmann norm NB via a translation, and recalling
Notation 4, we get

sup
c2Ck

jck�1j

ON1.
Pk�1
nD0 cn.z � zmin/n/

D sup
c2Ck

jck�1j

NB.
Pk�1
nD0 cnz

n/
D

1

NB.Pk�1/
:

Thus,

.1 C o.1//h.1�k/=2e�min=h
p
2�0

distH ;ı..z � zmin/
k�1;H 2

k
.�ı//

NB.Pk�1/
�
p
�k.h/: (5.14)

(iv) Since � is regular enough, the Riemann mapping theorem ensures that

lim
h!0

distH ;ı..z � zmin/
k�1;H 2

k .�ı// D distH ..z � zmin/
k�1;H 2

k .�//:

The conclusion follows.

5.4. Proof of Corollary 1.11

We recall Notation 6 where F , c1 and c2 are defined. Let us notice that we can choose F
such that F.0/ D xmin.

For all v 2 H 1
0 .�/, we let Lv D v ı F 2 H 1

0 .D.0; 1//, and we get

1

c2

R
D.0;1/

e�2
L�=hj@y Lvj

2 dyR
D.0;1/

e�2 L�=hj Lvj2 dy
�

R
D.0;1/

e�2
L�=hj@y Lvj

2 dyR
D.0;1/

e�2 L�=hj Lvj2jF 0.y/j2 dy
D

R
�
e�2�=hj@zvj

2 dxR
�
e�2�=hjvj2 dx

;

where L� D � ı F has a unique and non-degenerate minimum at y D 0 and L�.0/ D �min.
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In the same way, we getR
�
e�2�=hj@zvj

2 dxR
�
e�2�=hjvj2 dx

�
1

c1

R
D.0;1/

e�2
L�=hj@y Lvj

2 dyR
D.0;1/

e�2 L�=hj Lvj2 dy
:

These inequalities, the min-max principle, and Theorem 1.3 imply Corollary 1.11.

Appendix A. A unidimensional optimization problem

The goal of this section is to minimize, for each fixed s, the quantityZ "

0

e2t@n�.s/=h j@t�j
2 dt:

This leads to the following lemma.

Lemma A.1. For ˛; " > 0, let I D .0; "/ and

V D ¹� 2 H 1.I / W �.0/ D 0; �."/ D 1º;

and for all � 2 V , consider

F˛;".�/ WD

Z "

0

e˛`j�0.`/j2 d`:

(a) The minimization problem
inf ¹F˛;".�/ W � 2 V º

has a unique minimizer

�˛;".`/ D
1 � e�˛`

1 � e�˛"
:

(b) We have
inf ¹F˛;".�/ W � 2 V º D

˛

1 � e�"˛
;

(c) Let c0 > 0. Assume 1 � e�˛" � c0. Then there exists C > 0 such thatZ "

0

e˛`j@˛�˛;"j
2 d` � C.˛�3 C e�˛""2˛�1/:

Proof. (i) Since ˛ > 0, we have F˛;".�/�
R "
0
j�0.`/j2 d` for all � 2 V . There exists C > 0

such that, for all � 2 V , Z "

0

j�0.`/j2 d` � C
Z "

0

j�.`/j2 d`:

This ensures that any minimizing sequence .�n/n2N � V is bounded in H 1.I / and any
H 1-weak limit is a minimizer of inf ¹F˛;".�/ W � 2 V º.
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(ii) F 1=2˛;" is a Euclidean norm on V so that F˛;" is strictly convex and the minimizer
is unique.

(iii) At a minimum �, the Euler–Lagrange equation is

.e˛`�0/0 D 0:

Thus, there exists .c; d/ 2 R2 such that, for all ` 2 I ,

�.`/ D d � c˛�1e�˛`;

so that from the boundary conditions we find the function �˛;".
(iv) We haveZ "

0

e˛`j�0.`/j2 d` D ˛2.1 � e�"˛/�2
Z "

0

e�˛` d` D
˛

1 � e�"˛
:

(v) We also have

@˛�˛;".`/ D
1

.1 � e�˛"/2

�
`e�˛`.1 � e�˛"/ � .1 � e�˛`/"e�˛"

�
;

for ` 2 .0; "/ andZ "

0

e˛`j@˛�˛;"j
2 d` �

1

.1 � e�˛"/4

�Z "

0

`2e�˛` d`.1 � e�˛"/2 C
Z "

0

e�˛` d`."e�˛"/2

C

Z "

0

e˛` d`."e�˛"/2
�

� C.˛�3 C e�˛""2˛�1/:

Appendix B. Hopf’s lemma with Dini-regularity

In the following lemma, we present a simple proof of an extension of Hopf’s lemma
to the case when � is Dini-regular. The standard version of Hopf’s lemma given for
instance in [7, Hopf’s Lemma, Section 6.4.2] requires essentially C 2 regularity. However,
the regularity can be lowered down to Dini (see [1] and the references therein).

Lemma B.1. Let � be a simply connected, Dini-regular, bounded open set. If � is the
solution of (1.2), then the function @� 3 s 7! @n�.s/ is continuous and

@n� > 0 on @�:

Proof. Let � be the solution of (1.2). By the Riemann mapping theorem [15], there exists
a bi-holomorphic map F W D.0; 1/ ! � such that F 0 is continuous on D.0; 1/. The
function L� D � ı F is the solution of (1.2) onD.0; 1/ for LB D jF 0j2B ı F . By [9, Corol-
lary 8.36], L� is C 1;1� on D.0; 1/ and Hopf’s lemma [7, Hopf’s Lemma, Section 6.4.2]
ensures that @n L� > 0. The result follows from the fact that

@n� D j.F
�1/0j@n L� ı F

�1:
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Appendix C. A density result

Lemma C.1. Assume that � is bounded, simply connected and @� is Dini-continuous.
Then the set H 2.�/ \W 1;1.�/ is dense in H 2.�/.

Proof. We recall Notation 6. Let u 2H 2.�/. Then u ı F D
P
k�0 akz

k is holomorphic
on D.0; 1/ and .ak/k�0 2 `2.N/. Let " 2 .0; 1/. The function

eu" W D.0; 1/ 3 z 7! u ı F..1 � "/z/ 2 C

is holomorphic on D.0; 1=.1 � "//. We denote u" Deu" ı F �1. We have

ku � u"k
2
H 2.�/

WD

Z
@�

ju.x/ � u".x/j
2@n� dx

D

Z
@D.0;1/

ju ı F.y/ � u ı F..1 � "/y/j2jF 0.y/j@n� ı F.y/ dy

� c2k@n�kL1

Z
@D.0;1/

ju ı F.y/ � u ı F..1 � "/y/j2 dy

� c2k@n�kL1
X
k�1

jakj
2
j1 � .1 � "/kj2:

Note that @n� is bounded by Lemma B.1. By Lebesgue’s theorem, .u"/"2.0;1/ converges
to u in H 2.�/. Since also .u"/"2.0;1/ � W 1;1.�/, the result follows.
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