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Abstract. We prove Zilber’s Trichotomy Conjecture for strongly minimal expansions of 2-dimen-
sional groups, definable in o-minimal structures:

Theorem. Let M be an o-minimal expansion of a real closed field, hGI Ci a 2-dimensional
group definable in M, and D D hGI C; : : :i a strongly minimal structure, all of whose atomic
relations are definable in M. If D is not locally modular, then an algebraically closed field K is
interpretable in D , and the group G, with all its induced D-structure, is definably isomorphic in D
to an algebraic K-group with all its induced K-structure.
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1. Introduction

1.1. Zilber’s Conjecture (ZC)

In [41], Boris Zilber formulated the following conjecture.

Zilber’s Trichotomy Conjecture. The geometry of every strongly minimal structure D

is either (i) trivial, (ii) non-trivial and locally modular, or (iii) isomorphic to the geometry
of an algebraically closed field K definable in D . Moreover, in (iii) the structure induced
on K from D is already definable in K .that is, the field K is “pure” in D/.

The conjecture reduces by [8] to: if a strongly minimal structure D is not locally
modular, then it interprets a field K, and the field K is pure in D .

In the early 1990s, Hrushovski refuted both parts of the conjecture. Using his amal-
gamation method he showed the existence of a strongly minimal structure which is not
locally modular and yet does not interpret any group (so certainly not a field) [10]. In
addition he showed the existence of a proper strongly minimal expansion of a field [9],
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thus disproving also the purity of the field. Nevertheless, Zilber’s Conjecture stayed alive
since it turned out to be true in various restricted settings, and moreover its verification
in those settings gave rise to important applications (such as Hrushovski’s proof of the
function field Mordell–Lang conjecture in all characteristics [11]).

A common feature to many cases where the conjecture is true is the presence of an
underlying geometry putting strong restrictions on the definable sets in the strongly min-
imal structure D . This is for example the case when D is definable in an algebraically
closed field [7,19,35], in a differentially closed field [17], in a separably closed field [11],
or in an algebraically closed valued field [16]. This is also the case when D is endowed
with a Zariski geometry [13].

Thus, it is interesting to examine the conjecture in various geometric settings. In this
paper, we consider Zilber’s Conjecture in the o-minimal geometric setting, introduced
in the 1980s [15, 33, 37]. O-minimality imposes strong conditions on definable complex
analytic objects, forcing them in many cases to be algebraic (see [28] for a survey, and [1]
for a recent application). The results of this paper can be seen as another manifestation of
the same phenomenon.

1.2. The connection to o-minimality

The complex field is an example of a strongly minimal structure definable in the o-
minimal structure hRI C; �; <i, and indeed the underlying Euclidean geometry is an
important component in understanding complex algebraic varieties. This leads to examin-
ing in greater generality those strongly minimal structures definable in o-minimal ones,
and to the following restricted variant of Zilber’s Conjecture, formulated by the third
author in a model theory conference at East Anglia in 2005.

The o-minimal ZC. Let M be an o-minimal structure and D a strongly minimal struc-
ture whose underlying set and atomic relations are definable in M. If D is not locally
modular, then an algebraically closed field K is interpretable in D , and moreover K is a
pure field in D .

Remark 1.1. (1) Because every algebraically closed field of characteristic zero (ACF0)
is definable in an o-minimal real closed field, Zilber’s Conjecture for reducts of algeb-
raically closed fields of characteristic zero is a special case of the o-minimal ZC. This
variant of the conjecture is still open for reducts whose universe is not an algebraic
curve.

(2) The purity of the field in the o-minimal setting was already proven in [26], thus the
o-minimal ZC reduces to proving the interpretability of a field in D .

(3) Since every definable algebraically closed field in an o-minimal structure has dimen-
sion 2 (see [30]), it is not hard to see that the above conjecture implies that the
underlying universe of D must be 2-dimensional in M. Therefore, it is natural to
consider the o-minimal ZC under the 2-dimensionality assumption on D , which is
the case of our Theorem 1.3 below.
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(4) By [6], if D is strongly minimal, interpretable in an o-minimal structure and in
addition dimM D D 1, then D must be locally modular, thus trivially implying the
o-minimal ZC in the case when dimM D D 1.

(5) The theory of compact complex manifolds, denoted by CCM (see [42]), is the
multi-sorted theory of the structure whose sorts are all compact complex manifolds,
endowed with all analytic subsets and analytic maps. It is known [42, Theorems 3.4.3
and 3.2.8] that each sort in this structure has finite Morley rank, and also that the
structure is interpretable in the o-minimal structure Ran. Hence, every sufficiently
saturated structure elementarily equivalent to a CCM is interpretable in an o-minimal
structure.

By [20], every set of Morley rank 1 in any model of CCM is definably isomorphic
to an algebraic curve. Thus, Zilber’s conjecture for reducts of CCM whose universe is
analytically 1-dimensional reduces to the work in [7]. The higher-dimensional cases
may also reduce to the conjecture for ACF0 but this is still open.

In [5] the following case of the o-minimal ZC was proven.

Theorem 1.2. Let R WD hR;C; �; <; : : : i be an o-minimal expansion of a real closed
field, K WD RŒi� its algebraic closure. Let f W K ! K be an R-definable function If
D D hKI C; f i is strongly minimal and is not locally modular .equivalently, f is not
an affine map/, then up to conjugation by an invertible 2 � 2 R-matrix and finitely many
corrections, f is a K-rational function. In addition, a functionˇ W K2 ! K is definable
in D , making hKIC;ˇi an algebraically closed field.

In our current result below we replace the additive group of K above by an arbitrary
R-definable 2-dimensional group G. Moreover, we let D be an arbitrary expansion of G
and not only by a map f WG!G. Since strongly minimal groups are abelian [34, Corol-
lary 3.1], we write the group below additively. Here is the main theorem of our article.

Theorem 1.3. Let M be an o-minimal expansion of a real closed field R, and let hGI˚i
be a 2-dimensional group definable in M. Let D D hGI ˚; : : :i be a strongly minimal
structure expanding G, all of whose atomic relations are definable in M.

Then there are in D an interpretable algebraically closed field K, a K-algebraic
group H with dimK H D 1, and a definable isomorphism ' W G ! H , such that the
definable sets in D are precisely those of the form '�1.X/ forX aK-constructible subset
of Hn.

In fact, the structure D and the field K are bi-interpretable.

Note that the theorem implies in particular that G is definably isomorphic in D to
either hKICi, hK�I �i or an elliptic curve over K.

1.3. The general strategy: from real geometry and strong minimality to complex
algebraic geometry

Let M, G and D be as in Theorem 1.3. Since G is a group definable in an o-minimal
expansion of a real closed field R, it admits a differentiable structure which makes it into
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a Lie group with respect to R (see [31]). We let F be the collection of all differentiable
(with respect to that Lie structure) partial functions f W G ! G, with f .0G/ D 0G , such
that for some D-definable strongly minimal Sf � G2, we have graph.f / � Sf . We let
J0f denote the Jacobian matrix of f at 0. The following is easy to verify, using the chain
rule for differentiable functions:

J0.f ˚ g/ D J0f C J0g; J0.f ı g/ D J0f � J0g;

where on the left hand side of each equation we use the group operation and functional
composition, and on the right hand side the usual matrix operations in M2.R/. Let also

R D ¹J0f 2M2.R/ W f 2 Fº:

The key observation, going back to Zilber, is that via the above equations we can
recover a ring structure on R by performing addition and composition of curves in D .
Most importantly, for the ring structure to be D-definable, one needs to recognize tan-
gency of curves at a point D-definably. The geometric idea for that goes back to Rabino-
vich’s work [35], and requires us to develop a sufficient amount of intersection theory for
D-definable sets, so as to recognize “combinatorially” when two curves are tangent.

This paper establishes in several distinct steps the necessary ingredients for the proof.
In each of these steps we prove an additional property of D-definable sets which shows
their resemblance to complex algebraic sets. We briefly describe these steps.

We call S � G2 a plane curve if it is D-definable and RM.S/ D 1 (we recall the
definition of Morley rank in Section 2.1). In Section 4 we investigate the frontier of plane
curves, where the frontier of a set S is cl.S/ n S . We prove that every plane curve has
finite frontier in the group topology on G.

In Section 5 we consider the poles of plane curves, where a pole of S � G2 is a point
a 2 G such that for every neighborhood U 3 a, the set .U �G/\ S is “unbounded”. We
prove that every plane curve has at most finitely many poles.

As a corollary of the above two results we establish in Section 6 another geometric
property which is typically true for complex analytic curves. Namely, we show that every
plane curve S whose projection on both coordinates is finite-to-one, is locally, outside
finitely many points, the graph of a homeomorphism.

Next, we discuss the differential properties of plane curves, and consider in Section 7
the collection, R, of all Jacobian matrices at 0 of local smooth maps from G to G whose
graph is contained in a plane curve. Using our previous results we prove that this collec-
tion forms an algebraically closed subfield K of M2.R/, and thus up to conjugation by
a fixed invertible matrix, every such Jacobian matrix at 0 satisfies the Cauchy–Riemann
equations.

In Section 8 we establish elements of complex intersection theory, showing that if two
plane curves E and X are tangent at some point, then by varying E within a sufficiently
well-behaved family, we gain additional intersection points with X . This allows us to
identify tangency of curves in D by counting intersection points.

Finally, in Section 9 we use the above results in order to interpret an algebraically
closed field in D and prove our main theorem.
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2. Preliminaries

We briefly review the basic model-theoretic notions appearing in the text. We refer to any
standard textbook in model theory (such as [18, §6, §7]) for more details. Standard facts
on o-minimality can be found in [38] whose Sections 1.1 and 1.2 provide most of the
basic background needed on structures and definability.

2.1. Strong minimality and related notions

Throughout the text, given a structure N , by N -definable we mean definable in N with
parameters, unless stated otherwise. We drop the prefix ‘N -’ if it is clear from the context.
In the next subsection, we will adopt a global convention about this prefix to be enforced
in Sections 4–9.

Let N D hN; : : : i be an !-saturated structure. A definable set S is strongly minimal
if every definable subset of S is finite or co-finite. We call N strongly minimal if N is a
strongly minimal set.

Let N D hN;<; : : : i be an expansion of a dense linear order without endpoints. We
call N o-minimal if every definable subset of N is a finite union of points from N and
open intervals whose endpoints lie in N [ ¹˙1º. The standard topology in N is the
order topology on N and the product topology on N n.

Now let N be a strongly minimal structure or an o-minimal structure. The algebraic
closure operator acl in both cases is known to give rise to a pregeometry. We refer to
[18, §6.2] and [31, §1] for all details, and recall here only some. GivenA�N and a 2N n,
we let dim.a=A/ be the size of a maximal acl-independent subtuple of a over A. Given a
set C � N n definable over A we let

dimC D max ¹dim.a=A/ W a 2 C º;

and we call an element a 2 C generic in C over A in N if dim.a=A/ D dimC . We also
note that N eliminates the 91 quantifier. Namely, if '.x; y/ is a formula, then the set of
all x for which there are infinitely many y such that '.x; y/ holds is a definable set. We
say that 91y '.x; y/ defines that set.

If N is a strongly minimal structure, then dim.C / coincides with the Morley rank
of C , and we denote dim.a=A/ and dimC by RM.a=A/ and RM.C /, respectively. We
denote the Morley degree of C by MD.C /. In the o-minimal case, dimC coincides with
topological dimension of C , and we keep the notation dim.a=A/ and dimC .

Let N be any structure. Given a definable set X , a canonical parameter for X is an
element in N eq which is interdefinable with the set X , namely Na is a canonical parameter
forX if '. Nx; Na/ definesX and '. Nx; Na0/¤X for all Na0 ¤ Na. Any two canonical parameters
are interdefinable over ;, and so we use ŒX� to denote any such parameter. Note that if
X D Xt0 for some definable family of sets over ;, ¹Xt W t 2 T º, then ŒX� 2 dcl.t0/, but
t0 need not be a canonical parameter for X .

A structure N D hN; : : : i is interpretable in M if there is an isomorphism of structures
˛ WN !N 0, where the universe of N 0 and all N 0-atomic relations are interpretable in M.
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If N is interpretable in M via ˛ and M is interpretable in N via ˇ, and if in addition
ˇ ı ˛ is definable in N and ˛ ı ˇ is definable in M, then we say that M and N are
bi-interpretable.

Note that if M is an o-minimal expansion of an ordered group, then by definable
choice, every interpretable structure in M is also definable in M.

2.2. The setting

Throughout Sections 4–9, we fix a sufficiently saturated o-minimal expansion M D

hRIC; �;<; : : :i of a real closed field. As described in [38, Chapters 6–7], definable sets in
M admit various topological properties with respect to the underlying order topology on
R and the product topology on Rn. In addition, a theory of differentiability with respect
to R is developed there, allowing notions which are analogous to classical ones, such as
manifolds, differentials of definable maps, Jacobian matrices, etc. We are going to exploit
this theory heavily, similarly to the way R-differentiability is often used when developing
complex algebraic geometry.

Throughout the same sections, we also fix a 2-dimensional M-definable group G.
By [31], the groupG admits a definable C 1-manifold structure with respect to the fieldR,
such that the group operation and inverse function are C 1 maps with respect to it. The
topology and differentiable structure which we refer to below are always those of this
smooth group structure on G. Note that the group G is definably isomorphic, as a topolo-
gical group, to a definable group whose domain is a closed subset of some Rr , endowed
with the Rr -topology (see, for example, [29, Claim 3.1]). Thus, we assume that G is a
closed subset of Rr and its topology is the subspace topology.

Finally, throughout Sections 4–9, we fix a strongly minimal non-locally-modular
structure D D hGI : : : i definable in M. We treat M as the default structure and thus use
“definable” to mean “definable in M”, and use “D-definable” to mean “definable in D”.
Similarly, we use acl, dim and “generic” to denote the corresponding notions in M, and let
aclD , RM, “D-generic” and “D-canonical parameter” denote the corresponding notions
in D .

Since the underlying universe of the strongly minimal structure D is the 2-dimen-
sional set G, it follows that for every D-definable set X � Gn, we have

dimX D 2RM.X/:

Also, for a 2 Gn and A � G, we have

dim.a=A/ � 2RM.a=A/;

and in particular, if X � Gn is definable in D and a 2 X is generic in X over A, then
it is also D-generic in X over A. The converse fails: indeed, let M be the real field and
D the complex field, interpretable in the real field M. The element � 2 C is D-generic
in C over ; but it is not generic in C over ; because it is contained in the definable,
1-dimensional set R.
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2.3. The field configuration

Recall the following definition.

Definition 2.1. Let N be a strongly minimal structure. A set ¹a; b; c; x; y; zº of tuples is
called a field configuration in N if:

x y

z

a

b

c

(1) All elements of the diagram are pairwise independent and RM.a; b; c; x; y; z/ D 5.
(2) RM.a/ D RM.b/ D RM.c/ D 2, RM.x/ D RM.y/ D RM.z/ D 1.
(3) All triples of tuples lying on the same line are dependent, and moreover RM.a; b; c/
D 4, RM.a; x; y/ D RM.b; z; y/ D RM.c; x; z/ D 3.

(4) RM.Cb.x; y/=a/ D RM.a/, RM.Cb.y; z/=c/ D RM.b/ and RM.Cb.x; z/=c/
D RM.c/.

(For the notion Cb of a canonical base, see [32, p. 19].)

Remark 2.2. Consider the following minimality condition on a set ¹a; b; c; x; y; zº of
tuples in N :
(4)0 There are no a0 2 acl.a/, b0 2 acl.b/ and c0 2 acl.c/ with RM.a0/ D RM.b0/ D

RM.c0/ D 1 such that (1)–(3) above hold with a0; b0; c0 replacing a; b; c.
Standard Morley rank calculations show that the above conditions (1)–(4) are equivalent
to (1)–(3) and (4)0.

For a proof of the following theorem, see [4, Main Theorem, Proposition 2] and the
discussion following Proposition 2 there.

Fact 2.3 (Hrushovski). If a strongly minimal structure N admits a field configuration,
then N interprets an algebraically closed field.

Let Gm and Ga denote the multiplicative and additive groups of an algebraically closed
field K. The action of Gm Ë Ga on Ga (defined by .a; c/ � b D ab C c) gives rise, nat-
urally, to a field configuration on the structure .K;C; �/ as follows: take g; h 2 Gm ËGa
independent generics (in K), and b 2 Ga generic over g; h. Then

F WD ¹h; g; gh; b; h � b; gh � bº
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b h � b

gh � b

h

g

gh

where � denotes the action of Gm ËGa on Ga, is readily verified to be a field configuration
in the field K (we will prove a slightly more general statement in Lemma 3.20 allowing
us to construct field configurations from certain families of plane curves).

When constructing a field configuration in Section 9, we will need the lemma below.
Given an algebraically closed field K, denote by AGL1.K/ the group of its affine trans-
formations. Let M be an o-minimal expansion of a real closed field, and D a 2-dimen-
sional definable strongly minimal structure. Here and below, we follow the conventions
mentioned in Section 2.2. Namely, notions such as definability, genericity, dim and acl
refer to M, unless indexed otherwise.

Lemma 2.4. Let K be a definable algebraically closed field and h; g 2 AGL1.K/
independent generics. Let b 2 K be a generic independent from g; h. Let Y D

¹h0; g0; k0; b0; c0; d 0º � Dn be such that:

� h0; g0; b0 are interalgebraic over ; with h, g, b respectively.

� k0; c0; d 0 are interalgebraic over ; with gh; h � b; gh � b respectively.

Then Y is a field configuration in D if and only if it satisfies .3/ of Definition 2.1.

Proof. Because D is 2-dimensional, if S is a D-definable set, then by what we have
already explained in Section 2.2, dim S D 2RM.S/. Since o-minimal dimension is pre-
served under interalgebraicity, it will suffice to show that (1), (2) and (4) of Definition 2.1
hold with RM replaced by 1

2
dim.

Because dimK D 2 we get dim AGL1.K/ D 4. By exchange (in M), we see that (1)
and (2) above hold. So it remains to verify (4). Note that, by genericity of b, for example,
the point .b;h � b/ is generic on the affineK-line .x;h1xC h2/where hD .h1; h2/. Since
any two distinct affine lines intersect in at most one point, any automorphism fixing the
affine line .x; h1x C h2/ setwise must also fix h (pointwise). So h is a canonical base
for tpK.b; h � b=h/. Using the interalgebraicity it follows that h0 is D-interalgebraic with
Cb.b0; c0=h0/. Similarly, the rest of clause (4) carries over from K to D .

2.4. Notation

If S is a set in a topological space, its closure, interior, boundary and frontier are denoted
by cl.S/, int.S/, bd.S/ WD cl.S/ n int.S/ and fr.S/ WD cl.S/ n S , respectively. Given
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a group hG;Ci and sets A; B � G, we denote by A � B the Minkowski difference of
the two sets, A � B D ¹x � y W x 2 A; y 2 Bº. Given a set X and S � X2, we denote
Sop D ¹.y; x/ 2 X2 W .x; y/ 2 Sº. The graph of a function f is denoted by �f . If 
 W
.a; b/! Rn is a definable curve we will let 
 also denote the image of 
 in Rn. Thus,
if for some definable function f we have 
.t/ 2 dom.f / for all t , we may write f .
/
instead of f .Im.
//. For M D hRIC; �; <; : : :i as above and x D .x1; : : : ; xn/ 2 Rn, we
write jxj D

p
x21 C � � � C x

2
n.

3. Plane curves

In this section, we work in a strongly minimal structure D and prove some lemmas about
the central objects of our study, plane curves. When D expands a group G and is not
locally-modular, we construct in Sections 3.3 and 3.4 two special definable families of
plane curves which will be used in the subsequent sections.

3.1. Some basic definitions and notations

Let D be a strongly minimal structure.

Definition 3.1. A D-plane curve (or just plane curve) is a D-definable subset of G2 of
Morley rank 1.

Definition 3.2. For two plane curves C1; C2, we write C1 � C2 if jC1 4 C2j <1. Note
that this gives a D-definable equivalence relation on any D-definable family of plane
curves. A D-definable family of plane curves, F D ¹Ct W t 2 T º, is faithful if for t1 ¤ t2
in T , Ct1 4 Ct2 is finite (i.e., C1 œ C2). It is almost faithful if all �-equivalence classes
are finite.

Note that if F D ¹Ct W t 2 T º is a faithful family of plane curves, then t is a canon-
ical parameter for Ct . If F is almost faithful, then t is interalgebraic with a canonical
parameter of Ct .

Given a D-definable family F of plane curves, there exists a D-definable almost
faithful family F 0 D ¹C 0t W t 2 T

0º of plane curves (possibly over additional parameters)
such that every curve in F has an equivalent curve in F 0 and vice versa (see for example
[9, p. 137)].1 It is not hard to see that RM.T 0/ is independent of the choice of F 0. Thus,
we can make the following definition.

Definition 3.3. A D-definable family of plane curves F as above is said to be n-dimen-
sional, written RM.F / D n, if in the corresponding almost faithful family F 0 as above,
we have RM.T 0/ D n. We call F stationary if MD.T 0/ D 1.

We call D a non-locally-modular structure if there exists a D-definable family of
plane curves F with RM.F / � 2.

1Allowing imaginary elements, we can always obtain faithful families of plane curves. The
point here is to work in the real sort only.
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In fact, by [32, Proposition 5.3.2], if D is not locally modular, then for every n there
exists an n-dimensional D-definable family of plane curves. We will sketch a proof of a
slightly stronger result in Proposition 3.21 below.

The following terminology is inspired by [13].

Definition 3.4. Let F D ¹Ct W t 2 T º be a D-definable family of plane curves. For every
p 2 G2, denote

T .p/ D ¹t 2 T W p 2 Ctº; F .p/ D ¹Ct W p 2 Ctº:

We say that F is .generically/ very ample if for any p ¤ q 2 G2 (each D-generic
over the parameters defining F ),

RM.T .p/ \ T .q// < RM.T .p//:

In the rest of this section, D D hGI C; : : : i denotes a strongly minimal expansion of a
group G.

3.2. Local modularity

Here we recall some basic facts about local modularity.

Definition 3.5. A D-definable set isG-affine if it is a finite boolean combination of cosets
of D-definable subgroups of G.

We use the following simple observation without further reference (see, for example,
[18, Lemma 7.2.5, Corollary 7.1.6 and Corollary 7.2.4] for details).

Remark 3.6. If S � G2 is D-definable and strongly minimal, then S is G-affine if and
only if S � H C a for some D-definable strongly minimal subgroup H � G2.

Definition 3.7. Given a strongly minimal plane curve C , the stabilizer of C is the set

Stab�.C / D ¹g 2 G2 W C � C C gº:

The stabilizer of C is easily seen to be a D-definable subgroup of G2. The next
properties are easy to verify.

Lemma 3.8. For C a strongly minimal D-plane curve, and p; q 2 G2:

(1) C C p � C C q if and only if p � q 2 Stab�.C /.
(2) Stab�.C / is trivial if and only if ¹C C p W p 2 G2º is a faithful family.

(3) Stab�.C / is finite if and only if ¹C C p W p 2 G2º is almost faithful.

(4) Stab�.C / is infinite if and only if C is G-affine.

We only use here the following characterization of non-local-modularity in expansions
of groups, which follows from [12].

Fact 3.9. If D is a strongly minimal expansion of a group G, then D is not locally
modular if and only if there exists a D-plane curve which is not G-affine.
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Note that if F D ¹C C p W p 2 T º is a D-definable family of plane curves, with C
strongly minimal and T D G2, then for every p 2 G2,

T .p/ D ¹q 2 T W p 2 C C qº D p � C:

In particular T .p/ is strongly minimal so that, in fact, if RM.T .p/\ T .q//DRM.T .p//,
then T .p/ � T .q/. We thus have the following lemma.

Lemma 3.10. If C is a strongly minimal plane curve and F D ¹C C p W p 2 G2º, then
the following are equivalent:

(1) F is very ample.

(2) F is faithful.

(3) Stab�.C / is trivial.

Finally, we will need the following definition.

Definition 3.11. Let F D ¹Ct W t 2 T º be a D-definable family of plane curves. We call
Ct a D-generic curve in F over A if t is D-generic in T over A. We say that F is
generically strongly minimal if every D-generic curve in F is strongly minimal.

3.3. Dividing by a finite subgroup of G

The main goal of this subsection is to prove Lemma 3.12 below, which will be used in
the proof of Theorem 1.3 in Section 9. It will also allow us to assume, without loss of
generality, the existence of a D-definable faithful, very ample family of strongly minimal
plane curves of Morley rank 2 (Proposition 3.14 below).

Given a strongly minimal plane curve C which is not G-affine, we plan to work with
the family F D ¹C C p W p 2 G2º. We know that Stab�.C / cannot be infinite but it can
be a finite, non-trivial group, in which case F is neither faithful nor very ample. We prove
below that dividing the structure D by a finite group is harmless.

Given a finite subgroup F � G, D-definable over ;, we consider the map �F W
G ! G=F , and still use �F W Gn ! .G=F /n to denote the map �F .g1; : : : ; gn/ D
.�F .g1/; : : : ; �F .gn//.

We let DF be the structure whose universe is G=F and whose atomic relations are all
sets of the form �F .S/ for S � Gn a ;-definable set in D . The structure DF is again an
expansion of a group.

The following result implies that for the purpose of our main theorem we may work
with DF instead of D .

Lemma 3.12. Assume that the group G has unbounded exponent. Then the structures
D and DF are bi-interpretable, without parameters. In particular, D is bi-interpretable
with an algebraically closed field if and only if DF is.

Proof. Because F and �F are ;-definable in D , the structure DF is interpretable, with
no additional parameters, in D , via the identity interpretation ˛.g C F / D g C F .
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Next, let us see how we interpret D in DF . Let n D jF j, and let ��F W G=F ! G be
the map defined as follows: given y 2 G=F , and x 2 G for which �F .x/ D y, let

��F .y/ D nx:

Because G is commutative, if �.x/ D �.x0/ D y, then nx D nx0 C ng for some g 2 F .
Since ng D 0, this proves that ��F is a well-defined group homomorphism with kernel
�F .GŒn�/, where GŒn� D ¹x 2 G W nx D 0º.

SinceG is strongly minimal and has unbounded exponent, the groupGŒn� is finite and
hence ker.��F / is finite, so dim Im.��F / D dimG=F D dimG. Because G is definably
connected, ��F is surjective. Thus the homomorphism ��F induces an isomorphism of
.G=F /=�F .GŒn�/ with G. Its inverse ˇ W G ! .G=F /=�F .GŒn�/ is given by

ˇ.g/ D .g=nC F /C �F .GŒn�/;

where g=n is any element h 2 G such that nh D g (note that a strongly minimal group
of unbounded exponent is divisible [34, §3.3]).

By our assumptions, �F .GŒn�/ is ;-definable in DF , and hence .G=F /=�F .GŒn�/ is
;-definable in DF . Now, given any ;-definable X � Gk in D , the set ¹.gi=n/kiD1 2 G

k W

g 2 Xº is also ;-definable in D , and hence its image in .G=F /k=�F .GŒn�/k is ;-
definable in DF . We have thus shown that D is interpretable, without parameters, in DF

via ˇ.
To see that this is indeed bi-interpretation, we first note that the isomorphism between

D and its interpretation in DF is ˛ ı ˇ, which equals ˇ. It is clearly definable in D .
Let us examine the map induced onG=F by ˇ ı ˛ and prove that it is definable in DF .

We denote by F=n the preimage of F in G under the map g 7! ng. It is not hard to see
that the image of F inside ˇ.G/ is the group �F .F=n/C �F .GŒn�/ D �F .F=n/, and
hence the isomorphism which ˇ ı ˛ induces on G=F is

g C F 7! g=nC �F .F=n/:

This map is definable in the group G=F by sending g C F to the unique coset hC F=n
such that nhC F D g C F .

This completes the proof that D and DF are bi-interpretable over ;.

Note that in our case, when the group G is abelian and definable in an o-minimal
structure, by [36] the group G has unbounded exponent, so the above result holds.

For the rest of this subsection, assume that D is not locally modular, and fix (after
possibly absorbing into the language a finite set of parameters) a strongly minimal plane
curve C � G2 which is D-definable over ; and not G-affine. By Lemma 3.8(4), F 0 D
Stab�.C / � G2 is a finite subgroup and let F � G be a D-;-definable subgroup such
that F 0 � F � F . Consider the structure DF expanding hG=F;Ci as above.

Claim 3.13. �F .C / is strongly minimal in DF and Stab�.�F .C // in .G=F /2 is trivial.
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Proof. The strong minimality of �F .C / is immediate from the strong minimality of C
in D .

Assume that q 2 Stab�.�F .C // � .G=F /2, namely q C �F .C / � �F .C /. Let QF D
F � F � G2 and fix p 2 G2 such that �F .p/D q. Then pCC C QF \C C QF is infinite
and since QF is finite, there exist g; h 2 QF such that C C p C g \ C C h is infinite. But
then p C g � h 2 Stab�.C / � QF , implying that p 2 QF , and hence 0 D �F .p/ D q.

We have thus shown that Stab�.�F .C // is trivial.

Combining Lemmas 3.10, 3.12 and Claim 3.13, we can deduce the following state-
ment.

Proposition 3.14. Assume D is not locally modular, expanding a group G of unbounded
exponent. Then there exists a finite group F �G, possibly trivial, and in the structure DF

defined above there exists a definable family L D ¹lt W t 2 Qº of strongly minimal plane
curves, which is faithful, very ample, and RM.Q/ D 2.

The structures D and DF are bi-interpretable, over the parameters defining F .

Assumption: for the rest of the article, we replace the structure D with the structure DF ,
and thus assume that a family L as above is definable in D .

3.4. Very ample families of high dimension

The goal of this subsection is to construct a larger family L0 of plane curves which still
has the geometric properties of the family L from Proposition 3.14. The main method is
to use composition of binary relations and families of plane curves. Recall the notion of a
composition of binary relations, extending composition of functions: given S1; S2 � G2,
we let

S1 ı S2 D ¹.x; z/ 2 G
2
W 9y .x; y/ 2 S2 and .y; z/ 2 S1º:

Clearly, if S1; S2 are D-definable, then so is S1 ı S2. We will be mostly interested in the
composition of plane curves, and even more so, in the composition of families of plane
curves: if L1;L2 are D-definable families of plane curves, we let L1 ıL2 WD ¹C1 ı C2 W

C1 2 L1; C2 2 L2º.

Definition 3.15. A plane curve S � G2 is a straight line if there exists a 2 G2 such that
either S � ¹aº �G or S � G � ¹aº.

As a rule, geometric properties are not preserved under compositions of (families of)
curves. The composition of two strongly minimal curves which are not both straight lines
has, indeed, Morley rank 1, but it need not be strongly minimal. More generally, a D-
generic curve of L1 ı L2 need not be strongly minimal, and even if it were, L1 ı L2

need not be faithful. In fact, although the dimension of L1 ıL2 cannot decrease, it need
not be greater than that of L1 or L2. For example, if both families are the family of affine
lines in A2, then L1 ıL2 D L1.

We will need a series of lemmas to address these issues. We start with the following
easy observation.
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Lemma 3.16. Assume that L1D¹Ct W t 2T º and L2D¹Dr W r 2Rº are two D-definable
almost faithful families of plane curves, none of which is a straight line, and let L D

L1 ıL2.

(1) For every D-generic p in G2, we have RM.L.p// D RM.R/C RM.T / � 1.

(2) If L1 and L2 are generically very ample, then so is L.

Proof. (1) Let L WD L1 ı L2, C 2 L a D-generic curve and .a; b/ 2 C a D-generic
point. So ŒC � forks over .a; b/ and therefore RM.ŒC �=.a; b// � RM.R/C RM.T / � 1.
Let us see that equality holds, or equivalently RM.L.a; b//D RM.R/CRM.T /� 1. Fix
some D-generic e 2 G. Then .e; b/ is D-generic in G2. So L1.e; b/ has Morley rank
RM.T / � 1. Similarly L2.a; e/ has Morley rank RM.R/ � 1. So the set

L.a; b/e WD ¹.t; r/ 2 T �R W .a; e/ 2 Dr ^ .e; b/ 2 Ctº

has rank RM.R/C RM.T / � 2. But because for D-independent generics e; e0, the sets
L.a; b/e and L.a; b/e0 are disjoint up to a set of lower rank, L.a; b/ has rank RM.R/C
RM.T / � 1.

(2) In order to show that L is generically very ample it will suffice to show that
L.a; b/ \L.c; d/ has rank at most RM.R/C RM.T / � 2 for .a; b/; .c; d/ distinct D-
generics. Fix some r 2 R. Then for t 2 T we find that .t; r/ 2 L.a; b/ only if for some e
such that .a; e/ 2 Dr we also have .e; b/ 2 Ct . If in addition .t; r/ 2 L.c; d/, then there
exists e0 such that .a; e0/ 2 Dr and .e0; b/ 2 Ct . But as there are only finitely many e
such that .a; e/ 2 Dr and only finitely many e0 such that .e0; b/ 2 Ct it follows that there
is a D-generic (over a; b; c; d ) element of L1.e; b/ that is also an element of L1.e

0; d /.
Unless b D d , this contradicts generic very ampleness of L1. So we are reduced to the
case where b D d , in which case a symmetric argument will show that unless also a D c
we get a similar contradiction. But since .a; b/ ¤ .c; d/, we are done.

Definition 3.17. Given two D-definable families of plane curves, L and L0, we say that
L extends L0 if for every C 0 2 L0 there exists C 2 L such that C 0 � C .

In the next couple of lemmas we show that although the composition of two families
of curves need not preserve the properties of the original families (as already discussed),
it extends a family of curves that does.

Lemma 3.18. Let L be a k-dimensional almost faithful D-definable family of plane
curves. Let E be a plane curve. Assume neither E nor any D-generic plane curve is
a straight line. Then E ıL extends a k-dimensional almost faithful D-definable family
of plane curves whose D-generic members are strongly minimal. In fact, if C 2 L is D-
generic over ŒE�, then for any strongly minimalCE �E ıC we have RM.ŒCE �=ŒE�/D k.

Proof. Fix some C 2L which is D-generic over ŒE� and CE � E ıC strongly minimal.
Note that .E�1 ı CE / \ C is infinite, and since C is strongly minimal, E�1 ı CE is
a set of Morley rank 1, containing the set C , up to a finite set. It follows that ŒC � 2
aclD.ŒCE �ŒE�/. Since RM.ŒC �=ŒE�/ D RM.ŒC �/, we see, by exchange, that RM.ŒC �/ D
RM.ŒC �=ŒE�/ D RM.ŒCE �=ŒE�/.
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Absorbing ŒE� into the language, we can find Nc 2 aclD.ŒC �/ and a formula '.x; Nc/
defining CE . By compactness, there is a formula � 2 tp. Nc/ such that whenever Nc0 ˆ �

there is some C 0 2 L such that '.x; Nc0/ � E ı C 0, and for all D-generic Nc0 ˆ � the
formula '.x; Nc0/ is strongly minimal. We may further require – by compactness again –
that if '.x; Nc0/ ^ '.x; Nc00/ is infinite, then the symmetric difference '.x; Nc0/4 '.x; Nc00/ is
finite for all Nc0; Nc00 ˆ � . By rank considerations, the family ¹'.G2; Nc0/ W �. Nc0/º is almost
faithful of rank k.

As an immediate application (since the only families of straight lines are 1-dimen-
sional), we get the following statement.

Corollary 3.19. Let L1;L2 be almost faithful k-dimensional D-definable families of
plane curves, with k > 1. Then L1 ıL2 extends an almost faithful, stationary, generically
strongly minimal family of plane curves of dimension at least k.

We can now show that a 2-dimensional family of plane curves closed under composi-
tion (such as the family of affine lines in a field) gives rise to a field configuration.

Lemma 3.20. Let L1;L2 be almost faithful 2-dimensional families of plane curves.
Assume that L1;L2 are D-definable over ;. Let X 2 L1 and Y 2 L2 be D-independent
generic curves, and E � X ı Y strongly minimal.

(1) If RM.ŒE�=;/ D 2, then D interprets an infinite field.

(2) If RM.ŒE�=;/D k > 2 and L1;L2 are generically very ample, then L1 ıL2 extends
a k-dimensional almost faithful, generically strongly minimal, stationary and gener-
ically very ample family of curves.

Proof. (1) As we note at the beginning of the proof of Lemma 3.18, each of ŒX�; ŒY �; ŒE�
is in the algebraic closure of the other two. Since L1 and L2 are almost faithful and
2-dimensional, we have RM.ŒX�=;/ D RM.ŒY �=;/ D RM.ŒE�=;/ D 2, and the Morley
rank of any two of ŒX�; ŒY �; ŒE� is 4.

Now choose a D-generic .x; y/ 2 X , and z so that .y; z/ 2 Y , and hence .x; z/ 2 E.
We claim that ¹ŒX�; ŒY �; ŒE�; x; y; zº is a field configuration as in Definition 2.1. We have

RM.ŒX�; x; y=;/ D RM.ŒY �; y; z=;/ D RM.ŒE�; x; z=;/ D 3

and
RM.x=;/ D RM.y=;/ D RM.z=;/ D 1:

Also, the Morley rank of the whole configuration over ; is 5. It thus remains to verify (4)
of Definition 2.1.

Because .x; y/ 2 X and RM.ŒX�=;/ D 2, we have RM.Cb.x; y=ŒX�// D 2. We sim-
ilarly verify the other conditions and therefore ¹ŒX�; ŒY �; ŒE�; x; y; zº is indeed a field
configuration. By Fact 2.3, an infinite field is interpretable in D .

(2) Let L WD L1 ıL2. Let F be an aclD.;/-definable, generically strongly minimal,
almost faithful and stationary family of plane curves, so that E is contained, up to finitely
many points, in a D-generic member of L (such a family always exists). The family L
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extends F and by Lemma 3.16(2) is generically very ample. We need to show that so
is F .

Since F is k-dimensional and almost faithful, for every D-generic p 2 G2 we have
RM.F .p// D k � 1. It is thus sufficient to prove that for p; q, each D-generic in G2, we
have RM.F .p/ \ F .q// < k � 1.

We write L1 D ¹Ct W t 2 T º and L2 D ¹Dr W r 2 Rº. By our assumption on E,
it is a strongly minimal subset of Ct ı Dr for some .t; r/ D-generic in T � R. That
is, RM.t; r=;/ D 4. It follows that RM.t; r=ŒE�/ D 4 � k and thus for every D-generic
.t 0; r 0/2 T �R there exists a strongly minimalE 0�� Ct 0 ıDr 0 in F with RM.t 0; r 0=ŒE 0�/
D 4 � k. Here �� means “contained up to finitely many points”.

Now let p; q be D-generic in G2 and assume towards a contradiction that
RM.F .p/ \ F .q// D k � 1. Take E 0 D-generic in F .p/ \ F .q/ over p; q. Consider
the set

P D ¹.t1; r1/ 2 T �R W E
0
�
� Ct1 ıDr1º:

Since RM.t 0; r 0=ŒE 0�/ D 4 � k and .t 0; r 0/ 2 P , we have RM.P / � 4 � k. Fix .t0; r0/
D-generic in P over ŒE 0�, p and q. We have

RM.t0; r0; ŒE 0�=p;q/DRM.t0; r0=ŒE 0�;p;q/CRM.ŒE 0�=p;q/� .4� k/C .k � 1/D 3:

Finally, since ŒE 0� 2 aclD.t0; r0/, we have RM.t0; r0=p; q/ � 3 and in addition
.t0; r0/ 2 .L1 ıL2/.p/\ .L1 ıL2/.q/ (because E 0 � Ct0 ıDr0 ). However, by Lemma
3.16(1, 2) we have RM.L1 ı L2/.p/ \ .L1 ı L2/.q// < 3, a contradiction. Thus F is
indeed generically very ample.

Under our standing assumptions at the end of Sections 3.1 and 3.3, we can finally
deduce the last result of this section.

Proposition 3.21. There exists a D-definable almost faithful, stationary family of gener-
ically strongly minimal plane curves, F D ¹Ct W t 2 T º, which is generically very ample,
and RM.T / � 3.

Proof. Let L be an almost faithful family of rank 2 as in Proposition 3.14 and consider
the family L ıL. Let C 2 L ıL be D-generic. By Lemma 3.18, there exists a strongly
minimal E � C with RM.ŒE�/ � 2. Either RM.ŒE�/ D 2 and by Lemma 3.20(1) there
is an infinite field interpretable in D , in which case a family as required exists (take the
family of graphs of polynomials of degree d > 1 overK); or RM.ŒE�/ > 2, in which case
Lemma 3.20(2) gives a D-definable family of curves as required.

From now on, until the end of the paper, we fix a sufficiently saturated o-minimal
expansion of a real closed field M D hRI C; �; <; : : :i, and a 2-dimensional group G D
hGI ˚i definable in M. We also fix a strongly minimal non-locally-modular structure
D D hGI ˚; : : : i definable in M. As discussed in Section 2.2, we include the index D

when referring to definability, genericity etc. in the structure D , and omit the index when
referring to M. We also assume the existence of a D-definable, very ample stationary
family of plane curves L, as noted after Proposition 3.14. In Sections 4–6, we denote ˚
byC, for simplicity.
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4. Frontiers of plane curves

4.1. Strategy

Our goal is to show (Theorem 4.9) that if S � G2 is a plane curve, then its frontier fr.S/
is finite and in fact contained in aclD.ŒS�/. The geometric idea originates in [26] and
it is implemented in Lemma 4.7 below, as follows. We consider the family L from the
assumption following Proposition 3.14. We also fix b 2 fr.S/ and consider a curve lq 2L

going through b with q generic over ŒS�. If lq meets S transversely at every point of
intersection and b is sufficiently generic in G2, then by moving lq to an appropriate lq0
close to lq , the curve lq0 will intersect S near all points of lq \ S , and in addition at a new
point near b. Since b itself was not in S , it follows that a generic lq through b intersects S
at fewer points than a generic curve in L. Thus b is D-algebraic over ŒS� and in particular
fr.S/ is finite.

While this strategy works well when the curves in L are complex lines in C2, the
problem becomes more difficult when they are arbitrary plane curves and b is not neces-
sarily generic in G2. To get around this problem, the idea in [5] was to replace S by its
image under composition with a “generic enough” curve from a new “large” family L0

(Proposition 3.21). We carry out this replacement in Lemma 4.8 below. An additional
complication of this strategy in the current setting is that instead of the functional lan-
guage in [5] we need to work with arbitrary curves, and control their composition.

4.2. Two technical lemmas about 2-dimensional sets in G2

The following lemmas will be used in what follows.

Lemma 4.1. Assume that ¹Ye W e 2 Eº is a definable family of 2-dimensional subsets
of G2 with dimE D k � 2. Assume that for all e 2 E there are at most finitely many
e0 2 E such that jYe \ Ye0 j D 1. Then dim

S
e2E Ye D 4.

Proof. The set
¹.e; s/ W e 2 E; s 2 Yeº

has dimension k C 2. Therefore, if the union of the Ye had dimension smaller than 4,
then for a generic s in this union, the dimension of E.s/ D ¹e 2 E W s 2 Yeº is at least
k � 1 � 1, and in particular, is infinite. Hence, there are e1; e2 2 E.s/, independent and
generic over s. Therefore, dim.e1; e2=s/ D 2k � 2 and hence

dim.e1; e2; s/ D 2k � 2C 3 D 2k C 1:

But this is impossible since dim.e1; e2=;/ � 2k and, by our assumption on the family, the
set Ye1

\ Ye2
is finite, so s 2 acl.e1; e2/.

Definition 4.2. We say that two 2-dimensional sets C1 and C2 intersect transversely at
p 2 C1 \ C2 if C1 and C2 are both smooth at p, and their tangent spaces at p generate
the full tangent space of G2 at p, namely TpC1 C TpC2 D TpG2.
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Lemma 4.3. Let LD¹lq W q 2Qº be a ;-definable family of 2-dimensional subsets ofG2,
and S � G2 a ;-definable 2-dimensional set. Let q be generic in Q over ; and assume
that lq and S intersect transversely at s. Then for every neighborhood U � G2 of s, there
is a neighborhood V � Q of q such that for every q0 2 V , we have lq0 \ S \ U ¤ ;.

Proof. Without loss of generality, U is definable over ; and lq \ U is smooth (we can
shrink it so that q is generic in Q over the parameters defining it). Reducing U further,
if needed, we may – by cell decomposition, and the assumption that lq is smooth at s –
write lq \ U as the zero set of a definable C 1-map Fq W U ! R2, and similarly write S
as the zero set of a C 1-map G W U ! R2. The transverse intersection of lq and S implies
that the joint map .Fq; G/ W U ! R4 is a diffeomorphism at s, so in particular there is
U0 � U such that .Fq;G/ is a diffeomorphism on U0 and N0 2 R4 is in its open image. We
may choose U0 so q is still generic over the parameters defining U0. It follows that there
is a neighborhood V � Q of q such that for every q0 2 V , lq0 \ U D F �1q0 .0/ for some
definable Fq0 W U0!R2, and the map .Fq0 ;G/ is still a diffeomorphism on U0 � U , with
N0 in its image. But now, if .Fq0 ; G/.s0/ D N0, then s0 2 U0 \ lq0 \ S .

4.3. Bad points

Recall that L D ¹lq W q 2Qº is a faithful and generically very ample D-definable family
of strongly minimal plane curves, with RM.Q/D 2. Notice that for b 2G2 generic, the set
Q.b/D¹q 2Q W b 2 lqº has Morley rank 1. As in Section 3, we let L.b/D¹lq W q 2Q.b/º.

Definition 4.4. Let U � G2 be an open set and b 2 G2. We say that L.b/ fibers U if
for every s 2 U there exists a unique q 2 Q.b/ such that s 2 lq , the set Q.b/ is smooth
at q and furthermore the function s 7! q W U ! Q.b/ is a submersion at s (that is, the
differential map between the tangent spaces is surjective).

Definition 4.5. For b 2 G2, we say that a point s D .s1; s2/ 2 G2 is b-good if:
(1) There exists an open neighborhood U � G2 of s such that the family L.b/ fibers U .
(2) For all q 2 Q.b/ such that s 2 lq , the curve lq is smooth at s.
Otherwise, we say that s is a b-bad. We denote by Bad.b/ the set of all b-bad points.

Clearly, the set Bad.b/ is definable over b.

Lemma 4.6. For every b 2 G2, the set Bad.b/ has dimension at most 3.

Proof. Note that since L.b/ is faithful, it follows that RM.G2 n
S
q2Q.b/ lq/ � 1.

By cell decomposition, for a fixed generic q 2Q, the set of points s 2 lq failing (2) is
at most 1-dimensional. So the set of all points s failing (2) is at most 3-dimensional.

We now fix s 2 G2 generic over b, and show that it satisfies (1). The set of singular
points q on Q.b/ has dimension 1, and for every such q, lq has dimension 2. Thus, the
union of all such lq has dimension at most 3, and does not contain s. So if s 2 lq for some
q 2 Q.b/, then q is a smooth point on Q.b/.

Since s is generic in G2, there are at most finitely many curves in L.b/ containing s.
Hence, there is an open neighborhood W � Q.b/ such that W \Q.b/ \Q.s/ D ¹qº.
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We may choose W to be definable over generic parameters. Hence the first order prop-
erty over b, “'.s0/ WD jW \Q.s0/ \Q.b/j D 1”, must hold for all s0 in a neighborhood
U � G2 of s. Let g W U ! Q.b/ be the map sending s0 to the unique q0 2 W \Q.b/
with s0 2 lq0 . Note that for every q0 2 g.U /, g�1.q0/ D lq0 \ U . Since the family L.b/

is faithful, we have dimg.U / D 2 D dimQ.b/, and by the genericity of s in dom.g/, the
function g is a submersion at s, thus s is a b-good point.

4.4. Finiteness of the frontier

The heart of the geometric argument is contained in the following lemma showing that in
a generic enough setting the frontier of S is indeed contained in aclD.ŒS�/.

Lemma 4.7. Let F D ¹St W t 2 T º be a D-definable stationary almost faithful family
of plane curves with RM.T / � 3. Assume that b 2 G2 with dim.b=;/ D 4, and t0 2 T
generic over ;. If b 2 fr.St0/, then b 2 aclD.t0/.

Proof. We may assume first that St0 is strongly minimal. Indeed, St0 is a finite union
of strongly minimal sets, each definable over aclD.t0/, and b is in the frontier of one
of them, so we may replace St0 by this strongly minimal set, and modify the family F

accordingly.
Denote S D St0 and B D Bad.b/.

Claim 1. dim.S \ B/ � 1.

Proof of Claim 1. Since dim.t0=;/ � 6 and dim.b=;/ � 4, we obtain dim.t0=b/ � 2.
Assume towards a contradiction that dim.S \ B/ D 2. Let

I D ¹t 2 T W dim.St \ B/ D 2º:

Notice that I is defined over b and t0 2 I , so dim I � 2. Because F is almost faith-
ful, ¹St \ B W t 2 I º is a definable family of 2-dimensional subsets of G2 satisfying the
assumptions of Lemma 4.1. It follows that dim

S
t2T .St \B/D 4. But

S
.St \B/� B ,

contradicting Lemma 4.6.

Claim 2. For every q0 2 Q, S \ lq0 is finite.

Proof of Claim 2. If not, then by strong minimality of S , we would have S � lq0 for some
q0 2 Q, implying – since S D St0 and F is almost faithful – that t0 2 acl.q0/. However,
we have assumed that dim.t0=;/ � 6, while dim.q0=;/ � 4, a contradiction.

We fix an element q 2 Q.b/ generic over t0 and b. Since dim.b=;/ D 4, q is generic
in Q over ;, hence we have dim.q=;/ D 4.

Since L is very ample, no two points inG2 belong to infinitely many curves in L, and
hence each s 2 S \ lq is interalgebraic with q over t0 and b. Thus such an s is generic
in S over t0 and b. So in particular S is smooth at s. It is not hard to see now (using the
fact that F is almost faithful) that dim.s=b/ D 4.

For the rest of this proof, we fix an element s 2 S \ lq .
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Claim 3. The curve lq is smooth at s, and S and lq intersect transversely at s.

Proof of Claim 3. Because dim.s=b/ D 4, it follows from Claim 1 that s is b-good, so in
particular lq is smooth at s and there exist neighborhoods U � G2 of s and W � Q.b/
of q, and a D-definable parameter choice function gb W U ! W such that g.s0/ is the
unique q0 2 W with s0 2 lq \ U . Restricting U;W if needed we may assume that lq \ U
(which equals g�1

b
.q/) is a C 1-submanifold of G2. Thus, the tangent space to lq at s,

Ts.lq/, equals ker.ds.gb//, where ds.gb/ is the differential of gb at s viewed as a linear
map between the tangent spaces (see Definition 4.4). If the intersection is not transverse,
then dim.Ts.lq/\ Ts.S// � 1. It follows that dim.ds.gb/.Ts.S/// � 1, and by genericity
of s in S over t0; b, the same is true of any s0 2 S in some open neighborhood U 0 3 s.
Thus, the image of gb.S \ U/ is a 1-dimensional manifold (or finite), and it follows that
for some q0 in this image, lq0 \ S is infinite. This contradicts Claim 2.

Claim 4. For every neighborhood V �Q of q, there exists a neighborhood U � G2 of b
such that for every b0 2 U there are infinitely many q0 2 V with b0 2 lq0 .

Proof of Claim 4. By assumptions, b 2 lq is generic in G2 over ;. Thus, by shrinking V
if needed, we may assume b is still generic in G2 over the parameters defining V . Since
Q.b/ \ V is infinite, the first order statement

'.b0/ WD .91q0 2 V /.b0 2 lq0/

holds for b and therefore there is a neighborhood U 3 b for which it holds.

Let N be the number of intersection points of a curve from L, generic over t0, with S
(recall that MD.L/ D 1, so L has a unique generic type).

Claim 5. The curve lq intersects S in less than N points.

Proof of Claim 5. We write lq \ S D ¹s1; : : : ; snº (note that b is not among them). We
first fix some open disjoint neighborhoods U1; : : : ; Un � G2, of s1; : : : ; sn, respectively.
By Claim 3 and Lemma 4.3, applied to each of the si , there is a neighborhood V � Q
of q such that for every q0 2 V , the curve lq0 intersects S at least n times – at least once
in each Ui , i D 1; : : : ; n. Next, we apply Claim 4 to V and find U0 3 b, which we may
assume is disjoint from all the Ui , as in Claim 4.

Because b is in cl.S/ n S , we can find in S \ U0 some s0, an element D-generic
over t0, and by Claim 4, we can find in V some q0 2 Q.s0/ generic over s0 and t0. But
now lq0 intersects S at least nC 1 times: at s0 and in each of U1; : : : ; Un. Since S \ lq0 is
finite, the curve lq0 is generic in L over t0. So we have N � nC 1 > n D jlq \ S j.

Finally, let us see that b 2 aclD.t0/. The set Y of all q1 2 Q such that jlq1
\ S j < N

is D-definable over t0 and has Morley rank at most 1. Since q is generic in Q.b/ over t0
and b, it follows from Claim 5 that RM.Q.b/ \ Y / D 1: Also, there are at most finitely
many b’s such that RM.Q.b/ \ Y / D 1, for otherwise there would be b1 ¤ b2 such that
Q.b1/ \Q.b2/ is infinite, contradicting the very ampleness of L. Thus b 2 aclD.t0/.
This ends the proof of Lemma 4.7.
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In our next step we show that the assumptions of Lemma 4.7 can be met for a D-
definable set S with RM.S/ D 1, after replacing S by its composition with a generic
enough curve in a family L0 as in Proposition 3.21.

Lemma 4.8. Let S � G2 be a D-definable strongly minimal set which is not a straight
line, and assume that c is generic in G2 over ; and belongs to fr.S/. Then there are:

(1) An almost faithful stationary family of plane curves � 0 D ¹S 0t W t 2 T º, D-definable
over ŒS�, with RM.T / � 3.

(2) t0 generic in T over c [ aclD.ŒS�/.
(3) b which is D-interalgebraic with c over t0 [ ŒS�.

(4) b 2 fr.S 0t0/ with dim.b=;/ D 4.

Proof. Let L0 D ¹Ct W t 2 T º be a D-definable family of plane curves as in Proposition
3.21. Recall that, for every .a; b/ 2 G2,

T .a; b/ WD ¹t 2 T W .a; b/ 2 Ctº:

If we write c D .c1; c2/, then by assumption, c2 is generic in G over ;. Fix b2 2

G generic over c2 [ aclD.ŒS�/ (abusing notation, in the present proof we will write
ŒS� for aclD.ŒS�/), and let t0 be generic in T .c2; b2/ over c1; c2; b2 and ŒS�. Note
that .c2; b2/ 2 G2 is generic and Ct0 is generic through the point .c2; b2/. So
dim.t0c2b2/ D dim T C 2, whereas dim.t0=c2b2/ D dim T � 2. Since b2 2 aclD.t0c2/,
we find that dim.t0=c2/ D dimT . Because t0 was chosen generic over c1; ŒS� too, we get
dim.t0=c1c2ŒS�/ D dimT .

We set b WD .c1; b2/. Since .c2; b2/ 2 Ct0 and RM.Ct0/ D 1, b2 and c2 are interal-
gebraic in D over t0 and ŒS�, and hence so are .c1; b2/ and .c1; c2/.

Claim. b 2 fr.Ct0 ı S/.

Proof of Claim. Since c2 is generic in G over ;, .c2; b2/ is generic in G2 over ; and
therefore, by our choice of t0, the point .c2; b2/ is also generic in Ct0 over t0. Hence, the
curve Ct0 is a homeomorphism at .c2; b2/. Denote this local map by f0. It follows that
the map .x; y/ 7! .x; f0.y// is a local homeomorphism on a neighborhoodW of .c1; c2/,
sending .c1; c2/ to .c1; b2/. It is easy to verify that it sends every point in S \ W to a
point in Ct0 ı S , and therefore sends every point in cl.S/ \W to a point in cl.Ct0 ı S/.
We conclude that .c1; b2/ 2 cl.Ct0 ı S/.

It remains to see that .c1; b2/ 62 Ct0 ı S . Let

Sc1
D ¹y 2 G W .c1; y/ 2 Sº D ¹d1; : : : ; dkº:

Note that since .c1; c2/ … S , we have c2 … Sc1
. Also, .c1; b2/ 2 Ct0 ı S if and only if

there is some i D 1; : : : ; k for which .di ; b2/ 2 Ct0 .
Since L0 is very ample, for every i D 1; : : : ; k, dim.T .c2; b2/ \ T .di ; b2// <

dim T . But t0 is generic in T .c2; b2/ over ¹c1; c2; d1; : : : ; dk ; b2; ŒS�º and therefore
t0 … T .c2; b2/ \ T .di ; b2/. That is, none of the points .di ; b2/ are in Ct0 . It follows
that .c1; b2/ … Ct0 ı S , so we may conclude that b D .c1; b2/ 2 fr.Ct0 ı S/.
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Since S is not a straight line, we have RM.Ct0 ı S/D 1, and hence there is a strongly
minimal C �Ct0 ı S such that b 2 fr.C /. By Lemma 3.18, RMŒC �DRMŒCt0 �DRM.T /
and is therefore contained in an almost faithful family � 0 of the same rank. This gives
condition (1) of the lemma; (2) is by the choice of t0; (3) is the line before the above
claim, and (4) is what we have just shown. So the lemma is proved.

We can now conclude the main result of this section.

Theorem 4.9. Let S �G2 be a D-definable set with RM.S/D 1. Then fr.S/� aclD.ŒS�/
and hence fr.S/ is finite. In particular, S is locally closed, namely every p 2 S has a
neighborhood U 3 p in G2 such that S \ U is closed in U .

Proof. Since RM.S/ D 1, S can be written as
Sk
iD1 Si for some strongly minimal sets

D-definable over aclD.ŒS�/. Since fr.
Sk
iD1 Si / �

Sk
iD1 fr.Si /, it suffices to prove the

theorem for S strongly minimal. Moreover, if S is a straight line, then clearly its frontier
is contained in finitely many points, which are in aclD.ŒS�/. So we may assume that S is
strongly minimal not coinciding with any straight line.

Fix c 2 fr.S/. Replacing S by S C p for p generic in G2 over c and ŒS�, we may
assume that dim.c=;/ D 4. We can now apply Lemma 4.8 and obtain t0, S 0t0 and b in
fr.S 0t0/ as in the lemma. Working first in a richer language where ŒS� is ;-definable, we
may apply Lemma 4.7, and then conclude that b 2 aclD.t0; ŒS�/.

By Lemma 4.8, c is interalgebraic with b over t0 and ŒS�, hence c 2 aclD.t0; ŒS�/.
Since dim.t0=c; ŒS�/ D dim.t0=c/, we find that c 2 aclD.ŒS�/.

For p 2 S , let U 3 p be any neighborhood such that U \ fr.S/ D ;, and so S \ U is
closed in U .

4.5. Two structural corollaries on plane curves

The first corollary will be used in the next subsection.

Corollary 4.10. Let L be a family of plane curves. Assume L is D-definable over ;.
Then there exists a family of plane curves L0, also D-definable over ;, such that:

(1) Every curve in L0 is closed.

(2) For every curve Xs 2 L, there exists a curve X 0s , defined over the same parameters,
such that Xs � X 0s .

(3) For every X 0s 2 L0, there exists Xs 2 L, defined over the same parameters, such that
X 0s � Xs .

Proof. Let �.x; y/ define L and  .y/ WD .91x/ �.x; y/. We prove the corollary by
induction on .RM. /;MD. //. For RM. / D 0, the corollary is Theorem 4.9.

In the general case, fix s ˆ  .y/ generic. By definition, ŒXs� 2 dclD.s/. By The-
orem 4.9, there is a finite set Rs , D-definable over ŒXs�, so a fortiori also over s, such that
fr.Xs/ � Rs . Let '.x; s/ define Rs . By compactness, there is a formula �.y/ 2 tp.s/ such
that for all r ˆ � the formula �.x; r/ is algebraic and, if not empty, its set of realisations
contains fr.Xr /. So, for all r ˆ � , the formula '.x; r/ _ �.x; r/ defines a closed plane
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curve �-equivalent to Xr . Because �.y/ 2 tp.s/ and Xs was generic in L, we see that
 .y/ ^ :�.y/ has smaller .RM;MD/ (in the lexicographic order) than  .y/. So we are
done by the induction hypothesis.

The second corollary below will be used several times in the rest of the paper.

Definition 4.11. Let S �G2 and aD .a1; a2/ 2 S . We say that S is injective at a over a1
if there is an open neighborhood U1 � U2 � G �G of a such that for every y 2 U2 there
exists at most one x 2 U1 such that .x; y/ 2 S . Namely, S \ .U1 � U2/ is the graph of
a function from a subset of U2 into U1. We say that a is an injective point of S if S is
injective at a over a1 and Sop is injective at .a2; a1/ over a2. Otherwise, we say that a is
a non-injective point of S .

Let S �G2 and a1 2G. We say that S is injective over a1 if for every aD .a1;a2/2S ,
the set S is injective at a over a1.

Note that S is injective at every isolated point. Also, we cannot yet rule out the pos-
sibility that a is an injective point of S belonging to a 1-dimensional component of S .

Corollary 4.12. Let S � G2 be a D-definable strongly minimal set. If S is not �-equi-
valent to any fiber G � ¹aº, then the set of x 2 G such that S is non-injective over x is
finite and contained in aclD.ŒS�/. If S is not a straight line, then the set of non-injective
points of S is finite and contained in aclD.ŒS�/.

Proof. By Theorem 4.9, we may assume that S is closed. Let

S1 D ¹.x1; x2/ 2 G
2
W x1 ¤ x2 & 9y ..x1; y/ 2 S ^ .x2; y/ 2 S/º D .Sop

ı S/ n�:

The set S1 is D-definable over the same parameters as S . Since S is not �-equivalent
to any fiber G � ¹aº, we have RM.S1/ � 1. Note that .x; x/ … fr.S1/ if and only if
there exists an open U 3 x such that for all y 2 G there exists at most one x0 2 U such
that .x0; y/ 2 S . It follows that .x; x/ … fr.S1/ if and only if S is injective over x. By
Theorem 4.9, fr.S1/� aclD.ŒS�/ thus the set of x 2 G such that S is non-injective over x
is finite and contained in aclD.ŒS�/.

The second clause follows immediately by applying the first one also to Sop.

4.6. On D-functions

Every plane curve S � G2 gives rise to a definable partial function from G into G
around almost every point in S (except when S is contained in finitely many straight lines
¹aº �G). The goal of this subsection is to establish the basic theory of such functions.

Definition 4.13. Let U � G be a definable open set and f W U ! G be a definable
continuous function.
(1) We say that f is a D-function if there exists a plane curve S � G2 such that �f � S .

We say in this case that S represents f .
(2) We say that f is D-represented over A if there exists S representing f which is

D-definable over A.
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(3) We say that a plane curve S represents the germ of f at x0 2 U if there exists an
open neighborhood W 3 x0 with W � dom.f / such that �f jW � S .

Note that our definition does not require that S is, locally at .x0; f .x0//, the graph
of a function, but only that it contains the graph of f . Indeed, at least for some of the
D-functions we need to consider, we do not know whether this stronger property can be
achieved as well.

Lemma 4.14. LetU �G be a definably connected open set and f WU !G a continuous
D-function, D-represented over A. Then f can be D-represented over aclD.A/ by a
strongly minimal set.

Proof. Assume that f W U ! G is D-represented over A by S . We let S D S1 [ � � � [ Sr
be a decomposition of S into strongly minimal sets, definable in D over acl.A/. By
Theorem 4.9, we may assume, by adding finitely many points in aclD.A/, that each
Si is closed in G2, but now the intersection Si \ Sj for i ¤ j may be non-empty and
finite. We claim that one of the Si must contain �f . Indeed, for each i D 1; : : : ; r , let
Ci D �.Si \ �f / � U , where � W G2 ! G is the projection on the first coordinate. By
the continuity of f , these are definable, relatively closed subsets of U , whose pairwise
intersection is at most finite.

Let U 0 WD U n
S
i¤j .Ci \Cj /. Because U is open and definably connected, so is U 0.

For i D 1; : : : ; r let C 0i D Ci \ U
0. The C 0i ’s are pairwise disjoint and still relatively

closed in U 0. Hence each C 0i is clopen (having a closed complement) in U 0, so for some j ,
C 0j D U

0. Because Cj is closed in U it follows that Cj D U .

Proposition 4.15. Let ¹St W t 2 T º be a family of plane curves. Assume that this family
is D-definable over A, and that for every t 2 T , .0; 0/ 2 St . Then there exists a family
F D ¹fs W s 2 T0º, definable (in M) over A, of functions in F (defined in Section 1.3),
such that:

(1) For every t 2 T , if St represents the germ at 0 of a D-function f 2 F, then there
exists s 2 T0 and an open W 3 0 such that f jW D fsjW .

(2) For every s 2 T0 there exists t 2 T such that St represents the germ at 0 of fs .

Proof. By Corollary 4.10, there exists a D-definable family L0 of closed plane curves
such that each curve in L is�-equivalent to one in L0 and vice versa. Note that whenever
St represents the germ of a D-function ft at 0, if S 0t 2 L0 is �-equivalent to St , then
it also represents the germ of f at 0. Thus, we may replace L with L0 and assume that
every curve St is closed.

By fixing a coordinate system near 0, we can identify some neighborhood W 3 0
in G with an open subset of R2. For each r > 0, we consider the disc Br centered at 0,
and let S rt D St \ .Br �W /. By o-minimality, there exists a uniform cell decomposition
of the sets ¹S rt W t 2 T; r > 0º. In particular, there is a bound k 2 N such that every
such decomposition contains at most k cells. By allowing cells to be empty, we obtain a
definable collection of cells ¹C rt;i W t 2 T; r > 0; i D 1; : : : ; kº such that for every t 2 T
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and r > 0,

S rt D

k[
iD1

C rt;i :

Recall that the notion of a decomposition implies that for C rt;i ; C
r
t;j , if � W

G2 ! G is the projection onto the first coordinate, then either �.C rt;i / D �.C rj;j / or
�.C rt;i / \ �.C

r
j;j / D ;.

Claim. For every t 2 T , and a D-function f 2 F, the following are equivalent:

(1) St represents the germ of f at 0.

(2) There exist r > 0 and A � ¹1; : : : ; kº such that

�f jBr
D

[
i2A

C rt;i :

Proof of Claim. .1/).2/. We assume that St \ .Br � G/ contains the graph of f jBr
,

for all r > 0. To simplify notation we omit r and consider the cell decomposition St D
Ct;1 [ � � � [ Ct;k .

We let A � ¹1; : : : ; kº be all i such that Ci \ �f ¤ ;. We fix a cell C D Ci with
i 2 A and claim that C � �f . Without loss of generality dimC > 0, and since C � �f ,
the projection � W C ! G is injective. Since C is definably connected, it is sufficient to
prove that C \ �f is clopen inside C . Because C is locally closed and f is continuous,
it follows that C \ �f is closed in C , so we need to prove that it is also open in C .

Fix some x0 2 �.C \ �f /. Since �f � St , there exists a cell C 0 in the decompos-
ition of St containing �f \ Œ.U \ �.C // � G� for some open set U 3 x0. But then
�.C / \ �.C 0/ ¤ ; and therefore �.C / D �.C 0/. By the continuity of f , it follows that
.x0; f .x0// 2 C

0, forcing C 0 D C . It follows that C \ �f is clopen in C , and therefore
C � �f .

We have shown that Ci � �f for each i 2 A, and hence �f D
S
i2A Ci :

.2/).1/. This is immediate, since �f jBr
� St .

We now return to the proof of Proposition 4.15 and consider the uniform decomposi-
tion

S rt D

k[
iD1

C rt;i :

For each A � ¹1; : : : ; kº, we consider

Grt;A D
[
i2A

C rt;i :

The family

F D ¹Grt;A W G
r
t;A is the graph of a continuous function on Brº

is definable in M, as t varies in T , A varies among subsets of ¹1; : : : ; kº and r > 0. By
the above claim, this family satisfies our requirements.
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Remark 4.16. (1) Note that in the above family F of D-functions, each germ of a func-
tion appears infinitely often since we allow arbitrarily small r . One can divide the
family, definably in M, by the equivalence of germs at 0 and then, using definable
choice in o-minimal structures, obtain a unique D-function in the family represent-
ing each germ. Thus, if f 2 F is represented by the plane curve St , then there exists
g 2 F which has the same germ as f at 0 and is definable in M over t .

(2) It follows from the above that if St represents f 2 F, then J0.f / is in dcl.t/ (recall
from Section 1.3 that J0f is the Jacobian of f at 0 with respect to some fixed differ-
ential structure on G).

Notation. For a D-function f , we reserve the notation Sf for a strongly minimal set
representing f . Note that Sf is unique only up to �-equivalence.

We conclude this section with an open mapping theorem for D-functions.

Theorem 4.17. Let U � G be an open definably connected set and f W U ! G a con-
tinuous non-constant D-function. Then f is an open map.

Proof. By Lemma 4.14, there exists a D-definable strongly minimal Sf � G2 represent-
ing f . Because f is not constant, the projection of Sf onto both coordinates is finite-
to-one, so it is not a straight line. By Corollary 4.12, Sf is injective at co-finitely many
points, and therefore so is also f . By the o-minimal version of Brouwer’s invariance of
domain [14], it follows that f is open at every injective point of its domain. So f is open
after possibly removing finitely many points from its domain. It is easy to check (see, for
example, the proof of [5, Proposition 4.7] for details) that a function which is continuous
on a disc and open on the punctured disc is open on the whole disc. So f is open.

5. Poles of plane curves

Recall that we assume that G is a definable closed subset of some Rn, equipped with the
subspace topology, making it a topological group.

The goal of this section is to prove that just like affine algebraic curves in C2, every
plane curve has at most finitely many poles. We may assume that 0G D 0 2Rn. For x 2G
and � > 0 in R, we write

B.xI �/ D ¹g 2 G W jx � gj < �º;

and B� for B.0I �/. For A � G and � > 0, we let

B.AI �/ D ¹y 2 G W 9x 2 A y 2 B.xI �/º:

In this section, we will also consider definable curves, that is, definable maps 
 W
.0; 1/ ! U � Rn, which we will denote, for simplicity, by 
.t/ 2 U . We recall from
[38, §6.1] that if x 2 cl.X/ for some definable X � Rn, then by curve selection for M,
there is a definable path 
.t/ 2 X with limt!0 
.t/ D x.
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Definition 5.1. Let S �G2 be a definable set. We call a 2G a pole of S if for every open
U � Rn containing a, the set .U �G/\ S is an unbounded subset of Rn. We denote the
set of poles of S by Spol.

Given S � G2 and U � G, we define

S.U / WD ¹y 2 G W 9x 2 U .x; y/ 2 Sº � G:

Note that then a 2 Spol if and only if for every open U �G containing a, S.U / is unboun-
ded. Another remark is that if S is G-affine, then Spol D ;. Indeed, if S is a subgroup
ofG2 or its coset, then its projection onto the first coordinate is a finite-to-one topological
covering map, and hence S has no poles.

The main result of this section is the following.

Theorem 5.2. If S � G2 is a D-definable set and RM.S/ D 1, then Spol is finite.

Notice that if G is a definably compact group (for example, a complex elliptic curve),
then G is a closed and bounded subset of Rn, and hence Spol D ;. So the theorem is of
interest for those G which are not definably compact.

Let us first introduce the key notion of “approximated points” and then discuss the
strategy of our proof. Recall that for S �G2 and x 2G, we let Sx D ¹y 2G W .x;y/ 2 Sº.

Definition 5.3. Let S � G2, b; x1; x2 2 G, and I � G. We say that:
(1) � b is S -attained at .x1; x2/ if b 2 Sx1

� Sx2
.

� b is S -attained in I if it is S -attained at some .x1; x2/ 2 I .
(2) � b is S -attained near .x1; x2/ if for every � > 0, b is S -attained in B..x1; x2/I �/.
� b is S -attained near I if for every � > 0, b is S -attained in B.I I �/.

(3) � b is S -approximated near .x1; x2/ if for every � > 0, some b0 2 B.bI �/ is S -
attained at .x1; x2/.
� b is S -approximated near I if for every � > 0, there are x1; x2 2 B.I I �/ such that
B.bI �/ \ .Sx1

� Sx2
/ ¤ ;. The set of such points b is denoted by A.S; I /.

We omit S from the above notation whenever it is clear from the context.

The following claim is immediate from the definitions.

Claim 5.4. For any S � G2 and I � G,

b attained at I H) b is attained near I H) b is approximated near I :

If, in addition, S and I are closed and bounded, then the above notions are equivalent
and A.S; I / D S.I / � S.I /.

Here is a simple example.

Example 5.5. Let G D hC;Ci and consider the complex algebraic curve

S D ¹.z; w/ 2 C2
W zw D 1º:
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The following are easy to verify: Spol D ¹0º, every b 2 C is attained near 0, and thus
A.S; ¹0º/ D C.

The strategy of the proof of Theorem 5.2 is as follows. Assume towards a contradic-
tion that the theorem fails. It is easy to see that we may assume that S is closed, strongly
minimal and not G-affine. Now, for any such D-definable set S and infinite definable
I �G, we first find an infinite definable set I0� I and an open bounded ballB �Rn such
that the set A.S; I0/ n B is at most 1-dimensional (Proposition 5.6(1)). Then, using fur-
ther the fact that Spol is infinite, we construct (Proposition 5.10) another D-definable set OS ,
again closed, strongly minimal and not G-affine, and an infinite definable OI � G, such
that for every infinite definable set T � OI and open bounded ball B , the set A. OS; T / n B
is 2-dimensional. This gives the desired contradiction.

5.1. An upper bound on the dimension of the set of approximated points

The goal of this subsection is to prove the following proposition.

Proposition 5.6. Assume that S �G2 is a D-definable strongly minimal closed set which
is not G-affine, and let I � G be an infinite definable set. Then there is a definable
1-dimensional I0 � I such that:

(1) There exists a boundedB �G such that the setA.S;I0/ nB is at most 1-dimensional.

(2) For every definable open V 3 0 inG there exist � > 0 and a bounded ball B 0 3 0 such
that for all x 2 G n B 0,

x C V ª S.B.I0; �//:

The rest of this subsection is devoted to the proof of Proposition 5.6. Throughout,
we fix S as in its assumptions. Since dim S D 2RM.S/ D 2, it follows easily from cell
decomposition for M that dimSpol � 1. Absorbing ŒS� into the language, we assume that
S is D-definable over ;.

We begin with an observation regarding the notions of Definition 5.3.

Lemma 5.7. Let I � G be a definable bounded set over ;.

(1) If b 2 G is attained near I , then there are x1; x2 2 cl.I / such that b is attained near
.x1; x2/.

(2) If b 2 G is generic over ; and b is approximated near I , then b is attained near I .

Proof. (1) By assumption, and by curve selection in M, there are definable curves
x1.�/, x2.�/, y1.�/, y2.�/ 2 G such that for every �, we have x1.�/; x2.�/ 2 B.I I �/,
.xi .�/; yi .�// 2 S , i D 1; 2, and b D y1.�/� y2.�/. Since I is bounded, the curves xi .�/
have limits x1; x2 2 cl.I /, so b is attained near .x1; x2/.

(2) Fix b generic in G over ;, and assume that it is approximated near I . It follows
from the definition that for every � > 0, the element b is in the closure of

Y� D ¹y2 � y1 W 9x1; x2 2 B.I I �/ .x1; y1/; .x2; y2/ 2 Sº:
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Notice that the collection of Y� forms a definable chain of definable sets decreasing
with �. We may now take � sufficiently small, so that b is still generic in G over �, and
therefore b is generic in cl.Y�/ over �. Hence, b … fr.Y�/, a set of dimension at most 1. It
follows that b 2 Y� for all sufficiently small �, and so b is attained near I .

The following technical claim about definable and D-definable sets will be used in
the subsequent lemma.

Claim 5.8. Let P � G2 �G be a D-definable set of Morley rank 1 whose projection on
the G2-coordinate is finite-to-one. Then for any definable sets I; J � G of dimension at
most 1,

dim.P \ .I � J �G// � 1:

Proof. Since the projection � W P ! G2 is finite-to-one,

dim.P \ .I � J �G// D dim.�.P \ .I � J �G/// � dim.I � J /;

so if one of I and J is finite, then dim�.P / � 1 and we are done.
Suppose now that dim I D dim J D 1. Since P is D-definable and infinite, the pro-

jection of P on one of the coordinates of G2 has infinite image. Let us assume it is the
projection on the first coordinate. Hence, since RM.P / D 1, for every D-generic a 2 G,
the set ¹.w;z/2G �G W .a;w;z/2P º is finite. Since I �G is infinite, every generic of I
is also D-generic inG. But then, for such an a 2 I the set ¹.w;z/ 2 J �G W .a;w;z/ 2P º
is finite. It follows that dim.P \ .I � J �G// D dim I D 1.

We proceed with a lemma towards the proof of Proposition 5.6.

Lemma 5.9. There exists a finite set F �G with F � aclD.;/ and a definable setX �G
with dimX � 1 such that for every b 2 G n X and for every .x1; x2/ 2 G2 n F 2, if b is
attained near .x1; x2/, then b is attained at .x1; x2/.

Proof. Consider the D-definable set

T D ¹.x1; x2; b/ 2 G
3
W b 2 Sx1

� Sx2
º:

Since every generic fiber Sx is finite, RM.T / D 2. Also, by fixing x1 and letting x2 vary,
it is easy to see that the projection of T on the last coordinate is infinite and hence for
every D-generic b 2 G the set

T b D ¹.x1; x2/ 2 G
2
W .x1; x2; b/ 2 T º

has Morley rank 1. Note that .x1; x2/ 2 T b if and only if b is attained at .x1; x2/, and
.x1; x2/ 2 cl.T b/ if and only if b is attained near .x1; x2/. We also note (although we will
not use this) that .x1; x2; b/ 2 cl.T / if and only if b is approximated near .x1; x2/.

Claim 1. For b 2 G and x1; x2 2 G, the following are equivalent:

(1) b is attained near .x1; x2/ but not attained at .x1; x2/.
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(2) .x1; x2/ 2 fr.T b/ and x1; x2 2 Spol.

(3) .x1; x2/ 2 fr.T b/:

Proof of Claim 1. .1/).2/. The fact .x1; x2/ 2 fr.T b/ is immediate from the notes just
above the claim. Since b is attained near .x1; x2/, by curve selection in M, we can find
definable curves .x1.t/; y1.t// 2 S and .x2.t/; y2.t// 2 S such that xi .t/! xi for i D
1; 2, and y1.t/� y2.t/ D b. Notice that y1.t/ is bounded if and only if y2.t/ is bounded,
in which case, since S is closed, their limit points y1; y2 satisfy .x1; y1/; .x2; y2/ 2 S and
y2 � y1 D b, so b is attained at .x1; x2/. Because we have assumed that this is not the
case, y1.t/ and y2.t/ are unbounded, hence x1; x2 are both in Spol.

The other implications are easy, thus ending the proof of Claim 1.

By Theorem 4.9, for each b 2 G, fr.T b/ � aclD.b/ (recall that ŒS� was absorbed into
the language). By compactness, we may therefore find a set P � G2 � G, D-definable
over ;, such that for every b 2 G the set P b is finite and contains fr.T b/. It follows that
RM.P /D 1. Note however that we do not claim that P b D fr.T b/ for every b 2G. Thus,
for example, we allow at this stage the possibility that the set of b for which T b is not
closed is 1-dimensional.

Now, by Claim 1, if b is attained near .x1; x2/ but not at .x1; x2/ then .x1; x2/ 2 P b .
Assume first that the image of P under the projection onto the G2-coordinates, call

it F1, is finite, and let F �G be a finite set, D-definable over aclD.;/, such that F1 �F 2.
We may take X D ; and complete the proof of the lemma in this case. Assume then that
F1 is infinite.

Let F0 � G2 be the set of all p 2 G2 such that Pp � G is infinite. This is a finite
set, D-definable over aclD.;/, and because we have assumed that F1 is infinite, the set
P � WD .G2 n F0/ � G still has Morley rank 1, and the projection map from P � onto the
G2-coordinate is finite-to-one.

Set
X D ¹b 2 G W fr.T b/ n F0 ¤ ;º;

a definable set in M.

Claim 2. dimX � 1.

Proof of Claim 2. Assume towards a contradiction that dim X D 2. For every b 2 X
there exists .x1; x2/ 2 fr.T b/ n F0. By Claim 1 and our choice of P , .x1; x2/ 2
.P �/b \ .Spol � Spol/, so since dimX D 2, it follows that

dim.P � \ .Spol � Spol �X// � 2:

This contradicts Claim 5.8.

By Claim 1, for every b 2 G and every .x1; x2/ 2 G2, if b is attained near .x1; x2/
but not at .x1; x2/, then .x1; x2/ 2 fr.T b/ � P b . Now, either .x1; x2/ 2 F0, or b 2 X .
Thus, we may take any finite set F � aclD.;/ with F0 � F 2 to complete the proof of
Lemma 5.9.
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We now fix a definable 1-dimensional set I � G. Fix also a finite set F � G as in
Lemma 5.9, and a definable 1-dimensional closed set I0 � I such that I0 \ F D ;.

Proof of Proposition 5.6(1). Because S \ .I0 � G) is a 1-dimensional subset of G � G,
we may shrink I0 further and assume that the set S \ .I0 � G/ is closed and bounded.
Thus, the set

B D ¹b 2 G W b is attained at I0º D S.I0/ � S.I0/

is a closed and bounded subset of G. By Lemma 5.9 and the choice of I0, there is a
definable X � G with dimX � 1 such that for every b 2 G n X , if b is attained near
.x1; x2/ 2 I

2
0 , then it is attained at .x1; x2/. Assume towards a contradiction that the set

A.S; I0/ n B has dimension 2. By Lemma 5.7(2), the set L of all b 2 G n B which are
attained near I0 has dimension 2, and therefore there is some b 2 L which is not in X .
By Lemma 5.7(1), b is attained near some .x1; x2/ 2 cl.I0/ D I0, and since b … X , it is
attained at .x1; x2/. Thus, b 2 S.I0/ � S.I0/ D B , a contradiction.

The rest of this subsection is devoted to the proof of Proposition 5.6(2). Fix an open
V � G containing 0. We may assume that V is bounded and symmetric, that is, �V D V .
Given r > 0, let Pr D cl.Br / \ G and Sr D fr.Br / \ G, where Br is defined at the
beginning of this section. Let B be as in Proposition 5.6(1).

Claim 1. There are r1 > r0 >0 sufficiently large such thatB �Pr0 �Pr1 and Sr0 CV �
Pr1 n B:

Proof of Claim 1. Since B C V is bounded, there exists r0 > 0 such that B � Pr0 and
B C V does not intersect Sr0 . Since V is symmetric, it follows that .Sr0 C V / \ B D ;.
Because Sr0 C V is bounded there exists r1 > r0 such that Sr0 C V � Pr1 . It follows that
Sr0 C V � Pr1 n B .

Fix such r0; r1. For � > 0 let, as in Lemma 5.7,

Y� D ¹y2 � y1 W 9x1; x2 2 B.I0I �/ .x1; y1/; .x2; y2/ 2 Sº:

Claim 2. There exists �0 > 0 such that no translate of V is contained in .Pr1 nB/\ Y�0
:

Proof of Claim 2. The family of Y� decreases with �, and it is immediate from the defini-
tions that

A.S; I0/ D
\
�

cl.Y�/:

We restrict our attention to the definably compact set Pr1 n int.B/ and let

NY r1� D cl.Y�/ \ .Pr1 n int.B// and Ar1.S; I0/ D A.S; I0/ \ .Pr1 n int.B//:

Thus, Ar1.S; I0/ D
T
�>0
NY
r1
� : Since each NY r1� is definably compact, so is Ar1.S; I0/.

By the choice ofB , Proposition 5.6(1) implies that dim.A.S;I0/ nB/� 1, and hence,
since the boundary of B is at most 1-dimensional, also dim.A.S; I0/ n int.B// � 1. It
follows that Ar1.S; I0/ is a definably compact set which is at most 1-dimensional. Using
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that, it is not hard to see that for a sufficiently small open W 3 0 the set Ar1.S; I0/CW
does not contain any translate of our open set V . Fix such a set W .

Because Ar1.S; I0/ D
T
�
NY
r1
� it is not hard to see that there exists �0 > 0 such that

NY
r1
�0
� Ar1.S; I0/CW . It follows that NY r1�0

does not contain any translate of V , proving
Claim 2.

It remains to show that setting � WD �0 with �0 as in Claim 2, the requirements of
Proposition 5.6(2) are satisfied.

Claim 3. There exists r > 0 such that x C V ª S.B.I0; �0// for all x 2 G n Pr .

Proof of Claim 3. Assume towards a contradiction that no such r exists. Then we can
find an unbounded, definably connected curve � � G such that � C V � S.B.I0; �0//.
It follows from the definition of Y�0

that .� C V / � .� C V / � Y�0
.

Fix any 
0 2 � and let �0 D � � 
0. The curve �0 is unbounded, definably connected,
with 0 2 �0 and in addition �0C V � .� C V /� .� C V /� Y�0

. Note that �0 \ Sr0 ¤;
with r0 as in Claim 1. Indeed, although Sr0 D fr.Br0/\G need not be definably connec-
ted, �0 \ Br0 ¤ 0 because �0 is unbounded, definably connected and contains 0. Fix
x0 2 �0 \ Sr0 . This intersection point necessarily lies in Sr0 .

By our choice of �0, x0 C V � �0 C V � Y�0
, and by our choice of r0 in Claim 1,

x0CV �Pr1 nB . However, by Claim 2, no translate of V is contained in Y�0
\ .Pr1 nB/,

a contradiction.

Choose r as in Claim 3. Setting B 0 D Pr and � D �0 finishes the proof of Proposi-
tion 5.6(2).

5.2. A lower bound on the dimension of the set of approximated points

In this subsection, assuming that Spol is infinite, we modify the set S from Proposition 5.6
to a set OS as in the next proposition, using an idea from [5, Section 4]. The proof of
Theorem 5.2 in the next subsection is by contradiction, and towards that we need this
proposition.

Proposition 5.10. Let S � G2 be a D-definable, strongly minimal, closed set which is
not G-affine, and assume that Spol is infinite. Then there is a strongly minimal closed set
OS � G2 which is not G-affine, definable in D .over additional parameters/, and there

exists an infinite definable OI � G, such that for every infinite definable set T � OI and any
bounded ball B , the set A. OS; T / n B is 2-dimensional.

The rest of this subsection is devoted to the proof of Proposition 5.10. We fix the
sets S and Spol as in its assumptions. Applying Proposition 5.6 to S and Spol (in the role
of I there) we fix a definable 1-dimensional I0 � Spol satisfying clauses (1) and (2) of that
proposition.

Lemma 5.11. There is a definable smooth 1-dimensional I1 � I0 and

� a definably connected bounded open U � G,
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� a definable continuous function f W U ! G with �f � S , and

� a definable family ¹
x W x 2 I1º of curves 
x W .0; 1/! U

such that
lim
t!0


x.t/ D x; lim
t!0

f .
x.t// D1;

and for all x1; x2 2 I1,

lim
t!0

�
f .
x1

.t// � f .
x2
.t//

�
D 0:

Proof. Using o-minimality and the fact that the projection of S ontoG is finite-to-one, we
may partition S and I0 into finitely many cells and reach the following situation. There is
a definable, definably connected bounded open set U � G and a definable 1-dimensional
smooth set I1 � I0, with I1 on the boundary of U and U [ I1 a manifold with boundary.
We may assume that cl.U / \ Spol D cl.I1/. Furthermore, there is a definable, injective,
continuous function f WU !G whose graph is contained in S , such that for every x0 2 I1
and every curve 
 W .0; 1/! U tending to x0 at 0, the image of 
 under f is unbounded.

After applying a definable local diffeomorphism, we may assume that I1D.a; b/�¹0º
� R2 and U D .a; b/ � .0; 1/ � R2. By shrinking I1 if needed we may assume that f is
defined on the box Œa; b� � .0; 1�. For � � 1, let

U� D .a; b/ � .0; �/ � U

and
C� D f .Œa; b� � ¹�º/;

��;1 D f .¹aº � .0; �//;

��;2 D f .¹bº � .0; �//:

When � D 1, we denote C1; �1;1 and �1;2 by C;�1 and �2, respectively. For every � � 1,
the set C� is bounded and ��;i are unbounded curves for i D 1; 2. Recall that @f .U�/
denotes the boundary of f .U�/ (which is contained in G, since G � Rn is closed).
Because f W U ! G is continuous and injective, it is in fact a homeomorphism, by [14],
hence

@f .U�/ D ��;1 [ ��;2 [ C�

(we use here the fact that the limit of jf .x/j as x tends to any point in I1 is1).
The next claim roughly says that for an infinitesimal �, the set f .U�/ is contained in

two infinitesimal tubes around �1 and �2.

Claim 1. For every �1 > 0 there exists �2 > 0 such that

f .U�2
/ �

2[
iD1

�i C B�1
:
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Proof of Claim 1. We fix �1 > 0. Using Proposition 5.6(2), we can find � > 0 and a
bounded neighborhood B 0 � G of 0 such that y C B�1

6� f .U�/ for every y 2 G n B 0.
Next, choose 0 < �2 <min ¹�; �1º such that f .U�2

/ does not intersect the bounded sets B 0

and C� C B�1
. This can be done since the limit of jf .x/j is 1 as x tends in U to any

point in I1. We claim that this �2 satisfies our requirements.
Indeed, given x 2 U�2

, we have f .x/ … B 0 and hence f .x/C B�1
6� f .U�/. How-

ever, clearly f .x/ 2 f .U�/ (since �2 < �) and so, because f .x/ C B�1
is definably

connected, we must have .f .x/CB�1
/\ @f .U�/ ¤ ;. Since f .x/ 62 C� CB�1

, we have
.f .x/CB�1

/\ C� D ;, and therefore f .x/CB�1
must intersect ��;1 [ ��;2, and hence

also �1 [ �2. It now follows that for some i D 1; 2, f .x/ 2 �i C B�1
.

Claim 2. There is a definable 1-dimensional subset I2 � I1, and a definable family ¹
x W
x 2 I2º of curves 
x W .0; 1/! U with limt!0 
x.t/D x, such that for every x1; x2 2 I2,

lim
t!0

�
f .
x1

.t// � f .
x2
.t//

�
D 0:

Proof of Claim 2. Consider the unbounded curves �1; �2 � @f .U /, and for each i D 1; 2
fix a definable parametrization 
i .t/ W .0; 1/! G for �i such that limt!0 j
i .t/j D 1.

Now fix a definable family ¹
x W x 2 I1º of curves 
x W .0; 1/! U with limt!0 
x.t/

D x. By Claim 1, for each x 2 I1, the curve f .
x.t// approaches one of the �i as t tends
to 0, and therefore, after possibly re-parameterizing 
x , we can find 
i , i D 1; 2, such
that limt!0.f .
x.t// � 
i .t// D 0: The re-parametrization can be done uniformly in x.
We can now find an infinite subinterval I2 � I1 and i 2 ¹1; 2º such that if x 2 I2, then
limt!0.f .
x.t// � 
i .t// D 0.

Replacing I1 by I2 finishes the proof of Lemma 5.11.

The rest of this subsection is devoted to the proof of Proposition 5.10. We fix I1 � I0,
U , f , ¹
x W x 2 I1º as in Lemma 5.11.

Because I0 is smooth on the boundary of U , we can find an infinite subcell OI � I0 and
c 2 G generic over ; such that cl. OI C c/ is contained in U . We fix such OI and c. We say
that two definable sets X; Y have the same germ at 0 if there is some open neighborhood
W 3 0 such that X \W D Y \W . With this in hand, the key initial observation is the
following.

Claim 5.12. For any infinite definable set T � OI , the set Vc D f .T C c/ � f .T C c/ is
a 2-dimensional bounded set.

Proof. Since f is continuous and cl. OI C c/ � U , it follows that Vc is bounded. Assume
now towards a contradiction that dimVc D 1. By shrinking T further if needed, we deduce
from [21, Lemma 2.7] that f .T C c/ is G-linear, that is, the sets f .T C c/ � g and
f .T C c/ � h have the same germ at 0 for all h; g 2 f .T C c/.

By shrinking T if needed, we may assume that c is still generic inG over the paramet-
ers defining T . It follows that there is an open neighborhoodW 3 c such that for all c0 2W
the set f .T C c0/ isG-linear. By definable choice, there is a definable function g WW !G

such that g.c0/2 f .T C c0/ for all c0 2W . DenoteH.c0/ WD f .T C c0/� g.c0/ and define
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an equivalence relation E on W by E.c1; c2/ if H.c1/ and H.c2/ have the same germ
at 0. Since f .T C c0/ was G-linear, we easily get (see [21] for details) that H.c0/ is a
local subgroup.

We claim that there is a generic E-equivalence class that is infinite. Since W is
2-dimensional, it will suffice to show that the class of germs at 0 of the sets H.c0/ is
at most 1-dimensional as c0 varies on W . Since the tangent space to H.c/ at 0 is a sub-
space of the 2-dimensional tangent space toG at 0, our claim will follow from the fact that
H.c/ and H.c0/ have the same germ at 0 if and only if they have the same tangent space
at 0. This latter fact is [23, Claim 2.20] (note that the argument given there for definable
subgroups goes through verbatim for germs of definable local subgroups).

If we now fix generic and independent x; y; z 2 T sufficiently close to each other,
then there is w 2 T and there are infinitely many E-equivalent c0 such that

f .x C c0/ � f .y C c0/C f .z C c0/ D f .w C c0/:

Since �f � S , it follows readily from the above that Stab�.S/ is infinite and therefore,
by Lemma 3.8(4), that S is G-affine, a contradiction.

Consider now the D-definable set

S 0 D ¹.x; y1 � y2/ W .x C c; y1/; .x; y2/ 2 Sº:

and the continuous function Of W U ! G,

Of .x/ D f .x C c/ � f .x/:

Clearly, RM.S 0/ D 1 and �. Of / � S 0. By Lemma 4.14, there is a D-definable strongly
minimal set OS � S 0 containing �. Of /. Clearly, �. Of /pol �

OSpol. Since fr. OS/ is finite, we may
assume that OS is closed.

Claim 5.13. OI � OSpol.

Proof. It suffices to prove OI � �. Of /pol. Take x 2 OI , and denote by 
 our fixed 
x W
.0; 1/ ! U . Then limt!0 
.t/ D x. Also Of .
.t// D f .
.t/ C c/ � f .
.t//. Since
limt!0 
.t/C c D x C c, it follows that limt!0 f .
.t/C c/ D f .x C c/, and because
limt!0 jf .
.t//j D 1, also limt!0 j

Of .
.t//j D 1, so x is a pole of �. Of /.

Since OSpol ¤ ;, it follows that OS is not G-affine.
We can now proceed with the proof of Proposition 5.10. Let T be any infinite defin-

able subset of OI , and B any open bounded ball. We want to prove that A. OS; T / n B has
dimension 2.

Claim 1. There is a definable unbounded 1-dimensional subgroup H � G such that for
every x 2 T and h 2 H , there is a definable � W .0; 1/! .0; 1/ with �.0C/ D 0C and

lim
t!0

�
f .
x.�.t/// � f .
x.t//

�
D h:
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Proof of Claim 1. We first recall a theorem from [30]: given a definable curve � W

.0; 1/ ! G with limt!0 j�.t/j D 1, the set of all limit points of �.t/ � �.s/, as s
and t tend to 0, forms an 1-dimensional torsion-free unbounded subgroup H� � G.
In particular, for each h 2 H� there is a definable function �h W .0; 1/ ! .0; 1/ with
�h.0

C/ D 0C such that limt!0.�.�h.t// � �.t// D h: It follows from the definition of
H� that for any other definable curve � 0 W .0; 1/! G, if limt!0.�

0.t/ � �.t// D 0, then
H� DH� 0 . We now apply this result to the unbounded curves f .
x.t//, x 2 T , and obtain
the desired H .

Claim 2. For every b 2 V1 WD f .T C c/ � f .T C c/ and h 2 H , we have b C h 2
A. OS; T /.

Proof of Claim 2. Let b D f .x1 C c/� f .x2 C c/ 2 V1, where x1; x2 2 T , and let � be
as in Claim 1, for x D x2 and h. Hence hD limt!0.f .
x2

.�.t///� f .
x2
.t///. We have

Of .
x1
.t// � Of .
x2

.�.t/// D Of .
x1
.t// � Of .
x2

.�.t///C f .
x2
.t// � f .
x2

.t//

D Œf .
x1
.t/C c/ � f .
x1

.t///�

� Œf .
x2
.�.t//C c/ � f .
x2

.�.t///�C f .
x2
.t// � f .
x2

.t//

D Œf .
x1
.t/C c/ � f .
x2

.�.t//C c/�

C Œf .
x2
.t// � f .
x1

.t//�C Œf .
x2
.�.t/// � f .
x2

.t//�:

As t tends to 0, for i D 1; 2, the curve 
xi
.�.t// C c still tends to xi C c,

since �.0C/ D 0C, so its image under f tends to f .xi C c/. By Lemma 5.11(3),
limt!0.f .
x2

.t// � f .
x1
.t/// D 0. Thus, by Claim 1, the above expression tends to

f .x1C c/� f .x2C c/C hD bC h, proving that bC h can be approximated near T .

We can now conclude the proof of Proposition 5.10, as follows. Because V1 and B
are bounded, we can find r0 > 0 such that V1 C h � G n B for every h 2 G n Br0 . In
particular, b C .H n Br0/ � G n B for every b 2 V1. Moreover, since H is unbounded,
H n Br0 has dimension 1. Hence, by Claim 2, the 2-dimensional set V1 C .H n Br0/ is
contained in A. OS; T / n B , as needed.

5.3. Proof of Theorem 5.2

Assume towards a contradiction that Spol is infinite. Since for any S1; S2�G2, .S1[S2/pol

D S1pol [ S2pol, and Spol D cl.S/pol, we may assume that S is strongly minimal and closed.
Since Spol ¤ ;, we infer that S is notG-affine. By Proposition 5.10, there is a D-definable
set OS which is closed, strongly minimal and not G-affine, and an infinite definable OI � G
such that for every infinite set T � OI and any open bounded ball B , A. OS; T / n B is
2-dimensional. This contradicts Proposition 5.6(1) for OS and OI .

Example 5.14. One of the difficulties in the above proof was the need to replace the initial
set S with a set OS , in order to reach a situation where dim.A. OS; T / n B/ D 2, for every
infinite definable T � OI � OSpol and any open bounded ball B . The following example
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shows that the initial S can indeed have infinitely many poles and yet dimA.S; I0/ D 1

for some (in fact, any bounded) infinite I0 � Spol. Consider the graph of the function
f W R2 ! R2 defined by

f .x; y/ D

´
.x; 0/ if y D 0;
.xy; 1=y/ if y ¤ 0;

with G D hC;Ci. The function f is a bijection of C which is its own inverse. Its set of
poles is the x-axis. For every x 2 R, as .x; y/! .x; 0/, f .x; y/ approaches the y-axis
with jf .x; y/j ! 1. Thus, for any bounded I0 � R � ¹0º, A.S; I0/ D y-axis. After
moving to OS as in the proof of Proposition 5.10, we can see that dim.A. OS; T / n B/ D 2
for any infinite T � OSpol and any bounded ball B .

6. Topological corollaries

We establish here several topological properties of plane curves, typically true for com-
plex algebraic plane curves. These properties are used later on in our proof of the main
theorem. Our first definition generalizes the notion of a function being open at a point.

Definition 6.1. Let S � G2 and a D .a1; a2/ 2 S . We say that S is open at a over a1 if
for every open neighborhood U of a, a1 is in the interior of �1.U \ S/. We say that S is
open at a if S is open at a over a1 and Sop is open at a over a2.

Let S � G2 and a1 2 G. We say that S is open over a1 2 �1.S/ if for every
.a1; a2/ 2 S , S is open at a over a1.

We note that if B 3 a D .a1; a2/ is an open box such that a1 … int.�1.B \ S//, then
the same remains true for all smaller open boxes.

Lemma 6.2. Assume that S � G2 is a plane curve. Then there are at most finitely many
a1 2 �1.S/ such that S is not open over a1. In particular, S does not contain any 1-
dimensional components.

If S does not contain any straight line, then there are at most finitely points a 2 S
such that S is not open at a.

Proof. First note that if S D S1 [ S2 and S is not open at a over a1 2 G, then either S1
or S2 is not open at a over a1. Thus we may assume that S is strongly minimal. Without
loss of generality, S is D-definable over ;.

Assume towards a contradiction that the set N of all x in �1.S/ over which S is not
open is infinite. Pick a1 generic in N over ;. Because RM.�1.S// D 1, the point a1 is
D-generic in �1.S/ over ;.

Fix a D .a1; a2/ 2 S and B D B1 � B2 3 a such that a1 … int.�1.S \ B//. Let
BS D S \ B and write NBS WD cl.BS /. Note that a is D-generic in S over ;.

By Theorem 5.2, S has finitely many poles and since dim.a1=;/ � 1, the point a1 is
not a pole of S . By Corollary 4.12, there are at most finitely many points in �1.S/ over



P. E. Eleftheriou, A. Hasson, Y. Peterzil 3388

which S is non-injective, and each of them is in aclD.ŒS�/D aclD.;/. Thus S is injective
over a1. By Theorem 4.9, fr.S/ � aclD.;/ and hence .¹a1º �G/ \ fr.S/ D ;.

Since a1 … int.�1.BS //, there exists a definable curve 
 W .0; 1/! B1 n �1.BS / such
that limt!0 
.t/ D a1. Notice that for t small enough 
.t/ must be D-generic in G, and
therefore, because �1.S/ is co-finite inG, 
.t/ is D-generic in �1.S/ over ;. So, we may
assume that the fiber S
.t/ has constant size n � 1. For each t , let y1.t/; : : : ; yn.t/ 2 G be
distinct such that .
.t/; yi .t// 2 S . Because 
.t/ … �1.BS /, none of the yi .t/ is in B2.

Since a1 … Spol, each of the curves 
i .t/ is bounded, and hence has a limit yi 2G nB2.
Since .¹a1º � G/ \ fr.S/ D ;, each of the limit points .a1; yi / is in S and in addition
.a1; a2/ 2 S , with a2 ¤ yi for all i . However, since a1 is D-generic, we must have
jSa1
j D n. This implies that yi D yj for some i ¤ j , so S is non-injective at .a1; yi /, a

contradiction.
Assume now that the intersection of S with any straight line is finite. We apply the

above to both S and Sop, and then by removing from �1.S/ and �1.Sop/ finitely many
points, we remain, by our assumption on S , with a co-finite subset S 0 of S such that S is
open at each point of S 0.

Corollary 6.3. Assume that S � G2 is strongly minimal and a D .a1; a2/ is a non-
isolated point of S .

(1) If S is not a straight line, then S is open at a.

(2) If there is y 2G such that S �G � ¹yº, then y D a2 and there exists an open U 3 a1
such that U � ¹a2º � S . In particular, S is open at a over a1.

(3) If Sop is injective at .a2; a1/ over a2, then either S � G � ¹a2º or there exists an
open B D B1 �B2 3 a such that S \B is the graph of an open continuous map from
B1 into B2.

(4) If S is not a straight line and a is D-generic in S , then there exists an open U 3 a
such that S \ U is the graph of a homeomorphism from �1.U / onto �2.U /.

Proof. (1) We assume that S is not a straight line and show that S is open at a. Assume
towards a contradiction that S is not open at a over a1. In order to reach a contradiction it
is sufficient, by Lemma 6.2, to deduce that there are infinitely many points in �1.S/ over
which S is not open.

By Theorem 4.9, we can find an open box B D B1 � B2 containing a such
that S \ cl.B/ is closed, and a1 … int.�1.B \ S//. Let BS D B \ S and denote
NBS D cl.BS /. Repeating the argument with a smaller box, we see that also a1 …

int.�1. NBS //D int.�1.S \ cl.B///. Because S \ .¹a1º �G/ is finite, we may also assume
that S \ .¹a1º � cl.B2// D ¹aº.

The set �1. NBS / is closed inG and since, by Lemma 6.2, S has no 1-dimensional com-
ponents and �1 is finite-to-one, it is 2-dimensional. The point a1 belongs to the boundary
of �1. NBS /, so by o-minimality, there exists a definable curve 
1 W .0;1/! @.�1. NBS //with
a1 D limt!0 
1.t/. Since NBS D S \ cl.B/, there exists a definable curve 
2 W .0; 1/!
cl.B2/ such that .
1.t/; 
2.t// 2 S \ cl.B/ for every t . Let b D limt!0 
2.t/ 2 cl.B2/.
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Since S \ cl.B/ is closed, it follows that .a1; b/ 2 S , and therefore by our choice
of B2, b D a2. But then the curve 
.t/ D .
1.t/; 
2.t// tends to a, so for t small enough,
it must belong to the open set B , and its projection is not in int.�1.BS //. Therefore for
all t small enough, S is not open over 
1.t/. This contradicts Lemma 6.2 and ends the
proof of (1).

(2) Assume that S1 WD S \G � ¹yº is infinite. Because S is strongly minimal and a
is non-isolated we must have .a1; a2/ 2 S1, so y D a2. The set S1 is strongly minimal,
thus its projection on the first coordinate is co-finite and so S1 (and therefore S ) is locally
near a the graph of a constant function. In particular, S is open at a over a1.

(3) Assume now that Sop is injective at .a2; a1/ over a2 and that we are not under
clause (2), so the intersection of S with any line G � ¹yº is finite.

By definition of injectivity, there exists an open box B D B1 � B2 such that B \ S
is the graph of a function, call it fS , from a subset of B1 into B2, so the intersection of
each ¹xº � G with S is finite. We may also assume that B \ S has no isolated point (by
o-minimality, there are only finitely many). By (1), we may shrink B so that BS is open
over every point in �1.BS / and B�1S is open over every point in �1.BS /. It follows that
the domain of fS is the whole of B1 and in addition fS is continuous and open.

(4) By Corollary 4.12, S is injective at a over a1 and Sop is injective at .a2; a1/
over a2. The result follows from (3), applied to S and to Sop.

Notice that even though, by o-minimality, the set of isolated points of any plane
curve S is finite we do not know yet that it is contained in aclD.ŒS�/.

7. The ring of Jacobian matrices

7.1. The ring R

Our next goal is to show that if f is a D-function, then its Jacobian matrix vanishes at 0
if and only if f is not locally invertible at 0. This will be done in this and the next section.
In the present section we prove that similarly to a complex analytic function, the Jacobian
matrix is non-zero if and only if it is an invertible matrix.

Throughout this section we fix a definable local coordinate system for G near 0G ,
identifying 0G with 02R2. From now on we identifyG locally with an open subset ofR2.
For a differentiable D-function f in a neighborhood of 0, with f .0/ D 0, the Jacobian
matrix at x, denoted by Jxf , is computed with respect to this fixed coordinate system,
and we denote by jJxf j its determinant. We use dxf to denote the differential of f ,
viewed as a map from the tangent space ofG at x, denoted by Tx.G/, to Tf .x/.G/. As we
soon observe, the collection of all matrices J0f is a subring ofM2.R/, and the main goal
of this section is to show that it is in fact a field (thus every non-zero matrix is invertible).

We first observe the following statement.

Lemma 7.1. Let f W U ! G be a non-constant D-function. Then:

(1) The set of a 2 U at which jJaf j D 0 is at most 1-dimensional.

(2) The set of a 2 U at which Jaf D 0 is finite.
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Proof. (1) By strong minimality, for every open V � U , we have dim f .V / D 2, for
otherwise the preimage of some point is infinite and co-infinite. By the o-minimal ver-
sion of Sard’s Theorem [39, Theorem 2.7], the set of singular points of f is at most
1-dimensional. For (2), note that if Jaf D 0 on a definably connected path then f must
be constant there, which by strong minimality implies that f is constant on U .

Definition 7.2. Recall from Section 1.3 that F is the collection of all D-functions f
which are C 1 in a neighborhood of 0, with f .0/ D 0. We let

R D ¹J0f 2M2.R/ W f 2 Fº:

It is important here to distinguish between the group operation inG and the usual ring
operations inM2.R/. Thus we reserve the additive notation˙ for matrix addition, and let
˚;	 denote the group operations in G.

Lemma 7.3. The set R is a unital subring of M2.R/ and for every A 2 R which is
invertible, A�1 2 R.

Proof. We first note that the collection of germs of functions in F is closed under ˚ and
functional composition. Indeed, if Sf and Sg represent D-functions f and g in F, then
the plane curve Sf ı Sg represents f ı g and the plane curve

Sf � Sg D ¹.x; y1 ˚ y2/ W .x; y1/ 2 Sf ; .x; y2/ 2 Sgº

represents f ˚ g.
Using the chain rule it is easy to verify that for f; g 2 F,

J0.f ˚ g/ D J0f C J0g and J0.f ı g/ D J0f � J0g:

Since the germs in F are closed under˚ and functional composition, it follows that R is
a ring. If J0f is invertible, then f is a locally invertible function, in which case it is clear
that f �1 is also in F, and therefore .J0f /�1 2 R.

Note. Given D-functions f; g 2 F it seems possible that every strongly minimal set rep-
resenting f ı g (or every set representing f ˚ g) will have a nodal singularity at .0; 0/
and thus will not be locally at .0; 0/ the graph of a function.

7.2. Definability and dimension of R

Our aim is to show that R is a definable field isomorphic to R.
p
�1/. This is achieved in

several steps. We first show (Theorem 7.13) that R is a definable ring of one of two kinds,
and then – by eliminating one of these possibilities – we deduce the desired result.

We are going to use the following operation extensively.

Definition 7.4. For a D-function f which is C 1 in a neighborhood of some a 2G, we let

QJaf D J0.f .x ˚ a/	 f .a//; Qdaf D d0.f .x ˚ a/	 f .a//:

Note that f .x ˚ a/	 f .a/ is in F and thus QJaf 2 R. We let `a.x/ D x ˚ a.



Strongly minimal groups in o-minimal structures 3391

Lemma 7.5. (1) Qdaf D .d0 f̀ .a//�1 ı daf ı d0`a.

(2) For every a 2 dom.f /, Jaf is invertible if and only if QJaf is invertible, and Jaf D 0
, QJaf D 0.

(3) For any two differentiable D-functions f; g W U ! G and x0 2 U , QJx0
.f 	 g/ D

QJx0
f � QJx0

g:

Proof. (1) is easy to verify and (2) follows easily, so we prove (3). Note that

QJx0
.f 	 g/ D J0Œ.f 	 g/.x0 ˚ x/	 .f 	 g/.x0/�;

which equals
J0Œ..f .x0 ˚ x/	 f .x0//	 .g.x0 ˚ x/	 g.x0//�:

As noted in the proof of Lemma 7.3, J0.h1 	 h2/ D J0h1 � J0h2, so the above equals

J0.f .x0 ˚ x/	 f .x0// � J0.g.x0 ˚ x/	 g.x0// D QJx0
.f / � QJx0

.g/:

Definition 7.6. We say that a D-function f W U !G isG-affine if there exist non-empty
open sets V � U and W 3 0 such that for all x1; x2 2 V and x 2 W ,

f .x C x1/ � f .x1/ D f .x C x2/ � f .x2/:

We note that a D-function f is G-affine if and only if Sf is G-affine if and only if
Stab�.Sf / is infinite. Indeed, by Lemma 3.8(4), Sf is G-affine if and only if Stab�.Sf /
is infinite, and strong minimality implies that if f is G-affine, then so is Sf . Further-
more, since Sf is unique up to �-equivalence (as noted in the concluding paragraph of
Section 4.6), this does not depend on the choice of Sf .

Remark 7.7. If f is G-affine and f .0/ D 0, then f is a partial group homomorphism
in a neighborhood of 0. It follows that for all a in some open V 3 0 we have QJaf D
J0.f .x ˚ a/	 f .a// D J0f . Thus, if J0f D 0, then f vanishes on V . Since f is rep-
resented by some strongly minimal Sf , if f vanishes on some infinite set, it vanishes on
its domain.

As we already saw in Fact 3.9, since D is not locally modular, there exists at least one
D-function which is not G-affine.

We are going to need the following lemma.

Lemma 7.8. There are invertible matrices in R arbitrarily close to the zero matrix.

Proof. We go via the following claim which is also used later in the text.

Claim 7.9. There exists g 2 F which is not G-affine, with J0g D 0.

Proof. For y 2 G and n 2 N we write ny WD

n times‚ …„ ƒ
y ˚ � � � ˚ y : Fix f W U ! G in F which

is not G-affine, and for n 2 N, let gn.x/ D f .nx/ � nf .x/. It is easy to see that gn 2 F
and J0gn D nJ0f � nJ0f D 0. We want to show that for some n 2 N, the function gn
is not G-affine, so gives the desired g.
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Notice that if gn is G-affine, then since J0gn D 0, the function gn must vanish on its
domain (by Remark 7.7). Assume towards a contradiction that for every n 2 N, the func-
tion gn vanishes on its domain, so f .nx/ D nf .x/ whenever nx 2 U . Pick a D-generic
x 2 U sufficiently close to 0 so that for all n, we have nx 2 U and nf .x/ 2 U (we can
do it by saturation). For all n we have

f .x C nx/ D f ..nC 1/x/ D .1C n/f .x/ D f .x/C nf .x/ D f .x/C f .nx/:

Thus, since x is generic, it is not torsion, and hence there are infinitely many y 2 G such
that f .x C y/ D f .x/C f .y/. Because f is a D-function it follows that for almost all
y with xC y 2 U , f .xC y/D f .x/C f .y/. Since x is D-generic, the function f must
be G-affine, a contradiction.

We return to the proof of Lemma 7.8. Take the function g W V ! G from Claim 7.9.
By Lemma 7.1, for every x 2 V generic, Jxg and hence QJxg is invertible. Because g is
smooth and J0g D 0, there are invertible matrices of the form QJxg 2 R arbitrarily close
to the zero matrix.

Definition 7.10. Given a setW �R and a family F D ¹ft W t 2 T0º of D-functions, we
say that W is realized by F if W D ¹J0ft W t 2 T0º:

Proposition 7.11. The ring R is a definable subring ofM2.R/ which is also an R-vector
subspace.

Proof. We first show that R is a
W

-definable subring of M2.R/, that is, R is a bounded
union of definable subsets of M2.R/. Let M 2 R. By definition, there exists some D-
function f 2 F such that J0f DM . Let Sf represent f . Let '.x; a/ D-define Sf such
that '.x; y/ is a family of plane curves all passing through .0; 0/. By Proposition 4.15,
there is a ;-definable family F of D-functions in F such that the germ of f at 0 is rep-
resented in F . Since J0f only depends on the germ of f at 0, we find that M is realized
as the Jacobian matrix at 0 of some D-function in F . Let TF be the set of all Jacobian
matrices of D-functions in F , where F is a ;-definable family of D-functions in F. We
have thus seen that R can be covered by all the sets TF . There are a bounded number of
such sets, where the bound is given by the cardinality of the language of D .

It follows that there is a definable open neighborhood U �M2.R/ of the zero matrix
such that U \R is definable (for more on

W
-definable groups and rings see [25]). More

precisely, there exists a ;-definable family of D-functions which realizes U \R.
We now proceed to show that R is actually a definable subset of M2.R/. Let U 3 0

be a neighborhood of 0 in M2.R/ such that U \R is definable as above. We claim that

R D ¹AB�1 W A;B 2 U \R; B is invertibleº:

Indeed, for every C 2 R we can find, by Lemma 7.8, an invertible matrix B 2 U \R,
sufficiently close to 0, such that CB 2 U \R. It follows that R is definable.

Finally, the subring of scalar matrices in R is in particular a subgroup of .R;C/, and
it is non-trivial since it contains 1. By o-minimality, the only non-trivial definable sub-
group of .R;C/ is .R;C/ itself. So R contains all diagonal matrices, and is therefore an
R-vector subspace of M2.R/.
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Proposition 7.12. LetU �G be an open neighborhood of 0, and assume that f WU !G

is a continuously differentiable D-function which is not G-affine. Then the set QJ .U / D
¹ QJaf 2M2.R/ W a 2 U º has dimension 2. In particular, dim R � 2.

Proof. Since dimU D 2, we have dim QJ .U / � 2. Assume towards a contradiction that
dim QJ .U / � 1.

Claim. There exists g0 2 G n dcl.;/ and infinitely many a 2 G such that QJaf D
QJaf .x ˚ g0/:

Proof of Claim. For every matrix A 2 QJ .U / let CA WD ¹x 2 U W QJxf D Aº. By our
assumptions, there exists A 2 QJ .U / such that dimCA � 1, and by possibly shrinking U ,
we may assume that CA is definably connected. Consider BA D CA 	 CA � G. There are
two cases to consider:

Case 1. There exists A 2 QJ .U / such that dimBA D 1.
We may apply [21, Lemma 2.7] and conclude that the set CA is contained in a coset

of a
W

-definable 1-dimensional subgroup H of G. It follows that for g0 2 H suffi-
ciently close to 0, there are infinitely many a 2 CA such that a ˚ g0 2 CA, and thus
QJaf D QJaf .x ˚ g0/ D QJaCg0

f .

Case 2. For all A 2 QJ .U /, dimBA D 2, so BA contains an open subset of G.
Given A generic in QJ .U / we may find an open set W � G in BA such that A is still

generic in QJ .U / over the parameters definingW . Thus there are infinitely manyA2 QJ .U /
for which W � BA. Pick g0 generic in W and then for each A such that g0 2 BA there
are a; b 2 CA such that a 	 b D g0, so a D b ˚ g0. By definition of CA, we know that
for every such pair .a; b/ we have QJaf D QJbf , so QJb˚g0

f D QJbf . We get

QJbf .x ˚ g0/ D J0.f .x ˚ b ˚ g0/	 f .b ˚ g0// D QJb˚g0
f D QJbf:

Since there are infinitely many such pairs b; b ˚ g0 as A varies, we are done.

To conclude the proof, fix g0 as in the claim and infinitely many a such that QJaf D
QJaf .x ˚ g0/. By Lemma 7.5(3), for each such a, QJa.f .x ˚ g0/	 f .x// D 0. But then,

by Lemma 7.5(2), for the D-function k.x/ D f .x ˚ g0/ 	 f .x/ there are infinitely
many a, such that Jak D 0, so k.x/ is constant on its domain, say of value d . By strong
minimality of D , .g0; d / is in Stab�.Sf /. Since g0 is not in dcl.;/, it is not a torsion
element so Stab�.Sf / is infinite and therefore f is G-affine, a contradiction.

7.3. The structure of R

The main result of this section is the following theorem.

Theorem 7.13. There exists a fixed invertible matrix M 2 M2.R/ such that one of the
following two holds:
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(1) R D

²
M�1

�
a �b

b a

�
M W a; b 2 R

³
:

In particular, R is a field which is definably isomorphic to R.
p
�1/.

(2) R D

²
M�1

�
a 0

b a

�
M W a; b 2 R

³
:

We need some preliminaries.

Lemma 7.14. Let U � G be a definably connected open neighborhood of 0. Let f W
U ! G be a non-constant D-function. Then jJxf j has constant sign at all x 2 U where
f is differentiable and Jxf is invertible.

Proof. By Corollary 4.12, we may assume – possibly removing finitely many points
from U – that f is locally injective. The result now follows from [27, Theorem 3.2].

Now, for f 2 F non-constant we denote by �.f / the sign of jJxf j for all x suffi-
ciently close to 0 at which Jxf is invertible.

Proposition 7.15. Every invertible A 2 R has positive determinant.

Proof. Fix A0 2R generic over ;, andW �R a definable open neighborhood of A0. Fix
also a definable family ¹ft W t 2 T º of D-functions, realizing W , provided by Proposi-
tion 7.11. Let a0 be generic in T such that J0fa0

D A0. We may assume that T is a cell
in some Rk , and by definable choice in o-minimal structures further assume that the map
t 7! J0ft is a homeomorphism of T and W . By Proposition 7.12, dim T D dimW D

dim R � 2.
For every t 2 T , letUt �G be the domain of ft (containing 0). We can find a definably

connected neighborhood U0 3 0 and a definably connected neighborhood T � T0 3 a0
such that U0 � Ut for every t 2 T0. The definitions of the sets U0 and T0 may use addi-
tional parameters but we may choose them so that a0 is still generic in T0 over those
parameters. Let W0 D ¹J0ft W t 2 T0º be the corresponding neighborhood of A0 in R.

Consider now the set of matrices OW0 D W0 � A0 � R. It is an open neighborhood
of 0 in R, which is realized by the family ¹ft 	 fa0

W t 2 T0º:

Our goal is to show that every invertible matrix in OW0 has positive determinant. Let
us first see that they all have the same determinant sign. Note that for all t 2 T0 n ¹a0º,
the function ft 	 fa0

is non-constant on U0, thus by Theorem 4.17 it is an open map. We
now show, using the above notation, that �.ft 	 fa0

/ is constant as t varies in a punctured
neighborhood of a0.

Fix x0 2 U0 which is generic over a0. Since .a0; x0/ is generic in T0 � U0, there
exist an open T 00 3 a0 inside T0 and an open OU0 3 x0 inside U0 such that the map
F.t; x/ D ft .x/	 fa0

.x/ is continuous on T 00 � U0. Because dimT0 D dimW � 2, the
set OT0 D T 00 n ¹a0º is still definably connected, and for each t 2 OT0, the function ft 	 fa0

is open on OU0. Given t1 ¤ t2 2 OT0, there exists a definable path p W Œ0; 1�! OT0 connect-
ing t1 and t2, and by possibly shrinking OU0, the induced map .s; x/ 7! F.p.s/; x/ is a
definable proper homotopy (see [27, Section 3.5.1]) of ft1 	 fa0

and ft2 	 fa0
, hence
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by [27, Theorem 3.19], for every x generic in OU0, jJx.ft1 	 fa0
/j and jJx.ft2 	 fa0

/j

have the same sign. It follows that

�.ft1 	 fa0
/ D �.ft2 	 fa0

/:

Thus, every invertible matrix in OW0 has the same determinant sign.
Next, note that for every invertible A 2 OW0 sufficiently close to 0, the matrix A2 is

also in OW0 and clearly has positive determinant. Thus all invertible matrices in OW0 have
positive determinant.

Finally, as we saw in the proof of Proposition 7.11, RD¹AB�1 WA;B 2 OW0,B invert-
ibleº, and hence all invertible matrices in R have positive determinant.

Proof of Theorem 7.13. Assume first that every non-zero A 2 R is invertible, so R is a
definable division ring. It follows from [30, Theorem 4.1] that R is definably isomorphic
to either R or R.

p
�1/ or the ring of quaternions over R. Because dim R � 2, we are left

with the last two possibilities. The ring of quaternions,H.R/, is not definably isomorphic
to a definable subring of M2.R/. Indeed, if A � M2.R/ is such a ring then, as we have
seen in the proof of Proposition 7.11, it contains all scalar matrices. Because H.R/ has
o-minimal dimension 4 the same must be true ofA, soA is a 4-dimensionalR-vector sub-
space of M2.R/. So A D M2.R/, but the latter is not isomorphic to H.R/ since M2.R/

is not a division ring.
So R is necessarily isomorphic to R.

p
�1/. Since R.

p
�1/ Š R ˚ iR and R is a

subring of M2.R/, we immediately see that R is generated, as a vector space over R, by
the diagonal matrices and some matrix M.i/ such that M.i/2 D �1. It follows that the
eigenvalues of M.i/ are ˙i , so M.i/ is diagonalizable and conjugate to

�
0 1
�1 0

�
, say via

some matrix M . It is now immediate that R is of the form (1) with that M .
Now assume that there exists at least one matrix A that is not invertible, of rank 1. We

want to show that there exists an invertible M 2M2.R/ such that R is as in (2).
We conjugate R by some fixed matrix so that A, written in columns, has the form

.w; 0/ for some w 2 R2. We now show that every matrix in R is of the form
�
a 0
b a

�
for

some a; b 2 R. Consider the set

H D ¹.u; 0/ 2 R W u 2 R2º:

It is a definable R-vector subspace of R that is also closed under ring multiplication. As
anR-vector space it has positive dimension overR (sinceH is a non-trivial subring of R)
and dimRH � 2.

Claim 1. dimRH D 1.

Proof of Claim 1. Write the matrices in H in the form B D
�
a 0
b 0

�
, and note that for

C D
�
c d
e f

�
,

jB C C j D jC j C .af � bd/: (7.1)

Assume towards a contradiction that dimH D 2, so H consists of all matrices of the
form

�
a 0
b 0

�
. We may now take C D

�
c d
e f

�
2R invertible, sufficiently close to 0, and since
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d; f cannot both be 0, it is easy to see that by choosing a; b appropriately, we may obtain
a matrix B C C 2 R whose determinant is negative, a contradiction.

Thus, H is a 1-dimensional R-vector space.

Claim 2. There is no ˛ 2 R such that all matrices in H are of the form B D
�
a 0
˛a 0

�
.

Proof of Claim 2. Assume that there is such an ˛. Take any invertible C D
�
c d
e f

�
2 R.

Then for every B D
�
a 0
˛a 0

�
2H , we have jB CC j D jC j C .af � ˛ad/. By choosing a

appropriately, we obtain jB C C j < 0 (contradicting Proposition 7.15), unless f D ˛d .
Hence f D ˛d and C D

�
c d
e ˛d

�
2 R. We have�

c d

e ˛d

�
�

�
a 0

˛a 0

�
D

�
a.c C ˛d/ 0

a.e C ˛2d/ 0

�
:

But the left hand side is in R, and H is the collection of all matrices in R of the form
.u; 0/ for u 2 R2. Hence,

� a.cC˛d/ 0
a.eC˛2d/ 0

�
2 H . By assumption, ˛.c C ˛d/ D e C ˛2d ,

implying that e D ˛c. However, this would make C non-invertible, a contradiction.

We are thus left with the case that all matrices in H are of the form
�
0 0
a 0

�
. If we now

take an arbitrary
�
c d
e f

�
2 R and multiply it on the right by a non-zero element of H , we

obtain another element of H , forcing d to be 0. Thus all matrices in R are lower triangu-
lar. Because H contains all matrices of the form

�
0 0
a 0

�
; every matrix in R can be written

as the sum of a diagonal matrix in R and a matrix in H .

Claim 3. The diagonal matrices in R are precisely the scalar matrices.

Proof of Claim 3. The set of diagonal matrices in R is a definable additive subgroup of
the ring of all diagonal matrices

� WD

²�
a 0

0 b

�
W a; b 2 R

³
:

We have already seen that all scalar matrices are in R, so if R contains any matrix in �
that is not scalar, it contains all of �, contradicting Proposition 7.15.

It follows that all matrices in R are of the form
�
a 0
b a

�
; as required. This ends the proof

of Theorem 7.13.

7.4. From ring to field

Definition 7.16. We say that R is of analytic form if it satisfies (1) of Theorem 7.13.

Our goal in this section is to prove that case (2) of Theorem 7.13 contradicts the
strong minimality of D . Thus, our negation assumption is that there exists a matrix
M 2 GL.2; R/ such that all matrices in M�1RM are of the form�

a 0

b a

�
for a; b 2 R. (7.2)
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Let us first note that we may assume that all matrices in R itself are of the form (7.2).
Indeed, if f 2F, we have defined J0f with respect to some fixed atlas givingG its defin-
able differentiable manifold structure. Let g be the chart in that atlas mapping a neighbor-
hood U �R2 onto a neighborhood of 0. Consider h WM�1U !G given by x 7! g.Mx/.
Since h is a diffeomorphism, we can replace g in our atlas with h. Denoting by Rh the
ring ¹J0f W f 2Fº with respect to this new atlas we see that Rh DM

�1RM , as needed.
For G D hR2;Ci, [5, Corollary 2.18] immediately eliminates the possibility that R is

the ring of upper triangular matrices. The goal of this subsection is to prove an analogue
of that result in the context of an arbitrary group G.

We first need the following version of the uniqueness of definable solutions to defin-
able ODEs. It can be easily deduced from [22, Theorem 2.3].

Proposition 7.17. Let Gr.k; n/ be the space of all k-dimensional linear subspaces of Rn.
Let U � Rn be an open set and assume that L W U ! Gr.k; n/ is a definable C 3-function
assigning to each p 2 U a k-dimensional space Lp . Assume that C1; C2 � U are defin-
able k-dimensional smooth manifolds such that for every p 2 C1 \ C2, the tangent space
of Ci at p equals Lp . Then for every p 2 C1 \ C2 there exists a neighborhood V 3 p
such that C1 \ V D C2 \ V .

Definition 7.18. A definable vector field on an open U �G is given by a definable partial
function F W U ! T .U / from U to its tangent bundle T .U / such that F.g/ 2 Tg.G/ for
every g 2 G.

Every definable non-vanishing vector field F on U gives rise to a definable line field,
still denoted by F , where to each g 2 U we assign the 1-dimensional subspace of Tg.U /
spanned by F.g/.

We say that a line field F is (left) G-invariant if for all g; h 2 U ,

F.h/ D dg.`hg�1/ � F.g/:

Given a line field F , we say that a definable smooth 1-dimensional set C � U is a
trajectory of F if for every g 2 C , the tangent space to C at g is F.g/.

Lemma 7.19. Let F be a definable non-vanishing G-invariant line field. Assume that
C � G is a definably connected smooth 1-dimensional trajectory of F . Then C is a coset
of a definable local subgroup of G.

Proof. Recall that we identify an open neighborhood U of 0 with an open subset of R2,
and T .U / is identified with U � R2. The line field can be viewed as a map F W U !
Gr.1; 2/.

It will suffice to show that if h 2 C , then h	 C is a local subgroup. Hence we may
assume that 0 2 C . Since F is left-invariant, for any g 2 G, g ˚ C is also a trajectory
of F . By Proposition 7.17, C and g ˚ C coincide on some neighborhood of g, provided
that g 2 C . It follows that for every x 2 C and g 2 C sufficiently small, we also have
x ˚ g 2 C . Thus C is a local subgroup of G.
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We can now return to our main goal: proving that R is of analytic form. Recall that
we assume that for a D-function f and b 2 dom.f / we can write

QJbf D

�
f̨ .b/ 0

f̌ .b/ f̨ .b/

�
: (7.3)

When f is clear from the context we omit the subscript f .
Let v0 D

�
0
1

�
2 T0.G/ and consider the non-vanishing G-invariant vector field F

given by
¹d0`b � v0 W b 2 Gº:

For b 2 G, let vb D d0`b � v0 2 Tb.G/.

Lemma 7.20. For every D-function f W U ! G and b 2 dom.f /, we have

dbf � vb D ˛.b/vf .b/ 2 Rvf .b/;

so the line field induced by F is invariant under df .
If in addition ˛.b/ D 0, then

dbf � Tb.G/ � Rvf .b/:

Proof. By assumption on the form of matrices in R, we have Qdbf � v0 D ˛.b/ � v0. Writ-
ing Qdbf explicitly (and composing on the left with d0 f̀ .b/), we obtain

.dbf /.d0`b/ � v0 D ˛.b/.d0 f̀ .b/ � v0/;

which implies the first clause.
For the second clause, notice that the special form of Qdbf implies that if ˛.b/ D 0,

then Qdbf � v 2 Rv0 for every v 2 T0.G/. The result easily follows.

Lemma 7.21. Assume that f W U ! G is a D-function, and that C � U is a definable
smooth curve which is a trajectory of F . Then so is f .C /.

Proof. By the first clause of Lemma 7.20, the image of C under f is also a trajectory
of F .

Lemma 7.22. Assume that f is a D-function, and C � dom.f / is a definable smooth
curve such that ˛.b/ D 0 at every b 2 C .in the above notation/. Then for every generic
b 2 C , the tangent space of f .C / at f .b/ is the R-span of vg.b/, so f .C / is a trajectory
of F in a neighborhood of f .b/.

Proof. Consider the restriction of f to C , and pick a generic b in C . Since b is generic,
the map f jC W C ! f .C / is a submersion, so Tf .b/.C / D dbf � Tb.C /. By the second
clause of Lemma 7.20, we conclude that Tf .b/.f .C // equals Rvf .b/.

Lemma 7.23. There exists a D-function h and a definable curve C � G such that h.C /
is a trajectory of F .
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Proof. This is similar to the proof of the claim in Proposition 7.12. Fix any D-function f ,
and f̨ as in (7.3) above.

Claim. There is a0 2 G such that f̨ .b/ D f̨ .b ˚ a0/ for infinitely many b 2 G.

Proof of Claim. For r 2 R, let Cr D ¹b 2 G W f̨ .b/ D rº: Pick r generic in the image
of f̨ . By Proposition 7.12 (and in the notation of that proposition), dimJ.U /D 2. There-
fore, genericity of r implies that Cr is 1-dimensional. Consider Dr D Cr 	 Cr . If Dr is
still 1-dimensional, then as we have already seen several times, Cr is contained in a coset
of a

W
-definable subgroup Hr , and then picking a0 2 Hr small enough will work with

any b 2 Cr .
Otherwise, Dr is 2-dimensional. We may now pick a0 2 Dr generic over r . Since r

is still generic over a0, there are infinitely many r 0 such that a0 2 Dr 0 . For each such r 0,
there exists b 2 Cr 0 with b ˚ a0 2 Cr 0 .

Fix a0 as above, and consider the D-function h.x/ D f .x ˚ a0/	 f .x/. It is easily
verified that for each b 2 G we have

QJbh D QJb.f .x ˚ a0/	 f .x// D QJbf .x ˚ a0/ � QJbf .x/:

It follows that ˛h.b/ D 0 for every b 2 G such that f̨ .b ˚ a0/ D f̨ .b/. Let C be the
collection of all those elements b. By the claim, C is a curve. By Lemma 7.22, the curve
h.C / is a trajectory of F near b.

We can now deduce the following theorem.

Theorem 7.24. The ring R is of analytic form.

Proof. We still work under the negation assumption that we are in Case (2) of The-
orem 7.13. Using Lemmas 7.23 and 7.19 we obtain a definable local subgroup H which
is a trajectory of the vector field F , and thus all of its cosets are also trajectories of F . Let
U be a neighborhood of 0 which can be covered by cosets of H , all trajectories of F .

Fix any D-function f 2 F which is not G-affine. By Lemma 7.21, for every a 2 U
such that f .a/ 2 U , the image f .H ˚ a/ is also a coset of H . Fix a0 2 H close enough
to 0 and consider the D-function k.x/D f .x/	 f .x˚ a0/. Since f is notG-affine, the
function k is not constant.

Notice that for every x sufficiently close to 0, the elements x and x ˚ a0 belong to
the coset x ˚H , and therefore as we just noted, f .x/ and f .x ˚ a0/ belong to the same
coset of H . It follows that k.x/ 2 H and therefore k sends an open subset of G into H ,
contradicting strong minimality (the preimage of some point will be infinite).

Note that the above argument does not really use the definability of the trajectory C
but merely its existence. Thus, if we worked over the reals, then we could have used the
usual existence theorem for solutions to differential equations in order to derive a contra-
diction.
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8. Some intersection theory for D-curves

Our ultimate goal is to show, under suitable assumptions, that if two plane curves C;D
� G2 are tangent at some point p, and C belongs to a D-definable family F of plane
curves, then by varying C within F one gains additional intersection points with D, near
the point p (see Proposition 8.12(2)). This will allow us to detect tangency D-definably.

The main tool towards this end is the following theorem, whose proof will be carried
out in this section via a sequence of lemmas.

Theorem 8.1. Assume that f is in F. If J0.f / D 0, then there is no neighborhood of 0
on which f is injective.

We now digress to report on an unsuccessful strategy, which nevertheless may be of
some interest.

8.1. Digression: on almost complex structures

LetK DR.
p
�1/. In analogy to the notion of an almost complex structure on a real man-

ifold, we may define a definable almost K-structure on a definable R-manifold M to be
a definable smooth linear J W TM ! TM sending each Tx.M/ to Tx.M/ and such that
J 2 D �1.

Note that every definable K-manifold admits a natural almost K-structure, induced
by multiplication of each Tx.M/ by i D

p
�1. It is known that when K D C any 2-

dimensional almost complex structure is isomorphic, as an almost complex structure, to
a complex manifold. The proof of this result seems to be using integration and thus we
do not expect it to hold for almost K-structures in arbitrary o-minimal expansions of real
closed fields.

Returning now to our 2-dimensional group G, we can endow G with a definable
almostK-structure in the following way. Just as we did at the beginning of Section 7.4, we
may first assume that every matrix in R has the form

�
a �b
b a

�
. Next, we naturally identify

T0.G/ with R2 � K and let J W T0.G/! T0.G/ be defined by J.x; y/D .x;�y/. Next,
use the differential of `a to obtain J W TG ! TG as required. Note that since TG is a
trivial tangent bundle, this step can be carried out for any definable group of even dimen-
sion. However in the case of G, our choice of J and the fact that for each D-function f ,
QJaf has analytic form, imply that f is J -holomorphic: for each a 2 dom.f / we have

J ı daf D df .a/ ı J:

Now, if our underlying real closed field R were the field of real numbers, then G
would be isomorphic as an almost complex structure to a complex manifold OG, and this
isomorphism would send every J -holomorphic function from G to G to a holomorphic
function from OG to OG. In particular, by our observation above, every D-function would
be sent to a holomorphic function. This would give an immediate proof of Theorem 8.1,
due to the fact that the result is true for holomorphic maps.

Unfortunately, we do not know how to prove for arbitraryK that every 2-dimensional
almost K-manifold is (definably) isomorphic to a K-manifold, and hence we cannot use
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the theory of K-holomorphic maps in order to deduce Theorem 8.1. We thus use a differ-
ent strategy.

8.2. A motivating example

If f were holomorphic, then the above theorem would follow from the argument principle
and the open mapping theorem. Since our functions are not necessarily holomorphic, we
describe a different, more topological proof of Theorem 8.1 for an analytic function f :
we let h.z/ D f .z/=z (complex division) for z ¤ 0 and h.0/ D 0. The assumption that
J0f D 0 implies that h is continuous at 0 and hence holomorphic. Thus h is either locally
constant or an open map in a neighborhood of 0. Now, if h were locally constant, then
f � 0 near 0 and thus is clearly non-injective, so assume that h is an open map.

We now consider the complex function M.z;w/ D z � w, and for a; b 2 C near 0, let
Ma;b.z/ D M.z � a; h.z/ � b/. Notice that M0;0.z/ D f .z/. Let deg0.f / be the local
degree of f at 0 (see details below). Since the local degree is preserved under definable
homotopy (see Fact 8.2 below), it follows from the general theory that deg0.Ma;b/ D

deg0.f / for sufficiently small a; b. Because each Ma;b is holomorphic, the sign of
jJzMa;bj is positive at a generic z in a small disc around 0, and therefore

deg0.Ma;b/ � jM
�1
a;b.w/j

for all w close to 0.
If we take w D 0, then we get

jM�1a;b.0/j � 2

(the points a and h�1.b/ being two such preimages), implying deg0.f / D deg0.Ma;b/

� 2. This implies that f is not locally injective near 0.
Our objective is to imitate the above proof, using D-functions instead of holomorphic

ones. The main obstacle is that we do not have multiplication or division in D , so we want
to produce a D-function which sufficiently resembles the multiplication function M .

8.3. Topological preliminaries

Throughout this section we will be implicitly using the o-minimal version of Jordan’s
plane curve theorem (see [40]). We recall some definitions and results (see [26, Sections
2.2–2.3]). Given a circle C � R2, a definable continuous f W R2 ! R2 and w … f .C /,
we letWC .f;w/ denote the winding number of f along C around w. If f �1.w/ is finite,
p 2 R2 and f .p/ D w, then degp.f / is defined to be WC .f; f .p// for all sufficiently
small C around p. We need the following results.

Fact 8.2. Let C � R2 be a circle oriented counterclockwise.

(1) If ¹ft W t 2 T º is a definable continuous family of functions with w … ft .C / for any
t 2 T and T definably connected, then WC .ft1 ; w/ D WC .ft2 ; w/ for all t1; t2 2 T .



P. E. Eleftheriou, A. Hasson, Y. Peterzil 3402

(2) Assume that C is a circle around p, f W C ! R2 definable and continuous, and
w1; w2 are in the same component of R2 n f .C /. Then WC .f; w1/ D WC .f; w2/.

(3) If f is definable and R-differentiable at p and Jpf is invertible, then degp.f / is
either 1 or �1, depending on whether jJp.f /j is positive or negative.

(4) Assume that f is a definable M-smooth, open map, finite-to-one in a neighborhood
U of p and that f .z/ ¤ f .p/ for all z ¤ p in U . Assume also that Jzf is invertible
of positive determinant for all generic z 2 U .

Let C � U be a circle around p. Then for all w 2 f .int.C //, if w and f .p/ are
in the same component of R2 n f .C /, then WC .f; f .p// � jf �1.w/ \ int.C /j, and
if w is also generic, then WC .f; f .p// D jf �1.w/ \ int.C /j.

Proof. (1) follows from [26, Lemma 2.13(4)]. (2) is just [26, Lemma 2.15]. The proof of
(3) is the same as the classical one, so we omit it.

(4) It follows from (2) that WC .f; f .p// D WC .f; w/. We let ¹z1; : : : ; zkº D
f �1.w/ \ int.C /. By [26, Lemma 2.25], WC .f; w/ D

Pk
iD1 degzi

.f /; so it is suffi-
cient to see that degzi

.f / � 1 for each i . We fix a small circle Ci around zi such that
WCi

.f;w/D degzi
.f /, and then fix a generic w0 2 f .int.Ci // sufficiently close to w, so

in particular the Jacobian of f at each preimage ofw0 is invertible of positive determinant.
By [26, Lemma 2.25], degzi

.f / D
P
j degpj

.f /, where the pj are the preimages of w0
in int.C /. By (3), for each pj , we have degpj

.f / D 1, thus degzi
.f / D jf �1.w0/j � 1.

The same argument shows that for generic w0 near p, we have WC .f; f .p// D
jf �1.w0/j:

8.4. Back to D-functions

We still identify an open neighborhood of G with an open subset of R2 and identify 0G
with 0 D .0; 0/. For an open set U � G and a function f W U ! G, sending x0 to y0, we
say that f is generically k-to-one at x0 if for every open V 3 x0 andW 3 y0 there exists
an open y0 2 W0 � W such that jf �1.y/ \ V j D k for any generic y 2 W0.

Below we use the notion of a D-function M from an open U � G2 into G. By that
we mean that there exists a D-definable set S � G2 �G of Morley rank 2 containing the
graph of M .

Lemma 8.3. Let U � G2 be a definable open neighborhood of .0; 0/. Assume that
M W U ! G is a continuous D-function such that M.0; y/ D M.x; 0/ D 0 for all x; y
close enough to 0. Assume that f; h 2 F and:

(1) For any a; b in some neighborhood of 0, the function ga;b.x/ D M.f .x/ 	 a;

h.x/	 b/ is not locally constant near 0.

(2) f and h are, respectively, generically k-to-one and m-to-one near 0.

Then g.x/ DM.f .x/; h.x// is, generically, at least k Cm-to-one near 0.

Proof. By the assumptions on f; h and M , for a; b in some neighborhood of 0, the
function ga;b is a non-locally-constant D-function on some neighborhood of 0, so it is
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continuous and its graph is contained in a rank-1 D-definable set. By Theorem 4.17, it is
open as well. Since it is definable in D and not locally constant, it is finite-to-one near 0.
Also, it follows from Corollary 7.15 and Proposition 7.24 that the Jacobian matrix of
ga;b has positive determinant at every point where the matrix does not vanish, which by
Lemma 7.1 is a co-finite set.

We now fix a simple closed curve C around 0 such that 0 … g.C / D g0;0.C / and
deg0.g/ D WC .g; 0/. By continuity of M and g we can find an open U1 3 0 and an open
disc U2 3 0 such that for all a; b 2 U1, ga;b.0/ 2 U2 and ga;b.C / \ U2 D ;. It follows
that ga;b.0/ and 0 are in the same component of R2 n ga;b.C /.

Take independent generics a; b 2 U1. By Fact 8.2,

deg0.g/ D WC .g; 0/ D WC .ga;b; 0/ D WC .ga;b; ga;b.0// � jg
�1
a;b.0/j:

Because a; b are independent generics, f �1.a/ \ h�1.b/ D ;. Also, by our assumptions
on M and the definition of ga;b , we have

f �1.a/ [ h�1.b/ � g�1a;b.0/:

Hence, jg�1
a;b
.0/j � m C k. It follows from Fact 8.2(4) that deg0.g/ � m C k and g is

generically at least k Cm-to-one near 0.

8.5. Producing the function M

We now proceed to construct the desired D-function M as in Lemma 8.3. We start with
a D-function k.x/ which is not G-affine and fix a generic a0 2 dom k. Define

M.x; y/ D .k.a0 ˚ x ˚ y/	 k.a0 ˚ x//	 .k.a0 ˚ y/	 k.a0//:

We write Ma.y/ DM.a; y/.
By definition,

(A) For x; y near 0, M.0; y/ DM.x; 0/ D 0.
Our next goal is to show that M can be used, similarly to multiplication, to “divide

(an appropriate) function f by x”, so that we can implicitly solve M.x; y/ D f .x/ in
some neighborhood of x D 0. This is the purpose of the next few results.

By Theorem 7.24 and the discussion in Section 7.4, we may assume that for a smooth
f 2 F, the matrix J0f has the form�

c �e

e c

�
with c; e 2 R.

We consider the partial definable map d W G ! R2, mapping a to the first column of
the Jacobian matrix J0Ma (so if J0Ma D

�
c �e
e c

�
, then d.a/ D .c; e/). Note that d.a/

completely determines J0Ma, and in particular d.0/ D 0 if and only if J0M D 0. By
Lemma 7.5 (and using the fact that QJ0f D J0f ), we find that

J0Ma D QJ0.Œk.a0 ˚ a˚ y/	 k.a0 ˚ a/�/ � QJ0.Œk.a0 ˚ y/	 k.a0/�/

D QJa0˚ak �
QJa0
k: (�)
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By Proposition 7.12 applied to k.x/, the image of every open U 3 0 under x 7! QJxk is
a 2-dimensional subset of R, hence by o-minimality this map is locally injective near the
generic a0. Equivalently, the map x 7! QJa0˚xk is locally injective near 0. Since QJa0

k is
constant, it follows that d.x/ is locally injective at 0. In particular,

(B) d.0/ D 0, and there is a neighborhood of 0 where d.a/ ¤ 0 for all a ¤ 0.

We are going to use several different norms in the next argument, so we set

k.x; y/k D
p
x2 C y2;

and for a linear map T we denote the operator norm by

kT kop D max ¹kT .x/k=kxk W x ¤ 0º:

Observe that kd.a/k D kJ0Makop. It is well-known (and easy to see) that if we identify
every linear map with a 2 � 2 matrix, then kT kop and kT k are equivalent norms.

We need an additional property of M . Given two functions ˛; ˇ W U � ! R�0 on a
punctured neighborhood U � � R2 of 0, we write ˛ � ˇ if limt!0 ˛.t/=ˇ.t/ is a positive
element of R. We will show:
(C) There are definable R>0-valued functions e.a/ and ı.a/, in some punctured neigh-

borhoodU � of 0, with e.a/�kd.a/k and ı.a/�kd.a/k2, such that for every a 2U �,
the function Ma DM.a;�/ is invertible on the disc Be.a/ and its image contains the
disc Bı.a/ (recall that for a D 0 we have Ma.x/ � 0 near 0).
In order to prove (C), we use an effective version of the inverse function theorem, as

appearing in [38, §7.2]. We give the details, with references to [38].

Proposition 8.4. There exists a constant C > 0 such that if e.a/ D kd.a/k=.4C / and
ı.a/D e.a/2=2, then for all a in a small punctured neighborhood of 0 the functionMa.y/

is injective on Be.a/ and its image contains a ball of radius ı.a/ around 0.

Proof. We start with some observations. If

A D J0Ma D

�
c �e

�e c

�
then kAkop D

p
c2 C e2 D kd.a/k: And if A is invertible, then kA�1kop D 1=kd.a/k.

Consider the partial map D W G � G ! R4 defined by D.a; y/ D JyMa 2 M2.R/.
For any a; y, we view D.a; y/ both as a linear operator and a vector in R4. Since M is a
C 2-function, kJ.a;y/Dkop is bounded by some constant C as .a; y/ varies in a neighbor-
hood B1 � B2 of .0; 0/, and we may assume that C > 1. By [38, Lemma 7.2.8] applied
to D, for all .a1; y1/; .a2; y2/ 2 B1 � B2 we have

kJy1
Ma1
� Jy2

Ma2
k < Ck.a1; y1/ � .a2; y2/k: (�)

Note also thatD.0;0/D J0M0 D 0, so restricting further B1;B2 we may also assume
that kD.a; y/k < 1 for all .a; y/ 2 B1 � B2.

We now need a version of [38, Lemma 7.2.10].



Strongly minimal groups in o-minimal structures 3405

Lemma 8.5. For every a 2 B1 such that J0Ma is invertible, and for all y1; y2 2 B2, if
ky1k; ky2k � e.a/, then:

(1) The matrices Jy1
Ma and Jy2

Ma are invertible.

(2) kMa.y1/ �Ma.y2/k � e.a/ky1 � y2k: In particular, Ma is injective on Be.a/.

Proof. We fix a with J0Ma invertible and we write J0Ma D
�
c e
�e c

�
. By .�/, for every

y 2 B2 and every E > 0, if kyk < E=.2C /, then

kJyMa � J0Mak � Ckyk � Ck.y; a/ � .0; a/k < E=2:

In particular, since J0Ma ¤ 0, we may take E < kd.a/k D kJ0Makop and then JyMa

must be non-zero. Because Ma is a D-function it follows that JyMa is invertible.
Let c0 D 1=k.J0Ma/

�1kop. As pointed out earlier, in our case

kJ0.M
�1
a /kop D k.J0Ma/

�1
kop D 1=kd.a/k;

hence c0 D kd.a/k. Now, for all non-zero vectors w, we have k.J0Ma/
�1.w/k � 1

c0
kwk,

so if we replace w with .J0Ma/
�1.z/, we get c0kzk D kd.a/k � kzk � kJ0Ma.z/k.

Hence, for any y1; y2 2 R2,

kJ0Ma.y1 � y2/k � kd.a/k � ky1 � y2k: (��)

By [38, Lemma 7.2.9], applied to the function Ma, we also have for all y1; y2 2 B2,

kMa.y1/ �Ma.y2/ � J0Ma.y1 � y2/k � ky1 � y2k max
t2Œy1;y2�

kJtMa � J0Makop;

where Œy1; y2� is the line segment in R2 connecting y1 and y2. Hence, by the triangle
inequality,

kMa.y1/ �Ma.y2/k � kJ0Ma.y1 � y2/k � ky1 � y2k max
t2Œy1;y2�

kJtMa � J0Makop:

Putting this together with .�/ and .��/, we find that if y1;y2 2B2 and kyik<E=.2C /
for i D 1; 2, then

kMa.y1/ �Ma.y2/k � .kd.a/k � Cky1 � y2k/ky1 � y2k:

If in addition ky1 � y2k < kd.a/k=.2C /, then

kMa.y1/ �Ma.y2/k �

�
kd.a/k �

kd.a/k

2

�
ky1 � y2k D

kd.a/k

2
ky1 � y2k: (���)

We summarize what we have shown so far: for any E < kd.a/k, if ky1k; ky2k <
E=.2C / and ky1 � y2k < kd.a/k=.2C /, then JyMa is invertible and .���/ holds.

We now fix the parameters as follows: set E D kd.a/k=2, e.a/ D kd.a/k=.4C / D
E=.2C /. So, if ky1k; ky2k < E=.2C /, then ky1 � y2k < E=C D kd.a/k=.2C /, so we
may apply .���/ and conclude that Jyi

is invertible for i D 1; 2 and

kMa.y1/ �Ma.y2/k �
kd.a/k

2
ky1 � y2k � e.a/ky1 � y2k:
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By the proof of [38, Theorem 2.11],

¹y W ky �Ma.0/k < e.a/
2=2º � ¹Ma.z/ W kzk < e.a/º

(apply the claim of [38, p. 113, second line] with �; c there both replaced with e.a/ here,
and ourMa substituted for f there). Thus, the image of the disc Be.a/ underMa contains
a disc of radius e.a/2=2 around Ma.0/ D 0. We do not repeat the proof here.

8.6. Proving Theorem 8.1

We now fix a D-function M W G2 ! G satisfying conditions (A)–(C) above, with d.x/
the first column of J0Mx . We first need a simple observation.

Fact 8.6. Assume that f W R2 � U ! R2 is a definable C 2-function sending 0 to 0. If
J0f D 0, then limx!0 kf ı f .x/k=kxk

2 D 0.

Proof. As already mentioned, the operator norm and the Euclidean norm on R2 are equi-
valent – so we may work with either.

We first claim that there exists some neighborhood U of 0 and a constant C such that
kf .x/k � Ckxk2 for all x 2 U .

We use the following corollary of [38, Lemma 7.2.8]: Let g be a definable C 1-map
from an open ball B � Rm centered at 0 into Rn with g.0/ D 0. Then for all x 2 B ,

kg.x/k � sup
a2B.0Ikxk/

kJagk kxk: (8.1)

We now consider the map ˛.a/ D Jaf , as a map from an open ball B around 0 2 G
(identified with a ball centered at .0; 0/ 2 R2 ) into R4. Since f is a C 2-map the map ˛
is a C 1-map and hence, by (8.1), there is some constant C (a bound on the norm of da.˛/
as a varies in B) such that for all a 2 B ,

kJaf k D k˛.a/k � Ckak:

It follows that supa2B.0Ikxk/ kJaf k � Ckxk for all x 2 B .
Next, we apply (8.1) to the map f itself and conclude, using what we have just shown,

that for all x 2 B ,

kf .x/k � sup
a2B.0Ikxk/

kJaf k kxk � Ckxk
2:

This ends the proof of our first claim.
It now follows that kf .f .x//k � Ckf .x/k2 � C 2kxk4. This yields the desired con-

clusion.

We also need the following lemma.

Lemma 8.7. If x.t/ W .a; �/ ! R2 is a definable curve tending to 0 as t ! 0, then
limt!0 kd.x.t//k=kx.t/k ¤ 0.
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Proof. Recall that d is a map from U into R2 mapping a to the first column of J0Ma,
and recall that d.a/ completely determines J0Ma.

We claim that J0.d/ is invertible. Indeed, we have seen in (�) above (Section 8.5)
that J0Ma D QJa0˚ak �

QJa0
k. By Proposition 7.12, the function a 7! QJaf is a diffeo-

morphism in a small neighborhood of the generic point a0 onto an open subset of R.
Since x 7! a0 ˚ x is a diffeomorphism (between open subsets of G) in a neighborhood
of 0, we get that a 7! QJa0˚ak is a diffeomorphism near 0 between an open subset of G
and R. Since QJa0

k is a constant matrix, it follows that a 7! J0Ma is a diffeomorphism
near 0. Thus, from the special form of J0Ma and the definition of d we deduce that J0d is
invertible.

It follows from the definition of the differential that

lim
t!0

�
d.x.t//

kx.t/k
�
J0d � x.t/

kx.t/k

�
D 0:

As J0d is invertible, the limit of J0d �x.t/
kx.t/k

is a non-zero vector, and so

lim
t!0

kd.x.t//k

kx.t/k
¤ 0:

Corollary 8.8. Let e.a/ and ı.a/ be as in Proposition 8.4. Assume that f W G ! G is a
smooth non-G-linear D-function such that f .0/D 0 and J0f D 0. Let g D f ı f . Then
there is an open neighborhood U 3 0 such that for all non-zero a 2 U , we have:

(i) kg.a/k < ı.a/.
(ii) There exists a unique y 2 Be.a/ such that M.a; y/ D g.a/:

Proof. Assume that (i) fails. Then there exists a definable function x.t/ tending to 0 in G
such that for all t ,

kg.x.t//k � ı.x.t// D kd.x.t//k2=.32C 2/:

Because J0f D 0, Fact 8.6 implies that limt!0 kg.x.t//k=kx.t/k
2 D 0. Com-

bined with the above inequality we get limx.t/!0 kd.x.t//k
2=kx.t/k2 D 0, hence

limt!0 kd.x.t//k=kx.t/k D 0, contradicting Lemma 8.7. Thus there exists U 3 0 such
that for all a 2 U n ¹0º we have kg.a/k < ı.a/. It now follows from our choice of ı.a/
that there exists a unique y 2 Be.a/ such that M.a; y/ D g.a/.

Corollary 8.9. Let f and g be as above, and e.a/, ı.a/ as in (C) above. Let U D ¹x W
jg.x/j < ı.a/º and U � D U n ¹0º. For every x 2 U �, let h.x/ be the unique y in Be.a/
such that M.x; y/ D g.x/: Then:

(i) U contains an open disc around 0.

(ii) h is differentiable on U � and limx!0 h.x/ D 0 .so it extends continuously to 0/.
Moreover, if f is not constant, then neither is h.

(iii) The continuous extension of h to U is a D-function.



P. E. Eleftheriou, A. Hasson, Y. Peterzil 3408

Proof. Clause (i) is just Corollary 8.8. To see that h is differentiable everywhere we apply
the Implicit Function Theorem toM.x;y/� g.x/. By Lemma 8.5, JyMx is invertible for
every x 2 U � and jyj < e.a/, so indeed h.x/, the solution to M.x; y/ � g.x/ D 0, is
differentiable at x.

To see that the limit of h at 0 is 0, we compute the limit along an arbitrary curve x.t/
tending to 0. By definition, jh.x.t//j < ke.t/k � kd.t/k, so since d.0/ D 0, also h.x.t//
must tend to 0. The second clause of (ii) follows since if h were constant with h.0/ D 0
then necessarily h would vanish on its domain, implying that g was identically 0 (because
M.x; 0/ D 0 for all x). Because f is not constant its image is infinite, and because it is a
D-function it follows that also g D f ı f is non-constant.

For (iii), note that the graph of h is contained in the plane curve B D ¹.x; y/ W
.x; y; g.x// 2 OM.x; y/º where OM is a D-definable set of Morley rank 2 containing the
graph of M .

We note that locally near the point .0; 0/ itself, the D-definable set B need not be the
graph of a function, but this does not come up in the argument.

Proof of Theorem 8.1. Assume that f 2 F and J0.f / D 0. We will show that f is not
injective near 0.

Consider g.x/ D f .f .x//, and assume towards a contradiction that f and thus also
g is injective near 0. By Corollary 8.9, there exists a D-function h in a neighborhood U
of 0, with h.0/ D 0, such that for all x 2 U ,

M.x; h.x// D g.x/:

We now wish to apply Lemma 8.3 to the functions x 7! x and x 7! h.x/. For that we
just need to note that for a and b near 0 the function ga;b.x/ D M.x 	 a; h.x/	 b/ is
non-constant near 0. Indeed, we can find a fixed definably connected open W 3 0 such
that W � dom.ga;b/ for all a; b close to 0. Since each ga;b is a D-function, its graph is
contained in a strongly minimal set, and hence if it were constant near 0, it would have to
be constant on the whole of W . But then, by the continuity of M , the function g D g0;0
must also be constant on W , a contradiction.

By applying Lemma 8.3, we conclude that g.x/ is at least 1C k-to-one near 0, where
k � 1. This contradicts the assumption that f and thus g were locally injective.

The following example shows that the proof of Theorem 8.1 uses more than just the
basic geometric properties of the function f .

Example 8.10. A crucial point in our above argument was that f .z/=z, or in the language
of our proof, the implicitly defined function h, is an open map. This followed from the
fact that it was a D-function.

Consider the function f .z/ D jzj2z from C to C. It is smooth everywhere, J0f D 0,
and yet it is injective everywhere. However, the function f .z/=jzj is clearly not an open
map.
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8.7. Intersection theory in families

Based on the topological properties we have established thus far we can develop some
intersection theory resembling that of complex analytic curves.

Definition 8.11. Let X; Y be two plane curves, and p D .p1; p2/ 2 X \ Y . We say that
X and Y are tangent at p if there are D-functions f; g which are C 1 in a neighborhood
of p1, with �f � X and �g � Y , such that

f .p1/ D p2 D g.p1/ and Jp1
f D Jp1

g:

The following proposition is the key technical tool for identifying tangency in the
reduct D . The first part of the proposition uses mainly the topological properties of D-
functions to show that if X;E are D-plane curves intersecting generically enough, then
the number of intersection points cannot drop under slight perturbations of the curves.
The second part of the proposition uses the differential properties of D-functions (and in
particular Theorem 8.1) to show that if X and E are tangent at a point, then the number
of intersection points is expected to increase under slight perturbations.

Proposition 8.12. Let F D ¹Ea W a 2 T º be a D-definable almost faithful family of plane
curves, D-definable over ;, and let X be a strongly minimal plane curve not almost a
straight line.

Assume that a is generic in T over ;, Ea strongly minimal, X \ Ea is finite and
p D .x0; y0/ 2 Ea \X .

(1) If p is D-generic in Ea over a, non-isolated on Ea, non-isolated in X and also D-
generic in X over ŒX�, then for every neighborhood U 3 p, there is a neighborhood
V 3 a in T such that for every a0 2 V , Ea0 intersects X in U .

(2) .Here we do not make any genericity assumptions on p:/ Assume that for some open
W 3 a, whenever a0 2 W the set Ea0 represents a D-function fa0 in a neighborhood
of .x0; y0/ and the map .a0; x/ 7! fa0.x/ is continuous at .a; x0/. Assume also thatX
represents a function g at p and Jx0

fa D Jx0
g. Then for every neighborhood U 3 p

there is a neighborhood V 3 a in T such that for every a0 2 V , either Ea0 and X are
tangent at some point in U or jEa0 \X \ U j > 1:

Proof. (1) Fix an open U D U1 � U2 3 p definably connected. Since p is non-isolated
and D-generic in Ea over a, it follows from Corollary 6.3, applied to Ea, that there are
three possibilities: (i) Ea is locally at p the graph of a constant function in the first vari-
able, (ii) Ea is locally at p the graph of a constant function in the second variable, or
(iii) Ea is locally at p the graph of a homeomorphism.

In all cases, Ea is locally at p either the graph of a continuous function mapping x0
to y0 or vice versa. Since our assumptions on p are symmetric with respect to the coordin-
ates, we may assume that there is an open U D U1 � U2 3 p such that Ea is locally the
graph of a continuous function fa W U1 ! U2.

Since, in addition, a is generic in T over ;, we may shrink U and find an open defin-
ably connected V0 3 a in T such that for every a0 2 V0, the setEa0 \U1 �U2 is the graph
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of a D-function fa0 W U1 ! U2 and furthermore, the map .a0; x/ 7! fa0.x/ is continuous
on V0 � U1.

Since p is not isolated in X , D-generic in X over ŒX�, and the projections of X on
both coordinates are finite-to-one, it follows from Corollary 6.3, applied to X , that, after
possibly shrinking U further, the set X \ U is the graph of an open continuous map
g W U1 ! U2.

Notice that for every a0 2 V0 and .x; y/ 2 U ,

.x; y/ 2 Ea0 \X () fa0.x/	 g.x/ D 0:

Because X \ Ea is finite, the function fa 	 g is not constant on its domain, so by The-
orem 4.17, fa 	 g is open on U1.

Claim. There exists V 3 a such that for every a0 2 V n ¹aº, the function fa0 	 g is an
open map on U1.

Proof of Claim. Indeed, assume towards a contradiction that for a0 2 V0 arbitrarily close
to a the map fa0 	 g is not open. Thus, by Theorem 4.17, it is constant on U1. It follows
from continuity that fa 	 g is constant on U1, contradicting our assumption.

Thus, we have shown that there exists V 3 a such that for all a0 2 V , the function
fa0 	 g is open and finite-to-one on U1. In addition, the map .a0; x/ 7! .fa0 	 g/.x/

is continuous in a neighborhood .a; x0/. Because 0 2 .fa 	 g/.U / it follows from
Fact 8.2(1, 4) that for some open V0 3 a small enough and for all a0 2 V0, the set
.fa0 	 g/.U / contains 0, so X \Ea0 \ U ¤ ;. This ends the proof of (1).

(2) Let g be a D-function with g.x0/D y0 such that �g �X and Jx0
fa D Jx0

g. Note
that .fa 	 g/.x0/ D 0 and fa ¤ g. So, for C � G a sufficiently small circle around x0
the only zero of fa 	 g in the closed ball B determined by C is x0. By continuity of
.x;a0/ 7! fa0.x/, we may find some neighborhood V �W of a such that for every a0 2 V ,
0 … .fa0 	 g/.C /. It follows from Fact 8.2(1) that

WC .fa0 	 g; 0/ D WC .fa 	 g; 0/

for every a0 2 V .
By our assumptions, Jx0

.fa 	 g/ D 0 and therefore by Theorem 8.1, fa 	 g is not
injective in any neighborhood of x0, that is, for every generic y near 0,

j.fa 	 g/
�1.y/j > 1:

It follows from Fact 8.2(4) that WC .fa 	 g; 0/ > 1. Thus, WC .fa0 	 g; 0/ > 1 for all
a0 2 V .

We can now conclude that for every a0, either 0 is a regular value of the function
fa0 	 g on int.C /, in which case it has more than one preimage and then Ea0 and X
intersect more than once in int.C /, or 0 is a singular value, in which case the curves Ea0
and X are tangent at some point in int.C /.
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9. The main theorem

We are now ready to prove our main result. Our proof follows that of [5, Theorem 7.3].
We begin with a series of useful technical facts. Throughout this section we let K WD R.

Lemma 9.1. There exist D-definable families C0 D ¹E
0
a W a 2 T0º, C1 D ¹E

1
b
W b 2 T1º

of plane curves all passing through .0; 0/ such that:

(1) For i D 0;1, Ti is strongly minimal and Ci is almost faithful.

(2) Every generic curve in Ci , i D 0;1, is closed, strongly minimal and has no isolated
points.

(3) There are definable open neighborhoods U �G of 0 and definable open sets T 00 � T0
and T 01 � T1 such that for every i D 0; 1 and a 2 T 0i , the curve Eia represents a func-
tion f it W U ! G in F.

(4) For i D 0;1, the sets
Wi WD ¹J0 f

i
a W a 2 T

0
i º

are open subsets of K with 0 2 cl.W0/ and 1 2 cl.W1/.
(5) For each i D 0;1, the map .a; x/ 7! f ia .x/ is continuous on T 0i � U .

Proof. By Claim 7.9, there exists a D-function f WU !G which is notG-affine and such
that J0f D 0. Let S � G2 be a strongly minimal set representing f . By Theorem 4.9,
we may assume that S is closed, and by allowing parameters we may assume that S has
no isolated points. Let

C0 D ¹S 	 p W p 2 Sº:

Let T0 WD S and for a 2 S let E0a WD S 	 a.
For every a D .x0; f .x0// 2 S , the curve Sa represents the D-function f .x ˚ x0/

	 f .x0/. By Proposition 7.12, the set

W D ¹J0.f .x ˚ x0/	 f .x0// W x0 2 U º

of elements of K has dimension 2, and by applying the same proposition to a smal-
ler U , we see that J0f D 0 is in the closure of a 2-dimensional component of W . By
o-minimality, we can find an open U 0 � U such that the set W0 D ¹J0.f .x ˚ x0/ 	
f .x0// W x0 2 U

0º is an open subset of K with the zero matrix in its closure. We let
T 00 WD ¹.x0; f .x0// W x0 2 U

0º. By its definition, the sets U 0, T 00 andW0 satisfy all clauses
of the lemma.

In order to obtain C1, we replace f with the function h.x/ D f .x/˚ x. It is a D-
function which is notG-affine, with J0hD 1 2K. We repeat the above process and obtain
the rest of the lemma.

Our aim is to construct a field configuration in D (see Definition 2.1). We will pull
a field configuration from K into D by using the properties of Jacobians of D-functions
as studied in the previous sections. Lemma 9.1 provides us with the families of curves
we will be using to construct the field configuration. For simplicity of notation we will
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absorb into the language all the parameters needed to define all the objects appearing in
Lemma 9.1.

Observe that althoughW0 andW1 from Lemma 9.1, are not neighborhoods of 0 and 1,
respectively, it is still the case that for every B 2 W0, if A 2 W1 and C 2 W0 are suffi-
ciently close to 1 and 0, respectively, then AB C C is still in W0 (since W0 is open).
Similarly, for every A 2 W1, if C 2 W1 is sufficiently close to 1, then AC 2 W1.

Let e D .1; 0/ be the identity of Gm ËGa, and choose b 2 W0 and h; g inW1 �W0 �
Gm Ë Ga sufficiently close to e so that gh 2 W1 � W0, and h � b and hg � b are in W0.
Note that we may choose g; h; b to be independent generics in the sense of M (and thus
also independent in the sense of K).

To simplify notation, we denote the functions in C0 by ft and the functions in C1 by
gs , and abusing notation, we will sometimes write f 2 Ci for a D-function f which is
represented by a curve in Ci . In particular, let us denote, for i D 1; 2,

C 0i D ¹f
i
t W t 2 T

0
i º:

We will construct a field configuration of Jacobian matrices of D-functions in C 00
and C 01, and show that the corresponding configuration of parameters of D-definable
curves representing those D-functions is a field configuration in D .

We get the following corollary to Lemma 9.1.

Corollary 9.2. There are a1; a2 2 W1 � K and b; b1; b2 2 W0 � K such that g D
.a1; b1/; h D .a2; b2/ 2 W1 �W0 and the following hold:

(1) There exist g1; g2 2 C 01 and f1; f2; k1 2 C 00 with J0gi D ai .for i D 1; 2/ and
J0fi D bi .for i D 1; 2/ and J0k1 D b.

(2) hg 2 W1 �W0, and there are f3 2 C 00 and g3 2 C 01 with .J0g3; J0f3/ D hg.

(3) There are k2; k3 2 C 00 such that J0k2 D h � b and J0k3 D hg � b.

For a D-function ‰, we denote by Œ‰� the D-canonical parameter of some fixed
strongly minimal set representing it. Our goal is to prove the following proposition.

Proposition 9.3. In the above notation,

Y WD ¹.Œf1�; Œg1�/; .Œf2�; Œg2�/; .Œf3�; Œg3�/; Œk1�; Œk2�; Œk3�º (�)

is a field configuration in D .

Proof. We have to verify that the following diagram satisfies (1)–(4) of Definition 2.1:

Œk1� Œk2�

Œk3�

.Œf1�; Œg1�/

.Œf2�; Œg2�/

.Œf3�; Œg3�/
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The families C0 and C1 are almost faithful, so for a function fa 2 C 00 we have aclD.a/ D
aclD.Œfa�/. Since field configurations are stable with respect to D-interalgebraicity
(over ;), we may assume that a D Œfa�. The same is true for C 01.

By construction, Y satisfies the assumptions of Lemma 2.4. So we are reduced to
proving (3) of Definition 2.1. That is, we have to show that all lines in the above diagram
represent D-dependencies. For example, we have to show that ¹Œk2�; Œk3�; .Œf2�; Œg2�/º
is D-dependent, and similarly ¹Œk1�; Œk3�; .Œf3�; Œg3�/º, etc. Since all the arguments are
similar, we only prove in detail the latter case.

It will suffice to show the following statement.

Lemma 9.4. k3 2 aclD.Œf3�; Œk1�; Œg3�/.

Proof. The geometric idea behind it goes back to Eugenia Rabinovich’s work [35]. Write
fa D k3 with a 2 T0. By our assumptions, J0fa is generic in K over ;. To simplify the
notation, we denote the curves in C0 by Ea0 , a0 2 T0, and the curves in C1 by Cg , g 2 T1.

LetX be a strongly minimal subset of S WD .Ef3
ıEk1

/�Cg3
; representing the func-

tion .f3 ı k1/˚ g3 (see Lemma 7.3 for the notation). We want to show that a 2 aclD.ŒS�/.
Assume towards a contradiction that this is not the case.

Claim 1. The projections of X on both coordinates are infinite and all isolated points
of X are in aclD.ŒS�/ .

Proof of Claim 1. By our choice of C0, the curves Ef3
and Ek1

are strongly minimal
without isolated points. It follows that each of these curves has a finite intersection with
every straight line, and thusEf3

ıEk1
has no isolated points. Indeed, if .a;b/ 2Ef3

ıEk1

there is some c such that .a; c/ 2 Ek1
and .c; b/ 2 Ef3

. Since these curves are not straight
lines and have no isolated points, they are open over c at .a; c/ and .c; b/, respectively
(Corollary 6.3). So for every open U 3 .a; c/ there is c0 2 �2.U \ Ek1

/ distinct from c.
Hence there is some a0 such that .a0; c0/ 2 U \ Ek1

. A similar argument will provide us
with some .c0; b0/ 2 Ef3

so .a0; b0/ 2 Ef3
ıEk1

with .a0; b0/ arbitrarily close to .a; b/.
Note also that the curve Cg3

has no isolated points. An argument similar to the one
in the previous paragraph shows that the �-sum S of Ef3

ı Ek1
and Cg3

has no isolated
points either. Let I.X/ be the set of isolated points of X . Let X 0 WD X n I.X/. Then, as
S has no isolated points, I.X/ � cl.S n I.X//. But cl.S n I.X// D cl.S nX/ [ cl.X 0/,
and since I.X/ \ cl.X 0/ D ; we find that I.X/ � fr.S n X/. Since ŒX� 2 aclD.S/, we
deduce from Theorem 4.9 that fr.S nX/ � aclD.ŒS�/.

SinceX is a strongly minimal set representing a function .f3 ı k1/˚ g3, its projection
on the first coordinate is finite-to-one. Since the function has a non-zero Jacobian matrix
at 0, it is non-constant and hence has an infinite projection in the second coordinate as
well.

It follows from Claim 1 that the (finite) set of isolated points of X is contained in a
D-algebraic set D-definable over ŒS�. Thus, by removing this D-definable set there is no
loss of generality in assuming that X contains no isolated points.
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Note that the assumption that a … aclD.ŒS�/ implies that a … aclD.ŒX�/. We will ulti-
mately show that this leads to a contradiction. Because Ea is strongly minimal, it follows
that Ea \X is finite.

Since T0 is strongly minimal, there exists some natural number n such that jX \ Ebj
D n for all b 2 T0 which are D-generic over ŒX�. Thus, the set

F D ¹b 2 T0 W jX \Ebj < nº

is finite, defined in D over ŒX�. We will show that a 2 F , thus reaching a contradiction.
By our choice of a, dim.J0fa=;/D 2D dimG and since J0fa 2 dcl.a/, we also have

dim.a=;/ D 2. Thus we also have a 2 dcl.J0fa/.

Claim 2. Let ¹x1; : : : ;xkº WDX \Ea. Then for every i D 1; : : : ;k, either RM.xi=a/D 1,
or xi 2 aclD.;/.

Proof of Claim 2. We consider the family

F 0 D ¹.Ea1
ıEa2

/� Cb W a1; a1 2 T0; b 2 T1º;

and for simplicity write the members of F 0 as ¹Xt W t 2 T º. By our choice of X , there is
t0 2 T generic such thatX is a strongly minimal subset ofXt0 , so definable over aclD.t0/.
We may now replace F 0 by another family of the same dimension, defined over ;, such
that the generic member of F 0 is strongly minimal and X belongs to the family. We call
this new family F .

Thus X D Xt0 , with F D ¹Xt W t 2 T º a D-definable almost faithful family of plane
curves, and t0 generic in T over ;. Our underlying negation assumption implies that
RM.a=t0/ D 1.

Assume now that RM.xi=a/¤ 1. Since xi 2Ea it follows that xi 2 aclD.a/. Because
RM.a=t0/D 1 it follows that t0 is D-generic in T over a and hence also over xi . But then
xi is inXt for every t which is D-generic in T . This necessarily implies that xi 2 aclD.;/
because there can only be finitely many points in G � G belonging to every D-generic
curve Xt . This ends the proof of Claim 2.

We now return to the proof of Lemma 9.4. By Claim 2 we may assume that RM.xi=a/
D 1 for i D 1; : : : ; r , and xi 2 aclD.;/ for i D r C 1; : : : ; k. Without loss of generality,
xk D 0.

In order to show that a 2 F , we have to show that k < n. Towards that end, we will
show that there are infinitely many a0 2 T0 such that n D jX \Ea0 j � k C 1.

LetU1; : : : ;Ur ;Uk be pairwise disjoint open neighborhoods of x1; : : : ;xr ;xk , respect-
ively. Since xrC1; : : : ; xk are in aclD.;/, each of these points belongs to all but finitely
many Ea0 .

Because X and Ea have no isolated points, we can apply Proposition 8.12. We first
apply Proposition 8.12(2) to 0 D xk , and obtain V 3 a such that for every a0 2 V ,
jEa0 \ X \ Ukj � 2, counted with multiplicity. Because J0Ea is generic in K, it is
attained at most finitely many times and hence by choosing V sufficiently small and
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a0 2 V , a0¤ a, the curvesEa0 andX are not tangent at 0, so there exists p 2Ea0 \X \Uk
which is non-zero. It follows that for all but finitely many a0 2 V , jEa0 \X \ Ukj � 2.

We now apply Proposition 8.12(1) to x1; : : : ; xr , and obtain a subneighborhood V 0

of a such that for every a0 2 V 0 and i D 1; : : : ; r , Ea0 \X \ Ui ¤ ;.
Summarizing, we see that for every a0 ¤ a close to a, we have jEa0 \ X j � k C 1,

and therefore a is in the finite set F defined above. This ends the proof of Lemma 9.4,
and also the proof of Proposition 9.3.

We can now prove our main result.

Theorem 9.5. Let D D hGI˚; : : :i be a strongly minimal expansion of a group G, inter-
pretable in an o-minimal expansion M of a fieldR, with dimM.G/D 2. If D is not locally
modular, then there exists in D an interpretable algebraically closed fieldK ' R.

p
�1/,

and there exists a K-algebraic group H such that G and H are definably isomorphic
in D and every D-definable subset of Hn is K-constructible.

Moreover, the structure D and the field K are bi-interpretable.

Proof. By Proposition 9.3, the configuration Y of .�/ is a field configuration in D .
By Fact 2.3, an algebraically closed fieldK is interpretable in D . By strong minimal-

ity, there exists a D-definable function f WG!K with finite fibers (this is standard using
the symmetric functions on K). By [24, Lemma 4.6] (and using strong minimality of G),
there exists a finite subgroup F � G such that G=F is internal to K in the structure D

(it is in fact the proof of the lemma that provides us with the finite subgroup F ). By [26,
Theorem 3.1], every D-definable subset of Kn is K-constructible, and therefore G=F is
D-definably isomorphic to aK-constructible group. By Weil–Hrushovski [3, Theorem 1],
it is therefore definably isomorphic to aK-algebraic groupH (of algebraic dimension 1).
It is known that H , as an algebraic curve with all its induced K-algebraic structure, is
bi-interpretable with K (this follows, for example, from the main result of [13]). For the
sake of completeness let us sketch this argument.

If C is an algebraic curve in K, then clearly C is interpretable in K. Since, up to
finitely many points, C is affine, it is interalgebraic in K with K. Using this interalgeb-
raicity, we can pull back any field configuration from K to C allowing us to interpret a
field K 0 in C (with its K-induced structure). By [34, Theorem 4.15], K 0 is K-definably
isomorphic toK, so in particularK is interpretable inC . Finally, the isomorphism fromK

to K 0 takes C to a C -interpretable curve C 0. The induced map from C to C 0 is K-defin-
able, hence it is definable in C . This shows that C and K are bi-interpretable.

SoH and hence alsoG=F , with all its induced D-structure, is bi-interpretable withK.
By Lemma 3.12, the structure D is also bi-interpretable with K.

9.1. Concluding remarks

Note that as a result of the main theorem, the almost K-structure on G which we intro-
duced in Section 8.1 turns out to be definably isomorphic to the K-structure of the algeb-
raic group H . Thus, in this very special setting, we are able to mimic the classical result
about the integrability of 2-dimensional almost complex curves.
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Also, note that the general o-minimal version of Zilber’s conjecture remains open for
general strongly minimal structures whose universe has dimension 2. As noted earlier, the
more general conjecture, allowing underlying sets of arbitrary dimension, is open even
for reducts of the complex field.
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