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Abstract. I give a simple construction of the Coulomb branches C3;4.GIE/ of gauge theory in
three and four dimensions, defined by H. Nakajima [Adv. Theor. Math. Phys. 20 (2016)] and
A. Braverman, M. Finkelberg and H. Nakajima [Adv. Theor. Math. Phys. 22 (2018)] for a compact
Lie group G and a polarizable quaternionic representation E. The manifolds C.GI 0/ are abel-
ian group schemes over the bases of regular adjoint GC-orbits, respectively conjugacy classes, and
C.GIE/ is glued together over the base from two copies of C.GI 0/ shifted by a rational Lagrangian
section "V , representing the Euler class of the index bundle of a polarization V of E. Extending the
interpretation of C3.GI 0/ as “classifying space” for topological 2D gauge theories, I characterize
functions on C3.GIE/ as operators on the equivariant quantum cohomologies of M � V , for com-
pact symplectic G-manifolds M . The non-commutative version has a similar description in terms
of the �-class of V .
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1. Introduction

Associated to a compact connected Lie group G and a quaternionic representation E,
there are expected to be Coulomb branches C3;4.GIE/ of N D 4 SUSY gauge theory in
dimensions 3 and 4, with matter fields in the representation E. They ought to be com-
ponents of the moduli space of vacua, representing solutions of the monopole equations
with singularities. Following early physics leads [8, 17] and more recent calculations [9],
a precise definition for these spaces was proposed in the series of papers [6, 14] by
Nakajima and collaborators in the case when E is polarizable (isomorphic to V ˚ V _

for some complex representation V ). Abelian groups were handled independently by
Bullimore, Dimofte and Gaitto [7] from a physics perspective, while the case of the zero
representation had been developed in [4], although only later recognized as such [19,20].

The C3;4 are expected to be hyperkähler (insofar as this makes sense for singular
spaces), with C3 carrying an SU.2/ hyperkähler rotation. They are constructed in [6] as
algebraic Poisson spaces, with C�-action in the case of C3. We shall rediscover them as
such in a simpler construction, which illuminates their relevance to 2-dimensional gauge
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theory: the C3;4 for polarized E are built from their more basic versions for the zero
representation E D 0. Specifically, they are affinizations of a space constructed by partial
identification of two copies of C.GI 0/. The identification is implemented by a Lagrangian
shift along the fibers of the (Toda) integrable system structure of the C3;4, and its effect is
to impose growth conditions, selecting a subring of regular functions. The non-commu-
tative versions quantize this Lagrangian shift of the C3 into conjugation by the �-class of
the representation (respectively, a specialization of its Jackson-�p version for C4).

The reconstruction results, Theorems 1, 2 and 4, are more elementary than their 2D
gauge theory interpretation, but it is the latter which seems to give them meaning. In
compromise, I have attempted to isolate the gauge theory comments (for which a rigorous
treatment has not yet been published) into paragraphs whose omission does not harm the
remaining mathematics. I have also separated the non-commutative version of the story
into the final section: its meshing with quantum cohomology theory is still incomplete.

A pedestrian angle on this paper’s results is the abelianization underlying the calcu-
lations – a reduction to the Cartan subgroup H and Weyl group W . This is seen in the
description of the Euler Lagrangians (4.1) which are used to build the “material” Coulomb
branches from C.GI 0/, and is closely related to the abelianized index formula in [22],
which ends up governing the Gauged Linear Sigma model (GLSM). Oversimplifying
a bit, the interesting difference between G and its abelian reduction is already contained
in C.GI 0/, the effect of adding a polarized representation being captured by a calculus
reminiscent of toric geometry. Abelianization also has an explicit manifestation, similar
to the Weyl character formula, in an isomorphism

C3;4.GIE/ Š C3;4
�
H IE 	 .g=h/˚2/

�
=W;

whenever the formal difference on the right is a genuine representation of H ; a quick
argument has been included in the appendix, as it appeared not to be well known.

A qualification is in order: the simple characterization above, although not the abelian-
ization formula, apply to the variants of C3;4 enhanced by the (complex) mass parame-
ters [7], or by the more general flavor symmetries [6, Section 3 (v)]. The original spaces
are subsequently recovered by setting the mass parameters to zero; however, at least one
parameter, effecting a compactification of V , must be initially turned on. The moral
explanation is easily expressed in physics language, and in a way that can be made
mathematically precise. What my construction does is characterize the 3-dimensional
topological gauge theories underlying the C3;4 by means of their 2D topological bound-
ary theories – a characterization accurate enough, at least, to determine their expected
Coulomb branches. For pure gauge theory (E D 0), I explained in [20, Section 6] in what
sense the (A-models of) flag varieties of G supply a complete family of boundary theo-
ries, the Coulomb branch being akin to a direct integral of those: more precisely, it has
a Lagrangian foliation by the mirrors of flag varieties. WithE-matter added, a new bound-
ary theory, the GLSM of V by G (again in the A-version) must be introduced as a factor,
carrying the action of the matter fields. Since V is not compact, this model must be regu-
larized by the inclusion of mass parameters. There is a mathematically sound version of
this statement: the GLSM is a 2D TQFT over the ring of rational functions in the complex
mass parameters, and has singularities at zero mass.
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The same perspective points to a difficulty in extending these constructions when E
cannot be polarized. There is no a priori reason why a 3D TQFT should be character-
ized by its topological boundary theories; Chern–Simons theory (for general levels) is
a notorious counter-example [13]. AG-invariant Lagrangian V � E seems to provide (in
addition to the flag varieties) a generating boundary condition for the 3D gauge theory
with matter – specifically, it is a domain wall between G-gauge theory with and without
matter. No substitute is apparent in general. Clearly this deserves further thought. One
obstacle is that 3D gauge theory gives only a partially defined TQFT, so its mathematical
structure is incompletely settled, and the list of desiderata for a presumptive reconstruction
is not known with clarity.

2. Overview and key examples

This section reviews the basic ingredients of the story and indicates the construction of
Coulomb branches using U1 as an example. The full statements require more preparation,
and are found in Section 4.

2.1. Background

The complex-algebraic symplectic manifold C3.GI 0/was introduced for generalG in [4];
for G D SUn, it had been studied in [1], in the guise of the moduli space of SU2 mono-
poles of charge n. The description most relevant for us is SpecHG

� .�GIC/, the conju-
gation-equivariant homology of the based loop group �G, with its Pontryagin product.
From here, its rôle as a classifying space for topological 2-dimensional gauge theories
was developed in [19, 20], where the space was denoted BFM.G_/. As we now recall,
this virtue of C3.GI 0/must be read in the sense of semiclassical symplectic calculus, and
not as a spectral theorem à la Gelfand–Naimark. It gives the “mirror description” of the
gauged A-models in two dimensions.

2.2. Relation with quantum cohomology

A partial summary of the classifying property of C3.GI 0/ is that its regular functions
(sometimes called the ring of chiral operators) act on the equivariant quantum coho-
mologies QH�G.M/ of compact G-Hamiltonian symplectic manifolds M , in a manner
making the E2 structure1 on QH�G.M/ compatible with the E3 structure defined by the
Poisson tensor on C3. This lays outQH�G.M/ as a sheaf over C3, which turns out to have
Lagrangian support (Remark 2.1). This construction generalizes Seidel’s theorem [18] on
the action of �1G onQH�.M/, as well as the shift operators onQH� and their equivari-
ant extensions [15]. In fact, these latter ingredients are the “leading order” description of
the story of [20] in the case of torus actions. A similar narrative applies to C4.GI 0/ and

1Understood in the derived sense.
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equivariant quantumK-theory (minding, however, the orbifold nature of C4 for generalG,
see Section 3) even though the general framework for K-theoretic mirror symmetry is
incompletely understood.

Remark 2.1. The shortest argument for the Lagrangian property of QH�G.M/ passes
to the non-commutative Coulomb branches of Section 7, over which the versions of the
equivariant quantum cohomologies QH�G.M/ equivariant under loop rotation (which are
related to cyclic homology of the Fukaya category) are naturally modules. The Lagrangian
property is now a consequence of the integrability of characteristics [10] supplemented
by finiteness of QH�G.M/ over H�.BG/.

2.3. Coulomb branches with matter

The universal property of the C.GI 0/ leaves the spaces C.GIE/ in search of a rôle.
Their new characterization addresses this riddle. Namely, the Seidel shift operators act
on QH�.M/ only when M is compact; for more general spaces, the most we expect is
an action on the symplectic cohomology, when the latter is defined [16]. Equivariant sym-
plectic cohomology SH�G.X/ is sometimes a localization of QH�G.X/, in which case the
space C3.GI 0/ will capture a dense open part of QH�G.X/, with portions lost at infinity.
Notably, this is the case when X DM � V , with compact M and a linear G-space V .
The lost part ofQH�G.M � V / can be captured in a second chart of C.GI 0/, shifted from
the original by the effect of the functor M 7!M � V .

This shift is implemented as follows. The tensor product defines a symmetric monoidal
structure on 2-dimensional TQFTs with G-gauge symmetry. This structure is mirrored
in the classifying space C3.GI 0/ into a multiplication along an abelian group structure
over SpecHG

� .point/. (The latter is isomorphic to the space g
reg
C =GC of regular adjoint

orbits, and the projection exhibits C3.GI 0/ as a fiberwise group-completion of the classi-
cal Toda integrable system; see Section 3.2.) The operation QH�G.M/ SH�G.M � V /

is implemented by multiplication by a certain rational Lagrangian section "V of this group
scheme, whose structure sheaf is SH�G.V /. The Lagrangian "V should be regarded as the
gauged B-model mirror of V : see Remark 4.2.

The precise statement of the main results requires preparation and is postponed to
Section 4; the remainder of this section develops two key examples.

2.4. Example I: G D U1, with the standard representation L

We have
C3.U1I 0/ D SpecHU1

� .�U1IC/ D C �C� Š T _C�; (2.2)

with C� dual to U1: the coordinates � and z on the two factors generate H 2.BU1/
and �1U1. The canonical symplectic form d� ^ dz=z also admits an intrinsic topological
definition, in terms of a natural circle action on BU1 ��U1 (cf. Sections 3.1 and 7.2).

One usually defines the toric mirror of the space L as the function (super-potential)
 .z/ D z on the space C�. The differential d defines the Lagrangian

"L WD ¹� D zº � T
_C�:
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View "L instead as the rational section � 7! z D � of the projection T _C� ! C to the
� -coordinate, and note in passing the Legendre transform  �.�/ D �.log � � 1/ of  , in
the sense that "L D exp.d �/.

Functions on "L are identified with CŒ�˙�; this is the U1-equivariant symplectic coho-
mology of L, rather than its quantum cohomology CŒ� �. We can recover the full quantum
cohomology by gluing, onto the open set � ¤ 0 in (2.2), a second copy T _C�, with coor-
dinates � and z0 D z=� . This gluing is compatible with projection to the � -coordinate
and leads to the space C2 n ¹0º, with coordinates .x; y/ D .z; �=z/, living over the line
� D xy. The section "L closes now to the line y D 1, identified by projection with the
full � -axis.

In [6, 7], C3.U1IL˚ L_/ is taken to be the affine completion C2 D Spec CŒx; y�.
The following characterization is now obvious.

Proposition 2.3. The ring CŒx; y� is the subring of regular functions f .�; z/ on T _C�

with the property that f .�; z�/ is also regular.

Our Lagrangian "L is related to the Euler class of the index bundle as follows. Denote
by Pic.P1/ the moduli stack of holomorphic line bundles on P1; its equivariant homotopy
type is the stack BU1 ��U1 implicit in (2.2). Over P1 �Pic.P1/ lives the universal
line bundle, with fiber the standard representation L. Its index along P1, with a simple
vanishing constraint at a single marked point, is a virtual bundle IndL over Pic.P1/, with
equivariant Euler class eL 2 H�.Pic.P1//Œ��1� in the localized equivariant cohomology
ring. Specifically, IndL D L˚n and eL D �n on the component Picn, n 2 Z D �1U1.
The following is clear from these constructions.

Proposition 2.4. The rational automorphism of multiplication by "L on T _C�, z 7! �z,
corresponds to the cap-product action of eL on HU1

� .�U.1/IC/Œ��1�.

These propositions capture the rôle of C.GIL˚ L_/ in quantum cohomology: the
condition of regularity under capping with the Euler class picks out precisely those equiv-
ariant Seidel shift operators which act on QH�U1.L/. More generally, we have:

Proposition 2.5. The subring CŒx; y� � CŒ�; z˙� acts on QH�U1.M�L/ for any com-
pact U1-Hamiltonian symplectic manifold M , and it is the largest subring with that
property.

Proof. The subring CŒ� � Š HU1
� .point/ acts in the natural way. Recall now (for instance,

[11, 15]) that the Seidel element �n associated with zn (which is a co-character of the
original U1) is the following “twisted 1-point function”: namely the element inQH�U1.X/
defined by the evaluation ev1 at1 of stable sections of the X -bundle over P1 associated
to O.�n/. All is well when X is compact: �n is a unit in QH�U1.X/, with inverse ��n.
(Without equivariance, this goes back to Seidel’s original paper [18].) For X DM � L
though, we have a problem when n < 0: equivariant integration along the fibers of ev1
incorporates integration along IndL, the kernel of H 0.P1IO.�n/˝C� L/! L, with
dimension .�n/; the operation contributes its Euler class as a denominator, a factor of �n.
The factor � in y D �z�1 precisely cancels the denominator.
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2.5. Generalization

Propositions 2.3–2.5 extend to all G and representations V , as Theorems 1 and 3 in Sec-
tion 4; Theorem 2 is the K-theory analogue. Non-commutative versions of Coulomb
branches are described in Section 7. One required change throughout is the inclusion
in the ground ring of an additional equivariant parameter �, from the natural C�-scaling
of V . The need for this will become evident in the example that follows. One can indeed
include the full G-automorphism group of V (the flavor symmetries), but any single scal-
ing symmetry that is compactifying – fully expanding or fully contracting – suffices. I will
spell out the case of the overall scaling.

2.6. Example II: U1 with a general representation V

For a d -dimensional representation V of U1 with weights n1; : : : ; nd 2 Z, the super-
potential  V W C� ! C for its mirror is computed by the following adaptation of the
Givental–Hori–Vafa recipe.2 The defining homomorphism �V W U1 ! Ud1 of V dualizes
to �_V W .C

�/d ! C�. The standard toric super-potential for Cd on the source .C�/d ,

‰.z1; : : : ; zd / D z1 C � � � C zd ;

“pushes down” to the multi-valued function  V .z/ on the target C� whose multi-values
are the critical values of ‰ along the fibers of �_V . A clean restatement is that the Legen-
dre transform  �V .�/ is the restriction, under the infinitesimal representation d�V , of the
Legendre transform of ‰: in obvious notation,

‰�.�1; : : : ; �d / D
X
k

�k.log �k � 1/;  �V D ‰
�
ı d�V :

Our Lagrangian "V is the graph of exp.d �V /, namely � 7! z D
Q
k.nk�/

nk . The
reader should meet no difficulty in comparing this "V with the Euler class eV of the
respective index bundle over Pic, as in Proposition 2.4. It should be equally clear how to
extend this prescription to the case of a higher-rank torus and a general representation.

However, literal application of the lesson from Example 2.4 runs into trouble, already
for U1 with V D L˚ L_. In the GHV construction, the super-potential ‰ D z1 C z2
has no critical points along the fibers of �V .z1;2/ D z1=z2. We have better luck with the
Legendre transform,

 �V .�/ D �.log � � 1/ � �.log.��/ � 1/ D �i�;

which identifies "V with the cotangent fiber over exp.�i/ D �1 2 C�, and induces the
automorphism z $ .�z/ of T _C�. While this does match Proposition 2.4, thanks to
the Euler class cancellation eL˚L_ D eL [ eL_ D .�1/n on Picn, raw application of
Proposition 2.3 would falsely predict that C3.U1; V ˚ V _/ D C3.U1; 0/, because "V is
now regular.

2The recipe is justified in the SYZ construction by the count of holomorphic disks bounding
the standard coordinate tori. We are omitting the small quantum parameters, one coupled to each
coordinate zk .
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The remedy incorporates scaling-equivariance into the Euler index class, converting it
into the �-homogenized total Chern class. As a Laurent series in ��1, the latter is defined
for arbitrary virtual bundles. For the index bundles over G Ë�G of representations of
general compact groups G, we will always find rational functions. With V D L˚ L_,
we get .�C �/n.� � �/�n on Picn, and the earlier cancellation in the Euler class is now
seen to be “fake”, arising from premature specialization to � D 0. The Coulomb branch
is spelt out in Example 5.2.

Algebraically, � is to be treated as an independent parameter. It changes the super-
potential ‰ by subtracting �

P
log zk ; this adds scale-equivariance to the mirror of Cd .

The Legendre transform ‰� is modified by the substitution �k 7! �k C �, and the topo-
logical origin as a scale-equivariant promotion of the Chern class is now clearly displayed.
For a general V , the remedied Lagrangian is defined by z D

Q
k.�C nk�/

nk ; in particu-
lar, it determines the representation.

Extension to a higher-rank torus, with arbitrary representations, is now a simple mat-
ter, and it should also be clear how to incorporate the entire flavor symmetry group (the
G-automorphism group of V ), if desired, by equivariant enhancements of the Lie alge-
bra coordinates �k . There is a characterization of C3 analogous to Proposition 2.3, as
the subring of regular functions on C3.T I 0/ which survive translation by the newly
�-remedied "V , and it is easy to relate it with the abelian presentations in [7, 14]. The
contribution of this paper is the non-abelian generalization.

Remark 2.6. The remedy of scale-equivariance should not surprise readers versed in
toric mirror symmetry: naïve application of the GHV recipe is problematic for toric
actions with non-compact quotients – which is when our fake cancellations can happen –
and the recipe can be corrected by including equivariance under the full torus.

3. Background on Coulomb branches

We recall here the construction and properties of Coulomb branches; this mostly con-
denses material from [3, 4, 6]. I will write C3;4 for C3;4.GI 0/ when no confusion arises.
Denote by H � G a maximal torus and by H_; G_ the Langlands dual groups, g; h the
Lie algebras, W the Weyl group.

3.1. The basic Coulomb branches [4]

The space C3 WD SpecHG
� .�GIC/ is an affine symplectic resolution of singularities

of the Weyl quotient T _H_C=W . It arises by adjoining to T _H_C , prior to Weyl divi-
sion, the functions .e˛

_

� 1/=˛ for all root–coroot pairs ˛; ˛_ of G. The C�-action
on the cotangent fibers arises from the homology grading and scales the symplectic form.
The underlying Poisson structure is the leading term of a non-commutative deformation
over the ring CŒh� D H�.BR/, obtained by incorporating in to C3 the equivariance under
the loop-rotation circle R. The loop rotation is revealed by writing �G Š LG=G.

For simply connected G, the spectrum of KG� .�GIC/ is also a symplectic manifold
giving an affine resolution of .HC �H

_
C /=W . This is now accomplished by adjoining the



C. Teleman 3504

functions .e˛
_

� 1/=.e˛ � 1/ before Weyl division. However, the space has singularities
when �1G has torsion. Write G D QG=� for the torsion subgroup � � �1G, H D QH=� .
As a subgroup of Z. QG/, � acts by automorphisms ofK QG.X/˝C for any G-space X : to
see this, decompose a class in K QG.X/ into �-eigen-bundles, and multiply each of them
by the corresponding character of � , before re-summing to a complex K-class. We adopt
the smooth symplectic orbifold � Ë SpecK QG� .�GIC/ as the definition of C4.

Remark 3.1 (Sphere topology). Some features of C3;4 are explained by Chas–Sullivan
theory in dimension 3, one higher than usual. The underlying topological object is the
mapping space from S2 to the stack BG; it has a natural E3 structure, which turns out
to correspond to the Poisson form on C3;4.GI 0/. Loop rotation is seen in the presenta-
tion as the two-sided groupoid G Ë LG ÌG, with Hecke-style product (see Remark 3.6).
Tracking the loop rotation breaks E3 down to E1, because rotating spheres in an ambient
R3 may be strung together linearly as beads on the rotation axis, but can no longer move
around each other. This leads to the non-commutative Coulomb branches we shall review
in Section 7.

3.2. Group scheme structure

The Hopf algebra structures of HG
� .�G/;K

G
� .�G/ over the ground rings H�G ; KG of

a point lead to relative abelian group structures

C3.GI 0/
�
�! hC=W; C4.GI 0/

�
�! � Ë . QHC=W /: (3.2)

When �1G has torsion, the second base is an affine orbifold whose ring of functions
is KG.point/. (The abelian property is a piece of characteristic-zero good fortune: the
correct commutativity structure is E3, as explained in Remark 3.1, but this decouples
into a strictly commutative and a graded Poisson structure.) These maps define integrable
systems: � is a partial completion of the classical Toda system3 [3], whereas � is its
finite-difference version.

Remark 3.3 (Adjoint and Whittaker descriptions). As an algebraic symplectic manifold,
C3 is the algebraic symplectic reduction T _regG

_
C==G

_
C of the fiberwise-regular part of

the cotangent bundle under conjugation. There is a similar description of C4 using the
Langlands dual Kac-Moody group (not the loop group ofG_), capturing the holomorphic
(but not algebraic) symplectic structure.

The space C3 has another description as the two-sided symplectic reduction of T _G_C
by N , at the regular nilpotent character. Clearly, this is algebraic symplectic; much less
obviously, it is hyperkähler, thanks to work of Bielawski on the Nahm equation [5].
The non-commutative deformation has a corresponding description in terms of N �N
monodromic differential operators on G_C [3].

In both descriptions, multiplication along the group G_ induces the group scheme
structure of Section 3.2. Commutativity is more evident in the adjoint description, where
the Toda fibers are the centralizers of regular co-adjoint orbits in g_C .

3This was rediscovered in [20]; I thank H. Nakajima for pointing me to the original reference.
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3.3. Coulomb branches for E D V ˚ V _

To build the spaces C3;4.GIE/, we follow [6], to which we refer for full details, and
replace �G in the original C by a linear space LV ! �aG, a stratified space whose
fibers are vector bundles over the Schubert strata of the algebraic model

�aG WD GC..z//=GCŒŒz��

of �G. The fiber of LV over a Laurent loop 
 2 �aG is the kernel of the difference

LV j
 ���! V ŒŒz��˚ V ŒŒz��
Id�

���! V..z//: (3.4)

Projection embeds LV in either factor V ŒŒz�� with finite co-dimension, which is bounded
on any finite union of strata in �aG. More precisely, the complex in (3.4) descends
to GŒŒz��n�aG, with the left and right copies of GŒŒz�� acting on the respective factors
V ŒŒz��, and the left one alone acting on V..z//. Over any finite union of strata, LV contains
two sub-bundles of finite co-dimension, coming from a left and a right znV ŒŒz��, for suffi-
ciently large n. This stratified finiteness lets one define the Borel–Moore (K-)homologies
BMHG

� .LV /; BMK
G
� .LV /, renormalising the grading as if dimV ŒŒz�� were zero.

The normalized grading is compatible with the multiplication defined by the following
correspondence diagram on the fibers of LV , which lives over the multiplication of two
loops 
; ı 2 �aG:

LV j
 ˚ LV jı � LV j
 ˚V ŒŒz�� LV jı � LV j
 �ı I (3.5)

the sum in the middle is fibered over the right component ofLV j
 and the left one ofLV jı ,
while the right embedding is the projection to the outer V ŒŒz�� summands. The wrong-
way map in homology along the first inclusion is well-defined, over 
; ı in a finite range
of Schubert cells, after modding out by a common subspace znV ŒŒz��, and the result is
independent of n.

As before, non-commutative deformations arise by including the loop rotation
R-action on �G and on V ŒŒz��; their leading terms define Poisson structures.

Remark 3.6 (E3 Hecke property). A Laurent loop defines a transition function for a prin-
cipalGC-bundle over the non-separated disk�W�with doubled origin. The multiplications
have a Hecke interpretation as correspondences on G Ë�G and LV , induced by follow-
ing left-to-right the maps relating non-separated disks with doubled and tripled centers:

.�W�/

.�W�/

g
� .�

:::�/
i
� .�W�/:

The map g glues the bottom sheet of the first disk to the top sheet of the second, while i
hits the outer centers of the triple-centered disk. The E3 property comes from sliding the
multiple centers around, as in Chas–Sullivan sphere topology. With rotation-equivariance,
this freedom is lost and we are reduced to an E1 multiplication.

OnG-bundles, the Hecke operation is represented by multiplication of transition func-
tions, once we identify, on the left side, the top bundle on its bottom sheet with the
bottom bundle on its top sheet. Next, associated to the representation V is a vector bun-
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dle over �W�, whose space of global sections is LV . The correspondence (3.5) arises by
retaining those pairs of global sections on the left which match on the glued pair of sheets,
and then restricting them to the top and bottom sheets of the triple-centered disk.

3.4. Massive versions

We enhance the Coulomb branches by the addition of a symmetry in which C� � S1

scales the fibers of LV :

Cı3.GIE/ WD SpecBMHG�S1

� .LV IC/; projecting to hC=W �C;

Cı4.GIE/ WD � Ë SpecBMK QG�S
1

� .LV IC/; projecting to � Ë . QHC=W / �C�:

The projections to the massive Toda bases are defined as in (3.2), and denoted by �.�/
and �.m/, with generators� 2 H 2.BS1/;m˙ 2 KS1.point/. The fibers over fixed values
of the parameters �;m are total spaces of (usually singular) integrable systems; this will
follow from flatness of the projections (Section 5.7). The scaling is trivial when E D 0
and LV D �aG, but it will couple to the Euler class of the index bundle over G Ë�G,
promoting it to the total Chern class.

The notation is subtly abusive: the Cı depend on the polarization V and not just on E.
For instance, switching V $ V _ leads an isomorphic space only if we also change the
orientation of the rotating circle. This V -dependence disappears at � D 0 or m D 1. We
will see in Section 6 that the Cı.GIE/ are flat over CŒ��;CŒm˙�, and that the same spaces
C3;4.GIE/, as defined earlier in this section, appear by specializing to � D 0 or m D 1,
independently of the choice of V .

4. Main results

We are finally in a position to state Theorems 1–3; the non-commutative analogues of
Theorems 1 and 2 will wait until Section 7. First, I describe the Lagrangians generaliz-
ing the massive "V of Example 2.4. Their Euler class interpretation, already mentioned
following Proposition 2.3, will be spelt out in Section 6.

4.1. The Euler Lagrangians

For w 2 C� and � a weight of H , w� WD exp.� logw/ determines a point in H_C . Con-
sider the following rational maps from hC �C and HC �C� to H_C , defined in terms of
the weights � of V , which are to be included with their multiplicities:

"V W .�; �/ 7!
Y
�

.�C h�j�i/� ; �V W .x;m/ 7!
Y
�

.1 � .mx�/�1/� : (4.1)

(In parsing each formula, note the double use of �, first as infinitesimal character ofH and
then as co-character of H_.) The maps are Weyl-equivariant and their graphs are regular,
away from a co-dimension 2 locus over their domains (cf. Section 5.1); their closures
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define Lagrangian sub-varieties N"V � Cı3.GI 0/ and N�V � Cı4.GI 0/ over their respective
ground rings CŒ��;CŒm˙�.

Remark 4.2 (Broader picture). For generic elements � and m (but most meaningfully,
near �;m D1), the maps (4.1) are the exponentiated differentials of the following func-
tions, in which � 2 gC and x 2 GC are the arguments while �;m are treated as parame-
ters:

� 7! TrV Œ.� ˚ �/ � .log.� ˚ �/ � 1/�; x 7! TrV Li2..x �m/�1/:

The first function appeared as the “† log† Landau–Ginzburg B-model mirror” of the
abelian GLSM on V : [23], and see also Remark 7.5. The Lagrangian �V and its primitive
appeared4 in the index formula for Kähler differentials over the moduli of G-bundles
on curves [22, (6.2) and Theorem 6.4], with the powers of m�1 tracking the degree of
the forms. The relation with Coulomb branches was not known at the time. Today, we
would express that index formula in terms of Lagrangian calculus in Cı4.G; 0/, namely
the intersection of �V with the graphs of certain isogenies HC ! H_C , defined from the
levels of central extensions of the loop group LG. Those isogenies correspond to the
Theta line bundles on the moduli of GC-bundles on curves; they are semiclassical limits
of Theta-functions – in the same sense that the Lagrangians "V ; �V are semiclassical
�-functions, see Section 7 – and are also twists of the unit section by the discrete Toda
Hamiltonian of C4.

4.2. Algebraic description of the Coulomb branches

The first two results generalize to non-abelian G the explicit presentations of Coulomb
branches given in [7, 14] for torus groups. Their proofs, in Section 6, are straightforward;
more intriguing are the non-commutative generalizations in Section 7. To state the the-
orems, note that translation on the group schemes by the section "V , respectively �V ,
gives a rational symplectomorphism of Cı3;C

ı
4, relative to the massive Toda projection

of Section 3.4.

Theorem 1. The space Cı3.GIE/! hC=W �C is the affinization of two copies of the
space Cı3.GI 0/ glued together by means of "V -translation. In other words: regular func-
tions on Cı.GIE/ are those regular functions on Cı.GI 0/ which remain regular after
translation by "V .

Theorem 2. The orbifold Cı4.GIE/! � Ë . QHC=W / �C� is the relative affinization of
two copies of Cı4.GI 0/ glued together by means of �V -translation.

Abstractly, the spaces are the quotients, in affine schemes over the massive Toda
bases, of an equivalence relation on Cı

`
Cı defined from N"V ; N�V . The relation is not very

healthy, being neither proper nor open. Concretely, note that the surviving condition can
equally well be imposed prior to Weyl division, giving the following moderately explicit
description.

4For the adjoint representation, but the discussion in [23] applies to any V .
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Corollary 4.3. The regular functions on Cı3;4.GIE/ are those Weyl-invariant elements of

CŒT _H_C �Œ��
�
.e˛
_

� 1/=˛
�
; respectively CŒHC �H

_
C �Œm�

�
.e˛
_

� 1/=.e˛ � 1/
�

(ranging over the roots ˛) which survive translation by "V , respectively by �V .

Survival can be restated in terms of growth constraints along the Toda fibers over the
locus of zeroes and poles of "V ; �V ; we shall do that in the next section, as we review
more of the algebraic geometry. Meanwhile, the next theorem, characterizing the regular
functions Cı.GIE/ in terms of quantum cohomology, is simple enough to prove here.

Theorem 3. The ring CŒCı3.GIE/� comprises those functions on Cı3 which act regularly
on the equivariant quantum cohomologies QH�

G�S1
.M � V /, for compact Hamiltonian

G-manifolds M .
The ring CŒCı4.GIE/� comprises those regular functions on Cı4 which act on the

equivariant quantum K-theories QK�
G�S1

.M � V /, for compact Hamiltonian G-mani-
folds M .

Proof of Theorem 3. Away from the root hyperplanes on the massive Toda base (or the
singular conjugacy locus, respectively), the statement follows by abelianization from the
calculation of Proposition 2.5. On the other hand, away from � D 0 (orm D 1), the fixed-
point theorem allows us to ignoreE and V , and we are reduced to the action ofHG

� .�G/

on equivariant quantum cohomology (see [20,21]). The remaining locus has co-dimension
2 on the base, over which QH�

G�S1
.M/ is finite and free as a module.

5. Some consequences

We discuss briefly some geometry of the Coulomb branches as it emerges from their
description in Section 4. Flatness and normality were already established in [6], but it
may be helpful to review them in the new construction.

5.1. Generic geometry of the Coulomb branches

The divisor S of singularities of the section "V , resp. �V is the unions of hyperplanes
S� defined by the monomial factors in (4.1). The pairwise intersections of the S� contain
the indeterminacy locus I . Away from I , each Cı.GIE/ is the affinization of a smooth
space, obtained by gluing two open charts Cı with a vertical relative shift over the Toda
base. Away from S , the glued space is of course isomorphic to the original Cı; whereas,
near each S� n I , the Toda fibers undergo a nodal degeneration along the C� factor C� ,
modeled on C� C t0 C in the fibers of the An�1-singularity .x; y/ 7! t D .xy/1=n.
(The number n is computed from the divisibility and the multiplicities of the weight �.)
The appearance of the nodal locus, along which Cı.GIE/ is singular when n > 1, is
a consequence of affinization: the smooth charts Cı cover the complement, as in Exam-
ple 2.4. From here, Hartogs’ theorem determines Cı.GIE/ completely; but we can be
more specific in concrete cases. Thus, some fibers of Cı.GI 0/ are crushed in co-dimen-
sion 2, over I .
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5.2. Example: U1 with L˚ L_

The space Cı3.U1IL˚ L
_/ is the quadric cone xy D �2 � �2. In the original coordi-

nates ¹�; z˙; �º, the rational automorphism z 7! z.�C �/=.� � �/ preserves precisely
the subring generated by�; �; x D .� � �/z; y D .�C �/z�1. The two copies of Cı3 map
to the constructible subsets

¹�2 ¤ �2º t ¹� D �; y ¤ 0º t ¹� D ��; x ¤ 0º t ¹0º;

¹�2 ¤ �2º t ¹� D �; x ¤ 0º t ¹� D ��; y ¤ 0º t ¹0º;

whose union misses the nodal lines x D y D 0 in the fibers over� D � and� D �� , with
the exception of their intersection at the vertex 0, onto which the zero-fiber of each Cı3
gets crushed.

5.3. Example: SU2 with the standard representation

Consider the Weyl double cover QCı3 of Cı3, defined from Corollary 4.3 before Weyl divi-
sion. In the z; �-notation already used for the maximal torus of SU2, the functions over
QCı3 are generated over CŒ�; �� by u D .z � 1/=� and v D .1 � 1=z/=� , with the single
relation u � v D �uv. The Weyl action switches u and v and changes the sign of � .
Translation by "V sends z to ..�C �/=.� � �//z. Let x WD �u � z, y WD �v � z�1 and
w WD .x � y/=� ; the surviving subring is described by generators and relations over the
ring CŒ�; �� as

¹x; y;wº; with relations x � y D �w; xy D 1C �w:

(We justify the generators in the example in Section 5.4.) Setting � D 0 yields the ring
CŒ�; z˙; .z � 1=z/=��. This is C �C�, with the points .0;˙1/ blown up and the proper
transform of � D 0 removed. Each of the two QCı3 charts covers one of the exceptional divi-
sors and misses the other.

5.4. Example: SU2 with a general representation

Factor "V .�; �/ D �.�; �/��1.�;��/ D �C��1� , with a homogeneous polynomial � of
degree N , and let x D .z�� � �N /=� , y D .�N � z�1�C/=� and w D .x � y/=� as
before. Generators and relations for the surviving subring are

¹x; y;wº; with relations x � y D �w; xy D
�2N � �C��

�2
C �Nw: (5.1)

Setting � D 0 gives the subring generated by the relations �N�1.z � .�1/N z�1/ and
�N�2.z C .�1/N z�1/. This reproduces the result of [6, Example 6.9].

For instance, choosing the adjoint representation gives N D 2 and the Weyl invari-
ant ring is CŒ�; z C z�1; �.z � z�1/�, defining the quotient T _C�=¹˙1º. This is the
Coulomb branch for the zero representation of U1, Weyl quotiented by ˙1. More gen-
erally, any representation with N > 1 leads to the Weyl quotient of the U1 Coulomb
branch for a representation with an N that is lower by 2, such as V 	 g=h if V happened
to contain the adjoint representation. We generalize this in the Appendix.



C. Teleman 3510

5.5. Checking the SU2 example

Let A be the surviving subring, and A0 � A the subring generated by (5.1); let us check
that A0 D A. This is clear with � inverted, by reduction to the case of U1, when z��
and z�1�C generate QCı3 over CŒ�; �˙�. Upon formal completion near � D 0, the state-
ment is equally clear with � inverted, when �˙ become units. This shows that A=A0

is a quasi-coherent torsion sheaf on the .�; �/-plane supported at � D � D 0. But such
a sheaf would yield a Tor2 group against the sky-scraper at � D � D 0, which is forbid-
den, because (I claim) both A0 and A are flat over CŒ�; ��. Flatness A0 is checked easily
from the 3-step resolution built from (5.1); that of A is discussed below.

5.6. Normality

Our description of Cı.GIE/ implies its normality: indeed, if a function f is integral
over the surviving subring, then f ı ."V �/ is integral over Cı, so it is regular, and so f
survives. Alternatively, granting flatness of the Toda projections (to be discussed below),
one sees the desired regularity in co-dimension 1 from the generic geometric behavior
described in Section 5.1. Normality of the massless specialization can be extracted from
the flatness discussion below, where we build Cı.GIE/ from Cı by blow-ups and con-
tractions along loci transversal to � D 0. Alternatively, granting flatness, we can again
check regularity in co-dimension 1: the generic abelian description applies away from the
root hyperplanes, while on the generic part of a root hyperplane the SU2 description of
Example 5.4 takes its place.

5.7. More geometry

Flatness of the Coulomb branches over the massive Toda bases (freedom, in fact) is
wrapped into the proof of Theorem 1 in the next section. However, we can also extract it
from our algebraic description; we outline the argument here, as it points a way to a more
geometric description of their Weyl covers. It does suffice to treat the Weyl cover: the
Toda base for the Cartan subalgebra h � g is flat5 over that of G, and extracting Weyl
invariants does not spoil flatness (or normality).

Choose a smooth Weyl-invariant toric compactification NH_C of H_C , requiring that the
weights � appearing in (4.1) should define boundary divisors B� .6 The latter assemble to
an ample relative boundary divisor B for the compactified projection

N� W NH_C � hC �C ! hC �C:

We will create a space leading to Cı3.GIE/ by blowing up products of pairs divisors (in
the base and fiber), then remove a boundary, and finally perform an affinizing contraction
over the Toda base.

5If we mind the orbifolding, for C4.
6Working with spaces, the construction will produce finite cyclic singularities, stemming from

the multiplicities in (4.1); these can be avoided at the price of working with a suitable orbifold
compactification instead.
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First, we prepare to create the Weyl cover QCı by blowing up the loci .exp˛_ D 1,
˛ D 0/ – or rather, their successive proper transforms in a chosen sequence.7 Then we
prepare the surviving growth constraints by performing further blow-ups along (the suc-
cessive proper transforms of) products B� � S� , with an appropriate multiplicity on the
hyperplane S� . Cyclic singularities appear here. Nonetheless, the co-dimension .1; 1/ of
the blowing up loci and with respect to the Toda projection, and of their successive proper
transforms, ensures that we get a flat modification Q� of our projection N�.

The final step is the removal of the boundary and the collapse of proper components
by taking fiberwise global functions along the projection Q�. The boundary comprises the
proper transforms QB of B and QR of the root hyperplanes (the latter is to produce the
original Cı). The resulting ring is the colimit, as N !1, of R Q��.O.N QB CN QR//. The
sheaf in the total direct image is a line bundle8 with no higher direct images, because of
its quasi-positivity and the negativity of K. Thus, each term in the limit is free over the
base and so the colimit is flat.

6. Proof of Theorems 1 and 2

We use the Schubert stratification of �aG into GŒŒz��-orbits. Even-dimensionality col-
lapses the associated spectral sequences and leads to ascending filtrations on the rings
CŒCı.GIE/�. The associated graded components are easily described (Section 6.4), and
are locally free over the Toda bases. This makes the original rings locally free as well; in
particular, they are flat over CŒ��;CŒm˙�.

I write out the proof for Cı3; the K-theory case is entirely parallel. Call AV the ring,
implied in Theorem 1, of regular functions on Cı3 which survive "V -translation. We will
see from topology how this last operation is compatible with the Schubert filtration, so
that we can also define the subring†V � Gr CŒCı3� of symbols which remain regular after
"V -translation. Clearly, GrAV � †V . The theorems will follow from two observations:
(i) CŒCı3.GIE/� � AV ,
(ii) Gr CŒCı3.GIE/� D †V .

6.1. The index bundle

Over the stack BunG.P1/ of principal GC-bundles over P1, there lives the virtual index
bundle IndV , the holomorphic Euler characteristic of the sheaf of sections of V over P1

with simple vanishing condition at one marked point1. It is a class inK0G�S1.�G/, after
incorporating the mass parameter � (equivariance under scaling of V ). Call eV its equiv-
ariant Euler class, more accurately defined as the �-homogenized G-equivariant total
Chern class of IndV . The following two propositions are understood after suitable local-
ization on the massive Toda base hC=WC �C.

7This step could be averted by the use of a “wonderful” normal-crossing compactification of Cı
over its Toda base.

8For suitably divisible N , to cancel the effect of the cyclic singularities.
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Proposition 6.1. Translation by the section "AV on Cı3 corresponds to cap-product with
eV on HG�S1

� .�G/.

Remark 6.2. Cap-product with eV must a priori correspond to translation by some ratio-
nal section: the index bundle is additive for the sphere multiplication in G Ë�G, so its
Euler class is multiplicative. As a group-like element in the dual Hopf algebra, it rep-
resents a (rational) section of the group scheme Cı over its Toda base. We identify this
section by abelianization.

Proof. Localize to the complement of the root hyperplanes on the Toda base to reduce, by
the fixed-point theorem, to the case of a torus, where Proposition 2.4 applies (as enhanced
in Example 2.6).

Corollary 6.3. The Schubert filtration is preserved by "V -translation.

6.2. Two embeddings of CŒCı3.GIE/�

Refer to the notation in Section 3.3 and Remark 3.6. The Hecke construction at the
point 0 2 P1 maps the stack BunG.�W�/ D GŒŒz��n�

aG ofGC-bundles over the double-
centered disk to BunG.P1/. This gives an equivariant homotopy equivalence and in par-
ticular a (K-)homology equivalence. The key observation is that, restricted toGŒŒz��n�aG,
IndV is the “left minus right” copy of V ŒŒz��.

More precisely, note the two inclusions �l;r W LV ,! V ŒŒz��, and recall that over any
finite union of strata, the space LV contains a finite co-dimension sub-bundle. Quoti-
enting it out regularizes the difference of V ŒŒz��-bundles into a class in KG�S1.�G/.
A moment’s thought identifies this with IndV , as the index of the Hecke transform of
the trivial V -bundle on P1, minus that of the trivial V -bundle.

Each inclusion �l;r defines a graded ring homomorphism 'l;r WCŒC
ı
3.GIE/��CŒCı3�

by intersecting with the zero-section in the ambient bundle. Per our discussion, we have
'l D eV \ 'r . By using 'r to pin down Cı3.GIE/, Proposition 6.1 now settles observa-
tion (i).

6.3. Working out †V

For a 1-parameter subgroup z� 2 �H , with Schubert stratum C� and Levi centralizer
Z.�/ � G, split V D VC ˚ V0 ˚ V� following the sign of the �-eigenvalue. The index
bundle then splits as IndV D IC.�/	 I�.�/, with the �-weight space of V˙ appearing
˙h�j�i times in I˙.�/. The Euler class eV factors at z� as

eV jz� D eC.�/ � e�.�/�1; with e˙.�/ D
Y
�

.�C �/jh�j�ij:

There is a (degree-shifting) isomorphism

Gr� CŒCı.GI 0/� D BMHG�S1

� .C�/ Š H
Z.�/�S1

� .point/;

and the �-graded component of †V is the subspace e� \ Gr� CŒCı.GI 0/�.
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6.4. Working out Gr CŒCı3.GIE/�

Collapse of the Schubert spectral sequence implies that

Gr� CŒCı3.GIE/� D BMH
G�S1

� .LV j�/:

Now, the homology group is generated over HZ.�/�S1

� .point/ by the fundamental class
of the total space of LV over C� , whose complement in the right V ŒŒz�� of (3.4) is pre-
cisely I�.�/; therefore

Gr� CŒCı3.GIE/� D e�.�/ \ Gr� CŒCı.GI 0/�;

in agreement with the �-component of †V above. This settles observation (ii).

7. Non-commutative Coulomb branches

Recall that incorporating the loop rotation circle R in the previous constructions leads to
non-commutative deformations NCı3;4.GIE/ of the Coulomb branches over the ground
rings CŒh�DH�.BR/ and CŒq˙�DKR.point/, respectively. The geometric objects exist
in the formal neighborhoods of h D 0 and q D 1; away, only their function rings A3;4 sur-
vive. Nonetheless, we sometimes keep the convenient conversational pretence of underly-
ing spaces NC. The calculation in Section 6 for their description applies with only minor
changes: we are only missing the good statements, which we summarize below before
spelling out the argument.

This section is rather sketchy; a development spelling out the rôle of our non-commu-
tative solutions, the �-functions, in connection with the GLSM, is planned for a follow-up
paper.

7.1. Summary

The integrable abelian group structure of Cı over their Toda bases deforms to a symmetric
tensor structure9 on A-modules, induced from the diagonal inclusion�G� �G ��G.
Restricting the module structure to the Toda base, this is the ordinary tensor product, with
tensor unit the structure sheaf O1 of the identity section. For Cı3 in the Whittaker presenta-
tion (Remark 3.3), the operation comes from convolution of D-modules on the Langlands
dual group G_: from this stance, the symmetric monoidal structure is developed in [2].

The Lagrangians "V ; �V deform to modules EV ; ƒV over A3;4, and the (rational)
automorphisms of C defined by "V ; �V -translation become, on A-modules, the functors
of convolution with EV ; ƒV . The Hamiltonian nature of the translations renders these
functors (generically) trivializable by (singular) inner automorphisms of A. In Theorem 4,
I characterize the Coulomb branches NCı.GIE/ as the subrings of elements of A which
survive these inner automorphisms (that is, remain regular).

9I thank David Ben-Zvi for pointing out to me the generality of this statement.
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While this loose description of the branches NCı.GIE/ appears uniform, a distinc-
tion arises between formal and genuine deformations. Formally, the modules EV and
ƒV are generically invertible, analogous to flat line bundles with singularities, with the
latter located on the singular loci of the sections "V ; �V . If, following the language
of D-modules, we call solutions the A-module morphisms to the identity section O1, then
the super-potentials that were introduced in Remark 4.2 are the leading h! 0 asymp-
totics of the logarithms of the solutions (cf. Remark 7.5).

With the deformation parameters turned on, these asymptotics become meromorphic
solutions that are easily found. For EV on C3, a solution is the �-function of the repre-
sentation V (recalled in Section 7.3), while a q-analogue solves ƒV on C4. Conjugation
by these solutions impose the defining regularity constraints for NCı.GIE/. Outside the
range the formal limit, the modulesEV ; ƒV can be defined by these solutions, which thus
become the primary objects. We may prefer, for convenience, the (tensor) inverse mod-
ules and their holomorphic solutions; thus, E�1V is the quotient of A3 by the annihilator
IV of the (holomorphic) solution ��1V :

E�1V WD A3=IV
� ��1
V
���! O1 D A3=I1:

[

O1

If we regard the quotient A3=IV as an analytic sheaf over the Toda base, the solution
map ��1V is an isomorphism. (Otherwise, its infinitely many zeroes prevent it from sur-
jecting onto O1.) We can then characterize NCı.GIE/ in three equivalent ways, the last
two of which are �-conjugate, namely as the subring of elements of A3

(i) which survive conjugation by ��1V ,
(ii) whose multiplicative action preserves the inclusion O1 � E

�1
V ,

(iii) whose multiplicative action preserves the inclusion ��1V O1 � O1.
There is a parallel story for NC4. Before spelling out the details, let us revisit the case
of U1.

7.2. Example I: U1 with its standard representation

The symplectic space T _C� D SpecHU1
� .�U1/ has a natural non-commutative defor-

mation, realized topologically by the Pontryagin ring HU1�R
� .�U1/. Indeed, on �1U1,

z-multiplication is the shift n 7! nC 1, at which point the R-rotation collects an extra
U1-weight. We compute from here the Pontryagin ring as CŒh�hz˙; �i with the relation
z� D .� C h/z. We now identify the non-commutative Coulomb branch HU1�R

� .LL/ for
the standard representation L:

Lemma 7.1. The non-commutative deformation NC3.U1IL˚ L_/ is the subring of
H

U1�R
� .�U1/ generated over CŒh� by z; z�1� .

Remark 7.2. By setting X D z and Y D z�1� , this ring is CŒh�hX; Y i=.ŒX; Y � � h/, as
one could have guessed from the Poisson relation ¹x; yº D h in CŒx; y� (notation as in
Example 2.4).
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Proof. Using the right inclusion in Section 6.2 to embed the ring, we find at the winding
mode n � 0 the summand zn �CŒh; ��; whereas at a negative winding mode .�n/, we find

z�ne� D z�n�.� C h/ � � � .� C .n � 1/h/ D .z�1�/n

from the Euler class e�.�n/ of I�, which is the summand missing from the right copy
of V ŒŒz��.

Recall now the h-periodic Gamma-function

�.wI h/ WD h
w
h
�1�

�
w

h

�
:

It satisfies �.w C hI h/ D w�.wI h/ and �.hI h/ D 1. From z�z�1 D � C h we get

�.� I h/ � z � �.� I h/�1 D ��1z; (7.3)

which exhibits �.� I h/ as a solution to the module A3=.z � �/, the obvious quantization
of "V :

Corollary 7.4. Away from the poles, sending 1 to �.� I h/ maps A3=.z � �/ into the
module O1 D A3=.z � 1/.

Holomorphy of the reciprocal function ��1 is a reason to prefer the inverse module
A3=.1 � �z/.

Remark 7.5. As h! 0, Stirling’s approximation gives (when jarg.�=h/j < ��)

log�.� I h/ D
�

h
.log � � 1/ �

1

2
log hC

1

2
log
�
2�

�

�
CO

�
h

�

�
;

and we find in the leading h�1 coefficient the Legendre transform  �.�/ of  .z/ D z.
The Legendre correspondence quantizes to the Laplace transform: viewing A3 as the ring
of Dh-modules on C�, with � D h � z @

@z
, we find that the function exp.�z=h/ on C� is the

solution to the module Dh=.� C z/, Laplace transformed from the one in Corollary 7.4.

Proposition 7.6. The non-commutative deformation NC3.U1IL˚ L_/ is the subring of
elements of HU1�R

� .�U1/ which survive conjugation by �.� I h/�1.

Proof. Survival of z and z�1� is clear from (7.3). To show the converse inclusion, choose
an A3-element of negative z-degree .�n/. Reordering factors expresses it uniquely in
monomials of the form

.z�1�/n�m; m � 0; and .z�1�/aza�n; 0 � a < n:

The former survive ��1-conjugation. To rule out the latter, note that conjugation converts
them to z�a.�z/a�n. These monomials are not regular in any CŒh�-linear combination,
or else a right multiplication by .�z/n would lead to a linear dependence among the
monomials

z�a.�z/a D .� � h/ � � � .� � ah/; 0 � a < n;

z�n�m.�z/n D .� � nh/m � .� � h/ � � � .� � nh/; m � 0;

which is pre-empted by their � -degree.
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7.3. The �V -class

Generalizing this involves promoting � to a multiplicative characteristic class of com-
plex vector bundles. This requires some care: the Hirzebruch construction, the product
�.F I h/ WD

Q
� �.�I h/ over the Chern roots � of F , is ill-defined, as � has a pole at

the point 0. The reciprocal 1=� is entire holomorphic, but its vanishing at 0 would lead
to an unstable class, undefined for virtual bundles. One remedy is to include the equiv-
ariant scaling (mass) parameter �, resulting in a �-meromorphic calculus for the classesQ
� �.�C �I h/. Thus, a representation V of G leads to the entire holomorphic (in �; �)

reciprocal function

�V .�; �I h/
�1
W hC=W �C ! C; .�; �/ 7! detV �.� ˚ �I h/�1:

Remark 7.7 (Massless specialization.). The correct massless specialization is � D 1
2
h

(not � D 0). In the construction of [6], this should be interpreted as inserting a square
root of the canonical bundle on the doubled disk �W�. The same insertion within the index
bundle does away with the vanishing condition at 1 in the constructions of Section 6.
The specialization is illustrated by the identity

�

�
h

2
C � I h

�
�

�
h

2
� � I h

�
D
�

h
sec
�
��

h

�
I

the product is therefore anti-central in NC.U1/ (it conjugates z to .�z/), generalizing the
identity eL [ eL_ D .�1/n of Example II in Section 2.6.

Remark 7.8. Interpreting h as the equivariant parameter of the loop rotation groupR, the
Weierstraß product expansion portrays ��1V as a regularized Euler class of the space of
Taylor loops V ŒŒz��. This interpretation also makes sense over certain stacks with a circle
action, such as GŒŒz��n�aG: a reasonable demand is that their R-equivariant homology is
free over CŒh�, so that extension of scalars to functions of h holomorphic off the negative
real axis (and allowing poles in �; � as needed) is a faithful operation. For a torus, we
can always pretend that h is a numerical parameter, because the R-action on the stack
Pic.P1/ is trivializable.

7.4. Example II: U1 with a representation V

Split V D VC ˚ V� according to z-exponents.10 Writing �V D �C��, we have

��1V � z � �V D .�C��/
�1
� z � �C��

D ��1C z�Cz
�1
� z � z�1��1� z��

D eC.1/ � z � e�.1/�1; (7.9)

with e˙.1/ theR-equivariant extensions of the index Euler classes of Section 6.3 at � D 1.
Repeating the computation in the proof of Lemma 7.1,

Œze�.1/�n D zne�.n/; ŒeC.1/z�n D eC.n/zn; n � 0: (7.10)

10A trivial representation summand V0 does not affect the Coulomb branch.
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Proposition 7.11. The non-commutative deformation NCı3.U1IV ˚ V
_/ is generated

over CŒ�; �; h� by ze�.1/, z�1eC.1/, and is the subring of HU1�S1�R
� .�U1/ surviving

conjugation by �V .

Proof. From (7.9) we see that the listed generators survive, and (7.10) shows that their nth
power generates the summand of degree ˙n over the Toda base. Fix now n > 0 say. The
need for the zne�.n/ factor in a surviving element follows from unique factorization in
the ground ring CŒ�; �; h�. Namely, znf .�; �; h/ conjugates to eC.n/zne�.n/�1f . The
linear factors of z�neCzn have the form .�C k� � ph/ with p > 0, and are prime to the
denominator e�.n/, whose factors carry non-negative multiples of h going with �; so all
canceling factors must come from f .

Localizing on the Toda base, we find from the abelian calculation, formally close
to h D 0:

Corollary 7.12. The map �V conjugates the unit module of NCı3 into a module EV with
support N"V .

Away from formal h D 0, we can define the convolution-inverse module E�1V as the
quotient of A3 by the annihilator of ��1V . Sending 1 2 A3 to ��1V identifies it with the
module O1.

7.5. Description of the NC-spaces

Theorems 4 and 5 below are quantum versions of the Lagrangian-shift description of the
Coulomb branches. The proof follows the commutative argument, with its core relying on
the Euler interpretation of �V (Remark 7.8): conjugation by ��1V becomes capping with
(theR-equivariant) eV . The capping operation is of course canonical, but the left and right
module structures of A3 over H�G�R differ, as they come from left and right pull-backs
from B.G �R/ to the stack R Ë .G Ë LG ÌG/. Of course, this is why �V -conjugation
is not trivial.

Theorem 4. The non-commutative deformation NCı3.GIE/, defined as HG�S1�R
� .LV /,

comprises those elements of HG�S1�R
� .�G/ which survive conjugation by ��1V .

Proof. Incorporate the R-action in the embeddings 'l;r of Section 6.2. I claim that con-
jugation switches 'r to 'l : this need only be checked generically on the Coulomb branch,
and can be seen by restriction to the maximal torus, reducing to the abelian calculation in
Example II above.

It follows that 'r places NC3.GIE/ within the surviving subring, and the argument
closes by quoting Proposition 7.6 on each Schubert stratum C� , with z� in lieu of z, to
conclude that Gr� NCı3.GIE/ exhausts the surviving part of Gr� NCı3.

7.6. The space NCı4

In the Key Example of U1, the Pontryagin ringKU1�R
� .�U1/ is the standard non-commu-

tative (complexified) torus, CŒq˙�ht˙; z˙i with relation zt D qtz. To proceed, we need
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Jackson’s p-Gamma function [12]. In terms of p-Pochhammer symbols

.xIp/1 D
Y
n�0

.1 � xpn/;

convergent for jpj < 1, this is

�p.wI h/ D .1 � p/
1�w

h
.phIph/1

.pw Iph/1
;

satisfying

�p.w C hI h/ D
1 � pw

1 � p
�p.wI h/:

The requisite version of the function �p arises in the limit p; h! 0, as the expansion
variables q WD p�h, t WD p�w D p�� are kept finite.11 Set

�0.t/ WD .q
�1
I q�1/1=.t

�1
I q�1/1

and note the conjugation

�0.t/ � z � �0.t/
�1
D .1 � t�1/�1z;

with the K-theoretic Euler class .1 � t�1/ replacing � in (7.3).

Remark 7.13. In analogy with Remark 7.5, the Laplace transform of our solution �0 is
expressed in terms of the q-exponential function eq , namely eq. z

1�q
/ D .zI q/�11 .

Define now the multiplicative class �0IV for vector bundles, valued in localized equiv-
ariant K-theory, as in Section 7.3; formally, near q D 1, we then have the following
proposition.

Proposition 7.14. The multiplicative class �0IV conjugates the unit module of NCı4 into
a module ƒV with support �V .

Finally, the argument used for NC3 applies, after working locally on the Toda base, to
give the following theorem.

Theorem 5. The non-commutative deformation NCı4.GIV ˚ V
_/, which is defined by

the Pontryagin ring KG�S
1�R

� .LV /, comprises those elements of KG�S
1�R

� .�G/ which
remain regular after conjugation by ��10IV .

Appendix A. A Weyl character formula for certain Coulomb branches

Here, I verify the abelianization result mentioned in the introduction, which describes
“most” Coulomb branches for G in terms of those for the Cartan subgroup, with their
Weyl group symmetry. There is also a non-commutative version, as in Section 7; I will
return to it in a future paper.

11The signs keep the series convergent for jqj > 1, matching h > 0 in the additive case.
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Theorem 6. For any representation V ofG whose weights contain the roots of g, we have

C3;4.GIE/ Š C3;4
�
H IE 	 .g=h/˚2

�
=W;

compatibly with the embeddings of Section 6.2 and the morphism

C3;4.GI 0/! C3;4.H I 0/=W :

Proof. Working over the common bases h=W and H=W , H -fixed point localization
shows that the map induced by the named morphisms is an isomorphism away from the
root hyperplanes; whereas, generically on the root hyperplanes, the SL2 calculation of
Section 5.4 confirms isomorphy. This settles the matter, because the algebras are free
O-modules over the Toda base and agree in co-dimension 2.

Remark A.1. The calculation for C3 of SL2 was seen to hold more generally, for all but
a few choices of E. This generalizes to all groups, by the argument above: however, the
formulation of the right-hand side needs more care. Exploiting the local descriptions of
the C4 Toda bases in terms of C3, one can then push this to an awkward but effective
calculation of most C4 Coulomb branches. It would be truly useful to find the formulation
which dispenses with all constraints on E: this might allow an abelianized calculation of
Coulomb branches with non-linear matter.
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