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Abstract. We prove that a minimal disc in a CAT.0/ space is a local embedding away from a finite
set of “branch points”. On the way we establish several basic properties of minimal surfaces: mono-
tonicity of area densities, density bounds, limit theorems and the existence of tangent maps. As an
application, we prove Fáry–Milnor’s theorem in the CAT.0/ setting.
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1. Introduction

1.1. Motivation and main results

Minimal surfaces are an indispensable tool in Riemannian geometry. Part of their suc-
cess relies on the well-understood structure of minimal discs. For example, by the clas-
sical Douglas–Rado Theorem, any smooth Jordan curve � in Rn bounds a least-area
disc. Moreover, this disc is a smooth immersion away from a finite set of branch points.
Recently, Alexander Lytchak and Stefan Wenger proved that a rectifiable Jordan curve in
a proper metric space bounds a least-area disc as long as it bounds at least one disc of
finite energy [33]. As in the case of Douglas and Rado, the minimal disc is obtained by
minimizing energy among all admissible boundary parametrizations. The existence and
regularity of energy minimizers or harmonic maps in metric spaces was studied earlier,
usually under some kind of nonpositive curvature assumption [20, 24, 27]. For instance,
Nicholas Korevaar and Richard Schoen solved the Dirichlet problem in CAT.0/ spaces
and showed that the resulting harmonic maps are locally Lipschitz in the interior [27].

The intrinsic geometry of minimal discs was studied in [35,38,43]. There, it is shown
(with varying generality) that minimal discs in CAT.0/ spaces are intrinsically nonposi-
tively curved. However, apart from regularity nothing else is known about the mapping
behavior of minimal discs. The first aim of this paper is to establish topological proper-
ties. We obtain the following structural result for minimal discs, similar to the classical
statement that minimal surfaces are branched immersions.

Theorem 1. Let X be a CAT.0/ space and � � X a rectifiable Jordan curve of finite
total curvature. Let u W D ! X be a minimal disc filling � . Then there exists a finite set
B � D such that u is a local embedding on D n B .

This is proven in Section 4.5 as Theorem 70. Unlike in the smooth case, the corre-
sponding result for harmonic discs fails, even if the target is of dimension two and has
only isolated singularities, see work of Ernst Kuwert [28]. We then aim at topological
applications and prove the Fáry–Milnor Theorem for CAT.0/ spaces, generalizing the
original theorem, proven independently by Istvan Fáry [18] and John Milnor [39].

Theorem 2 (Fáry–Milnor). Let � be a Jordan curve in a CAT.0/ space X . If the total
curvature of � is less than 4� , then � bounds an embedded disc.

See Theorem 5 for a more general result and Section 2.4 for the definition of total
curvature.

Our proofs of both theorems rely heavily on the monotonicity of area densities (Corol-
lary 63 in Section 4.4):

Theorem 3 (Monotonicity). Let X be a CAT.0/ space. Suppose that u W ND ! X is
a minimal disc and p is a point in u. ND/ n u.@ ND/. Then the area density

‚.u; p; r/ WD
area.u.D/ \ Br .p//

�r2

is a nondecreasing function of r as long as r < jp; u.@D/j.
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1.2. Overview and further results

On the structure of minimal surfaces. In order to obtain control on the mapping behavior
of minimal discs, we make intensive use of the intrinsic point of view, developed by
Alexander Lytchak and Stefan Wenger in [34] and [35]. (See also [43].) They showed that
if X is CAT.0/, then any minimal disc u W D ! X factors through an intrinsic space Zu,
which is itself a CAT.0/ disc. Furthermore, it turns out that the factors � W D ! Zu and
Nu W Zu ! X are particularly nice. Namely, � is a homeomorphism and Nu preserves the
length of every rectifiable curve, cf. Theorem 41. Therefore, in order to prove Theorem 1,
we only need to investigate the induced map Nu. For this purpose we introduce the notion of
intrinsic minimal surfaces which by definition is a synthetic version of the induced map Nu.
We then prove several basic properties for intrinsic minimal surfaces, all well known
in the smooth case. The most important of these is the monotonicity of area densities
and a corresponding lower density bound (see Proposition 62 and Lemma 65). As in the
classical case, monotonicity is accompanied by a rigidity statement (Theorem 73).

However, the proof of rigidity is more involved and we were unable to directly derive
it from the monotonicity of area densities. Instead, we first investigate intrinsic minimal
surfaces on an infinitesimal scale. We show that intrinsic minimal surfaces have tangent
maps at all points. Tangent maps for harmonic maps into CAT.0/ spaces were also inves-
tigated by Misha Gromov and Richard Schoen [20] and later by Georgios Daskalopoulos
and Chikako Mese [15]. However, our results are independent, as we aim for “intrinsic
tangent maps”. In our setting, we show that each such tangent map is itself an intrinsic
minimal map which in addition is conical and even locally isometric away from a single
point. (See Lemma 68 and the prior definition.) Building on this, we prove the rigidity
supplement to monotonicity and our main structural result:

Theorem 4. LetX be a CAT.0/ space andZ a CAT.0/ disc. Suppose that f W Z ! X is
an intrinsic minimal surface. If z0 is a point in the interior ofZ, whose link†z0Z satisfies
H1.†z0Z/ < 4� , then f restricts to a bilipschitz embedding on a neighborhood of z0. In
particular, if Z is a CAT.0/ disc, then f is locally a bilipschitz embedding in the interior
of Z away form finitely many points.

Together with Theorem 41 this then yields Theorem 1.

On Fáry–Milnor’s theorem. The original theorem of Fáry–Milnor from 1949 says that
a knot in R3 has to be the unknot if it is of finite total curvature less or equal than 4� .
The first generalization of this theorem to variable curvature came about 50 years later
and is due to Stefanie Alexander and Richard Bishop ([2]). We also refer the reader to
their work for the history of the problem. Their result extended the Fáry–Milnor Theorem
to simply connected 3-dimensional manifolds of nonpositive sectional curvature. More
precisely, it is shown in [2] that a Jordan curve of total curvature less or equal to 4� in
a 3-dimensional Hadamard manifold bounds an embedded disc. In the same paper it was
noticed that the analog statement cannot be true for CAT.0/ spaces. There is an example
of a Jordan curve of total curvature 4� in a 2-dimensional CAT.0/ space which does not
bound an embedded disc, see Example 1. However, Theorem 2 shows that Fáry–Milnor’s
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theorem does hold for CAT.0/ spaces, at least if the strict inequality for the total curvature
is fulfilled. We actually prove the following more general result.

Theorem 5 (Rigidity case of Fáry–Milnor). Suppose that � is a Jordan curve in a CAT.0/
space X . If the total curvature of � is less than or equal to 4� , then either � bounds an
embedded disc, or else the total curvature is equal to 4� and � bounds an intrinsically
flat geodesic cone. More precisely, there is a map from a convex subset of a Euclidean
cone of cone angle 4� which is a local isometric embedding away from the cone point
and which fills � .

Our proof relies on minimal surface theory and follows the strategy of Tobias Ekholm,
Brian White, and Daniel Wienholtz in [16], where the authors show that a minimal sur-
face † in Rn of any topological type is embedded if the total curvature � of the boundary
is less than or equal to 4� . Their approach was also used in [14] to prove the Fáry–Milnor
Theorem in n-dimensional Hadamard manifolds.

We quickly recall their argument. If† is such a surface in Rn, then for any point p not
in the boundary of † one augments † by an exterior cone Ep over @†. More precisely,
we have

Ep D
[
q2@†

¹p C t .q � p/ W t � 1º:

The monotonicity of area densities continues to hold for † [Ep and now it even holds
for all times. Since the area growth of Ep is equal to �, this relates the number of inverse
images of p to the total curvature of @†. The completion of the proof is then based on
a lower density bound.

In our case there is no exterior cone. Additionally, for an ordinary minimal disc in
a CAT.0/ space the required lower density bound is unclear. However, for intrinsic min-
imal discs the lower density bound is obvious and the above argument still shows the
following (Corollary 77).

Theorem 6. Let OX be a CAT.0/ space and Of W OZ ! OX a proper intrinsic minimal plane.
Suppose that the area growth of Of is less than twice the area growth of the Euclidean
plane. Then Of is an embedding.

In order to prove the Fáry–Milnor Theorem we then show an extension result for
intrinsic minimal discs. Roughly, it says that for each intrinsic minimal disc f W Z ! X

with finite total curvature � of the boundary we can embed X isometrically into a CAT.0/
space OX such that f extends to a proper intrinsic minimal plane Of in OX (Proposition 80).
The space OX is obtained from X by gluing a flat funnel along the boundary of f .

2. Preliminaries from metric geometry

We refer the reader to [11], respectively [9], for definitions and basics on metric geometry
and to [8,10,26] for metric spaces with upper curvature bounds. However, we include this
short section to agree on some terminology and notations.
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2.1. Generalities

Let D be the open unit disc in the plane and denote by S1 the unit circle.
For a metric space X we will denote the distance between two points x; y 2 X by

jx; yj, i.e. j � ; � j is the metric on X . If � > 0, we define the rescaled metric space � �X be
declaring the distance between points to be � times their old distance.

For a subset A � X we denote by NA its closure. If x 2 X is a point and r > 0 is
a radius, we denote by Br .x/ the open ball of radius r around x in X . More generally, for
a subset P � X we denote by Nr .P / the tubular neighborhood of radius r .

A Jordan curve inX is a subset � � X which is homeomorphic to S1. If � is a Jordan
curve in R2, then its Jordan domain is the bounded connected component of R2 n � .

A geodesic in X is a curve of constant speed whose length is equal to the distance
of its endpoints. A space is called geodesic if there is a geodesic between any two of its
points and it is called uniquely geodesic if there is only one such geodesic. IfX is uniquely
geodesic, then xy will denote the (image) of the unique geodesic between x and y. For a
point p 2 X we call a geodesic p-radial if it starts in p. A map f W X ! Y to another
metric space Y is called radial isometry (with respect to p) if it preserves distances to
p. As usual, a map f W X ! Y between metric spaces X and Y is called Lipschitz
continuous or simply Lipschitz if there exists a (Lipschitz-)constant L > 0 such that
jf .x/; f .x0/j � L � jx; x0j holds for all x; x0 2 X . Further, f will be called bilipschitz
if it is bijective and has a Lipschitz continuous inverse. Distance nonincreasing maps or
1-Lipschitz maps between metric spaces will simply be called short. For n 2 N we will
denote by Hn the n-dimensional Hausdorff measure on X .

A surface is a 2-dimensional topological manifold, possibly with boundary. If † is
a surface and f W †! X is a map into a space X , then we denote by @f W @†! X the
restriction f j@†.

If .Xk ; xk/ denotes a pointed sequence of metric spaces, we can always take an ultra-
limit .X! ; x!/ with respect to some nonprincipal ultrafilter ! on the natural numbers.
If .Yk ; yk/ denotes another such sequence and fk W Xk ! Yk are Lipschitz maps with
a uniform Lipschitz constant L > 0, then we obtain an L-Lipschitz ultralimit

f! W .X! ; x!/! .Y! ; y!/:

For a precise definition and basics on ultralimits of metric spaces we refer the reader
to [3].

2.2. Intrinsic metric spaces

A metric space X is called intrinsic metric space or length space if the distance between
any two of its points is equal to the greatest lower bound of the lengths of continuous
curves joining those points. Let M be a topological space and X a metric space. If
f WM ! X is a continuous map, then we can define on M an intrinsic (pseudo-)metric
associated to f . Namely, the intrinsic distance between two points in M is equal to the
greatest lower bound for lengths of f -images of curves joining these points. If any pair of
points inM is joined by a curve whose image under f is rectifiable, then one can identify
points of zero f -distance in M to obtain an associated intrinsic metric space Mf . For
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instance, this is ensured ifM is a length space and f is Lipschitz continuous. We will say
that a map f has some property intrinsically if the associated spaceMf has this property.
If M is equal to X and f is the identity, then we obtain the intrinsic space associated
to X and we denote it by X i .

2.3. CAT.�/

For the definition and basic properties of CAT.�/ spaces we refer the reader to [10] or [9].
We just point out that all our CAT.�/ spaces are assumed to be complete. IfX is a CAT.�/
space and p; x; y 2 X are points with x; y 2 B �p

�
.p/ n ¹pº, then there is a well-defined

angle†p.x; y/ between x and y at p. Each point p in a CAT.�/ spaceX has an associated
space of directions or link†pX which is the metric completion, with respect to angles, of
germs of geodesics starting at p. Recall that †pX is a CAT.1/ space with respect to the
intrinsic metric induced by †. The tangent space at p is defined as the Euclidean cone
over †pX and denoted by TpX . In particular, TpX is again a CAT.0/ space. Note that
if X is CAT.0/, then there is a natural short logarithm map logp W X ! TpX which is
a radial isometry and preserves initial directions of p-radial geodesics.

The following two theorems by Reshetnyak will be used repeatedly. The gluing theo-
rem is useful in order to check if a certain space is CAT.0/. For a detailed discussion and
a proof we refer to [9] and [3]. The majorization theorem provides controlled Lipschitz
fillings of circles.

Theorem 7 (Reshetnyak’s gluing theorem). Let X and X 0 be two CAT.0/ spaces with
closed convex subsets C � X and C 0 � X 0. If � W C ! C 0 is an isometry, then the space
X [� X

0, which results from gluing X and X 0 via �, is CAT.0/ with respect to the induced
length structure.

Theorem 8 (Reshetnyak’s majorization theorem). Let X be a CAT.0/ space and let
c W Œ0; L�! X be a closed curve of unit speed. Then there is a convex region C � R2,
possibly degenerated, bounded by a unit speed curve Qc W Œ0; L�! R2, and a short map
� W C ! X with � ı Qc D c.

As a consequence, the Euclidean isoperimetric inequality for curves holds in CAT.0/
spaces.

Theorem 9 (Isoperimetric inequality). Let X be a CAT.0/ space and let c W S1 ! X

be a Lipschitz circle. Then there exists a Lipschitz extension Oc W ND ! X of c with the
property that area. Oc/ � 1

4�
length.c/2, where the area of Oc is the Hausdorff 2-measure

counted with multiplicities, cf. Definition 37.

2.4. Total curvature

Let X be a CAT.0/ space. A curve � W Œa; b�! X is called a k-gon if there is a subdivi-
sion a D t0 < t1 < � � � < tk D b such that the restrictions � jŒti ;tiC1� are geodesics. Note
that every ordered k-tuple .x1; : : : ; xk/ of points xi 2 X determines an k-gon. The points
xi WD �.ti / are called vertices of � . If the number of vertices is not important, we will
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simply call � a polygon. The total curvature �.�/ of a k-gon � with vertices .xi / is
defined by

�.�/ WD

k�1X
iD2

.� � †xi .xi�i ; xiC1//:

A k-gon � with vertices .xi / is inscribed in a curve 
 if there is a parametrization Q

of 
 such that Q
�1.xi / � Q
�1.xiC1/ for 0 � i � k � 1. If a polygon � is inscribed in
a polygon �, then �.�/ � �.�/ because the sum of the interior angles of triangles in
CAT.0/ spaces is bounded above by � . (See [2, Lemma 2.1].)

Definition 10. Let 
 be a curve in a CAT.0/ space X . Then its total curvature �.
/ is
defined as

�.
/ WD sup¹�.�/ W � is an inscribed polygon in 
º:

Note that this definition generalizes the Riemannian definition of total curvature.
A curve of finite total curvature is rectifiable and has left and right directions at every inte-
rior point. Moreover, Fenchel’s theorem holds, i.e. the total curvature of a closed curve 

is at least 2� and equality is attained if and only if 
 bounds a flat convex subset or
degenerates to an interval (cf. [2, Section 2]).

2.5. Lipschitz maps

We have the following version of Rademacher’s theorem is contained in [29]. Since it is
not explicitly stated in [29], we will provide a sketch.

Proposition 11. Let X be a CAT.�/ space and let K � Rn be a measurable subset.
Let f W K ! X be a Lipschitz map. Then f is almost everywhere differentiable in the
following sense. For almost all p 2 K there exists a unique map dfp W TpRn ! Tf .p/X

whose image is a Euclidean space, which is linear and such that

dfp.v/ D lim
h!0

logf .p/.f .p C hv//

h
:

Proof. By [25] we know that for almost every point p inK there exists a unique seminorm
jdfp. � /j on Rn such that

lim
v!0

jf .p C v/; f .p/j � jdfp.v/j

jvj
D 0:

Since X is CAT.�/, this seminorm is almost everywhere induced by a possibly degener-
ated inner product (cf. [27, 33]). In [29, Section 12] it is first shown that any Lipschitz
curve 
 W .0; 1/! X has for almost all t 2 .0; 1/ left and right derivatives 
˙.t/ which
are antipodal. More precisely, we have


˙.t/ D lim
h&0

log
.t/.
.t ˙ h/

h

and †.
C.t/; 
�.t// D � . By Fubini’s theorem it is concluded that for almost all points
and a countable dense set of directions there exist directional derivatives. Since f is
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Lipschitz, it follows that almost everywhere f is directional differentiable. Hence at
almost every point p we have an induced map Fp W Rn ! Tf .p/X . If p is such that the
metric differential jdfp. � /j comes from an inner product, then Rn splits orthogonally
into V C ˚ V0, where V0 is the kernel of jdfp. � /j. The map Fp restricts to an isometric
embedding .V C; jdfp. � /j/! Tf .p/X . In particular, dfp WD Fp is linear.

Lemma 12 ([25, Theorem 7]). LetX be a CAT.0/ space. LetK � R2 be measurable, let
f W K ! X be a Lipschitz map with f .K/ D Y . LetNf W Y ! Œ1;1� be the multiplicity
function Nf .y/ D #¹z 2 K W f .z/ D yº. Then the following area formula holds true:Z

Y

Nf .y/ dH2.y/ D

Z
K

J.dfz/ dz;

where J.dfz/ denotes the usual Jacobian of the linear map dfz .

Corollary 13. LetX be a metric space. LetK � R2 be measurable and let f W K ! R2

be a monotone Lipschitz map with f .K/ D Y . Further, let s W Y ! X be a Lipschitz map.
Then area.s ı f / D area.s/.

Proof. We have Nsıf � Ns . Since f is monotone, it only takes the values 1 and 1
on Y . We concludeNsıf D Ns for H2-almost all points inX and the claim follows from
Lemma 12.

We will need the following special case of the general coarea formula.

Lemma 14 ([7, Theorem 9.4]). Let Z be a countably H2-rectifiable CAT.0/ space and
let g W Z ! R be a Lipschitz function. Then, for any Borel function � W Z ! Œ0;1�,Z

Z

�.z/jrg.z/j dH2.z/ D

Z
R

�Z
g�1.t/

�.x/ dH1.x/

�
dt:

Proof. Note that Z has Euclidean tangent planes at almost all points. Hence the coarea
factor C1.dZg.z// appearing is the general coarea formula is given by jrg.z/j for almost
all z 2 Z, see [7, (9.2)].

We will repeatedly make use of the following proposition which is a consequence
of [1, Theorem 2.5].

Proposition 15. Let f W ND ! R be a Lipschitz map and denote by …y WD f �1.y/ its
fibers. Then for almost every value y 2 R the following holds.

(i) H1.…y/ is finite.

(ii) Each connected component of …y which has positive length is contained in a rec-
tifiable Jordan curve � � R2. Moreover, the union of those components has full
H1-measure in …y .

Proof. Extend f to a Lipschitz map F W R2 ! R with compact support. Denote by
…F
y WD F

�1.y/ its fibers. By [1, Theorem 2.5], almost every fiber …F
y of F decomposes

as …F
y D N [

S1
iD1 �i , where H1.N / D 0 and each �i is a rectifiable Jordan curve.

Moreover, H1.…F / is finite and equal to
P1
iD1 H1.�i /. The claim follows.
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Definition 16. Let f W ND ! R be a Lipschitz map. We call y 2 R an quasi regular value
if the conclusion of Proposition 15 holds for the fiber …y of f .

2.6. Preparation for cut and paste

Lemma 17. Let X be a CAT.0/ space, p 2 X a point and r > 0 some radius. Suppose
that 
 W S1 ! X is a Lipschitz circle with image contained in NBr .p/. Let v W ND ! X be
the p-radial extension of 
 . Then v is Lipschitz continuous with

area.v/ �
r

2
� length.
/:

Moreover, equality holds if and only if 
 lies at constant distance r from p and the
geodesic cone over 
 with tip p is intrinsically a flat cone.

Proof. Recall that v maps radial geodesics in ND with constant speed to p-radial geodesics
in X . We first show that v is Lipschitz continuous by estimating distances using piece-
wise radial and spherical paths. For x 2 ND set �x D j
. xkxk /; pj. If L � r is a Lipschitz
constant for 
 , then we have

jv.x/; v.y/j � �x �
ˇ̌
kxk � kyk

ˇ̌
C L � †0.x; y/ � kyk � 3L � kx � yk:

At almost every point x 2 ND we can estimate the Jacobian by J.dvx/ � �x � j P
.
x
kxk
/j:

Hence

area.v/ �
Z 1

0

Z 2�

0

�� j P
.�/js ds d�

� r �

Z 1

0

s �

�Z 2�

0

j P
.�/jd�

�
ds D

r

2
� length.
/:

Equality implies �� � r and that the length of distance spheres in the intrinsic space
grows exactly linearly. Hence the claim follows from the rigidity statement in the Bishop–
Gromov Theorem (Theorem 24).

Lemma 18. Let X be a CAT.0/ space and 
 W S1 ! X a Lipschitz curve of length equal
to 2� . Then the following holds.

(i) For � 2 Œ0; 2�/ let R� W S1 ! S1 be the counter clockwise rotation by the angle � .
For each such � there exists a Lipschitz homotopy h� W S1 � Œ0; 1�! X form 
 to

 ıR� with im.h� / D im.
/.

(ii) Let N
 be an arc length parametrization of 
 , then there is a Lipschitz homotopy
h W S1 � Œ0; 1�! X form N
 to 
 with im.h/ D im.
/.

In particular, all of the above homotopies have zero mapping area.

Proof. For the first part we simply set h� .eit ; s/ D 
.ei.tCs�//. For the second part,
denote by l.�/ the length of the curve 
.eit /jŒ0;�� and set �.�/ D eil.�/. Note that the map
l W Œ0; 2��! Œ0; 2�� is Lipschitz continuous and h.�; s/ D N
.ei..1�s/�Csl.�/// provides
a homotopy as required.
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Lemma 19. Let X be a CAT.0/ space and let � > 0 be a number.

(i) For i D 1; 2, let 
i W Œ0; 1�! X be Lipschitz curves with Lipschitz constant L > 0.
If supt2Œ0;1� j
1.t/; 
2.t/j < �, then there exists a Lipschitz homotopy h from 
1
to 
2 with area.h/ � 8

�
� L � �.

(ii) Let 
C W Œ0; 1�! X be an L-Lipschitz curve with L > 0 and denote by 
� the
geodesic from 
C.1/ to 
C.0/. Suppose that im.
C/ � N�.im.
�//. Let 
 denote
the concatenation of 
C and 
�. Then there exists a Lipschitz disc w filling 
 and
such that area.w/ � 8

�
� L � �.

Proof. Choose n 2 N such that �
2L
�

1
n
�

�
L

. On each interval ¹k
n
º � Œ0; 1�, 1 � k � n,

we define the homotopy h to be the constant speed parametrization of the geodesic from

1.

k
n
/ to 
2.kn /. To extend the definition to the remaining domains in Œ0; 1� � Œ0; 1�, we

use the isoperimetric inequality 9. The boundaries of these domains map to curves of
length � 4�. Therefore h is a Lipschitz map of area bounded above by n � .4�/

2

4�
�

8
�
L�.

This proves part (i).
For part (ii) we choose n as above. Denote by xk the nearest point projection of 
C.k

n
/.

Using the geodesics between 
C.k
n
/ and xk , we can cut 
 into n Lipschitz circles of length

bounded above by 4�. We can now finish the proof as above, using the isoperimetric
inequality.

3. CAT(0) geometry

3.1. Funnel extensions of CAT(0) spaces

Definition 20. For ˛ > 0 denote C˛ the Euclidean cone over a circle of length ˛. A met-
ric space E˛ is called a flat funnel (of angle ˛) if it is isometric to the complement of
a relatively compact convex neighborhood of the vertex of C˛ .

Definition 21. Let C˛ be a Euclidean cone over a closed interval of length ˛. A metric
space s˛;r is called a flat sector (of angle ˛ � 0 and radius r > 0) if it is isometric to the
closed r-ball around the vertex of C˛ . An infinite flat sector will be called an ideal flat
sector. The legs l1 and l2 of s˛;r are the two radial geodesic segments of length r lying in
the boundary of s˛;r . They intersect in a single point p, the tip of s˛;r .

Lemma 22. Let X be a CAT.0/ space and let q; x; y be three points in X such that
r WD jqxj D jqyj> 0 and ˛ WD †q.x; y/. Denote l1 and l2 the legs of a flat sector s2��˛;r .
If f W l1 [ l2 ! X is an intrinsic isometry onto qx [ qy, thenX [f s2��˛;r is a CAT.0/
space.

Proof. By the theorem of Cartan–Hadamard, it is enough to show that X [f s2��˛;r is
locally CAT.0/. Since geodesic segments in CAT.0/ spaces are convex, Reshetnyak’s
theorem implies the claim away from the point q. We show that the r-ball around q
is CAT.0/.

One can obtain Br .q/ � X [f s2��˛;r from Br .q/ � X in two steps. First we glue
a flat sector s��˛;r along one of its legs to the geodesic segment qx. In the resulting
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CAT.0/ space the second leg of s��˛;r extends the geodesic segment qy to a geodesic �
of length 2r . In a second step we can now glue a flat half-disc of radius r to � , thereby
producing Br .q/ � X [f s2��˛;r . Hence X [f s2��˛;r is CAT.0/.

Lemma 23. Let 
 be an embedded closed curve in X with finite total curvature �.
/.
Then there is a flat funnel E�.
/ and an intrinsic isometry f W 
 ! @E�.
/ such that
X [f E�.
/ is a CAT.0/ space.

Proof. Let us assume that 
 is a k-gon. We will glue the flat funnel E˛ to X in two
steps. First, let us choose for every pair of adjacent vertices xi and xiC1 of 
 a flat half-
strip hi Š Œ0; jxi ; xiC1j� � Œ0;1/. We then glue these flat half-strips to X via isometries
Œ0; jxi ; xiC1j� � ¹0º ! xixiC1. In the resulting space we see two geodesic rays r�i � hi�1
and rCi � hiC1 emanating from every vertex xi . The distance between the directions
of rCi and r�i at xi is given by � C†xi .xi�1; xiC1/. As a second step we insert ideal
flat sectors si of angle ˛i � � � †xi .xi�1; xiC1/, thereby completing the angle at every
vertex of 
 to a total angle� 2� . Altogether we obtainX [E˛ , and from the construction
it is clear that we can achieve ˛ D �.
/. The CAT.0/ property follows from Lemma 22
together with the theorem of Cartan–Hadamard.

The case for general 
 follows by approximating 
 by inscribed polygons 
n. For
each n we choose the completing angles ˛i slightly larger than necessary in order to
ensure that each funnel En is contained in E�.
/. After passing to a subsequence, we
may assume that @En Hausdorff converges to @E�.
/ and the gluing maps �n W @En ! 
n
converge pointwise to a limit map � W @E�.
/ ! 
 . Since � is short and

lim
n!1

length.
n/ D length.
/;

it follows that � is an intrinsic isometry. Now any quadruple of points in X [E�.
/ can
be approximated by quadruples in X [En such that pairwise distances converge. Then
[10, Theorem 3.9] implies that X [f E�.
/ is CAT.0/.

3.2. CAT(0) surfaces

A CAT.0/ space Z which is homeomorphic to a topological surface is called a CAT.0/
surface. Since CAT.0/ spaces are contractible, the topology of CAT.0/ surfaces is rather
simple. In particular, any compact CAT.0/ surface Z is homeomorphic to the closed unit
disc ND in R2. In this case, Z is called a CAT.0/ disc. If Z is a CAT.0/ surface and
z is a point in the interior of Z, then small metric balls around z are homeomorphic
to ND and the link †zZ is homeomorphic to a circle. Moreover, a metric ball around
an interior point is even bilipschitz to the corresponding ball in the tangent space and
the Lipschitz constant can be chosen arbitrary close to one as the radius of the ball
tends to zero [12]. Using bilipschitz parametrizations, we can define the area of Lipschitz
maps with domain a CAT.0/ surface and target an arbitrary metric space. Moreover, the
Hausdorff 2-measure on a CAT.0/ surface behaves similarly to the Lebesgue measure on
a smooth Hadamard surface. For instance, the following volume comparison holds, cf.
[40, Proposition 7.4]. We will refer to it as Bishop–Gromov’s theorem in analogy to the
case of lower curvature bounds.
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Theorem 24 (Bishop–Gromov). Let Z be a CAT.0/ surface. Let p be a point in Z and
suppose that jp; @Zj > r . Then we have

H2.Br .p// �
r2

2
�H1.†pZ/:

Moreover, equality holds if and only if Br .p/ is isometric to the radius r ball around the
tip in TpZ.

Note that each CAT.0/ surface is geodesically complete in the sense that any geodesic
segment is contained in geodesic segment whose boundary lies in the boundary of the
surface. This is immediate from the fact that a pointed neighborhood of an interior point
cannot be contractible. Hence the interior of a CAT.0/ surface is GCBA in the sense of
Lytchak and Nagano [31].

Lemma 25. Let .Zk/ be a sequence of CAT.0/ discs with rectifiable boundaries. Assume
that .Zk/ Gromov–Hausdorff converges to a CAT.0/ discZ. If boundary lengths are uni-
formly bounded, H1.@Zk/ < C , then the total measures converge, H2.Zk/! H2.Z/.

Proof. By [31, Theorem 12.1] it is enough to show that no measure is concentrated near
the boundary.

Let � > 0. Since Z n @Z is an intrinsic space, we can find a Jordan polygon � in
the set Z n @Z such that the arc length parametrization of � is uniformly �-close to an
arc length parametrization of @Z. Then we lift � to Jordan polygons �k in Zk . Denote
by W � Z the closure of the Jordan domain of � and by Wk the closure of the Jordan
domain of �k � Zk . Then Wk ! W and it is enough to bound H2.Zk nWk/ uniformly.
But since H1.@Zk/ < C and length.�k/! length.�/, it follows from Lemma 19 below
that H2.Zk nWk/ � C

0 � � with a uniform constant C 0 > 0. Hence the claim follows.

If Z is a CAT.0/ disc, then its interior Y WD Z n @Z is a length space which is still
locally CAT.0/. As such it is a surface of bounded integral curvature in the sense of
Alexandrov [4]. For a detailed account to surfaces of bounded integral curvature we refer
the reader to [5]. Here we only collect a few facts needed later. On Y there exists a (possi-
bly infinite) nonpositive Radon measure �, called curvature measure, such that if a Jordan
triangle 4 is contained in a Jordan domain O , then the excess of 4 is bounded below
by �.O/. In particular, �.O/ D 0 for a Jordan domain O � Y is equivalent to O being
flat. The atoms of � correspond to points in Y where the tangent cone is not isometric to
the flat plane. More precisely, it holds

�.¹yº/ D 2� �H1.†yY /

for y 2 Y .

Lemma 26. Let Z be a CAT.0/ surface and let .zi / be a sequence in Z. Further, let .�i /
be a nullsequence of positive real numbers. If .zi / converges to a point z in the interior
of Z, then the following holds.

(i) !-lim. 1
�i
Z; zi / Š R2 if !-lim jz;zi j

�i
D C1.

(ii) !-lim. 1
�i
Z; zi / Š TzZ if !-lim jz;zi j

�i
< C1.
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Proof. If!-lim jz;zi j
�i

<C1, then!-lim. 1
�i
Z; zi / is isometric to!-lim. 1

�i
Z; z/, although

possibly not pointed-isometric. Then the second claim follows from

!-lim
�
1

�i
Z; z

�
Š TzZ:

Now assume that !-lim jz;zi j
�i
D C1 and set

W WD !-lim
�
1

�i
Z; zi

�
:

Then W is a complete CAT.0/ surface without boundary and we need show that it is flat.
Notice that limr!0 �.Br .z/ n ¹zº/ D 0. Hence for each fixed R > 0 we have

lim
i!1

�.B�iR.zi // D 0:

Now if 4 is a geodesic triangle in W , then we can find geodesic triangles 4i in .Z; zi /
such that !-lim 1

�i
4i D 4 and all three angles converge ([23, Proposition 2.4.1]). Since

there exists R0 > 0 such that 4i � B�iR0.zi / for !-all i , we see that the excess of 4i
goes to zero. It follows that W is flat and therefore W Š R2.

Lemma 27. Let Z be a CAT.0/ disc and assume that its boundary @Z is a polygon with
positive angles. Then Z is bilipschitz to ND.

Proof. The double Y of Z is a closed Alexandrov surface of bounded integral curvature.
By [13, Theorem 1] it is therefore bilipschitz to the round sphere S2. By the Lipschitz
version of the Schönflies Theorem in [47] we conclude that Z is bilipschitz to ND.

Lemma 28. Let Z be a CAT.0/ surface. Let � be a rectifiable Jordan curve in Z and
denote by �� its Jordan domain. Then N�� equipped with the induced intrinsic metric
is a CAT.0/ disc. If � is a Jordan polygon with positive angles, then this space is even
bilipschitz to N�� .

Proof. To proof the first claim, we will use Theorem 39 and Theorem 41 below. By Theo-
rem 39, there is a solution u W ND ! Z to the Plateau problem for .�;Z/. By Theorem 41,
u factors over the associated intrinsic space Zu and induces a short map Nu W Zu ! Z

which restricts to an arc length preserving homeomorphism @Zu ! � . Moreover, Zu is
a CAT.0/ disc. Now since Z is a surface, we infer from [36, Theorem 6.1] that u is
a homeomorphism from ND to N�� . This implies that Nu provides an isometry Zu ! N�� .

We turn to the second claim. Any metric is bounded above by its associated intrinsic
metric. By compactness, it is enough to locally control the intrinsic metric on N�� by the
induced metric. However, near an interior point both metrics coincide. But in a neigh-
borhood of a boundary point the two metrics are still bilipschitz equivalent because the
angles of � are positive. Hence the claim holds.

Lemma 29. Let Z be a CAT.0/ disc with rectifiable boundary @Z and suppose that
c W S1 ! @Z is a simple L-Lipschitz parametrization. Then for every � > 0 there exists
an .LC �/-Lipschitz curve � W S1 ! Z n @Z which parametrizes a Jordan polygon of
positive angles and is uniformly �-close to c.
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Proof. Choose n 2 N such that L�4�
n

< �
2

and then choose ı > 0 such that 4 � n � ı < �
2

.
Next, choose points �.k�2�

n
/ in Z n @Z such that j�.k�2�

n
/; c.k�2�

n
/j < ı. By the triangle

inequality we obtainˇ̌̌̌
�

�
.k � 1/ � 2�

n

�
; �

�
k � 2�

n

�ˇ̌̌̌
<
L � 2�

n
C 2 � ı:

Since Z n @Z is a length space ([35, Theorem 1.3]), we can define � jŒ .k�1/�2�
n

; k�2�
n
� to be

a constant speed parametrization of a polygon in Z n @Z whose length is bounded above
by L�2�

n
C 3 � ı. Hence the Lipschitz constant of � is less than LC 3�n�ı

2�
which is less

than LC � by our choice of ı.
Again by the triangle inequality we obtain

j�.t/; c.t/j <
L � 4�

n
C 4 � ı < �

and therefore � is uniformly �-close to c.
Now let us take a sequence �k & 0 and polygonal circles �k W S1 ! Z which are

.LC �k/-Lipschitz and uniformly �k-close to c. Note that the image of �k is a finite
planar graph. We denote by �k a longest Jordan curve in im.�k/. Set Mk D �

�1
k
.�k/.

Then �k converges to @Z with respect to Hausdorff distance. Set Mk D �
�1
k
.�k/ and

let Jk � S1 be a component of S1 nMk . Since �k converges uniformly to the simple
curve c, the diameters of �k.Jk/ go to zero. Assume that k is large enough such that
the diameter of the image of any component of S1 nMk is less than �

2
. Then we define

a new map Q�k which equals �k on Mk and is constant on each component of S1 nMk .
Note that Q�k parametrizes �k . By construction, Q�k is uniformly .�k C �

2
/-close to c and

still .LC �k/-Lipschitz. At last we modify Q�k in order to guarantee positive angles at
all vertices. Let x, v and y be consecutive vertices of Q�k and †v.x; y/ D 0. Since �k is
a Jordan curve, the edges xv and vy intersect only in v. We take any point v0 ¤ x; v on
the geodesic xv, then †v0.x; y/ ¤ 0 by the uniqueness of geodesics.

Recall that a map between topological spaces is called monotone, if the inverse image
of every point is connected.

Lemma 30. Let Z be a CAT.0/ disc with rectifiable boundary @Z. Let c W S1 ! @Z

be a Lipschitz parametrization. Then c extends to a Lipschitz continuous monotone map
� W ND ! Z.

Proof. Pick a point p in the interior of Z. Then extend c by mapping radial geodesics
in ND to constant speed p-radial geodesics in Z. Lipschitz continuity follows in the same
way as in Lemma 17 above. Observe that if y and z are two points in @Z such that
the geodesics py and pz intersect in a nontrivial geodesic segment px, then the union
xy [ xz separates Z. Hence one of the two components of @Z n ¹y; zº has the prop-
erty that the geodesic from any of its points to p contains px. This implies the claimed
monotonicity.

We will need to recognize when a CAT.0/ surface is flat away from a finite number of
cone points. We begin with a definition.
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Definition 31. Let X be a CAT.0/ space. Fix a point p 2 X and a radius r > 0. Then we
call an element v 2 †pX r-regular, if there exists a unique geodesic of length r starting
in p with direction v. This induces a decomposition of the link into regular and irregular
directions,

†pX D †
reg.r/
p X [ �r .p/:

We denote by Rr .p/ the regular star of radius r around p. By definition, it is the union
of all p-radial geodesics of length r starting in a r-regular direction. Let NRr .p/ denote its
closure.

Now let Z be a CAT.0/ surface and let p 2 Z be an interior point. For r < jp; @Zj
we consider the restriction of the logarithm to the distance sphere, logp W Sr .p/! †pZ.
Note that Sr .p/ is homeomorphic to a circle. The inverse image of an irregular direc-
tion v 2 �r .v/ is a nondegenerate interval log�1p .v/ D Œx�v ; x

C
v �. In particular, we see

that there are at most countably may irregular directions. Now consider the logarithm
on the closed ball, logp W Br .p/! †pZ, and let v 2 †pX be an irregular direction.
On log�1p .v/ define the equivalence relation

x � x0 if jp; xj D jp; x0j:

Lemma 32. The set Br .p/=� is a CAT.0/ disc with respect to the quotient metric.

Proof. Choose an antipode Ov of v and a geodesic O
 of length r in the direction Ov. Denote
by 
˙ the geodesics from p to x˙v . Let Z˙ � Br .p/ be closure of the component left
respectively right from the concatenation O
 � 
˙. Then the quotient space is obtained by
gluing ZC to Z� along the boundary geodesic and the claim follows from Reshetnyak’s
gluing theorem (Theorem 7) .

We now obtain a regularized version of the CAT.0/ disc Br .p/ by dividing out the
equivalence relation

x � x0 if logp.x/ D logp.x
0/ and jp; xj D jp; x0j:

Corollary 33. The space Qr .p/ D Br .p/=� is a CAT.0/ disc with respect to the quo-
tient metric.

Proof. Let us count the irregular directions, �r .p/ D ¹v1; v2; : : :º. By Lemma 32 we
know that the space Zn which results from collapsing log�1p .vi / for i D 1; : : : ; n is
a CAT.0/ disc. The quotient maps �n W Zn ! Qr .p/ are short and the diameter of inverse
images of points ��1n .q/ go to zero uniformly. It follows that Zn converges to Qr .p/
with respect to Gromov–Hausdorff distance. Hence Qr .p/ is CAT.0/ disc retract, see
[43, 4.1 Compactness lemma]. If Np denotes the image of p under the quotient map
� W Br .p/! Qr .p/, then Qr .p/ is equal to the closed r-ball around Np. Hence @Qr .p/
is a Jordan curve and Qr .p/ is a CAT.0/ disc.

Note that the restriction of the quotient map � W Br .p/! Qr .p/ to the regular star
is area preserving. By the Bishop–Gromov Theorem (Theorem 24),

H2.Rr .p// D H2.Qr .p// �
r2

2
H1.†�.p/.Qr .p// D

r2

2
H1.†pZ/:
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Moreover, equality holds if and only ifQr .p/ is isometric to a Euclidean cone of cone
angle H1.†pZ/; or informally, if Rr .p/ is isometric to a Euclidean cone which is cut
open along some radial geodesics.

Before we come to the criterion when a CAT.0/ surface is flat away from a finite set
of cone points, we provide an illustrating example.

Let C D C4�.o/ be a flat cone of cone angle equal to 4� . Consider two points p� and
pC at distance 2 from each other and suppose that o is their midpoint. Set P D ¹p�; pCº.
We are interested in the tubular r-neighborhoods of P for varying r . Clearly, if r < 1,
then Nr .P / is a disjoint union of the two flat discs Br .p˙/. In particular, we have
H2.Nr .P // D 2�r

2. On the other hand, if r > 1, the p˙-radial geodesics branch at o.
However, the regular stars Rr .p

˙/ are still disjoint and the equation H2.Nr .P //D 2�r
2

continues to hold.

Lemma 34. Let Z be a CAT.0/ surface and let P D ¹p1; : : : ; pkº � Z be a finite sub-
set. Let R > 0 be such that jpi ; @Zj > R for all pi 2 P . Suppose that the regular stars
Rr .pi / are disjoint for all r � R and such that

H2.Nr .P // D
r2

2

kX
iD1

H1.†piZ/:

Then NR.P / is flat away from a finite set of cone points.

Proof. By Bishop–Gromov (Theorem 24), our assumptions guarantee that each quotient
Qr .pi / of NRr .pi / is flat away from pi . In particular, if r is smaller than the distances
between the different pi , then Nr .P / is the disjoint union of the flat cones Br .pi /. Also,
there exist a definite time before pi -radial geodesic start to branch. Let v be an irregular
direction at pi and let z be the first branch point in direction v. Since

Sk
iD1 Rr .pi /

has full measure in Nr .P /, there exists j ¤ i such that z 2 NRr .pj /. Since the total
angle at z as seen from within Rr .pi / is 2� and Rr .pi / \Rr .pj / D ;, we conclude
H1.†xZ/ � 3� . It follows that there are only finitely many irregular directions at pi
and NRr .pi / is isometric to a flat cone cut open along finitely many pi -radial geodesics.
By a similar argument we can conclude the proof. Note that a small ball around a bound-
ary point of NRr .pi / is either isometric to a flat half disc or a flat disc cut open along
a single radial geodesic. Hence if x is any point in NR.P / n ¹P º, then a small ball
around x is either flat or isometric to a flat cone of cone angle at least 3� . This completes
the proof.

4. Minimal discs

4.1. Sobolev spaces

We will collect some basic definitions and properties from Sobolev space theory in metric
spaces as developed in [22, 27, 33, 45]. For more details we refer the reader to these arti-
cles. We denote by � an open bounded Lipschitz domain in the Euclidean plane and fix
a complete metric space X . Following Reshetnyak [46], we say that a map u W �! X



The structure of minimal surfaces in CAT(0) spaces 3537

has finite energy, or lies in the Sobolev space W 1;2.�;X/ if
� u is measurable and has essentially separable image.
� There exists a map g 2 L2.�/ such that the composition f ı u with any short map
f W X ! R lies in the classical Sobolev space W 1;2.�/ and the norm of the weak
gradient jr.f ı u/j is almost everywhere bounded above by g.
Any Sobolev map u has a well-defined trace tr.u/ 2 L2.@ N�/. (Cf. [27] and [33].)

If u has a representative which extends to a continuous map Nu on N�, then tr.u/ is repre-
sented by Nuj@ N�. If the domain � is homeomorphic to the open unit disc D, then we call
a map u 2 W 1;2.�;X/ a Sobolev disc.

We say that a circle 
 W @ ND ! X bounds a Sobolev disc u if tr.u/ D 
 inL2.@ ND;X/.

4.1.1. Energy and the Dirichlet problem. Every Sobolev map u 2 W 1;2.�;X/ has an
approximate metric differential at almost every point. More precisely, for almost every
point z 2 � there exists a unique seminorm on R2, denoted jduz. � /j such that

aplimw!z

ju.w/; u.z/j � jduz.w � z/j

jw � zj
D 0;

where aplim denotes the approximate limit, see [17].

Definition 35. The Reshetnyak energy of a Sobolev map u 2 W 1;2.�;X/ is given by

E.u/ WD

Z
�

max
v2S1
jduz.v/j

2 dz:

Theorem 36 (Dirichlet problem, [27]). Let 
 be a circle in a CAT.0/ space X which
can be spanned by a Sobolev disc. Then there exists a unique Sobolev disc u which mini-
mizes the energy among all Sobolev discs spanning 
 . The energy minimizer u is locally
Lipschitz continuous in D and extends continuously to ND.

Moreover, the local Lipschitz constant of u at a point z depends only on the total
energy of u and the distance of z to the boundary @ ND.

4.1.2. Area and the Plateau problem.

Definition 37. The parametrized (Hausdorff) area of a Sobolev map u 2 W 1;2.�;X/ is
given by

area.u/ WD
Z
�

J.duz/ dz;

where the Jacobian J.s/ of a seminorm s on R2 is the Hausdorff 2-measure of the unit
square with respect to s if s is a norm and J.s/ D 0 otherwise.

For a given Jordan curve � we denote by ƒ.�;X/ the family of all Sobolev discs
u 2 W 1;2.D;X/whose traces have representatives which are monotone parametrizations
of � , cf. [33].

Definition 38 (Area-minimizer). Let � be a Jordan curve and u 2 ƒ.�;X/ a Sobolev
map. The map u will be called area minimizing if it has the least area among all Sobolev
competitors, i.e. if area.u/ D inf¹area.u0/ W u0 2 ƒ.�;X/º.
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The following theorem is a special case of [33, Theorem 1.4].

Theorem 39 (Plateau’s problem). Let X be a CAT.0/ space and � � X a rectifiable
Jordan curve. Then there exists a Sobolev disc u 2 ƒ.�;X/ with

E.u/ D inf¹E.u0/ W u0 2 ƒ.�;X/º:

Moreover, every such u has the following properties.

(i) u is an area minimizer.

(ii) u is a conformal map in the sense that there exists a conformal factor � 2 L2.D/
with jduzj D �.z/ � s0 almost everywhere in D, where s0 denotes the Euclidean
norm on R2.

(iii) u has a locally Lipschitz continuous representative which extends continuously
to ND.

Definition 40. Let X be a CAT.0/ space and � � X a rectifiable Jordan curve. A map
u 2 ƒ.�;X/ as in Theorem 39 above is called a minimal disc or a solution of the Plateau
problem for .�;X/.

4.2. Intrinsic minimal surfaces

The following result is a consequence of [35, Theorem 1.2] and [45, Theorem 7.1.1]. The
factorization and the fact that the intrinsic space is a CAT.0/ space can also be deduced
from [43, Theorem 1.1].

Theorem 41 (Intrinsic structure of minimal discs). LetX be a CAT.0/ space and � � X
a rectifiable Jordan curve. If u W ND ! X is a minimal disc filling � , then the following
holds. There exists a CAT.0/ discZu such that u factorizes as u D Nu ı � with continuous
maps � W ND ! Zu and Nu W Zu ! X . Moreover:

(i) � is locally Lipschitz.

(ii) � is monotone and restricts to an embedding on D.

(iii) � 2 ƒ.@Zu; Zu/ � W
1;2.D;Zu/.

(iv) Nu is short.

(v) Nu restricts to an arc length preserving homeomorphism @Zu ! � .

(vi) Nu preserves the lengths of all rectifiable curves.

(vii) For any open subset U � D it holds

H2.�.U // D area.ujU / D area.�jU /:

Note that Corollary 13 implies

area. Nv ı �/ D area. Nv/

for every Lipschitz map Nv W Zu ! X . As a consequence, the induced map Nu is area
minimizing in the sense of the following definition.
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Definition 42 (Intrinsic minimal surface). LetZ be a CAT.0/ surface andX be a CAT.0/
space. A map f W Z ! X will be called intrinsic minimal surface or intrinsic (area)
minimizer if
(i) f is short and proper,
(ii) f is area preserving in the sense that area.f jU / D H2.U / for every open set

U � Z,
(iii) for each closed disc Y embedded in Z the map f jY has the least area among all

Lipschitz competitors, i.e.

area.f jY / D inf¹area.f 0/ j f 0 W Y ! X Lipschitz with f 0j@Y D f j@Y º:

If Z is homeomorphic to a plane or a closed disc, we call f intrinsic minimal plane,
respectively intrinsic minimal disc.

4.2.1. Basic properties.

Lemma 43. Let X be a CAT.0/ space and f W Z ! X an intrinsic minimal surface.
Suppose that � � Z is a rectifiable Jordan curve with Jordan domain �� . Then the
restriction f N�� is an intrinsic minimal disc, where N�� is equipped with the induced
intrinsic metric.

Proof. By Lemma 28, N�� is a CAT.0/ disc. The other properties are immediate.

Lemma 44 (Convex hull property). Let u W ND ! X be a minimal disc in a CAT.0/ space
X and p 2 X a point. If u.@ ND/ � NBp.r/, then u. ND/ � NBp.r/.

Proof. Since the nearest point projection � W X ! NBp.r/ is short, the energy of � ı u
is bounded above by the energy of u. Note that � ı u and u have the same boundary
values. Because u is the unique energy minimizing filling with respect to its boundary,
we conclude � ı u D u.

Lemma 45 (Maximum principle). Let u W ND ! X be a harmonic disc in a CAT.0/
spaceX . Let ' W X ! R be a continuous convex function. Then the function ' ı u attains
its maximum at the boundary. If ' is even Lipschitz continuous and 1-convex, then the
maximum can only be attained if u is constant.

Proof. By [19, Theorem 2 b)], ' ı u is subharmonic. Hence the maximum principle yields
the first claim. For the second claim, we use the strong maximum principle to conclude
that ' ı u is constant. The claim follows from [32, Corollary 1.6].

We will make use of the following elementary observation.

Lemma 46. Let 
 W S1 ! X be a Lipschitz circle and assume that 
.p/ D 
.q/ for
p ¤ q 2 S1. Denote S˙ the two components of S1 n ¹p; qº and let 
˙ W S˙=@S˙ ! X

be the induced loops. Suppose that u˙ W ND ! X are Lipschitz discs filling 
˙. Then there
exists a Lipschitz disc u W ND ! X which fills 
 and such that

area.u/ � area.uC/C area.u�/:
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Proof. Let � W S1! S1=¹pD qº be the quotient map. Glue two discsD˙ to S1=¹pD qº
such that the resulting space Y is a union of two discs which intersect in a single point.
Denote by � W S1=¹p D qº ! Y the canonical embedding. Note that the mapping cylinder
… of � ı � is homeomorphic to a disc. Write

… D S1 � Œ0; 1�=.x; 1/ � .� ı �.x/; 1/ [DC [D�:

Then we obtain a Lipschitz map v defined on… by setting vjD˙ D u
˙ and vjS1�¹tº D 
 .

The area of v is equal to area.uC/C area.u�/. The desired map u is then given by
precomposing v with the quotient map ND ! ….

We record a special case using the same notation as above.

Corollary 47. If the image of 
� is a tree, then

area.u/ �
length.
C/2

4�
:

Proof. Since the filling area of a tree is equal to zero, the claim follows from Lemma 46
and the isoperimetric inequality 9.

The following will be used repeatedly. It is a consequence of Lemma 17.

Corollary 48. Let f W Z ! X be an intrinsic minimal surface. If Z contains a closed
convex subset W which is isometric to a Euclidean disc, then f restricts to an isometric
embedding W ! X .

Proof. We may assume that W is isometric to the closed unit disc. Let w be the center of
W , i.e.W D NB1.w/ � Z. Let c W S1 ! Z be an arc length parametrization of @W . If the
distance between f ı c and f .w/ would be less than one, then by Lemma 17,

H2.W / D area.f jW / <
1

2
length.f ı c/ � �:

A cut and paste argument based on Lemma 17 would then show that f is not area min-
imizing. Hence f ı c is at constant distance one from f .w/ and f restricts to a radial
isometry on W . Repeating the same argument for subdiscs of W with different centers
shows that f is an isometric embedding.

Corollary 49. Let X be a CAT.0/ space and f W C˛ ! X an intrinsic minimal plane
where C˛ is a Euclidean cone of cone angle ˛ � 2� . Then the following holds.

(i) f is a locally isometric embedding away from the tip o of C˛ . In particular, f is
a radial isometry with respect to o.

(ii) If f .x/ D f .y/ for x ¤ y and vx ; vy 2 †oC˛ denote the directions at o pointing
to x respectively y, then the intrinsic distance between vx and vy is at least 2� .

(iii) If ˛ < 4� , then f is injective. If even ˛ D 2� , then f is an isometric embedding.

Proof. Claim (i) is immediate from Corollary 48. Iff would not be injective, then†f .o/X
would contain a geodesic loop of length � ˛

2
. Since †f .o/X is CAT.1/, we conclude

claim (ii) and the first part of (iii). The supplement in the third claim follows directly
from Corollary 48.
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Remark 50. In the case ˛ < 4� above, f does not have to be an isometric embedding,
as can be seen in a product of two ideal tripods.

Lemma 51. Let � be a Jordan curve in X . Let f W Z ! X be an intrinsic minimal disc
filling � . Then for p 2 Z,

jp; @ZjZ �
length.�/
2�

:

Furthermore, equality holds if and only ifZ is a flat disc and f is an isometric embedding.

Proof. Set R D jp; @ZjZ . Then length.�/ � H1.@ NBR.p// since the nearest point pro-
jection onto NBR.p/ is short. By Bishop–Gromov (Theorem 24), we have

H1.@ NBR.p// � 2�R:

This proves the inequality. The case of equality follows from the rigidity statement in
Bishop–Gromov together with Corollary 48.

4.2.2. Minimal vs. intrinsic minimal.

Lemma 52. Let X be a CAT.0/ space and Zi , i D 1; 2, CAT.0/ discs with rectifi-
able boundaries. Let ci W S1 ! @Zi be Li -Lipschitz parametrizations and suppose that
fi W Zi ! X are L-Lipschitz maps. Then there exists a constant C D C.L;L1; L2/ such
that the following holds. If the compositions fi ı ci are uniformly �-close to each other,
then there exists a Lipschitz map Qf1 W Z1 ! X with @ Qf1 D @f1 and

area. Qf1/ < area.f2/C C � �:

Proof. By Lemma 29, we can choose parametrized Jordan polygons �i W S1 ! Zi n @Zi
which have positive angles and are uniformly �-close to ci . Moreover, the Lipschitz con-
stant of �i is bounded above by .Li C �/. We denote the associated Jordan domains
by �i . By Lemma 28, N�i is intrinsically a CAT.0/ disc and there is a bilipschitz map
'i W ND ! Zi . In order to obtain Qf1 we will cut and paste f1j N�1 .

By Lemma 18, there are Lipschitz homotopies hi of zero area between @.fi ı 'i /
and fi ı �i . By our assumptions, the properties of �i and the triangle inequality we
conclude supt2S1 jf1 ı �1; f2 ı �2j < .2LC 1/ � �. Hence Lemma 19 gives a Lipschitz
homotopy h between f1 ı �1 and f2 ı �2 with

area.h/ � C � L � max
iD1;2

Li � �:

Now we define a Lipschitz map ˆ W ND ! X with @ˆ D @.f1 ı '1/ as follows. We par-
tition ND into a central disc and three concentric annuli. Then we use h1 on the outmost
annulus, then h, then h2 and on the central disc we use f2 ı '2. In particular,

area.ˆ/ � area.f2/C C � L � max
iD1;2

Li � �:

Again by Lemma 19

area.f1jZ1n�1/ � L
2
�H2.Z1 n�1/ � L

2
� C � L1 � �:
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Now we cut f1j N�1 and use '1 to pasteˆ. This defines Qf1. Combining the estimates above
gives the necessary area bound for Qf1:

area. Qf1/ � L2 � C � L1 � � C area.f2/C C � L � max
iD1;2

Li � �:

The following is a special case of [36, Theorem 1.2]. It can also be deduced from
[44, Theorem 1.2] and Corollary 13.

Lemma 53. Let Z be a CAT.0/ disc and � � Z a rectifiable Jordan curve with Jordan
domain �� . Suppose that u W ND ! Z is a minimal disc filling � . Then im.u/ D N�� ,
area.u/ D H2.��/ and for any Lipschitz map f W Z ! Y to a metric space Y it holds
area.f ı u/ D area.f j�� /.

By Theorem 41, every minimal disc yields an intrinsic minimal disc. The following
proposition provides a converse.

Proposition 54. Let X be a CAT.0/ space and f W Z ! X an intrinsic minimal surface.
Suppose that � � Z is a rectifiable Jordan curve. Let u W D ! Z be a minimal disc fill-
ing � . Then f ı u is conformal and harmonic. If in addition f restricts to an embedding
on � , then f ı u is a solution to the Plateau problem for .f .�/;X/.

Proof. Let us settle the claim on conformality first. For almost every x 2 D we have
jduxj D � � s0 where s0 denotes the Euclidean norm; dfu.x/ is a linear isometric embed-
ding; u is differentiable at x with a linear differential and the chain rule holds [29]. Hence
f ı u is conformal.

We will show that f ı u is harmonic. Choose a small � > 0 and set u� WD uj.1��/� ND .
Let v� 2 W 1;2..1 � �/ �D;X/ be a solution to the Dirichlet problem with the property
that tr.v�/ D tr.f ı u�/. By Theorem 36, v� extends continuously to .1 � �/ � ND. The
extension will still be called v�. In particular, @v� D @.f ı u�/. Then we have

area.v�/ � E.v�/ � E.f ı u�/ D area.f ı u�/ D area.f jim.u�//:

Now u� is a Lipschitz embedding. ThereforeZ� WD im.u�/ is intrinsically a CAT.0/ disc
(Lemma 28) and f� WD f jZ� is an intrinsic minimal disc (Lemma 43).

By [37, Proposition 3.1], for every � > 0 there exists a Lipschitz disc

Qv� W .1 � �/ � ND ! X

with @ Qv� D @v� D f ı @u� and area. Qv�/ � area.v�/C �. Since @u� is a Lipschitz param-
etrization of @Z�, Lemma 52 implies area.f�/ � area.v�/. Hence E.v�/ D E.f ı u�/
and by uniqueness v� D f ı u�. As � > 0 was arbitrary, we conclude that f ı u is har-
monic.

If f j� is an embedding, then we use Lemma 52 and argue as above to show that f ı u
is area minimizing which completes the proof.

Corollary 55. Let X be a CAT.0/ space and let f W Z ! X be intrinsic minimal sur-
face. Let � � Z be a rectifiable Jordan curve and denote by �� its Jordan domain. Let
' W X ! R be a Lipschitz continuous 1-convex function. Then ' ı f j N�� cannot attain its
maximum in �� .
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Proof. By Lemma 43, f j N�� is an intrinsic minimal disc. Therefore we may assume that
Z is a disc and � D @Z. Let u solve the Plateau problem for .�;Z/. By [36, Theo-
rem 1.1], u is a homeomorphism. Hence if ' ı f attains a maximum in�� , then ' ı f ıu
attains a maximum in D. By Proposition 54, f ı u is harmonic and hence our claim
follows from the maximum principle (Lemma 45).

Corollary 56. Let X be a CAT.0/ space and let f W Z ! X be a intrinsic minimal
surface. Let p 2 X be a point and set fp WD jf . � /; pj. Let r > 0 be a quasi regular
value of fp with r < jp; f .@Z/j. Suppose that …r D N [

S1
iD1 �i is the corresponding

decomposition of the fiber, cf. Proposition 15. Then the associated Jordan domains�i are
all disjoint.

Proof. Assume that�1 � �2. Then fpj N�2 attains its maximal value r in�2. The squared
distance function j�; pj2 is locally Lipschitz continuous and 1-convex. Hence Corollary 55
implies that f is constant equal to p on �2. Contradiction.

4.3. Limits of minimal discs

Lemma 57. Let .Xk ; xk/ be a sequence of pointed CAT.0/ spaces. Denote by .X! ; x!/
their ultralimit. Let .Zk/ be a sequence of CAT.0/ discs which Gromov–Hausdorff con-
verge to a CAT.0/ disc Z. Assume that each Zk is bilipschitz to ND and that the boundary
lengths H1.@Zk/ are uniformly bounded. Suppose that f W Z ! X! is a Lipschitz map
and set 
 WD @f . Furthermore, assume that for some L > 0 there are L-Lipschitz cir-
cles 
k W @Zk ! Xk with !-lim 
k D 
 . Then, for every � > 0 there exist Lipschitz maps
fk W Zk ! Xk with @fk D 
k and such that for !-all k it holds

area.fk/ � area.f /C �:

Proof. Let � W S1 ! @Z be a constant speed parametrization. Set c WD 
 ı �. By assump-
tion, we can find constant speed parametrizations �k W S1 ! @Zk such that ck WD 
k ı �k
!-converges to c. By Lemma 30, � extends to a monotone Lipschitz map� W ND ! Z. Put
v WD f ı �. By Corollary 13, we have area.v/ D area.f /. For given � > 0, [48, Theo-
rem 5.1] provides a sequence .vk/ of Lipschitz maps vk W ND ! Xk filling ck and such
that area.vk/ � area.v/C � holds for !-all k. The statement follows since each Zk is
bilipschitz to ND.

Remark 58. The condition on the Zk is necessary because if @Zk has a peak, then there
might not be a single Lipschitz map Zk ! Xk filling ck .

Proposition 59. Let .Xk ; xk/ be a sequence of pointed CAT.0/ spaces and denote by
.X! ; x!/ their ultralimit. Further, let .Zk ; zk/ be a sequence of CAT.0/ discs, each
bilipschitz to ND. Suppose that .Zk/ Gromov–Hausdorff converges to a CAT.0/ disc Z
and such that the boundary lengths H1.@Zk/ are uniformly bounded. For each k 2 N let
fk W Zk ! Xk be an intrinsic minimal disc with f .zk/ D xk . Then

f! WD !-limfk W Z! ! X!

is an intrinsic minimal disc with area.f!/ D !-lim area.fk/.
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Remark 60. If we remove the condition on Z! being a disc, then f! is still area mini-
mizing and its domain is a CAT.0/ disc retract, cf. [43].

Proof. Since all the fk are short, we obtain a well-defined short limit map f! WZ!!X! .
Since each fk is area minimizing, we conclude from Lemma 57 area.'/ � !-lim area.fk/
for any Lipschitz map ' with @' D @f! . By our assumption, Z! is isometric to Z. From
Lemma 25 we know H2.Z/ D limk!1H2.Zk/. Hence

area.f!/ � H2.Z!/ D lim
k!1

H2.Zk/ D !-lim area.fk/:

Therefore, equality holds and f! is an intrinsic minimal disc.

4.4. Monotonicity

A key property of minimal surfaces in smooth spaces is the monotonicity of area ratios.
The aim of this section is to prove monotonicity in a more general setting.

Lemma 61. Let X be a CAT.0/ space and let f W Z ! X be an intrinsic minimal disc.
Suppose that there is a point p inX and a radius r > 0 such that f .@Z/ � @ NBr .p/. Then
area.f / � r

2
�H1.@Z/.

Proof. Let � > 0. By Lemma 29, we find a parametrized Jordan polygon � W S1 ! Z

with positive angles which is uniformly close to an arc length parametrization of @Z
and such that length.�/ � .1C �/ �H1.@Z/ holds. Denote by �� the associated Jordan
domain. By Lemma 19, we have

area.f jZn�� / D H2.Z n�� / � C �H
1.@Z/ � �

with a uniform constant C > 0. By Lemma 28, N�� is intrinsically a CAT.0/ disc which
is bilipschitz to ND. Hence Lemma 17 implies

area.f j�� / �
r

2
� length.�/ �

.1C �/ � r

2
�H1.@Z/:

The claim follows since � > 0 was arbitrary.

Proposition 62 (Intrinsic monotonicity). Let X be a CAT.0/ space and Z a CAT.0/
surface. Suppose that f W Z ! X is an intrinsic minimal surface. Then for any point
p 2 X the area density

‚.f; p; r/ WD
H2.f �1.Br .p///

�r2

is a nondecreasing function of r as long as r < jp; f .@Z/j.

Proof. We put fp.x/ WD jf .x/; pj and define �r WD f �1p .Œ0; r// and …r WD f
�1
p .r/.

Moreover, we set A.r/ WD H2.�r / and L.r/ WD H1.…r /. Then, since fp is short, the
coarea formula (Lemma 14) yields A.r/ �

R
�r
jrfpj D

R r
0
L.t/ dt . Therefore

A0.r/ � L.r/ (1)

for almost all r < jp; f .@Z/j.
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The desired monotonicity follows if we can show that

A.r/ �
r

2
L.r/ (2)

holds almost everywhere. By Proposition 15, almost all r are quasi regular. By Corol-
lary 56, all Jordan domains resulting from a decomposition of a quasi regular fiber are
disjoint. Hence we may assume that …r is equal to a single rectifiable Jordan curve. By
Lemma 43, f j N�r is an intrinsic minimal disc and therefore the required area estimate
follows from Lemma 61.

Corollary 63 (Monotonicity). Let X be a CAT.0/ space. Suppose that u W ND ! X is
a minimal disc and p is a point in u. ND/ n u.@ ND/. Then the area density

‚.u; p; r/ WD
area.u.D/ \ Br .p//

�r2

is a nondecreasing function of r as long as r < jp; u.@ ND/j.

Proof. Factorize u as Nu ı � as in Theorem 41. Then

area.u.D/ \ Br .p// D H2. Nu�1.Br .p///;

by Theorem 41 (iv). Since Nu is an intrinsic minimizer, Proposition 62 applies.

4.5. Densities and blow-ups

The monotonicity of area densities justifies the following definition.

Definition 64 (Density). For an intrinsic area minimizer f and a point p 2 f .Z/ n f .@Z/
we define the density at p by

‚.f; p/ WD lim
r!0

‚.f; p; r/:

If Z is compact, then the density is finite. The function p 7! ‚.f; p/ is upper semi-
continuous by monotonicity (Proposition 62).

Lemma 65. Let X be a CAT.0/ space. If f W Z ! X is an intrinsic area minimizer, and
p 2 f .Z/ n f .@Z/, then ‚.f; p/ � #f �1.p/.

Proof. Let ¹x1; : : : ; xkº be a finite subset of the inverse image of the point p under f . For
r < 1

2
min¹jxi ; xj j W 1 � i < j � kº, the balls Br .xi / are disjoint and since f is short,

we have

area.f �1.Br .p/// �
kX
iD1

area.Br .xi //:

The claim follows from Bishop–Gromov (Theorem 24).

Corollary 66. Let X be a CAT.0/ space and f W Z ! X an intrinsic minimal surface of
finite area, area.f / <1. Then the fiber of each point p 2 f .Z/ n f .@Z/ is finite.

Proof. For r < jp; f .@Z/j it holds ‚.f; p; r/ � area.f /
�r2

. Hence the claim follows from
monotonicity and Lemma 65.
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Definition 67. Let ! be a nonprincipal ultrafilter on N. Let X be a CAT.0/ space and let
f W Z ! X be an intrinsic minimal surface. Fix a point z0 2 Z. For any r > 0 we define
the rescaled maps fr W .r �Z; z0/! .r �X; x0/, where x0 D f .z0/. A tangent map at z0
is an ultralimit of rescalings f 1

�i

for some nullsequence .�i /:

dfz0 W Tz0Z ! .X! ; x!/:

Here X! denotes the pointed ultralimit !-lim. 1
�i
�X; x0/.

Lemma 68. Let X be a CAT.0/ space and f W Z ! X an intrinsic minimal surface.
Let dfz0 W Tz0Z ! X! be a tangent map at a point z0 in the interior of Z. Then dfz0 is
an intrinsic minimal plane which is a locally isometric embedding away from the tip oz0
of Tz0Z. In particular, it is of constant area density

‚.dfz0 ; x! ; r/ �
H1.†z0Z/

2�
:

Moreover, if x0 2 f .Z/ n f .@Z/ and f �1.x0/ D ¹z0; : : : ; zkº is a finite fiber, then

kX
iD0

‚.dfzi ; x!/ D ‚.f; x0/:

Proof. Since z0 lies in the interior ofZ, the tangent cone Tz0Z is isometric to a Euclidean
cone C˛ with ˛ D H1.†z0Z/ � 2� . For each r > 0 and i large enough, f jB�i r .z0/ is an
intrinsic minimal disc in X and NB�i r is bilipschitz to ND. By Proposition 59, we conclude
that dfz0 jBr .oz0 / is an intrinsic minimal disc. Hence dfz0 is an intrinsic minimal plane. By
Corollary 48, dfz0 is a locally isometric embedding away from oz0 . In particular, it is
radially isometric and therefore has constant area density

‚.dfz0 ; x! ; r/ �
H1.†z0Z/

2�
:

Now assume that the fiber of x0 is finite, f �1.x0/ D ¹z0; : : : ; zkº. (By Corollary 66,
this is automatic if Z is compact.) For simplicity we assume that k D 0 so that z0 is the
only inverse image of x0. The proof for k > 0 is identical. We know that

‚.dfz0 ; x!/ � ‚.f; x0/

since f is short.
To see the converse inequality, let r > 0 and choose a sequence �i ! 0. Now define

ri > 0 to be the smallest radius such that f �1. NB�i r .x0// � NBri .z0/. In particular,

H2.f �1. NB�i r .x0/// � H2. NBri .z0//:

Since dfz0 is a radial isometry, we obtain that !-lim ri
�i
D r . Since a subsequence of the

1
�i
� NBri .z0/ converges Gromov–Hausdorff to NBr .oz0/, we get from Lemma 25 that

lim
i!1

H2

�
1

�i
� NBri .z0/

�
D H2. NBr .oz0// D H1.†z0Z/ �

r2

2
:

This shows ‚.f; x0/ � ‚.dfz0 ; x!/ and completes the proof.
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From Lemma 68 above and [30, Proposition 1.1], we can conclude that an intrinsic
minimal surface f W Z ! X is a locally bilipschitz embedding on an open dense set ofZ.
However, our situation is more special and we actually get:

Theorem 69. Let X be a CAT.0/ space and f W Z ! X an intrinsic minimal surface.
If z0 is a point in the interior ofZ with H1.†z0Z/ < 4� , then f restricts to a bilipschitz
embedding on a neighborhood of z0. In particular, ifZ is a CAT.0/ disc, then f is locally
a bilipschitz embedding in the interior of Z away from finitely many points.

Proof. Let z0 be a point in the interior of Z with H1.†z0Z/ < 4� . Assume that the
claim is false. Then we can find sequences .xk/ and .yk/ in Z with xk ¤ yk , and such
that xk ; yk 2 B 1

k
.z0/ and

jf .xk/; f .yk/j �
1

k
jxk ; ykj:

We set �k WD jxk ; ykj. We consider the rescaled maps

f 1
�k

W

�
1

�k
�Z; xk

�
!

�
1

�k
�X; f .xk/

�
and build the blow up

f! W !-lim
�
1

�k
�Z; xk

�
! !-lim

�
1

�k
�X; f .xk/

�
:

By Lemma 26, we know that !-lim. 1
�k
Z; xk/ is isometric to a Euclidean cone C˛ with

cone angle ˛ � H1.†z0Z/. (Note that the tip of C˛ might be different from x! .) As
in the proof of Lemma 68, we conclude from Proposition 59 that dfx! is an intrinsic
minimal plane. Corollary 49 implies that dfx! is injective. But by construction we have
f!.x!/ D f!.y!/ and jx! ; y! j D 1. This contradiction completes the proof.

Combining Theorem 69 with Theorem 41, we obtain our main structure result:

Theorem 70. Let X be a CAT.0/ space and � � X a rectifiable Jordan curve. Let
u W D ! X be a minimal disc filling � . Then there exists a finite set B � D such that
u is a local embedding on D n B .

Corollary 71. Let X be a CAT.0/ space and � � X a rectifiable Jordan curve. Suppose
that u W D ! X is a minimal disc filling � . Denote by Y the image of u. Then there
is a finite set P in Y such that on Y n P the intrinsic and extrinsic metrics are locally
bilipschitz equivalent.

4.6. Rigidity

We will make use of the following auxiliary lemma which gives a lower bound on the size
of links in domains of intrinsic minimal surfaces.

Lemma 72. Let f W Z ! X be an intrinsic area minimizer. Let x1 ¤ x2 and y be points
in the interior of Z with f .xi / D p, i D 1; 2, and f .y/ D q. Assume that f maps the
geodesics xiy isometrically onto the geodesic pq. If vi denotes the direction at y pointing
to xi , then jv1; v2j � 2� .
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Proof. Recall that TyZ is a Euclidean cone of cone angle ˛ � 2� . By Lemma 68, each
tangent map dfy is an intrinsic minimal plane. The claim follows from Corollary 49.

Theorem 73 (Rigidity). Let X be a CAT.0/ space. Let f W Z ! X be an intrinsic min-
imal disc and let p be a point in f .Z/ n f .@Z/. Assume that there exist ‚ > 0 and
a radiusR > 0 withR < jp; f .@Z/j such that the area ratio with respect to p is constant,

A.r/ �
‚

2
r2 for all r � R:

Then �R WD f �1.BR.p// is flat away from a finite set of cone points z1; : : : ; zk . More-
over, f is a locally isometric embedding on �R n ¹z1; : : : ; zkº and f .�R/ is a union of
p-radial geodesics.

Proof. The supplement follows from Corollary 48, so it is enough to show that �R is flat
away form finitely many points. By Corollary 66, we know that f has finite fibers. Let
P WD ¹x1; : : : ; xnº be the finitely many inverse images of p. We claim that it is enough to
show that the regular stars RR.xi /, i D 1; : : : ; n, are disjoint. Indeed, if this holds, then
we get

‚ D
H2.�R/

�R2
�

nX
iD1

H2.RR.xi //

�R2
�

nX
iD1

H1.†xiZ/

2�
D ‚:

The last equality follows from Lemma 68. As
Sn
iD1 RR.xi / � NR.P / � �R, we obtain

H2.NR.P // D
R2

2

nX
iD1

H1.†xiZ/

and Lemma 34 applies.
To see that the regular stars are disjoint, we let mij denote the midpoint of xi and xj .

Further, we will denote by vi the direction at mij pointing at xi . If we can show that
jvi ; vj j � 2� , then clearly the regular stars have to be disjoint. Suppose this is not the
case form12. Moreover, we may assume that it holds for all .i; j /with jxi ; xj j < jx1; x2j.
Set r WD jx1;x2j

2
. Then the Rr .xi / are disjoint and f restricts to a radial isometry on each

of them. It follows that f maps the geodesics x1m12 and x2m12 isometrically to the
geodesic pf .m12/. Hence Lemma 72 shows jv1; v2j � 2� . Contradiction.

Remark 74. Notably, the proof shows that the link at any midpoint mij as above has
length at least 4� .

4.7. Extending minimal discs to planes

Recall that a map between metric spaces is called (metrically) proper if inverse images of
bounded sets are bounded.

Let X be a CAT.0/ space and Of W OZ ! OX a proper intrinsic minimal plane. Then we
know that the monotonicity of area densities holds for all times. More precisely, for all
points p 2 Of .Z/ the function r 7! ‚. Of ; p; r/ is nondecreasing for all r > 0.



The structure of minimal surfaces in CAT(0) spaces 3549

Definition 75 (Area-growth). Let Of W OZ ! OX be a proper intrinsic minimal plane. Then
we define the density at infinity or area growth of Of by

‚1. Of / WD lim
r!1

‚. Of ; p; r/:

We say that Of is of quadratic area growth, if ‚1. Of / 2 .0;1/.

Combining the monotonicity of area densities with Lemma 65, we obtain:

Lemma 76 (Key estimate). Let Of W OZ ! OX be a proper intrinsic minimal plane in an
arbitrary CAT.0/ space OX . Then for every point p in the image of Of we have

# Of �1.p/ � ‚1. Of /:

In particular, if Of is of quadratic area growth, then it has finite fibers.

Corollary 77. Let OX be a CAT.0/ space and Of W OZ ! OX a proper intrinsic minimal
plane. Suppose that the area growth of Of satisfies ‚1. Of / < 2. Then Of is an embed-
ding. If the area growth is even Euclidean, ‚1. Of / D 1, then Z is isometric to the flat
Euclidean plane and Of is an isometric embedding.

Proof. The first claim is immediate from Lemma 76. We turn to the second claim. Since Of
is short, the area growth of Z is bounded above by ‚1. Of / D 1. It follows from the
Bishop–Gromov Theorem (Theorem 24) that Z is isometric to the flat Euclidean plane.
Then Of is an isometric embedding by Corollary 48.

Our goal now is to extend a minimal disc to a minimal plane such that the area growth
of the minimal plane is controlled by the total curvature of the boundary of the minimal
disc. If we can do this, then we can argue as above to control the mapping behavior of the
minimal disc.

So let � be a Jordan curve of finite total curvature � in a CAT.0/ space X . Denote by
OX WD X [� E� the CAT.0/ space obtained from the funnel construction, see Section 3.1.

Let f W Z ! X be an intrinsic minimal disc spanning � and such that f restricts to
a homeomorphism @Z ! � . Then we can glue the space OZ WD Z [@Z E� via f . Using
the identity map on E� , we obtain a natural extension

Of W OZ ! OX:

Clearly, this is a proper, area preserving short map.

Lemma 78. The map Of is area minimizing. More precisely, if Y is an embedded disc
in OZ, then Of jY minimizes the area among all Lipschitz maps h W Y ! OX with @h D @ Of jY .

Proof. Denote by dX the distance function toX � OX . Let r0 > 0. SetA0 WD d�1X ..0; r0�/

and Y0 WD Of �1.A0/[Z. It is enough to show that Of jY0 is area minimizing for all large r0.
Note that

area. Of jY0/ D H2.A0/C area.f /:

We claim that there is a Lipschitz continuous monotone map ND ! Y0.
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Recall that E� is the complement of an open convex neighborhood V of the tip in
a Euclidean cone C� of cone angle �. Hence there is a short retraction � W NNr0.V /! NV .
Let � be an arclength parametrization of @Nr0.V /. Denote by A2;1 the closed annulus
in R2 centered in 0 and of radii 2 and 1. We obtain a Lipschitz continuous monotone map
v1 W A2;1 ! NNr0.V / n V by sending radial geodesic with constant speed to the unique
geodesic between �.t/ and � ı �.t/ in C� . By Lemma 30, there is a Lipschitz continu-
ous monotone map v2 W ND ! Z extending � ı � . Concatenating v0 and v1 provides the
required map.

By the claim, it is enough to show that a solution u to the Plateau problem of .�0; OX/
has at least the area of Of jY0 . For topological reasons, any continuous disc filling �0 has to
containA0 in its image. Therefore, it is enough to show that the part of uwhich maps toX
has at least the area of f . Let � > 0 be a small quasi regular value of dX ı u. By Proposi-
tion 15, the corresponding fiber …� decomposes as …� D N� [

S1
kD1 �k , where N� has

H1-measure zero and each �k � D is a rectifiable Jordan curve. Because u is minimiz-
ing, each u�Œ�i � has to be nontrivial in the first homology group with integer coefficients,
H1.E�/. Since u is locally Lipschitz continuous, the decomposition can only contain
a finite number of Jordan curves, say �1; : : : ; �n. Denote by �i the Jordan domain asso-
ciated to �i . By Corollary 56, the different�i are all disjoint. Then the sum

Pn
iD1 u�Œ�i �

is equal to u�Œ@ ND� in H1.E�/. Choose Lipschitz maps vi W ND ! ND which extend arc
length parametrizations of �i and such that area.u ı vi / � area.uj�i /C

�
n

. Since each
u ı vi j@ ND maps onto �� WD d�1X .�/, we can construct a Lipschitz map v W ND ! OX which
fills �� and such that area.v/ �

Pn
iD1 area.uj�i /C � and vj@ ND represents a generator

of H1.E�/. By Lemma 18, we can adjust the boundary parametrization to obtain a new
Lipschitz disc Qv W ND ! OX with area. Qv/ D area.v/ and such that Qvj@ ND is uniformly �-close
to an arc length parametrization of � . By the minimality of f and Lemma 19, we obtain
area.v/ � area.f / � C � � with a uniform constant C > 0. We conclude

area.u/ � H2.A0/C area.f / � .C C 1/�:

This holds for every small quasi regular value � and therefore finishes the proof.

Lemma 79. The extended space OZ is a CAT.0/ plane.

Proof. Note that OZ is a geodesic space which is homeomorphic to the plane. Moreover, OZ
contains Z as a closed convex subset since the nearest point projection E ! @E is short.

By [36, Corollary 1.5] it is enough to show that any Jordan domain Dc in OZ bounded
by a Jordan curve c satisfies

H2.Dc/ �
length.c/2

4�
:

Let c be a rectifiable Jordan curve in OZ and denote by Dc the associated Jordan
domain. By Lemma 79 we know that Of jDc is an area minimizing filling of Of ı c in OX .
But since OX is CAT.0/, the Euclidean isoperimetric inequality holds and therefore

area. Of jDc / �
length. Of ı c/2

4�
:

Since Of is short and preserves area, the claim follows.
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Hence, from Lemma 78 and Lemma 79 we obtain:

Proposition 80. Let � be a Jordan curve of finite total curvature � in a CAT.0/ space X .
Denote by OX WD X [� E� the CAT.0/ space obtained from the funnel construction. (See
Section 3.1.) Let f WZ!X be an intrinsic minimal disc filling � . Then OZ WDZ [f E� is
a CAT.0/ plane and the map f extends canonically to a proper intrinsic minimal plane
Of W OZ ! OX . Moreover, Of has area growth ‚1. Of / equal to �

2�
.

This proposition allows us to relate the total curvature of the boundary curve to the
multiplicity of points via our key estimate Lemma 76.

5. The Fáry–Milnor Theorem

In this last part we will apply the above results on minimal discs filling curves of finite
total curvature in order to obtain the general version of the Fáry–Milnor Theorem.

Theorem 81 (Fáry–Milnor). Let � be a Jordan curve in a CAT.0/ spaceX . If �.�/� 4� ,
then either � bounds an embedded disc, or �.�/ D 4� and � bounds an intrinsically flat
geodesic cone. More precisely, there is a map from a convex subset of a Euclidean cone
of cone angle equal to 4� which is a local isometric embedding away from the cone point
and which fills � .

Proof. Let u W D ! X be a solution to the Plateau problem for .�;X/ provided by
Theorem 39. Denote by f WD Nu W Z ! X the induced intrinsic minimal disc. Then, by
Theorem 41, the map @f W @Z ! � is an arc length preserving homeomorphism. Next,
let OX WD X [� E� be the CAT.0/ space obtained from the funnel construction, see Sec-
tion 3.1. By Proposition 80 we can extend f to an intrinsic minimal plane Of W OZ ! OX

with area growth ‚1. Of / equal to �
2�

. Then, for any point p in the image of Of our key
estimate Lemma 76 reads

# Of �1.p/ �
�

2�
: (3)

Now if � < 4� holds, then Of is injective. Hence � bounds the embedded disc f .Z/.
So we may assume that � D 4� and our intrinsic minimal disc f filling � is not

embedded. Hence we find a point p 2 im. Of / where equality in (3) holds, i.e. which has
exactly two inverse images xC and x�. Moreover, by monotonicity (Proposition 62), we
must have

A.r/ D
‚1. Of /

2
r2

for all r > 0.
Let m be the midpoint of xC and x�. Set r WD jx

C;x�j
2

. Then H2.Br .x
˙// D �r2

and Br .x˙/ � OZ is a flat disc. Hence, by Corollary 48, the restriction Of jBr .x˙/ is an iso-
metric embedding. Consequently, the geodesic xCx� is folded onto the geodesic Of .m/p.
From Lemma 72 we conclude that H1.†m OZ/ � 4� . But the area growth of OZ is equal
to 2. Hence from Bishop–Gromov (Theorem 24) we conclude that OZ is isometric to
a Euclidean cone of cone angle 4� and the proof is complete.
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Example 1. Let X be the CAT.0/ space which results from gluing two flat planes along
a flat sector of angle ˛ � � . Then X contains a Jordan curve of total curvature equal to
4� but which does not bound an embedded disc. The picture shows an example in the
case ˛ D � . Note that � , as shown in the picture, surrounds some points in X twice and
therefore cannot bound an embedded disc.
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