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Abstract. In this paper we show that if p is a polynomial of degree d � 2 possessing a neutral
periodic point then a product map of the form .z; w/ 7! .p.z/; q.w// can be approximated by
polynomial skew products .z; w/ 7! .�p.z;w/; q.w// possessing special dynamical objects called
blenders. Moreover, these objects can be chosen to be of two types: repelling or saddle. As a conse-
quence, such a product map belongs to the closure of the interior of two different sets: the bifurcation
locus of the space of holomorphic endomorphisms of degree d of P2 and the set of endomorphisms
having an attracting set of non-empty interior. Similar techniques also give the first example of an
attractor with non-empty interior or of a saddle hyperbolic set which is robustly contained in the
small Julia set and whose unstable manifolds are all dense in P2. In an independent part, we use
perturbations of Hénon maps to obtain examples of attracting sets with repelling points and also of
quasi-attractors which are not attracting sets.
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1. Introduction

The concept of blender was introduced by Bonatti and Díaz in [14] to obtain robustly
transitive diffeomorphisms which are not hyperbolic. Since then, blenders have become
an important tool in smooth dynamics especially to build examples exhibiting new phe-
nomena. Even though there is no consensus on a precise definition of a blender ƒ, its
main properties are that it persists under small C 1 perturbations and its stable set W s

ƒ (or
unstable set) intersects an open family of submanifolds of codimension strictly smaller
than the topological dimension of W s

ƒ, i.e., these robust intersections do not have a topo-
logical origin. We refer to [6, 16] and [15] for introductions to the subject.

Recently, blenders (called of repelling type in what follows) were introduced in com-
plex dynamics by Dujardin [25] (see also [12]) in order to prove that the bifurcation locus
as defined in [8] (see Section 2.2 for more details) has non-empty interior in the family
Hd .P

k/ of holomorphic endomorphisms of degree d of Pk for all d � 2 and k � 2, i.e.,
there exist robust bifurcations in Hd .P

k/. This contrasts with the case of one complex
variable since the classical results of Mañé, Sad and Sullivan [34] and Lyubich [33] imply
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that the bifurcation locus has empty interior in any family of rational maps of P1, i.e., the
stable set is always an open and dense subset.

To obtain such blenders, Dujardin considers some perturbations of product maps
of C2, .z; w/ 7! .p.z/; q.w//, where q.w/ D wd C � with � large and p belonging to
a specific subset of the bifurcation locus Bif.Pd / of the family Pd of all polynomials
of degree d . Our main result is that these assumptions can be reduced to p 2 Bif.Pd /,
i.e., blenders always exist near bifurcations of product maps. Notice that p 2 Bif.Pd /

is equivalent to that fact that p can be approximated by polynomials with a neutral
periodic point.

Theorem 1.1. Let d � 2. If p and q are two elements of Pd such that p 2 Bif.Pd / then
the map .p; q/ 2Hd .P

2/ can be approximated both by polynomial skew products of the
form .z; w/ 7! .�p.z;w/; q.w// having an iterate with a blender of repelling type and by
others having an iterate with a blender of saddle type.

We refer to Section 3 for details about these two closely related notions of blenders. In
this introduction, we just point out that in our definition a blender of repelling type (resp.
saddle type) is contained in a repelling (resp. saddle) invariant hyperbolic set.

Remark 1.2. A similar result might be obtained for product maps in higher dimension
where p 2 Bif.Pd / is still a polynomial in one variable and q is a polynomial self-
map of Ck�1 such that .z; w/ 7! .p.z/; q.w// extends to Pk . However, some technical
restrictions on q are necessary to easily adapt our proof to that setting.

The main arguments in the proof of Theorem 1.1 are the following. First, we observe
that some perturbations of the map .z; w/ 7! .z; ql .w// have a blender if l � 1 is large
enough (see Propositions 3.5 and 3.9). Using the fact that p 2 Bif.Pd / can be approxi-
mated by polynomials with a parabolic cycle, we show that the above perturbations can be
realized as the l-th iterate of perturbations of .z; w/ 7! .p.z/; q.w// (see Theorem 4.1).

Observe that blenders by themselves do not create bifurcations as they are hyperbolic
sets. Their existence has important consequences when they “blend” together different
parts of the dynamics. To insure that this happens, we need additional information on
the dynamics. A more precise (and more technical) version of Theorem 1.1 is given by
Theorem 4.1, where the perturbations have an explicit form. As a corollary of this con-
struction in the repelling case, we obtain a positive answer to a conjecture of Dujardin
[25, Theorem 5.6].

Corollary 1.3. The bifurcation locus of the family Pd �Pd is contained in the closure
of the interior of the bifurcation locus in Hd .P

2/.

On their part, blenders of saddle type give rise to invariant sets with non-empty inte-
rior. Actually, their unstable set has non-empty interior. As a consequence, we obtain the
following result.

Corollary 1.4. The bifurcation locus of the family Pd �Pd is contained in the closure
of the interior of the set of maps in Hd .P

2/ possessing a proper attracting set with non-
empty interior.
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An attracting set A of an endomorphism f is an invariant compact set with an open
neighborhood U (called a trapping region) such that f .U / � U and A D

T
n�0 f

n.U /.
Such a subset of P2 is called proper if A ¤ P2.

To the best of our knowledge, no previous example of proper attracting sets with non-
empty interior was known. The result above says that they are abundant. Moreover, these
attracting sets are “near to collapse”. An interesting question is then to understand which
part of the bifurcation locus in Hd .P

2/ can be approximated by maps with such “collaps-
ing” attracting sets and whether or not these sets can have non-empty interior (when they
are not finite). This can be related to the Lyapunov exponents of the equilibrium measures
on attracting sets introduced in [21] and [36]. Observe that in one variable the full bifur-
cation locus can be characterized by the fact that the number of attracting cycles is not
constant in any neighborhood of a bifurcating parameter.

The technique to obtain Corollary 1.4 is elementary and flexible. It is possible to
adapt it to produce examples with additional properties. In particular, an attractor is an
attracting set which is topologically transitive. The following result gives an example of
attractor whose interior is uniformly wide in some sense.

Theorem 1.5. There exists an endomorphism of P2 which has a proper attractor con-
taining an algebraic curve in its interior.

An alternative way to obtain attracting sets with non-empty interior is to perturb (com-
positions of) Hénon maps. Indeed, an easy observation, which apparently is not present in
the literature, is that all the interesting dynamics of a Hénon map takes place in a proper
attracting set of P2. Hence, small perturbations give rise to endomorphisms of P2 with
an attracting set which inherits several properties of the original Hénon map (see also
Remark 8.3). Even though these examples cannot be transitive, they exhibit other inter-
esting phenomena. The first is the existence of attracting sets possessing repelling cycles.
Another is about quasi-attractors. A quasi-attractor is an infinite decreasing intersection
of attracting sets. These objects play an important role in dynamics and they have been
studied in the complex setting by [28] and [36].

Theorem 1.6. There exist proper attracting sets of P2 with infinitely many repelling
cycles. Moreover, there exist quasi-attractors which are not attracting sets.

Observe that this example was first considered by Fornæss and Sibony in [27] for
others purposes. This theorem gives a negative answer to [36, Question 3] and also to
[36, Question 1] if we omit the minimality assumption. Moreover, it leads to endomor-
phisms of P2 with uncountably many quasi-attractors (see Remark 8.1). Notice that
in [36] it was shown that a holomorphic endomorphism of Pk has at most countably
many quasi-attractors which are minimal (with respect to the inclusion). The same paper
established that if .An/n�1 is a decreasing sequence of attracting sets in P2 such that
A WD

T
n�1An is not an attracting set then the Hausdorff dimension of each An has to

be greater than or equal to 3. In the result above, the sets An have non-empty interior and
thus have maximal Hausdorff dimension 4.

Although recent developments partially filled this lack (see, e.g., [2,10,24]), complex
dynamics in several variables still misses well-understood and interesting examples. It is
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likely that, as in smooth dynamics, the study of all the different types of blenders in Pk

can help to increase this set of examples and could also provide a general explanation
to some specific phenomena. In that direction, our last result below gives an open set of
endomorphisms of P2 in which each map displays unusual phenomena. The mechanism
behind it is a robust “heterodimensional cycle” between two blenders, one of repelling
type and one of saddle type.

Theorem 1.7. There exist d � 2 and an open set � �Hd .P
2/ which contains skew

products such that � � Bif.Hd .P
2// and each f in � possesses a hyperbolic set of

saddle type ƒ with positive entropy whose unstable set W u
ƒ is a Zariski open set of P2

and

� for each�x in the natural extension of ƒ, the unstable manifold W u�x is dense in P2,

� for each x 2 ƒ, the stable manifold W s
x is contained in the small Julia set J2.f /.

In particular, we have ƒ �J2.f /.

The small Julia set is by definition the support of the so-called equilibrium measure
of f which is of repelling nature (all its Lyapunov exponents are positive [17]). The
above statement in the case of repelling hyperbolic sets is classical but this result is the
first example of a saddle hyperbolic set which is robustly contained in the small Julia set.
It also provides the first example of an endomorphism of P2 with a saddle point whose
unstable manifold is dense (and moreover in a robust way in Hd .P

2/). We believe that
such examples could be useful to understand bifurcations in several complex variables,
which is currently an emerging subject (see, e.g., [1, 7, 11]).

We got informed of the paper [25] while we were working on this subject. Our gen-
eral approach is similar, although mostly done independently. In our original approach to
obtain open sets of bifurcation, we considered robust intersections between a saddle cycle
and a blender of repelling type (see Remark 7.3 for more details). However, this approach
was a priori insufficient to obtain Corollary 1.3 for all degrees d � 2. For this reason,
we follow Dujardin’s strategy in order to deduce that corollary from Theorem 4.1. Let us
emphasize that the construction of blenders presented here is somehow more flexible than
the one in [25]. It allows us to easily obtain Theorem 1.5 and Theorem 1.7 and it may be
used to build other interesting examples in a near future.

Organization of the paper. In Section 2, we give the necessary background for the sequel
about hyperbolic sets and bifurcation theory. Then, Section 3 is devoted to the construc-
tion of the two different types of blenders in P2 and in Section 4 we prove that these
objects exist near bifurcations of product maps. In Section 5 and Section 6 we establish
Corollary 1.3 and Corollary 1.4 respectively using blenders of repelling type and of saddle
type. In the latter, we also show how one can adapt the idea of saddle blenders to obtain
attractors with non-empty interior. In Section 7, we give examples of maps with a hetero-
dimensional cycle between a repelling blender and a saddle blender and we show how
the existence of such objects easily imply Theorem 1.7. Finally, in Section 8 we consider
perturbations of Hénon maps in order to obtain Theorem 1.6.
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2. Background

We refer to [23] for a detailed introduction to complex dynamics in several variables. To
an endomorphism f of Pk of degree d � 2 it is possible to associate different invari-
ant objects. The more classical one is the Julia set of f . More generally, Fornæss and
Sibony [26] associated to f its Green current T . For 1 � p � k the Julia set of order p
Jp.f / is the support of the self-power T p . These sets form a filtration

Jk.f / � � � � �J1.f /

of totally invariant sets for f . The smallest one Jk.f /, sometimes called the small Julia
set, is the support of the equilibrium measure � WD T k of f . By [17], the repelling cycles
are dense in Jk.f / and if f is induced by a skew product of C2, then it follows from [31]
that J2.f / is exactly the closure of the repelling cycles.

2.1. Hyperbolic sets

Another type of interesting invariant object is given by hyperbolic sets. Since an endo-
morphism f of Pk is non-invertible, the definition of hyperbolicity involves the natural
extension of Pk given by�Pk WD ¹.xi /i�0 2 .Pk/Z�0 W f .xi / D xiC1º
(see, e.g., [30, Paper I] for a detailed exposition on the subject). There is a natural projec-
tion � W �Pk ! Pk defined by �..xi // D x0 and there is a unique homeomorphism �f
of �Pk which satisfies

f ı � D � ı �f :
One can use the projection � to lift the tangent bundle of Pk to a bundle T�Pk on which
the derivative Df of f acts naturally. And one says that a compact invariant set ƒ � Pk

is a hyperbolic set if the restriction of this bundle to�ƒ WD ¹.xi /i�0 2 �Pk W xi 2 ƒ for all i � 0º

admits a continuous splitting Es ˚Eu, invariant by Df and such that there exist con-
stants C > 0 and 0 < � < 1 with kDf nuk � C�nkuk and k.Df n/�1vk � C�nkvk for
all .u; v/ 2 Es �Eu. A key point about hyperbolic sets is that for all �x D .xi /i�0 in �ƒ
there exist an unstable manifold W u�x and a stable manifold W s

x0
. We define the unstable

set of ƒ by W u
ƒ WD

S�x2�ƒW u�x .
A hyperbolic set ƒ is said to be a basic set if fjƒ is transitive and if there exists

a neighborhood �U of �ƒ such that �ƒ DTn2Z
�f n.�U/ (i.e., �ƒ is locally maximal). Such

a set satisfies the shadowing lemma [30, Theorem 2.4] so the periodic points are dense
in ƒ. Another important point about basic sets is that they are structurally stable in the
following sense (see [30, Proposition 1.4 and Corollary 2.6]). If g is C 1-close to f
and �U is a sufficiently small neighborhood of �ƒ, then �g is conjugated to �f�ƒ on the
set �ƒg WDTn2Z�g.�U/ which projects to a basic set ƒg of g. If ƒ is repelling (i.e.,
Eu D T�ƒ), then the conjugation is not only defined in the natural extension but directly
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between ƒ and ƒg . Moreover, in the holomorphic case these sets can be followed by
a holomorphic motion (see [8, Theorem A.4]).

Theorem 2.1. Let .f�/�2M be a holomorphic family of endomorphisms such that f�0
admits a basic repellerƒ�0 for some �0 2M . Then there exist a neighborhood U ofƒf0 ,
a neighborhood B �M of �0 and a continuous map h W B �ƒ�0 ! U such that

(i) � 7! h�.x/ is holomorphic on B with h�0.x/ D x for every x 2 ƒ�0 ,

(ii) x 7! h�.x/ is injective on ƒ�0 for every � 2 B ,

(iii) h� ı f�0 D f� ı h� on ƒ�0 for every � 2 B .

Moreover, the set ƒ� WD h�.ƒ�0/ is a basic repeller for the endomorphism f� satisfying
ƒ� D

T
n�0 f

�n
�
.U /.

2.2. Bifurcations and basic repellers

A bifurcation theory for the small Julia set Jk.f / was recently developed by Berteloot,
Bianchi and Dupont [8] for k � 2. A holomorphic family of endomorphisms of Pk param-
etrized by a complex manifold M is given by a holomorphic map f W M � Pk ! Pk .
We denote such a family .f�/�2M , where f�.x/ WD f .�; x/. For each � 2M we can
consider the small Julia set Jk.f�/ of f�, its critical set C.f�/ and its postcritical set

P.f�/ WD
[
n�1

f n� .C.f�//:

In [8], the authors define a special closed subset Bif.M/ of M called the bifurcation
locus of the family .f�/�2M . They obtain several characterizations of Bif.M/ and in the
sequel we will use the following one based on the notion of Misiurewicz parameters.
A parameter �0 2M is called a Misiurewicz parameter if f�0 admits a repelling periodic
point x�0 in Jk.f�0/ \ P.f�0/ whose holomorphic continuation as repelling point x�
is outside P.f�/ for some � 2M arbitrarily close to �0.

Theorem 2.2 ([8]). If .f�/�2M is a holomorphic family of endomorphisms, then the
closure of the set of Misiurewicz parameters is equal to Bif.M/.

We refer to the original paper [8] for more details about the others characterizations
of Bif.M/. We just emphasize two points. The first one is that unlike the one variable
case this set is not related to the continuity of the small Julia set in general, see [10]. The
same article gives the first example of a family where the bifurcation locus has non-empty
interior. A second difference with the one variable case is that it is still unknown wether
� … Bif.M/ is equivalent to the structural stability on Jk.f�/.

From Theorem 2.2, a natural idea in order to have robust bifurcations in Hd .P
k/

is to replace the repelling cycle in the definition of Misiurewicz parameter by a hyper-
bolic repeller which could be chosen to be large. Let .f�/�2M be a holomorphic family
of endomorphisms such that f�0 admits a basic repeller ƒ�0 . We consider the map
F W M � Pk !M � Pk defined by F.�; x/ D .�; f�.x// and we also denote by C.F /
its critical set. Using the notation of Theorem 2.1 and following [25], we say that P.f�0/
intersects properlyƒ�0 if there exist n � 1, an irreducible component V�0 of C.f�0/ and
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a point x 2 ƒ�0 such that x 2 f n
�0
.V�0/ and arbitrarily close to �0 there is � 2M such

that .�; h�.x// does not belong to the irreducible component of F n.C.F // containing
¹�0º � f

n
�0
.V�0/. The following proposition is a direct consequence of [25, Lemma 2.3

and Proposition–Definition 2.5].

Proposition 2.3. Let f0 2Hd .P
k/. Assume that f0 admits a basic repeller ƒf0 con-

tained in Jk.f0/ which has a holomorphic continuation ƒf for f in a neighborhood
U �Hd .P

k/ of f0. If P.f / intersects ƒf properly for all f 2 U , then f0 belongs
to the interior of the bifurcation locus Bif.Hd .P

k//.

Proof. By [25, Lemma 2.3] (see also [9, Lemma 4.9] or [23, Exercise 1.60]) there exists
a neighborhood U 0 � U of f0 such that ƒf �Jk.f / for all f 2 U 0. As P.f / inter-
sects properly ƒf for all f 2 U 0, it follows from [25, Proposition–Definition 2.5] that
U 0 � Bif.Hd .P

k//.

3. Blenders

This section is devoted to the construction of blenders near some product maps. As a pre-
liminary step, we define particular subsets of C which will be the building blocks of the
blenders. The precise definitions of blenders of repelling type and of saddle type will
be given in the two corresponding subsections. However, let us emphasize that our aim
is not to provide a precise definition of what a blender should be in general. The pur-
pose of these definitions is just to give names to the dynamical objects we consider in
what follows. We refer to, e.g., [13] and [3] for attempts to give precise definitions of
blenders.

As we have seen, an f -invariant set ƒ is hyperbolic if the tangent bundle over its
natural extension splits into two bundles Es and Eu which are uniformly contracted or
expanded by Df . One says that f has s WD dimEs stable directions and u WD dimEu

unstable directions onƒ. Originally, the notion of blenders was introduced for diffeomor-
phisms on smooth manifolds of dimension larger than or equal to 3 since it needs at least
three distinct directions. In our non-invertible setting, the construction can be started at
k D 2 since the non-injectivity can be considered as an additional stable direction which
is especially strong: the preimages of a point x converge in finite time to x. For simplicity,
in what follows we only consider the case where k D 2. Hence, we will obtain two types
of blenders. If s D 0, u D 2, the blender will be of repelling type and if s D u D 1, it will
be of saddle type.

All the maps that we will use are perturbations of product maps of the form

.z; w/ 7! .p.z/; q.w//:

Hence, there are two natural directions. The horizontal direction is the one parallel to
¹w D cº and the vertical direction is the one parallel to ¹z D cº. The vertical direction
will always be close to our strong unstable direction.

Roughly speaking, the idea behind blenders of repelling type for a skew product
f .z; w/ D .p.z; w/; q.w// of C2 is the following. Let H1; : : : ;HN and V1; : : : ; VN be
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2N open sets in C and defineH WD
SN
jD1Hj , V WD

SN
jD1 Vj andZ WD

SN
jD1Hj � Vj .

The set Z contains a blender of repelling type if for each 1 � j � N ,
� q is (strongly) expanding on Vj and V � q.Vj /,
� p is (weakly) expanding in the horizontal direction onHj � Vj and p.Hj � Vj / � H .

Even if f is repelling onZ, its geometric behavior and its action on the tangent space (one
direction is much more expanded that the other) both mimic those of a saddle set. And
actually, the “local stable set” (given by ƒ WD

T
n�0 f

�n.Z/ and which we refer to as
the blender) of the maximal invariant set of f in Z behaves as a one-dimensional stable
manifold: any vertical graph passing through Z has to intersect it (see Proposition 3.3
for a precise statement). Moreover, these properties are stable under small perturbations.
These are the main two properties of a blender of repelling type: intersection with a family
of graphs and robustness.

Roughly speaking, a blender of saddle type is a blender of repelling type for “f �1”
by taking into account that the non-injectivity can be seen as a strong stable direction.

In what follows, we will always take N D 3 and for technical reasons (which will be
clear in Section 4) we may have to replace q with a large iterate.

For the rest of this section q will be an element of Pd , r1, r2, r3 will be three distinct
(but possibly in the same cycle) repelling periodic points of q of period m1 and �1, �2,
�3 are respectively their multipliers, i.e., �i D .qm1/0.ri /. We also assume that they do
not belong to the postcritical set of q. The construction of the following open subsets is
elementary but will be important for the sequel. The notations given in this lemma will be
used throughout this section.

Lemma 3.1. There exist A > 0 and l0 � 1 such that for each index i 2 ¹1; 2; 3º there is
a sequence .V li /l�0 of connected neighborhoods of ri such that qm1.V lC1i / D V li , the
diameter of the set V li converges exponentially fast to 0 with l and if l � l0, then

� j.qlm1/0.w/j � A�li > 1 for all w 2 V li ,

�
S3
jD1 V

l
j � q

lm1.V li /,

� qlm1 is a biholomorphism between W l
ij WD V

l
i \ q

�lm1.V lj / and V lj .

Proof. For i 2 ¹1; 2; 3º, let Ui be a connected neighborhood of ri on which qm1 is con-
jugated to w 7! �iw and let �i be its inverse on Ui . There exists l1 � 1 such that

3[
jD1

Uj � q
l1m1.Ui /:

For each .i; j / 2 ¹1; 2; 3º2 we choose a preimage aij 2 q�l1m1.rj / \ Ui with ai i D ri .
Since ql1m1 is an open map, it follows that there exists a small neighborhood M of
q�l1m1.¹r1; r2; r3º/ n ¹ai;j W 1 � i; j � 3º such that for each i 2 ¹1; 2; 3º, �Ui WD Ui nM
is connected and satisfies

ql1m1.�Ui / D ql1m1.Ui /:
In particular,

S3
jD1

�Uj � ql1m1.�Ui / for each i 2 ¹1; 2; 3º.
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Since the points rj do not belong to the postcritical set of q, there also exists l2 � 1
such that �l2i .Ui / does not contain critical values of ql1m1 . Hence, there exists a small
neighborhood N of the critical set of ql1m1 such that Vi WD �Ui nN is connected and
satisfies

3[
jD1

�
l2
j .Uj / � q

l1m1.Vi /:

From this, for l � 0 we define V l1Cli WD �li .Vi / and V l1�li WD qlm1.Vi /. Since qm1 is
conjugated to w 7! �iw on Ui , it is easy to check that the two first assertions of the
proposition hold if l0 � l1 C l2 is large enough.

To obtain the last assertion, observe that the fact that the points rj are not postcritical
also implies that ifNij � Vi is a small enough neighborhood of aij , then ql1m1 is a biholo-
morphism between Nij and ql1m1.Nij /. Hence, if l3 � l2 is large enough to insure that

�
l3
j .Uj / �

3\
iD1

ql1m1.Nij /;

then the last point of the proposition holds if l0 � l1 C l3.

From this we can obtain hyperbolic basic sets

ƒl WD
\
i�0

q�ilm1.V l1 [ V
l
2 [ V

l
3 /:

The third point in the lemma ensures that qlm1
jƒl

is conjugated to a shift of three sym-
bols. The repelling blenders constructed in what follows will project injectively in one
of these sets ƒl and thus they are contained in a Cantor set and their dynamics are
conjugated to subshifts.

In the horizontal direction, for both the repelling and the saddle case, we will even-
tually use the following subsets which depend on the configuration of three complex
numbers c1; c2; c3 2 C. Here, D is the unit disc of C and if E � C and t 2 C�, then
tE denotes the image of E by the homothety of center 0 and ratio t .

Lemma 3.2. Let c1; c2; c3 2 C be three non-aligned points such that c1 C c2 C c3 D 0.
There exist arbitrarily small �0; ˛0 > 0 such that if �j .z/ WD �z C �0cj with 1 � ˛0 �
j�j � 1C ˛0, j 2 ¹1; 2; 3º, then

D �
3[

jD1

�j .D/;

and there are three open sets H1, H2 and H3 with

D D
3[

jD1

Hj ; �j .Hj / � D and �j

�
1

3
Hj

�
�
1

3
D:

Proof. Since c1, c2 and c2 define a non-degenerated triangle with c1 C c2 C c3 D 0, it
follows that the three half-planes ¹z 2 C W Re.zc�1j / < 0º cover C�. Therefore, the first
inclusion follows immediately if first we choose �0 > 0 small and then ˛0 > 0 close to 0.
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For the second inclusion, the same elementary arguments yield that, for � > 0 small
enough and � 2 C�, the sets

Hj D .2
�1D/ [

²
z 2 D W jarg.�z�c�1j /j <

�

2
� �

³
satisfy D D

S3
jD1Hj . Here, arg.z/ denotes the argument of z with value in � � �; ��.

On the other hand, if �0 > 0 and ˛0 > 0 are small enough then �j .Hj / � D. To see this
for j D 1 we conjugate by a rotation in order to have c1 2 R>0. Then �1.H1/ � D is
equivalent to �1.�ei.

�
2 ��/�arg.�// 2 D which holds if

.1C ˛0/
2
C .�0c1/

2
� 2�0c1.1C ˛0/ cos

�
�

2
� �

�
< 1:

Again, this inequality is satisfied if first we choose �0 > 0 small and then ˛0 > 0 close to
0. The last inclusion follows with exactly the same arguments.

Observe that Hj depends on the argument of � but not �j .Hj /. Hence, for simplicity
we will not notice this dependency.

3.1. Repelling type

For ı > 0, define the cone Cı WD ¹.a; b/ 2 C2 W jaj < ıjbjº. The natural identification
between the tangent space of x 2 C2 and C2 allows us to consider Cı as a (constant)
cone field over C2. We say that a smooth self-map g of C2 contracts the cone field Cı on
U � C2 if there exists 0 < ı0 < ı such that Dxg.Cı/ � Cı0 for all x 2 U .

In order to state the next result we choose three arbitrary open sets H1;H2;H3 � C
and we setH WD

S3
iD1Hi andZl WD

S3
iD1.Hi � V

l
i /with the sets V li as in Lemma 3.1.

Proposition 3.3. Let K be a compact subset of H . There exist ı0 > 0 and l0 � 1 such
that if l � l0 and g W Zl ! K �C is a holomorphic map of the form

g.z; w/ D .h.z; w/; qlm1.w//

which contracts Cı0 , then there is ˛ > 0 with the following property. If f is another holo-
morphic map defined onZl such that kf � gkC1;Zl � ˛ and if � W V li ! Hi is holomor-
phic with k� 0kC0;V l

i
< ı0, then

ƒf WD
\
n�0

f �n.Zl /

intersects the vertical graph �� WD ¹.�.w/; w/ W w 2 V li º of � .

The same statement holds for smooth maps f , q, and � but we only state it for holo-
morphic maps for convenience. Observe that the important point in this result for what
follows is that ı0 is independent of l � l0.

Proof. Let K be a compact subset of H and let l0 � 1 be as in Lemma 3.1. We will
show that for ı0 > 0 small enough and l � l0 the proposition holds. Let l � l0 and
g.z; w/ D .h.z; w/; qlm1.w// be as above. For simplicity, we first consider the unper-
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turbed case. Let i0 2 ¹1; 2; 3º and let � W V li0 ! Hi0 be a holomorphic map with

k� 0kC0;V l
i0

< ı0:

SinceK is a compact subset of
S3
iD1Hi , there exists � > 0 such that if z 2 K, then there

is i 2 ¹1; 2; 3º with D.z; 2�/ � Hi . In particular, such i1 exists for h.�.ri0/; ri0/ since
h.Zl / � K. We denote by  ij W V lj ! W l

ij � V
l
i the inverse branch of qlm1 given by

Lemma 3.1. Define �1 on the set V li1 by

�1.w/ WD h.� ı  i0i1.w/;  i0i1.w//:

By definition, the graph ��1 is contained in the image by g of the graph �� . Since the
vectors tangent to �� belong to Cı0 and g contracts Cı0 , the same holds for vectors
tangent to g.�� /. As ��1 � g.�� /, it implies that

k� 01kC0;V l
i1

< ı0:

We claim that if ı0 is small enough (uniformly on l � l0), then �1.V li1/ � Hi1 . This sim-
ply comes from the fact that g.�� / is tangent to Cı0 but since this point is important we
give the details.

By the proof of Lemma 3.1, q.l�l0/m1 is a biholomorphism between V li0 and V l0i0
and we denote by � its inverse. On the other hand, there exists a constant C > 0 such
that if w 2 V l0i0 , then there is a smooth path 
 between ri0 and w of length smaller
than C . The length of �
 WD ql0m1 ı 
 is also bounded by a uniform constant �C > 0.
If�
.t/ WD h.� ı � ı 
.t/; � ı 
.t//, then t 7! .�
.t/;�
.t// gives a path on g.�� /. Hence,
the length of �
 is bounded by ı0 times the one of �
 and thus by ı0�C . Since w 2 V l0i0
was chosen arbitrarily, it follows that the image of the set V li0 by w 7! h.�.w/;w/ is con-
tained in D.h.�.ri0/; ri0/; ı0�C/. Thus, if ı0 < ��C�1, then

D.h.�.ri0/; ri0/; ı0
�C/ � D.h.�.ri0/; ri0/; �/ � Hi1

which gives the claim.
We can now conclude the proof in the unperturbed case. As g.�� / contains the graph

of a map �1 with the same properties than � , we can define inductively a sequence .in/n�1
with in 2 ¹1; 2; 3º and maps �n W V lin ! Hin such that ��n � g.��n�1/. By construction,
��n is contained in Zl and the image by gn of the graph over V lin of the composition
� ı i0i1 ı � � � ı in�1in . The sequence of subsets of V li0 given by i0i1 ı � � � ı  in�1in.V

l
in
/

is decreasing and converges to a point w 2 V li0 . Thus, the point x WD .�.w/; w/ 2 ��
satisfies gn.x/ 2 ��n � Z

l for all n � 0, i.e., x 2 ƒg \ �� .
The perturbed case then follows easily since the size ˛ of the perturbations can depend

on g and thus on l . If f is sufficiently C 1-close to g, then the image of �� by f is a small
deformation of g.�� / and thus contains a graph of a map �1 defined on V li1 which is close
to �1. Since

�1.V
l
i1
/ � D.h.�.ri0/; ri0/; �/ � D.h.�.ri0/; ri0/; 2�/ � Hi1 ;

it follows that �1.V li1/ � Hi1 if f is sufficiently C 1-close to g. Then, following this pro-
cedure, we construct a sequence of maps �n such that ��n � f .��n�1/ \Z

l and conclude
the proof as above.
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In other words, Proposition 3.3 says that the set ƒf intersects any vertical graph tan-
gent to Cı0 inHi � V li . In particular, with � constant we obtain thatH is contained in the
projection ofƒf on the horizontal direction. However, Proposition 3.3 gives a much more
robust property which will be the key ingredient to prove Corollary 1.3. Indeed, this prop-
erty can be seen as the main part of the following definition of blenders of repelling type.
Let us recall that this definition is adjusted to our purpose and not as general as possible.

Definition 3.4. If f andƒf are as in Proposition 3.3 and ifƒf is contained in a repelling
hyperbolic set of f , then we say that ƒf is a blender of repelling type.

In the sequel, we will use such blenders to “blend” robustly the postcritical set P.f /
of a map f with its small Julia set Jk.f /. We will obtain them as infinite intersections
ƒf D

T
n�0 f

�n.Zl /, for some set Zl . Thus, f .ƒf / � ƒf but without equality in gen-
eral. Moreover, such intersections of compact sets do not behave well under perturbations.
It is for these reasons that we require ƒf to be contained in a hyperbolic repeller since
these sets are invariant and can be followed holomorphically under perturbations.

In what follows, we obtain blenders of repelling type using the subsets defined in
Lemma 3.1 and Lemma 3.2. As above, let c1, c2 and c3 be three non-aligned points in C
such that c1 C c2 C c3 D 0. It follows from Proposition 3.3 that good perturbations of the
model map .z; w/ 7! .�z C �0cj ; q

m1l .w// on 2D � V lj have a blender.

Proposition 3.5. Let �0 > 0, ˛0 > 0 be as in Lemma 3.2. There exist l0 � 1 and ı0 > 0
such that if l � l0 and � 2 C satisfies j�j D 1C ˛0, then a polynomial skew product g
of the form g.z; w/ D .h.z; w/; qm1l .w// such that

(i) jh.z; w/ � .�z C �0cj /j � ı0 for all .z; w/ 2 2D � V lj and j 2 ¹1; 2; 3º,

(ii) g contracts the cone field Cı0 on
S3
jD1 D � V lj ,

has two nested blenders of repelling type ƒ0g � ƒg . More precisely, there exist subsets
H1, H2 and H3 of D such that 1

2
D �

T3
jD1Hj and

ƒ0g D
\
i�0

g�i

 
3[

jD1

�
1

3
Hj

�
� V lj

!
and ƒg D

\
i�0

g�i

 
3[

jD1

Hj � V
l
j

!
:

The fact that we need two nested blenders is a technical point which will be used in
Section 5. The smallest oneƒ0g could be replaced by any uncountable subset ofƒg whose
holomorphic continuation for f close enough to g belongs to

\
i�0

f �i

 
3[

jD1

Hj � V
l
j

!
:

Proof. Let � 2 C be such that j�j D 1C ˛0. We consider the maps

�j .z/ WD �z C �0cj

and the three open sets Hj , j 2 ¹1; 2; 3º, as in Lemma 3.2. Since we have �j .Hj / � D
for each j 2 ¹1; 2; 3º, there exists � > 0 such that �j .Hj / � D.0; 1 � 2�/. Let ı0 > 0
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and l0 � 1 be the constants obtained by Proposition 3.3 with K D D.0; 1 � �/. We can
assume ı0 < �. It follows that if l � l0 and g satisfies the assumptions of the present
proposition, it also satisfies those of Proposition 3.3 on

S3
jD1Hj � V

l
j . By taking – if nec-

essary – a smaller constant ı0, Proposition 3.3 also applies to
S3
jD1.

1
3
Hj / � V

l
j and to

the set ƒ0g .
On the other hand, g is repelling on

S3
jD1 D � V lj . Indeed, its differential is equal to�

@zh.z; w/ @wh.z; w/

0 .qlm1/0.w/

�
:

By Lemma 3.1, if l � l0, then j.qlm1/0.w/j > 1 on each V lj . Since jh.z; w/ � �j .z/j � ı0
on 2D � V lj , Cauchy’s inequality gives

j@zh.z; w/ � �j � ı0

on D � V lj . Thus, j@zh.z; w/j > 1 if ı0 is small enough. Furthermore, by Lemma 3.2,
D �

S3
jD1 �j .D/ and thus there exists a radius r > 0 such that for each z0 2 D there is

j0 2 ¹1; 2; 3º withD.z0; r/� �j0.D/. If w0 2
S3
jD1 V

l
j , then Lemma 3.1 gives w1 2 V lj0

with ql .w1/ D w0. Hence, if ı0 < r , then by Rouché’s theorem there is z1 2 D such that
h.z1; w1/ D w0, i.e., g.z1; w1/ D .z0; w0/ and thus

3[
jD1

D � V lj � g

 
3[

jD1

D � V lj

!
:

Hence, ƒg is contained in the invariant repelling set
T
i�0 g

�i .
S3
jD1 D � V lj /.

Remark 3.6. An important point is that no estimates on @wh.z; w/ are required, i.e., h
can be far from �j in the C 1 topology as long as g contracts the cone field Cı0 . A priori,
it is the situation that occurs in Section 4.

3.2. Saddle type

On P2 the blenders of saddle type are simpler than the repelling ones. Indeed, no cone
field condition is required since one stable direction is given by preimages on which the
contraction dominates that of the one of any “standard” stable direction.

Definition 3.7. Let f be in Hd .P
2/ andZ an open subset of P2 such thatZ � f .Z/. If

for all g 2Hd .P
2/ sufficiently close to f , ƒg WD

T
n�0 g

�n.Z/ is a saddle hyperbolic
set, then we say that ƒg is a blender of saddle type.

Observe that as we are working with endomorphisms of P2, the first point in this
definition, Z � f .Z/, is stable under small perturbations of f . The most direct way
to see this is to use volume estimates (see [26, Corollary 4.14]): is U �Hd .P

2/ is a
small neighborhood of f then for each � > 0, there exists �0 such that for all x 2 P2

and all g 2 U, B.g.x/; �0/ � g.B.x; �//. The second point in the definition is artificially
stable under small perturbations. The examples obtained with Proposition 3.9 will auto-
matically satisfy this stability condition since they will preserve a dominated splitting on
a neighborhood of Z.
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Remark 3.8. Another way to fulfill this condition is to require that ƒf is contained in
a locally maximal saddle hyperbolic set �ƒf . In this case, standard results (see [30, Corol-
lary 2.6]) imply that Z is contained in the unstable set of �ƒf . Keeping in mind that
preimages of a point can be seen as its strong stable manifold, this property could be
considered as the “blender property” of a saddle blender. This remark will be used in the
proof of Theorem 1.7.

The following result is the counterpart of Proposition 3.5 in the saddle case and its
proof is identical.

Proposition 3.9. Let �0 > 0, ˛0 > 0 be as in Lemma 3.2. There exist l0 � 1 and ı0 > 0
such that if l � l0 and � 2 C satisfies j�j D 1 � ˛0 then a polynomial skew product
g of the form g.z; w/ D .h.z; w/; qm1l .w// with jh.z; w/ � .�z C �0cj /j � ı0 for all
.z; w/ 2 2D � V lj and j 2 ¹1; 2; 3º, has a blender of saddle type

ƒg WD
\
n�0

g�n

 
3[
iD1

D � V li

!
:

4. Existence of blenders near product bifurcations

It follows almost immediately from Proposition 3.5 and Proposition 3.9 that if q has
three non-aligned repelling fixed points which are not postcritical, then some perturba-
tions of .z; w/ 7! .z; q.w// possess blenders. The aim of this section is to generalize this
to .p.z/; q.w// when p has a parabolic cycle and q is arbitrary.

In order to fix the setting and the notations of this section let .p�/�2M be a holo-
morphic family of polynomials of degree d parametrized by a complex manifold M and
such that 0 is a periodic point of p� for all � 2M . We denote by m0 the period of 0
and by �.�/ its multiplier, i.e., �.�/ WD .pm0

�
/0.0/. We assume that there exists �0 2M

such that �.�0/ is a primitive t0-th root of unity and we define, for �1 � i � m1 � 1 with
m1 WD m0t0,

bi .�/ WD .p
m1�i�1

�
/0.piC1

�
.0//: (4.1)

Observe that b�1.�/ D �.�/t0 and bi .�/ D �.�/biCm0.�/. We use this last formula to
extend the definition of bi .�/ for i 2 Z if � is close to �0. In particular, b�1.�0/ D 1 and
bi .�0/ ¤ 0 for all i 2 Z. Finally, let q be an element of Pd and let r1, r2 and r3 be three
repelling points of period m1 of q which are not in the postcritical set of q. We set

cj WD

m1�1X
iD0

bi .�0/q
i .rj / (4.2)

for j 2 ¹1; 2; 3º. We deduce from Proposition 3.5 and Proposition 3.9 the following result.

Theorem 4.1. Assume that the three complex numbers c1, c2 and c3 are not aligned
and that c1 C c2 C c3 D 0. If .�n/n�1 is a sequence in M converging to �0 such that
j�.�n/j > 1 (respectively, j�.�n/j < 1), then there exist a sequence .ln/n�1 of integers
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and a sequence .ˇn/n�1 of C� such that limn!1 ˇn D 0 and for all ˛ 2D� the .m1ln/-th
iterate of

fn;˛.z; w/ WD .p�n.z/C ˛ˇnw; q.w//

has a blender ƒn;˛ of repelling type (respectively, of saddle type) for n large enough.

To prove the theorem, we have to understand how iterations of a small perturbation
of the product map .p�.z/; q.w// look like near the line ¹z D 0º. To this end, we will
change coordinates in order to focus only on the dynamics close to this line.

Let � 2M , � 2 C� and s 2 D�. We consider the skew product of C2

f .z; w/ WD .p�.z/C s�w; q.w//

and its renormalization by �.z; w/ WD .sz; w/, g WD ��1 ı f ı �. If p� is of the form
p�.z/ D

Pd
iD0 ai .�/z

i , then g satisfies

g.z; w/ D .a0.�/s
�1
C a1.�/z C �w C sE.s; z; w/; q.w//;

where E is a polynomial (depending on �).
The following proposition gives estimates on the iterates of g.

Proposition 4.2. If l � 1 then there exists a polynomial El in s, z and w such that

gm1l .z; w/ D

 
�.�/t0lz C �

 
m1�1X
iD0

bi .�/

l�1X
kD0

�.�/t0kqiC.l�1�k/m1.w/

!

C sEl .s; z; w/; q
m1l .w/

!
:

Proof. Since g is a skew product, it follows that gk is of the form

gk.z; w/ D .gk.z; w/; q
k.w//

with

g1.z; w/ D

dX
iD0

ai .�/s
i�1zi C �w and gkC1.z; w/ D g1.gk.z; w/; q

k.w//:

Furthermore, there exist functions gk;i independent of s such that

gk.z; w/ D

dk�1X
iD0

gk;i .z; w/s
i�1:

We are only interested in the sequences .gk;0/k�0 and .gk;1/k�0 that can be computed
inductively. We easily have that g0;0.z; w/ D 0 and g0;1.z; w/ D z. Using that

gkC1.z; w/ D g1.gk.z; w/; q
k.w//;

we obtain that

gkC1;0.z; w/ D

dX
iD0

ai .�/gk;0.z; w/
i
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and

gkC1;1.z; w/ D gk;1.z; w/

dX
iD0

iai .�/.gk;0.z; w//
i�1
C �qk.w/;

i.e.,
gkC1;0.z; w/ D p�.gk;0.z; w//

and
gkC1;1.z; w/ D gk;1.z; w/p

0
�.gk;0.z; w//C �q

k.w/:

It follows that gk;0.z; w/ D pk�.0/ and

gk;1.z; w/ D z

 
k�1Y
iD0

p0�.p
i
�.0//

!
C �

k�1X
iD0

qi .w/

k�1Y
jDiC1

p0�.p
j

�
.0//:

In particular, using that 0 is m0-periodic for p� and the definition of bi .�/ given in (4.1),
taking k D m1 WD m0t0 gives gm1;0.z; w/ D 0 and

gm1;1.z; w/ D �.�/
t0z C �

m1�1X
iD0

bi .�/q
i .w/:

Therefore, we have

gm1.z; w/ D

 
�.�/t0z C �

 
m1�1X
iD0

bi .�/q
i .w/

!
C sE1.s; z; w/; q

m1.w/

!
for some polynomial E1. The proposition follows easily by iterating this formula.

Proof of Theorem 4.1. Assume as in the statement that the complex numbers c1; c2 and
c3 defined in (4.2) are not aligned and satisfy c1 C c2 C c3 D 0 and that .�n/n�1 is
a sequence which converges to �0 with j�.�n/j > 1 (resp. j�.�n/j < 1/.

First, we have to fix all the constants which will be involved in the perturbations. Let
l0 � 1, �0 > 0, ı0 > 0 and ˛0 > 0 be the constants given by Proposition 3.5 (resp. Propo-
sition 3.9). Since �.�n/t0 converges to 1, there exists a sequence of integers .ln/n�1 which
are all larger than l0 and such that j�.�n/t0ln j converges to 1C ˛0 (resp. 1 � ˛0). There-
fore, there exist �n 2 C with j�nj D 1C ˛0 (resp. 1 � ˛0) such that j�.�n/t0ln � �nj
converges to 0. Finally, the sequence defined by

�n WD �0
�.�n/

t0 � 1

�.�n/t0ln � 1

converges to 0.
Now, we consider the neighborhoods V lnj of rj , j 2 ¹1; 2; 3º, obtained in Lemma 3.1.

As their diameters decrease exponentially fast, there exist a1 > 0 and 0 < a2 < 1 such
that Diam.V lnj / � a1a

ln
2 for all n � 1 and j 2 ¹1; 2; 3º. By Proposition 4.2, if s 2 D�,

then the renormalization gn WD ��1 ı fn ı � by �.z; w/ D .sz; w/ of

fn.z; w/ WD .p�n.z/C s�nw; q.w//
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satisfies

gm1lnn .z; w/ D

 
�.�n/

t0lnz C �n

 
m1�1X
iD0

bi .�n/

ln�1X
kD0

�.�n/
t0kqiC.ln�1�k/m1.w/

!

C sEln.s; z; w/; q
m1ln.w/

!
:

We first show that by taking n � 1 large enough the map gm1lnn is arbitrarily close to

.�nz C �0cj ; q
m1ln.w//

on 2D � V lnj . To this end, observe that cj .�n/ WD
Pm1�1
iD0 bi .�n/q

i .rj / converges to

cj D

m1�1X
iD0

bi .�0/q
i .rj /:

By definition, we have

�0cj .�n/ D �n
�.�n/

t0ln � 1

�.�n/t0 � 1
cj .�n/ D �n

m1�1X
iD0

bi .�n/

ln�1X
kD0

�.�n/
t0kqi .rj /:

On the other hand, since
qim1.V lj / D V

l�i
j ;

we deduce from the estimates on the diameters of the sets V lj that if w 2 V lnj , there exists
a constant C > 1 depending only on q and m1 such that

jqiC.ln�1�k/m1.w/ � qi .rj /j � Ca1a
kC1
2 :

Hence, if w 2 V lnj , then for C > 1 chosen large enough we haveˇ̌̌̌
ˇ
 
�n

m1�1X
iD0

bi .�n/

ln�1X
kD0

�.�n/
t0kqiC.ln�1�k/m1.w/

!
� �0cj .�n/

ˇ̌̌̌
ˇ

�

ˇ̌̌̌
ˇ�n

m1�1X
iD0

bi .�n/

 
ln�1X
kD0

�.�n/
t0kqiC.ln�1�k/m1.w/ � qi .rj /

!ˇ̌̌̌
ˇ

� j�nj

m1�1X
iD0

jbi .�n/j

ln�1X
kD0

j�.�n/
t0kjjqiC.ln�1�k/m1.w/ � qi .rj /j

� C 2a1a2j�nj

ln�1X
kD0

.a2j�.�n/
t0 j/k

D C 2a1a2j�nj
.a2j�.�n/

t0 j/ln � 1

.a2j�.�n/t0 j/ � 1
DW Cn:
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The last term Cn converges to 0 since 0 < a2 < 1. Therefore, on 2D � V lnj we have

kgm1lnn .z; w/ � .�nz C �0cj ; q
m1ln.w//k

� 2j�.�n/
t0ln � �nj C �0jcj � cj .�n/j C Cn C jsEln.s; z; w/j:

Observe that for each n � 1 there exists 0 < sn < 1 such that if jsj � sn, then

jsEln.s; z; w/j �
ı0

2

on 2D � V lnj . On the other hand, for n � 1 large enough we have

2j�.�n/
t0ln � �nj C �0jcj � cj .�n/j C Cn �

ı0

2
:

By Proposition 3.9, this is sufficient to conclude in the saddle case (i.e., j�.�n/j < 1): by
removing the normalization, if ˇn WD �nsn and ˛ D s

ˇn
, then for n � 1 large enough the

.m1ln/-th iterate of
fn;˛.z; w/ WD .p�n.z/C ˛ˇnw; q.w//

has a blender of saddle type contained in
S3
jD1D.0; j˛ˇnj/ � V

ln
j .

For the repelling case (j�.�n/j > 1), it remains to show that gm1lnn contracts the cone
field Cı0 on

3[
jD1

D � V lnj

if n � 1 is large enough. The formula above for gm1lnn gives

D.z;w/g
m1ln
n D

�
�.�n/

t0ln C s@zEln.z; w/ an.w/C s@wEln.z;w/
0 .qm1ln/0.w/

�
;

where an.w/ WD �n
Pm1�1
iD0 bi .�n/

Pln�1
kD0

�.�n/
t0k.qiC.ln�1�k/m1/0.w/. By Lemma 3.1,

if �j denotes the multiplier of rj , then there is a constant A > 0 such that for all w 2 V lnj ,

j.qm1ln/0.w/j � A�
ln
j ; j�.�n/

t0ln j � B and jan.w/j � Bj�nj�
ln
j ;

where B > 0 is another constant. Since �n converges to 0, by taking smaller 0 < sn < 1
if necessary, we obtain that for n � 1 large enough and jsj � sn the map gm1lnn contracts
Cı0 on

3[
jD1

D � V lnj :

Hence, by Proposition 3.5, if ˇn WD �nsn and ˛ D s
ˇn

, then for n � 1 large enough the
.m1ln/-th iterate of

fn;˛.z; w/ WD .p�n.z/C ˛ˇnw; q.w//

has a blender of repelling type contained in
S3
jD1D.0; j˛ˇnj/ � V

ln
j .

To conclude the proof of Theorem 1.1, it remains to show that the assumptions on c1,
c2 and c3 are not restrictive. Actually, by an affine conjugation of q we can always
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assume that c1 C c2 C c3 D 0. The fact that they are not aligned is probably true for
a generic choice of q. However, we only prove the following result which is sufficient for
our purpose.

Lemma 4.3. Let q be in Pd . If t0 D 3 andm0 � 2, then q has three repelling points, r1,
r2 and r3, of periodm1 WD m0t0 outside its postcritical setP.q/ such that the numbers c1,
c2, c3 defined by (4.2) form a non-degenerated equilateral triangle with c1C c2C c3D 0.

Proof. Let q be in Pd . Define c.w/ WD
Pm1�1
iD0 bi .�0/q

i .w/. If r is a periodic point with
period m1, then using the fact that bi�m0.�0/ D �.�0/bi .�0/, we obtain

c.qm0.r// D

m1�1X
iD0

bi .�0/q
iCm0.r/ D

m1�1X
iD0

bi�m0.�0/q
i .r/ D �.�0/c.r/;

and thus c.q2m0.r// D �.�0/2c.r/. Moreover, �.�0/ is a primitive third root of unity thus
if c.r/ ¤ 0, then cj WD c.rj /, j 2 ¹1; 2; 3º, with r1 WD r , r2 WD qm0.r/, r3 WD q2m0.r/,
form an equilateral triangle with c1 C c2 C c3 D 0.

It remains to show that there exists a repelling point r of period m1 for q such
that c.r/ ¤ 0 and r … P.q/. This simply follows from the fact that c.w/ is a polyno-
mial of degree dm1�1 (since bi .�0/ ¤ 0 for i 2 Z) and that, by Fatou’s theorem there
exist at most 3m1.d � 1/ periodic points of period m1 counted with multiplicity which
are non-repelling or contained in P.q/. As there are dm1 points of period m1 and that
dm1 � 3m1.d � 1/ > d

m1�1 when d � 2 and m1 D 3m0 � 6, there exists at least one
repelling point r of period m1 such that c.r/ ¤ 0 and r … P.q/.

Proof of Theorem 1.1. Let p and q be two elements of Pd such that p belongs to the
bifurcation locus. Therefore, p can be approximated by polynomials having a cycle of
multiplier e

2i�
3 . As a consequence, we can obtain a family .p�/�2M of polynomials of

degree d which has a persistent periodic point z0 which is not fixed, with a non-constant
multiplier �.�/ and such that there is �0 2M with �.�0/ D e

2i�
3 and p�0 is arbitrar-

ily close to p. As �.�/ is not constant, there exists .�n/n�1 converging to �0 such that
j�.�n/j > 1 (resp. j�.�n/j < 1). By conjugating the whole family and p by z 7! z C z0,
we can assume that z0 D 0. Therefore, the combination of Lemma 4.3 and Theorem 4.1
gives a sequence .fn/n�1 of the form fn.z; w/ WD .p�n.z/C

ˇn
2
w; q.w// and such that

some iterates of fn have a blender of repelling type (resp. saddle type). The result follows
since .fn/n�1 converges to .p�0 ; q/ and p�0 was arbitrarily close to p.

We conclude this section with a complement about the repelling case in Theorem 4.1
which will be useful in Section 5. The set �ƒf defined below will allow us to apply
Proposition 2.3 and the existence of the second blender ƒ0n;˛ is a minor technical point
(see Lemma 5.2). As it was noticed after Proposition 3.5, ƒ0n;˛ could be replaced by
any uncountable subset of ƒn;˛ whose holomorphic continuation for g close enough to
f
m1ln
n;˛ belongs to \

i�0

g�i

 
3[

jD1

.j˛ˇnjHj / � V
l
j

!
:
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Proposition 4.4. In the repelling case of Theorem 4.1, there exists a second blenderƒ0n;˛
with

ƒ0n;˛ D
\
i�0

f �im1lnn;˛

 
3[

jD1

�
j˛ˇnj

3
Hj

�
� V

ln
j

!
;

ƒn;˛ D
\
i�0

f �im1lnn;˛

 
3[

jD1

.j˛ˇnjHj / � V
ln
j

!
for ˛ 2 D�. Here, Hj denote the sets given in Lemma 3.2. Moreover, by reducing ˇn if
necessary, for each n � 1 there are Rn > 0 and a neighborhood Un �Hd .P

2/ of fn;0
which contains the family .fn;˛/˛2D and such that Rn > jˇnj and for all f 2 Un,

�ƒf WD\
i�0

f �im1ln

 
3[

jD1

.RnD/ � V lnj

!
defines a basic repeller for f m1ln which moves holomorphically for f 2 Un and which
can only intersect P.f / properly.

Proof. The first point indeed could be immediately deduced from Proposition 3.5 at the
end of the proof of Theorem 4.1.

The last point is a simple observation. Since 0 is a repelling periodic point for p�n
there exists Rn > 0 such that pm0

�n
is conjugated to z 7! �.�n/z on D.0;Rn/. Hence,

the set �ƒn;0 defined as above is a repelling hyperbolic set contained in ¹0º �C and
homeomorphic to a Cantor set. Its dynamics is conjugated to a shift of three symbols
and is therefore transitive, i.e., �ƒn;0 is a basic set for f m1lnn;0 . Moreover, by Theorem 2.1
it can be followed holomorphically as a basic repeller in a small neighborhood Un of
fn;0 D .p�n ; q/. Since there exist polynomials arbitrarily close to p�n such that 0 is peri-
odic but not postcritical, an intersection between �ƒf and P.f / is necessarily proper. And
if jˇnj is chosen small enough, then fn;˛ 2 Un for all ˛ 2 D.

5. From blenders of repelling type to robust bifurcations

A large part of this section is inspired by [25] (see Lemma 5.1 and Lemma 5.4 below).
We show that the blenders of repelling type constructed in Section 4 give rise to open sets
in the bifurcation locus of Hd .P

2/ arbitrarily close to a bifurcation in Pd �Pd .
Let p and q be two elements of Pd such that p belongs to the bifurcation locus. As

in the proof of Theorem 1.1, we choose a polynomial p�0 close to p which has a periodic
(and not fixed) point of multiplier e

2i�
3 . By conjugation, we can assume that this point

is 0. The following result says that p�0 can be approximated by maps such that 0 is
a Misiurewicz point. Its proof is contained in the proof of [25, Corollary 4.11].

Lemma 5.1. If 0 is a parabolic periodic point for a polynomial p�0 , then there exist
a family of polynomials .p�/�2M and a sequence .�n/n�1 in M converging to �0 such
that, for each n � 1, 0 is a repelling periodic point for p�n which belongs to the postcrit-
ical set P.p�n/.
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By Lemma 4.3 and Theorem 4.1, there exist sequences .ln/n�1 and .ˇn/n�1, which
are chosen in order to satisfy Proposition 4.4, such that if we fix n � 1 large enough, then
for ˛ 2 D� the .m1ln/-th iterate of the map

fn;˛.z; w/ WD .p�n.z/C ˛ˇnw; q.w//

satisfies Proposition 3.3 for some constant ı˛ > 0 and sets Hj;˛ and Vj , j 2 ¹1; 2; 3º.
Actually, the map fn;˛ is a rescaling by ˛ˇn of the map gn used in the proof of Theo-
rem 4.1 thus ı˛ D j˛ˇnjı0 and Hj;˛ is contained in D.0; j˛ˇnj/ and is the rescaling
by ˛ˇn of a set Hj � D. And if Rn > jˇnj, Un �Hd .P

2/ are the objects given by
Proposition 4.4, we define for ˛ in D� and in D, respectively,

ƒ˛ WD
\
i�0

f �im1lnn;˛

 
3[

jD1

Hj;˛ � Vj

!
and �ƒ˛ WD\

i�0

f �im1lnn;˛

 
.RnD/ �

3[
jD1

Vj

!
:

By Proposition 4.4 the set �ƒ˛ is a basic repeller which can be followed holomorphi-
cally for f 2 Un thus in particular for fn;˛ , ˛ 2 D. And the set ƒ˛ has the following
properties.

Lemma 5.2. For each ˛1 2 D� there is a neighborhood B � D� such that there exists
x˛1 in ƒ˛1 whose continuation as a point of �ƒ˛1 belongs to ƒ˛ for ˛ 2 B and is of
the form x˛ D .z˛; w0/, where w0 is outside the postcritical set P.q/ of q.

Proof. As observed in the proof of Proposition 4.4, �ƒ0 is contained in ¹0º �C and can
be identified to

T
i�0 q

�im1ln.
S3
jD1 Vj / which is a Cantor set independent of ˛. As the

holomorphic motion of �ƒ˛ preserves the dynamics and fn;˛ is a skew product with the
same second coordinate that fn;0, it follows as for all ˛ 2 D the projection on the second
coordinate of the set �ƒ˛ is a bijection on this Cantor set. Therefore, the second coordinate
of the holomorphic continuation of a point in �ƒ˛ is constant.

Now, let ˛1 be in D�. By Proposition 4.4 the set

ƒ0˛1 WD
\
i�0

f �im1lnn;˛1

 
3[

jD1

�
1

3
Hj;˛1

�
� Vj

!
is a blender. As we observed after Proposition 3.3, this implies that the projection on the
first coordinate of ƒ0˛1 contains a non-empty open set. In particular, it is uncountable and
thus there is x˛1 D .z˛1 ; w0/ 2 ƒ

0
˛1

such that w0 does not belong to P.q/. Finally, since
by construction Hj;˛1 satisfies

1

3
Hj;˛1 � D

�
0;
j˛1ˇnj

2

�
� Hj;˛1

and since the holomorphic motion is continuous and is compatible with the dynamics, we
obtain that in a small neighborhood of ˛1 the continuation x˛ of x˛1 verifies

f im1lnn;˛ .x˛/ 2

3[
jD1

Hj;˛ � Vj

for all i � 0, i.e., x˛ 2 ƒ˛ .
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The critical set C.fn;˛/ of fn;˛ is independent of ˛ and is equal to .C.p�n/ � C/ [
.C � C.q//. A key point in what follows is that for some parameter the images of a verti-
cal irreducible component of this set intersects the blender. Following [25], we use a result
contained in [8] to obtain such parameter.

Proposition 5.3 ([25, Proposition 2.2]). Let .f�/�2M be a holomorphic family of degree
d endomorphism of Pk . Let 
 W M ! Pk be a holomorphic map. If �0 2M belongs to the
bifurcation locus, there exists �1 2M arbitrarily close to �0 such that 
.�1/ 2 P.f�1/.

Lemma 5.4. There exist ˛0 2 D� and x˛0 2 ƒ˛0 such that

x˛0 2
[
i�0

f in;˛0.C.p�n/ �C/ and x˛0 …
[
i�0

f in;˛0.C � C.q//:

Proof. We consider two cases. First, if the bifurcation locus of the family .fn;˛/˛2D

is not empty, then there exists ˛1 2 D� belonging to it since it is a perfect set of D.
By Lemma 5.2, there exists a point x˛1 D .z˛1 ; w0/ in ƒ˛1 such that w0 is not in the
postcritical set P.q/ and its holomorphic continuation x˛ satisfies x˛ 2 ƒ˛ for ˛ in
a small neighborhood of ˛1. Hence, Proposition 5.3 implies that there exists ˛0 arbi-
trarily close to ˛1 such that x˛0 D .z˛0 ; w0/ belongs to the postcritical set of fn;˛0 , i.e.,
x˛0 2

S
i�0 f

i
n;˛0

.C.fn;˛0//. As w0 is not in P.q/, it follows that

x˛0 2
[
i�0

f in;˛0.C.p�n/ �C/ and x˛0 …
[
i�0

f in;˛0.C � C.q//:

We now assume that the family .fn;˛/˛2D is stable. In particular, we can follow holo-
morphically each repelling point for ˛ 2 D. We choose ˛0 2 D�, a repelling periodic
point r˛0 D .z˛0 ; w/ in �ƒ˛0 and we denote by r˛ D .z˛; w/ its continuation. Since �ƒ˛
moves holomorphically for ˛ 2 D and�ƒ0 � ¹0º �C, we have z0 D 0. On the other hand,
as 0 is postcritical for p�n there are z1 2 C.p�n/ and i � 1 such that

f in;0.¹z1º �C/ D ¹0º �C:

We use a second time the fact that the family is stable to obtain that r˛ 2 f in;˛.¹z1º �C/.
Since ƒ˛ � �ƒ˛ and the repelling points are dense in �ƒ˛ , this implies that

ƒ˛ � f
i
n;˛.¹z1º �C/:

We then conclude as above by taking a point x˛0 D .z0; w0/ 2 ƒ˛0 with w0 … P.q/.

Lemma 5.5. If ˛0 is as in Lemma 5.4, then the postcritical set P.fn;˛0/ contains a ver-
tical graph tangent to Cı˛0 in Hj;˛0 � Vj for some j 2 ¹1; 2; 3º.

Proof. Let ˛0 2 D� and let x˛0 D .z˛0 ; w0/ be a point in ƒ˛0 for fn;˛0 such that

x˛0 2
[
i�0

f in;˛0.C.p�n/ �C/ and x˛0 …
[
i�0

f in;˛0.C � C.q//:

There exist points z1 2 C.p�n/, i0 2 ¹1; 2; 3º, and�l � 0 minimal such that x˛0 belongs
to Hi0;˛0 � Vi0 and to

X WD f
�l
n;˛0

.¹z1º �C/:
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We claim that the image of X by a large iterate of f lnm1n;˛0 contains a vertical graph
tangent to Cı˛0 . Indeed, since w0 … P.q/ and�l is minimal X is smooth at x˛0 and can-
not be tangent to the horizontal direction. Therefore, X contains a vertical graph over
a small neighborhood U of w0. If .ik/k�0 denotes the sequence in ¹1; 2; 3º such that
qklnm1.w0/ 2 Vik , then for k large enough the set  i0i1 ı � � � ı  ik�1ik .Vik / is contained
in U . Here,

 ij W Vj ! Wij � Vi

is the inverse branch of qlm1 given by Lemma 3.1. Hence, f klnm1n;˛0 .X/ contains a vertical
graph over Vik . Moreover, by the estimates onD.z;w/g

m1ln
n obtained in the proof of Theo-

rem 4.1, if k is large enough, then this graph has to be tangent to Cı˛0 and its image is
contained in Hik ;˛0 � Vik . This concludes the proof.

Proof of Corollary 1.3. Let .p; q/ be in Pd �Pd . If p is in the bifurcation locus of Pd ,
then as we have seen above, there exist a polynomial p�n close to p, a number ˇn 2 C
close to 0 and ˛0 2 D� such that the postcritical set of the map

fn;˛0.z; w/ WD .p�n.z/C ˛0ˇnw; q.w//

contains a vertical graph tangent to Cı˛0 in Hj;˛0 � Vj for some j 2 ¹1; 2; 3º. Moreover,
a large iterate of fn;˛0 possesses a blender ƒ˛0 contained in the basic set �ƒ˛0 and satis-
fies Proposition 3.3 with the constant ı˛0 and the setsHj;˛0 and Vj . Therefore, if f 2 Un

is close enough to fn;˛0 , then the continuation of �ƒ˛0 for f intersects its postcritical
set. By Proposition 4.4 this intersection is proper. Hence, by Proposition 2.3, fn;˛0 is in
the interior of the bifurcation locus Bif.Hd .P

2// and thus .p; q/ is in the closure of the
interior of Bif.Hd .P

2//.

6. From blenders of saddle type to fat attractors

In this section, we prove Corollary 1.4 and Theorem 1.5. The former is a direct con-
sequence of Theorem 4.1 and the latter follows from a construction based on Proposi-
tion 3.9. An elementary fact about attracting sets that we will use several times is that
if U is an open subset of P2 and f is a rational map of P2 such that f .U / � U , then
g.U / � U for all small perturbations g of f , i.e., U is also a trapping region for g.

Proof of Corollary 1.4. Let .p; q/ be in Pd �Pd . Exactly as in the proof of Corol-
lary 1.3, if p is in the bifurcation locus of Pd , then arbitrarily close to it and 0, respec-
tively, there exist p�n and ˇn 2 C such that for all ˛ 2 D� the m1ln-th iterate of

fn;˛.z; w/ WD .p�n.z/C ˛ˇnw; q.w//

has a blender of saddle type. To be more precise, there are three open sets V1, V2 and V3
in C such that

3[
jD1

D.0; j˛ˇnj/ � Vj � f
m1ln
n;˛

� 3[
jD1

D.0; j˛ˇnj/ � Vj

�
:
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On the other hand, 0 is an attracting fixed point for pm1ln
�n

and it is easy to check that the
line ¹z D 0º is an attracting set in P2 for f m1lnn;0 . Hence, it admits a trapping region U
and if ˛ 2 D� is close enough to 0, then

3[
jD1

D.0; j˛ˇnj/ � Vj � U andf m1lnn;˛ .U / � U ;

i.e., fn;˛ has an attracting set containing
S3
jD1D.0; j˛ˇnj/ � Vj . Since the inclusion

3[
jD1

D.0; j˛ˇnj/ � Vj � f
m1ln
n;˛

 
3[

jD1

D.0; j˛ˇnj/ � Vj

!
is stable under small perturbations of fn;˛ , it follows that .p; q/ is in the closure of the
interior of endomorphisms possessing a proper attracting set with non-empty interior.

Note that all these examples are not transitive as they all possess an attracting point
near Œ0 W 1 W 0�. However, as we will now see it turns out that the composition of an
automorphism and of two such maps can have an attractor with non-empty interior.

The remaining part of this section is devoted to the proof of Theorem 1.5 which splits
into the three elementary lemmas below. We do not try to obtain the existence of attractors
with non-empty interior in a general setting. For simplicity, we only use perturbations of
iterates of the map .z; w/ 7! .z; q.w//, where q.w/ D w4. The ideas are the following.
Even if q is far from being transitive on P1, its postcritical set is particularly simple.
Hence, if we consider the automorphism of P1 given by  .w/ D iwC1

wCi
, it is easy to

check that for all integers a; b � 1 each critical point of the map qa ı  ı qb is eventually
mapped to the fixed repelling point 1. Therefore, its Fatou set is empty and this map
is transitive on P1. In what follows, we obtain an endomorphism f with an attracting
set A containing a blender of saddle type. The interior of the unstable set of this blender
contains an algebraic curve which is thus included in the interior of A. On the other hand,
f preserves a pencil of lines P and its action on P is given by qa ı  ı qb for some
a; b � 1. Hence, arguments going back to [32] (see also [27]) imply that fjA is transitive,
i.e., A is an attractor.

The first lemma is a variation on Lemma 3.1 and Proposition 3.9, where we use
the three repelling fixed points of q, r1 WD 1, r2 WD e

2i�
3 and r3 WD e

4i�
3 .

Lemma 6.1. Let R > 0. There exist 0 < � < 1, �0 > 0, l0 � 1 and a family of neighbor-
hoods .U li /l�l0 of ri such that the diameter of U li converges exponentially fast to 0 with l
and for each l � l0 and ˛ 2 C� the map g˛.z; w/ WD .�z C ˛w; ql .w// satisfies

.˛��10 D/ � .RD nR�1D/ � g˛

 
.˛��10 D/ �

3[
iD1

U li

!
:

Proof. We consider the open sets V li given by Lemma 3.1 applied to q and ri . Since
q.w/ D w4, obviously there exists l1 � 1 such that

RD nR�1D �
3\
iD1

ql1.V 0i /:
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Then for l � l1 we defineU li WD V
l�l1
i and we obtainRD nR�1D � ql1.V 0i / � q

l .U li /.
Since the diameter of V li converges exponentially fast to 0 with l , the same holds for U li .

On the other hand, as r1, r2 and r3 are three non-aligned points in C such that
r1 C r2 C r3 D 0, by Lemma 3.2 there exist 0 < � < 1 and �0 > 0 such that

D �
3[
iD1

�i .D/;

where �i .z/ D �z C �0ri . Moreover, if l0 � l1 is large enough and l � l0, then the sets
U li are arbitrarily small. Hence, if l � l0, then the map g.z; w/ WD .�z C �0w; ql .w// is
close to .z; w/ 7! .�i .z/; q

l .w// on D � U li . Thus, by using thatRD nR�1D � ql .U li /,
it follows exactly as in the proof of Proposition 3.5 that

D � .RD nR�1D/ � g

 
D �

3[
iD1

U li

!
:

This also implies the general case with ˛ 2 C� since g˛ is the conjugation of g by
.z; w/ 7! .˛��10 z; w/.

Recall that  .w/ D iwC1
wCi

. From now on, let R > 0 be large enough in order to get
 �1.¹r1; r2; r3º/ � RD nR�1D. We choose l � l0 such that

3[
iD1

.U li [  
�1.U li // � RD nR�1D

and for .˛; �/ 2 C2 we define

G˛;�.z; w/ WD .�z C ˛w C �q
l .z/; ql .w//:

This map can be seen as a rational map of P2 and if � ¤ 0 then G˛;� extends to an
endomorphism of P2 which we still denote by G˛;� . Moreover, the map  extends
to an automorphism ‰Œz W w W t � WD Œz W iw C t W i t C w� which acts by  on the line
X WD ¹Œz W w W t � 2 P2 W z D 0º.

To conclude the proof of Theorem 1.5, we need the two following results.

Lemma 6.2. There exist�l � 1 and�� > 1 such that for each ˛ 2 C� if � 2 C� is suffi-
ciently close to 0, then the map F�.z; w/ WD .��z C �q�l .z/; q�l .w// satisfies

X [

 
.˛��10 /D �

3[
iD1

U li

!
� F� ı‰..˛�

�1
0 D/ � .RD nR�1D//:

Proof. Let�l � 1 be such that q�l ı  .RD nR�1D/ D P1. Such�l exists since the com-
plement in P1 of .RD nR�1D/ consists of two balls centered at i and�i and disjointed
from R. Hence X � F� ı‰..˛��10 D/ � .RD nR�1D// for all .˛; �/ 2 .C�/2.

For the second part of the inclusion it is sufficient to choose �� > 1 large enough in
order to balance the contraction on the z coordinate due to ‰ on C �  �1.

S3
iD1 U

l
i /.

Then ..˛��10 /D�
S3
iD1 U

l
i / � F0 ı‰..˛�

�1
0 D/� .RD nR�1D// for all ˛ 2 C�. Thus,

if ˛ 2 C� is fixed then the same inclusion holds for small � 2 C�.
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Lemma 6.3. There exist ˇ1 > 0, � > 0 andN � 1 such that for all .˛; �/ 2 .ˇ1D�/2 the
open subset of P2 given by U� WD ¹Œz W w W t � 2 P2 W jzj < �max.jwj; jt j/º is a trapping
region for F� ı‰ ı .GN˛;�/.

Proof. Observe that for all � > 0, we have G0;0.U�/ � U� and
T
N�0G

N
0;0.U�/ D X .

Moreover, if �0 > 0, then F0 ı‰.U�0/ is contained in U� for some � > 0. Hence, there
exists N � 1 such that GN0;0.U�/ � U�0 and thus

F0 ı‰ ı .G
N
0;0/.U�/ � F0 ı‰.U�0/ � U�;

i.e., U� is a trapping region for F0 ı‰ ıGN0;0. The result follows since this property is
stable under small perturbations.

Proof of Theorem 1.5. Using the notations of the above lemmas, define

Z˛ WD .˛�
�1
0 D/ �

3[
iD1

U li

and let ˛ 2 ˇ1D� be small enough such that Z˛ � U�. By Lemma 6.1 and Lemma 6.2,
if � 2 ˇ1D� is close enough to 0, then X [Z˛ � F� ı‰..˛��10 D/ � .RD nR�1D//
and .˛��10 D/ � .RD nR�1D/ � G˛;�.Z˛/, which implies Z˛ � G˛;�.Z˛/. Therefore,
Z˛ � G

N�1
˛;� .Z˛/ and thus if f WD F� ı‰ ıGN˛;� , then X [Z˛ � f .Z˛/. Moreover,

since .˛; �/ 2 .ˇ1D�/2, the set U� is a trapping region for f which contains Z˛ . Hence,
A WD

T
n�0 f

n.U�/ contains Z˛ thus it also contains f .Z˛/ which is an open set which
itself contains the line X .

It remains to show that A is an attractor. Obverse that both the maps G˛;� and F� ı‰
preserve the pencil P of lines passing through the point Œ1 W 0 W 0�. With the standard
identification between P and P1, their actions on P are given by ql and q�l ı  , respec-
tively. Hence, the one of f is given by q�l ı  ı qlN which is a transitive rational map
on P1. From this, it follows as in the proof of [32, Lemma 4] (see also [27]) that fjA is
topologically mixing and thus transitive.

Remark 6.4. To such an attracting set Dinh [21] (see also [36]) associates an attract-
ing current and an equilibrium measure. Observe that since in all the examples above
a pencil of line is preserved, the support of the attracting current is exactly equal to the
corresponding attracting set. This contrasts with the examples given in the Section 8.

7. A cycle of blenders

The goal of this section is to explain how one can perturb product maps of the form
.z; w/ 7! .z; q.w// in order to obtain a cycle between a blender of repelling type ƒr
and one of saddle type ƒs . The fact that two hyperbolic sets form a cycle means that the
unstable manifold of one set intersects the stable manifold of the other one and vice versa.
We will see that in our setting it will be sufficient to prove that the unstable manifold of
ƒs intersectsƒr . The proof of Theorem 1.7 will then follow easily form this construction
using classical results in hyperbolic dynamics and complex dynamics.
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We are able to fulfill the construction below in a more general setting but not as gen-
eral as the one of Theorem 1.1. So, for simplicity we restrict ourselves to the following
context. We first define q.w/ WD w7, r1 WD 1, r2 WD e

2�
3 , r3 WD e

4�
3 and for i 2 ¹1; 2; 3º,

si WD �ri . Observe that these six points are repelling fixed points of q and

r1 C r2 C r3 D s1 C s2 C s3 D 0:

We denote by Hi the sets defined in Lemma 3.2 with ci D ri and V li (resp. U li ) the open
sets associated to r1, r2 and r3 (resp. s1, s2 and s3) by Lemma 3.1 with m1 D 1. Observe
that we can easily require in addition that

3[
iD1

V li � q
l .U lj /

for all j 2 ¹1; 2; 3º. The idea of the following proposition is to combine Proposition 3.5
and Proposition 3.9 using the fact that the polynomial 1

2
.w3 C 1/ equals 1 for w D ri and

vanishes for w D si . The condition 1
10
> ˛1 > ˛2 > 0 will simplify the end of the proof

of Theorem 7.2.

Proposition 7.1. Let q.w/ WD w7. Then there exist 1
10
> ˛1 > ˛2 > 0, �1; �2; R > 0 and

l0 � 1 such that for all l � l0 the map

Fl .z; w/ WD

�
z C

.˛1z C �1w/.w
3 C 1/

2
� ˛2z � �2w; q

l .w/

�
has a blender of repelling type ƒlr in D �

S3
iD1 V

l
i , a blender of saddle type ƒls in

4�1D �
S3
iD1 U

l
i and for each point�x in the natural extension of ƒls the unstable mani-

fold W u�x intersects ƒlr . Moreover, the sets

�ƒlr WD \
n2Z

F nl

 
RD �

3[
iD1

V li

!
and �ƒls WD \

n2Z

F nl

 
RD �

3[
iD1

U li

!
are basic sets of repelling type and saddle type respectively with ƒlr � �ƒlr , ƒls � �ƒls ,
which are topologically mixing on their natural extensions with topological entropy equal
to log 3.

Proof. By Lemma 3.2 and Proposition 3.5, there exist 1
10
> ˛1 > 0, �1; ı1 > 0 and l1 � 1

such that for all l � l1 a map of the form

.z; w/ 7! .h1.z; w/; q
l .w//

with jh1.z; w/ � ..1C ˛1/z C �1ri /j � ı1 on 2D � V li has a blender of repelling type
in D �

S3
iD1 V

l
i . In particular, this holds for

h1.z; w/ D z C
1

2
.˛1z C �1w/.w

3
C 1/

for l � l1 large enough since w is close to ri on V li and thus 1
2
.w3 C 1/ is close to 1.

Notice that this still holds for perturbations of h1 of uniform size with respect to l � l0.



J. Taflin 3582

We now explain how one can perturb such a map in order to obtain in addition
a blender of saddle type. For what follows, we need that this blender is contained in
a smaller set of the form 4�1D �

S3
iD1 U

l
i . Observe that by a simple change of vari-

ables, the blender obtained by Proposition 3.9 can be chosen to be in rD �
S3
iD1 U

l
i with

r > 0 arbitrarily small. Hence, by Lemma 3.2 and Proposition 3.9 there exist ˛2; �2 > 0
arbitrarily small, ı2 > 0 and l2 � 1 such that for all l � l2 a map of the form

.z; w/ 7! .h2.z; w/; q
l .w//

with
jh2.z; w/ � ..1 � ˛2/z � �2si /j � ı2

on 2�1D � U li has a blender of saddle type in 4�1D �
S3
iD1 U

l
i . Since w3 C 1 is close

to 0 on U li for l � l2 large enough, this inequality holds for

h2.z; w/ D

�
z C

.˛1z C �1w/.w
3 C 1/

2
� ˛2z � �2w

�
:

Moreover, as ˛2; �2 > 0 can be chosen arbitrarily small, h2 is an arbitrarily small pertur-
bation of the function h1 defined above. Hence, there exist l3 � 1 and ˛2; �2 > 0 such
that for all l � l3 the map F l .z; w/ WD .h2.z; w/; ql .w// has two blendersƒlr andƒls of
repelling type and of saddle type, respectively, given by

ƒlr WD
\
n�0

F �nl

 
3[
iD1

Hi � V
l
i

!
and ƒls WD

\
n�0

F �nl

 
3[
iD1

4�1D � U li

!
:

If R > 0 is large enough, it is easy to see that

RD � h2

 
RD �

3[
iD1

V li

!
; h2

 
RD �

3[
iD1

U li

!
� RD;

and that the sets �ƒlr and �ƒls are hyperbolic, of repelling and saddle type respectively, and
containing ƒlr and ƒls respectively. Moreover, the dynamics on their natural extensions
are topologically mixing with entropy log 3 since in both cases they are conjugated to the
natural extension of ql on ƒl WD

T
n�0 q

�nl .
S3
iD1 V

l
i / which is a two-sided full shift of

three symbols.
It remains to prove the last point, i.e., each �x in the natural extension of ƒls satisfies

W u�x \ƒlr ¤ ¿. Recall that, by Proposition 3.3, if a vertical graph in Hi � V li is tangent
to the cone field Cı1 , then it intersectsƒlr . Since q is uniformly expanding on the annulus
A WD ¹w 2 C W 1

2
< jwj < 2º for each 0 < ı < ı1, there is l � l3 such that Fl contracts

Cı on 2D � A. Hence, the local unstable manifold W u
loc.�x/ in .4�1D/ � U li of a point�x D .xi /i�0 2 �ƒls with x0 2 ƒls \ .4

�1D/ � U li is a vertical graph over U li which is
tangent to Cı . If ı > 0 is small enough, its image by Fl contains a vertical graph in
Hj � V

l
j for some j 2 ¹1; 2; 3º since we have assumed that

3[
jD1

V lj � q
l .U lj /:
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Here, we use that 4�1D � 2�1D � Hj and that ı < min¹1
8
�; ı1º. Moreover, this graph

is tangent to Cı thus to Cı1 and therefore by Proposition 3.3, Fl .W u
loc.�x// \ƒlr ¤ ¿, i.e.,

W u�Fl .�x/ \ƒlr ¤ ¿. The result follows since �Fl .�ƒls/ D �ƒls .
An important point about the above proof is that it is robust by small perturbations.

Hence, if we fix ˛1; ˛2; �1; �2; R > 0; l � l0 and Fl as above, then there exists �0 > 0
such that an endomorphism f of P2 with

kFl � f k1;2RD�2D < �0.2R/
7l

has two blenders ƒr .f /, ƒs.f / and two basic sets �ƒr .f /, �ƒs.f / with the same prop-
erties than the ones stated in Proposition 7.1. Moreover, by taking �0 > 0 sufficiently
small, Theorem 2.1 implies that �ƒr .f /moves holomorphically with f . In particular, this
applies to maps in a small neighborhood in Hd .P

2/ of the family of polynomial skew
products .f�/�2D� given by

f�.z; w/ WD

�
z C

.˛1z C �1w/.w
3 C 1/

2
� ˛2z � �2w C �0q

l .�z/; ql .w/

�
:

The following result is a reformulation of Theorem 1.7.

Theorem 7.2. If� �Hd .P
2/ is a sufficiently small connected neighborhood of the fam-

ily .f�/�2D� , then � � Bif.Hd .P
2// and for each f 2 � the set W u�ƒs.f / is a Zariski

open set, for each�x D .xi /i�0 in the natural extension of �ƒs.f /,
W u�x D P2 and W s

x0
�J2.f /:

Proof. Recall that, by [31], the closure of the repelling periodic points of a polynomial
skew product of C2 is equal to the small Julia set. Hence, since the repelling periodic
points are dense in �ƒr .f�/, we have �ƒr .f�/ �J2.f�/. Moreover, by [25, Lemma 2.3]
if � is a sufficiently small neighborhood of the family .f�/�2D� in Hd .P

2/, then for all
f 2 �, we still have �ƒr .f / �J2.f /.

Let�x and �y D .yi /i�0 be in the natural extension of �ƒs.f / and ƒs.f /, respectively.
Let � be a small holomorphic disc transverse toW s

x0
near x0. As we have seen in the proof

of Proposition 7.1,W u�y contains a vertical graph inHj � V lj which is tangent toCı1 . Since�f acts transitively on the latter, it follows from the shadowing lemma (see [30, Paper I,
Theorem 2.4]) that there exist a periodic point�z in the natural extension of �ƒs.f / and
n0 � 0 such that �z D .zi /i�0 is close to �x and �f n0.�z/ is close to �y. By the continuity
of the stable and unstable manifolds (see [30, Paper I, Theorem 1.2]), �z can be chosen
such that W u�f n0 .�z/ contains a vertical graph in Hj � V lj which is tangent to Cı1 and �
is transverse to W s

z0
near z0. By the inclination lemma ([30, Paper I, Proposition 1.3])

there exists n1 � 0 such that f n1.�/ also contains a vertical graph in Hj � V lj which is
tangent toCı1 and thus by Proposition 3.3, f n1.�/\ƒr .f / ¤ ¿. Butƒr .f / �J2.f /,
which is totally invariant, so � \J2.f / ¤ ¿. As J2.f / is closed and � was an arbi-
trarily small disc transverse to the local stable manifold of x0, we have that this local
stable manifold is contained in J2.f /. Again, the total invariance of J2.f / ensures
that W s

x0
�J2.f /.
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If Z WD
S3
iD1 4

�1D � U li , then by the construction of the blender of saddle type, we
have that Z � f .Z/. As it has been notice in Remark 3.8, [30, Paper I, Corollary 2.6]
then implies that Z � W u�ƒs.f / and so[

n�0

f n.Z/ � W u�ƒs.f /:
On the other hand, we have just seen thatZ intersects J2.f / so by [22], if E .f / denotes
the exceptional set of f , which is a totally invariant critical analytic set, then

P2 n E.f / �
[
n�0

f n.Z/ � W u�ƒs.f /:
But if � is sufficiently small, then for each f 2 �, �ƒs.f / is disjoint from the critical set
so �ƒs.f / \ E.f / D ¿ and therefore

W u�ƒs.f / \ E.f / D ¿;

i.e., W u�ƒs.f / is equal to the Zariski open set P2 n E.f /. This also implies that W u�x D P2

for each �x in the natural extension of �ƒs.f / since classical results from hyperbolic
dynamics imply that

W u�ƒs.f / D W u�x
since �f is topologically mixing on the naturel extension of �ƒs.f /.

It remains to prove that � � Bif.Hd .P
2//. This will be done in two steps. First we

show that the postcritical set intersectsƒr .f / and then that this intersection is proper. The
result will then follows from Proposition 2.3. In both cases, we use the family .f�/�2D� .

Let � 2 D�. Since f� is a skew product, if x is a periodic point in �ƒs.f�/, then the
stable manifold W s

x corresponds to an attractive basin in the fiber associated to x. Hence,
by a classical result of Fatou this basin must contain a critical point, i.e., the critical set
C.f�/ intersects W s

x . Moreover, since the periodic points are dense (and non-isolated)
in the set �ƒs.f�/ and all stable manifolds are contained in horizontal fibers, there exists
a periodic point x such that the intersection between C.f�/ and W s

x is transverse. Hence,
by the same arguments than above, the inclination lemma implies that the postcritical
set of f� intersects in a robust way the repelling blender ƒr .f�/. Since this holds for
all � 2 D�, if � �Hd .P

2/ is a sufficiently small connected neighborhood of the fam-
ily .f�/�2D� , then for each f 2 � its postcritical set P.f / intersects ƒr .f / � �ƒr .f /.
Finally, P.f / has to intersect properly �ƒr .f /. Indeed, otherwise this intersection could
be followed in the family .f�/�2D� and thus in the conjugated family .g�/�2D� where
g� WD �� ı f� ı �

�1
�

with ��.z; w/ WD .�z; w/. At the limit, when � goes to 0, we should
have an intersection between the postcritical set of the limit map and a limit value of the
sets �ƒr .g�/. However, as

g�.z; w/ D

�
z

�
1C

˛1.w
3 C 1/

2
� ˛2

�
C �w

�
�1.w

3 C 1/

2
� �2

�
C ��0q

l .z/; ql .w/

�
;
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the limit map is g0.z; w/ WD .z.1C ˛1
2
.w3 C 1/ � ˛2/; q

l .w// and a simple computa-
tion shows that, under the assumption ˛2 < ˛1 < 1

10
, its postcritical set does not inter-

sect ¹.0; w/ 2 C2 W
1
2
< jwj < 2º which contains all the possible limit values of the sets�ƒr .g�/ when � goes to 0.

Remark 7.3. The approach to obtain an open set of bifurcations in the proof above can
be generalized in the following way. Assume that f is a map with a blender of repelling
type ƒr and a saddle periodic point x such that its unstable manifold W u

x intersects ƒr
and is tangent to the cone field ofƒr near this intersection. By a result of Robertson [35],
the critical set intersects the stable manifold W s

x . If the intersection is transverse, then
as in the above proof the postcritical set must intersect ƒr in a robust way. And if this
new intersection is proper in the sense of Proposition 2.3, then it gives an open set of
bifurcations. However, these two assumptions on the intersections seem difficult to check
in general.

8. Perturbations of Hénon maps

In this last section we consider small perturbations of polynomial automorphisms of C2.
It turns out that they can give rise to proper attracting sets containing repelling points and
to infinite sequences of nested attracting sets. The first point is a simple observation and
the second one comes easily from the works of Gavosto [29] and Buzzard [18] on the
Newhouse phenomenon in the holomorphic setting. It turns out that Fornæss and Sibony
considered exactly the same maps in [27] and that in [25] Dujardin uses the same kind
of examples to show that the Newhouse phenomenon is compatible with stability in the
sense of [8].

In [18], Buzzard obtains a volume preserving polynomial automorphism f0 of C2

with a persistent homoclinic tangency. Moreover, using [29, Theorem 4.1], he proves that
if f� is a small perturbation of f0 which is volume decreasing near the tangency, then
arbitrarily close to f� there exists a map with infinitely many attracting cycles. Actu-
ally, using exactly the same arguments but with a volume increasing perturbation f� ,
we obtain a map f close to f� with infinitely many repelling cycles near the tangency.
We will see that if f is close enough to f0 then all these cycles belong to a proper
attracting set A of f and each time we remove to A one of these cycles, we obtain
a smaller attracting set. Notice that this set A is the counterpart to (the closure of) the
standard setK�.f0/ D ¹.z; w/ 2 C2 W .f �n0 .z; w//n�0 is boundedº associated to f0 (see
also Remark 8.3).

Proof of Theorem 1.6. Note that the maps with persistent homoclinic tangencies obtained
by Buzzard are of the form f0 WD F3 ı F2 ı F1 with

F1.z; w/ D .z C g1.w/; w/;

F2.z; w/ D .z; w C g2.z//;

F3.z; w/ D .cz; c
�1w/

for some polynomials g1 and g2 of the same degree d and some 0 < c < 1. As observed
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by Dujardin in [25], f0 can also be seen as the composition of two Hénon maps h˙

of the form h˙.z; w/ D .w; c˙1z C p˙.w//, where pC and p� are two polynomials of
degree d . It is a standard fact about Hénon maps that ifR > 0 is large enough then the sets

V C WD ¹.z; w/ 2 C2
W jwj � max.R; jzj/º

and
V � WD ¹.z; w/ 2 C2

W jzj � max.R; jwj/º

satisfy h˙.V C/ � V C and .h˙/�1.V �/ � V �. Indeed, with the same proof one can
obtain that if R > 0 is large enough, then .h˙/�1.V �/ � W �, where

W � WD ¹.z; w/ 2 C2
W jzj � 2max.R; jwj/º:

Moreover, when seen as rational maps of P2 both h˙ have as unique indeterminacy
point I.h˙/ D Œ1 W 0 W 0� and contract the line at infinity (minus I.h˙/) to a single point
Œ0 W 1 W 0�. We deduce from these observations that .h˙/.P2 nW �/ � P2 n V �. Hence,
U WD P2 nW � is a trapping region for h˙ and thus for f0 and its small perturbations.

On the other hand, the homoclinic tangency of f0 has to belong to the bidisc

V WD ¹.z; w/ 2 C2
W max.jzj; jwj/ < Rº:

We choose a small perturbation f� of f0 such that f� is an endomorphism of P2 which
is volume increasing on V , injective on f �1� .V / \ U and such that f�.U / � U . For
example, the map f� D h�� ı h

C
� with

h�� .z; w/ D .w C a�z
d ; c�1z C p�.w//

and
hC� .z; w/ D .w C a�z

d ; .c C �/z C pC.w//;

where we first choose � > 0 small and then a� ¤ 0 very small with respect to � is appro-
priate. Moreover, if � is small enough, then the results of [18] and [29] yield the exis-
tence of an endomorphism f of P2 arbitrarily close to f� with infinitely many repelling
cycles in V � U . In particular, U is also a trapping region for f and f is injective
on f �1.V / \ U . Therefore, A WD

T
k�0 f

k.U / is a proper attracting set with infinitely
many repelling cycles. Let .Cn/n�0 denote the sequence of these repelling cycles in A.
The injectivity of f on f �1.V / \ U implies two facts. First, a repelling periodic point
cannot be accumulated by other periodic points. In particular, there exists a family of
disjoint neighborhoods Bn � A \ V of Cn such that Bn � f .Bn/. The second point
implied by the injectivity of f is that the open sets defined inductively by U0 WD U and
UnC1 WD Un n Bn are trapping regions. The associated attracting sets

An WD
\
k�0

f k.Un/

satisfy AnC1 ¨ An. Hence, A1 D
T
n�0An is a quasi-attractor. Moreover, A1 cannot

be an attracting set since any neighborhood U1 of A1 such that f .U1/ � U1 must
contains infinitely repelling cycles Cn and thus Cn �

T
k�0 f

k.U1/ n A1.
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Remark 8.1. Actually, the construction above leads to uncountably many different quasi-
attractors. Let X be an infinite subset of N. Then AX WD

T
n2X An is a quasi-attractor

which is not an attracting set. And two different infinite subsets X and X 0 give different
quasi-attractors AX and AX 0 .

Remark 8.2. Notice that in the situation above, the results of Dinh [21] on attracting sets
and attracting currents do not apply directly to the sets An with n � 1 and a fortiori to
the quasi-attractor A1. On the other hand, we obtain in [36] the existence of an attracting
current � supported on A1.

Remark 8.3. Complex Hénon mappings have been extensively studied (see, e.g., [4, 5]).
In particular, one can associate to such a map filled Julia sets KC, K�, K D KC \K�

and Julia sets J˙ D @K˙, J D JC \ J�. Moreover, there exist two positive closed
.1; 1/-currents �C and �� with supp.�˙/ D J˙. The measure � WD �C ^ �� is mix-
ing, hyperbolic, supported in J , the saddle periodic points equidistribute towards it and it
is the unique measure of maximal entropy log.d/. As we have seen, we can perturb such
a map in order to have an endomorphism f of P2 which possesses an attracting set A.
The map f has a Green current T whose support is exactly the Julia set J1.f / and there
exists an attracting current � supported in A. There is a strong analogy between these
objects. The currents T and � correspond respectively to �C and ��, the sets JC andK�

correspond to J1.f / and A. Moreover, in this situation the combination of the results
of [19–21] gives that the measure � WD T ^ � is mixing, hyperbolic, the saddle periodic
points equidistribute towards it and it is the unique measure supported in A of maximal
entropy log.d/, i.e., it can be seen as the continuation of � for f .

Acknowledgments. I would like to thank Christian Bonatti for introducing me to blenders and for
many interesting discussions on dynamics.
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