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Abstract. We prove a new upper bound for the dimension of the space of cohomological automor-
phic forms of fixed level and growing parallel weight on GL2 over a number field which is not
totally real, improving the one obtained in [Ann. of Math. (2) 175 (2012)]. The main tool of the
proof is the mod p representation theory of GL2.Qp/ as started by Barthel–Livné and Breuil, and
developed by Paškūnas.
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1. Introduction

Let F be a finite extension of Q of degree r , and let r1 (resp. 2r2) be the number of real
(resp. complex) embeddings. Let F1 D F ˝Q R, so that

GL2.F1/ Š GL2.R/r1 � GL2.C/r2 :

Let Z1 be the center of GL2.F1/, let Kf be a compact open subgroup of GL2.Af / and
let

X D GL2.F /nGL2.A/=KfZ1:

If d D .d1; : : : ; dr1Cr2/ is an .r1 C r2/-tuple of positive even integers, we let Sd.Kf /

denote the space of cusp forms on X which are of cohomological type with weight d.
In this paper, we are interested in understanding the asymptotic behavior of the dimen-

sion of Sd.Kf / when d varies and Kf is fixed. Define

�.d/ D
Y

1�i�r1

di �
Y

r1<i�r1Cr2

d2i :

When F is totally real and Kf is fixed, Shimizu [31] proved that1

dimC Sd.Kf / � C ��.d/

for some constant C independent of d. However, if F is not totally real, the actual growth
rate of dimC Sd.Kf / is still a mystery; see the discussion below when F is imaginary
quadratic.

The main result of this paper is the following (see Theorem 6.1 for a slightly more
general statement).

Theorem 1.1. If F is not totally real and d D .d; : : : ; d / is a parallel weight with d � 2
even, then for any fixed Kf , we have

dimC Sd.Kf /��;Kf d
r� 12C�:

To compare our result with the previous ones, let us restrict to the case when F is
imaginary quadratic. In [12], Finis, Grunewald and Tirao proved the bounds

d � dimC Sd.Kf /�
d2

ln d
; d D .d; d/;

1Given r � 1 and two functions f; g W Nr ! N, we write f � g for the usual notation
f D O.g/, meaning that there exist M;C > 0 such that for all d 2 Nr with max¹di º > M ,
f .d/ � Cg.d/. We write f � g if both f � g and g � f hold. In case the constants M;C
depend on other inputs �, we write f �� g or f �� g to indicate this.
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using base change and the trace formula respectively (the lower bound is conditional
on Kf , see [12]). In [19], Marshall has improved the upper bound to be

dimC Sd.Kf /��;Kf d
5
3C� (1.1)

while our Theorem 1.1 gives

dimC Sd.Kf /��;Kf d
3
2C�;

hence a saving by a power d
1
6 . It is worth to point out that such a power saving is quite rare

for tempered automorphic forms. Indeed, purely analytic methods, such as the trace for-
mula, only allow to strengthen the trivial bound by a power of ln d , see [12,30]. We refer
to the introduction of [19] for a discussion on this point and a collection of known results.

Finally, we mention that the experimental data of [12] (whenF is imaginary quadratic)
suggests that the actual growth rate of dimC Sd.Kf / is probably d . We hope to return to
this problem in future work.

Let us first explain Marshall’s proof of the bound (1.1). It consists of two main steps,
the first of which is to convert the problem to bounding the dimension of certain group
cohomology of Emerton’s completed cohomology spaces H j (with mod p coefficients)
and the second one is to establish this bound. For the first step, he used the (generalized)
Eichler–Shimura isomorphism, Shapiro’s lemma and a fundamental spectral sequence due
to Emerton. For the second, he actually proved a bound in a more general setting which
applies typically to H j . To make this precise, let us mention a key intermediate result in
this step (stated in the simplest version). Let p be a prime number and define

K1 D

�
1C pZp pZp
pZp 1C pZp

�
; T1.p

n/ D

�
1C pZp pnZp
pnZp 1C pZp

�
:

Let Z1 Š 1C pZp be the center of K1. Also let F be a sufficiently large finite exten-
sion of Fp . By a careful and involved analysis of the structure of finitely generated
torsion modules over the Iwasawa algebra ƒ WD F ŒŒK1=Z1��, Marshall proved the fol-
lowing ([19, Proposition 5]): if … is a smooth admissible F -representation of K1=Z1
which is cotorsion2, then for any i � 0,

dimF H
i .T1.p

n/=Z1;…/� p
4n
3 : (1.2)

Our proof of Theorem 1.1 follows closely the above strategy. Indeed, the first step
is identical to Marshall’s. Our main innovation is in the second step by improving the
bound (1.2). The key observation is that Emerton’s completed cohomology is not just
a representation of K1, but also a representation of GL2.Qp/, which largely narrows the
possible shape ofH j . This fact was already observed in [19] and used once3 when deriv-
ing (1.1) from (1.2). However, the mod p representation theory of GL2.Qp/ developed
by Barthel and Livné [2], Breuil [4] and Paškūnas [26,27], allows us to make the most of
the action of GL2.Qp/ and prove the following result (see Theorem 5.24).

2That is, the Pontryagin dual …_ WD HomF .…;F/ is torsion as an F ŒŒK1=Z1��-module.
3We mean the trick of “change of groups”, see Section 5.4.



Y. Hu 3628

Theorem 1.2. Let… be a smooth admissible F -representation of GL2.Qp/ on whichZ1
acts trivially. Assume that … is cotorsion as a ƒ-module. Then for any i � 0,

dimF H
i .T1.p

n/=Z1;…/� npn:

We obtain the above bound by using numerous results of the mod p representation
theory of GL2.Qp/. First, the classification theorems of [2] and [4] allow us to control the
dimension of invariants for irreducible � (i.e. when i D 0), in which case we prove

dimF H
0.T1.p

n/=Z1; �/� n: (1.3)

In fact, to do this we also need more refined structure theorems due to Morra [21, 22].
Second, the theory of Paškūnas [26] allows us to pass to general admissible cotorsion
representations. To explain this, let us assume moreover that all the Jordan–Hölder fac-
tors of … are isomorphic to a given supersingular irreducible representation � . In [26]
Paškūnas studied the universal deformation of �_ and showed that the universal deforma-
tion space (with mod p coefficients) is three-dimensional. We show that the admissibility
and cotorsion conditions imposed on … force that …_ is a deformation of �_ over
a one-dimensional space. Knowing this, the case i D 0 of Theorem 1.2 follows easily
from (1.3).

To prove Theorem 1.2 for higher cohomology degrees and to generalize it to a finite
product of GL2.Qp/ (which is essential for our application), we need to solve several
complications caused by the additional requirement of carrying an action of GL2.Qp/.
In [8,19] the higher cohomology degree case is treated by the standard dimension-shifting
argument, for which one needs to consider admissible representations … which are not
necessarily cotorsion, that is, the Pontryagin dual …_ has a positive rank over ƒ. Using
the bound in the torsion case, one is reduced to consider torsion-free…_. The usual argu-
ment (as in [19, Section 3.2]) uses the existence of morphisms ƒs ! …_ and …_ ! ƒs

with torsion cokernels, where s is the ƒ-rank of …_. However, these are only morphisms
of ƒ-modules, so the bound for torsion modules does not apply to these cokernels. This
issue makes the cohomology of general torsion-free modules difficult to control. To solve
this, we introduce a special class of (coadmissible) torsion modules, called elementary
torsion modules, whose higher degree cohomologies are zero except in degree i D 1 and
can be determined from its degree 0 cohomology, and we show that …_ has a resolution
by elementary torsion modules. The proof uses a generalization of an important construc-
tion of Breuil and Paškūnas [6] for GL2.Qp/ to a finite product of GL2.Qp/, which we
carry out in the appendix Section A.

Notation. Throughout the paper, we fix a prime p and a finite extension F over Fp taken
to be sufficiently large.

2. Non-commutative Iwasawa algebras

LetG be a p-adic analytic group of dimension d and letG0 be an open compact subgroup
of G. We assume that G0 is pro-p and uniform ([1, Section 2.4]). Let ƒ be the Iwasawa
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algebra of G0 over F , namely

ƒ WD F ŒŒG0�� D lim
 �

F ŒG0=N �;

where the inverse limit is taken over the open normal subgroups N of G0. It is a Noether-
ian local integral domain ([1, Section 3.6]). A finitely generated (left)ƒ-module is said to
have codimension c if Extiƒ.M;ƒ/ D 0 for all i < c and is non-zero for i D c; the codi-
mension of the zero module is defined to be1. We denote the codimension by jƒ.M/.
If M is non-zero, then jƒ.M/ � d . For our purpose, it is more convenient to use the
canonical dimension of M defined by

ıƒ.M/ WD d � jƒ.M/:

If 0!M 0 !M !M 00 ! 0 is a short exact sequence of finitely generatedƒ-modules,
then

ıƒ.M/ D max¹ıƒ.M 0/; ıƒ.M 00/º: (2.1)

IfM is a finitely generatedƒ-module, we have the notion of Gelfand–Kirillov dimen-
sion of M , defined to be the growth rate of the function dimF M=J

nM , where J denotes
the maximal ideal of ƒ. We have the following important fact ([1, Section 5.4]).

Theorem 2.1. For all finitely generated ƒ-modules M , the canonical dimension and the
Gelfand–Kirillov dimension of M coincide.

For n � 0, define inductively

GnC1 WD G
p
n ŒGn; G0�

which are normal subgroups of G0; the decreasing chain G0 � G1 � � � � is called the
lower p-series ofG0, see [1, Section 2.4]. AsG0 is uniform, we have jGn W GnC1j D pd .
With this notation, the utility of Theorem 2.1 is the following result (see [11, Proposi-
tion 2.17] and its proof).

Corollary 2.2. LetM be a finitely generatedƒ-module with ıƒ.M/ D c. Then there are
real numbers a � b > 0 such that

bpcn CO.p.c�1/n/ � dimF H0.Gn;M/ � apcn CO.p.c�1/n/: (2.2)

Moreover, we have a uniform lower bound b � 1
cŠ

.

Proposition 2.3. Let M be a finitely generated ƒ-module and let � WM !M be an
endomorphism of ƒ-modules. Assume that

T
k�1 �

k.M/ D 0. Then one of the following
holds:

(i) � is nilpotent and ıƒ.M/ D ıƒ.M=�.M//,

(ii) � is not nilpotent and for k0 � 1,

ıƒ.M/ D max¹ıƒ.M=�.M//; ıƒ.�
k0.M/=�k0C1.M//C 1º: (2.3)

In any case, ıƒ.M/ � ıƒ.M=�.M//C 1.
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Remark 2.4. It would be more natural to impose the condition �.M/ � JM . We con-
sider the present one for the following reasons. On the one hand, in practice we do
need to deal with � such that

T
k�1 �

k.M/ D 0 but �.M/ ª JM . On the other hand,
since M is finitely generated, M=JM is finite-dimensional over F , hence the conditionT
k�1 �

k.M/ D 0 implies �k.M/ � JM for k � 1.

Proof. We assume first that � is nilpotent, say �k0 D 0 for some k0 � 1. ThenM admits
a finite filtration by �k.M/ (for 0 � k � k0). Since each of the graded pieces is a quotient
of M=�.M/, the assertion follows from (2.1).

Now assume that � is not nilpotent, so by Lemma 2.5 below � induces an injection
�k0.M/! �k0.M/ for some k0 � 1. It is clear that the right-hand side of (2.3) does not
depend on the choice of k0. The above argument shows that

ıƒ.M=�
k0.M// D ıƒ.M=�.M//:

Hence, by (2.1) applied to the short exact sequence

0! �k0.M/!M !M=�k0.M/! 0;

it suffices to show

ıƒ.�
k0.M// D ıƒ.�

k0.M/=�k0C1.M//C 1:

That is, by replacing M by �k0.M/, we may assume that � is injective and need to
show ıƒ.M/ D ıƒ.M=�.M//C 1. Under the assumption

T
k�1 �

k.M/ D 0, this fol-
lows from [13, Lemma A.15] using Remark 2.4.

Lemma 2.5. Let M be a finitely generated ƒ-module and let � WM !M be an endo-
morphism of ƒ-modules. Then one of the following holds:

(i) � is nilpotent,

(ii) � is not nilpotent and for k0 � 0, � induces an injection �k0.M/! �k0.M/.

Proof. Let MŒ�1� �M denote the submodule
S
k�1 ker.�k/. Since ƒ is Noetherian,

it follows that MŒ�1� is finitely generated, so there exists k0 � 1 such that

MŒ�1� DMŒ�k0 �:

If M DMŒ�k0 �, then � is nilpotent; otherwise, � is not nilpotent, and

� W �k0.M/! �k0.M/

is injective.

2.1. Torsion vs torsion-free

As recalled above, ƒ is a Noetherian local integral domain. Let L be the skew field of
fractions ofƒ (see [1, Section 3.6]). IfM is a finitely generatedƒ-module, then L˝ƒM

is a finite-dimensional L-vector space, and we define the rank of M to be the dimension
of this vector space. It is clear that taking rank is additive in short exact sequences and
that M has rank 0 if and only if M is torsion as a ƒ-module.
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Let O D W.F/ denote the ring of Witt vectors with coefficients in F . Similar to
ƒ D F ŒŒG0��, we may form the Iwasawa algebras�ƒ WD OŒŒG0�� D lim

 �
NGG0 open

OŒG0=N �; �ƒQp D
�ƒ˝Zp Qp:

They are both integral domains. Let LQp be the skew field of fractions of �ƒQp . If M
is a finitely generated module over �ƒQp , we define its rank as above and the analogous
facts hold.

Recall the following simple fact, see [9, Lemma 1.17].

Lemma 2.6. Let M be a finitely generated �ƒ-module which is furthermore p-torsion
free. Then M ˝Zp Qp is a torsion �ƒQp -module if and only if M ˝Zp Fp is a torsion
ƒ-module.

3. Mod p representations of GL2.Qp/

Notation. Let p be a prime with p � 5,4 G D GL2.Qp/, K D GL2.Zp/, let Z be the
center of G, let T be the diagonal torus, and let B D . � �0 � / be the upper Borel subgroup.

Let RepF .G/ denote the category of smooth F -representations of G with a (fixed)
central character, say � W Z ! F�. Let Repl;fin

F .G/ denote the subcategory of RepF .G/

consisting of locally finite objects. Here an object… 2 RepF .G/ is said to be locally finite
if for all v 2 … the F ŒG�-submodule generated by v is of finite length.

Let Modpro
F .G/ be the category of compact left F ŒŒK��-modules with an action of F ŒG�

such that the two actions coincide when restricted to F ŒK� and that Z acts via ��1. It is
anti-equivalent to RepF .G/ under Pontryagin dual… 7! …_ WD HomF .…;F/. Here,…_

is naturally a right F ŒG�-module, but for convenience we view it as a left F ŒG�-module
using the canonical anti-automorphism F ŒG�

�
�! F ŒG� induced by .g 7! g�1/ W G ! G.

Let C D C.G/ be the full subcategory of Modpro
F .G/ anti-equivalent to Repl;fin

F .G/.
An object M 2 C is called coadmissible if M_ is admissible in the usual sense, i.e.

.M_/H is finite-dimensional for any open subgroupH of G. This is equivalent to requir-
ing M to be finitely generated over F ŒŒK�� (or equivalently, finitely generated over F ŒŒH ��
for any open compact subgroup H � K).

If H is a closed subgroup of K, denote by RepF .H/ the category of smooth F -repre-
sentations of H on which the intersection H \Z acts via the restriction of �. Let C.H/
be the dual category of RepF .H/ (note that RepF .H/ coincides with Repl;fin

F .H/ asH is
compact).

For n � 1, let

Kn D

�
1C pnZp pnZp
pnZp 1C pnZp

�
:

4The assumption p � 5 is not always necessary, but for convenience we make this assumption
throughout the paper.
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Also let Z1 WD K1 \Z. Since Z1 is pro-p and � is smooth, the restriction of � to Z1 is
trivial, and any F -representation of G (resp. K) with central character � can be viewed as
a representation of G=Z1 (resp. K=Z1). Set

ƒ WD F ŒŒK1=Z1��:

Since K1=Z1 is uniform (as p > 2) and pro-p, the results in Section 2 apply to ƒ. Note
that dim.K1=Z1/D 3. To shorten the notation, we write j. � /D jƒ. � / and ı. � /D ıƒ. � /.

If H is a closed subgroup of G and � is a smooth representation of H , we denote by
IndGH � the usual smooth induction. When H is moreover open, we let c-IndGH� denote
the compact induction, meaning the subspace of IndGH � consisting of functions whose
support is compact modulo H .

Let ! W Q�p ! F� be the mod p cyclotomic character. If H is any group, we write
1H for the trivial representation of H (over F ).

3.1. Irreducible representations

The work of Barthel and Livné [2] shows that absolutely irreducible objects in RepF .G/

fall into four classes:
(1) one-dimensional representations � ı det, where � W Q�p ! F� is a smooth character,
(2) (irreducible) principal series IndGB �1 ˝ �2 with �1 ¤ �2,
(3) special series, i.e. twists of the Steinberg representation Sp WD .IndGB 1T /=1G ,
(4) supersingular representations, i.e. irreducible representations which are not isomor-

phic to subquotients of any parabolic induction.
For r with 0 � r � p � 1, let Symr F2 denote the standard symmetric power representa-
tion of GL2.Fp/. Up to a twist by detm with 0 � m � p � 2, any absolutely irreducible
F -representation of GL2.Fp/ is isomorphic to Symr F2. Inflating to K and letting . p 0

0 p /

act trivially, we may view Symr F2 as a representation of KZ. Let

I.Symr F2/ WD c-IndGKZ Symr F2

denote the compact induction to G. It is well known that EndG.I.Symr F2// is isomor-
phic to F ŒT � for a certain Hecke operator T (see [2]). For � 2 F we define

�.r; �/ WD I.Symr F2/=.T � �/:

If � W Q�p ! F� is a smooth character, then let �.r; �; �/ WD �.r; �/˝ � ı det. In [2],
Barthel and Livné showed that any supersingular representation of G is a quotient of
�.r; 0; �/ for suitable .r; �/. Later on, Breuil proved that �.r; 0; �/ is itself irreducible
(see [4]), hence completed the classification of irreducible objects in RepF .G/. We will
refer to .r; �; �/ as above as a parameter triple.

Recall the link between non-supersingular representations and compact inductions: if
� ¤ 0 and .r; �/ ¤ .0;˙1/, then

�.r; �/ Š IndGB ���1 ˝ ��!
r ; (3.1)



Multiplicities of cohomological automorphic forms on GL2 3633

where �x W Q�p ! F� denotes the unramified character sending p to x. In case that
.r; �/ 2 ¹.0;˙1/; .p � 1;˙1/º, we have non-split exact sequences:

0! Sp˝�˙1 ı det! �.0;˙1/! �˙1 ı det! 0; (3.2)
0! �˙1 ı det! �.p � 1;˙1/! Sp˝�˙1 ı det! 0: (3.3)

It is clear for non-supersingular representations and follows from [4] for supersingular
representations that any absolutely irreducible � 2 RepF .G/ is admissible. Therefore �_

is coadmissible and it makes sense to talk about ı.�_/.

Theorem 3.1. Let … 2 RepF .G/. If … is of finite length, then … is admissible and
ı.…_/ � 1.

Proof. The first assertion is clear. For the second, we may assume … is absolutely irre-
ducible. Corollary 2.2 allows us to translate the problem to computing the growth of
dimF …

Kn . If… is non-supersingular, then it is easy, see [22, Proposition 5.3] for a proof.
If … is supersingular, this is first done in [25, Theorem 1.2] and later in [22, Corol-
lary 4.15].

Recall that a block in RepF .G/ is an equivalence class of absolutely irreducible objects
in RepF .G/, where � � � if and only if there exists a series of irreducible representations
� D �0; �1; : : : ; �n D � such that Ext1G.�i ; �iC1/ ¤ 0 or Ext1G.�iC1; �i / ¤ 0 for each i .

Proposition 3.2. The category Repl;fin
F .G/ decomposes into a direct product of subcate-

gories
Repl;fin

F .G/ D
M

B

Repl;fin
F .G/B;

where the direct sum is taken over all the blocks B and the objects of Repl;fin
F .G/B are

representations with all the irreducible subquotients lying in B. Correspondingly, we
have a decomposition of categories C D

Q
B CB, where CB denotes the dual category

of RepF .G/
B.

Proof. See [26, Proposition 5.34].

The following theorem describes the blocks (when p � 5 as we are assuming).

Theorem 3.3. Let � 2 RepF .G/ be absolutely irreducible and let B be the block in which
� lies. Then one of the following holds:

(I) If � is supersingular, then B D ¹�º.

(II) If � Š IndGB �1 ˝ �2!
�1 with �1��12 ¤ 1; !˙1, then

B D ¹IndGB �1 ˝ �2!
�1; IndGB �2 ˝ �1!

�1
º:

(III) If � D IndGB �˝ �!
�1, then B D ¹�º.

(IV) Otherwise, B D ¹� ı det;Sp˝� ı det; .IndGB ˛/˝ � ı detº, where ˛ WD ! ˝ !�1.

Proof. See [26, Proposition 5.42].
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Convention. By [26, Lemma 5.10], any smooth irreducible Fp-representation of G with
a central character is defined over a finite extension of Fp . Theorem 3.3 then implies that
for a given block B, there is a common finite field F such that irreducible objects in B are
absolutely irreducible. Hereafter, given a finite set of blocks, we take F to be sufficiently
large such that irreducible objects in these blocks are absolutely irreducible.

3.2. Projective envelopes

Let � 2 RepF .G/ be irreducible and B the block in which � lies. Let InjG � be an injec-
tive envelope of � in Repl;fin

F .G/; the existence is guaranteed by [26, Corollary 2.3].
Let P D P�_ WD .InjG �/

_ 2 C and E D E�_ WD EndC.P /. Then P is a projective
envelope of �_ in C and is naturally a leftE-module. Since P is indecomposable, Propo-
sition 3.2 implies that (the dual of) every irreducible subquotient of P lies in B. Also,
E is a local F -algebra (with residue field F ). Paškūnas has computed E and showed in
particular that E is commutative, except when B is of type (III) listed in Theorem 3.3; in
any case, we denote by R D Z.E/ the center of E.

Theorem 3.4 (Paškūnas). Keep the above notation. The following statements hold.

(i) R is naturally isomorphic to the Bernstein center of CB. In particular,R acts on any
object in CB and any morphism in CB is R-equivariant.

(ii) If B is not of type (IV), then R is a regular local F -algebra of Krull dimension 3.
If B is of type (IV), then R is isomorphic to F ŒŒx; y; z; w��=.xw � yz/. In particular,
R is Cohen–Macaulay of Krull dimension 3.

(iii) E D R except for blocks of type (III) in which case E is a free R-module of rank 4.

(iv) If B is not of type (IV), then P is flat over both E and R.

Proof. (i) This is [26, Theorem 1.5].
(ii)–(iii) These are proved in [26]. Precisely, see [26, Proposition 6.3] for type (I),

[26, Corollary 8.7] for type (II), [26, Section 9] for type (III) and [26, Corollary 10.78,
Lemma 10.93] for type (IV).

(iv) The flatness of P over E follows from [26, Corollary 3.12], because the setting
in [26, Corollary 3.12] is satisfied for blocks of type (I)–(III). The flatness of P over R
for blocks of type (III) follows from this and (iii).

Proposition 3.5. The object F ˝E P (resp. F ˝R P ) has finite length in C and

ı.F ˝E P / D ı.F ˝R P / D 1:

Proof. Note that F ˝E P is characterized as the maximal quotient of P which contains
�_ with multiplicity one, see [26, Remark 1.13]. This object is denoted byQ in [26, Sec-
tion 3] and can be described explicitly. If B is of type (I) or (III), Q is just �_. If B
is of type (II), it has length 2 by [27, Proposition 6.1, (34)]. If B is of type (IV), the
assertion follows from Proposition 3.26 below in Section 3.7 where the explicit struc-
ture of F ˝E P is determined. The assertion ı.F ˝E P / D 1 follows from the explicit
description together with Theorem 3.1.
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To see that F ˝R P has finite length, we may assume B is of type (III), in which
case E is a free R-module of rank 4. Since E is a local ring with residue field F , any
irreducible (right) E-module is isomorphic to F , so F ˝R E has a filtration of finite
length with graded pieces isomorphic to F . The result then follows from the isomorphism
F ˝R P Š .F ˝R E/˝E P ; cf. the proof of [28, Corollary 4.2].

Remark 3.6. Note that Paškūnas gave a short proof of Proposition 3.5 without explicitly
determining F ˝E P , see [28, Lemma 5.8]. We keep this proof because knowing the
explicit form might be of independent interest.

3.3. Serre weights

We keep the notation in the previous subsection. Let � 2 RepF .G/ be irreducible. By
a Serre weight of � we mean an isomorphism class of (absolutely) irreducible F -represen-
tations of K, say � , such that HomK.�; �/ ¤ 0. Denote by D.�/ the set of Serre weights
of � . The description of D.�/ can be deduced from [2] and [4]; see [27, Remark 6.2] for
a summary (of most cases).

Lemma 3.7. If � ¤ � 0 are two objects in a block B, then D.�/ \D.� 0/ D ;.

Proof. The assertion is trivial if B is of type (I) or (III). For type (II) or type (IV), it is
a direct check (using the assumption p � 5), see [27, Remark 6.2].

As before, write P D P�_ and let B be the block in which � lies.

Lemma 3.8. If � … ¹1G ;Spº up to twist, then

Homcont
K .P; �_/ ¤ 0 ” � 2 D.�/:

If � 2 ¹1G ;Spº, then

Homcont
K .P; �_/ ¤ 0 ” � 2 ¹Sym0 F2;Symp�1 F2º:

Proof. The assertion is trivial if B is of type (I) or (III), because the block contains only
one irreducible object. If B is of type (II) or � D �˛ up to twist, the assertion is proved
in [27, Theorem 6.6].

Assume that � D 1G . Since

D.1G/ D ¹Sym0 F2º; D.Sp/ D ¹Symp�1 F2º; D.�˛/ D ¹�
0
º;

where � 0 WD Symp�3 F2 ˝ det (see [27, Remark 6.2]), we only need to prove (after taking
dual)

HomK.Symp�1 F2; InjG 1G/ ¤ 0; HomK.� 0; InjG 1G/ D 0:
The first statement follows from (3.3); indeed, since the sequence (3.3) is non-split, there
exists a G-equivariant embedding �.p � 1; 1/ ,! InjG 1G and we note that

HomK.Symp�1 F2; �.p � 1; 1// ¤ 0:

By Frobenius reciprocity, the second statement is equivalent to

HomG.I.�
0/; InjG 1G/ D 0:
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If � is such a morphism, then since InjG � is locally finite, � must factor through a certain
quotient I.� 0/=f .T / for some non-zero polynomial f .T / 2 F ŒT � (see [2, Theorem 19]).
If � were non-zero, then its image must contain � as its G-socle. But it follows from
[2, Theorem 33 (2)] that I.� 0/=f .T / cannot have 1G as a subquotient. This contradiction
allows to conclude. Finally, the case � D Sp can be treated similarly.

Proposition 3.9. The following statements hold.

(i) Let � 2 RepF .K/ be irreducible. Whenever Homcont
K .P; �_/_ is non-zero, it is a cyclic

E-module and if J� denotes its annihilator then E=J� Š F ŒŒS�� (where S is a formal
variable). Moreover, if B is not of type (I), then J� � E is independent of � .

(ii) Let �� DL� � , where the sum is taken over all irreducible objects � 2 RepF .K/

such that Homcont
K .P; �_/¤ 0. Then Homcont

K .P;��_/_ is a Cohen–MacaulayR-mod-
ule of Krull dimension 1.

Proof. (i) If B is of type (I), the statement is proved in [27, Theorem 6.6, (38)]. Assume
B is not of type (I) and let .r; �; �/ be a parameter triple of � . If .r; �/ ¤ .p � 1;˙1/,
this is proved in [15, Proposition 2.9] via [15, Corollary 2.5], where an (unfortunate)
assumption (H) is imposed. If .r; �/ D .p � 1;˙1/, i.e. assumption (H) is not satisfied,
the statements are still true and the proof can be adapted from the case of .r; �/ D .0;˙1/,
see [15, Remark 2.6].

(ii) If B is of type (I), it is a special case of [27, Lemma 2.33] via [27, Theorem 5.2].
If B is of type (II) or (IV), then E D R and the result is a weaker form of (i). If B is
of type (III), we need to show that the image of R ,! E� F ŒŒS�� contains a regular
element, for which it is enough to show that the image contains a non-zero element in the
maximal ideal of F ŒŒS��. But this is clear because F ŒŒS�� is finite over (the image of) R.
Alternatively, one can apply Proposition 3.19 below where the image of R in F ŒŒS�� is
determined.

The following general result is extracted from the proof of [14, Theorem 3.5].

Proposition 3.10. Let �P 2 C.K/ and f 2 EndC.K/.�P /. Assume that

(i) �P is projective in C.K/,

(ii) for any irreducible � 2 RepF .K/, the induced morphism

f� W Homcont
K .�P ; �_/_ ! Homcont

K .�P ; �_/_
is injective.

Then f is injective and �P=f �P is projective in C.K/.

Proof. Consider the complex P� of projective modules

0! P1
f
! P0 ! 0;

where P0 D P1 D �P . Applying Homcont
K .�; �_/ to it, where � 2 RepF .K/ is irreducible,

we obtain a convergent spectral sequence

E
ij
2 WD ExtiK=Z1.Hj .P�/; �

_/) H iCj .Homcont
K .P�; �

_//;
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which gives the following long exact sequence:

Ext1K=Z1.coker.f /; �_/ ,! H 1.Homcont
K .P�; �

_//

! Homcont
K .ker.f /; �_/! Ext2K=Z1.coker.f /; �_/:

The assumption (after taking dual) says that the morphism

Homcont
K .P0; �

_/! Homcont
K .P1; �

_/

is surjective, i.e. H 1.Homcont
K .P�; �

_// D 0, which forces

Ext1K=Z1.coker.f /; �_// D 0:

This being true for any irreducible object � 2 RepF .K/, we deduce that coker.f / is pro-
jective in C.K/, proving the second assertion. As a consequence, Ext2

K=Z1
.coker.f /; �_/

vanishes, and so does Homcont
K .ker.f /; �_/. This being true for any � , we deduce that

ker.f / D 0, i.e. f is injective.

3.4. Principal series and deformations

Recall that T denotes the diagonal torus of G. If � W T ! F� is a smooth character,
let �� WD IndGB � which is possibly reducible. Let InjT � be an injective envelope of �
in RepF .T / (with central character) and set

…� WD IndGB InjT �:

Then …� is a locally finite smooth representation of G. It is easy to see that

socG…� D socG ��;

which we denote by � . So there is a G-equivariant embedding …� ,! InjG � and by
[26, Proposition 7.1] the image does not depend on the choice of the embedding.

Proposition 3.11. The representation …� is not admissible.

Proof. Let .r; �; �/ be a parameter triple such that �� Š �.r; �; �/. This is always possi-
ble by [2, Theorem 30] and we have .r; �/ ¤ .0;˙1/. Moreover, we may assume � D 1
up to twist. It suffices to prove that

dimF HomK.Symr F2;…�/ D C1; (3.4)

which follows from [2, 3] as we explain below.
Recall that the Hecke algebra associated to I.Symr F2/ is isomorphic to F ŒT �. In

[2, Section 6] is constructed an F ŒT; T �1�-linear morphism

P W I.Symr F2/˝FŒT � F ŒT; T �1�! IndGB X1 ˝X2;

where Xi W Q�p ! .F ŒT; T �1�/� are tamely ramified characters given by

X1 unramified; X1.p/ D T
�1; X1X2 D !

r :
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Note that specializing to T D �, we have X1 � ���1 so that

IndGB X1 ˝X2 .mod T � �/ Š ��

by (3.1).
By [2, Theorem 25], P is an isomorphism if r ¤ 0, hence induces an isomorphism

for n � 1:

Pn W I.Symr F2/=.T � �/n Š IndGB X1 ˝X2 mod .T � �/n:

If r D 0, then P is injective and we have an exact sequence ([3, Theorem 20])

0! I.Sym0 F2/˝FŒT � F ŒT;T
�1�

P
! IndGB X1˝X2! Sp˝F ŒT;T �1�=.T �2 � 1/! 0:

But since � ¤ ˙1, T � � acts invertibly on the last term, hence P modulo .T � �/n still
induces an isomorphism for any n � 1:

Pn W I.Sym0 F2/=.T � �/n Š IndGB X1 ˝X2 mod .T � �/n:

As remarked above, the right-hand side is the parabolic induction of a deformation of �
to F ŒT �=.T � �/n, hence embeds in …� . This implies (3.4) as

dimF HomK.Symr F2; I.Symr F2/=.T � �/n/ D n:

Remark 3.12. Keep the notation in the proof of Proposition 3.11. If r D p � 1, then
!p�1 D !0, and the above proof shows that HomK.Sym0 F2;…�/ is also infinite-dimen-
sional.

Let M�_ WD .…�/
_ and E�_ D EndC.M�_/ .

Lemma 3.13. The ring E�_ is isomorphic to F ŒŒx; y�� and M�_ is flat over E�_ .

Proof. By [26, Proposition 7.1], we have a natural isomorphism

E�_ Š EndC.T /..InjT �/
_/

and the latter ring is isomorphic to F ŒŒx; y�� by [26, Corollary 7.2].
By [26, Section 3.2], .InjT �/

_ is isomorphic to the universal deformation of the
T -representation �_ (with fixed central character), with E�_ being the universal defor-
mation ring. In particular, it is flat over E�_ . The second assertion follows from this and
the definition of M�_ .

Recall that � denotes the G-socle of �� . Let P D P�_ .

Proposition 3.14. Let M 2 C be a coadmissible quotient of M�_ . Then ı.M/ � 2.

Proof. Since M is coadmissible while M�_ is not by Proposition 3.11, the kernel of
M�_�M is non-zero and not coadmissible; denote it by M 0. We claim that

HomC.M�_ ;M
0/ ¤ 0:
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For this it suffices to prove HomC.P;M
0/ ¤ 0, because any morphism P !M 0 must

factor through P �M�_ !M 0, see [26, Proposition 7.1(iii)]. To this end, assume that
HomC.P;M

0/ D 0 for a contradiction. Then �_ does not occur as a subquotient in M 0.
This is impossible unless �� is reducible, i.e. �� Š �.p � 1; 1/ up to twist. Assuming it is
the case, we have � D 1G and all irreducible subquotients of M 0 are isomorphic to Sp_,
see (3.3). In particular, we obtain Homcont

K .M 0; .Sym0 F2/_/ D 0 (as theK-socle of Sp is
isomorphic to Symp�1 F2). However, this would imply an isomorphism

Homcont
K .M�_ ; .Sym0 F2/_/ Š Homcont

K .M; .Sym0 F2/_/:

Together with Remark 3.12 this contradicts the coadmissibility of M .
Via the embedding

HomC.M�_ ;M
0/ ,! HomC.M�_ ;M�_/ D E�_ ;

the claim implies the existence of a non-zero element f 2 E�_ which annihilates M .
Since E�_ Š F ŒŒx; y�� is a regular ring of dimension 2, we may find g 2 E�_ such that
f; g is a system of parameters of E�_ . Then E�_=.f; g/ is finite-dimensional over F ,
and consequently M�_=.f; g/ has finite length in C. Hence, M=.f; g/M DM=gM also
has finite length and Theorem 3.1 implies that ı.M=gM/ � 1. We then conclude by
Proposition 2.3.

The inclusion…� ,! InjG � induces a surjection P�M�_ . By [26, Proposition 7.1]
this induces a surjective ring morphism E� E�_ , via which P �M�_ is a morphism
of (left) E-modules.

Corollary 3.15. For any irreducible � 2 RepF .K/, the natural surjective morphism

Homcont
K .P; �_/_ ! Homcont

K .M�_ ; �
_/_ (3.5)

is an isomorphism of E-modules.

Proof. The quotient P �M�_ is a morphism of E-modules, hence so is (3.5).
We may assume Homcont

K .P; �_/ is non-zero, so that it is isomorphic to F ŒŒS�� as an
E-module by Proposition 3.9 (i). Hence, to prove the injectivity of the morphism (3.5),
it suffices to prove that Homcont

K .M�_ ; �
_/ is infinite-dimensional. This is already estab-

lished in the proof of Proposition 3.11, together with Remark 3.12 and Lemma 3.8 if
� 2 ¹Sym0 F2;Symp�1 F2º up to twist.

3.5. Coadmissible quotients

Keep the notation in the previous subsection. Let M 2 C be a coadmissible quotient
of P D P�_ . We set

m.M/ WD HomC.P;M/

which is a finitely generated right E-module. There is a natural morphism

ev W m.M/˝E P !M; (3.6)
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which is surjective by [26, Lemma 2.10]. Remark that we should have written m.M/b̋EP
in (3.6), where b̋ means taking completed tensor product. But since m.M/ is finitely
generated over E, the completed and usual tensor product coincide, see the discussion
before [27, Lemma 2.1].

Let Ker be the kernel of (3.6). By [26, Lemma 2.9] we have

HomC.P;m.M/˝E P / Š m.M/;

so HomC.P;Ker/ D 0 because P is projective in C. This implies that Ker does not admit
�_ as a subquotient, i.e. if � 0 is an irreducible subquotient of Ker, then � 0 2 B and
� 0 © � . In particular, if B is of type (I) or (III) of Theorem 3.3, then Ker D 0 and (3.6)
is an isomorphism. In any case, we have the following fact.

Corollary 3.16. If � 2 D.�/, then (3.6) induces an isomorphism

Homcont
K .m.M/˝E P; �

_/_ Š Homcont
K .M; �_/_:

Proof. Using Lemma 3.7, the above argument shows that Homcont
K .Ker; �_/_ D 0 for any

� 2 D.�/, giving the result.

Proposition 3.17. Let M 2 C be a coadmissible quotient of P D P�_ . The following
statements hold.

(i) m.M/˝E P is coadmissible.

(ii) If M is torsion as a ƒ-module, then so is m.M/˝E P .

Proof. Since Ker D 0 if B is of type (I) or (III), both the assertions are trivial in these
cases. Thus, we assume that B is of type (II) or (IV) in the rest.

(i) The coadmissibility of M is equivalent to that Homcont
K .M; �_/ is finite-dimen-

sional over F for any irreducible � 2 RepF .K/, and we need to check this property
for m.M/˝E P . By [27, Proposition 2.4]5 we have a natural isomorphism of finitely
generated E-modules

Homcont
K .m.M/˝E P; �

_/_ Š m.M/˝E Homcont
K .P; �_/_; (3.7)

hence we only need to consider those (irreducible) � such that Homcont
K .P; �_/_ ¤ 0.

Choose any weight � 0 2 D.�/, which clearly implies Homcont
K .P; � 0_/ ¤ 0. Then using

(3.7), Proposition 3.9 (i) and Corollary 3.16, we obtain isomorphisms

Homcont
K .m.M/˝E P; �

_/_ Š Homcont
K .m.M/˝E P; �

0_/_ Š Homcont
K .M; � 0_/_:

Since M is coadmissible by assumption, all these spaces are finite-dimensional over F .
(ii) It is equivalent to show that Ker is a torsion ƒ-module (it is coadmissible as

a consequence of (i)). Since the case of type (II) is similar and simpler, we assume in

5This result is stated for a commutative subring of E rather than for E itself which can be
non-commutative, but the same proof goes through without change.
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the rest that B is of type (IV), so that B consists of three irreducible objects and we let
�1; �2 be the two other than � . Since Ker is coadmissible by (i) and does not admit �_

as a subquotient, we can find s1; s2 � 0 and a surjection

P
˚s1
�_
1

˚ P
˚s2
�_
2

� Ker:

LetQ1 (resp.Q2) be the maximal quotient of P�_
1

(resp. P�_
2

) none of whose irreducible
subquotients is isomorphic to �_. Then the above surjection must factor through the map
Q
˚s1
1 ˚Q

˚s2
2 � Ker. Hence, it is enough to show that any coadmissible quotient ofQ1

(resp.Q2) is torsion. This follows from the results in [26, Section 10] as we explain below.
Up to twist we may assume B D ¹1G ;Sp; �˛º.

Let us first assume � D �˛ , so that up to order �1 D 1G and �2 D Sp. We have the
following exact sequences:

0! P�_˛ ! P1_
G
!M1_

T
! 0

and
P˚2
�_˛
! PSp_ !M1_

T
;0 ! 0;

see [26, (234),(236)], whereM1_
T
;0 is a submodule ofM1_

T
defined by [26, (233)], namely

defined by the exact sequence

0!M1_
T
;0 !M1_

T
! F ! 0: (3.8)

It is easy to see that M1_
T

(resp. M1_
T
;0) does not admit �_˛ as a subquotient, hence Q1

(resp.Q2) is equal toM1_
T

(resp.M1_
T
;0). Proposition 3.14 then implies that any coadmis-

sible quotient ofQi is a torsionƒ-module; remark thatM1_
T
;0 is not a quotient ofM1_

T
so

that Proposition 3.14 does not apply directly to coadmissible quotients of M1_
T
;0, but we

can conclude using the exact sequence (3.8). Finally, a similar argument works in the case
� 2 ¹1G ;Spº.

Remark 3.18. Given a block B, let PB D
L
�2B P�_ and EB D EndC.PB/. It fol-

lows from [26, Lemma 2.9 and Lemma 2.10] that for any M 2 CB, the evaluation mor-
phism HomC.PB;M/˝EB

PB !M is always an isomorphism. This may suggest that,
even for a quotient of P�_ for some fixed � 2 B, we should consider the EB-module
HomC.PB;M/ rather than the E�_ -module HomC.P�_ ;M/ (they are both finitely gen-
erated modules over Z.EB/ D Z.E�_/). However, for our main application, we need
to translate the ƒ-torsionness of M into a commutative algebra statement, and Proposi-
tion 5.8 below shows that HomC.P�_ ;M/ fits in with the need. The analogue of Propo-
sition 5.8 for HomC.PB;M/ need not hold: take B D ¹1G ;Sp; �˛º and M D 1_G so that
ı.M/ D 0. (But see [23, Proposition 3.6.12, Remark 3.6.13] for one inequality.)

3.6. Blocks of type (III)

In this subsection, we assume B is of type (III), that is, B D ¹�º with � Š IndGB �,
where � D �˝ �!�1. After twisting, we assume � D 1 is trivial. Let P D P�_ and
E D EndC.P /. Then E is non-commutative, and is free over its center R of rank 4,
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see Theorem 3.4. Let M�_ and E�_ be as in Section 3.4; recall that E�_ is isomorphic
to F ŒŒx; y�� and is identified with Eab (the maximal abelian quotient of E) by the dis-
cussion before [26, Lemma 9.2]. On the other hand, it is known that D.�/ consists of
one single weight, i.e. � D Symp�2 F2, see [27, Remark 6.2]. Hence we have surjective
morphisms via (3.5) and Proposition 3.9:

E� Eab � F ŒŒS��:

The goal of this subsection is to prove the following result.

Proposition 3.19. The following statements hold.

(i) We may choose the variables x; y in such a way that the image of the composite
morphism R ,! E� Eab Š F ŒŒx; y�� is equal to F ŒŒx2; xy; y2��.

(ii) We may choose the variable S in such a way that the image of the composite mor-
phism R ,! E� F ŒŒS�� is equal to F ŒŒS2��.

(iii) Let I D Ker.R! F ŒŒS��/ and J D Ker.E� F ŒŒS��/. Then J 4 � IE � J .

The proof of Proposition 3.19 relies on another explicitly constructed ring defined in
[26, (145)], which we denote by E 0 (instead of R in [26, (145)]). We briefly recall the
construction. Let G be the maximal pro-p quotient of GQp WD Gal.Qp=Qp/ and G ab the
maximal abelian quotient of G . By local class field theory, we have

Gab
Qp
Š Gal.Qp.�p1/=Qp/ � Gal.Qur

p =Qp/ Š Z�p �bZ;
where �p1 is the group of p-power order roots of unity in Qp and Qur

p is the maximal
unramified extension of Qp . Since G ab is equal to the maximal pro-p quotient of Gab

Qp
,

we obtain
G ab
Š .1C pZp/ � Zp:

We choose a pair of generators ; ı of G ab such that  7! .1C p; 0/ and ı 7! .1; 1/.
Then G is a free pro-p group generated by 2 elements ; ı which lift respectively ; ı.
See [29, Section 2] for details. Following [26, (145)], we let (note that in [26, (145)] the
ring is defined over O and is denoted by R):

E 0 WD
F ŒŒt1; t2; t3�� b̋F F ŒŒG ��

J

where J is a certain closed two-sided ideal generated by the relations listed in [26, (146)
and (147)].

With the notation in [26, Section 9.2], we have the following facts:
(a) The natural morphism F ŒŒt1; t2; t3��! E 0 is injective and identifies F ŒŒt1; t2; t3�� with

the center ofE 0, denoted byR0.E 0 is a freeR0-module of rank 4, andE 0 contains two
elements

u WD  � 1 � t1; v WD ı � 1 � t2

such that ¹1; u; v; t 0º is an R0-basis, where t 0 WD uv � vu. See [26, Corollary 9.24,
Corollary 9.25].
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(b) E 0ab is isomorphic to F ŒŒu; v��, where u (resp. v) denotes the image of u (resp. v). The
kernel of E 0 ! E 0ab is equal to t 0E 0. See Lemma [26, Lemma 9.3] and the proof of
[26, Corollary 9.27].

(c) E 0 is equipped with an involution � which satisfies u� D �u, v� D �v, t 0� D �t 0

and R0 D ¹� 2 E 0 W � D ��º. See [26, (161), Lemma 9.14].
(d) There exists a ring isomorphism ' W E Š E 0op by [26, Corollary 9.27]. Moreover,

it is compatible with Colmez’s functor LV (modified as in [26, Section 5.7]) in the
following sense. As explained in [26, Section 9.1], LV induces a natural transforma-
tion Def�_ ! Def LV .�_/ between certain deformation functors of �_ and of LV .�_/,
which are respectively pro-represented by E and F ŒŒG ��op, hence induces a ring mor-
phism by Yoneda’s lemma

' LV W F ŒŒG ��
op
! E;

which is uniquely determined up to conjugation by E�. Here, we consider deforma-
tion problems with coefficients in finite local (possibly non-commutative) Artinian
F -algebras with residue field F . Then the following diagram is commutative:

F ŒŒG ��op //

' LV
##

E 0op

Š '�1

��

E,

(3.9)

where the upper horizontal morphism is the natural one.
In summary, we have a commutative diagram

R0 //

Š

��

E 0op // //

Š '�1

��

E 0ab

Š

��

R // E // // Eab // // F ŒŒS��.

(3.10)

Thus, to prove Proposition 3.19, we may work with R0, E 0op, E 0ab instead of R, E, Eab,
via the isomorphism '�1.

Lemma 3.20. The following statements hold.

(i) The element  2 G is sent to 1 under the composite map

F ŒŒG ��op
' LV
�! E� F ŒŒS��: (3.11)

(ii) The element u 2 E 0 is sent to 0 under the composite map E 0op ��! E� F ŒŒS��.

Proof. (i) Recall that P is flat over E and can be viewed as a deformation of �_ over E,
in the sense of [26, Section 3.1]. Consider F ŒŒS��˝E P and view it as a deformation of
�_ to F ŒŒS��. It is proved in [18, Lemma 1.5.9] and reformulated in [15, Proposition 2.9,
Proposition 2.11] that

LV .F ŒŒS��˝E P / Š �
�1
SC1;
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where �SC1 W GQp ! F ŒŒS��� is the unramified character sending geometric Frobenii
to S C 1. Here we have used the isomorphism � Š �.p � 2; 1/, see (3.1). It is clear that
�SC1 factors through GQp � G ab and �SC1./ D 1 by our choice of the element  .
The result follows from this because, when viewed as a deformation of LV .�_/ to F ŒŒS��,
LV .F ŒŒS��˝E P / is obtained from the universal deformation F ŒŒG �� via the map (3.11).
Here, F ŒŒG ��op is viewed as the universal deformation ring via F ŒŒG ��op Š EndFŒŒG ��.F ŒŒG ��/,
see [26, Section 3.2].

(ii) Since u D ��1

2
(as is shown after [26, (160)]), the result follows from (i).

Denote by R
0
the image of R0 ,! E 0� E 0ab Š F ŒŒu; v��, and let m

R
0 be its maximal

ideal.

Lemma 3.21. One has u2; v2; uv 2 R
0
.

Proof. It is proved in [26, (159)]6 that u2; v2 2 R0, hence u2; v2 2 R
0
. On the other hand,

we know that uv C vu 2 R0 by (c), hence uv 2 R
0

because 2 is invertible in R
0

(recall
p � 5).

Lemma 3.22. For any .a; b/ 2 F2n¹.0; 0/º, auC bv … m
R
0F ŒŒu; v��.

Proof. The condition
auC bv 2 m

R
0 � F ŒŒu; v��

is equivalent to the existence of �1; �2; �3; �4 2 R0 and � 2 mR0E
0 such that (in E 0)

auC bv D � C t 0.�1 C �2uC �3v C �4t
0/:

Taking the involution �, we obtain

�au � bv D �� C .�1 � �2u � �3v � �4t
0/.�t 0/

D �� C t 0.��1 � �2u � �3v C �4t
0/;

where the first equality follows from (c) and the second from [26, (160)]. This implies, as
2 is invertible,

auC bv D t 0.�1 C �2uC �3v/C
� � ��

2
: (3.12)

A computation using the relations established in the proof of [26, Lemma 9.18] gives

t 0.�1 C �2uC �3v/ D �2uC �3v C �1t
0;

where �2; �3 2 R0 are given by

�2 D �2.uv C vu/C 2�3v
2;

�3 D ��3.uv C vu/ � 2�2u
2:

6There is a typo in the formula, namely we should get u2 D 2t1 C t21 and v2 D 2t2 C t22 from
[26, (148)]. This does not affect the rest of [26, Section 9], because we still deduce that u2; v2 are
central elements and only this fact is used later (see [26, Lemma 9.18]).
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In particular, �2; �3 2 mR0 . On the other hand, since ����

2
2 mR0E

0, it can be written as
�01 C �

0
2uC �

0
3v C �

0
4t
0 with �0i 2 mR0 . Since E 0 is free over R0 with basis ¹1; u; v; t 0º,

(3.12) forces a; b 2 mR0 , hence a D b D 0 and the result follows.

Proof of Proposition 3.19. The diagram (3.10) shows that we may work with R0, E 0op,
E 0ab instead of R, E, Eab, via the isomorphism '�1.

(i) By Lemmas 3.21 and 3.22, the ideal m
R
0F ŒŒu; v�� is equal to .u2; v2; uv/, which is

an ideal minimally generated by 3 elements. As a consequence, the embedding dimension
of R

0
is greater or equal to 3. But this embedding dimension is � 3, because R

0
a quotient

of R0 whose embedding dimension is 3. Therefore, R
0

is exactly the subring of F ŒŒu; v��
topologically generated by u2; v2; uv. This finishes the proof of (i).

(ii) It follows from (i) using Lemma 3.20; for example we may take S to be the image
of v.

(iii) Let I 0 D Ker.R0 ��! R! F ŒŒS��/ and J 0 D Ker.E 0op ��! E� F ŒŒS��/. We need
to show J 04 � I 0E 0op (note that I 0 is contained in the center of E 0). On the one hand, we
have t 0 2 J 0 by (b) and u 2 J 0 by Lemma 3.20. Since E 0op=.t 0; u/ Š F ŒŒv�� and since the
morphismE 0op � F ŒŒS�� is surjective, we must have J 0 D .t 0; u/. On the other hand, it is
easy to see that t 02; u2 2 I 0. Using the relation [26, (160)], one easily checks the desired
inclusion.

We note the following consequence of Proposition 3.19.

Corollary 3.23. The kernel of R! F ŒŒS�� is minimally generated by two elements.

Proof. By Proposition 3.19 (ii), the image of R! F ŒŒS�� is isomorphic to F ŒŒS2��, which
is a regular local ring. It is a standard fact that the kernel of a surjective local morphism
between two regular local rings can be generated by a regular sequence of length equal to
its height, see [20, Theorem 21.2 (ii)].

Remark 3.24. In general, given a height two prime ideal p in a 3-dimensional regular
local ring, e.g. F ŒŒt1; t2; t3��, it is not clear whether p is the radical of an ideal generated by
two elements, or equivalently, whether there exists a reduction of p with two generators
([16, Chapter 8]).

3.7. Blocks of type (IV)

In this subsection, we complement some results in the work of Paškūnas [26, 27] when
B is of type (IV). Proposition 3.26 in Section 3.7.1 was used in the proof of Proposi-
tion 3.5, but can be avoided as explained in Remark 3.6. The results in Section 3.7.2,
except Lemma 3.27, will not be used in this paper, but might be found useful elsewhere.

The notation here is the same as in the previous subsections. In particular, the object
� 2 RepF .G/ is irreducible of type (IV), and P�_ is a projective envelope of �_ in C and
E�_ D EndC.P�_/. Note that the rings E�_ are naturally isomorphic (to F ŒŒx; y; z; w��=
.xw � yz/) for any � 2 B (see [26, Section 10]), so the subscript will be omitted in the
rest (while the one of P�_ will be kept). Up to twist, we may assume B D ¹1G ;Sp; �˛º.
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3.7.1. F ˝E P�_ . Our first aim is to determine F ˝E P�_ for any object � 2 B. For
two objects �1; �2 2 Repl;fin

F .G/B (in particular, Z acts trivially on them), we write
following [26, Section 10]

e1.�1; �2/ WD dimF Ext1G=Z.�1; �2/:

For convenience of the reader, we recall the list of e1.�1; �2/ for �1; �2 2 B, see
[26, Section 10.1]:

e1.1G ; 1G/ D 0; e1.Sp; 1G/ D 1; e1.�˛; 1G/ D 1;

e1.1G ;Sp/ D 2; e1.Sp;Sp/ D 0; e1.�˛;Sp/ D 0;

e1.1G ; �˛/ D 0; e1.Sp; �˛/ D 1; e1.�˛; �˛/ D 2:

We deduce that there exists a unique (up to isomorphism) non-split extension

0! 1G ! � ! �˛ ! 0: (3.13)

Also, let �1 be the universal extension of 1˚2G by Sp, i.e. we have

0! Sp! �1 ! 1˚2G ! 0

with socG �1 D Sp.

Lemma 3.25. We have

e1.Sp; �/ D 2; e1.�˛; �1/ D 2; e1.�1; �˛/ D 1:

Proof. See [26, Lemma 10.18] for the first equality, [26, Lemma 10.12] for the second,
[26, (187)] and the argument before it for the third.

Proposition 3.26. Let � 2 B and set Q�_ D F ˝E P�_ : In the following statements,
the existence of the extension is guaranteed by Lemma 3.25.

(i) If � D 1G , then Q1_
G

is isomorphic to the universal extension of �_ by .Sp_/˚2:

0! .Sp_/˚2 ! Q1_
G
! �_ ! 0: (3.14)

(ii) If � D Sp, then QSp_ is isomorphic to the universal extension of �_1 by .�_˛ /
˚2:

0! .�_˛ /
˚2
! QSp_ ! �_1 ! 0: (3.15)

(iii) If � D �˛ , then Q�_˛ is isomorphic to the unique non-split extension of �_˛ by �_1 :

0! �_1 ! Q�_˛ ! �_˛ ! 0: (3.16)

Proof. Note that Q�_ is characterized as the maximal quotient of P�_ which contains
�_ with multiplicity one, see [26, Remark 1.13]. Write (in this proof) � for the dual of
the extension (3.14), (3.15), (3.16), respectively. It is clear that � occurs in � with multi-
plicity one and to show Q�_ Š �

_ it suffices to check that if � 0 is irreducible such that
Ext1

G=Z
.� 0; �/ ¤ 0, then � 0 Š � . Proposition 3.2 implies that we may assume � 0 2 B.
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(i) We need to check

Ext1G=Z.Sp; �/ D 0 D Ext1G=Z.�˛; �/:

Since e1.Sp;Sp/ D 0, the first equality follows from the construction of the element � .
The second is clear since we have e1.�˛;Sp/ D 0 (see the formulae recalled above) and
e1.�˛; �/ D 0 by [26, (194)].

(ii) This is proved in [15, Lemma 4.4, (19)].
(iii) This is proved in [27, Proposition 6.1, (35)].

3.7.2. TorEi .F ; P�_/. Recall that if � W T ! F� is a smooth character, we let

�� D IndGB �

and
…� D IndGB InjT �; M�_ D .…�/

_; E�_ D EndC.M�_/;

where InjT � denotes an injective envelope of � in RepF .T /. In the rest of this subsection,
we only consider � 2 ¹1T ; ˛º. By [26, Proposition 7.1] there is a natural surjective ring
homomorphism q W E� E�_ induced by P�_� �M�_ .

Lemma 3.27. In the isomorphism E Š F ŒŒx; y; z; w��=.xw � yz/, we may choose the
variables so that the kernel of q W E� E�_ is equal to .z; w/.

Proof. First, via Colmez’s functor we may identity E with the special fiber of a certain
universal Galois pseudo-deformation ring over O WD W.F/, see [26, Theorem 10.71].
This ring is denoted by R in [26, Theorem 10.71] and we write R for its special fiber.
Let r denote the reducible locus of R (see [26, Corollary B.6] for its definition) and
let r be its image in R . Then by [26, Corollary B.5 and Corollary B.6], the ring R is
isomorphic to F ŒŒc0; c1; d0; d1��=.c0d1 C c1d0/ and r D .c0; c1/. On the other hand, via
the natural isomorphism E Š R , ker.q/ is identified with r and E�_ with R =r, see
[26, Lemma 10.80]. This gives the result up to a change of variables. Note that the choice
we make is not the one in [26, Lemma 10.93].

Lemma 3.28. We have

TorEi .F ;M�_/ Š .�
_
� /
˚2 for all i � 1:

Proof. By Lemma 3.27, we have a periodic (infinite) resolution ofE�_ by freeE-modules

� � � �! E˚2
d 0

�! E˚2
d
�! E˚2

d 0

�! E˚2
d
�! E˚2

.w;z/
���! E �! E�_ �! 0;

where d is represented by the matrix . x �z�y w /, sending
�
e1
e2

�
to . x �z�y w /

�
e1
e2

�
; similarly d 0

is represented by the matrix .w z
y x /. We deduce that

TorEi .F ; E�_/ Š F˚2 for all i � 1:

Because M�_ is a flat E�_ -module by Lemma 3.13, by flat base change we obtain

TorEi .F ;M�_/ Š TorEi .F ; E�_/˝E�_ M�_ Š .�
_
� /
˚2;

as required.
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Lemma 3.29. For i � 1, we have HomC.P;TorEi .F ; P // D 0:

Proof. Choose a resolution of F by finite freeE-modules:F� ! F ! 0. Then the homol-
ogy of F� ˝E P computes TorEi .F ; P /. It is clear that

HomC.P; F� ˝E P / Š F�:

Since HomC.P;�/ is exact, this implies

HomC.P;Hi .F� ˝E P // Š Hi .F�/

and the result follows.

Proposition 3.30. For any i � 1, we have

TorEi .F ; P1_
G
/ Š .Sp_/˚2; TorEi .F ; P�_˛ / D .1

_
G/
˚2;

and there is a short exact sequence

0! .�_˛ /
˚2
! TorEi .F ; PSp_/! .1_G/

˚2
! 0:

Remark 3.31. It is natural to ask if TorEi .F ; PSp_/ is actually isomorphic to .�_/˚2,
where � is defined by (3.13).

Proof. We first observe the following facts:
(a) SL2.Qp/ acts trivially on TorEi .F ; P�_˛ / for i � 1. Indeed, [26, Corollary 10.43]

states this for i D 1 but the proof works for all i � 1. This implies that TorEi .F ; P�_˛ /
is isomorphic to a finite direct sum of 1_G since e1.1G ; 1G/ D 0.

(b) 1_G does not occur in TorEi .F ; P1_
G
/ for i � 1; this is a special case of Lemma 3.29.

Recall the following exact sequences:

0! P�_˛ ! P1_
G
!M1_

T
! 0 (3.17)

and
0! PSp_ ! P�_˛ !M˛_ ! 0; (3.18)

see [26, (234), (235)]. From (3.17) we obtain a long exact sequence

� � � ! TorE1 .F ; P�_˛ /!TorE1 .F ; P1_
G
/! TorE1 .F ;M1_

T
/! Q�_˛ ! Q1_

G
! �_1T ! 0:

From (a) and (b), we deduce that the morphisms

TorEi .F ; P�_˛ /! TorEi .F ; P1_
G
/

are zero for i � 1, hence we obtain a long exact sequence

0! TorE1 .F ; P1_
G
/! TorE1 .F ;M1_

T
/! Q�_˛ ! Q1_

G
! �_1T ! 0; (3.19)

and short exact sequences for i � 2,

0! TorEi .F ; P1_
G
/! TorEi .F ;M1_

T
/! TorEi�1.F ; P�_˛ /! 0: (3.20)
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Using Proposition 3.26 and Lemma 3.28, (3.19) implies TorE1 .F ; P1_
G
/ Š .Sp_/˚2, while

(3.20) and (a)–(b) imply for i � 2,

TorEi�1.F ; P�_˛ / Š .1
_
G/
˚2; TorEi .F ; P1_

G
/ Š .Sp_/˚2:

This proves the first two assertions.
Similarly, the sequence (3.18) induces

� � � ! TorE1 .F ;PSp_/! TorE1 .F ;P�_˛ /! TorE1 .F ;M˛_/!QSp_ !Q�_˛ ! �_˛ ! 0:

By Lemma 3.28 and (a), we see that the morphisms TorEi .F ; P�_˛ /! TorEi .F ;M˛_/ are
zero for i � 1, hence obtain short exact sequences

0! TorEiC1.F ;M˛_/! TorEi .F ; PSp_/! TorEi .F ; P�_˛ /! 0:

Using Lemma 3.28 and what has been proved, we deduce the result for TorEi .F ; PSp_/.

3.7.3. Miracle flatness. In this subsection we prove the following result, using the “mir-
acle flatness” criterion in [13, Proposition A.30]. Recall that the block B is of type (IV).

Proposition 3.32. There exists a subring R0 � E which is a regular local F -algebra of
Krull dimension 3 such that E is finite free over R0 and P is flat over R0.

Proof. Choose a weight � 2 D.�/. With the notation in Proposition 3.9 we have isomor-
phisms

Homcont
K .P; �_/_ Š E=J� Š F ŒŒS��: (3.21)

Let x1 2 E be a lift of S . Then x1 is a regular element in E (which is a domain). Since E
is a Cohen–Macaulay ring of Krull dimension 3, we may extend x1 to a regular sequence
in E, say ¹x1; x2; x3º. Then the subring R0 WD F ŒŒx1; x2; x3�� is a regular local ring of
Krull dimension 3 and E is finite over R0. Moreover, the Auslander–Buchsbaum formula
implies that E is free over R0.

We are left to prove that P is flat over R0. As in [13, A.14], we consider

A D ƒ b̋F F ŒŒx1��; B D ƒ b̋F R
0;

which are both Auslander regular rings (see [13, Definition A.2]). The natural inclusion
F ŒŒx1�� � R0 induces an inclusion A � B . We may view P as a module over both A
and B . The exact sequence

P
�x1
�! P �! P=x1P �! 0

induces a sequence

0 �! Homcont
K .P; �_/_

�S
�! Homcont

K .P; �_/_ �! Homcont
K .P=x1P; �

_/_ �! 0;

which is exact by (3.21). By Proposition 3.9, the above exact sequence still exists if
we replace � by any irreducible object � 0 2 RepF .K/ with Homcont

K .P; � 0_/_ ¤ 0, and
Homcont

K .P=x1P; �
0_/_ is 1-dimensional over F . Therefore, P=x1P is coadmissible and
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P is finitely generated as an A-module (resp. as a B-module) by Nakayama’s lemma. On
the other hand, Proposition 3.10 implies that x1 is P -regular and P=x1P is also projec-
tive in C.K/; here we have used the main result of [10] stating that P remains projective
in C.K/.

In particular, we see that P=x1P is a Cohen–Macaulay module over ƒ. Since x1 is
bothA- and P -regular, a standard argument (using [13, Lemma A.15] for example) shows
that P is a Cohen–Macaulay A-module and

ıA.P / D ıƒ.P=x1P /C 1 D 3C 1 D 4:

By using [13, Corollary A.29], it follows thatP is also a Cohen–MacaulayB-module with
ıB.P / D 4. SinceE is finite free overR0, we have ıƒ.F ˝R0 P / D 1 by Proposition 3.5,
so

jB.P / D dimB � ıB.P / D 2 D jƒ.F ˝R0 P /:

By [13, Proposition A.30], we deduce that P is flat over R0.

Remark 3.33. We construct an explicit subringR0 ofE as in Proposition 3.32 as follows.
Choose the isomorphism E Š F ŒŒx; y; z; w��=.xw � yz/ in such a way that the kernel of
q W E� E�_ is equal to .z; w/, see Lemma 3.27. Clearly, the elements x; y � z; w form
a regular sequence in R; let

R0 WD F ŒŒx; y � z; w��: (3.22)

Then the composite morphism R0 ,! E� E�_ remains surjective. In particular, a suit-
able linear combination of x; y � z; w serves as a lift of S . This proves that R0 is one of
the rings considered there.

4. Key computation

We keep the notation of Section 3. For n � 1, let

Kn D

�
1C pnZp pnZp
pnZp 1C pnZp

�
;

T1.p
n/ D

�
1C pZp pnZp
pnZp 1C pZp

�
:

Recall that ƒ WD F ŒŒK1=Z1��.

Theorem 4.1. Let … 2 RepF .G/ be an object of finite length. Then

dimF …
T1.p

n/
� n:

It is clear that we may assume … is irreducible in Theorem 4.1. Further, by the recall
in Section 3.1, up to twist it is enough to prove the following.

Theorem 4.2. For any 0 � r � p � 1 and � 2 F , we have

dimF �.r; �; 1/
T1.p

n/
� n:
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4.1. Preparation

We need some preparation to prove Theorem 4.2. To begin with, we establish a double
coset decomposition formula in K. Let

K0.p
n/ D

�
Z�p Zp
pnZp Z�p

�
; H D

�
1 0

0 1C pZp

�
:

Lemma 4.3. For any n � 1, we have

jK0.p
n/nK=H j D .2n � 1/.p � 1/C 2:

Proof. Let A D . a b
c d
/ 2 K. We have the following facts:

(i) If A 2 K0.p/, i.e. c 2 pZp , we have two subcases:
� if c 2 pnZp , then . a b

c d
/ 2 K0.p

n/,
� if c 2 pZpnpnZp (so n � 2), write c D upk with u 2 Z�p and 1 � k � n � 1,

then �
a b

c d

�
D

�
d�1.ad � bc/ ubd�1

0 u

��
1 0

pk Œ��

��
1 0

0 t

�
;

where � WD u�1d 2 F�p and t WD u�1d
Œ��
2 1C pZp .

We deduce that

K0.p/ D K0.p
n/ [

� [
1�k�n�1;�2F�p

K0.p
n/

�
1 0

pk Œ��

�
H

�
:

It is easy to check that this is a disjoint union, so the cardinality ofK0.pn/nK0.p/=H
is 1C .n � 1/.p � 1/.

(ii) If A … K0.p/, i.e. c 2 Z�p , we still have two subcases:
� if d 2 Z�p , then�

a b

c d

�
D

�
�Œ��d�1.ad � bc/ a

0 c

��
0 1

1 Œ��

��
1 0

0 t

�
;

where � WD c�1d 2 F�p and t D c�1d
Œ��
2 1C pZp ,

� if d 2 pZp , then �
a b

c d

��
0 1

1 0

�
D

�
b a

d c

�
2 K0.p/:

By combining (i) and (ii), the cardinality of K0.pn/nK=H is equal to

Œ1C .n � 1/.p � 1/�C Œ.p � 1/C 1C .n � 1/.p � 1/� D .2n � 1/.p � 1/C 2:

Proposition 4.4. Let n � 1 and � a smooth F -representation of K0.pn/ of finite dimen-
sion d . If V is a quotient K-representation of IndKK0.pn/ � , then dimF V

H � 2dpn.
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Proof. Let W be the corresponding kernel so that we have an exact sequence

0! W ! IndKK0.pn/ � ! V ! 0:

By taking H -invariants, it induces

0! W H
! .IndKK0.pn/ �/

H
! V H

@
! H 1.H;W /;

hence an equality of dimensions

dimF W
H
C dimF V

H
D dimF .IndKK0.pn/ �/

H
C dimF Im.@/: (4.1)

Now note that H Š 1C pZp Š Zp is a pro-p group of cohomological dimension 1, so
by Lemma 4.5 below we have

dimF W
H
D dimF H

1.H;W / � dimF Im.@/;

hence by (4.1),
dimF V

H
� dimF .IndKK0.pn/ �/

H :

We are thus reduced to prove the proposition in the special case V D IndKK0.pn/ � . By
using [2, Lemma 3], it is easy to see that any irreducible smooth F -representation of
K0.p

n/ is one-dimensional, so there exists a filtration of � by sub-representations, of
length d , such that all graded pieces are one-dimensional. Hence, we may assume d D 1,
in which case the result follows from Lemma 4.3.

Lemma 4.5. Let W be a finite-dimensional smooth F -representation of Zp . Then

dimF H
1.Zp; W / D dimF H

0.Zp; W /:

Proof. This is clear if dimF W D 1 because then W must be the trivial representation
of Zp so that H 1.Zp; W / Š Hom.Zp;F/ is of dimension 1. The general case is proved
by induction on dimF W using the fact that H 2.Zp;�/ D 0 and that W always contains
a one-dimensional sub-representation.

Remark 4.6. In the proof of Proposition 4.4, we crucially used the fact that H has coho-
mological dimension 1. This fact, very special to the group GL2.Qp/, is also used in [4]
and [25] (but for the unipotent subgroup of B.Zp/).

4.2. Supersingular case

We give the proof of Theorem 4.2 when … is supersingular, i.e. … D �.r; 0; 1/ for some
0 � r � p � 1. Since we have a G-equivariant isomorphism ([4, Theorem 1.3])

�.r; 0; 1/ Š �.p � 1 � r; 0; !r /;

we may assume r > 0 in the following.
Set � WD Symr F2 and for n� 1 denote by �n the following representation ofK0.pn/:

�n

��
a b

pnc d

��
WD �

��
d c

pnb a

��
:
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Let R0 WD � and Rn WD IndKK0.pn/ �n for n � 1. It is easy to see that

dimF R0 D .r C 1/; dimF Rn D .r C 1/.p C 1/p
n�1 for all n � 1: (4.2)

Moreover, the following properties hold (see [5, Section 4]):
(i) c-IndGKZ� jK Š

L
n�0Rn,

(ii) the Hecke operator T jRn W Rn ! RnC1 ˚Rn�1 is the sum of a K-equivariant injec-
tion TC WRn ,! RnC1 and (for n � 1) aK-equivariant surjection T � WRn� Rn�1,

(iii) we have an isomorphism of K-representations

�.r; 0; 1/ Š
�

lim
�!
n even

R0 ˚R1 ˚R2 ˚R3 ˚ � � � ˚Rn

�
˚

�
lim
�!
n odd

.R1=R0/˚R2 R3 ˚R4 ˚ � � � ˚Rn

�
:

(4.3)

Denote by…0 D lim
�!n even

and…1 D lim
�!n odd

the two direct summands of… in (4.3). For

all n � 0, we let Rn be the image of Rn ! �.r; 0; 1/. Then Rn � …0 if n is even, and
Rn � …1 if n is odd.

Lemma 4.7. For all n � 0, we have Rn � RnC2 and dimF Rn D .r C 1/p
n.

Proof. The inclusion Rn � RnC2 follows from (ii) and (4.3). The dimension formula
follows from (4.3) using (4.2). Precisely, (4.3) implies that if n is even, then by (4.2),

dimF Rn D

nX
kD0

.�1/k dimF Rk

D .r C 1/

 
1C .p C 1/

nX
kD1

.�1/kpk�1

!
D .r C 1/pn;

and if n is odd, then similarly

dimF Rn D

nX
kD0

.�1/kC1 dimF Rk D .r C 1/p
n;

which finishes the proof.

At this point, we need the following result of Morra. Recall that … D …0 ˚…1 as
K-representations.

Theorem 4.8. Let n � 1. For i 2 ¹0; 1º, the dimension of Kn-invariants of …i satisfies

dimF …
Kn
i � .p C 1/p

n�1
� 1:

Moreover, …i is nearly uniserial in the following sense: if W1; W2 are two K-stable
subspaces of …i such that

dimF W2 � dimF W1 � p;

then W1 � W2.
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Proof. See [22, Corollary 4.14, Corollary 4.15] for the dimension formula. Note that the
formula in [22, Corollary 4.15] is for the dimension of …Kn

0 ˚…
Kn
1 , but one can deduce

the dimension of …Kn
i from [22, Corollary 4.14]. The second statement follows from

[21, Theorem 1.1] which describes the K-socle filtration of …i . To explain this, fix
i 2 ¹0; 1º. By [21, Theorem 1.1], …i admits an increasing filtration Filk…i , k � 0 such
that

Fil0…i D 0; Fil1…i D socK…i

and
FilkC1…i=Filk…i Š IndGL2.Fp/

B.Fp/
�k for all k � 2;

for suitable characters �k W B.Fp/! F�. In particular, the graded pieces have dimen-
sion p C 1 except for the first. Moreover, the filtration satisfies the property that for any
K-stable subspace W � …i and any k � k0, the condition

dimF Filk…i � dimF W � dimF Filk
0

…i

implies
Filk…i � W � Filk

0

…i :

Now, for the given W1 let k1 be the smallest index such that W1 � Filk1…i ; then

dimF Filk1…i � dimF W1 � p:

The assumption then implies

dimF Filk1…i � dimF W2

and that W2 contains Filk1…i , proving the result.

Corollary 4.9. We have …Kn � Rn ˚RnC1.

Proof. We have assumed r � 1, so by Lemma 4.7 we get for n � 1,

dimF Rn � 2p
n
� ..p C 1/pn�1 � 1/C p � dimF …

Kn
i C p:

By the nearly uniserial property of …i , this implies that …Kn
0 � Rn if n is even, while

…
Kn
1 � Rn if n is odd. Putting them together, we obtain the result.

Proof of Theorem 4.2 when � D 0. Since T1.pn/ contains Kn, we have an inclusion

…T1.p
n/
� …Kn ;

so Corollary 4.9 implies …T1.p
n/ � Rn ˚RnC1, hence

…T1.p
n/
� .Rn/

T1.p
n/
˚ .RnC1/

T1.p
n/
� .Rn/

H
˚ .RnC1/

H :

Noting that dimF � � p, we obtain by Proposition 4.4 that

dimF …
T1.p

n/
� dimF .Rn/

H
C dimF .RnC1/

H
� 4p2n;

hence the result.
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4.3. Non-supersingular case

Assume from now on � ¤ 0. We define the subspaces Rn (n � 0) of c-IndGKZ� as above.
We still have properties (i) and (ii) recalled there. The only difference, also the key dif-
ference, with the supersingular case is that the induced morphisms Rn ! �.r; �; 1/ are
all injective (because � ¤ 0). Moreover, if we write Rn for the image of Rn in �.r; �; 1/,
then Rn � RnC1 and

�.r; �; 1/ D lim
�!
n�0

Rn:

Proposition 4.10. Let n � 1. Then we have an inclusion �.r; �; 1/Kn � Rn.

Proof. By [21, Theorem 1.2], �.r; �; 1/ satisfies a (nearly) uniserial property as in the
supersingular case. Moreover, we have (see [22, Section 5])

dimF �.r; �; 1/
Kn D .p C 1/pn�1

while
dimF Rn D dimF Rn D .r C 1/.p C 1/p

n�1:

We then conclude as in the supersingular case.

Proof of Theorem 4.2 when � ¤ 0. Since T1.pn/ contains Kn, it follows from Proposi-
tion 4.10 that

�.r; �; 1/T1.p
n/
� .Rn/

T1.p
n/
� .Rn/

H :

The result then follows from Proposition 4.4.

5. Main results

For application in Section 6, we need to generalize Theorem 4.1 to higher cohomological
degrees and to representations of a finite product of GL2.Qp/.

We let G D GL2.Qp/, K D GL2.Zp/ and other subgroups of G are defined as in the
previous section. Given r � 1, we let

G D

rY
iD1

G; K D

rY
iD1

K; K1 D

rY
iD1

K1; Z1 D

rY
iD1

Z1

and

ƒ D F ŒŒK1=Z1�� Š

r

bO
iD1

F ŒŒK1=Z1��:

That is, G is a product of r copies of G, and so on. If n D .n1; : : : ; nr / 2 .Z�1/r , let

T1.p
n/ D

rY
iD1

T1.p
ni /; Kn D

rY
iD1

Kni :
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As in the case r D 1, let RepF .G/ denote the category of smooth F -representations of G
with a central character and let Repl;fin

F .G/ be the subcategory consisting of locally finite
objects. Let C.G/ be the dual category of Repl;fin

F .G/ under Pontryagin dual and Cfg; tor.G/

the subcategory of C.G/ consisting of coadmissible torsion objects.

5.1. Generalizations

5.1.1. Blocks. For 1 � i � r , let �i 2 C.G/ be (absolutely) irreducible and let Bi be the
block in which �i lies. Recall that �i is admissible (see Section 3.1).

Lemma 5.1. The following statements hold.

(i) The tensor product �1 ˝ � � � ˝ �r is an irreducible admissible representation of G.
Conversely, up to enlarge F , each irreducible representation � in RepF .G/ is of this
form; in particular, � is admissible.

(ii) Let � D �1 ˝ � � � ˝ �r be as in (i). Then ıƒ.�_/ is equal to the cardinality of the
index i 2 ¹1; : : : ; rº such that �i is infinite-dimensional.

(iii) Let � D
Nr
iD1 �i and � 0 D

Nr
iD1 �

0
i be irreducible representations in RepF .G/.

Then � � � 0 (i.e. in the same block) if and only if �i � � 0i for all i .

Proof. (i) The first part is standard. For the second, see [13, Lemma B.7] for a proof.
Note that we only need to assume � carries a central character, then � is automatically
admissible; the proof uses the classification of irreducible objects in RepF .G/ (cf. [2]
and [4]).

(ii) It is a direct consequence of Theorem 3.1, using [13, Lemma A.11].
(iii) It follows from the fact that Ext1G.�; �

0/ ¤ 0 if and only if there exists an i with
1 � i � r such that Ext1G.�i ; �

0
i / ¤ 0 and �j Š � 0j for all j ¤ i ; see [23, Lemma 3.4.10]

for a proof.

Let B be the block in which � D
Nr
iD1 �i lies. As a consequence of Lemma 5.1, B

is equal to B1 ˝ � � � ˝Br WD ¹
Nr
iD1 �

0
i W �

0
i 2 Biº.

LetP�_
i

be a projective envelope of �_i in C.G/ and setE�_
i
D EndC.G/.P�_

i
/. Write

P WD

r

bO
iD1

P�_
i
; E WD

r

bO
iD1

E�_
i
;

where cN denotes the completed tensor product over F (see [13, Section B.1] for the
definition and basic properties). For each i , let R�_

i
be the center of E�_

i
and set

R WD

r

bO
iD1

R�_
i
:

Then R is contained in the center of E.7

7It seems that R is exactly the center of E, see [23, Remark 3.4.12]; but we do not need this
property.
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Lemma 5.2. The following statements hold.

(i) P is a projective envelope of cN r
iD1�

_
i in C.G/ and EndC.G/.P / Š E.

(ii) R is a Noetherian complete local F -algebra, Cohen–Macaulay of Krull dimension
3r . Moreover, E is finite free over R.

(iii) F ˝E P (resp. F ˝R P ) has finite length in C.G/ and

ıƒ.F ˝E P / D ıƒ.F ˝R P / D r:

Proof. Statement (i) is proved in [13, Lemma B.8], (ii) follows from Theorem 3.4, and
(iii) follows from Proposition 3.5 and [13, Lemma A.11].

Lemma 5.3. If M 2 C.G/ has finite length, then ıƒ.M/ � r and

dimF MT1.pn/ �

rY
iD1

ni :

Proof. We may assume M is irreducible, so that M ŠcN r
iD1�

_
i with each �i irre-

ducible. The result then follows from Lemma 5.1 (ii) and Theorem 4.1.

5.1.2. Coadmissibility. Similar to Lemma 5.1 (i), an irreducible representation of K is of
the form � D

Nr
iD1 �i with each �i 2 RepF .K/ irreducible. We have the obvious notion

of a Serre weight for � D
Nr
iD1 �i as in Section 3.3; denote by D.�/ the set of Serre

weights of � . Clearly, � 2 D.�/ if and only if �i 2 D.�i / for each i . The following
lemma is a direct generalization of Lemma 3.7 and Proposition 3.9.

Lemma 5.4. The following statements hold.

(i) If � ¤ � 0 are two objects in a block B, then D.�/ \D.� 0/ D ;.

(ii) Let � 2 RepF .K/ be irreducible. Whenever non-zero, Homcont
K .P; �_/_ is a cyclic

E-module and if J� denotes its annihilator, then

E=J� Š F ŒŒS1; : : : ; Sr ��:

If � D
Nr
iD1 �i and � 0 D

Nr
iD1 �

0
i are two irreducible K-representations such that

�i D �
0
i whenever �i is supersingular (i.e. Bi is of type (I)), then

Homcont
K .P; �_/_ Š Homcont

K .P; � 0_/_

as E-modules when they are both non-zero.

(iii) Let�� DL� �, where the sum is taken over all irreducible objects � 2 RepF .K/ such
that Homcont

K .P; �_/ ¤ 0. Then Homcont
K .P;��_/_ is a Cohen–Macaulay R-module

of Krull dimension r .

Proof. The universal property of the completed tensor product, see the proof of [13, Lem-
ma B.8], gives

Homcont
K

 r

bO
iD1

�_i ;

r

bO
iD1

�_i

!
Š

r

bO
iD1

Homcont
K .�_i ; �

_
i /:

This proves (i) using Lemma 3.7; (ii) is proved in a similar way using Proposition 3.9 (i).
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(iii) One checks that �� DNr
iD1��i , where ��i is the direct sum of all irreducible �i

such that Homcont
K .P�_

i
; �_i / ¤ 0. Hence

Homcont
K .P;��_/_ Š r

bO
iD1

Homcont
K .P�_

i
;��_i /_

as R-modules. The result follows from Proposition 3.9 (ii) which says that each compo-
nent Homcont

K .P�_
i
;��_i /_ is a Cohen–Macaulay R�_

i
-module of Krull dimension 1.

If M 2 CB, let
m.M/ WD HomC.G/.P;M/

which is a compact right E-module. If � 2 RepF .K/ is of finite length, let

P.�/ WD Homcont
K .P; �_/_

which is a finitely generated left E-module.

Proposition 5.5. Let M 2 C.G/ be a coadmissible quotient of P . Then m.M/˝E P is
coadmissible.

Proof. The proof is similar to the proof of Proposition 3.17 (i). Let Ker be the kernel of
the natural morphism

ev W m.M/˝EP �M;

which is surjective by [26, Lemma 2.10]. Using [26, Lemma 2.9] and the projectivity
of P , we have HomC.G/.P;Ker/ D 0, that is, �_ does not occur in Ker.

We need to show that Homcont
K .m.M/˝EP; �

_/ is finite-dimensional for any irre-
ducible � 2 RepF .K/. By [27, Proposition 2.4], we have an isomorphism of finitely
generated E-modules

Homcont
K .m.M/˝EP; �

_/_ Š m.M/˝EP.�/:

Hence, it suffices to consider those � such that P.�/ ¤ 0, or equivalently such that
Homcont

K .P�_
i
; �_i / ¤ 0 for all i if we write � D

Nr
iD1 �i . Note that this implies auto-

matically �i 2 D.�i / if �i is supersingular, i.e. Bi is of type (I). We choose another
weight � 0 D

Nr
iD1 �

0
i as follows: if Bi is of type (I), let � 0i WD �i ; otherwise, let � 0i be

any weight in D.�i /. Then the assumption of Lemma 5.4 (ii) is satisfied and we obtain
an isomorphism of E-modules P.�/ Š P.� 0/. Moreover, we have � 0 2 D.�/ by con-
struction, hence Homcont

K .Ker; � 0_/ D 0 by Lemma 5.4 (i) because �_ does not occur as
a subquotient in Ker. As in the proof of Proposition 3.17 (i), we obtain isomorphisms

Homcont
K .m.M/˝EP; �

_/_ Š Homcont
K .m.M/˝EP; �

0_/_

Š Homcont
K .M; � 0_/_

from which the result follows.

Proposition 5.6. Let m be a finitely generated right E-module such that m˝E P is
coadmissible. Then m˝R P is also coadmissible.
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Proof. As in the proof of Proposition 5.5, we need to show that m˝R P.�/ is finite-
dimensional for any irreducible � 2 RepF .K/. Let I� � R (resp. J� � E) be the annihi-
lator of P.�/. Then we have an isomorphism E=J� Š P.�/, see Lemma 5.4 (ii). Since
P.�/ is finitely generated overR, a standard argument in commutative algebra shows that
the Krull dimension of m˝R P.�/ is equal to that of m˝R R=I� . Letting J 0� WD I�E
which is a two-sided ideal of E contained in J� , there is an isomorphism

m˝R R=I� Š m˝E E=J 0� ;

so that we are left to compare E=J 0� and E=J� . Since m˝E E=J� is finite-dimensional
over F by assumption, it suffices to show that J n� � J

0
� for some n � 1, because then

ıƒ.m˝E E=J n� / � ıƒ.m˝E E=J
0
� / � ıƒ.m˝E E=J� /;

and consequently (as E is Noetherian)

ıƒ.m˝E E=J� / D ıƒ.m˝E E=J 0� /:

Recall that E and R only differ at the indices i where Bi is of type (III), in which case
J 4�i � J

0
�i

by Proposition 3.19 (iii). The result follows.

5.1.3. Dimension formula. We introduce another ring which lies between R and E: let

E 0 WD

�bO
i…IV

E�_
i

� b̋ �bO
i2IV

R0�_
i

�
;

where the subscript i 2 IV (resp. i … IV) indicates that Bi is (resp. not) of type (IV), and
R0�_

i
is one of the subrings of E�_

i
constructed in Proposition 3.32 (e.g. the one con-

structed in Remark 3.33). By Theorem 3.4 and Proposition 3.32, E is finite free over E 0

and P is flat over E 0.

Lemma 5.7. Let m be a finitely generated right E-module and assume that m˝E P is
coadmissible. Then m˝E 0 P is also coadmissible and ıƒ.m˝E 0 P / D ıƒ.m˝E P /.

Proof. The first assertion can be deduced from Proposition 5.6; the proof below gives
another proof.

We claim that there exists an exact sequence of .E;E/-bimodules for some n � 1,

E˚n ! E ˝E 0 E ! E ! 0; (5.1)

where the second morphism sends x ˝ y to xy. In fact, by the definition of E 0, we only
need to construct such an exact sequence for E (resp. E 0) replaced by cNi2IVE�_i (resp.cN
i2IVR

0
�_
i

), and the sequence (5.1) can be obtained by tensoring it with cNi…IVE�_i .
But since cNi2IVE�_i and cNi2IVR

0
�_
i

are commutative Noetherian rings, the claim
is standard.

We have a natural isomorphism

m˝E 0 P Š m˝E .E ˝E 0 E/˝E P ;
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which together with (5.1) gives an exact sequence

.m˝E P /˚n ! m˝E 0 P ! m˝E P ! 0:

The result follows from this.

We prove the following dimension formula.

Proposition 5.8. Let m be a non-zero finitely generated (right) E-module and assume
that m˝E P is coadmissible. Then we have an equality

ıƒ.m˝E P / D dimR mC r;

where dimR m denotes the Krull dimension of m as an R-module.

Proof. Let d WD dimR m. We first prove (for possibly zero m)

ıƒ.m˝E P / � d C r: (5.2)

Indeed, we may find a system of parameters (in the maximal ideal of R) for m, say
a1; : : : ; ad , so that dimF m=.a1; : : : ; ad / is finite. Thus, m=.a1; : : : ; ad /˝E P has finite
length in C.G/ by Lemma 5.2 (iii), and has canonical dimension � r by Lemma 5.3.
As m=.a1; : : : ; ad /˝E P Š .m˝E P /=.a1; : : : ; ad /, we deduce inequality (5.2) from
Proposition 2.3.

Assuming m non-zero, we prove the inequality ıƒ.m˝E P / � d C r by induction
on d . By Lemma 5.7, we are reduced to prove

ıƒ.m˝E 0 P / � dimR mC r:

The advantage to work with E 0 is that P is flat over E 0. If d D 0 (but m is non-zero),
then m is finite-dimensional over F , and the result is a consequence of Lemma 5.2 (iii)
and Lemma 5.7. Assume d � 1 and the statement is true for all (non-zero) E-modules m0

with dimR m0 � d � 1. Since m is finitely generated over R, we may choose x 2 R such
that

dimR.m=xm/ D d � 1I

this implies that x is not nilpotent on m and dimR.x
km=xkC1m/ D d � 1 for any k � 0

(otherwise we would have dimR.x
km=xkC1m/ � d � 2, hence dimR.x

km/ � d � 1 and
also dimR m � d � 1). Moreover, since xkm is non-zero, xkm=xkC1m is also non-zero
by Nakayama’s lemma. The inductive hypothesis then implies

ıƒ
�
.xkm=xkC1m/˝E 0 P

�
� .d � 1/C r:

Since P is flat over E 0, we have an isomorphism

.xkm=xkC1m/˝E 0 P Š xk.m˝E 0 P /=xkC1.m˝E 0 P /;

and we conclude by Proposition 2.3 (ii) applied to M D m˝E 0 P .

Corollary 5.9. Let m be a finitely generated right E-module and assume that m˝E P
is coadmissible. Then ıƒ.m˝R P / D ıƒ.m˝E P /.
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Proof. We know that m˝R P is coadmissible by Proposition 5.6 and it is clear that
ıƒ.m˝R P / � ıƒ.m˝E P /. The first part of the proof of Proposition 5.8 still works if
we replace E by R, showing

ıƒ.m˝R P / � dimR mC r:

The result then follows from Proposition 5.8.

Corollary 5.10. Let M be a coadmissible quotient of P . Then dimR m.M/ � 2r .

Proof. By Proposition 5.5, m.M/˝E P is also coadmissible, so

ıƒ.m.M/˝E P / � dimƒ D 3r:

The result then follows from Proposition 5.8.

Proposition 5.11. Let M be a coadmissible quotient of P . Then there exists a sequence
f1; : : : ; fr 2 AnnR.M/which is bothR-regular andP -regular, such thatP=.f1; : : : ; fr /
is finite free over ƒ.

Proof. Since M is coadmissible, so is m.M/˝R P by Propositions 5.5 and 5.6. More-
over, as in these propositions, this implies that m.M/˝R P.��/ is finite-dimensional
over F , where �� DL� � is the sum of all irreducible objects � 2 RepF .K/ such that
P.�/ ¤ 0. Because both m.M/ and P.��/ are finitely generated R-modules, we deduce
that R=.AnnR.m.M//CAnnR.P.��/// is an Artinian ring. Writing aDAnnR.m.M//

(which coincides with AnnR.M/ by Lemma 5.19 below), then R=a˝RP.��/ is also
finite-dimensional over F . Since P.��/ is a Cohen–Macaulay R-module of Krull dimen-
sion r , we can find a regular sequence f1; : : : ; fr in a forP.��/, see [7, Theorem 2.1.2 (b)].

As a generalization of [10], it is proved in Corollary 5.18 below that P jK remains
projective in C.K/. Applying repeatedly Proposition 3.10, we obtain that f1; : : : ; fr is
a regular sequence for P and P=.f1; : : : ; fr / is again projective in C.K/. Moreover,
Homcont

K .P=.f1; : : : ; fr /;��_/ is finite-dimensional over F , so P=.f1; : : : ; fr / is coad-
missible by the choice of�� .

We are left to check that f1; : : : ; fr is an R-regular sequence. Since the sequence is
P -regular, it suffices to prove that R=.f1; : : : ; fi / acts faithfully on P=.f1; : : : ; fi / for
all 1 � i � r . For this, it suffices to prove that there is a natural isomorphism

E=.f1; : : : ; fi / Š EndC.G/.P=.f1; : : : ; fi //: (5.3)

In fact, since f1; : : : ; fr lie in the center of E, the proof of [14, Lemma 7.11] shows that
any morphism

P ! P=.f1; : : : ; fi�1/

factors through
P=.f1; : : : ; fi�1/! P=.f1; : : : ; fi�1/:

Since P is projective, the exact sequence

0 �! P=.f1; : : : ; fi�1/
fi
�! P=.f1; : : : ; fi�1/ �! P=.f1; : : : ; fi / �! 0
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induces an isomorphism

EndC.G/.P=.f1; : : : ; fi�1//=fi Š EndC.G/.P=.f1; : : : ; fi //:

An obvious induction then gives (5.3).

5.1.4. Torsionƒ-modules. If � 2 RepF .T / is a smooth character, recall from Section 3.4
that M�_ D .IndGB InjT �/

_ and E�_ D EndC.G/.M�_/.

Definition 5.12. Let† be a subset of ¹1; : : : ; rº. Given a smooth character �i 2 RepF .T /

for each i 2 † and an irreducible �i 2 RepF .G/ for each i … †, we define P.�; �;†/ 2
C.G/ by

P.�; �;†/ WD

�bO
i2†

M�_
i

� b̋ �bO
i…†

P�_
i

�
:

Denote by E† the endomorphism ring EndC.G/.P.�; �;†//; then

E† Š

�bO
i2†

E�_
i

� b̋ �bO
i…†

E�_
i

�
is a quotient of E DcN r

iD1E�_i , where �i WD socG ��i if i 2 †. We employ the rings
constructed in Proposition 3.32 once again by setting

R† WD

�bO
i2†

E�_
i

� b̋ � bO
i…†; i…IV

R�_
i

� b̋ � bO
i…†; i2IV

R0�_
i

�
; (5.4)

where the notation is as in Section 5.1.3. Then R† is a (commutative) regular local ring
of Krull dimension 3r � j†j. Clearly, R† is contained in (the center of) E† and E† is
finite free over R†.

Let � 2 RepF .K/ be an irreducible representation with P.�/ ¤ 0. Corollary 3.15
implies an isomorphism

P.�/ Š Homcont
K .P.�; �;†/; �_/_;

so P.�/ can be viewed as a module over E† and R†.

Lemma 5.13. With the above notation, AnnR†.P.�// can be generated by 2r � j†j
elements.

Proof. To simplify and uniform the notation, we write Ri for the ring at index i in (5.4)
so that

R† D

r

bO
iD1

Ri I

similarly write

E† D

r

bO
iD1

Ei :
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By Lemma 5.4 (ii) together with Corollary 3.15, P.�/ is a cyclic E†-module such
that

E†=AnnE†.P.�// Š

r

bO
iD1

F ŒŒS�� Š F ŒŒS1; : : : ; Sr ��:

For each i , the composite morphism Ri ! Ei ! F ŒŒS�� is either surjective or equal
to F ŒŒS2��; this is an easy check if i 2 † or i … III, and follows from Proposition 3.19 (ii)
if i 2 III (and i … †). In all, the image of R† ,! E†�cN r

iD1F ŒŒS�� is a regular local
ring of Krull dimension r . The result then follows from [20, Theorem 21.2 (ii)].

Lemma 5.14. Let M be a coadmissible quotient of P.�; �;†/ and assume † is non-
empty. Then M is a torsion ƒ-module. In fact, ıƒ.M/ � 3r � j†j.

Proof. The action of E on m.M/ factors through E† by [26, Proposition 7.1(iii)], hence
m.M/ can be viewed as an R†-module. Since M is coadmissible, m.M/˝R† P.�/ is
finite-dimensional, where � is as before. As a consequence,

R†=
�
AnnR†.m.M//C AnnR†.P.�//

�
is an Artinian ring. As in Proposition 5.11, we can find a sequence

f1; : : : ; fr 2 AnnR†.m.M//

which is regular for P.�/. By Lemma 5.13, AnnR†.P.�// is generated by 2r � j†j ele-
ments, say g1; : : : ; g2r�j†j. Since R† is Cohen–Macaulay of Krull dimension 3r � j†j,
the sequence f1; : : : ; fr ; g1; : : : ; g2r�j†j is R†-regular. As a consequence,

dimR†=.f1; : : : ; fr / D 2r � j†j:

But, m.M/ is annihilated by .f1; : : : ; fr /, hence

dim m.M/ � dimR†=.f1; : : : ; fr / D 2r � j†j:

We conclude by Proposition 5.8.

Proposition 5.15. Let M 2 C.G/ be a coadmissible quotient of P . If M is a torsion
ƒ-module, then so is m.M/˝E P .

Proof. As in the proof of Proposition 3.17 (ii), it is enough to show the following:

Claim. For i with 1 � i � r and � 0i 2 Bi distinct with �i , letQ0i be the maximal quotient
of P� 0_

i
none of whose irreducible subquotients is isomorphic to �_i . If M is a coadmis-

sible quotient of

Q0i b̋ �bO
j¤i

P� 0_
j

�
;

then M is a torsion ƒ-module.

As in Proposition 3.17 (ii), we know that Bi can only be of type (II) or (IV), and we
may assume thatM is a coadmissible quotient ofM�_

i
b̋ .cNj¤i P� 0_j

/. The claim is then
a special case of Lemma 5.14.
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Corollary 5.16. Let M 2 C.G/ be a coadmissible quotient of P . The following state-
ments hold:

(i) m.M/ has Krull dimension � 2r ,

(ii) M is a torsion ƒ-module if and only if dimR m.M/ � 2r � 1.

Proof. (i) Since M is coadmissible, so is m.M/˝E P by Proposition 5.5. Since we
always have ıƒ.M/ � ıƒ.m.M/˝E P / � 3r , the result follows from Proposition 5.8.

(ii) We have that M is torsion if and only if m.M/˝E P is torsion by Proposition
5.15, if and only if ıƒ.m.M/˝E P / � 3r � 1, if and only if dimR m.M/ � 2r � 1 by
Proposition 5.8.

5.1.5. Breuil–Paškūnas construction. In this subsection we generalize the construction
of Breuil and Paškūnas [6, Section 9] to our setting.

Proposition 5.17. LetM 2 C.G/ be coadmissible and let�� be the K-cosocle ofM . Then
there exists a surjection in C.G/,

P �M;

where P jK is isomorphic to a projective envelope of�� (with central character). In par-
ticular, P is finite free as a ƒ-module.

Proof. The proof is given in Theorem A.2.

The following result generalizes [10, Corollary 3.8].

Corollary 5.18. If �P 2 C.G/ is projective, then �P is also projective in C.K/.

Proof. The proof is identical to that of [10, Corollary 3.8], using Proposition 5.17 in place
of [10, Theorem 3.4].

5.1.6. Finite free modules. If M is a quotient of P D P�_ , then R acts (from left)
on M and (from right) on m.M/ WD HomC.G/.P;M/. We make explicit these actions.
Let � 2 R and view it as an endomorphism � W P ! P . It induces an endomorphism
� WM !M (because R is contained in the Bernstein center of C.G/B), and for any
� 2 m.M/ the following diagram is commutative:

P
�
//

�

��

P

�

��

M
�
// M .

(5.5)

The action of R on M is given by .�;m/ 7! �.m/, and the action on m.M/ is given by

.�; �/ 7! � ı � D � ı �: (5.6)

We have the following simple lemma.

Lemma 5.19. We have AnnR.M/ D AnnR.m.M//.
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Proof. Given � 2 R, we have the following equivalences

� 2 AnnR.M/ ” � D 0

.�/
” � ı � D 0 for all � 2 m.M/

(5.5)
” � ı � D 0 for all � 2 m.M/

(5.6)
” � 2 AnnR.m.M//;

where (�) holds because there exists at least one � which is surjective, e.g. the natural
quotient map P �M .

Let P be a quotient of P which is finite free as a ƒ-module. Set

R WD R=AnnR.m.P // D R=AnnR.P /:

Proposition 5.20. The following statements hold:

(i) R has Krull dimension 2r . There exists a subring A � R which is formally smooth
of dimension 2r such that R is finite over A.

(ii) P is flat over A.

Proof. (i) The first assertion is a direct consequence of Corollary 5.16. The second one
is proved as in [28, Corollary 4.2] by applying Cohen’s structure theorem for Noetherian
complete local rings (see [20, Theorem 29.4 (iii)]).

(ii) Because P is Cohen–Macaulay with ıƒ.P / D 3r (being finite free over ƒ) and
ıƒ.F ˝A P / D ıƒ.F ˝R P / D r , the result follows from the “miracle flatness” criterion,
see [13, Proposition A.30].

5.2. A lemma

In this subsection, we prove a lemma which can be viewed as an analogue of Proposi-
tion 2.3. These two results will allow us to relate the canonical dimension of a coadmissi-
ble module M 2 C.G/ and the F -dimension of T1.pn/-coinvariants of M . It is where the
quantity �.n/ D maxi¹niº comes.

Lemma 5.21. Let M be a finitely generated ƒ-module and � 2 Endƒ.M/. Assume thatT
k�1 �

k.M/ D 0.

(i) If � is nilpotent, then dimF MT1.pn/ � dimF .M=�.M//T1.pn/.

(ii) If � is not nilpotent, then for some sufficiently large k0 we have

dimF MT1.pn/ � dimF .M=�.M//T1.pn/ C p
�.n/ dimF .�

k0.M/=�k0C1.M//T1.pn/;

where �.n/ WD maxi¹niº.
In any case, we have

dimF MT1.pn/ � p�.n/ dimF .M=�.M//T1.pn/:
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Proof. (i) We trivially have dimF MT1.pn/ � dimF .M=�.M//T1.pn/. If � is nilpotent,
thenM admits a finite filtration by �k.M/, for k � k0 where k0� 1 is such that �k0 D 0.
For any k � 1, �k induces a surjective morphismM=�.M/� �k.M/=�kC1.M/, hence
dimF MT1.pn/ � k0 � dimF .M=�.M//T1.pn/, giving the result.

(ii) By Lemma 2.5, there exists k0 � 0 such that � W �k0.M/! �k0.M/ is injective.
Using the short exact sequence

0! �k0.M/!M !M=�k0.M/! 0

and applying (i) to M=�k0.M/, we are reduced to prove

dimF �
k0.M/T1.pn/ � p�.n/ dimF .�

k0.M/=�k0C1.M//T1.pn/:

That is, by replacingM by �k0.M/, we may assume � is injective in the rest of the proof.
Set Q WDM=�.M/ so that we have a short exact sequence

0 �!M
�
�!M �! Q �! 0:

Let J denote the maximal ideal of ƒ. By Remark 2.4, we may choose k1 � 1 such
that �k1.M/ � JM . Replacing � by �k1 and Q by M=�k1.M/, we may assume that
�.M/ � JM . Since � is a ƒ-morphism, we obtain inductively

�k.J sM/ � J kCsM for all k; s � 1: (5.7)

Letting Qk WDM=�k.M/, the short exact sequence

0 �!M
�k

�!M �! Qk �! 0

then induces by modulo J kC1:

M=JM
�k

�!M=J kC1M �! Qk=J
kC1Qk �! 0;

where we have used the fact �k.JM/ � J kC1M by (5.7). If I is a right ideal of ƒ con-
taining J kC1 (and contained in J ), then, by tensoring the above sequence with .ƒ=I /˝ƒ,
we obtain an exact sequence of F -vector spaces:

M=JM !M=IM ! Qk=IQk ! 0:

Since Qk is a successive extension of Q (k times), we obtain the following inequalities
with c0 WD dimF M=JM :

dimF M=IM � dimF Qk=IQk C c0 � k dimF Q=IQC c0: (5.8)

We specialize (5.8) to our situation. Let In denote the right ideal of ƒ generated by
the maximal ideal of F ŒŒT1.pn/=Z1��. Then Lemma 5.22 below shows that J 3rp

�.n/�1
is

contained in In because In clearly contains Jnƒ. Applying inequality (5.8) to I D In and
k D 3rp�.n/�1 � 1, we obtain

dimF MT1.pn/ D dimF M=InM � .3rp
�.n/�1

� 1/ � dimF Q=InQC c0;

giving the result.
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Lemma 5.22. Let J be the maximal ideal of ƒ and let Jn be the maximal ideal of
F ŒŒKn=.Kn \ Z1/�� (viewed as a sub-algebra of ƒ). Then the right ideal Jnƒ is a two-
sided ideal of ƒ and satisfies J 3rp

�.n/�1
� Jnƒ.

Proof. The first assertion follows from that Kn is a normal subgroup of K1.
We are left to prove the inclusion

J 3rp
�.n/�1

� Jnƒ:

We first consider the case r D 1. Then ƒ D F ŒŒK1=Z1�� is topologically generated by
three elements, say z1; z2; z3, such that every element of ƒ can be uniquely expressed as
a sum over multi-indices ˛ D .˛1; ˛2; ˛3/ 2 N3:

x D
X
˛

�˛z
˛; z˛ D z

˛1
1 z

˛2
2 z

˛3
3 :

Moreover, z˛zˇ D z˛Cˇ up to terms of degree > j˛j C jˇj, which we refer to as the
almost commutativity of ƒ; see [19, Theorem 10]. The ideal J is simply topologically
spanned by the set of monomials z˛ with j˛j > 0. Similarly, F ŒŒKn=.Kn \Z1/�� is topo-
logically generated by

z
pn�1

1 ; z
pn�1

2 ; z
pn�1

3 ;

and Jn is topologically spanned by the set of monomials zp
n�1�˛ with j˛j > 0. Hence,

the ideal Jnƒ is topologically spanned by monomials z˛ with at least one of j̨ greater
than or equal to pn�1 (cf. the proof of [19, Lemma 12]). By the almost commutativity, we
deduce the inclusion J 3p

n�1
� Jnƒ. For general r , the proof is identical noting that J is

topologically generated by 3r elements

¹zi;j W 1 � i � r; 1 � j � 3º;

and Jn is topologically generated by zp
ni�1

i;j , hence

J
Pr
iD1 3p

ni�1

� Jnƒ

which in particular implies the result.

Remark 5.23. In the proof of Lemma 5.21, it is crucial that we are working with T1.pn/
instead of K1.p2n/ (this group is defined in (5.12) below), although they are (up to finite
order) conjugate to each other in GL2.Qp/. We have learnt this trick of “averaging”
from [19] (used in a different manner there).

5.3. Main result

In this subsection, we prove the following theorem.

Theorem 5.24. Let M 2 Cfg; tor.G/. Then for any i � 0,

dimF Hi .T1.p
n/=Z1;M/� �.n/rp.2r�1/�.n/; (5.9)

where �.n/ WD maxi¹niº.
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Lemma 5.25. In Theorem 5.24, we may assume that M has an irreducible G-cosocle
(hence indecomposable).

Proof. Let S be the G-cosocle of M . Since M is coadmissible, it follows that S decom-
poses as a finite direct sum

Ls
iD1 Si with each Si irreducible. For each i , let PSi be a pro-

jective envelope of Si in C.G/. The projection M � S1 extends to a C.G/-equivariant
morphism ˛1 W PS1 !M . It is clear that coker.˛1/ has G-cosocle isomorphic to

Ls
iD2 Si

and Im.˛1/ has G-cosocle S1. Continuing this with coker.˛1/, we get a finite filtration
of M such that each graded piece, say gri .M/, has an irreducible G-cosocle. Since M is
torsion as a ƒ-module if and only if each gri .M/ is, we are reduced to prove (5.9) for
all gri .M/.

Let M be a quotient of P�_ for some irreducible � 2 C.G/. Let P D P�_ , E, R be
as before.

Definition 5.26. We say that M 2 Cfg; tor.G/ is elementary8 if there exists a short exact
sequence in C.G/:

0! P
a
! P !M ! 0; (5.10)

where P 2 C.G/ is a quotient of P and is finite free as a ƒ-module, and

a 2 R WD R=Ann.m.P //:

Lemma 5.27. Theorem 5.24 is true if M is an elementary quotient of P .

Proof. Let P and a 2 R be as in (5.10). Since P is a free ƒ-module, taking homology
of (5.10) we obtain

dimF H0.T1.p
n/=Z1;M/ D dimF H1.T1.p

n/=Z1;M/

and
Hi .T1.p

n/=Z1;M/ D 0 for all i � 2:

Hence, it suffices to prove (5.9) when i D 0. Since a is P -regular and R acts faithfully
on P (by Lemma 5.19), a is also R-regular. Since R has Krull dimension 2r by Propo-
sition 5.20, we may extend a to a system of parameters of R, say a1 D a; a2; : : : ; a2r .
Then R=.a1; : : : ; a2r / is finite-dimensional over F and so M=.a2; : : : ; a2r / has finite
length in C.G/. By Lemma 5.3, we deduce that

dimF H0.T1.p
n/=Z1;M=.a2; : : : ; a2r //� �.n/r ;

and we conclude by repeatedly applying Lemma 5.21 to M=.a2; : : : ; a2r�1/; : : : ;M .

Remark 5.28. Let M be an elementary quotient of P and let P ; a 2 R be as in (5.10).
Moreover, we assume n D .n; : : : ; n/ is parallel. Since P is finite free over ƒ, we have

dimF P T1.pn/ � ŒK1 W T1.p
n/� � p2rn:

8The notation is motivated by the corresponding one in commutative ring theory; see for
instance [17, Section 11.6].
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From Lemma 5.21 we deduce that

dimF MT1.pn/ � p.2r�1/n:

This shows that the upper bound (5.9) is almost optimal.

Proof of Theorem 5.24. For each i � 0, denote by .Ci / the inequality

dimF Hi .T1.p
n/=Z1;M/� �.n/rp.2r�1/�.n/:

We will prove .Ci / for any M 2 Cfg; tor.G/ by induction on i .
First prove .C0/. By Lemma 5.25, we may assume M 2 Cfg; tor.G/ is a quotient of

P D P�_ for some irreducible � 2 C.G/. By Proposition 5.17, we may find P 2 C.G/,
which is finite free as a ƒ-module and has the same K-cosocle as M , such that M is
a quotient of P . In particular, P has the same G-cosocle as M and we may view P as
a quotient of P .9 Set R D R=Ann.m.P //. By Proposition 5.20, R has Krull dimension
2r and is finite over a formally smooth subring A Š F ŒŒy1; : : : ; y2r ��. We view m.M/

as an A-module. Since m.M/ has Krull dimension < 2r by Corollary 5.16, there exists
a non-zero a 2 A which annihilates m.M/. In particular, we obtain a surjection

P=aP �M: (5.11)

Proposition 5.20 (ii) shows that P is flat over A, hence a is P -regular and P=aP is an
elementary module. By Lemma 5.27, .C0/ holds for P=aP , hence also holds for M .

Now we assume .Ci / holds for any object in Cfg; tor.G/, and prove .CiC1/ for (the
fixed) M . Let M 0 be the kernel of (5.11). Taking homology we obtain an exact sequence

HiC1.T1.p
n/=Z1; P =aP /! HiC1.T1.p

n/=Z1;M/! Hi .T1.p
n/=Z1;M

0/:

Since M 0 2 Cfg; tor.G/, .Ci / holds for M 0 by inductive hypothesis and .CiC1/ holds for
P=aP by Lemma 5.27, we obtain that .CiC1/ holds for M .

5.4. Change of groups

We keep the notation in the previous subsection. For n � 1, let

K1.p
n/ WD K1 \K0.p

n/ D

�
1C pZp pZp
pnZp 1C pZp

�
: (5.12)

These groups are closely related to the group T1.pn/ in the sense that letting

D D

�
1 0

0 pb
n
2 c

�
and n0 D bn

2
c C 1, we have

D�1K1.p
n/D < T1.p

n0/; ŒT1.p
n0/ W D�1K1.p

n/D� � p;

ˇ̌̌̌
n0 �

n

2

ˇ̌̌̌
� 1: (5.13)

9Alternatively, we may apply Proposition 5.11 to obtain such an object P (but without cosocle
condition).
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On the other hand, using (essentially) the fact that the restriction of F ŒK1=K1.pn/� to
. 1 0
pZp 1 / is uniserial, which follows from the Iwahori decomposition for K1 and the fact

that . 1 0
pZp 1 / is pro-cyclic, Marshall [19, Corollary 14] proved the following interesting

result.

Lemma 5.29. LetL� F ŒK1=K1.pn/� be a submodule of dimension d , and let the base p
expansion of d be written as

d D

lX
iD1

p˛.i/;

where ¹˛.i/º is a non-increasing sequence of non-negative integers. Then there exists
a filtration

0 D L0 � � � � � Ll D L

of L by submodules Li such that Li=Li�1 Š F ŒK1=K1.p˛.i/C1/�.

If n D .n1; : : : ; nr / 2 .Z�1/r , let

K1.p
n/ D

rY
iD1

K1.p
ni /:

Theorem 5.30. LetM 2Cfg; tor.G/ and letLbe any sub-representation of F ŒK1=K1.pn/�

which factorizes as˝riD1Li with Li � F ŒK1=K1.pni /�. Then for i � 0 we have

dimF Hi .K1=Z1;M ˝ L/� �.n/2rp.r�
1
2 /�.n/:

In particular, if n D .n; : : : ; n/ is parallel, then

dimF Hi .K1=Z1;M ˝ L/� n2rp.r�
1
2 /n:

Proof. The proof goes as that of [19, Lemma 19]. For the convenience of the reader, we
briefly explain it. First, ifL D F ŒK1=K1.pm/� for some m 2 .Z�1/r , we apply Shapiro’s
lemma to obtain

Hi .K1=Z1;M ˝ L/ Š Hi .K1.p
m/=Z1;M/: (5.14)

Using a suitable diagonal element of G, precisely

D D

  
1 0

0 p
bm1c

2

!
; : : : ;

�
1 0

0 pb
mr
2 c

�!
we obtain by (5.13) that for some m0,

D�1K1.p
m/D � T1.p

m0/; ŒT1.p
m0/ W D�1K1.p

m/D� � pr ;

ˇ̌̌̌
m0i �

mi

2

ˇ̌̌̌
� 1:

Since M carries a compatible action of G, we have natural isomorphisms

Hi .K1.p
m/=Z1;M/ Š Hi .D

�1K1.p
m/D=Z1;M/:
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Hence we deduce from [19, Lemma 20] that

dimF Hi .K1.p
m/=Z1;M/ � pr dimF Hi .T1.p

m0/=Z1;M/

and the result follows from Theorem 5.24.
For general L, Lemma 5.29 provides a finite filtration of L

0 D L0 � L1 � � � � � L

such that every quotient Li=Li�1 is isomorphic to F ŒK1=K1.pm/� for some m � n and
each isomorphism class of quotient occurs at most pr times. We then deduce from the
first case that

dimF Hi .K1=Z1;M ˝ L/ � p
r
X
m�n

dimF Hi .K1.p
m/=Z1;M/

�

X
m�n

�.m/rp.r�
1
2 /�.m/

� �.n/2rp.r�
1
2 /�.n/:

Here we have used the fact that the cardinality of the set ¹m W m � nº is
Qr
iD1 ni , hence

bounded by �.n/r .

5.5. GL2.Qp/ vs SL2.Qp/

For the application in Section 6, we need to consider smooth admissible F -representations
of G0 D

Qr
iD1 SL2.Qp/ and their Pontryagin duals. The results above translate to this

situation. To explain this, we give the proof of the following analog of Theorem 5.24.
If H is a subgroup of G, we denote by H 0 the intersection H \ G0.

Theorem 5.31. Let M 0 2 Cfg; tor.G0/. Then for all i � 0,

dimF Hi .T1.p
n/0=Z01;M

0/� �.n/rp.2r�1/�.n/:

Proof. After twisting we may assume the central character of M 0 is trivial. Then we may
extendM 0 to be an objectMC in Cfg; tor.GC/ by letting Z act trivially, where GC WD G0Z.
Note that T1.pn/ is contained in GC.

It is easy to see that GC is a normal subgroup of G of finite index. Let

M WD IndG
GC
MC;

which is an object in Cfg; tor.G/. We can apply Theorem 5.24 to M and obtain

dimF Hi .T1.p
n/=Z1;M//� �.n/rp.2r�1/�.n/:

Since MC is a direct summand of M jGC by Mackey’s theorem, we obtain

dimF Hi .T1.p
n/=Z1;M

C//� �.n/rp.2r�1/�.n/:

Since T1.p
n/=Z1 Š T1.p

n/0=Z01, restricting MC to G0 gives the result.
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6. Application

Let F be a number field of degree r , and let r1 (resp. 2r2) be the number of real (resp. non-
real) places. Let F1 D F ˝Q R, so that SL2.F1/ Š SL2.R/r1 � SL2.C/r2 . LetK1 be
the standard maximal compact subgroup of SL2.F1/.

Let ¹�1; : : : ; �rº be the set of complex embeddings of the number field F and let
d D .d1; : : : ; dr / 2 .Z�1/r be an r-tuple indexed by the �i such that di D dj when �i
and �j are complex conjugate to each other. Let Wd be the representation of SL2.F1/
obtained by forming the tensor product� O

�i real

Symdi C2

�O� O
¹�i ;�j º complex

Symdi C2
˝ Sym

djC2

�
:

If Kf � SL2.Af / is a compact open subgroup, we write

Y.Kf / WD SL2.F /nSL2.A/=KfK1;

and still use Wd to denote the local system on Y.Kf / attached to Wd.

Theorem 6.1. If F is not totally real and Kf � SL2.Af / is a compact open subgroup,
then

dimC Hi .Y.Kf /;Wd/�� �.d/r�
1
2C�;

where �.d/ D maxi¹diº.

Proof. The proof follows closely the one presented in [19, Section 5]. We content our-
selves with briefly explaining the main ingredients. Below we abuse the notation by letting
the same letters to denote subgroups of SL2 obtained by intersection from GL2. Write
Y D Y.Kf / in the proof.

(1) Choose a rational prime p � 5 which splits completely in F . By [19, Lemma 18],
there exists a p-adic local system Vd defined over O D W.F/ such that

dimC Hi .Y;Wd/ D dimOŒ 1p �
Hi .Y; Vd/:

For this we need to choose a bijection between the set of complex embeddings F ,! C
and p-adic embeddings F ,! Qp , as done in [19, Lemma 18].

(2) As is explained in [19, Section 5], by passing to an open subgroup we may assume
that Kf has the form

Q
v Kf;v , with Kf;v D K1 (� SL2.Zp/) for all v j p. To achieve

this, we could first choose p such that Kf;v D SL2.Zp/, then pass to an open subgroup
with Kf;v D K1.

(3) Emerton’s theory of completed homology gives a bound ([19, Section 5, (34)
and (35)])

dimOŒ 1p �
Hq.Y; Vd/ �

X
iCjDq

dimOŒ 1p �
Hi .K1=Z1; �Hj;Qp ˝ Vd/;

where �Hj is the j -th completed homology of Emerton with (trivial) coefficients in O, and�Hj;Qp D �Hj ˝Zp Qp . Note that �Hj is a coadmissible module over OŒŒK1�� and carries
a natural compatible action of

Qr
iD1 SL2.Qp/.
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(4) Let n D .n1; : : : ; nr /, where ni is the smallest integer such that pni�1 � 1 � di
(resp. pni�1 � 1 � di

2
) if �i is real (resp. complex). By [19, Lemma 17] we may choose

lattice Vdi � Vdi such that Vdi =p � F ŒŒK1=K1.pni /��. Let Ld be the reduction mod p
of
Nr
iD1 Vdi .

(5) Let Mj be the reduction modulo p of the image of �Hj ! �Hj;Qp . We then have

dimOŒ 1p �
Hi .K1=Z1; �Hj;Qp ˝ Vd/ � dimF Hi .K1=Z1;Mj ˝ Ld/:

(6) Because SL2.C/ does not admit discrete series, the assumption that F is not
totally real implies that �Hj;Qp is a torsion OŒŒK1��˝Zp Qp-module, see [8, Theorem 3.4].
So by Lemma 2.6, Mj is a torsion ƒ-module. Therefore our Theorem 5.30 applies, via
Theorem 5.31, and shows that

dimF Hi .K1;Mj ˝ Ld/� �.n/2rp.r�
1
2 /�.n/ �� �.d/r�

1
2C�:

Remark 6.2. Our Theorem 6.1 only gives interesting bound when all the di tend to infin-
ity at a parallel rate, while [19, Theorem 1] allows a subset of the weights di to be fixed.
Nonetheless, this already includes the most interesting cases: for example, when F is
imaginary quadratic, we do have d1 D d2.

Next we deduce Theorem 1.1 in the introduction. We change slightly the notation.
Let Z1 be the center of GL2.F1/, Kf be a compact open subgroup of GL2.Af / and let

X D GL2.F /nGL2.A/=KfZ1:

If d D .d1; : : : ; dr1Cr2/ is an .r1 C r2/-tuple of positive even integers, let Sd.Kf / denote
the space of cusp forms onX which are of cohomological type with weight d. Then using
the Eichler–Shimura isomorphism, see [19, Section 2.1], Theorem 6.1 can be restated
as follows.

Theorem 6.3. If F is not totally real, then for any fixed Kf and d D .d1; : : : ; dr1Cr2/ as
above, we have

dimC Sd.Kf /�� �.d/r�
1
2C�:

In particular, when d D .d; : : : ; d / is parallel, we obtain

dimC Sd.Kf /�� d
r� 12C�

which strengthens [19, Corollary 2] by a power d
1
6 .

Appendix A. A generalization of Breuil–Paškūnas’ construction

In this appendix, we generalize a construction of Breuil and Paškūnas in [6] for GL2.F /
to a finite product of GL2.F /, where F is a local field with finite residue field k of
characteristic p. Let O be the ring of integers in F with$ a fixed uniformizer. We assume
p > 2 for simplicity.

In [6, Section 9] (which is based on [24]), Breuil and Paškūnas have proven the
following theorem, see [6, Corollary 9.11].
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Theorem A.1. Let � be an admissible representation of GL2.F / such that .$ 0
0 $ / acts

trivially on � and �� WD socGL2.O/ � . Then there exists an injection � ,! �, where �
is a smooth representation of GL2.F / such that �jGL2.O/ Š InjGL2.O/�� (an injective
envelope of�� in the category of smooth F -representations of GL2.O/).

Let r � 1 be an integer. Denote

G D

rY
iD1

GL2.F /; K D

rY
iD1

GL2.O/; Z$ D

rY
iD1

$ZId:

The main result of this appendix is the following.

Theorem A.2. Let � be an admissible representation of G such that Z$ acts trivially
on � and�� WD socK � . Then there exists an injection � ,! �, where � is a representa-
tion of G such that �jK Š InjK�� .

If moreover � admits a central character �, then we may require � to be an injective
envelope of �� in the category of smooth representations of K with the central charac-
ter �jK.

The proof of Theorem A.2 is an easy generalization of the original proof in [6, Sec-
tion 9]. We only indicate the changes needed; for this we keep mostly the notation there.
We define the following three subgroups of GL2.F / (where p D $O and Œ �� means
Teichmüller lift):

I1 D

�
1C p O

p 1C p

�
; I D

�
O� O

p O�

�
;

H D

²�
Œ�� 0

0 Œ��

�
W �;� 2 k�

³
� I:

Let I1; I;H be respectively a product of r copies of I1, I , H , viewed as subgroups of G.
Then H has order prime to p and provides a section for I� I=I1. Let R1 denote the
normalizer of I in G, which as a group is generated by I and the elements ¹ti W 1 � i � rº,
where ti 2 G takes . 0 1

$ 0 / at the index i and . 1 00 1 / at other indices. Note that ti tj D tj ti
and t2i 2 Z$ . In other words,

� WD hti W 1 � i � ri=Z$ Š

rY
iD1

Z=2Z:

It is clear that � normalizes H and there is an isomorphism of groups

R1=I1Z$ Š H Ì�: (A.1)

Lemma A.3. Let � be a smooth admissible representation of R1 on which Z$ acts triv-
ially. Let � W � jI ,! InjI.� jI/ be an injective envelope of � jI. Then there exists an action
of R1 on InjI.� jI/ such that � is R1-equivariant.

Proof. The proof is identical to that of [6, Lemma 9.5], using the (generalized) property
(S) defined in [6, Definition 9.1] which holds as p > 2 (see [6, Proposition 9.2]).
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Any F -representation V of H is semi-simple and decomposes as
L
� V�, where

� W H! F� runs over all characters and V� denotes the �-isotypic subspace. For a char-
acter � W H! F� and t 2 R1, we let �t denotes the conjugate character

�t .g/ WD �.t�1gt/I

this induces an action of� on the set of characters ¹� W H! F�º. We write h�:�i for the
�-orbit generated by �, that is, the set of characters (without multiplicities) ¹�t W t 2 �º.

Lemma A.4. Let V be a finite-dimensional F -representation of H such that

dimF V� D dimF V�t for all t 2 �: (A.2)

Then the action of H on V can be extended to an action of H Ì�.

Proof. We will construct an action of � on V by constructing inductively actions of
�s WD

Qs
iD1 Z=2Z (so�r D �). The case s D 1 is easy, see the proof of [6, Lemma 9.6].

Assume the action of �s�1 has been constructed. To construct the action of �s amounts
to defining an action of ts which has order 2 and commutes with the given one of �s�1.
It is clear that V decomposes as a direct sum of subspaces each of which has the formL
�02h�s :�i

V�0 (i.e. with respect to the action of �s), so it suffices to define the action
of ts on each summand. Fixing a character �, we have two cases:
� If �ts D �, then h�s :�i D h�s�1:�i, and we let ts acts trivially on

L
�02h�s :�i

V�0 .
� If �ts ¤ �, then we have a disjoint union

h�s :�i D h�s�1:�i [ h�s�1:�
ts i:

We choose an (arbitrary) F -linear isomorphism ��;�ts W V�
�
�! V�ts and set

��ts ;� WD �
�1
�;�ts W V�ts

�
�! V�:

For any t 2 �s�1, we consider

V�

��

��

V�t

��

�

t�1oo

V�ts �

t // V�t �ts

and define ��t ;�t �ts W V�t
�
�! V�t �ts to be the composition t ı � ı t�1, respectively

��t �ts ;�t WD �
�1
�t ;�t �ts W V�t �ts

�
�! V�t :

Clearly, putting them together uniquely determines a (compatible) action of ts , hence
of �s .

This finishes the proof by induction.

Lemma A.5. Let � be an irreducible F -representation of K and InjK � an injective
envelope of � . Then V WD .InjK �/

I1 satisfies the condition (A.2).
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Proof. Any irreducible � 2 RepF .K/ has the form
Nr
iD1 �i with each �i 2 RepF .K/.

We have

.InjK �/
I1 D

�
InjQr

iD1 GL2.k/ �
�I1
Š

 
rO
iD1

InjGL2.k/ �i

!I1

D

rO
iD1

.InjGL2.k/ �i /
I1 I

here we have used the isomorphism

InjQr
iD1 GL2.k/ � Š

rO
iD1

InjGL2.k/ �i :

The result then follows from a similar result in the case r D 1, see for instance the proof
of [6, Lemma 9.6].

Proof of Theorem A.2. Since � is admissible, we may take an injective envelope

� W � ,! �:

We will define an action of R1 on � which extends the given action of I on � and such
that � is R1-equivariant.

By Lemma A.5, V WD �I1 satisfies condition (A.2). On the other hand, since � carries
an action of G, W WD �I1 also satisfies (A.2). So we may decompose I-equivariantly V
as W ˚W 0 with W 0 satisfying (A.2), hence a decomposition

�jI D InjIW ˚ InjIW
0

such that � � InjIW . Lemma A.4 allows us to define an action of �, hence an action
of R1 on W 0 via (A.1). Then Lemma A.3 allows to extend the action of R1 on � (resp.
on W 0) to the whole InjIW (resp. InjIW

0). Putting them together, we obtain an action
of R1 on � which makes � to be R1-equivariant. Finally, using the “amalgame” structure
of GL2.F / which generalizes to G, the two actions of K and R1 on � glue to an action
of G on � (such that Z$ acts trivially), as in [24, Corollary 5.5.5]. Note that in [24],
Corollary 5.5.5 is proved by passing to diagrams, but this can be circumvented because
we can simply write down the gluing action of G using the ones of K and R1.

The last assertion is clear, by taking the sub-space of �� � � on which the center
of G acts via �.
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