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Abstract. We develop the theory of fundamental classes in the setting of motivic homotopy theory.
Using this we construct, for any motivic spectrum, an associated twisted bivariant theory, extend-
ing the formalism of Fulton and MacPherson. We import the tools of Fulton’s intersection theory
into this setting: (refined) Gysin maps, specialization maps, and formulas for excess of intersection,
self-intersections, and blow-ups. We also develop a theory of Euler classes of vector bundles in
this setting. For the Milnor–Witt spectrum recently constructed by Déglise–Fasel, we get a bivari-
ant theory extending the Chow–Witt groups of Barge–Morel, in the same way the higher Chow
groups extend the classical Chow groups. As another application we prove a motivic Gauss–Bonnet
formula, computing Euler characteristics in the motivic homotopy category.
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1. Introduction

Historical background

From Poincaré to Grothendieck, duality has been a central component in the study of
(co)homology theories. It led Grothendieck, building on Serre’s duality, to what can
nowadays be considered as the summit of such a theory, the formalism of the six oper-
ations. This formalism appeared in two flavours in Grothendieck’s works in algebraic
geometry: that of coherent sheaves and that of étale sheaves.

In the coherent setting, abstract duality was realized through the adjunction of the
exceptional functors .fŠ; f Š/ (see [38, Chap. 5]). The concept of dualizing complex
was pivotal: it was discovered soon afterwards that Borel–Moore homology [9] can be
described as homology with coefficients in the (topological) dualizing complex. The the-
ory of `-adic sheaves developed in SGA4 [1] was the first complete incarnation of the
six functors formalism, and for a long time the only one available in algebraic geometry.
A key aspect of the six functor formalism that was highlighted in SGA5 [37] is the abso-
lute purity property. Stated in op. cit. as a conjecture, it was partially solved by Thomason
[65], and completely settled later by Gabber [32, 42].

More recently, Morel and Voevodsky introduced motivic homotopy theory [54, 67].
As in algebraic topology, the stable motivic homotopy category classifies cohomology
theories which satisfy homotopy invariance with respect to the algebraic affine line A1.
The stable motivic homotopy category also satisfies the six functors formalism (see [2]).
Moreover, it satisfies a suitable universal property [62] and contains the classical theories
of algebraic geometry, such as Betti cohomology, étale `-adic cohomology, algebraic de
Rham cohomology in characteristic 0, and rigid cohomology in positive characteristic.
It also incorporates newer theories such as motivic cohomology, algebraic K-theory and
algebraic cobordism. The last two theories share the common property of being oriented,
like their respective topological analogues, singular cohomology, complex K-theory, and
complex cobordism. However, a salient feature of the motivic homotopy category is that
it also contains theories which are not oriented, such as Chow–Witt groups [5, 27, 28]
and Milnor–Witt motivic cohomology [19], Balmer’s higher Witt groups [4], hermitian
K-theory (also called higher Grothendieck groups [39, 58]), certain variants of algebraic
cobordism [57], and the stable cohomotopy groups, represented by the motivic sphere
spectrum.

The formalism of six operations gives rise to a great deal of structure at the level of
cohomology and Borel–Moore homology groups. Parts of this structure were axiomat-
ized by Bloch and Ogus [7], via their notion of Poincaré duality theory, and later through
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the bivariant theories of Fulton and MacPherson [34]. The key element of these axio-
matizations was the notion of the fundamental class, which was used to express duality
isomorphisms.

Main problems

Our goal in this paper is to incorporate Fulton and MacPherson’s ideas into stable motivic
homotopy theory, thereby obtaining a universal bivariant theory. In order to treat ori-
ented and non-oriented spectra in a single theory, we have to replace Tate twists, as used
for example in the Bloch–Ogus axiomatic, by “Thom twists”, i.e., twists with respect to
vector bundles (or more generally, with respect to virtual vector bundles). Let us give a
justification for this idea.

Our first inspiration is Morel and Voevodsky’s homotopy purity theorem, which
asserts that, for smooth closed pairs .X; Z/, the homotopy type of X with support in
Z is isomorphic to ThZ.NZX/, the Thom space of the normal bundle of Z in X . Here
the homotopy type of ThZ.NZX/ should be understood as the homotopy type of Z twis-
ted by the vector bundleNZX . Another motivation is Morel’s work [53] on computations
of homotopy groups, in which a crucial role is played by the construction of good transfer
maps for finite field extensions in the unstable homotopy category. In this work, twists
are usually avoided but at the cost of choosing orientations. Similar constructions enter
into play in Voevodsky’s theory of framed correspondences [24,36,68], where the “fram-
ing” provides a chosen trivialization of the normal bundle. Finally, Calmès and Fasel have
introduced the notion of MW-correspondences, based on Chow–Witt theory, where trans-
fers do appear with a twist. These examples show the utmost importance of having good
transfer or Gysin morphisms in A1-homotopy theory. The last indication which points
out to our central construction is the extension obtained in [43] of the finer operations
of Fulton’s intersection theory, such as refined Gysin morphisms, in the motivic Borel–
Moore theory (see in particular [43, Def. 3.1]). The translation becomes possible once one
recognizes Borel–Moore motivic homology as a particular instance of bivariant theory.

Another fundamental model for our theory is that of Chow–Witt groups. In this theory,
the necessity of considering twists appears most notably when Gysin morphisms are at
stake (see [27, 28]). Much of the interest in these groups comes from the fact that they
are natural receptacles for Euler classes of vector bundles. The Euler class provides an
obstruction for a vector bundle to split off a trivial summand of rank one (see [5, 30, 53]).
In this paper we also develop a general theory of Euler classes in A1-homotopy theory,
and show that they have the expected obstruction-theoretic property (Corollary 3.1.8). Our
motivation to introduce these Euler classes is to formulate excess intersection formulas in
our bivariant theories; see the following theorem.

Main construction

The Thom space functor ThX , associating to a vector bundle E over a scheme X its
(stable) Thom space ThX .E/ 2 SH .X/, canonically extends to the Picard groupoid of
virtual vector bundles over X (see [60, 4.1]). Given any motivic spectrum E 2 SH .S/,
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we can define the .twisted/ bivariant theory with coefficients in E, graded by integers
n 2 Z and virtual vector bundles v on X , as the following group:

En.X=S; v/ WD HomSH .S/.ThX .v/Œn�; pŠ.E//;

for any morphism p W X ! S that is separated of finite type. For E D SS , we simply
write Hn.X=S; v/ and call this bivariant A1-theory. The construction is functorial in E
so that, given any ring spectrum E over S with unit � W SS ! E, we get a canonical map

H�.X=S; v/! E�.X=S; v/;

expressing the universal role of bivariant A1-theory.1 These bivariant theory groups have
rich functoriality, including covariance for proper maps and contravariance for étale maps;
see §2.2.7 for details. There is also a composition product, which takes the form

E�.Y=X;w/˝ E�.X=S; v/! E�.Y=S;w C q
�v/; .y; x/ 7! y:x;

for schemes Y=X=S and virtual vector bundles v=X , w=Y (see again §2.2.7). That being
given, here is the central construction of this paper.

Theorem (Theorem 3.3.2 and Proposition 3.3.4). For any smoothable lci2 morphism f W

X ! Y , there exists a canonical class �f , called the fundamental class of f :

�f 2 H0.X=Y; hLf i/;

where hLf i is the virtual tangent bundle of f .equivalently, the virtual bundle associated
with the cotangent complex of f , which is perfect under our assumption/.

These classes satisfy the following properties:

(i) (Associativity) Consider morphisms f W X ! Y and g W Y !Z such that f , g, and
g ı f are smoothable and lci. Then

�g :�f ' �gıf

in H0.X=Z; hLf i C f �hLgi/ ' H0.X=Z; hLgıf i/.

(ii) (Excess intersection) Consider a cartesian square

Y T

X S

v

g

� u

f

(1.0.0.a)

1We call this map the A1-regulator map, by extension of Beilinson’s terminology; see Definition
4.1.2.

2A morphism of schemes is smoothable if it admits a (global) factorization into a closed immer-
sion followed by a smooth morphism; such a morphism is lci (a local complete intersection) if the
closed immersion is a regular immersion; see our conventions.
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such that f and g are smoothable lci. Consider a factorization X
i
�! P

p
�! S of f

such that p is smooth and i is a closed immersion. Let k be the pullback of i along u
and denote by � the quotient bundle of the natural monomorphism Nk ! u�1Ni of
vector bundles. Then there exists an Euler class e.�/ 2 H0.Y=Y; h�i/ such that

��.�f / ' e.�/:�g

in H0.Y=T; v�hLf i/ ' H0.Y=T; hLgi � h�i/.
In particular, if the square � is tor-independent, we get ��.�f / ' �g .

This construction is universal in the stable motivic homotopy category. Indeed, given
a motivic ring spectrum E, the regulator map (Definition 4.1.2) gives rise to fundamental
classes with coefficients in E. This in turn yields Gysin homomorphisms

f Š W En.Y=S; e/! En.X=S; f
�.e/C hLf i/; y 7! �f :y;

for a smoothable lci morphism f W X ! Y , and the associativity (resp. excess inter-
section) property above corresponds to the compatibility with composition (resp. excess
intersection formula) satisfied by these Gysin morphisms, as in Chow theory. Note that for
oriented theories like Borel–Moore motivic homology, the orientation provides a Thom
isomorphism that replaces the virtual twist hLf i with a shift by the relative virtual dimen-
sion �.Lf /, so that the Gysin homomorphism takes a more familiar shape.3

From a categorical point of view, the universality of our construction is best stated in
the language of the six operations: the fundamental class �f as above corresponds to a
natural transformation of functors

pf W f
�.�/˝ ThX .Lf /! f Š;

which we call the purity transformation associated to f (see Section 4.3). Then by adjunc-
tion, we get trace and cotrace maps, extending the classical construction of SGA4:

trf W fŠ†Lf f � ! Id; cotrf W Id! f�†
�Lf f Š:

These natural transformations can be considered as a natural extension, and in fact an
important part, of the six functors formalism.4 The Gysin morphisms in the bivariant the-
ory above are immediate consequences of these transformations, when applied to the ring
spectrum E. Moreover, one gets Gysin morphisms (wrong-way variance) for the tradi-
tional package of co/homological theories, with and without proper support, associated
with a spectrum (even without a ring structure). We refer the interested reader to §4.3.3
for details, and to Section 4.4 for a list of concrete examples.

3Similar simplifications of twists occur for the so-called Sp-oriented theories of Panin and Wal-
ter. We leave the general formulation for future works. The reader can also consult Example 4.4.6.

4In fact, we show that our construction allows one to define these transformations in greater
generality, say for an arbitrary motivic .1; 1/-category of coefficients in the sense of [46, Chap. 2,
Def. 3.5.2]. See §4.3.4.
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When f is smooth, the map pf considered above is invertible and coincides with
the classical purity isomorphism of the six functors, as defined by Ayoub (see §2.1.7).
In general, the purity transformation measures the failure of a given motivic spectrum
E 2 SH .Y / to satisfy the purity property with respect to f (see Definition 4.3.7);
when f is a closed immersion between regular schemes, this property corresponds to the
notion of absolute purity (see Definition 4.3.11), axiomatizing the original conjecture of
Grothendieck. Such an axiomatization is not new (see [17, 1.3], [13, A.2]). However, the
formulation we obtain here is more flexible and has a number of advantages (see Example
4.3.12). The absolute purity is essential for arithmetic applications, and has already been
obtained in several contexts (rational motives, étale motives, KGL-modules). We believe
that new examples will be obtained in the future (work in that direction is in progress).
Finally, our construction has been applied in [31, Appendix A] to prove a new absolute
purity result for motivic cohomology.

Further applications

We finally give several applications of our formalism. The first one is the possibility of
extending Fulton’s theory of refined Gysin morphism to an arbitrary ring spectrum (Defin-
ition 4.2.5). These new refined Gysin morphisms are used to define specialization maps
in any representable theory, on the model of Fulton’s definition of specialization for the
Chow group. In fact, our specialization maps can be lifted to natural transformations of
functors (see §4.5.6 for details). Most interestingly, the theory can be applied to Chow–
Witt groups and give specializations of quadratic cycles (see Example 4.5.5).

Note that the idea of refining classical formulas to the quadratic setting has been
explored recently by many authors [27,29,40,45,49]. In this direction another application
of the theory we develop is a motivic refinement of the classical Gauss–Bonnet formula
[37, VII 4.9]. Given a smooth proper S -scheme X , the categorical Euler characteristic
�cat.X=S/ is the endomorphism of the motivic sphere spectrum SS given by the trace of
the identity map of †1C .X/ 2 SH .S/. A simple application of our excess intersection
formula then computes this invariant as the degree of the Euler class of the tangent bundle
TX=S (see Theorem 4.6.1). This result is a generalization of a theorem of Levine [49, Thm.
1], which applies when S is the spectrum of a field and p W X ! S is smooth projective.
It also recovers the SL-oriented variant in [50, Theorem 1.5], used in op. cit. to prove a
certain explicit formula for the quadratic Euler characteristic conjectured by Serre.

Related work and further developments

Bivariant theories represented by oriented motivic spectra were studied in detail in [16].
In that setting, the fundamental class of a regular closed immersion is given by a con-
struction of Navarro [55], which itself is based on a construction of Gabber in the setting
of étale cohomology [42, Exp. XVI]. A similar construction to our fundamental class for
closed immersions, in the context of equivariant stable A1-homotopy, has been developed
independently in recent work of Levine [48].
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An immediate but important consequence of our work here is that the cohomology
theory represented by any motivic spectrum E admits a canonical structure of framed
transfers; that is, it extends to a presheaf on the category of framed correspondences (see
[24, 68]). It is proven in [24] that this structure can be used to recognize infinite P1-loop
spaces, in the same way that E1-structures can be used to recognize infinite loop spaces
in topology (see also [36]). In [22,25], framed transfers are applied to construct categories
of finite E-correspondences, for any motivic spectrum E, together with canonical func-
tors from the category of framed correspondences. As explained in the cited works, such
functors play an important role in the yoga of motivic categories. Another application
of the existence of framed transfers is a topological invariance statement for the motivic
homotopy category, up to inverting the exponential characteristic of the base field [26].

An application of our theory of Euler classes can be found in [44], where it is used to
give a characterization of the characteristic class of a motive.

Finally, our constructions can be extended to the setting of quasi-smooth morphisms
in derived algebraic geometry. This yields a formalism of motivic virtual fundamental
classes [47].

Contents

In Section 2 we construct the bivariant theory and cohomology theory associated to a
motivic ring spectrum, and study their basic properties. Following Fulton–MacPherson
[34], we also introduce the abstract notion of orientations of morphisms in this setting;
fundamental classes will be examples of orientations. We then show how any choice of
orientation gives rise to a purity transformation.

The heart of the paper is Section 3, where we construct fundamental classes and verify
their basic properties. In the case where f is smooth, the fundamental class comes from
the purity theorem (see Definition 2.3.5). For the case of a regular closed immersion we
apply the technique of deformation to the normal cone. We then explain how to glue
these to obtain a fundamental class for any quasi-projective lci morphism. Throughout
this section, we restrict our attention to the bivariant theory represented by the motivic
sphere spectrum.

Finally, in Section 4, we return to the setting of the bivariant theory represented by
any motivic ring spectrum. We show how the fundamental class gives rise to Gysin homo-
morphisms. We prove the excess intersection formula in this setting (Proposition 4.2.2).
We also discuss the purity transformation, the absolute purity property, and duality
isomorphisms (identifying bivariant groups with certain cohomology groups). We then
import some further constructions from Fulton’s intersection theory, including refined
Gysin maps and specialization maps. Finally, we conclude with a proof of the motivic
Gauss–Bonnet formula mentioned above.

Conventions

The following conventions are in place throughout the paper:
(1) All schemes in this paper are assumed to be quasi-compact and quasi-separated.
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(2) The term s-morphism is an abbreviation for “separated morphism of finite type”.
Similarly, an s-scheme over S is an S -scheme whose structural morphism is an
s-morphism.

(3) We write A1 for the affine line over Spec.Z/ and Gm for the complement of the origin.
For a scheme X , we write A1X and GmX for A1 �X and Gm �X , respectively.

(4) We follow [6, Exps. VII–VIII] in our conventions on regular closed immersions and
lci morphisms. Recall that if X and Z are regular schemes, or are both smooth over
some base S , then any closed immersion Z ! X is regular. Given a regular closed
immersion i W Z ! X , we write Ni , NZX , or occasionally N.X;Z/, for its normal
bundle. Recall that a morphism of schemesX ! S is lci (= a local complete intersec-

tion) if it admits, Zariski-locally on the source, a factorization X
i
�! Y

p
�! S , where p

is smooth and i is a regular closed immersion. If it is also smoothable, then it admits
such a factorization globally. This is for example the case if f is quasi-projective (in
the sense that it factors through an immersion into some projective space PnS ).

(5) A cartesian square of schemes
X 0 Y 0

X Y

p

f

(1.0.0.b)

is tor-independent if the groups TorOY
i .OX ;OY 0/ vanish for i > 0. In this case we

also say that p is transverse to f . Recall that if p or f is flat, then this condition is
automatic.

(6) We will make use of the language of stable1-categories [52]. Given a stable1-cat-
egory C , we write MapsC .X; Y / for the mapping spectrum of any two objects X
and Y . We write HomC .X; Y / or simply ŒX; Y � for the abelian group of connected
components �0 MapsC .X; Y /.

(7) Given a topological S1-spectrum E, we write x 2 E to mean that x is a point in the
infinite loop space �1.X/ (or an object in the corresponding1-groupoid).

2. Bivariant theories and cohomology theories

2.1. The six operations

Given any (quasi-compact quasi-separated) scheme S , we write SH .S/ for the stable
1-category of motivic spectra, as in [40, Appendix C] or [46]. When S is noetherian and
of finite dimension, the homotopy category of SH .S/ is equivalent, as a triangulated cat-
egory, to the stable A1-homotopy category originally constructed by Voevodsky [67]. As
S varies, these categories are equipped with the formalism of Grothendieck’s six oper-
ations [2, 14]. In this subsection we briefly recall this formalism, and its 1-categorical
refinement as constructed in [46, Chap. 2] (see also [61] for another approach).

2.1.1. First, the stable presentable1-category SH .S/ is symmetric monoidal, and we
denote the monoidal product and monoidal unit by˝ and SS , respectively. It also admits
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internal hom objects Hom.E;F/ 2 SH .S/ for all E;F 2 SH .S/. For any morphism of
schemes f W T ! S , we have a pair of adjoint functors

f � W SH .S/! SH .T /; f� W SH .T /! SH .S/;

called the functors of inverse and direct image along f , respectively. If f is an s-morph-
ism,5 i.e., a separated morphism of finite type, then there is another pair of adjoint functors

fŠ W SH .T /! SH .S/; f Š W SH .S/! SH .T /;

called the functors of exceptional direct and inverse image along f , respectively. Each of
these operations is 2-functorial.

2.1.2. The six operations .˝;Hom; f �; f�; fŠ; f Š/ satisfy a variety of compatibilities.
These include:
(1) For every morphism f , the functor f � is symmetric monoidal.
(2) There is a natural transformation fŠ ! f� which is invertible when f is proper.
(3) There is an invertible natural transformation f �! f Š when f is an open immersion.
(4) The operation of exceptional direct image fŠ satisfies a projection formula against

inverse image. That is, there is a canonical isomorphism

E˝ fŠ.F/! fŠ.f
�.E/˝ F/

for any s-morphism f W T ! S and any E 2 SH .S/, F 2 SH .T /.
(5) The operation fŠ satisfies base change against inverse images g�, and similarly f Š

satisfies base change against direct images g�. That is, for any cartesian square

T 0 S 0

T S

g

q p

f

(2.1.2.a)

where f and g are s-morphisms, there are canonical isomorphisms

p�fŠ ! gŠq
�; q�g

Š
! f Šp�:

All the above data are subject to a homotopy coherent system of compatibilities (see
[46, Chap. 2, Sect. 5]).

2.1.3. The A1-homotopy invariance property of SH is encoded in terms of the six
operations as follows. For a scheme S and any vector bundle � W E ! S , the functor
�� W SH .S/! SH .E/ is fully faithful. In particular, the unit Id! ���

� is invertible.

5Using Zariski descent, the operations .fŠ; f Š/ can be extended to the case where f is locally
of finite type; assuming this extension, the reader can globally redefine the term “s-morphism” as
“locally of finite type morphism”.
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2.1.4. Given a locally free sheaf E of finite rank over S , let E D SpecS .�.E// denote the
associated vector bundle.6 There is an auto-equivalence

†E
W SH .S/! SH .S/;

called the E-suspension functor, with inverse denoted †�E . This functor is compatible
with the monoidal product ˝ via a projection formula that provides canonical isomorph-
isms †E.E/ ' E˝ †E.SS / for any E 2 SH .S/. It is also compatible with the other
operations in the sense that we have canonical isomorphisms

f �†E
'†f

�.E/f �; f�†
f �.E/

'†Ef�; fŠ†
f �.E/

'†EfŠ; f Š†E
'†f

�.E/f Š:

(2.1.4.a)

The motivic spectrum †E.SS / 2 SH .S/ is (the suspension spectrum of) the Thom
space of E , and is denoted ThS .E/. Its˝-inverse †�E.SS / is denoted ThS .�E/.

Given a motivic spectrum E 2 SH .S/, we denote by E.n/ 2 SH .S/ the motivic
spectrum †On

S .E/Œ�2n� for each n � 0. The assignment E 7! E.n/ then defines another
auto-equivalence of SH .S/, inverse to E 7! E.�n/ D †�On

S .E/Œ2n�.

2.1.5. Let Vect.S/ denote the groupoid of locally free sheaves on S of finite rank,
and Pic.SH .S// the 1-groupoid of ˝-invertible objects in SH .S/. The assignment
E 7! ThS .E/ determines a map of presheaves of1-groupoids

Th W Vect! Pic.SH /:

Moreover, if K denotes the presheaf sending S to its Thomason–Trobaugh K-theory space
K.S/, this extends to a map of E1-groups

Th W K! Pic.SH /

(see [3, Subsect. 16.2]). In particular, any perfect complex E on S defines a K-theory
class7 hEi 2 K.S/ and thus an auto-equivalence †E W SH .S/! SH .S/ and a Thom
space ThS .E/ 2 SH .S/. The formulas (2.1.4.a) also extend. Moreover, any exact tri-
angle E 0! E ! E 00 of perfect complexes induces canonically a path hEi ' hE 0i C hE 00i
in the space K.S/, hence also identifications

†E
' †E0†E00

' †E00†E0 (2.1.5.a)

and an isomorphism ThS .E/ ' ThS .E 0/˝ ThS .E 00/ in SH .S/.

6Throughout the text we will generally not distinguish between a locally free sheaf E and its
associated vector bundle E. Thus for example we will also write †E instead of †E , or similarly
hEi 2 K.S/ instead of hEi 2 K.S/ (see §2.1.5). It should always be clear from the context what is
intended.

7An abuse of language we will often commit is to say “K-theory class” when it would be more
precise to say “point of the K-theory space”.
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2.1.6. If i W Z ! S is a closed immersion, then the direct image functor i� W SH .Z/!

SH .S/ is fully faithful. Moreover, if the complementary open immersion j W U ! S

is quasi-compact, then by the Morel–Voevodsky localization theorem there is an exact
triangle

i�i
Š
! Id! j�j

�:

2.1.7. If f is a smooth s-morphism, then by Ayoub’s purity theorem, there is a canonical
isomorphism of functors

pf W †
Tf f � ! f Š;

where Tf is the relative tangent bundle. It follows in particular that f � admits a left
adjoint

f] D fŠ†
Tf

which satisfies base change and projection formulas against inverse images g�. If f is
étale then we get an isomorphism pf W f

� ' f Š, generalizing §2.1.23.

2.1.8. Let f W X ! Y be a closed immersion of s-schemes over S . Suppose that X and
Y are smooth over S , with structural morphisms p W X ! S and q W Y ! S . Then by the
relative purity theorem of Morel–Voevodsky, there exist isomorphisms of functors

q]f� ' p]†
NXY ; †�NXY p� ' f Šq�;

where NXY denotes the normal bundle.

Many further compatibilities can be derived from the ones already listed. A few that
will be especially useful in this paper are as follows:

2.1.9. Given a cartesian square as in (2.1.2.a) where f and g are s-morphisms, the base
change formula (§2.1.25) induces a natural transformation

Ex�Š W q�f Š ! gŠp�: (2.1.9.a)

It follows from the purity theorem (§2.1.7) that if f or p is smooth, then Ex�Š is invert-
ible. For example if i W Z ! S is a closed immersion, then the cartesian square

Z Z

Z S

i

i

gives rise to a canonical natural transformation

i Š ! i�: (2.1.9.b)

2.1.10. For any s-morphism f W X ! S and any pair of motivic spectra E;F 2 SH .S/,
there is a canonical morphism

ExŠ�˝ W f
Š.E/˝ f �.F/! f Š.E˝ F/

induced by adjunction from the projection formula (§2.1.24). If F is ˝-invertible, then
ExŠ�˝ is invertible.



F. Déglise, F. Jin, A. A. Khan 3946

2.2. Bivariant theories

In this subsection we construct the bivariant theory represented by a motivic spectrum,
and state its main properties. In fact, the bivariant theory is only one of the “four theories”
associated to a motivic spectrum (cf. [69, Chap. 4, Sect. 9]). For the sake of completeness
we define them all now:

Definition 2.2.1. Let S be a scheme and E 2 SH .S/ a motivic spectrum.

(i) (Bivariant theory) For any s-morphism p WX!S and any K-theory class v 2K.X/,
we define the v-twisted bivariant spectrum of X over S as the mapping spectrum

E.X=S; v/ D MapsSH .S/.SS ; p�.p
Š.E/˝ ThX .�v///

' MapsSH .S/.pŠ.ThX .v//;E/:

We also write

En.X=S; v/ D �nE.X=S; v/ D
�
SS Œn�; p�.p

Š.E/˝ ThX .�v//
�

for each n 2 Z.
(ii) (Cohomology theory) For any morphism p W X ! S and any v 2 K.X/, we define

the v-twisted cohomology spectrum of X over S as the mapping spectrum

E.X; v/ D MapsSH .S/.SS ; p�.p
�.E/˝ ThX .v///

' MapsSH .X/.SX ; p
�E˝ ThX .v//:

We also write

En.X; v/ D ��nE.X; v/ D
�
SS ; p�.p

�.E/˝ ThX .v//Œn�
�
:

for each n 2 Z.
(iii) (Bivariant theory with proper support (or homology)) For every s-morphism p W

X ! S and any K-theory class v 2 K.X/, we define the spectrum of v-twisted
bivariant theory with proper support of X over S as the mapping spectrum

Ec.X=S; v/ D MapsSH .S/.SS ; fŠ.f
Š.ES /˝ ThX .�v///:

(iv) (Cohomology with proper support) For every s-morphism p W X ! S and any
K-theory class v 2 K.X/, we define the spectrum of v-twisted cohomology with
proper support of X over S as the mapping spectrum

Ec.X=S; v/ D MapsSH .S/.SS ; fŠ.f
�.E/˝ ThX .v///:

Remark 2.2.2. Note that we have canonical identifications

E.X; v/ ' E.X=X;�v/

for any s-scheme X over S and v 2 K.X/.
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Remark 2.2.3. The bivariant groups E�.X=S; �/ were called Borel–Moore homology
groups in [16]. This terminology is justified when S is the spectrum of a field, and coin-
cides with that of [69, Chap. 4, Sect. 9]. However, in the case where S is an arbitrary
scheme, and especially singular, the homology groups E�.X=S; �/ are no longer given
by the cohomology with coefficients in a dualizing object, which is a characteristic prop-
erty of the original theory of Borel and Moore. For that reason we find the “bivariant”
terminology more appropriate.

Remark 2.2.4. Given a morphism f W T ! S , we can consider the inverse image ET D
f �.E/ 2 SH .T / and the associated bivariant theory ET .�=T;�/ over T . When there is
no risk of confusion, we will usually abuse notation by writing E.�=T;�/DET .�=T;�/.

Remark 2.2.5. Note that any isomorphism v ' w in K.X/ induces an isomorphism
of bivariant spectra E.X=S; v/ ' E.X=S; w/ and of cohomology spectra E.X; v/ '
E.X;w/. More precisely, the assignments v 7! E.X=S; v/ and v 7! E.X; v/ are functors
on K.X/ (viewed as an1-groupoid).

Notation 2.2.6. In the notation E.X=S; v/ and E.X; v/, we will sometimes implicitly
regard v as a class in K.X/ even if it is actually defined over some deeper base. For
example we will write E.X=S; v/ D E.X=S; f �.v// where f W X ! S and v 2 K.S/.

2.2.7. The bivariant theory represented by a motivic spectrum E 2 SH .S/ satisfies the
following axioms, which are K-graded and spectrum-level refinements of the axioms of
Fulton and MacPherson [34]:

(1) (Base change) For any cartesian square

XT X

T S

g

q � p

f

there is a canonical base change map

�� W E.X=S; v/! E.XT =T; g
�v/:

This is induced by the natural transformation

p�†
�vpŠ

unit
��! p�†

�vpŠf�f
�
' p�†

�vg�q
Šf � ' p�g�†

�g�vqŠf �

' f�q�†
�g�vqŠf �;

where we have used the base change formula (§2.1.25) and the formula (2.1.4.a).
(2) (Proper covariance) For any proper morphism f WX! Y of s-schemes over S , there

is a direct image map

f� W E.X=S; f
�v/! E.Y=S; v/:

This covariance is induced by the unit map fŠf Š ! Id and the identification fŠ ' f�
since f is proper (§2.1.22).
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(3) (Étale contravariance) For any étale s-morphism f W X ! Y of s-schemes over S ,
there is an inverse image map

f Š W E.Y=S; v/! E.X=S; f �v/:

This contravariance is induced by the purity isomorphism pf W f
Š ' f � (§2.1.7).

(4) (Product) If E is equipped with a multiplication map �E W E ˝ E ! E, then for
s-morphisms p W X ! S and q W Y ! X , and any K-theory classes v 2 K.X/ and
w 2 K.Y /, there is a map

E.Y=X;w/˝ E.X=S; v/! E.Y=S;w C q�v/:

Given maps y W ThY .w/Œm�! qŠEX and x W ThX .v/Œn�! pŠES , the product y:x is
defined as follows:

ThY .w C q�v/ŒmC n�
y˝Id
���! qŠEX ˝ ThY .q�v/Œn�

ExŠ�
˝

���! qŠ.EX ˝ ThY .v/Œn�/

qŠ.Id˝x/
������! qŠ.EX ˝ p

ŠES /
ExŠ�
˝

���! qŠpŠ.ES ˝ ES /
�E
��! qŠpŠ.ES / D .pq/

Š.ES /:

These structures satisfy the usual properties stated by Fulton and MacPherson (functori-
ality, base change formula both with respect to base change and étale contravariance,
compatibility with pullbacks and projection formulas; see [16, 1.2.8] for the precise for-
mulation).

Remark 2.2.8. One of the main objectives of this paper is to extend contravariant func-
toriality from étale morphisms to smoothable lci morphisms. This will be achieved in
Theorem 4.2.1.

Remark 2.2.9. Note that a particular case of the product of §2.2.7(4) is the cap-product

\ W E.X; v/˝ E.X=S;w/! E.X=S;w � v/:

The localization theorem (§2.1.6) gives the following direct corollary:

Proposition 2.2.10. Let i W Z ! X be a closed immersion of s-schemes over S , with
quasi-compact complementary open immersion j W U ! X . Then there exists, for any
e 2 K.X/, a canonical exact triangle of spectra

E.Z=S; e/
i�
�! E.X=S; e/

j�

�! E.U=S; e/

called the localization triangle. Moreover, this triangle is natural with respect to the con-
travariance in S , the contravariance in X=S for étale S -morphisms, and the covariance
in X=S for proper S -morphisms .see parts (1)–(3) of §2.2.7).

A special case of the naturality in Proposition 2.2.10 is the following:
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Corollary 2.2.11. Suppose

T Z0

Z X

l

k j

i

is a commutative square of closed immersions of s-schemes over S . Assume that the
respective complementary open immersions i 0, j 0, k0, and l 0 are quasi-compact. Then
the localization triangles .Proposition 2.2.10/ assemble into a commutative diagram of
spectra

E.T=S; e/ E.Z0=S; e/ E.Z0 � T=S; e/

E.Z=S; e/ E.X=S; e/ E.X �Z=S; e/

E.Z � T=S; e/ E.X �Z0=S; e/ E.X �Z [Z0=S; e/

l�

k�

l 0�

j� Qj�
i�

k0�

i 0�

j 0� Qj 0�

Qi� Qi 0�

for any e 2K.X/. Here Qj , Qi denote the obvious closed immersions obtained by restriction,
and Qi 0, Qj 0 the complementary open immersions.

Proposition 2.2.12. Suppose E 2 SH .S/ is equipped with a multiplication map �E W

E˝ E! E. Consider cartesian squares

T Y V

Z X U

k

�Z

k0

�U

i i 0

of s-schemes over S such that i and k are closed immersions with quasi-compact com-
plementary open immersions i 0 and k0, respectively. For any � 2 E.Y=X; e0/Œr� with
e0 2 K.Y /, r 2 Z, set

�Z D �
�
Z.�/ 2 E.T=Z; e0/Œr�;

�U D �
�
U .�/ 2 E.V=U; e0/Œr�:

Then the following diagram of localization triangles is commutative:

E.Z=S; e/ E.X=S; e/ E.U=S; e/

E.T=S; e C e0/Œr� E.Y=S; e C e0/Œr� E.V=S; e C e0/Œr�

i�

�Z

i 0�

� �U

k� k0�

where x denotes multiplication by x 2 ¹�; �Z ; �U º.

Proof. The left-hand square commutes by the projection formula. The right-hand square
commutes since products are compatible with base change.
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2.2.13. Suppose that E is equipped with a multiplication�E WE˝E!E as in §2.2.7(4).
If this multiplication is unital, resp. associative, resp. commutative, then the bivariant
theory represented by E inherits the same property. This is in particular the case when E
is equipped with an E1-ring structure.

For example, assume that the multiplication is commutative in the sense that it is
further equipped with a commutative diagram

E˝ E E˝ E

E E

�

�

�E �E

in SH .S/, where � is the isomorphism swapping the two factors. Given s-schemes p W
X! S and q W Y ! S and x 2E.X=S;v/Œ�m� and y 2E.Y=S;w/Œ�n� (wherem;n 2Z
and v 2 K.X/, w 2 K.Y /), consider the cartesian square

X �S Y Y

X S

�2

�1 �
q

p

Then there is an identification

��.x/:y ' .�1/mCn:.��.y/:x/

in E.X �S Y=S; ��1 v C �
�
2w/Œ�m � n� ' E.X �S Y=S; ��2w C �

�
1 v/Œ�m � n� using

the permutation isomorphism ��2w C �
�
1 v ' �

�
1 v C �

�
2w.

2.2.14. For any E 2 SH .S/ and v 2 K.S/, the functor X 7! E.X=S; v/ satisfies des-
cent with respect to Nisnevich squares and abstract blow-up squares (hence satisfies cdh
descent), on the category of s-schemes over S .

2.3. Orientations and systems of fundamental classes

Following Fulton–MacPherson, we now introduce the notion of orientation of a morph-
ism f . As we recall in the next subsection, any choice of orientation gives rise to a Gysin
map in bivariant theory (§2.4.1). The fundamental classes we construct in Section 3 will
be examples of orientations.

For simplicity, throughout this discussion we will restrict our attention to the bivariant
theory represented by the sphere spectrum S:

Notation 2.3.1. We set

H.X=S; v/ WD S.X=S; v/ D MapsSH .X/.ThX .v/; pŠ.SS //

for any s-morphism p W X ! S and any v 2 K.X/. We will refer to this simply as bivari-
ant A1-theory. Similarly, we set H.X; v/ WD S.X; v/ and more generally HZ.X; v/ WD
SZ.X; v/ D S.Z=X;�v/, where Z is a closed subscheme of X .
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Definition 2.3.2. Let S be a scheme and f W X ! S an s-morphism. An orientation of f
is a pair .�f ; ef /, where

�f 2 H.X=S; ef / and ef 2 K.X/:

When there is no risk of confusion, we write simply �f instead of .�f ; ef /.

Remark 2.3.3. The above use of the term “orientation” is taken from [34]. We warn
the reader however that it is unrelated to the notion of “oriented motivic spectrum” (see
Definition 4.4.1).

Example 2.3.4. Let f W X ! S be a smooth s-morphism with tangent bundle Tf . The
purity isomorphism pf W †

Tf f �
�
�! f Š (§2.1.7) induces a canonical isomorphism

�f W ThX .Tf /
�
�! f Š.SS /:

This defines a canonical orientation �f 2 H.X=S; hTf i/.
It will be useful to have the following description of the purity isomorphism pf (cf.

[14, Def. 2.4.25, Cor. 2.4.37]). We begin by considering the cartesian square

X �S X X

X S

f1

f2 � f

f

Write ı W X ! X �S X for the diagonal embedding. Then †�Tf pf is inverse to the
composite

†�Tf f Š
�
�! ıŠf �1 f

Š Ex�Š
���! ıŠf Š2f

�
D f � (2.3.4.a)

Here the first isomorphism is induced by the relative purity isomorphism †�Tf ' ıŠf �1
(§2.1.8), modulo the tautological identification between Tf and the normal bundle Nı .
The exchange transformation Ex�Š is invertible because f is smooth (see §2.1.9).

Definition 2.3.5. Let f W X ! S be a smooth s-morphism. The fundamental class of f
is the orientation �f 2 H.X=S; hTf i/ defined in Example 2.3.4.

Definition 2.3.6. Let S be a scheme and let C be a class of morphisms between s-schemes
over S . A system of fundamental classes for C consists of the following data:

(i) (Fundamental classes) For each morphism f W X ! Y in C , there is an orientation
.�C
f
; ef /.

(ii) (Normalization) For f D IdS the identity morphism, there is an isomorphism ef ' 0

in K.S/, and an isomorphism �C
f
' 1 in H.S=S; ef / ' H.S=S; 0/.

(iii) (Associativity formula) Let f W X ! Y and g W Y ! Z be morphisms in C such
that the composite g ı f is also in C . Then there are identifications

egıf ' ef C f
�.eg/ (2.3.6.a)
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in K.X/ and
�C
g :�

C
f ' �

C
gıf

in H.X=Z; egıf /.
We say that a system of fundamental classes .�C

f
/f is stable under transverse base

change if it is equipped with the following further data:
(iv) (Transverse base change formula) For any tor-independent cartesian square

Y T

X S

g

q � p

f

such that f and g are in C , there are identifications eg ' q�.ef / in K.Y / and
��.�C

f
/ ' �C

g in H.X=S; eg/.

Remark 2.3.7. The previous definition admits an obvious extension to general bivariant
theories (i.e., the contexts of Definition 2.2.1 and §4.3.4), and we will freely use this
extension. Then our definition is both a generalization of [34, I, 2.6.2] and of [16, 2.1.9].

Remark 2.3.8. Let S be a scheme and let C be a class of morphisms between s-schemes
over S . Suppose .�f /f is a system of fundamental classes for C as in Definition 2.3.6.
For any morphisms f W X ! Y and g W Y ! Z in C such that g ı f is also in C , the
isomorphisms (2.3.6.a) induce canonical isomorphisms of functors SH .Z/! SH .X/,

.g ı f /�†egf ' †ef f �†egg�;

and isomorphisms of Thom spaces

Th.egf / ' Th.f �eg/˝ Th.ef / ' f � Th.eg/˝ Th.ef /

in SH .X/.

Example 2.3.9. It follows from [2, 1.7.3] that the family of orientations �f for f smooth
(Definition 2.3.5) forms a system of fundamental classes for the class of smooth s-morph-
isms. Moreover, this system is stable under (arbitrary) base change: explicit homotopies
��.�f / ' �g as in Definition 2.3.6(iv) are provided by the deformation to the normal
cone space, as in the proof of [16, Lem. 2.3.13] (where the right-hand square (3) can be
ignored).

Example 2.3.10. In Section 3, we will extend Example 2.3.9 to the class of smoothable
lci s-morphisms. Recall from [41] that an lci morphism f W X ! S admits a perfect
cotangent complex Lf D LX=S , which induces a point hLf i 2 K.X/ (which represents
the “virtual tangent bundle” of f in K0.X/ in the sense of [6, Exp. VIII]). For example,
if f is smooth then hLf i D hTf i is the class of the relative tangent bundle; if f is a
regular closed immersion then hLf i D �hNf i, where hNf i is the class of the normal
bundle. Every smoothable lci morphism f factors through a regular closed immersion
i followed by a smooth morphism p, and such a factorization induces an identification
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hLf i ' i
�hTpi � hNi i in K-theory. More generally, given lci morphisms f W X ! Y and

g W Y ! Z, the composite g ı f is lci with cotangent complex canonically identified in
K.Y / with

hLgıf i ' hLf i C f
�
hLgi: (2.3.10.a)

The fundamental class of a smoothable lci s-morphism f W X ! S will then be an ori-
entation in H.X=S; hLf i/ (see Theorem 3.3.2).

We finish with a discussion of strong orientations and duality isomorphisms.

Definition 2.3.11. Let f W X ! S be an s-morphism, and .�f ; ef / an orientation of f .

(1) We say that .�f ; ef / is strong if for any v 2 K.X/, cap-product with �f induces an
isomorphism

�f W H.X; v/! H.X=S; ef � v/; x 7! x:�f :

In that case, we refer to �f as the duality isomorphism associated with the strong
orientation �f .

(2) We say that .�f ; ef / is universally strong if the morphism

�f W ThX .ef /! f Š.SS /

is an isomorphism.

Remark 2.3.12. It follows immediately from the construction of the cap product that a
universally strong orientation is strong.

Example 2.3.13. If f is smooth, then the orientation �f of Definition 2.3.5 is universally
strong by the purity theorem (§2.1.7).

The following lemma explains the terminology “universally strong”.

Lemma 2.3.14. Let f W X ! S be an s-morphism. Let .�f ; ef / be a universally strong
orientation for f . Then for any cartesian square

XT X

T S

q

g � f

p

with p smooth, the orientation ��.�f / 2 H.XT =T; q�.ef // of g is universally strong.

Proof. Since p is smooth, the exchange transformation

Ex�Š W p�f Š ! gŠq�

(§2.1.9) is invertible. It follows then from the construction of the change of base map ��

that ��.�f / W ThXT .q
�.ef //! gŠp�.SS / is an isomorphism, as claimed.
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2.4. Gysin maps

Definition 2.4.1. Let f W X ! Y be a morphism of s-schemes over S . Then any orient-
ation �f 2 H.X=Y; ef / gives rise to a Gysin map

�Šf W H.Y=S; e/! H.X=S; ef C f
�.e//; x 7! �f :x;

using the product in bivariant A1-theory, for all e 2 K.Y /. When the orientation �f is
clear, we simply put f Š D �Š

f
.

Proposition 2.4.2. Let S be a scheme and let C be a class of morphisms between
s-schemes over S . Suppose .�f /f is a system of fundamental classes for C as in Defini-
tion 2.3.6.

(i) (Functoriality) Let f and g be morphisms in C such that the composite g ı f is also
in C . Then for every e 2 K.Z/ there is an induced identification

.g ı f /Š ' f Š ı gŠ

of Gysin maps H.Z=S; e/! H.X=S; egıf C .g ı f /
�.e//, modulo the identifica-

tion of Remark 2.3.8.

(ii) (Transverse base change) Assume that the system .�f /f is stable under transverse
base change. Suppose

X 0 Y 0

X Y

g

u v

f

is a tor-independent cartesian square of s-schemes over S , where f and g are in C ,
and u and v are proper. Then for every e 2 K.Y / there is an induced identification

f Š ı v� ' u� ı g
Š

of maps H.Y 0=S; v�.e//! H.X=S; ef C f
�.e//, where we use the identification

eg C g
�v�.e/ ' u�.ef C f

�.e// in K.X 0/.

Example 2.4.3. If f is a smooth s-morphism, then the fundamental class �f (Defini-
tion 2.3.5) gives rise to canonical Gysin maps

f Š W H.Y=S; e/! H.X=S; hTf i C f
�.e//:

This extends the contravariant functoriality from étale morphisms to smooth morphisms.

Lemma 2.4.4. LetX be an s-scheme over S and let p W E! X be a vector bundle. Then
the tangent bundle Tp is identified with p�1.E/ and the Gysin map

pŠ W H.X=S; e/! H.E=S; p�hEi C p�e/

is invertible.
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Proof. In view of the construction of the Gysin map, the claim follows directly from
the facts that the morphism �p W ThX .p�E/! pŠ.SX / is invertible, and that the functor
p� W SH .X/! SH .E/ is fully faithful (§2.1.3).

Definition 2.4.5. In the context of Lemma 2.4.4, we define the Thom isomorphism8

�E=X W H.E=S; e/! H.X=S; e � hEi/;

associated to E=X , as the inverse of the Gysin map

pŠ W H.X=S; e � hEi/! H.E=S; e/:

Remark 2.4.6. The Thom isomorphism satisfies the properties of compatibility with base
change and with direct sums (that is,

�E˚F=X ' �E˚F=F ı �F=X

for vector bundles E and F over X ). These follow respectively from the compatibility of
the Gysin morphisms pŠ with base change and with composition.

We conclude this subsection by recording the naturality of the localization sequences
(Proposition 2.2.10) with respect to Gysin maps of smooth morphisms.

Proposition 2.4.7. Consider a commutative diagram of cartesian squares of S -schemes

T Y V

Z X U

k

g f

l

h

i j

such that f is smooth, i is a closed immersion and j is the complementary open immer-
sion. Then for any e 2 K.X/, the diagram of spectra

H.Z=S; e/ H.X=S; e/ H.U=S; e/

H.T=S; hTgi C e/ H.Y=S; hTf i C e/ H.V=S; hThi C e/

i�

gŠ

j Š

f Š hŠ

k� lŠ

commutes.

Proof. The right-hand square commutes by the associativity property of fundamental
classes of smooth morphisms (Example 2.3.9). The left-hand square commutes by the
naturality of the relative purity isomorphism of Morel–Voevodsky [40, Prop. A.4], in view
of the construction of the fundamental classes �f and �g (Example 2.3.4).

8Not to be confused with the Thom isomorphism of (4.4.1.a).



F. Déglise, F. Jin, A. A. Khan 3956

2.5. Purity transformations

The notion of orientation seen in the preceding subsection is part of our twisted version of
the bivariant formalism of Fulton and MacPherson. We state in this subsection a variant,
or a companion, of this notion in the spirit of Grothendieck’s six functors formalism.

2.5.1. Let us fix an s-morphism f W X ! S , and an orientation .�f ; ef /. According to
our definitions, the class �f 2 H.X=S; ef / can be seen as a morphism

�f W ThX .ef /! f Š.SS /

in SH .X/. This gives rise to a natural transformation

p.�f / W †
ef f � ! f Š (2.5.1.a)

associated to the orientation �f , defined as the following composite:

f �.�/˝ ThX .ef /
Id˝�f
����! f �.�/˝ f Š.SS /

ExŠ�
˝

���! f Š.�˝ SS / ' f
Š;

where the exchange transformation ExŠ�˝ is as in §2.1.10.

Remark 2.5.2.
(i) Suppose f is smooth and consider the canonical orientation �f of Definition 2.3.5.

It follows by construction that in this case the associated purity transformation p.�f /
is nothing else than the purity isomorphism pf (2.3.4.a). In particular, p.�f / is an
isomorphism in this case.

(ii) Note that the datum of an orientation .�f ; ef / and that of the associated purity trans-
formation p.�f / are essentially interchangeable. Indeed we recover �f by evaluating
p.�f / at the unit object SS .

2.5.3. Consider the notation of the previous definition. Then one associates to p.�f /,
using the adjunction properties, two natural transformations:

trf W fŠ†ef f � ! Id; cotrf W Id! f�†
�ef f Š:

The first (resp. second) natural transformation will be called the trace map (resp. co-trace
map) associated with the orientation �f , following the classical usage in the literature.
These two maps are functorial incarnations of the Gysin map defined earlier (§2.4.1), as
we will see later (see §4.3.3).

The notion of a system of fundamental classes (Definition 2.3.6) was introduced to
reflect the functoriality of Gysin morphisms. For completeness, we now formulate the
analogous functoriality property for the associated purity transformations.

Proposition 2.5.4. Let S be a scheme and let C be a class of morphisms between
s-schemes over S . Suppose .�f /f is a system of fundamental classes for C as in Defini-
tion 2.3.6.
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(i) (Functoriality) Let f and g be morphisms in C such that the composite g ı f is also
in C . Then there is a commutative square

†egıf .g ı f /� .g ı f /Š

†ef f �†egg� f ŠgŠ

p.�gıf /

p.�f /�p.�g/

where the left-hand vertical isomorphism is from Remark 2.3.8, and the lower hori-
zontal arrow is the horizontal composition of the 2-morphisms p.�f / and p.�g/.

(ii) (Transverse base change) Assume that the system .�f /f is stable under transverse
base change. Suppose

X 0 Y 0

X Y

g

u v

f

is a tor-independent cartesian square, where f and g are in C . Then there are com-
mutative squares of natural transformations,

u�†ef f � †egu�f � †egg�v�

u�f Š gŠv�

u��pf .a/ pg�v
�

Ex�Š

†ef f �v� †ef u�g
� u�†

egg�

f Šv� u�g
Š

Ex��

pf �v� .b/ u��pg

�

If u and v are s-morphisms, then there are also commutative squares

uŠ†ef f � †eguŠf � †egg�vŠ

uŠf Š gŠvŠ

uŠ�pf .c/ pg�v
Š

uŠ†
egg� †ef uŠg

� †ef f �vŠ

uŠg
Š f ŠvŠ

uŠ�pg .d/

�

pf �vŠ

ExŠ
Š

Proof. Claim (i) follows from axioms (ii) and (iii) of Definition 2.3.6.
In claim (ii), commutativity of (a) follows directly from axiom (iv) of Definition 2.3.6.

Square (b) can be derived from (a) by applying u� on the left and v� on the right, and using
the naturality of the unit and counit of the adjunctions .u�; u�/ and .v�; v�/, respectively.
Similarly, commutativity of square (c) will follow similarly from (d). For (d), we may
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unravel the definition of the purity transformation (§2.5.1) to write the square as follows:

uŠ†
egg� †ef uŠg

� †ef f �vŠ

uŠ.g
�.�/˝†egg�.S// f �vŠ.�/˝†

ef f �.S/

uŠ.g
�.�/˝ gŠ.S// f �vŠ.�/˝ f

Š.S/

uŠg
Š f ŠvŠ

�

uŠ.g
�.�/˝pg.S// f �vŠ.�/˝pf .S/

Ex�Š
˝

Ex�Š
˝

ExŠ
Š

Observing that
pg.S/ D pg.v

�.S//;

we can use square (a) to decompose the left-hand middle arrow into a natural trans-
formation induced by pf .S/ and an exchange transformation. The commutativity of the
resulting square is then a formal exercise.

Remark 2.5.5. Suppose that the class C contains all identity morphisms and is closed
under composition, and let S C denote the subcategory of the category of schemes
S whose morphisms all belong to C . At the level of homotopy categories, Proposi-
tion 2.5.4(i) implies that the assignment f 7! p.�f / defines a natural transformation of
contravariant pseudofunctors

p W Ho.SH /e� ! Ho.SH /Š

on the category S C , where the notation is as follows:
� Tri denotes the .2; 1/-category of large triangulated categories, triangulated functors,

and invertible triangulated natural transformations.
� Ho.SH /Š is the pseudofunctor .S C /op ! Tri, given by the assignments

S 7! Ho.SH .S//; f 7! f Š:

� Similarly Ho.SH /e� is the pseudofunctor .S C /op ! Tri given by the assignments

S 7! Ho.SH .S//; f 7! †ef f �:

The expected enhancement to a natural transformation at the level of 1-categories
requires further work that we do not undertake in this paper.

We can also reformulate the transverse base change property (Proposition 2.5.4(ii)) in
terms of the (co)trace maps.
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Corollary 2.5.6. Under the assumptions of Proposition 2.5.4(ii), the following diagrams
commute:

fŠ†
ef f �vŠ fŠ†

ef uŠg
� fŠuŠ†

egg� vŠgŠ†
egg�

vŠ vŠ

trf �vŠ

�

vŠ�trg

vŠ vŠ

g�†
�eggŠvŠ g�†

�eguŠf Š g�u
Š†�ef f Š vŠf�†

�ef f Š

cotrg�vŠ vŠ�cotrf

�

3. Construction of fundamental classes

3.1. Euler classes

Before proceeding to our construction of fundamental classes, we begin with a discussion
of Euler classes in the setting of bivariant theories. Our basic definition is very simple and
can be formulated unstably.

3.1.1. Let X be a scheme and E be a vector bundle over X . Recall that the Thom space
ThX .E/ 2 SH .X/ is in fact the suspension spectrum of a pointed motivic space in
H�.X/. Moreover, the latter can be modelled by the pointed Nisnevich sheaf of sets

ThX .E/ WD coKer.E� ! E/;

where E� is complement of the zero section.
Note that Thom spaces are functorial with respect to monomorphisms of vector

bundles. That is, if � W F ! E is a monomorphism of vector bundles over X , one gets a
canonical morphism of pointed sheaves,

�� W ThX .F /! ThX .E/: (3.1.1.a)

Definition 3.1.2. Let E be a vector bundle over a scheme X , and s be its zero section.
We can regard s as a monomorphism of vector bundles, s W X ! E. We define the Euler
class e.E/ of E=X as the induced map in H�.X/,

s� W XC D ThX .X/! ThX .E/:

Remark 3.1.3. We will often view the Euler class as a class

e.E/ 2 H.X; hEi/ ' H.X=X;�hEi/;

via the canonical map

MapsH�.X/.XC;ThX .E//! MapsSH .X/.SX ;ThX .E//:
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It can then also be realized as a class in the (twisted) cohomology spectrum of any motivic
ring spectrum E (Definition 4.1.5). When E is oriented, our Euler class coincides with the
top Chern class (see §4.4.3). When E is the Milnor–Witt spectrum (Example 4.4.6) it
recovers the classical Euler class in the Chow–Witt group.

It is easy to see that Euler classes commute with base change:

Lemma 3.1.4. For any morphism f W Y ! X and any vector bundle E over X , the
following diagram is commutative:

YC ThY .f �1.E//

f �.XC/ f �.ThX .E//

e.f �1.E//

f �.e.E//

Proof. This follows from the fact that the functor f � commutes with cokernels, and the
base change of the zero section of E is the zero section of f �1.E/.

3.1.5. By construction, the Thom space fits into a cofiber sequence

.E�/C ! EC ! ThX .E/

in H�.X/. By A1-homotopy invariance, the projection mapE!X induces an isomorph-
ism in H�.X/, whose inverse is induced by the zero section s W X ! E. It follows from
our construction that the following diagram commutes:

.E�/C EC ThX .E/

.E�/C XC ThX .E/
e.E/

o s�

Definition 3.1.6. For any vector bundle E over X , the Euler cofiber sequence is the
cofiber sequence

.E�/C ! XC
e.E/
���! ThX .E/

in H�.X/.

The Euler cofiber sequence immediately yields the following characteristic property
of Euler classes:

Proposition 3.1.7. Let E be a vector bundle over X . Any nowhere vanishing section s of
E ! X induces a null-homotopy of the morphism XC ! ThX .E/ corresponding to the
Euler class e.E/. In particular, s induces an identification e.E/ ' 0 in H.X; hEi/.

Proof. Such a section s induces a section of the morphism .E�/C ! XC in the Euler
cofiber sequence.

Corollary 3.1.8. Let E be a vector bundle over X . If E contains the trivial line bundle
A1X as a direct summand, then there is an identification e.E/ ' 0 in H.X; hEi/.
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3.1.9. Suppose we have an exact sequence of vector bundles

0! E 0
�
�! E ! E 00 ! 0 (3.1.9.a)

over a scheme X . Then the isomorphism ThX .E/ ' ThX .E 0/ ˝ ThX .E 00/ in SH .X/

(§2.1.5) in fact exists already unstably:

ThX .E/ ' ThX .E 0/ ^ ThX .E 00/

in H�.X/. This is clear when the sequence (3.1.9.a) is split, and one reduces to this case
by pulling back to the HomX .E

00; E 0/-torsor of splittings of the sequence (which is fully
faithful by A1-invariance).

Lemma 3.1.10. Given an exact sequence of vector bundles as in (3.1.9.a), the following
diagram is commutative:

ThX .E 0/ ThX .E 0/ ^ ThX .E 00/

ThX .E 0/ ThX .E/

Id^e.E 00/

��

Proof. Argue as above to reduce to the case where (3.1.9.a) is split.

The additivity property of Euler classes is then a direct corollary:

Proposition 3.1.11. Given an exact sequence of vector bundles as in (3.1.9.a), the fol-
lowing diagram is commutative:

XC ThX .E 0/ ^ ThX .E 00/

XC ThX .E/

e.E 0/^e.E 00/

e.E/

Proof. Compose the diagram of Lemma 3.1.10 with the map e.E 0/ W XC! ThX .E 0/ (on
the left).

3.2. Fundamental classes: regular closed immersions

In this section we construct the fundamental class of a regular closed immersion and
demonstrate its expected properties. Before proceeding, we make a brief digression to
consider a certain preliminary construction.

3.2.1. Let X be a scheme and consider the diagram

GmX A1X

X

j

� N�
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For any e 2 K.X/, we have a commutative diagram

H.X; 1 � e/ H.X=X; e � 1/ H.A1X=X; e/

H.GmX; 1 � e/ H.GmX=X; e/ H.GmX=X; e/

��

N�Š

�Š j Š

��

using the identifications hT�i ' 1 in K.GmX/, hT N�i ' 1 in K.A1X/. (Here, as usual,
1 2 K.X/ denotes the unit, i.e., the class hA1Xi, for any scheme X .) The right-hand
square consists of Gysin maps and commutes by Example 2.3.9; moreover, the morphism
N� Š is invertible (Lemma 2.4.4). In the left-hand square, the morphism �� is the duality
isomorphism (Definition 2.3.11) associated to the strong orientation (Example 2.3.13)
of � , and the square evidently commutes by construction of the morphisms involved.
Since the left vertical arrow �� admits a retraction s�1 , given by the inverse image by the
unit section s1 W X ! GmX in cohomology, we also get a canonical retraction �t of the
right vertical arrow j Š.

3.2.2. Consider now the localization triangle

H.A1X=X; e/Œ�1�
j Š

�! H.GmX=X; e/Œ�1�
@s0
��! H.X=X; e/

associated with the zero section s0 W X ! A1X . By §3.2.1 it is canonically split, and we
get an H.X=X; e/-linear section

t W H.X=X; e/! H.GmX=X; e/Œ�1�

of @s0 . By linearity, this map is determined uniquely by a morphism

¹tº W SGmX ! � Š.SX /Œ�1�

in SH .GmX/; that is, t is multiplication by ¹tº 2H.GmX=X;0/Œ�1�. By construction,
¹tº is stable under arbitrary base changes. If X is an s-scheme over some base S , we will
abuse notation and write t also for the map

t W H.X=S; e/! H.GmX=S; e/Œ�1�;

given again by the assignment x 7! ¹tº:x.

We now proceed to the construction of the fundamental class.

3.2.3. LetX be an S -scheme and i WZ!X a regular closed immersion. We writeDZX
orD.X;Z/ for the (affine) deformation spaceBZ�0.X �A1/�BZ�0.X � 0/, as defined
by Verdier (denoted M.Z=X/ in [66, §2]); here BZX denotes the blow-up of X along
Z. This fits into a diagram of tor-independent cartesian squares

NZX DZX GmX

X A1X GmX

k

r

h

¹0º
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where k and h are complementary closed/open immersions, and the left-hand arrow is
the composite of the projection p W NZX ! Z and i W Z ! X . Consider the associated
localization triangle (Proposition 2.2.10)

H.NZX=S; e/
k�
�! H.DZX=S; e/

hŠ

�! H.GmX=S; e/
@NZX=DZX
��������! H.NZX=S; e/Œ1�

for any e 2 K.X/.

Definition 3.2.4. With notation as above, the specialization to the normal cone map asso-
ciated to i is the composite

�Z=X W H.X=S; e/
t
�! H.GmX=S; e/Œ�1�

@NZX=DZX
��������! H.NZX=S; e/;

where t is the map constructed in §3.2.2.

Definition 3.2.5. The fundamental class �i 2 H.Z=X;�hNZXi/ associated to the reg-
ular closed immersion i is the image of 1 2 H.X=X; 0/ by the composite

H.X=X; 0/
�Z=X
����! H.NZX=X; 0/

�NZX=Z
������! H.Z=X;�hNZXi/;

where �NZX=Z is the Thom isomorphism of p W NZX ! Z (Definition 2.4.5). In other
words, �i D �NZX=Z.�Z=X .1//.

Remark 3.2.6.
(i) By definition of the Thom isomorphism, the fundamental class �i is determined

uniquely by the property that there is a canonical identification

pŠ.�i / ' �Z=X .1/

in H.NZX=X; 0/, where p W NZX ! Z is the projection of the normal bundle and
we have used the notation of Lemma 2.4.4.

(ii) If one applies the A1-regulator map (see Definition 4.1.2) at the motivic ring spec-
trum defined by a cycle module, the specialization map is sent to the corresponding
map on cycle modules defined by Rost, denoted by J.X;Z/ in [63, §11]. Our con-
struction in the general case therefore uses a very similar idea.

(iii) For each regular closed immersion i , the fundamental class defines an orientation
.�i ;�hNi i/ in the sense of Definition 2.3.2. It can be viewed equivalently as a morph-
ism

�i W ThZ.�Ni /! i Š.SX /

in SH .Z/.
(iv) Let us assume that X is an s-scheme over a base S . Then the orientation .�i ;�hNi i/

gives rise to a Gysin map (Definition 2.4.1)

i Š W H.X=S; e/! H.Z=S;�hNi i C e/; x 7! �i :x:
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It follows from the definitions that this map can also be described as the composite

H.X=S; e/
�Z=X
����! H.NZX=S; e/

.pŠ/�1

����! H.Z=S;�hNZXi C e/;

therefore comparing our construction with that of Verdier [66]. Note also that �Z=X
' pŠi Š so that the Gysin map and the specialization map uniquely determine each
other.

(v) One can describe the map �i more concretely as follows. Let us recall the deforma-
tion diagram

GmX DZX NZX

X Z

h

�
r

k

p

i

First the map ¹tº W SGmX Œ1� ! � Š.SX / corresponds by adjunction and after one
desuspension to a map

�t W SDZX ! h��
Š.SX Œ�1�/ D h�h

�r Š.SX Œ�1�/:

Then one gets the following composite map:

SDZX
�t
�! h�h

�r Š.SX Œ�1�/

boundary
�����! kŠk

Šr Š.SX / D kŠp
Ši Š.SX / ' k�p

�
�

ThZ.NZX/˝ i Š.SX /
�

where the last isomorphism uses the purity isomorphism pp . Using the identification
SD ' r�.SX / and the adjunction .r�; r�/ we deduce a map

SZ ! p�p
�
�

ThZ.NZX/˝ i Š.SX /
�
' ThZ.NZX/˝ i Š.SX /

where the last isomorphism follows from the A1-homotopy invariance of SH
(§2.1.3). The latter composite is nothing else than the morphism ThZ.NZX/˝ �i .

3.2.7. Consider a cartesian square where i and k are regular closed immersions

T Y

Z X

k

q � p

i

Then we get a morphism of deformation spacesDT Y !DZX and similarly a morphism
of vector bundles

NT Y
�
�! q�1NZX ! NZX

where � is in general a monomorphism of vector bundles (i.e. the codimension of T in Y
can be strictly smaller than that of Z in X : there is an excess of intersection). We put
� D q�1NZX=NT Y , the excess intersection bundle.
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Proposition 3.2.8 (Excess intersection formula). With notation as above, we have a
canonical isomorphism

��.�i / ' e.�/:�k

in H.T=Y;�hq�1NZXi/, modulo the identification h�i C hNT Y i ' hq�1NZXi, where
e.�/ 2 H.T=T; h�i/ is the Euler class of � .Definition 3.1.2 and Remark 3.1.3/.

Proof. Let us putD0T Y DDZX �X Y andN 0T Y D q
�1NZX . Then we get the following

commutative diagram of schemes, in which each square is cartesian:

NT Y DT Y GmY

N 0T Y D0T Y GmY

NZX DZX GmX

Therefore, one gets the following commutative diagram

H.GmY=Y; 0/Œ�1�
@T=Y //

.1/

H.NT Y=Y; 0/
�NT Y=T //

��
.3/

H.T=Y;�hNT Y i/

��
��

H.GmY=Y; 0/Œ�1� //

.2/

H.N 0T Y=Y; 0/
�
N 0
T
Y=T //

.4/

H.T=Y;�hN 0T Y i/

H.GmX=X; 0/Œ�1�
@Z=X

//
��

OO

H.NZX=Z; 0/
�NT Y=T

//
��
OO

H.Z=X;�hNZXi/

��
OO

Here the right-hand arrow labelled �� is the change of base map (§2.2.7(1)); we have
abused notation by also writing �� for the two analogous maps on the left and in the
middle (induced by the obvious cartesian squares). Square (1) (resp. (2)) is commutative
because of the naturality of localization triangles with respect to the proper covariance
(resp. base change). Square (3) is commutative by definition of �� in (3.1.1.a),9 and square
(4) by compatibility of Thom isomorphisms with respect to base change.

Now observe that the image of ¹tº 2 H.GmX=X; 0/Œ�1� by the counter-clockwise
composite in the above diagram is nothing else than the class��.�i /2H.T=Y;�hN 0T Y i/.
Similarly the image by the clockwise composite is the class ��.�k/ 2H.T=Y;�hN 0T Y i/.
We conclude using Lemma 3.1.10.

Example 3.2.9. We get the following usual applications of the preceding formula.
(i) (Transverse base change formula) If we assume that p is transverse to i , then � is an

isomorphism and the excess bundle vanishes. Thus we get a canonical identification
��.�i / ' �k .

9Here we use the fact that the map �� can also be deduced from the natural transformation
�Š ! ��. We refer to [40, §2, p. 3612] for more details.
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(ii) (Self-intersection formula) If we apply the formula to the self-intersection square

Z Z

Z X

� i

i

where the excess bundle equals NZX , we get a canonical identification

��.�i / ' e.NZX/ (3.2.9.a)

in H.Z=Z;�hNZXi/ D H.Z; hNZXi/.
(iii) (Blow-up formula) In the case where p W Y ! X is the blow-up along Z, we obtain

a generalization of the “key formula" for blow-ups in [33, 6.7].

Remark 3.2.10. If X is a scheme, E is a vector bundle over X and s0 W X ! E is the
zero section, the self-intersection formula (3.2.9.a) applied to s0 says that we can recover
the Euler class of E from the fundamental class of s0 by base change along the self-
intersection square. That is,

e.E/ ' ��.�s0/;

where � denotes the self-intersection square associated to s0. More generally, if s W
X ! E is an arbitrary section, consider the cartesian square

Zs X

X E

�s
s0

s

We define the Euler class with support as

e.EI s/ WD ��s .�s/ 2 H.Zs=X;�hEi/:

This notion corresponds to [49, Definition 5.1]. In particular the usual Euler class is the
case s D s0.

We will now state good properties of our constructions of orientations for regular
closed immersions, culminating in the associativity formula. Note that all these formulas
will be subsumed into our final construction.

3.2.11. First consider a cartesian square of S -schemes

T Y

Z X

g

k

f

i

such that i is a regular closed immersion and f is smooth. The isomorphisms of vector
bundles Tg ' Tf jT and NT Y ' NZX jT induce an identification

hTgi � hNZX jT i ' hLT=X i ' hTf jT i � hNT Y i (3.2.11.a)

in K.T /, where LT=X is the cotangent complex of T over X .
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Lemma 3.2.12. With notation as above, one has the commutative square

H.X=S;�/ H.NZX=S;�/

H.Y=S; hTf i C �/ H.NT Y=S; hTf i C �/

�Z=X

f Š Ng.f /
Š

�T=Y

modulo the canonical isomorphism k�.Tf /jNT Y ' NNT Y=NZX of vector bundles on
NT Y .

Proof. It suffices to show that both squares in the following diagram commute:

H.X=S;�/
t //

f Š

��
.1/

H.GmX=S;�/Œ�1�
@NZX=DZX //

.1�f /Š

��
.2/

H.NZX=S;�/

Ng.f /
Š

��
H.Y=S; hTf i C �/ t

// H.GmY=S; hTf i C �/Œ�1�
@NT Y=DT Y

// H.NT Y=S; hTf i C �/

In fact, the commutativity of (1) (where we have denoted the canonical functions ofDZX
and DT Y by the same letter t ) is obvious, and (2) follows from Proposition 2.4.7.

Lemma 3.2.13. With notation as above, one has a canonical identification

�g :�i ' �k :�f

in H.T=X; hLT=X i/.

Proof. Consider the following diagram:

H.X=X;�/ H.Z=X;�hNZXi C e/ H.NZX=X;�/

H.Y=X; hTf i C �/ H.T=X; hLT=X i C �/ H.NT Y=X; hTf i/

i Š

f Š gŠ

pŠ
NZX=Z

Ng.f /
Š

kŠ
pŠ
NT Y=T

The right-hand square commutes by the associativity formula for Gysin morphisms
associated with smooth morphisms (Example 2.3.9). Furthermore, the horizontal arrows
pŠ
NZX=Z

and pŠ
NT Y=T

are invertible (Lemma 2.4.4), so it suffices to show that the compos-
ite square commutes. But the upper and lower composites are the respective specialization
maps �Z=X and �T=Y , so we conclude by Lemma 3.2.12.

3.2.14. Next we consider a commutative diagram of schemes

Z X

S

i

q p
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such that i is a closed immersion and p, q are smooth s-morphisms. In this situation, the
canonical exact sequence of vector bundles

0! Tq ! TpjZ ! NZX ! 0

over Z gives rise to an identification

hTpjZi � hNZXi ' hTqi (3.2.14.a)

in K.Z/.

Lemma 3.2.15. With notation as above, one has a canonical identification

�p:�i ' �q

in H.Z=S; hTqi/.

Proof. Consider the cartesian square

DZX NZX

A1S S

k

� �

s

where s is the zero section and � is the composite mapNZX
pN
��!Z

q
�! S . The claim will

follow from the commutativity of the diagram

H.S=S; 0/
t //

pŠ

��
.1/

H.GmS=S; 0/Œ�1�
@s //

.1�p/Š

��
.2/

H.S=S; 0/

�Š

��
.3/

H.S=S; 0/

qŠ

��
H.X=S; Tp/ t

// H.GmX=S; Tp/Œ�1�
@NT Y=DT Y

// H.NZX=s; Tp/ H.Z=s; e/
pŠ
N

oo

by considering the image of 1 2 H.S=S; 0/ (recall that we have @s ı t ' 1 by construc-
tion, see §3.2.2).

The commutativity of square (1) is obvious, that of (2) follows from Proposition 2.4.7
applied to the cartesian square �, and that of (3) follows from the associativity of Gysin
morphisms associated with smooth morphisms (Example 2.3.9).

Before proceeding, we draw some corollaries from the previous lemma.

Corollary 3.2.16. Consider the assumptions of §3.2.14. Then the orientation �i is uni-
versally strong .Definition 2.3.11/. In other words, the morphism �i W ThZ.�Ni /!i Š.SX /
is invertible.

Proof. This follows from the previous lemma and the fact that the maps �p and �q are
isomorphisms (Definition 2.3.5).
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Corollary 3.2.17. Let p W X ! S be a smooth s-morphism and i W S ! X a section of p.
Then there is a canonical identification �i :�p ' 1 inH.S=S;0/, modulo the identification
i�1.Tp/ ' Ni .

Example 3.2.18. LetX=S be an s-scheme. Consider a vector bundle p W E!X , its zero
section s0 W X ! E and e 2 K.X/. Then the associated Gysin map

sŠ0 W H.E=S; e/! H.X=S;�hEi C e/

is precisely the Thom isomorphism (Definition 2.4.5). This follows from Corollary 3.2.17.
In cohomological terms, we also get the Thom isomorphism

H.X; e/
p�

��! H.E; e/ ' H.E=E;�e/

sŠ
0
�! H.X=E;�hEi � e/ D HX .E; e C hEi/:

3.2.19. We now proceed towards the formulation of the associativity formula for the fun-
damental classes of two composable regular closed immersions

Z
k
�! Y

i
�! X:

Recall that there is a short exact sequence

0! NZY ! NZX ! NYX jZ ! 0

of vector bundles over Z, whence an identification hNZXi ' hNZY i C hNYX jZi in
K.Z/ (§2.1.5). There is also a canonical isomorphism of vector bundles

N.NZX;NZY / ' N.NYX;NYX jZ/

over Z; we will abuse notation and write N for both.
We will make use of the double deformation space (cf. [63, §10])

D D D.DZX;DZX jY /:

That is, D is the deformation space associated to DZX jY ! DZX , which is a regular
closed immersion because the cartesian square

DZX jY DZX

Y X

is tor-independent. Indeed, this can be checked locally on X , so we can assume that Z!
Y ! X is a (transverse) base change of ¹0º ! Am ! An for some 0 � m � n. Since
the deformation space is stable under transverse base change (as is the question of tor-
independence), we may reduce to the latter situation, in which caseDZX ! X is just the
projection An �A1 ! An, which is transverse to any morphism.
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Note that D is a scheme over X � A2; we write s and t for the first and second
projections to A1, respectively. Set

D1 D Dj¹0º�A1 ; D2 D DjA1�¹0º; D0 D Dj¹0º�¹0º:

The fibres of D over various subschemes of A2 are summarized in the following table.

¹0º �A1 D.NZX;NZY / Gm �Gm X �Gm �Gm
A1 � ¹0º D.NYX;NYX jZ/ Gm � ¹0º D2 �D0 D Gm �NZX

Gm �A1 D �D1 D Gm �DZX ¹0º �Gm D1 �D0 D NYX �Gm
A1 �Gm D �D2 D DYX �Gm ¹0º � ¹0º N

Lemma 3.2.20. Under the assumptions and notation of §3.2.19, the diagram

H.X=X; e/
�Y=X //

�Z=X
��

H.NYX=X; e/

�NY XjZ=NY X��
H.NZX=X; e/

�NZY=NZX // H.N=X; e/

commutes for every e 2 K.X/.

Proof. By construction of the specialization maps, the square in question factors as in the
following diagram:

H.X=X; e/
s //

t

��
.1/

H.XGsm=X; e/Œ�1�
@NY X=DY X //

@NZX=DZX

��
.2/

H.NYX=X; e/

t

��
H.XGtm=X; e/ s //

@NXZ=DZX

��
.3/

H.XGsmGtm=X; e/Œ�2� @
NY XGtm=DY XGtm

//

@GsmNZX=GsmDZX

��
.4/

H.NYXGtm=X; e/Œ�1�

@N=D1

��
H.NZX=X; e/ s

// H.GsmNZX=X; e/Œ�1�
@N=D2

// H.N=X; e/

Some remarks on the notation are in order. First of all we have omitted the symbol � in
the diagram. We have also used exponents s and t to indicate that Gs

m, resp. Gt
m, is viewed

as a subset of the s-axis, resp. t -axis, in A2. Finally, we have written u for multiplication
by the class �� 2 H.Gu

m=Z; 0/Œ�1� with u 2 ¹s; tº.
Now observe that squares (2) and (3) commute by Proposition 2.2.12. Square (1) is

anti-commutative by §2.2.13. Applying Corollary 2.2.11 to the commutative square

D0 D1

D2 D

we deduce that square (4) is also anti-commutative, whence the claim.
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Theorem 3.2.21. Let S be a scheme. Then there exists a system of fundamental classes
.�i /i .Definition 2.3.6/ on the class of regular closed immersions between s-schemes
over S , satisfying the following properties:

(i) For every regular closed immersion i WZ!X , the orientation �i2H.Z=X;�hNZXi/
is the fundamental class defined in Definition 3.2.5.

(ii) The system is stable under transverse base change .Definition 2.3.6(iv)/.

Proof. According to Definition 2.3.6 we must give the following data:
(i) (Fundamental classes) For any regular closed immersion i W Z ! X , we take the

orientation .�i ; ei / with ei D �hNZXi 2 K.Z/ and �i 2 H.Z=X;�hNZXi/ as in
Definition 3.2.5.

(ii) (Normalization) If i D IdS for a scheme S , then NSS D S and the specialization
map and Thom isomorphism are both the identity maps on H.S=S; 0/, so we have a
canonical identification �i ' 1.

(iii) (Associativity formula) Given regular closed immersions i W Y !X and k WZ! Y ,
the composite k ı i is again a regular closed immersion and we have an identification

NZX ' k
�
hNYXi C hNZY i

in K.Z/: We obtain a canonical identification

�k :�i ' �iık

in H.Z=X;�hNZXi/ from the following commutative diagram:

H.X=X; 0/
�Y=X

//

�Z=X

��

i Š

--

.ik/Š

!!

.1/

H.NYX=X; 0/

�NY XjZ=NY X

��
.2/

H.Y=X;�hNYXi/

�Z=Y

��

pŠ
NY X=Y

oo

kŠ

xx

H.NZX=X; 0/
�NZY=NZX //

.3/

H.N=X; 0/

.4/

H.NYX jZ=X;�hN i/
pŠ
N=NY XjZoo

H.Z=X;�hNZXi/

pŠ
NZX=Z

OO

pŠ
NZY=Z

// H.NZY=X;�hN i/

pŠ
N=NZY

OO

H.Z=X;�hNZY �NYXijZ/

pŠ
NY XjZ=Z

OO

pŠ
NZY=Z

oo

by evaluating at 1 2H.X=X;0/, since the maps pŠ
NZY=Z

and pŠ
N=NZY

are invertible
(Lemma 2.4.4). Note that each square is indeed commutative:
(1) Apply Lemma 3.2.20.
(2) Apply Lemma 3.2.12 to the cartesian square

NYX jZ NYX

Z Y

pNY XjZ=Z
pNY X=Y

k
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(3) This square factors into two triangles:

H.NZX=X; 0/ H.N=X; 0/

H.Z=X;�hNZXi/ H.NZY=X;�hN i/

�NZY=NZX

NZ.i/
Š

pŠ
NZY=Z

pŠ
NZX=Z

pŠ
N=NZY

The upper-right triangle commutes by construction of NZ.i/Š, the Gysin map
associated toNZ.i/ WNZY !NZX . The lower-left triangle commutes by Lem-
ma 3.2.15 applied to the commutative diagram:

NZY NZX

Z
pNZY=Z pNZX=Z

(4) Apply the associativity of Gysin morphisms associated with smooth morphisms
(Example 2.3.9).

(iv) (Transverse base change formula) Suppose

T Y

Z X

k

q � p

i

is a tor-independent cartesian square, where i is a regular closed immersion. Then
k is also a regular closed immersion and there is a canonical identification of vector
bundles NT Y ' q�1.NZX/. The canonical identification ��.�i / ' �k then comes
from Example 3.2.9(i).

3.3. Fundamental classes: general case

In this subsection we conclude our main construction by gluing the system of funda-
mental classes defined on the class of smooth morphisms (Definition 2.3.5) and the sys-
tem defined on the class of regular closed immersions in the previous subsection (The-
orem 3.2.21).

Lemma 3.3.1. Suppose

X Y

S

i

i 0
f

is a commutative diagram, where i and i 0 are regular closed immersions and f is a
smooth s-morphism. Then there is a canonical identification

�i :�f ' �i 0

in H.X=S; �hNXSi/, modulo the identification �hNXSi ' �hNXY i C i�hTY=S i

in K.X/.
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Proof. The diagram in question factors as follows:

X X �S Y Y

X S

�i p2

p1 f

i 0

where �i W X ! X �S Y is the graph of i , p1 and p2 are the respective projections, and
the square is cartesian. By Lemma 3.2.13, Corollary 3.2.17 and Theorem 3.2.21 we get
canonical identifications

�i :�f ' ��i :�p2 :�f ' ��i :�p1 :�i 0 ' �i 0 ;

as claimed.

We are now ready to state the main theorem, defining a system of fundamental classes
on the class of smoothable lci morphisms:

Theorem 3.3.2. Let S be a scheme. Then there exists a system of fundamental classes
.�f /f .Definition 2.3.6/ on the class of smoothable lci s-morphisms between s-schemes
over S , satisfying the following properties:

(i) The restriction of the system .�f /f to the class of smooth s-morphisms coincides
with the system of Example 2.3.9.

(ii) The restriction of the system .�f /f to the class of regular closed immersions coin-
cides with the system of Theorem 3.2.21.

(iii) The system is stable under transverse base change .Definition 2.3.6(iv)/.

Proof. To define the system .�f /f , we must give the following data (see Definition 2.3.6):
(i) (Fundamental classes) Given a smoothable lci s-morphism f W X ! S , we may

choose a factorization through a regular closed immersion i WX! Y and a smooth s-
morphism p W Y ! S . We define the fundamental class �f D �i :�p 2H.X=S; hLf i/.
Note that, given another factorization through some i 0 W X ! Y 0 and p0 W Y ! S ,
we obtain a canonical identification �i :�p ' �i 0 :�p0 by applying Lemma 3.3.1 to the
diagram

Y
p // S

X

i 0

44

i

;;

.i;i 0/ // Y �S Y 0
p2 //

p1

OO

Y 0

p0

OO

(ii) (Normalization) If f D IdS for a scheme S , then we choose the trivial factoriz-
ation f D IdS ı IdS and the normalization properties of Example 2.3.9 and The-
orem 3.2.21 give a canonical identification �f ' 1:1 ' 1.
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(iii) (Associativity formula) If f W X ! Y and g W Y ! Z are two smoothable lci
s-morphisms, consider the commutative diagram

X P R

Y Q

Z

i1

f

i3

p1 p3
i2

g
p2

where the ik’s are closed immersions and the pk’s are smooth morphisms, and the
square is cartesian. By Example 2.3.9, Lemma 3.2.13 and Theorem 3.2.21 we have
identifications

�f :�g ' �i1 :�p1 :�i2 :�p2 ' �i1 :�i3 :�p3 :�p2 ' �i3ıi1 :�p2ıp3 ' �gıf :

(iv) (Transverse base change formula) Suppose

Y T

X S

g

v � u

f

is a tor-independent cartesian square, where f and g are smoothable lci s-morph-
isms. Choosing a factorization f D p ı i , where i is a regular closed immersion and
p is a smooth s-morphism, there is an induced factorization of the square �:

Y Y 0 T

X X 0 S;

k

v �i

q

v0 �p u

i p

where k is a regular closed immersion and q is a smooth s-morphism. Now by
the above and by the transverse base change properties of Example 2.3.9 and The-
orem 3.2.21, we have identifications

��.�f / ' �
�.�i :�p/ ' �

�
i .�i /:�

�
p.�p/ ' �k :�q ' �g

as claimed.

3.3.3. In fact, the transverse base change property of Theorem 3.3.2(iii) is a special case
of an excess intersection formula generalizing Proposition 3.2.8. Consider a cartesian
square

Y T

X S

v

g

� u

f
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where f and g are smoothable lci morphisms. Factor f D p ı i as a closed immersion
followed by a smooth morphism and consider the diagram of cartesian squares

Y Q T

X P S

k

v

q

r u

i p

where k and i are regular closed immersions and q and p are smooth. By 3.2.7 there
is a canonical monomorphism of Y -vector bundles NYQ

�
�! v�1NXP . We let � be the

quotient bundle.

Proposition 3.3.4. With notation and assumptions as above, there is an identification

��.�f / ' e.�/:�g

in H.Y=T; v�hLf i/, modulo the identification v�hLf i ' �h�i C hLgi in K.Y /, where
e.�/ 2 H.Y=Y; h�i/ is the Euler class of � .Definition 3.1.2 and Remark 3.1.3/.

This follows from Proposition 3.2.8 and the fact that fundamental classes for smooth
morphisms are compatible with any base change (Example 2.3.9).

4. Main results and applications

4.1. Fundamental classes and Euler classes with coefficients

4.1.1. Let S be a scheme and E 2 SH .S/ a motivic spectrum. Observe that the bivariant
spectra E.X=S; v/ of Definition 2.2.1 are natural in E. That is, given any morphism ' W

E! F in SH .S/, there is an induced map of spectra

'� W E.X=S; v/! F.X=S; v/

for every s-scheme X over S and every v 2 K.X/. Note that '� is compatible with the
various functorialities of bivariant theory (§2.2.7). Also, if E and F are equipped with
multiplications which commute with ', then the induced map '� preserves products (as
defined in §2.2.7(4)).

Definition 4.1.2. Let E 2 SH .S/ be a motivic spectrum equipped with a unit map � W
SS ! E. By §4.1.1 there is a canonical natural transformation of bivariant theories

�X=S W H.X=S; v/! E.X=S; v/; (4.1.2.a)

which we call the A1-regulator map.

Definition 4.1.3. Let E 2 SH .S/ be a unital motivic spectrum. Given a smoothable lci
s-morphism f W X ! S , let �f 2H.X=S; hLf i/ denote the fundamental class of f as in
Theorem 3.3.2. We define the fundamental class of f with coefficients in E, denoted

�E
f 2 E.X=S; hLf i/;

as the image of �f by the A1-regulator map �X=S (4.1.2.a).
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If E is unital, associative and commutative, then because �X=S is compatible with
products and “change of base” maps, the associativity and base change formulas provided
by Theorem 3.3.2 are immediately inherited by the fundamental classes of Defini-
tion 4.1.3. If we extend Definition 2.3.6 as indicated in Remark 2.3.7, then we can state
more precisely:

Theorem 4.1.4. Let E 2 SH .S/ be a motivic spectrum equipped with a unital associat-
ive commutative multiplication. Then there exists a system of fundamental classes .�E

f
/f

on the class of smoothable lci s-morphisms between s-schemes over S . This system is
stable under transverse base change, and recovers the system of Theorem 3.3.2 in the
case E D SS .

Definition 4.1.5. Let E 2 SH .S/ be a unital motivic spectrum. Then for any scheme X
and any vector bundle E=X , one defines the Euler class of E=X with coefficients in E,
denoted

e.E;E/ 2 E.X; hEi/ ' E.X=X;�hEi/;

as the image of the class e.E/ 2H.X; hEi/'H.X=X;�hEi/ of Definition 3.1.2 by the
A1-regulator map �X=S (4.1.2.a).

Remark 4.1.6. It is possible to define fundamental classes with coefficients in arbitrary
motivic spectra E 2 SH .S/, without using any multiplicative or even unital structure.
Indeed the constructions of Section 3 (where we only considered the case E D SS for
simplicity) extend immediately to general E without any difficulty. Alternatively we can
replace the use of the A1-regulator map above by using the module structure, i.e., the
canonical action10

H.Y=X;w/˝ E.X=S; v/! E.Y=S;w C q�v/;

which is defined by the same formula used to define products in §2.2.7, except that the
multiplication map �E W E˝ E! E is replaced by the map SS ˝ E! E encoding the
structure of SS -module on E. As a third approach, Gysin maps with arbitrary coefficients
can be obtained from the purity transformation (§4.3.3).

4.2. (Refined) Gysin maps with coefficients

Just as in Definition 2.4.1 and Proposition 2.4.2, Theorem 4.1.4 provides Gysin maps with
coefficients:

Theorem 4.2.1. Let E 2 SH .S/ be a motivic spectrum equipped with a unital associat-
ive commutative multiplication. Then for any smoothable lci s-morphism f W X ! Y of
s-schemes over S , and any v 2 K.Y /, there is a Gysin map

f Š W E.Y=S; v/! E.X=S; hLf i C f
�v/; x 7! �E

f :x: (4.2.1.a)

10See also [16, 1.2.1].
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These Gysin maps satisfy functoriality and transverse base change formulas that are
exactly analogous to those of Proposition 2.4.2.

We also have an excess intersection formula with coefficients (generalizing Proposi-
tion 3.3.4):

Proposition 4.2.2. Let E 2 SH .S/ be a motivic spectrum equipped with a unital asso-
ciative commutative multiplication. Suppose

X 0 Y 0

X Y

g

u � v

f

is a cartesian square of s-schemes over S , where f and g are smoothable lci s-morphisms.
Let � denote the excess bundle as in §3.3.3. Then we have a canonical identification

��.�f / ' e.�;E/:�g

in E.X 0=Y 0; v�hLf i/. If u and v are proper, then we also have an identification

f Š ı v� ' u� ı e.�;E/ ı g
Š

of maps E.Y 0=S; v�.e//! E.X=S; hLf i C e/, for any e 2 K.Y /, where e.�;E/ denotes
multiplication by e.�;E/.

Applying Proposition 4.2.2 to the cartesian square

Z Z

Z X

� i

i

we obtain the self-intersection formula with coefficients:

Corollary 4.2.3. Let i WZ!X be a regular closed immersion of s-schemes over S . Then
we have canonical identifications

��.�i / ' e.NZX;E/

in E.Z=Z;�hNZXi/, and for any v 2 K.X/ an identification

i Ši� ' e.NZX;E/

of maps E.Z=S; v/! E.Z=S;�hNZXi C i�v/.

Applying Corollary 4.2.3 to the zero section s W X ! E of a vector bundle, we obtain
the following formula to compute Euler classes in E0.X; hEi/:
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Corollary 4.2.4. Let X be a scheme and E a vector bundle over X with zero section
s W X ! E. Then there is a canonical identification

e.E;E/ ' sŠs�.1/ (4.2.4.a)

in E.X=X;�hEi/ ' E.X; hEi/.

We now introduce the notions of refined fundamental class and refined Gysin maps,
following Fulton’s treatment in intersection theory (cf. [33, 6.2]).

Definition 4.2.5. Suppose

X 0 Y 0

X Y

g

u � v

f

(4.2.5.a)

is a cartesian square of s-schemes over S , where f is a smoothable lci s-morphism.
(i) The refined fundamental class of f , with respect to � and with coefficients in E, is

the class
�E
� D �

�.�E
f /

in E.X 0=Y 0; u�hLf i/.
(ii) The refined Gysin map of f , with respect to� and with coefficients in E, is the Gysin

map associated to the orientation .�E
�; u

�hLf i/ of g, in the sense of Definition 2.4.1.
That is, it is the induced map of bivariant spectra

gŠ.�E
�/ W E.Y

0=S; e/! E.X 0=S; u�hLf i C e/; x 7! ��.�E
f /:x;

for any e 2 K.Y 0/. We sometimes denote it also by gŠ�.

In terms of refined fundamental classes, we can reformulate the transverse base change
and excess intersection formulas as follows:

Proposition 4.2.6. Suppose � is a cartesian square as in (4.2.5.a), with f a smoothable
lci s-morphism.

(i) (Tautological base change formula) If u and v are proper, then there is a canonical
identification

f Š ı v� ' u� ı g
Š
�

of maps E.Y 0=S; u�.e//! E.X=S; hLf i C e/, for any e 2 K.Y /.
(ii) If g is also a smoothable lci s-morphism, then we have an identification

�E
� ' e.�;E/:�g

in E.X 0=Y 0; u�hLf i/. In particular the refined Gysin map gŠ� is identified with the
composite e.�;E/ ı gŠ, where the map e.�;E/ is multiplication by e.�;E/.
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(iii) If the square � is tor-independent, so that in particular g is also a smoothable lci
s-morphism, then we have an identification

�E
� ' �

E
g

in E.X 0=Y 0; hLgi/. In particular the refined Gysin map gŠ� is identified with the
Gysin map gŠ.

Proof. The first claim follows from the definitions (§2.2.7). The second is precisely the
excess intersection formula (Proposition 4.2.2). The third is the stability of fundamental
classes under transverse base change (Theorem 4.1.4).

Remark 4.2.7. Note that the excess intersection formula (Proposition 4.2.2) and trans-
verse base change formula can be recovered by combining the tautological base change
formula of Proposition 4.2.6(i) with parts (ii) and (iii).

4.3. Purity, traces and duality

4.3.1. Let S be a scheme and let f WX! Y be a smoothable lci s-morphism of s-schemes
over S . Then by Theorem 4.1.4 we obtain, by the construction of §2.5.1, a purity trans-
formation

pf W †
Lf f � ! f Š

of functors SH .Y /! SH .X/, as well as trace and cotrace maps (§2.5.3)

trf W fŠ†Lf f � ! IdSH .Y /; cotrf W IdSH .Y / ! f�†
�Lf f Š:

These natural transformations satisfy 2-functoriality and transverse base change proper-
ties as described in Proposition 2.5.4 and Corollary 2.5.6.

Remark 4.3.2. There are some instances of purity transformations for non-smooth
morphisms in the literature. One example is the case of Grothendieck duality in the
setting of quasi-coherent or ind-coherent sheaves (see e.g. [15, Theorem 4.3.3], [35,
Corollary 7.2.4]), where the transformation is indeed invertible for any Cohen–Macaulay
morphism. A second one, much closer to the motivic context, can be found in [1, Exposé
XVIII, (3.2.1.2)] in the derived category of étale sheaves. This construction is valid for
flat s-morphisms, and only involves Tate twists rather than arbitrary Thom spaces, which
reflects the fact that the theory developed in SGA4 is oriented (cf. Example 4.3.5 below).

4.3.3. The purity transformation induces Gysin maps on each of the four theories defined
in Definition 2.2.1. That is, if f W X ! Y is a smoothable lci s-morphism of s-schemes
over S , then we get Gysin maps (for every e 2 K.Y /):

(i) (Bivariant theory) f Š W E.Y=S; e/! E.X=S; hLf i C f
�.e//.

(ii) (Cohomology with proper support) fŠ W Ec.X=S; hLf i C f
�.e//! Ec.Y=S; e/.

If f is proper, then we also get Gysin maps
(iii) (Cohomology) fŠ W E.X=S; hLf i C f �.e//! E.Y=S; e/.
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(iv) (Bivariant theory with proper support) f Š WEc.Y=S;e/!Ec.X=S; hLf iCf
�.e//.

In particular, this is another (obviously equivalent) way to realize the Gysin maps con-
sidered in Theorem 4.2.1.

We now observe that the purity transformation can be defined for any motivic1-cat-
egory of coefficients:

4.3.4. Let T be a motivic 1-category of coefficients in the sense of [46, Chap. 2,
Def. 3.5.2], defined on the site S of (qcqs) schemes. That is, T is a presheaf of sym-
metric monoidal presentable1-categories on S satisfying certain axioms that guarantee
(see [46, Chap. 2, Cor. 4.2.3]) that T admits a full homotopy coherent formalism of six
operations.

At this point we note that all the definitions and constructions in Sections 2 and 3
make sense in the setting of T (and not only SH ), as they only use the six operations.
In particular:
(1) One can define the four theories (Definition 2.2.1) in this setting. For example, the

bivariant theory represented by any E 2 T .S/ is given by

E.X=S; v;T / WD MapsT .S/.1S ; p�.p
Š.E/˝ ThX .�v;T ///

where p WX ! S is an s-morphism and v 2 K.X/. Here we have written 1S 2 T .S/

for the monoidal unit, and ThX .�v;T / for the Thom space11 internal to T .
(2) We have fundamental classes

�T
f 2 E.X=Y;�hLf i;T /

for any smoothable lci s-morphism f WX! Y of s-schemes over S , with coefficients
in any E 2 T .S/ for arbitrary T . These again form a system of fundamental classes
as in Theorem 3.3.2, stable under transverse base change.

(3) We have Gysin maps in bivariant theory with coefficients in any E 2T .S/ (as well as
in the other three theories) for arbitrary T . These Gysin maps are functorial, satisfy
transverse base change and excess intersection formulas.

(4) We have natural transformations

pT
f W †

Lf f � ! f Š; trTf W fŠ†
Lf f � ! Id; cotrTf W Id! f�†

�Lf f Š;

in the setting of any T .

Example 4.3.5. Suppose that T is oriented in the sense that there are Thom isomorph-
isms

ThX .v;T /! 1X .r/Œ2r�;

for any v 2 K.X/ of virtual rank r , which are functorial and respect the E1-group
structure on K.X/ up to a homotopy coherent system of compatibilities. Then for any

11Thom spaces can be defined in terms of the six operations by relative purity (§2.1.8).
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smoothable lci s-morphism f of relative virtual dimension d , the purity transformation
takes the form

pT
f W f

�.�/.d/Œ2d �! f Š; (4.3.5.a)

and similarly for the trace and cotrace maps.

Example 4.3.6. Let S D Spec.ZŒ1=`�/ for a prime `, and let ƒ be one of Z=`nZ, Z`,
or Q`. Then, as X varies over S -schemes, the stable 1-category of étale ƒ-sheaves
D.Xét; ƒ/ defines a motivic1-category of coefficients (see [1], [23], [13], [51]). In par-
ticular, we obtain purity transformations of the form (4.3.5.a) generalizing the previously
known constructions.

Definition 4.3.7. Let S be a scheme and f W X ! S a smoothable lci s-morphism of
S -schemes. Let T be a motivic 1-category of coefficients. We say that E 2 T .S/ is
f -pure if the canonical morphism

.pT
f /E W †

Lf f �.E/! f Š.E/

is invertible.

Remark 4.3.8.
(i) If f is smooth, then every object E 2 T .S/ is f -pure. This is because the purity

theorem (§2.1.7) is valid in any motivic1-category of coefficients T .
(ii) Variants of Definition 4.3.7 have been considered previously (for specific examples

of T ) by several authors (see e.g. [42, XVI, 3.1.5], [8, 4.4.2], [59, 1.7]).
(iii) Given a smoothable lci s-morphism f W X ! Y , the full subcategory of SH .S/

spanned by the f -pure objects satisfies good formal properties: it is stable under
direct factors, extensions, and tensor products with strongly dualizable objects.

Note in particular that, for T D SH , the orientation �f is universally strong (Defin-
ition 2.3.2) if and only if SS is f -pure. We have the following variant of Lemma 2.3.14:

Lemma 4.3.9. Let T be a motivic1-category of coefficients. Suppose that f W X ! S

is a smoothable lci s-morphism and that E 2 T .S/ is an f -pure object. Then there are
duality isomorphisms

E.X; v/! E.X=S; hLf i � v/; Ec.X=S; v/! Ec.X=S; hLf i � v/;

for every v 2 K.X/.

Recall that an 1-category of coefficients T is called continuous if, whenever a
scheme S can be written as the limit of a filtered diagram .S˛/˛ of schemes with affine
dominant transition maps, then the canonical functor

colim
���!
˛

T .S˛/! T .S/

is an equivalence, where the colimit is taken in the1-category of presentable1-categor-
ies (and colimit-preserving functors).
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Proposition 4.3.10. Let S be a scheme, T a motivic 1-category of coefficients, and
E 2 T .S/ an object. Let f W X ! Y be a smoothable s-morphism of S -schemes and
denote by p W X ! S and q W Y ! S the structure morphisms. Assume that one of the
following conditions is satisfied:

(i) X and Y are smooth over S .

(ii) X and Y are regular, and S is the spectrum of a field k. The 1-category of coeffi-
cients T is continuous. The object E is defined12 over a perfect subfield of k.

Then the morphism f is lci, and q�E is f -pure.

Proof. Since f factors through a closed immersion and a smooth morphism, we may
reduce to the case of closed immersions, using the associativity formula and the fact
that pT

p is invertible for p smooth. Moreover, in both cases f is automatically a regular
closed immersion. The second case reduces to the first by using the continuity property
of T together with Popescu’s theorem [64]. For the first case, the morphisms p W X ! S

and q W Y ! S are smooth. By construction we have a commutative diagram

EX ˝ ThX .Lf / f Š.EY /

EX ˝ f Š.SY /

�E
f

Id˝�f
ExŠ�
˝

where the vertical arrow is invertible by Lemma 3.2.15 and the fact that �p is an isomorph-
ism for p smooth (Definition 2.3.5). Therefore it suffices to note that the morphism ExŠ�˝
induced by the exchange transformation (§2.1.10) is invertible. After writing EX Dp�.E/
and EY D q�.E/, and using the purity isomorphisms pp W p

� ' †�TppŠ and pq W q
� '

†�TqqŠ (§2.1.7), this follows from the˝-invertibility of Thom spaces.

The following definition first appears (as a conjecture) in the context of étale cohomo-
logy in [37, I, 3.1.4]. In our setting it was already introduced in [16, 17]. The following
could be regarded as a more precise formulation, though in fact it is not difficult to see
that both definitions are equivalent (cf. [16, Prop. 4.2.2]).

Definition 4.3.11. Let S be a scheme, T be a motivic 1-category of coefficients, and
E 2 T .S/ an object. We say that E satisfies absolute purity if the following condition
holds: given any commutative triangle

X Y

S

f

p q

where f , p and q are s-morphisms, f is smoothable lci, and X and Y are regular, then
the inverse image q�.E/ 2 T .Y / is f -pure.

12That is, E 2 T .Spec.k// is isomorphic to g�.E0/, where g W Spec.k/! Spec.k0/ with k0 � k
a perfect subfield, and E0 2 T .Spec.k0//.
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Remark 4.3.12.
(i) In view of the functoriality property of the purity transformation (Proposition 2.5.4),

and by part (i) of Remark 4.3.8, it suffices to check the absolute purity property for
diagrams as above where f is a closed immersion.

(ii) If S is the spectrum of a field and T is continuous, then it follows from Proposi-
tion 4.3.10 that every E 2 T .S/ satisfies absolute purity (see [21, Appendix C] for
more details).

(iii) Given the previous definition, the absolute purity property is stable under direct
factors, extensions, tensor product with strongly dualizable objects (as in Remark
4.3.8). One also deduces from the projection formula that absolutely pure objects are
stable under direct image p� for p smooth and proper.

Example 4.3.13. It is known that the motivic spectra KGL, HQ, and MGL ˝ Q sat-
isfy absolute purity over Spec.Z/ (see [17, Rem. 1.3.5]). This is also the case for the
hermitian K-theory spectrum BO in Example 4.4.5 (see [21, Appendix D]); this implies
that the rational motivic sphere spectrum S˝Q over Spec.ZŒ1=2�/-schemes also satisfies
absolute purity (see [20, Theorem 5.5.1]). It was conjectured in [17, Conjectures B and C]
that MGL and S also satisfy absolute purity.

Remark 4.3.14. Note that our definition of absolute purity is formally advantageous. For
example, recall it was deduced in [14] that KGL satisfies absolute purity. This implies that
KGLQ satisfies absolute purity. We know that HB is a direct factor of KGLQ. According
to our definition, this implies that HB is absolutely pure. This argument allows us to
bypass the proof of [14, Th. 14.4.1].

4.4. Examples

We first consider the oriented case, which was already worked out in [16,17,55]. We will
show that we do in fact recover these earlier constructions in this case.

Definition 4.4.1. Let S be a scheme and E 2 SH .S/ a motivic spectrum. An orientation
of E consists of the data of Thom isomorphisms

�cv W E.X=S; v/ ' E.X=S; r/; (4.4.1.a)

for every s-scheme X over S and every class v 2 K.X/ of virtual rank r , which are
functorial and respect the E1-group structure on K.X/ up to a homotopy coherent system
of compatibilities. Here we write simply r 2 K.X/ for the class of the trivial bundle of
rank r .

Example 4.4.2. An MGL-module structure on E (where MGL is viewed as an E1-ring
spectrum) gives rise to an orientation of E.

4.4.3. Let E 2 SH .S/ be an oriented motivic spectrum. Then for any smoothable lci
s-morphism f W X ! Y of s-schemes over S , denote by df the virtual dimension of f
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(i.e., df is the rank of hLf i 2 K.X/). Under the Thom isomorphism (4.4.1.a), the funda-
mental class �f 2 E.X=Y; hLf i/ corresponds to a class

�cf D �
c
Lf
.�f / 2 E.X=Y; df /:

The latter class can be viewed as another orientation .�c
f
; df /, and coincides with the

fundamental class defined in [16, 2.5.3].13 These orientations also form a system of fun-
damental classes as in Definition 2.3.6, and they define Gysin maps

f Šc D f
Š.�cf / W E.X=S; r/! E.Y=S; df C r/; x 7! �cf :x;

which are related to the Gysin maps of Theorem 4.2.1 via a commutative diagram

E.X=S; v/
f Š //

�cv o��

E.Y=S; hLf i C f
�v/

�c
Lf Cf

�vo ��
E.X=S; r/

f Šc // E.Y=S; df C r/

Therefore, Theorem 4.1.4 gives in particular a homotopy coherent refinement of the con-
struction of [16]. Note, by the way, that the diagram above gives a simple proof of the
Grothendieck–Riemann–Roch formula (cf. [16, 3.2.6 and 3.3.10] for the formulation in
A1-homotopy). Indeed, it boils down to the definition of the Todd class (cf. [16, 3.2.4 and
3.3.5]). Compared to op. cit., this proof does not require choosing a factorization of f .14

Example 4.4.4 (Higher Chow groups). Suppose that S is the spectrum of a field k of
characteristic exponent p. Taking E 2 SH .S/ to be the (oriented) motivic cohomo-
logy spectrum HZ, we may identify the resulting bivariant theory with Bloch’s higher
Chow groups, up to inverting p [16, Example 1.2.10(1)]. The construction of §4.4.3 then
gives Gysin maps in higher Chow groups (with p inverted) for arbitrary smoothable lci
s-morphisms. By the results of Sect. 4.2, these Gysin maps are functorial and satisfy
transverse base change and excess intersection formulas.

We now proceed to consider some new examples.

Example 4.4.5 (Hermitian K-theory). Let S D Spec.ZŒ1=2�/. According to [58],15 for
any regular S -schemeX , there exists a motivic ring spectrum BOX 2SH .X/ that repres-
ents hermitian K-theory of smooth X -schemes. In view of its geometric model (denoted

13One reduces to the case of regular closed immersion and smooth morphisms. The case of
smooth morphisms is obvious (which reduces to the six functors formalism). For the case of regular
closed immersions, using the deformation to the normal cone and the compatibility of the two
fundamental classes with transverse base change, we reduce to the case of the zero section of a
vector bundle. This case follows because both fundamental classes give the (refined) Thom class of
the vector bundle, by design.

14For the record, Grothendieck mentioned that such a direct proof of his formula, without going
through a factorization and the use of a blow-up, should exist.

15In the case where S is the spectrum of a field of characteristic different from 2, one can also
take the ring spectrum constructed in [39].
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by BOgeom in op.cit.), BO is defined over S (in the sense that there are canonical iso-
morphisms BOX ' f �.BOS / for every f W X ! S ). Note that for non-regular schemes,
BO-cohomology is a homotopy invariant version of hermitian K-theory (on the model of
[12]), though as far as we know, this notion has not yet been introduced and worked out.

The twisted bivariant theory associated with BO as above is new. The Gysin morph-
isms that one gets on BO-cohomology are also new, at least in the generality of arbitrary
proper smoothable lci s-morphisms, between arbitrary schemes (possibly singular and
not defined over a base field). In the case of regular schemes, our construction for some
part of hermitian K-theory (namely, that which compares to Balmer’s higher Witt groups)
should be compared to that of [11]. This would require a similar discussion to that of
§4.4.3 because, according to Panin and Walter, hermitian K-theory has a special kind
of orientation which allows one to consider only twists by line bundles (see also the next
example). We intend to come back to these questions in a future work. Note that the Gysin
morphisms for Balmer–Witt groups agree with the construction in [56] in the case of a
closed immersion between smooth quasi-projective schemes over a field of characteristic
different from 2.

Example 4.4.6 (Higher Chow–Witt groups). Let k be a perfect field. Introduced by Barge
and Morel, the theory of Chow–Witt groups was fully developed by Fasel [27, 28]. More
recently, the theory was extended to “higher Chow–Witt groups” in a series of works
[10, 18, 19]. In particular, given any coefficient ring R, there exists a motivic ring spec-
trum HMW R in SH .k/ called the Milnor–Witt spectrum (cf. [19, 3.1.2]). We denote by
HMW.X=k; v; R/ (resp. HMW.X; v; R/) its associated bivariant theory (resp. cohomo-
logy).

For any smooth s-scheme X over k and any v 2 K.X/ of virtual rank r , one has a
canonical isomorphism

H 0
MW.X; v;R/ '

fCH
r
.X; det.v//˝R;

which is contravariantly functorial in X and covariantly functorial in v [18, 4.2.6, 4.2.7].
In particular, the ring spectrum HMW is symplectically oriented in the sense of Panin and
Walter [58]. When X is possibly non-smooth, the bivariant theory HMW

0 .X=k; v/ can be
computed by a Gersten complex with coefficients in the Milnor–Witt ring of the residue
fields, so we can put

HMW
0 .X=k; v;R/ D fCHr .X; det.v//˝R

and view this as the Chow–Witt group of the scheme X . Similarly, the groups
HMW
i .X=k; v/ for i � 0 can be viewed as the higher Chow–Witt groups. In fact, we

have canonical maps

'X W H
MW
i .X=k; v;R/! CHn.X; i/˝R;

where n is the rank of the virtual bundle v, which are functorial in X with respect to
proper pushforward (resp. pullback along open immersions).
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The construction of Theorem 4.2.1 gives Gysin maps on these higher Chow–Witt
groups, for any smoothable lci s-morphisms. These Gysin maps are functorial and satisfy
transverse base change and excess intersection formulas. Furthermore, the maps 'X are
compatible with Gysin morphisms by construction. All in all, we get a robust bivariant
theory of higher Chow–Witt groups.

Example 4.4.7 (A1-homology). Let S be a scheme. Recall that for any commutative
ring R, there is a motivic ring spectrum NRS 2 SH .S/ representing A1-homology with
coefficients. This is nothing else than the R-linearization SS ˝ R of the motivic sphere
spectrum (see [14, 5.3.35] for another description). It is clear that NR is stable under base
change in the sense that there are tautological isomorphisms f �.NRS / ' NRT for every
morphism f W T ! S .

By Theorem 4.2.1 we obtain Gysin morphisms for the associated bivariant theories
and cohomologies. Note in particular that this gives a very general notion of transfer
maps in cohomology, along arbitary finite lci morphisms, extending the definitions of
Morel [53].16

4.5. Application: specializations

In this subsection we investigate two of the many applications of the theory of refined
Gysin maps (Definition 4.2.5). Throughout this subsection, we fix a motivic1-category
of coefficients T , a scheme S , and an object E 2 T .S/.

4.5.1. Let S be a scheme. For an s-scheme X over S , any section s W S ! X which is a
regular closed immersion, and any s-morphism p W Y ! X , consider the cartesian square

Ys Y

S X

t

ps � p

s

The associated refined Gysin map takes the form

t Š� W E.Y=S; e/! E.Ys=S;�p
�
s hNSXi C e/

for any e 2 K.Y /. Thus any class ˛ 2 E.Y=S; e/ determines a family of specializations

˛s D t
Š
�.˛/ 2 E.Ys=S;�p

�
s hNSXi C e/

for every s.

Example 4.5.2. In the case where S D Spec.k/ is the spectrum of a field, we can take
s W S ! X to be any regular k-rational point.

16Morel defines transfer maps only for finite field extensions, but he works unstably.
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Remark 4.5.3. If E is oriented, then we can identify

E.Ys=S; e � p
�
s hNSXi/ ' E.Ys=S; e � d/;

where d is the codimension of the point s, and thus view ˛s as a class in E.Ys=S; e � d/.
The same can be accomplished in general up to some choice of a trivialization of the
normal bundle NSX .

Example 4.5.4. In the case where S D Spec.k/ is the spectrum of a field and E D
HZ (Example 4.4.4), the construction of §4.5.1 generalizes Fulton’s construction in [33,
Sect. 10.1] to higher Chow groups.

Example 4.5.5. Suppose that S D Spec.k/ is the spectrum of a perfect field and take now
E to be the Milnor–Witt spectrum (Example 4.4.6). In this case the construction of §4.5.1
gives a refinement of Example 4.5.4 with “coefficients in quadratic forms”. In particular,
we can specialize Chow–Witt cycles: Let X be a smooth and connected scheme over k of
dimension d and let p W Y ! X be an s-morphism. Then Y can be considered as a family
of k-schemes parametrized by X , and given any Chow–Witt cycle ˛ 2 fCHd .Y / we get
specializations ˛s 2 fCH0.Ys; p�s det.�NSX//.

Beware however that the theory is more complicated than the case of usual Chow
groups. For instance, assume that the morphism p W Y ! X is proper. Then each ps W
Ys ! S is proper and we may consider the degree of ˛s in the (twisted) Grothendieck–
Witt group, i.e.

deg.˛s/ D .ps/�.˛s/ 2 fCH0.S; det.�NSX// ' GW.k; det.�NSX// ' GW.k/:

Now unlike in the Chow groups, these degrees depend in general on the point s. In fact, the
Chow–Witt cycle p�.˛/ 2 fCHn.X/ corresponds to the class of an unramified quadratic
form ' in GW.�.X//, and the class deg.˛s/ is the specialization of ' at s.

4.5.6. We now construct an analogue of Fulton’s specialization map of [33, Sect. 20.3].
Suppose

XZ X XU

Z S U

iX

fZ �

jX

f fU

i j

are cartesian squares, where i is a regular closed immersion of codimension d , j is
the inclusion of the open complement, and f is an s-morphism. Suppose also we are
given a null-homotopy e.NZS/ ' 0 in H.Z; hNZSi/ (for example when the bundle
NZS is trivial, any choice of trivialization gives rise to such a null-homotopy by Pro-
position 3.1.7). For any object A 2 T .X/, the composition

iX�.i
�
XA˝ f

�
ZThZ.�NZS// �! iX�i

Š
XA �! A �! iX�i

�
XA

where the first map is induced by the refined fundamental class of the square � as in
4.3.1 and the other maps are obtained from adjunctions, agrees with multiplication by
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the class f �Z e.NZS/ by the self-intersection formula (Corollary 4.2.3), which is then
null-homotopic by our hypothesis. Therefore using the localization triangle (Proposi-
tion 2.2.10), we obtain a natural transformation of the form

iX�.i
�
XA˝ f

�
ZThZ.�NZS//! jXŠj

Š
XA: (4.5.6.a)

Now let E 2 T .S/ be an i -pure spectrum. Then for any e 2 K.X/, the map (4.5.6.a)
induces the following specialization map:

� W E.XU =U; e/ ' E.XU =S; e/

! E.XZ=S; e � f
�
Z hNZSi/ ' E.XZ=Z; e/: (4.5.6.b)

Remark 4.5.7. In the case where S D Spec.k/ is the spectrum of a field and E D HZ
(Example 4.4.4), the map (4.5.6.b) generalizes Fulton’s specialization map [33, Sect. 20.3]
to higher Chow groups.

Remark 4.5.8. The construction of §4.5.6 is compatible with Ayoub’s motivic nearby
cycle functor in the following sense. Let S be the spectrum of a field k of character-
istic 0, i W S !A1S the inclusion of the origin, and j W U DGm;S !A1S the complement.
Let f W X ! A1S be a smooth morphism, and e 2 K.X/. Note that any E 2 SH .S/ is
i -pure by Proposition 4.3.10, and there is a canonical trivialization of the normal bundle
NS .A1S /. Therefore the requirements of §4.5.6 are satisfied and we obtain a specializa-
tion map � W E.XU =U; e/! E.XS=S; e/ as in (4.5.6.b). Then this map is induced by the
canonical natural transformation

i�XjX� ! ‰f

where ‰f W SH .XU /! SH .XS / is the motivic nearby cycle functor of [2, 3.5.6].

4.6. Application: the motivic Gauss–Bonnet formula

Let p W X ! S be a smooth proper morphism. Recall that the spectrum †1C .X/ '

pŠp
Š.SS / is a strongly dualizable object of SH .S/ [14, Prop. 2.4.31], so that we may

consider the trace of its identity endomorphism. This is an endomorphism �cat.X=S/ 2

MapsSH .S/.SS ; SS /, which we refer to as the categorical Euler characteristic; see
[40, §3] for details. In this subsection, we view �cat.X=S/ as a class in H.S=S; 0/, and
compute it as the “degree of the Euler class of the tangent bundle”:

Theorem 4.6.1. Let p W X ! S be a smooth proper morphism. Then there is an identi-
fication �cat.X=S/ ' p�.e.TX=S // in the group H.S; 0/.

Remark 4.6.2. Let S be the spectrum of a field of characteristic different from 2, and
let p W X ! S be a smooth projective morphism. Under these assumptions, a version
of Theorem 4.6.1 was proven recently by Levine [49, Theorem 1]. The formulation of
loc. cit. can be recovered from Theorem 4.6.1 by applying the A1-regulator map (Defini-
tion 4.1.2).
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4.6.3. In order to prove Theorem 4.6.1, we begin by giving a useful intermediate descrip-
tion of �cat.X=S/. Consider the cartesian square

X �S X X

X S

�2

�1 p

p

and let ı W X ! X �S X denote the diagonal (a regular closed immersion).

Lemma 4.6.4. The endomorphism �cat.X=S/ W SS ! SS is obtained by evaluating the
following natural transformation at the monoidal unit SS :

Id Id

p�p
� p�ı

Š.�2/
Šp� p�ı

Š.�1/
�pŠ p�ı

�.�1/
�pŠ p�p

Š

unit

Ex�Š
�

�

counit

where � W ıŠ ! ı� is the exchange transformation Ex�Š W Id� ıŠ ! IdŠ ı�.

Proof. This follows from the description given in [40, Prop. 3.6], in view of the commut-
ativity of the diagram

ıŠ.�2/
Šp� p� .�1/�ı�ı

�.�2/
Šp� .�1/�.�2/

Šp�

ıŠ.�1/
�pŠ pŠ .�1/�ı�ı

�.�1/
�pŠ .�1/�.�1/

�pŠ

"

Ex�Š o

�

Ex�Š o
�

which the reader will easily verify.

Proof of Theorem 4.6.1. By Lemma 4.6.4, it will suffice to show that the following dia-
gram commutes:

p� D ıŠ.�2/
Šp� ıŠ.�1/

�pŠ ı�.�1/
�pŠ D pŠ

†�TppŠ
†�Tp�pp

Ex�Š �

ep�p
Š

pı

Here we have written ep for the natural transformation †�Tp ! Id induced by the Euler
class e.Tp/ W SX ! ThX .Tp/. The commutativity of the left-hand triangle follows by
construction of the fundamental class of p (Example 2.3.4) and Corollary 3.2.17. For the
right-hand triangle, commutativity follows immediately from the self-intersection formula
(Example 3.2.9(ii)), which asserts the commutativity of the square

ThX .�Tp/ ıŠ.�1/
�.SX / ı�.�1/

�.SX /

ThX .�Tp/ SX

�ı �

e.Tp/
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