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Abstract. Let K be a maximal unramified extension of a non-archimedean local field with arbitrary
residual characteristic p. Let G be a reductive group over K which splits over a tamely ramified
extension of K. We show that the associated Moy—Prasad filtration representations are in a certain
sense independent of p. We also establish descriptions of these representations in terms of explicit
Weyl modules and as representations occurring in a generalized Vinberg—Levy theory.

As an application, we provide necessary and sufficient conditions for the existence of stable
vectors in Moy—Prasad filtration representations, which extend earlier results by Reeder and Yu
(which required p to be large) and by Romano and the present author (which required G to be
absolutely simple and split). This yields new supercuspidal representations.

We also treat reductive groups G that are not necessarily split over a tamely ramified field
extension.
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1. Introduction

The introduction of Moy—Prasad filtrations in the 1990s revolutionized the study of the
representation theory of p-adic groups. As one example, their introduction enabled a
construction of supercuspidal representations — the building blocks in the representation
theory of p-adic groups — that is exhaustive for large primes p under certain tameness
assumptions. However, while this and similar advances are remarkable, the restrictions
on the prime p are unsatisfying. Given their critical role, we expect that a better under-
standing of the Moy—Prasad filtrations will be a key ingredient for future progress. To that
end, we introduce a “global” model for the Moy—Prasad filtration quotients. This allows
us to compare the Moy—Prasad filtrations for different primes p and to deduce results
for all primes p that were previously only known for large primes. Our global model
also enables us to express the Moy—Prasad filtration quotients in terms of more tradi-
tional, well studied concepts, e.g. as explicit Weyl modules or in terms of a generalized
Vinberg—Levy theory. As an application, we exhibit new supercuspidal representations
for non-split p-adic groups, including non-tame groups.

To explain the content and background of the paper in more detail, let us introduce
some notation. Let k be a non-archimedean local field with residual characteristic p > 0.
Let K be a maximal unramified extension of k and identify its residue field with Fp. Let
G be a (connected) reductive group over K. In [2, 3], Bruhat and Tits defined a building
B(G, K) associated to G. For each point x in B(G, K), they constructed a bounded
subgroup G of G(K), called a parahoric subgroup. In [14, 15], Moy and Prasad defined
a filtration of these parahoric subgroups by smaller subgroups

Gy = Gx,() > Gx,rl > Gx,rg Doeeey

where 0 < r; < rp < --- are real numbers depending on x. For simplicity, we assume
Elat ri. T2, ... are rational numbers. The quotient Gx /Gy, can be identified with the
IF»-points of a reductive group Gy, and Gy r; /Gx,r; ., (i > 0) can be identified with an

I »-vector space Vy ,; on which Gy acts.

Results about Moy—Prasad filtrations. We show for a large class of reductive groups G,
which we call good groups (see Definition 3.1.1), that Moy—Prasad filtrations are in a cer-
tain sense (made precise below) independent of the residue field characteristic p. The
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class of good groups contains reductive groups that split over a tamely ramified field
extension (which is the class that many authors restrict to), as well as simply connected
and adjoint semisimple groups, and products and restriction of scalars along finite separ-
able (not necessarily tamely ramified) field extensions of any of these. The restriction to
this (large) subclass of reductive groups is necessary as the main result (Theorem 3.4.1)
fails in general (see Remark 3.4.2). Given a good reductive group G over K, where K
is a maximal unramified extension of k as above, a point x of the Bruhat-Tits building
B(G, K) as above, and an arbitrary prime g coprime to a certain integer N that depends on
the splitting field of G (N is coprime to p, for details see Definition 3.1.1), we construct
a finite extension K, of QJ, a reductive group G, over K, and a point x4 in B(G4, K;).
To these data, one can attach a Moy—Prasad filtration as above. The corresponding reduct-
ive quotient Gy, is a reductive group over Fq that acts on the quotients Vy, ., which
are identified with Fq vector spaces. For a given positive integer 7, we show in Theorem
3.4.1 that there exists a split reductive group scheme J{ over Z[1/N] acting on a free
Z[1/N]-module V such that the special fiber of this representation over FF, ¢ 1s the above
constructed Moy—Prasad filtration representations of Gy, on Vy, ,, for all g coprime
to N, and the special fiber over ]ITP is the Moy—Prasad filtration representations of Gy
on V, ;.. This allows us to compare the Moy—Prasad filtration representations for differ-
ent primes.

We also give a new description of the Moy—Prasad filtration representations, i.e. of
G acting on Vy ,,, for reductive groups that split over a tamely ramified field extension
of K. Let m be the order of x (see §3.2 for the definition of “order”). We define an action
of the group scheme g, of m-th roots of unity on a reductive group SFP over FP, and

denote by

9%’"’0 the identity component of the fixed-point group scheme. In addition, we
4

define a related action of u,, on the Lie algebra Lie(SFp), which yields a decomposition
Lie(SF )(Fp) =dL, Lie(SF )-(FI,). Then we prove that the action of Gx on Vy ,,
corresponds to the action of 9“ "> on one of the graded pieces Lie(§); (]I7 ) of the Lie

algebra of 9]F This was prev10us1y known by [20] for sufficiently large primes p, and
representatlons of the latter kind have been studied by Vinberg [24] in characteristic zero
and generalized to positive characteristic coprime to m by Levy [13]. To be precise, in this
paper we even prove a global version of the above mentioned result. See Theorem 4.1.1
for details. We also show that the same statement holds true for all good reductive groups
after base change of H and V to Q (see Corollary 4.2.1).

Moreover, the global version of the Moy—Prasad filtration representations given by
Theorem 3.4.1 allows us to describe the representations occurring in the Moy—Prasad
filtrations of good reductive groups explicitly in terms of Weyl modules; see Section 6 for
precise formulas.

An application to supercuspidal representations. Suppose G is defined over k. In 1998,
Adler [1] used the Moy—Prasad filtrations to construct supercuspidal representations of
G (k), and Yu [25] generalized his construction three years later. If G splits over a tamely
ramified extension of k and p does not divide the order of the Weyl group of G, then
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Yu’s construction yields all supercuspidal representations [6, 12]. However, it is known
that the construction does not give rise to all supercuspidal representations for small
primes p.

In 2014, Reeder and Yu [20] gave a new construction of supercuspidal representations
of smallest positive depth, which they called epipelagic representations. A vector in the
dual Vi, = (Gx,r,/Gx,r,)" of the first Moy—Prasad filtration quotient is called stable
(in the sense of geometric invariant theory) if its orbit under Gy is closed and its stabilizer
in Gy is finite. The only input for the new construction of supercuspidal representations
in [20] is such a stable vector. Assuming that G is a semisimple group that splits over a
tamely ramified field extension, Reeder and Yu gave a necessary and sufficient criterion
for the existence of stable vectors for sufficiently large primes p. In [7], Romano and
the present author removed the assumption on the prime p for absolutely simple split
reductive groups G, which yielded new supercuspidal representations for split groups.

One application of our results on Moy—Prasad filtrations is a criterion for the existence
of stable vectors for all primes p for a much larger class of semisimple groups (see Corol-
lary 5.2.2). As a consequence we obtain new supercuspidal representations for a class
of non-split p-adic reductive groups, including non-tame groups. Note that the assump-
tion that the reductive group is semisimple is not crucial. One can easily generalize the
construction of Reeder and Yu to non-semisimple reductive groups by considering the
center. Similarly, we prove in Theorem 5.1.1 that the existence of semistable vectors is
independent of the residue field characteristic. Semistable vectors play an important role
when moving from epipelagic representations to representations of higher depth.

Structure of the paper. In Section 2, we first recall the Moy—Prasad filtration of G, and
then in §2.5 we introduce a Chevalley system for the reductive quotient that will be used
for the construction of the reductive group scheme 3 that appears in Theorem 3.4.1.
In §2.6, we construct an inclusion of the Moy—Prasad filtration representation of G into
that of Gr for a sufficiently large field extension F of K that will allow us to define
the action of H{ on V in Theorem 3.4.1. Afterwards, in Section 3, we move from a pre-
viously fixed residue field characteristic p to other residue field characteristics g. More
precisely, we first introduce the notion of a good group and define K, /Qy', G4 over Ky,
and x, € B(Gy, Ky). In §3.4, we prove our first main theorem, Theorem 3.4.1. Section 4 is
devoted to giving a different description of the Moy—Prasad filtration representations and
their global version as generalized Vinberg—Levy representations (Theorem 4.1.1). In Sec-
tion 5, we use the results of the previous sections to show that the existence of (semi)stable
vectors is independent of the residue characteristic. This leads to new supercuspidal rep-
resentations. We conclude the paper by giving a description of the Moy—Prasad filtration
representations in term of Weyl modules in Section 6.

Conventions and notation. If M is a free module over some ring A, and if there is no
danger of confusion, then we denote the associated scheme whose functor of points is
B +— M ®4 B for any A-algebra B also by M. In addition, if G and T are schemes over
a scheme S, then we may abbreviate the base change G xgs T by Gr; and if T = Spec A
for some ring A, then we may also write G4 instead of Gr.
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When we talk about the identity component of a smooth group scheme G of finite
presentation, we mean the unique open subgroup scheme whose fibers are the connec-
ted components of the respective fibers of the original scheme that contains the identity.
The identity component of G will be denoted by G°. If G is a group scheme defined
over a ring R, then Lie(G) denotes the corresponding Lie algebra functor over R, and
if f:G — H is a map between group schemes over R, then we write Lie( f) for the
corresponding induced map Lie(G) — Lie(H).

Throughout the paper, we require reductive groups to be connected.

For each prime number ¢, we fix an algebraic closure @q of Qg4 and an algebraic

closure F,((¢)) of F4((¢)). All algebraic field extensions of Q4 and [F,((¢)) are assumed
to be contained in @q and F,((z)), respectively. We then denote by Q' the maximal

unramified extension of @, (inside @q), and by F,((z))* the maximal unramified exten-
sion of IF,((7)). For any field extension F of Q4 (or of F,((¢))), we denote by F™™ its
maximal tamely ramified field extension. Similarly, we fix an algebraic closure Q of Q,
and we denote by Z the integral closure of Z in Q and by Z, the integral closure of Z,
in @q.

In addition, we will use the following notation throughout the paper: p denotes a fixed
prime number, k is a non-archimedean local field (of arbitrary characteristic) with residual
characteristic p, and K is the maximal unramified extension of k contained in the fixed
algebraic closure above. We write @ for the ring of integers of K, v: K — Z U {oo} for the
valuation on K with image Z U {oco}, and @ for a uniformizer of K. We denote by v also
the unique extension of the valuation v to a discrete valuation on a finite field extension
of K. Let G be a reductive group over K, and let E denote a splitting field of G, i.e., E is
a minimal field extension of K such that G is split. Note that all reductive groups over K
are quasi-split and hence E is unique. Let e be the degree of E over K, O the ring of
integers of £, and wg a uniformizer of E. Without loss of generality, we assume that
@ is chosen to equal @ modulo wg+1(9 E. We denote the (absolute) root datum of G
by R(G), and its root system by & = ®(G). We fix a point x in the (reduced) Bruhat-Tits
building B(G, K) of G, denote by S a maximal split torus of G such that x is contained
in the apartment A(S, K) associated to S, and let 7" be the centralizer of S, which is a
maximal torus of G. Moreover, we fix a Borel subgroup B of G containing 7', which
yields a choice of simple roots A and positive roots ®* in ®. In addition, we denote
by ®x = Pk (G) the restricted root system of G, i.e., the restrictions of the roots in ®
from 7 to S. For a € @k, we denote its preimage in ® by ®,,.

Moreover, to help the reader, we will adhere to the convention of labeling roots in ®
by Greek letters: «, 8, ..., and roots in ®x by Latin letters: a, b, . ...

2. Parahoric subgroups and Moy—Prasad filtration

In order to talk about the Moy—Prasad filtration, we will first recall the structure of the
root groups following [3, Section 4]. For more details and proofs we refer to loc. cit.
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2.1. Chevalley—Steinberg system

For « € ®, we denote by Uf the root subgroup of Gg corresponding to «. Note
that Gal(E/K) acts on ®. We denote by E, the fixed subfield of E of the stabilizer
Stabga (e / k) () of a in Gal(E/K). In order to parametrize the root groups of G over K,
we fix a Chevalley-Steinberg system {xf G, —> Uf }aco of G with respectto 7, i.e. a
Chevalley system {xf G, — Uf }aed of GE (see Remark 2.1.1) satisfying the following
additional properties for all roots o € P:

(i) The isomorphism x£ : G, — UF is defined over E,.
(ii) If the restriction a € ®g of @ to S is not divisible, i.e. a/2 ¢ Pk, then

xf(a) =VYo xf oy~! forall y € Gal(E/K).

(iii) If the restriction a € ®g of o to S is divisible, then there exist 8, B’ € ® restricting
to a/2 such that Eg = Ep/ is a quadratic extension of E,, and

xf(a) =yo xf oy loe forally e Gal(E/E,),

where € € {£1} is 1 if and only if y induces the identity on Eg.

According to [3, 4.1.3], which is based on [22], such a Chevalley—Steinberg system does
exist. It is a generalization of a Chevalley system to non-split groups and it will allow us
to define a valuation of root groups in §2.2 even if the group G is non-split.

Remark 2.1.1. We follow the conventions resulting from [8, XXIII Définition 6.1], so
we do not add the requirement of Bruhat and Tits that for each root &, x£ and x£, are
associated, i.e. xf (1)xfa(l)x£ (1) is contained in the normalizer of 7. However, there
exists €q,o € {1, —1} such that

ma 1= xg (DxLq (caa)xy (1)
is contained in the normalizer of 7. Moreover, Ad(m) (Lie(xo}f )(1)) =€qn Lie(xfa)(l).

Definition 2.1.2. For «, 8 € ®, we define €4 g € {£1} by

Ad(mg)(Lie(xg)(1)) = €4 p Lie(xs, (8)) (1),

where s, denotes the reflection in the Weyl group W of ®(G) corresponding to «. The
integers €4 g for o and B in @ are called the signs of the Chevalley—Steinberg system

{xf}aeb-

2.2. Parametrization and valuation of root groups

In this section, we associate a parametrization and a valuation to each root group of G.
Leta € &g = Ok (G), and let U, be the corresponding root subgroup of G, i.e., the

connected unipotent (closed) subgroup of G normalized by S whose Lie algebra is the

sum of the root spaces corresponding to the roots that are a positive integral multiple of a.
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Let G, be the subgroup of G generated by U, and U_,, and let 7 : G — G, be a
simply connected cover. Note that 7 induces an isomorphism between a root group U4
of G? and U,. We call Uy the positive root group of G*. In order to describe the root
group U,, we distinguish two cases.

Case 1: The root a € Pk is neither divisible nor multipliable, i.e. /2 and 2a are both
not in &g

Let o € ®, be a root that equals a when restricted to S. Then G¢ is isomorphic to
the Weil restriction Resg, /g SLo of SL> over Ey to K, and U, >~ Resg,/k Uf , Where
UE is the root group of G corresponding to a as above. Note that (U,) g is the product
[lpeo, U ff: . Using the Eg-isomorphism xZ : G, — UE, we obtain a K-isomorphism

o E . E =
Xq :=Resg,/x X, :Resg,/xk Ga — Resg,/xk U, = Uy,

which we call a parametrization of U,. Note that for u € Resg,/x Ga(K) = Ey, we have

Xq(u) = l_[ x/f(u,g) with 1y, @q) = y(u) for y € Gal(E/K).
Bedq

This allows us to define the valuation ¢, : Uy (K) — mz U {oo} of U, (K) by

Pa(xa(u)) = v(u).

Case 2: The root a € @ is divisible or multipliable, i.e. a/2 or 2a is in Pg.

We assume that a is multipliable and describe U, and U,,. Let o, & € ®, be such that
o + a isarootin ®. Then G is isomorphic to Resg,, +a/k SU3, where SU3 is the special
unitary group over E, 5 defined by the hermitian form (x, y,z) > o(x)z + o (y)y +
o(z)x on E2 with o the non-trivial element in Gal(Ey/ E4+5). Hence, in order to para-
metrize U,, we first parametrize the positive root group U4 of S Us. To simplify notation,
write L = Ey = Eg and L, = E, 5. Following [3], we define the subset Ho(L, L2) of
L x L by

Ho(L,Ly) ={(u,v) e LXL|v+0o() =0c)u}.

Viewing L x L as a four-dimensional vector space over L, and considering the corres-
ponding scheme over L, (as described in “Conventions and notation” in Section 1), we
can view Hgy(L, L) as a closed subscheme of L x L over L,, which we will again denote
by Ho(L, L3). Then there exists an L,-isomorphism p : Hy(L, L) — Uy given by

1 —o(u) —v
u,v)~ |0 1 u |,
0 0 1

where o is induced by the non-trivial element in Gal(L/L;). Using this isomorphism,
we can transfer the group structure of Uy to Ho(L, L,) and thereby turn the latter into
a group scheme over L,. Let us denote the restriction of scalars Res;, ;x Ho(L, L>)
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of Hy(L, L;) from E,15 = L, to K by H(L, L,). Then, by identifying G¢ with
Resg, +alK SUj3, we obtain an isomorphism

Xq:=moResg, ki H(L,Ly) = U,,

which we call the parametrization of U,. We can describe the isomorphism x, on
K-points as follows. Let [®,] be a set of representatives in ®, of the orbits of the action
of Gal(Ey/Eq+5) = (o) on ®,. We will choose the sets of representatives for &, and
®_, such that [®,] and —[D_,] are disjoint. For 8 € [®,], choose y € Gal(E/K) such
that 8 = y(«) and set E = y(&) and ug = y(u) for every u € L. By replacing some xE

E - B+B
by x 515 ° (—1) if necessary, we ensure that

E —1 E
x, ~=Inn(m%")ox

B+B ( B )oxg
(where m i is defined as in Remark 2.1.1).! Moreover, we choose the identification of
G*? with Res Eqig/K SUj; so that its restriction to the positive root group arises from the
restriction of scalars of the identification that satisfies

I —w v
70 1 u = xf (u)x‘f+&(v)x§ (w).
0 0 1
Then for (u,v) € Ho(L,Ly) = H(L, L2)(K) C L x L we have
— E E [ E
Xa(u,v) = ﬁ];[ ]xﬁ (up)xy 5(~vp)x5 (0(u)p). 1)
€1Pq

The root group U,, corresponding to 2a is the subgroup of U, given by the image of
X4(0,v). Hence U, (K) is identified with the group of elements in E, of trace zero with
respect to the quadratic extension Eq/Eq 5, which we denote by EC.

Using the parametrization x,, we define the valuation ¢, of U,(K) and ¢p, of
U 2a (K ) by

Pa(xa(, ) = 3V(V),  ¢24(xa(0,)) = v(v).

Remark 2.2.1. (i) Note that v + o(v) = o(u)u implies %V(v) < v(u).

(i1) The valuation of the root groups U, can alternatively be defined for all roots a € ®g
as follows. Let u € U, (K), and write u = naeéau%a Uy With uy € Uy (E). Then
— : E . 1 E
ga(u) = inf( inf @7 (ua). inf Jo (ua)).
where (pf (xq (v)) = v(v). The equivalence of the definitions is an easy exercise (see
also [3, 4.2.2]).

E

'Note that our choice of xg or xﬂ+/§ for negative roots S, E deviates from Bruhat and Tits. It

allows us a more uniform construction of the root group parametrizations that does not require us to
distinguish between positive and negative roots, but that coincides with the ones defined by Bruhat
and Tits [3].
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2.3. Affine roots

Recall that the apartment A = A(S, K) corresponding to the maximal split torus S of G
is an affine space under the R-subspace of X, (S) ®z R spanned by the coroots of G,
where X, (S) = Homg (G, S). The apartment A can be defined as corresponding to all
valuations of (T(K), (Us(K))aed ) in the sense of [2, §6.2] that are equipolent to the
one constructed in §2.2, i.e., families of maps (@, : Uy (K) — R U {00})geq, such that
there exists v € X«(S) ®z R satisfying ¢, (1) = ¢4 (u) + a(v) for all u € U, (K), for all
a € Pk. In particular, the valuation defined in §2.2 corresponds to a (special) point in A
that we denote by x¢. Then the set of affine roots Wx on A consists of the affine functions
on A given by

Vg = Vg(A) ={y —»a(y —xo0) +V |ae€ Pk, y €T},
where
F:l ={@a(u) |u € Uy — {1}, ¢a(u) = sup ¢a(uUs4)}.

It will turn out to be handy to introduce a more explicit description of I',. In order to do
s0, consider a multipliable root ¢ and @ € ®,, and define

(Ea)’ ={u € Eq | Trg, £, 5 (u) = 0},
(Ea)' = {u € Ea | TtE, /£, ) = 1},
(Ea)max = {t € (Ea)" | v(u) = sup{v(v) | v € (Ea)'}}.
Then, by [3, 4.2.20, 4.2.21], the set (E4)L _is non-empty, and, with A any element of

(Eq)L,. and a still being multipliable, we have

T, = 3v(A) + v(Eq —{0}), 2)
T, = V((Eq)’ —{0}) = v(Eq —{0}) —2-T. 3)

For a being neither multipliable nor divisible and o € ®,, we have
T, = v(Eq —{0}). &)

Remark 2.3.1. Note that if the residue field characteristic p is not 2, then % € (Eg)lL ..

for a a multipliable root and & € ®,, and hence I, = v(E, — {0}). If the residue field
characteristic is p = 2, then v(1) < 0 for A € (E)L

max*

2.4. Moy—Prasad filtration

Bruhat and Tits [2, 3] associated to each point x in the (reduced) Bruhat-Tits building
B(G, K) a parahoric group scheme over O, which we denote by PPy, whose generic fiber
is isomorphic to G. We will quickly recall the filtration of G, := Py () introduced by
Moy and Prasad in [14, 15] and thereby specify our convention for the parameter involved.

Define To = T(K) N P, (). Then Ty is a subgroup of finite index in the maximal
bounded subgroup {t € T(K) | v(x(¢)) =0 Vy € X*(T) = Homg(T, Gy)} of T(K).
Note that this index equals 1 if G is split.
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For every positive real number r, we define
T, ={teTy|v(x@t)—1)=rforall y € X*(T) = Homg(T, Gp)}.
For every affine root ¢ € Wk, we denote by 1// its gradient and define the subgroup Uy,
of U¢ (K) by
Uy = {u € Uy(K) | 9;(u) = ¥ (x0)}.
Then the Moy—Prasad filtration subgroups of G are given by

Gy =(Tr.Uy | ¥ € Vg, ¥(x) = 1) forr >0,

and we set
Gx,r+ = U Gx,s-
sS>r
The quotient G/ Gy, 0+ can be identified with the Fp -points of the reductive quotient of
the special fiber Py x¢ Fp of the parahoric group scheme Py, which we denote by G.
From [3, Corollaire 4.6.12] we deduce the following lemma.

Lemma 2.4.1 ([3]). Let Rg(G) = (Xx = X*(S), Pk, Xk = X+(S), Dx) be the restric-
ted root datum of G. Then the root datum R(Gyx) of Gy is canonically identified with
Xk, ¥, Xk, @) where

O ={ac®|alx—x0) €T} and & ={ied|a(x—x0) T}

We can define a filtration of the Lie algebra ¢ = Lie(G)(K) similar to the filtration
of G,. In order to do so, we denote the @-lattice Lie(Py) of g by py. Define u, x =
px N, fora € @k and t = Lie(T)(K), where 1, is the subspace of g on which t acts
via Lie(a).

We define the Moy—Prasad filtration of the Lie algebra t for r € R to be

tr = {X €t | v(Lie(y)(X)) > rforall y € X*(T)}. 3)

For every root a € g, we define the Moy—Prasad filtration of u, as follows. Let
Ya,x be the smallest affine root with gradient a such that ¥, x(x) > 0. For every ¥ € Wk
with gradient a, we let ny, x = eq (¥ — ¥q,x), Where eq = [Eq : K] for some roota € @,
that restricts to a. Note that ny , is an integer. Choosing a uniformizer w, € E, and
viewing p, inside Lie(G)(Ey) we set’

Uy = (wgtlw'x@Eapa,x) Ng.
Then the Moy—Prasad filtration of the Lie algebra g is given by
Gx,r = {tr.uy | Y(x)>r) forr eR.

In general, the quotient G,/ G r+ is not isomorphic to g, /gx -+ for r > 0. How-
ever, it turns out that we can identify them (as IF,-vector spaces) under the following
assumption.

ZNote that uy, does not depend on the choice of x inside A.
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Assumption 2.4.2. The maximal (maximally split) torus T of G becomes an induced
torus over a tamely ramified extension.

Recall that the torus 7 is called induced if it is a product of separable Weil restric-
tions of Gy, i.e. T =~ 1—[{\/:1 Resg, /x G for some integer N and finite separable field
extensions K; /K, 1 <i < N.

For the rest of Section 2, we impose Assumption 2.4.2.

Remark 2.4.3. Assumption 2.4.2 holds, for example, if G is either adjoint or simply
connected semisimple, or if G splits over a tamely ramified extension.

For r € R, we denote the quotient g »/ax,r+ (= Gx,r/Gx,r4 forr > 0) by V, ,. The
adjoint action of G on gy, (or, equivalently, the conjugation action of Gy on Gy ,
for r > 0) induces an action of the algebraic group G on the quotients V .

2.5. Chevalley system for the reductive quotient

In this section we construct a Chevalley system for the reductive quotient G, by reduction
of the root group parametrizations given in §2.2. Let U, denote the root group of G
corresponding to the root a € (Gx) C Pk (G). We denote by Oqy the ring of integers
in Q;‘f . If K is an extension of QY, we let y : Fp — (9@;r be the Teichmiiller lift, i.e.
the unique multiplicative section of the surjection Oy —> Fp. If K is an extension of
].Fp((t).)ur =lim Fpn((2)), welet y :Fp = lim Fpn — lim Fpn [[1]] be the usual
inclusion.
v(A
max E( e * €0

with &0 € X(Fl,) andeg € 1 + wgOg; e.g., take Aoy = A = 1/2if p # 2. Consider the
map Fp, — Gy o given by

Lemma 2.5.1. Let A = A, € (Ey)L  for some a € ®y, and write A = A - @

xa(v/1/ Ao x(u)wier, X(u)wlssela()((u)wls;eﬂ-w}émeeo) if a is multipliable,

U 2 xq (0, x(u) w4 ey) ifa is divisible,
xq (x(u)- WEH(X_XO)'EQ) otherwise,
where s = —(a(x — x9) + v(1)/2) - e, and €1, €2, €3 € 1 + wgOfg such that

V1/Ao x(u)wier, X(u)wgza(x_x(’)'eez and X(u)wga(x_m)'eq are contained in E,
— 2
and +/ 1//\0 S )((]Fp) with +/ I/AO = l/ko
Then the composition of this map with the quotient map G0 —> Gx,0/ Gx,0+ yields a
root group parametrization X, : G, — Ug C Gy (where G, is defined over IF ). Moreover,
the root group parametrizations {Xs}aed(G,) form a Chevalley system for G.

We remark that Gopal Prasad pointed out to us that a similar Chevalley system con-
struction can be found in [18, 2.19, 2.20].
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Proof of Lemma 2.5.1. Note first that since a € ®(Gy), we have a(x — xo) € I'; by
Lemma 2.4.1. Suppose a is multipliable. Then U, (IF,) is the image of

Im:= {xs(U,V) | (U.V) € Hy(Eq, Eq1a). 3V(V) = —a(x — x¢)}
in Gx,O/Gx,0+- Set
Uu) = /1/10 x(u) - wg(ll(x—xo)-i-v(/\)/z)'éel

and

V) = yw)wgeio(y(w)wier) - w;i'(A)EGO-

Then V(u) + o(V(u)) = U)o (U(u)), ie. (U), V(u)) is in Ho(Ey, Eq+g), and
v(V(u)) = —2a(x — xo). Moreover, every element in Im is of the form (U(u), V(u) + vg)
foru € Fp and some element vy € (E,)° with v(vg) > —2a(x — x¢), because 2a(x — x) ¢
V((Eq)?) (by equation (3), §2.3). Note that the images of x,(U(u), V(u) + vo) and
xa(U(u), V(u)) in Gx,0/Gx,o0+ agree. Thus, by the definition of x,, we obtain an iso-
morphism of group schemes X, : G, — U,. Similarly, one can check that X, yields an
isomorphism G, — U, for a not multipliable.

In order to show that {X, }4co(G,) is a Chevalley system, suppose for the moment that
a and b in ®(Gy) are neither multipliable nor divisible, and ®, = {«} and 5 = {8} each
contain only one root. Let & be the coroot of the root ¢, and denote by s, the reflection in
the Weyl group W of G corresponding to ««. Then, using [4, Cor. 5.1.9.2], we obtain

Ad(x(f (w;“("_m)e)xfa (fa’a ZD'E(_O[)(X_XO)e)XaE (w_;:a(x—xo)e))
(Lie(xf) (w5 *770))
= Ad(@(@ 5 ") Ad(xE (1)xE, (€q.0)xE (D) (w g7 Lie(xf) (1))
= Ad(@(@ 5" 7)) (eapmp’ T Lie(xE ) (1))
= (s (B) @@ ")) eq p g T Lie(xE (5)(1)

= wg\i’sa (ﬁ))(_a(x_xo))eéa,ﬁ wgﬁ(x_xc))e Lie(xsi (ﬂ))(l)

— w](z_&,ﬁ)a(x—xo)e—ﬁ(x—m)e

€ap Lie(xf;(ﬂ))(l)
=eup Lie(Xfx(ﬁ))(wg(sa(ﬂ))(x_x())e).

This implies (assuming €3 = 1, otherwise it is an easy exercise to add in the required
constants) that for 71, := X4 (1)X_4(€4,4)X4(1) With €5 4 = €4, We have

Ad(mg,)(Lie(xp)(1)) = Ad(fa(l)f—a(ea,a)fa(D)(Lie(fb)(l)) = €q,B Lie(fsa(b))(l)-

We obtain a similar result even if ®, and ®; are not singletons by the requirement
that {xZ}4ecq is a Chevalley—Steinberg system, i.e. compatible with the Galois action
as described in Section 2. Similarly, we can extend the result that Ad(m,)(Lie(Xp) (1)) =
+ Lie(X;,»))(1) to all non-multipliable roots a, b € ®(Gx) C Pk.
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Suppose now that a € ®(G,) C Ok is multipliable, and leta € ®, and @ = 0 (x) € D,
as above. Following [3, 4.1.11], we define for (U, V) € Hyo(Ey, Eq+5)

ma(U,V) = xaUV o (V" ))x_g(ea,aU, V)xaUo(VH),a(VH)).

Then Bruhat and Tits show in loc. cit. that m4 (U, V') is in the normalizer of the maximal
torus 7 and

ma(U,V) =ma1a(V) and x_g(€aaU.V)=ma1xa(U.V)m,}. (6)
where
0o 0 -1
Mg.,1 =noResEa+&/K o -1 0],
— 0 o0 o
|4 0 0
a(V)=moResg, zx | 0 V=lo(V) 0
0 0 o(V™h
Note that

mq(v/1/ X0 (—w )@~V e

@O De o (o @GxDDe ) Weg ) € G o
and denote its image in G 0/ Gx,0+ by 7,. Using the fact that v(1) = 0 if p # 2, and

w}(Ea(x—xo)—V(l)/Z)eel) _

o( iwgl(x—XO)—V(k)/Z)eel

= g @x—x0)=v(A)/2)e (a(x—x0)—v(4)/2)e+1
E E

€; mod w

if p = 2, as well as the compatibility with Galois action properties of a Chevalley—
Steinberg system, we obtain

Mg = Xa(D¥-a(€a.a)Xa(l)  With €qq = €qq(—1)@ET7D/2e,
Moreover, an easy calculation using (6) and (7) shows that
T-a(€aatt) = Maxa W)y
forallu € Fp. In other words,
Ad(mgq)(Lie(Xg)(1)) = €q,q Lie(x—a)(1),

as desired. We obtain analogous results for 71—, being defined as above with “a” replaced
by “—a”. Moreover, m, = m_4, and hence Ad(m—_,)(Lie(X4)(1)) = €4,4 Lie(x_4)(1).
In order to show that {X,}4c®(c,) forms a Chevalley system, it remains to check that

Ad(ma) (Lie(Xp)(1)) = + Lie(Xy,))(1) (®)
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for a, b € ®(G,) with a # +b and either a or b multipliable. Note that if x, and x_,
commute with xj, then the statement is trivial. Note also that if » is multipliable and
B € ®p, then B lies in the span of the roots of a connected component of the Dynkin
diagram Dyn(G) of ®(G) of type A,, for some positive integer n. Hence, for some
o € ®,, @ and B lie in the span of the roots of such a connected component. Moreover,
by the compatibility of the Chevalley—Steinberg system {x(f }aed with the Galois action,
it suffices to restrict to the case where Dyn(G) is of type A,, with simple roots labeled
by on, ¥y—1,...,21, B1, B2, ..., PBn as in Figure 1, and the K-structure of G arises from

— o ---0—0—0o—0¢---0
oy App O (o8] Bl BZ Bn

Fig. 1. Dynkin diagram of type A2,

the unique outer automorphism of A5, of order 2 that sends «; to B;. If a root in g (G)
is multipliable, then it is the image of +(a; + --- + o) in g for some 1 < s < n.In
particular, the positive multipliable roots are orthogonal to each other, by which we mean
that (@, b) = 0 for two distinct positive multipliable roots @ and b. Equation (8) can now
be verified by simple matrix calculations in SLyz 4.

2.6. Moy—Prasad filtration and field extensions

Let F be a field extension of K of degree d = [F : K] with ring of integers @ g . Then there
exists a G (K)-equivariant injection of the Bruhat-Tits building B(G, K) of G over K into
the Bruhat-Tits building B(GF, F) of GF = G xx F over F. We denote the image of the
point x € B(G, K) in B(GF, F) by x as well. Using the definitions introduced in §2.4,
but for notational convenience still with the valuation v (instead of replacing it by the
normalized valuation d - v), we can define a Moy—Prasad filtration of G(F') and g at x,
which we denote by Gf’r (r = 0) and gf,, (r € R), as well as its quotients Vf,r(r € R)
and the reductive quotient G£'.

Suppose now that G is split, and that I, C v(F) for all restricted roots a € ®g(G).
This holds, for example, if F is an even-degree extension of the splitting field E. Then,
using Remark 2.2.1(i) and the definition of the Moy-Prasad filtration, the inclusion
G(K) — G(F) maps Gy, into Gf, .- Furthermore, recalling that for split tori T the
subgroup T, is the maximal bounded subgroup of the (rational points of) T and using the
assumption that I'), C v(F) for all restricted roots a € ®g(G), we observe that this map
induces an injection

tk,F : Gx0/Gx0+ = Gio/G£o+’ )]

which yields a map of algebraic groups Gy — G¥', also denoted by tx r. If p # 2 or d
is odd, then (g, F is a closed immersion.

To discuss a similar result for higher-depth quotients, we denote by CID?Jl the set of
multipliable roots in ®g and by ®F" the set of non-multipliable roots in Pk .
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Lemma 2.6.1. Let F be as above, i.e. G is split and T}, C v(F) for all restricted roots
a € ®g(G). Then, for every r € R, there exists an injection

. _ F F _vF
LK, F.r - Vx’r - gx,r/gx,r-i- = gx,r/gx,r+ - Vx,r

such that i 7 (Gyx) preserves ik r.»(Vx,r) under the action described in §2.4. Moreover,
we obtain a commutative diagram

Gx xVy, — Vi,

LK,FX‘KAF,rJ lLK,F,r (10)

GExvE ——vVvE
unless p = 2 and there exists a € @ with a(x — xo) € T, such that a(x — xo) —r € I’}
or such that there exists b € ®g" with b(x — xo) —r € I'y and (d, b) # 0.

Proof. For p # 2, let ik, F,» be induced by the inclusion ¢ < gr = g ® ¢ F. This map is
well defined, and it is easy to see that it is injective on ((t N gx,») + Gx,r+)/Gx,r+ and on
(g N @x,r) + Gx,r+)/8x,r+ for a € g non-multipliable. Suppose a is multipliable. If
r —a(x —xo) € '}, i.e. there exists an affine root ¥ : y > a(y — x¢) + ' with ' (x) = r,
and @g (xg(u,v)) = Y (x9) =r —a(x —xo) € '}, then v(u) = %V(v) =r —a(x — xp).
This follows from the trace of 1/2 being 1, hence v — %a(u)u is traceless and therefore
has valuation outside 2T, while v(v) € 2T',. Hence the image of u, N gy, in Vf,r is
non-vanishing if it is non-trivial in Vy ,, i.e. if r —a(x — x¢) € I',. Moreover, diagram
(10) commutes.

In the case p =2, if a € Ok is multipliable and r — a(x — x¢) € I', and @, (x4 (4, v))
=r—a(x —xg), thenv(u) =r —a(x — x¢) — %V(Aa) for Ay € (Eq)L . by areasoning

analogous to that above. However, recall from Remark 2.3.1 that v(14) < 0 for p = 2.
dfe [F:E] [F:E]+1

Let wF be a uniformizer of F such that w,'~ = @ = wg mod T and let
w, be a uniformizer of E, with
Wy = w},F:E“] = wg/e"‘ mod wl[pF:E"‘]H.

This allows us to define tx, F » as follows. We define the linear morphism ig, r , : g <> g F
to be the usual inclusion g — gr = g ®gx Font® @aed,l}? 1,4 and to be the linear map

from @aeq)%ul 11, onto (@aetb%ul 1, wf,v(k"‘)/zK) C gF on @aeq)%ul 1, such that
iK.F.r (Lie(xa)(wo(tr—a(x—X())—V(la)/Dea , 0))
_ Lie(xa)(w.ér—a(x—xo)—v()ua)/z)ea ® wgv(la)/z, 0)’

where o € @, fora € QD%‘“. By restricting ik, F,r to gx,» and passing to the quotient, we
obtain an injection (g, r,, of V, , into V)IZ .
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In order to prove that tg,  (Gx) preserves ik, r,r(Vx,r) for p = 2, it suffices to show
that tx r (Gy) stabilizes the subspace

V' = LK,F,r (gx,r N @ ua),

mul
acdy

where the overline denotes the image in V ;.

First suppose that the Dynkin diagram Dyn(G) of ®(G) is of type A,, with simple
roots labeled by &y, o¢p—1, ..., a2, a1, B1, B2, ..., Bn as in Figure 1, and that the K-
structure of G arises from the unique outer automorphism of A,, of order 2 that sends
a; to Bi. If a € ®x(G) is multipliable, then a is the image of £(xy + --- + )
for some 1 < s < n. Suppose, without loss of generality, that a is the image of
o1 + -+ + o. Consider the action of the image of Xp in Gf for b the image of
—(ay + -+ 4+ ;) forsome 1 <t < n. Note that ix_ 7 (xp (Ho(E—(a; +-+a,)> K)) N Gx,0)
is the image of xf(otl+~-~+o¢;+ﬂ1+-~-+ﬂ,)(E) N G)EO in GEO/G£0+. Hence the orbit of

g, F (xp(Ho(E_(a; ++ar)» K)) N Gx ) on i, F,r(gx,r N 11g) is contained in

dv(Aa)/2
F

(g ®K 2} K) n g)lcr,r n (g£1+---+as @ gﬂFl+,,.+ﬁS @ glj(ﬁl‘f‘"""ﬂl‘) @ gf(al +"'+at))

cVv.

(Note that the last two summands can be deleted unless s = ¢.) Thus V' is preserved under
the action of the image of X in Gf . Similarly (but more easily) one can check that the
action of the image of X, in GI for all other b € ®(G,) preserves V’, and the same is
true for the image of T N Gy o in Gf. Hence tx, r (Gy) stabilizes V'.

The case of a general group G follows by using the observation that if a € g is
multipliable, then each o € &, is spanned by the roots of a connected component of the
Dynkin diagram Dyn(G) of ®(G) that is of type A»,, together with the observation that
the above explanation also works for Dyn(G) being a union of Dynkin diagrams of A,
that are permuted transitively by the action of the absolute Galois group of K. Thus V' is
preserved under the action of g r (Gy).

In order to show that (g r , is compatible with the action of G as in diagram (10) for

p = 2, it remains to prove that G, preserves gy, N (t ® @aeqﬁ}én 14). We consider the

action on gy Nt and gy, N Dacoy 1a separately.

We begin with the former, which is obviously preserved under the action of the
image of T N Gy, in Gx. So consider the action of the image of X} in G, for some
b € ®(G,) C Pk. If b is non-multipliable in Pk, then the image of the action lands in
Gxr N(EDUL) Cax,rNED @aed)'}‘(“ uy). Ifb € CID?‘I, then the image of the action is

contained in gx » N (t @ up @ u,p). However, by the assumption in our lemma, we have
b(x —xo) —r ¢ I'; and hence gy, N1, = {0}. Therefore the image of the action of X},

on gy, Ntiscontainedin gy, N (t B uzp) Cgur N D @aecb%ﬂ ug).

It remains to consider the action of G, on gy, N @aeq,%n u,. Note that the image

of T N Gy, in G, preserves gx,, N @aeqy}l{n 1,. Thus it remains to consider the action
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of X3 (Gp,) for some b € O(G,) C Pk, and we may restrict to the case that Dyn(G) is
of type A, with non-trivial Galois action as above. Let b € <I>’Ir<“‘1, and assume without
loss of generality that b is the image of oy + --- 4 a5 for some 1 <5 < n.Leta € OF
with gy Nu, # {0}, i.e.a(x —xg) —r € I',. The assumption of the lemma implies that
(b,a) = 0. Hence a is the image of &(ay + -+ + /) for some 1 < s’ < t' < n with
s'#s+1#¢t,orof £(ay + -+ +ay + B1 + -+ + By) for some 1 < s',¢ < n with
s’ # s #1t and s’ # t'. In all cases, X;(Gy) acts trivially on gy, N u,, and therefore

Xp(Gm) preserves gy, N @aeq>r[|(n1 u,. Similarly, i.e. using what non-multiple roots in

the A,, case look like, we observe that if b € @Y, then Xp maps gy, N @aeq,? u, to

Sxr N D @aeq,r}g ng).

Hence diagram (10) commutes in the case p = 2 if there does not exist a € @?‘” with
a(x — xo) € ', such that a(x — xo) —r € I'j or such that there exists b € ®}" with
b(x — xo) —r € I'; and (a, b) # 0. [

In what follows, we might abuse notation and identify V, , with its image in Vf, -
under (g .

3. Moy-Prasad filtration for different residual characteristics

In this section we compare the Moy—Prasad filtration quotients for groups over non-
archimedean local fields of different residue field characteristics. In order to do so, we
first introduce in Definition 3.1.1 the class of reductive groups that we are going to work
with. We then show in Proposition 3.1.4 that this class contains reductive groups that split
over a tamely ramified extension, i.e. those groups considered in [20], but also general
simply connected and adjoint semisimple groups, among others. The restriction to this
(large) class of reductive groups is necessary as the main result (Theorem 3.4.1) about the
comparison of Moy—Prasad filtrations for different residue field characteristics does not
hold true for some reductive groups that are not good groups (see Remark 3.4.2).

3.1. Definition and properties of good groups
Definition 3.1.1. We say that a reductive group G over K, whose splitting field is denoted
by E, is good if there exist

e an action of a finite cyclic group I' = (y) on the root datum R(G) = (X, D, X, d)
preserving the simple roots A,

e an element u generating the cyclic group Gal(E N K*™/K) and whose order
| Gal(E N K'*“™¢/K)| is divisible by N where (throughout the remainder of the paper)
we will write |I'| = p® - N for integers s and N with (N, p) = 1

such that the following two conditions are satisfied:
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(i) The orbits of Gal(E/K) and T" on @ coincide, and, for every root a € @, there exists
U1, € Gal(E/K) such that

)/(a) = ul,a(a) and ul’alEmKlamc = U.

(ii) There exists a basis B of X stabilized by Gal(E/E N K®™) and (") on which the
Gal(E/E N K™ ¢)-orbits and (y*¥)-orbits agree, and such that for any B € B, there
exists an element vy, p € Gal(E/K) satisfying

)/(B) = vl,B(B) and vl,B|EnKlame = Uu.

Remark 3.1.2. Note that condition (i) of Definition 3.1.1 is equivalent to the condition

(i) The orbits of Gal(E/K) on ® coincide with the orbits of T on ®, and there exist
representatives Cy, ..., C, of the orbits of I" on the connected components of the
Dynkin diagram of ®(G) satisfying the following. Denote by ®; the roots in ® that
are linear combinations of roots corresponding to C; (1 <i <n). Then for every root
aed U---Ud,and 1 <1 < p*N, there exists u;, o € Gal(E/K) such that

(y)tl ((X) = Ut ,aQ and Ug, ’a|EmKlame = ',

Condition (ii) of Definition 3.1.1 is equivalent to the condition

(ii") There exists a basis B of X stabilized by Gal(E/E N K'“™) and by (y") on which
the Gal(E/E N K ¢)-orbits and (" )-orbits agree, and such that there exist rep-
resentatives { By, ..., By} for these orbits on B, and elements vy, ; € Gal(E/K) for
alll <t < p*N and 1 <i < n’ satisfying

(P (Bi) = v4,,i(Bi)  and v i|Engeme = u'l.

Before showing in Proposition 3.1.4 that a large class of reductive groups is good, we
prove a lemma that shows some more properties of good groups.

Lemma 3.1.3. We assume that G is a good group, use the notation introduced in Defini-

tion 3.1.1 and Remark 3.1.2, and denote by E; the tamely ramified Galois extension of K

of degree N contained in E. Then the following statements hold.

(a) The basis B of X given in property (ii) is stabilized by Gal(E/E;) and the
Gal(E/ E;)-orbits and (y™ )-orbits on B agree.

(b) G satisfies Assumption 2.4.2; more precisely, T Xg E; is induced.

(c) We have xv" = xGal(E/ED), Moreover, the action of u on X E/ED garees with the
action of y on xv" = xGa(E/E) go xCME/K) = xT

Proof. To show part (a), consider a representative B; for a Gal(E/E N K%“™)-orbit
on B as in Remark 3.1.2. By property (ii’) there exists vpsy,; € Gal(E/K) such that
vpsn(Bi) = (¥)?°N(B;) = B; and vpsni|Engueme = u?’N. Choose ug € Gal(E/K)
such that ug|gngueme = u. Then we can write vpsy; = v - ugSN for some v in
Gal(E/E N K%"®), and ugsN(B,-) = v~ 1(B;) is contained in the Gal(E/E N K%@re)-
orbit of B;. Note that the elements ngNtz for 1 <t, < [(E N K“) : E,] are in
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Gal(E/E;) and form a set of representatives for Gal(E/E;)/ Gal(E/E N K%“™), and
hence Gal(E/E;)(B;) = Gal(E/E N K“™)(B;). Thus 8B is stabilized by Gal(E/E;)
and the Gal(E/ E,)-orbits on B coincide with the Gal(E/E N K*“™)-orbits, which coin-
cide with the (y)-orbits. This proves part (a).

Part (b) follows from (a) by the definition of an induced torus.

In order to show part (c), note that X S(E/E1) js spanned (over Z) by

Z B}lsifn’z{ Z B}lsisn"

BeGal(E/E;)(B;) Be(yN)(B;)

The Z-span of the latter equals X N , which implies X v = yGal(E/ED), Using Definition
3.1.1(ii) and the observation that u|g, is a generator of Gal(E,/K), we conclude that the

action of u on XC4(E/E0) aorees with the action of y on X¥" = XGa(E/ED) and that

Y Gal(E/K) _ (XGal(E/Et))Gal(Et/K) _ (XyN)y —xT -

Proposition 3.1.4. Examples of good groups include

(a) reductive groups that split over a tamely ramified field extension of K,
(b) simply connected or adjoint (semisimple) groups,

(c) products of good groups,

(d) groups that are the restriction of scalars of good groups along finite separable field
extensions.

Proof. (a) follows by taking I' = Gal(E/K) and u = y.

(b) can be deduced from (c) and (d) (whose proofs do not depend on (b)) as follows.
If G is a simply connected or adjoint group then G is the direct product of restrictions
of scalars of simply connected or adjoint absolutely simple groups. Hence by (c) and (d)
it suffices to show that if G is a simply connected or adjoint absolutely simple group,
then G is good. Recall that these groups are classified by choosing the attribute “simply
connected” or “adjoint” and giving a connected finite Dynkin diagram together with an
action of the absolute Galois group Gal(@p /K) on it. We distinguish two possible cases.

Case 1: G splits over a cyclic field extension E of K. Then take I' = Gal(E/K) and
u =y or u = 1 according as the field extension is tamely ramified or wildly ramified, and
choose B to be the set of simple roots of G, if G is adjoint, and the set of fundamental
weights dual to the simple coroots of G (i.e. those weights pairing with one simple coroot
to 1, and with all others to 0), if G is simply connected.

Case 2: G does not split over a cyclic field extension. Then G has to be of type D4
and split over a field extension E of K of degree 6 with Gal(E/K) ~ S3, where S5 is
the symmetric group on three letters. In this case we observe (using that G is simply
connected or adjoint) that the orbits of the action of Gal(E/K) on X are the same as
the orbits of a subgroup Z/37Z C Gal(E/K) >~ S3. Moreover, as S3 does not contain a
normal subgroup of order 2, i.e. there does not exist a tamely ramified Galois extension
of K of degree 3, this case can only occur if p = 3, and we can choose I' = Z /37, u the
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nontrivial element in Gal(E N K®™/K) ~ 7 /27, and B as in Case 1 to see that G is
good.

(c) In order to show part (c), suppose that Gy, ..., Gy are good groups with split-
ting fields Eq, ..., Ex and corresponding cyclic groups I'y = (y1), ..., [x = (yx) and
generators u; € Gal(E; N K¥™/K),1 <i <k.LetG = Gy x--- X G. Then G splits
over the composition field E of Eq,..., Ei, and |Gal(E N K®™/K)| is the least com-
mon multiple of |Gal(E; N K®™/K)|,1 <i < k. Choose a generator u of the group
Gal(E N K™ /K). For i € [1, k], the image of u in Gal(E; N K%™/K) equals u;’ for
some integer r; coprime to |Gal(E; N K*™¢/K)|, which we assume to be coprime to p
by adding |Gal(E; N K'*™¢/K)| if necessary. Hence (y;)"7 is a generator of I';, and we
define y = (1) x -+ X (yx)"* and T" = (y). Note that the order |[I'| = p*N of T is
the least common multiple of |T;|, 1 <i <k, and hence N divides |Gal(E N K“*™/K)|.
By 3.1.1(1), if @ € ®(G;) then there exists 1} o € Gal(E;/K) such that

y(@) = (i) (@) =1 e with U1e =u; =uin Gal(E; N K*"/K).
Let u1,4 be a preimage of %1 4 in Gal(E/K). Using the equality

(Gal(E/E N E{™)| [Gal(E N Ef™/ E;)| |Gal(E; / K)|
= |Gal(E/K)|
= |Gal(E/E N K“™)| |Gal(E N K™/ E; N K™™)| |Gal(E; N K™/ K)|,

by considering the factors prime to p we obtain
|Gal(E N E;ame/EiN = |Gal(E al Klame/Ei N Kmme)|,

Moreover, the kernel of Gal(E N Ej*™/E;) — Gal(E N K“™/E; N K“™), where the
map arises from restriction to £ N K%M has order a power of p, hence is trivial; so we
deduce that the map is an isomorphism. Thus we can choose an element uo € Gal(E/ E;)
C Gal(E/K) such that ug|gngume = ulGUENK" /K pecause y!CAENK /K| ¢
Gal(E N Ktame/Ei N K’tame). Since ul,alE,'ﬂK“"“e = M|EimKtame and M‘Gal(Eimemc/K)l
is a generator of Gal(E N K®™/E; N K®™), by multiplying u; o with powers of
up € Gal(E/ E;) if necessary we can ensure that 41 4| pngeme = u. As Gal(E/ E;) fixes «,
we also have y(«) = uy,4 (), and we conclude that G satisfies property (i) of Defini-
tion 3.1.1 forall & € ®(G) = ]_[f;l O(Gy).

Choosing B to be the union of the bases B; corresponding to the good groups G; (by
viewing X; embedded into X := X; X --- x X), we conclude similarly that G satisfies
property (ii). This proves that G is a good group and finishes part (c).

(d) Let G = Resp/k G for G a good group over F, K C F C E. Then there exists
a corresponding Gal(E/K)-stable decomposition X = @?’:1 Xi, where d = [F : K],

together with a decomposition of @ as a disjoint union [ [, ;- # @i such that Gal(E/K)
acts transitively on the set of subspaces X; with Stabg, g/ x)(X;) =~ Gal(E/F), and

(Xi, ®;, X;, 5,-) is isomorphic to the root datum R(é) of G for 1 <i < f. We
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suppose without loss of generality that the fixed field of Stabgug,/x)(X1) is F, ie.
Stabga(E/k)(X1) = Gal(E/F), and we write d = d), - dpy, where d, is a power of p
and dp is coprime to p. As G is good, there exist a cyclic group T' = (7) acting on
(X1,®1,A;) and a generator # of Gal(E N F*“™¢/ F) satisfying the conditions in Defini-
tion 3.1.1. Fix a splitting Gal(E N F%™¢/F) <> Gal(E/F), and let &iy be the image of &
under the composition Gal(E N F¥*™/F) < Gal(E/F) — Gal(E/K). Note that we
have a commutative diagram (where N’ = |Gal(E N F®¥™/F)|)

Gal(ENF“™/F)C— 5 Gal(E/F) ¢ Gal(E/K)

i |

Z/N'Z“— Z/N'ZxGal(E/ENF“) G Z,/(N'd,) Zx Gal(E | E N K'm)

Hence we can choose uy € Gal(E/K) such that

d ~
uo |EmK1ame = u0|EmK1ame,

and ¥ = ug|gngume is a generator of Gal(E N K™/ K) (because d = dpd, with d,
invertible in Z/(N'd,)Z). After renumbering the subspaces X; for i > 1 if necessary,
we can choose elements y;,q,, € Gal(E/K) with

Ytrd,y |Enkume = ug|Engume = u

for 1 <1, < d, such that if we set Yti+t2d,, = Uo for 1 <t; <dp,0 =<1, <dp then
vi(X;) = Xj41 for 1 <i <d and y4(X4z) = X;. By multiplying y; by an element in
Gal(E/E N K%M®) if necessary, we can assume that y; o yg_1 © --- 0 y; = lip. Define
y € Aut(R(G), A) by

d
X = @Xi 5 (X150, Xa) > (Follg ! 0 yaXa, yiXt, y2Xa, ..., Vd—1%d—1)-
i=1

Then the cyclic group I' = () preserves A, and we claim that I" and u satisfy the condi-
tions for G in Definition 3.1.1.

Property (i) of Definition 3.1.1 is satisfied by the construction of y.

To check property (ii), let B be a basis of X1 C X stabilized by Gal(E/E N F%m)
with a set of representatives {Bi,..., By} and Uy, € Gal(E/F) with ()"(B;) =
Uy,i(Bi) (1 <t < p*N/d) satisfying all conditions of Remark 3.1.2(ii") for G. For
1 <i<nand 1 < j <dp, define

Bi—vya, +; =up (B)) =yj_10--0y1(B)).

Note that {y")(X1) = [[o<;j<g, X1+id,, and hence, with n’ = 7" - d,y, the set

8= J M8

1<i<n’
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forms a basis of X (because y has order dp). We will show that B satisfies property (ii’)
of Remark 3.1.2 with the set of orbit representatives {B; }1<i<»’ (and hence satisfies (ii)
of Definition 3.1.1).

Forl <t < p*N,1 <i <i',1 <j <dy, we define Vi,Gi—1)d,+j € Gal(E/K) by

Ve (i—1)d,y +)
Z{Vj—1+t°'-'°)’j ifj +1<d,
Y0 oyioby oy ooyl i j i >dit=dn -+ 1.
Then using (y)d|X] = ¥ and P! (B;) = Uy, :(B;) € X1, we obtain
()" (B;) = v;i(B;) foralll <t <p*Nandl<i<n'
Moreover, since

~ ~ ~ ~t dt
Upy,i| Enpuame = " = Ury il Enkuame = g |Engume = ug'" |Engame = udh

and yx|gnkeme = u forall 1 < k < d by definition, we obtain
UrilEngume = u'  foralll <7 < p*Nand1<i <n' (11)

This shows that the action of (y)"! on B; for 1 <t; < p*N and 1 <i < n’ is as required
by (ii") of Remark 3.1.2. It remains to show that B is Gal(E/E N K"™™¢)-stable and that
the Gal(E/E N K'™™®)-orbits coincide with the (y*)-orbits.

In order to do so, note that (11) implies in particular that for 1 < #, < d,, we have
UNty,i | EnKuame = u™N*2 and hence UN1,,i € Gal(E/E;) and

(yN)(B;) C Gal(E/E;)(B;). (12)

where E; is the tamely ramified degree N field extension of K inside E. Let us denote
by E, the tamely ramified Galois extension of F' of degree N/d, contained in E. Note
that E; is the maximal tamely ramified subextension of E ; over K, and [E ¢ B =

As G is good, we deduce from Definition 3.1.1(ii) and Lemma 3.1.3(a) that

(yNir)(B;) = (7 )(B;) = Gal(E/E N F™™)(B;) = Gal(E/E;)(B;).
Using (yN)(X)) = ]_[0§i<d,, X1+id, and the inclusion (12), we find that

Gal(E/E)(Bi)| = [(yY)(B)| = dp - |(yN)(By)|
= d, - |Gal(E/E,)(B;)| > |Gal(E/E;)(B;)|,

which implies that (yV)(B;) = Gal(E/E,)(B;) D Gal(E/E N K™ °)(B;). In order
to show that (yV)(B;) = Gal(E/E N K“™)(B;), we observe that Gal(E/E N F%°)
is a subgroup of Gal(E/E N K™™) of index d, coprime to the index N/d, of
Gal(E/E N F“) inside Gal(E/F). Therefore Gal(E/E N K“") N Gal(E/F) =
Gal(E/E N F“¢) inside Gal(E/K). As Gal(E/ F) is the stabilizer of X in Gal(E/K),
we deduce that there exist d, representatives in Gal(E/E N K™™) of the d, classes in
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Gal(E/E N K®™™)/Gal(E/E N F™) mapping X; to d,, distinct components X; of X.
In particular, we obtain

|Gal(E/E N K“™)(B;)| > dp|Gal(E/E N F“™)(B;)| = d,|{(y ¥ )(B))| = |(y™ )(B:)],

and hence the Gal(E/E N K“™)-orbits on B agree with the (y)-orbits on B. This
finishes the proof that property (ii’) of Remark 3.1.2 and hence (ii) of Definition 3.1.1 is
satisfied for our choice of I" and u, and hence G is good. ]

From now on we assume that our group G is good.

3.2. Construction of G4

In this section we define reductive groups G, over non-archimedean local fields with
arbitrary positive residue field characteristic ¢ whose Moy—Prasad filtration quotients are
in a certain way (made precise in Theorem 3.4.1) the “same” as those of the given good
group G over K.

For the rest of the paper, assume x € B(G, K) is a rational point of order m. Here
rational means that ¥ (x) is in Q for all affine roots ¥ € Wk, and the order of a point
in the Bruhat-Tits building of x is defined to be the smallest positive integer m such that
Y(x) € %Z for all affine roots ¥ € Wg.

Fix a prime number ¢, and let I" be the finite cyclic group acting on R(G) as in
Definition 3.1.1. Let F be a Galois extension of K containing E such that

o the set of valuations I'}, (defined in §2.3) is contained in v(F) for all a € Pk,
e M := [F : K] is divisible by the order p* N of the group T,
e M is divisible by the order m of the point x € B(G, K).

This implies that the image of x in B(GF, F) is hyperspecial, and F satisfies all assump-
tions made in §2.6 in order to define (g r and (g f . For later use, denote by wr a

I[VF:E] = wg mod wl[,F:E]H, and let O be the ring of

uniformizer of F such that @
integers of F.

Let K, be the splitting field of xM — 1 over Q¥, with ring of integers oy
and uniformizer w,. Let F; = K4[x]/(x™ — w,) with uniformizer wF, satisfy-
ing wl{l’; = @, and with ring of integers OF,. Recall that every reductive group
over K, is quasi-split, and there is a one-to-one correspondence between (quasi-
split) reductive groups over K, with root datum R(G) and equivalence classes in
Hom(Gal(@q/Kq), Aut(R(G), A))/conjugation by Aut(R(G), A), where Aut(R(G), A)
denotes the group of automorphisms of the root datum R(G) that stabilize A. Thus we
can define a reductive group G, over K, by requiring that G, has root datum R(G)
and that the action of Gal(@q /Kg) on R(G) defining the K,-structure factors through
Gal(F,/K,) and is given by

Gal(Fy/Ky) ~ Z/MZ —% T — Aut(R(G). A),
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where the last map is the action of I on R(G) as in Definition 3.1.1. This means that G,
is already split over E, := K,[x]/ (x?’'N — w,). Note that by construction, Definition
3.1.1 and Lemma 3.1.3, the restricted root data of G4 and G agree:

Rk, (Gq) = Rk (G),
and forall € ® = ®(G) = P(G,) we have
|Gal(E/K) - a| = |Gal(Fy/Ky) - af. (13)

All objects introduced in Section 2 can also be constructed for G4, and we will denote
them by the same letter(s), but with a G, in parentheses to specify the group; e.g., we
write I'), (Gg).

3.3. Construction of x4

In order to compare the Moy—Prasad filtration quotients of G, with those of G at x, we
need to specify a point x, in the Bruhat-Tits building B(Gy, K;) of G4. To do so, choose
a maximal split torus S, in G, with centralizer denoted by 7, and fix a Chevalley—

Steinberg system {x:j “Yaed for G4 with respect to T,. For later use, we choose the
Chevalley—Steinberg system to have signs €4 g as in Definition 2.1.2, i.e.

F, F, F, F,
maq = xaq(l)x—gt(ea,a)xaq(l) € NGq (Tq)(Fq),

where Ng, (Ty) denotes the normalizer of T, in G4, and
F, . . F . . F
Ad(mg”)(Lie(xz”)(1)) = €q,p Lie(x  /5))(1).

That we can choose the same signs for both Chevalley—Steinberg systems follows from
the property that the Gal(E/K)-orbits on ® agree with the Gal(E,/K,)-orbits on &,
which allows us to construct both Chevalley—Steinberg systems as the base change of the
same Chevalley system of a split reductive group G over Z with root datum R(G).

We provide a sketch of how this can be done: Start with a pinning { Xy }aea for G (we
omit the choice of a maximal split torus and a Borel subgroup from the notation in this
sketch). Under appropriately chosen isomorphisms between G and G g and between Sg
and (G4) g, this pinning provides after base change a Gal(£/K)-stable pinning of Gg
and a Gal(E,/K,)-stable pinning of (G,)g,. By [8, XXIII, proof of Proposition 6.2]
we can extend the pinning {Xq}eea to a Chevalley system {Xy}yed by choosing for
every root @ € ® \ A simple roots &, ...,a; and ap such that & = sq, ...5q¢; (@A),
and defining Xo := Ad(mg, ...mgq;)Xa, - (Note that from these basis elements for the
Lie algebra subspaces we can obtain isomorphisms from G, to the corresponding root
groups.) In order to obtain a Chevalley—Steinberg system after base change, we need to
choose the «;’s compatible with the Galois action. This can be done by choosing for every
Gal(E/K)-orbit in ® \ A a representative . Then for every representative o write o =
Say -+ Sa; (@A) and for every o' € Gal(E/K).a, pick 0 o» € Gal(E/K) (with 0g 4 the
identity) such that o’ = 0 o/ (). Set Xy := Ad(Msy ) Moy ) Kog or(@a):
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Since the Gal(E/K)-orbits on & agree with the Gal(E,/K,)-orbits on @ and since
a,oq,...,o; and ap are all linear combinations of simple roots corresponding to the
same connected component of the Dynkin diagram, we can choose og 4 such that there
exist 0g, o € Gal(E4/Ky) with 0 o/(2;) = 0, o (e;) fori € {1,..., j} U{A}. It
remains to observe that the resulting Chevalley systems after base change satisfy all the
properties of a Chevalley—Steinberg system. By construction, it suffices to consider the
case of a connected Dynkin diagram. In this case the required properties can be shown
using the commutation relations of a Chevalley system; see the proof of [22, 3.2 Lemma]
for all cases except for Dy, and the case of D4 can be easily worked out by hand; see also
[22, §§10, 11].

Using the valuation constructed in §2.2 attached to the Chevalley—Steinberg system
{xf ?}ae®, We obtain a point x¢ 4 in the apartment A, of B(G,, K,;) corresponding to S;.
Fixing an isomorphism fg ; : X«(S) — X« (Sy) thatidentifies Rg (G) with Rk, (Gg4), we
define an isomorphism of affine spaces f4 4 : A — A, by

1
Saq() =xog+ fsa(y—x0) =7 Y v(ha)-d, (14)

+,mul
acd

where CIJIt’mUI are the positive multipliable roots in Ok, A, € (Ea)llmx(G) for some @ € &,

and  is the coroot of a, so we have d(a) = 2. We define x4 := f4 4(x).

Lemma 3.3.1. The isomorphism fn 4 : A — Ay induces a bijection of affine roots
Vg, (Ag) = Yk (A), ¥ = Y o fa 4. Moreover, for all a € @k and r € R we have
r—a(x —xo) € T,(G) ifand only if r —a(xq — x0,4) € T/(Gy).

Proof. As the set of affine roots for G on A (and analogously for G4 on Ay) is
Wk =Wk(A) ={y>aly —xo) +y' |a e Pk, y €Iy},
we need to show that, for every a € ®x = O (G) = Pk, (Gy),
1 v
To(G) =Tu(Gy) =7 > (k) -ba). (15)
be(b;,mul

Letus fixa € Pg and ¢ € &, C & = P(G) = P(Gy). Recall that E,(G) is the fixed
subfield of E under the action of Stabgu (g, k) (). Using (13), we obtain

|Gal(E/K)|
E,(G): K]=———"—"—=|Gal(E/K) -a| = |Gal(F,/K,;) -«
[Ea(G): K] = g i oy = 1Gal(E/K) -l = [Gal(Fy Ky o
|Gal(Fy/Ky)|
= == E G :K 5
|Stabgai(r, / k) (@)] [Ea(Gq) : Kq]
and hence

V(Eo(G) —{0}) = [Eo(G)/K]™! - L = [Ea(Gy)/Kql ™" - Z = V(Ea(Gg) — {0}). (16)
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Note that the Dynkin diagram Dyn(G) of ®(G) is a disjoint union of irreducible
Dynkin diagrams, and if a is a multipliable root, then « is contained in the span of the
simple roots of a Dynkin diagram of type A,,. Thus by (16) and the description of '/, as
in (4) (§2.3), the equality (15) holds for « in the span of simple roots of an irreducible
Dynkin diagram of any type other than A,,, n € Z~, or in the span of an irreducible
Dynkin diagram of type A, whose 2n simple roots lie in 2n distinct Galois orbits. It
therefore remains to prove the lemma in the case of Dyn(G) being a disjoint union of
finitely many A,, whose simple roots form n orbits under the action of Gal(E/K). An
easy calculation (see the proof of Lemma 2.6.1 for details) shows that, in this case, the
positive multipliable roots of ®x form an orthogonal basis for the subspace of X *(S) ® R
generated by g, where by “orthogonal” we mean that l;(a) = 0 if g and b are distinct
positive multipliable roots, and that, if b € &g and b = Za com Kga is not multipliable,

then Za cpt-mi Ka € 2 - Z. Moreover, by the definition of K, and Fy, it is easy to check
K
that for A, € (Eq). . (G4), we have v(A;) € 2 - v(Ey — {0}). Thus using the description

max
of I/ as in (2) and (3) (§2.3), we see that the desired equation (15) holds.
The second claim of the lemma follows by combining (15) and the definition of x,

using the map in (14). |

Note that Lemma 3.3.1 implies in particular that x, is also a rational point of order m.
Let us denote the reductive quotient of G, at x4 by Gy, ; the corresponding Moy—Prasad
filtration groups by Gy, ,r, r > 0; the Lie algebra filtration by gx,.»,7 € R; and the filtra-
tion quotients of the Lie algebra by Vy, », r € R. Then using Lemma 2.4.1, we obtain the
following corollary to Lemma 3.3.1.

Corollary 3.3.2. The root data R(Gx) and R(Gy,) are isomorphic.

3.4. Global Moy—Prasad filtration representation

Since R(Gx) = R(Gy,) (Corollary 3.3.2), we can define a split reductive group scheme
H over Z by requiring that R(H) = R(Gy), and then :HF,, ~ G, and G{Fq ~ Gy,;
i.e., we can define the reductive quotient “globally”. In this section we show that we can
globally define not only the reductive quotient, but also its action on the Moy—Prasad
filtration quotients. More precisely, we will prove the following theorem, where N is as
in Definition 3.1.1, i.e., in particular, N is coprime to p.

Theorem 3.4.1. Let r be a real number, and keep the notation §3.2 and §3.3, so G is a
good reductive group over K and x a rational point of B(G, K). Then there exists a split
reductive group scheme H over Z[1/N] acting on a free Z[1/N]-module V satisfying
the following. For every prime q coprime to N, there exist isomorphisms fHﬁq >~ Gy,
and Vg = Vi, r such that the induced representation of fHFq on Vﬁq corresponds to
the usual adjoint representation of Gy, on Vy, . Moreover, there are isomorphisms
ﬂ-fﬁp ~ Gy and VF,, >~ Vy , such that the induced representation of Hﬁp on Vﬁp is
the usual adjoint representation of Gx on Vi . In other words, we have commutative
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diagrams
J‘fﬁp X ’VFP —_— Vﬁp J-CF{] X VF(] e qu
2X2l J/Z :X:J/ J/Z
Gy xVy, ——Vyx, Gx, X Viyr —— V1

Remark 3.4.2. A reductive group G, over K, and a point x,; € B(G,, K,) satisfying the
conditions of the above theorem fail to exist for some reductive groups G that are not good
groups. For example, let K be a maximal unramified extension of Q,, E = K(+/—1),
and G the corresponding norm 1 torus, i.e. the kernel of the norm map from Resg,x G,
to Gn. Then B(G, K) consists of only one point x, the reductive quotient Gy is trivial,
and

Vir >~

5

{0}y ifreR\Z.

However, for ¢ > 2, there does not exist a reductive group G, over a finite extension
Ky of Q" and x4 € B(Gyq, Ky) so that the above theorem holds. Here is a sketch of the
argument: Assume such a group G, exists. Since the reductive quotient is trivial, G4 has
to be anisotropic. Since ) _,_; dimVy, , =3 _ ., dimV,, = 1foranys € R,
the group G, has to be a one-dimensional torus, hence G, has to be the norm 1 torus of a
quadratic extension E, of K,;. However, this implies

F, ifrel/2+27Z,
qu,,:{ 4 /

{F,, ifr ez,

{0} ifr eR\ (1/2+12).

We prove the theorem in two steps. In §3.4.1 we construct a morphism from 3 to an
auxiliary split reductive group scheme G, and in §3.4.2 we construct V (largely) inside the
Lie algebra of G and use the adjoint action of G on its Lie algebra to define the action of
on'V.

3.4.1. Global reductive quotient. Let G be a split reductive group scheme over Z whose
root datum is the root datum of G. In this section we construct a morphism ¢ : H{ — § that

lifts all the morphisms tx,r : Gx,0/Gx,0+ — GEo/GE . and ik, r, : Gx,0/ Gxyi0+ =

GZJ,O/G)Z”H defined in §2.6. In order to do so, let us first describe the image of (g

more explicitly. In analogy to the root group parametrization x, defined in §2.2, and using
the notation from that section, we define for a € ®g(G) multipliable the more general
map X, : F x F — G(F) by

Xau.v) = [ xfp)xg z(-vp)xg (@),
Be[Pa]

where o denotes an element of Gal(F/E,1g) that projects to the non-trivial element
of Gal(Ey/Ey+) and where ug = y(u) for some fixed choice of y € Gal(F/K) with
y (@) = B. Note that X |y (E, . E, 1) (@ € Pq) agrees with x,. We then have the following
lemma.



J. Fintzen 4036

Lemma 3.4.3. Let y : F — Oqy (if Qp C F) or x :Fp = O,y (if Fp((1)) C F) s
the Teichmiiller lift, and U, the root group of Gy corresponding to the root a € ®(Gx) C
Ok (G). Define y, : Fp, — Gf,o by letting y,(u) be

Xa(W2 () - w7 OM gy Mo (g a0
if a is multipliable and p # 2,

X, (0, )((u)o()((u))w;za(x—x(’)'M) if a is multipliable and p = 2,
Xa(0. x(u) - @000y if a is divisible,
Xa(x(u) - w;a(x_XO).M) otherwise.

Then the composition’y , of y, with the quotient map Gf, 0> Gf, o/ G£ o4 S isomorphic
10 LK, F ©Xgq : ]Fp — LK,F(U,;(]FP)) C Gf(IFp)

Proof. If p # 2 or if a is not multipliable, the conclusion follows immediately from
Lemma 2.5.1.
For p = 2, note that (using the notation from Lemma 2.5.1)

v(ixwopo (o) - wpPM) < 2v(y1/k () @y),

where s = —(a(x — xo) + v(X)/2)M, because v(A) < 0. Moreover, o(wF) =
wr mod w%- in wF(QF/w%(QF, and hence y, (1) = 1k, F(X4s(u)) by Lemma 2.5.1. =

Remark 3.4.4. An analogous statement holds for qu. In what follows, we denote the

root group parametrizations constructed for Gy, analogously to Lemma 2.5.1 by xKa,
G, > UKa, g€ D(Gy, ).

Recall that x is hyperspecial in B(G r, F), and hence the reductive quotient Gf of GF
at x is a split reductive group over IF,, with root datum R(GE) = R(G). The analogous

statement holds for x,. Thus SFP is isomorphic to Gf , and Qﬁq is isomorphic to Gf{;’
In order to construct explicit isomorphisms, let us fix a split maximal torus T of G and
a Chevalley system {xq : Gy, = Uy C G}aca(g)=a for (G, T) with signs equal to €, g
as in Definition 2.1.2; i.e., the Chevalley system {x ¢ }oc® for (G, T) and the Chevalley—
Steinberg system {x, }qe for (G, T') have the same signs. This is possible since we can
construct the Chevalley system underlying the Chevalley—Steinberg system {xy}4ece for
(G, T) over Z as outlined in §3.3.

Moreover, the split maximal torus Tr C G and the Chevalley system {x(f =
xf XE F}qeq yield a split maximal torus Tf of Gf and a Chevalley system {xF :

G, > UL C GF}yeq for (GE, TF) with signs €, g, where UL denotes the root sub-
group of Gf corresponding to «. Similarly, we obtain a split maximal torus Tf;’ of Gf;’
and a Chevalley system {xFe, : G, > Ug" C Gf;’ taea for (Gf;’ , Tf;’) with signs €4 g,

where Ug" denotes the root subgroup of ij corresponding to «. In addition, we denote
by Ty and Ty, the maximal split tori of G and Gy, corresponding to § and S,;.
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Moreover, we define constants cy,q € OF, and ¢y € OF for a € ® as follows. We
choose Y’ € Gal(F/K) such that

)//|Ememe = U

and {g € O satisfying
Y (wF) = {gwF mod wk.

Similarly, let y, € Gal(F;/Ky) =~ Z/MZ correspondto 1 € Z/MZ, i.e.
YqlE, = v € Gal(E4/K)

and {g, € O, such that
Ya(@F,) =86, TF,.

Let Cy, ..., C, be the representatives for the action of I' = (y) on the connected
components of Dyn(G) as given in Remark 3.1.2(i’), and recall that ®; denotes the roots
that are linear combinations of simple roots corresponding to C;. For « € @ there exists
a unique triple (i, o;, e4()) with i € [1,n], o; € ®; and e, (o) minimal in Z ¢ such that
y,;" (@) (a;) = a. Note that e, (cr) is independent of the choice of the prime number q. We
also write e(o) = e4(ar). We define

(&)-aj (xg—x0,q)-M (@)a(xg—x0.q)-M
Cayg :=§g:‘“ Xq—=X0,q =é—é:’“xq X0,q ,
Cq = é.g(a)u,- (x=x0)-M _ ;é(oz)u(x—m)-M.

Note that o; (x — x¢) - M is an integer, as the order m of x divides M and I', C v(F)

= ﬁZ, where a is the image of « in k.

Finally, we denote by Q'_G and E the images of {g and {g, and by ¢y and ¢y, the
images of ¢y and cq 4 under the surjections O — F, and O, — F,, respectively.

Remark 3.4.5. The integer e() depends only on the connected component of Dyn(G)
in whose span « lies.

The definitions of {¢, {g, and e(«) are chosen so that the following lemma holds.

Lemma 3.4.6. We keep the notation above and let r € R.
() If y € Gal(Fy/Kg) withy(a;) =« andr' :=r —a(xq — x0,4) € T,(Gy), then

37(w;7';M) = é_E(a)'(r—a(xq—xO’q))M w;‘:’qM

r’M+1
Gy :

mod w F,

(i) If ¥ € Gal(F/K) with y(e;) = a and r' :==r —a(x — xo) € [',(G), then

)7(w;~/M) = é-é(a).(r—a(x—xo))M ZUE;M mod w;'M+l'
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Proof. 1If § € Gal(F, /Kq) with ¥ (a;) = a then j = yg(“)“l(y)(a")l for some integer z.

DM
Asr e T, (Gy) = (a @ > we haveé‘ Vel _ = 1and

. 4 M 7
(wFM) = y;(a)+2\(y)(%)\(wlr:qM) é-e(a)’ wh M

(I

é,e(a) (r—a(xg—xo, q))Mw;M mod w’ M+17

which shows part (i).

In order to prove (ii), let ¥ € Gal(F/K) with y(a;) = «, and write y = J/Eﬁ
for some integer ¢ and W € Gal(F/E N K%“™¢). By Definition 3.1.1(i) and the defini-
tion of e(«) there exists w € Gal(F/E N K*“™¢) such that y/e(a)w(oe,-) = «, and hence
&1y @8y (0;) = oy, and therefore (y)*® ¢ (a;) € Gal(F/E N K“™)(a;). On the
other hand, as the I'-orbits on & agree with the Gal(F/K)-orbits on ® and X =
X Gal(F/ENK™™) (by Definition 3.1 .1(11) and Lemma 3.1.3), the Gal(F/E N K“™)-orbits
on Gal(F/K)(«;) coincide with the (' )-orbits, which are the same as the (Vi )-orbits,
where N; is coprime to p such that |Gal(F/K)(oz,)| = p% N; for some integer s;. Thus
e(a) — e = 0 mod N;. Note that é'G M =1lin IFI,, because 1’ € T, (G) = 51N —=Z
ifp#2andr’ € T,(G) C 3 —t N s———2 if p = 2. Moreover, for g € Gal(F/E N K%™),

g(wFr) = wr mod w,z,- as all p-power roots of unity in F p are trivial. Hence

(@) (r—a(xqg—x0.g)M __/
y(wFM)_y/e(wFM)_é-erM FME eGa r—o{xqg—x0.q w;M rM+1

mod @
which proves (ii). [

Now let fr : Tf — ‘Iﬁp be an isomorphism that identifies the root data R(Gf )
and R(9). Then we can extend f7 as follows.

Lemma 3.4.7. There exists an isomorphism f : Gf — 9@ extending fr such that for
aedandu € Ga(Fp) we have

FFo(u)) = xa(@a - u). (17)

Proof. Note that there exists a unique isomorphism f : Gf — SFp extending f7 and
satisfying (17) for all @ € A. So we need to show that this f satisfies (17) for all @ € ®.
In order to do so, it suffices to show that the root group parametrizations {K“Fp 0Cq}acd
form a Chevalley system of (S]F IF ) whose signs ¢’ w.p Are equal to €48 (@, B € D),

i.e. to the signs of {x atace. If and B are linear combinations of roots in different
connected components of the Dynkin diagram of @, then €, g = = 1 = €4,5. Thus suppose

a, B € y'(®1), and hence also s4(B) € y’'(Py), for some y’ € Gal(F/K). By Remark
3.4.5 this implies that

_ 7 ®

- —e()

¢, =0 e(sa (B))
y/ .— .

=l
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We obtain (using [4, Cor. 5.1.9.2] for the second equality)

Ad({a(za)t—a (€a aE—a)K(x(Ea)) (Lie(xﬂﬁ ° Z,B)(l))

_Ad(xa(?;(x XO)M);C a(eaaé‘ya(x X0)- M) a(?;(x xo)M))
(é_ff/(x—x())AM Lle(?(‘ﬂﬁp)(l))
—a(x—x0)-M gho i
_Ad( (éy )) Ad(xe(Dx a(faa)Ka(l))(é‘y LIC(?C/SFP)(I))
3 Cf(x x0)-M Ad(& (E‘;‘(" xO)M))(eaﬂLie(?(sa(ﬂ)ﬁp)(l))
=5 M W BNGETTM) g Lo, (1)
_Efj(x x0)-M é‘ya Sa(B))-a(x—xo)-M eap Lie(ﬁcsa(ﬁ)ﬁ,,)(l)
_ é_;Sa(ﬂ))(x x0)-M Cap Lie(?csa(ﬂ)ﬁ,,)(l)

= €ap(Lie(Xsu (B)F,, © Csu(8)(1)-
Thus the signs of the Chevalley system {xan O Cqlacd are €4 g as desired. ]

Similarly, for each prime ¢, let fr, : Tfj — ‘J'Fq be an isomorphism that identifies
the root data R(qu) and R(G). Then we have the analogous statement.

Lemma 3.4.8. There exists an isomorphism fy : Gfg — E’;Fq extending fr,q such that
fora € ®andu € Ga(Fq) we have

fa(F1q () = x0(Cayg - 1). (18)

This allows us to define a map ¢ from J{ to G as follows.
Let S be a split maximal torus of . Then we have

X4(8) = Xu(Tx) = Xi(S) = Xu(T)HF/K) s X (T) = Xu(T),

where the first identification arises from R(H) = R(Gy), the second from Lemma 2.4.1
and the fourth from R(9) = R(G). This yields a closed immersion fs : § — T. Note that
fs also corresponds to the injection

Xi(8) = Xu(Ty,) = Xu(Sq) = Xu(Ty) " F/ KD s X (Ty) = Xu(D),
and we have commutative diagrams

fs fs
SFP ) Tﬁ]) Sﬁq > TF[]

LK 'Kq.Fq Fy

T, ———TF Ty, — s Ty
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To define ¢ on root groups, let {x 3¢, Jae®(3)=a(G,) be a Chevalley system for (I, §)
such that there exists an isomorphism J{F,, = Gx, mapping SE, to Ty, and identify-

ing (x ?Ca)Fq with xX4 ,, or equivalently having the same signs as the Chevalley system

{xKa,}qeq , for some g # 2.

Moreover, note that for a € ®gx = O(H), there exists a unique integer in [1, n], denoted
by n(a), such that &, N P, ,) 7# @ (see Remark 3.1.2 for the definition of ®;,i € [1,n]).
We label the elements in @, N Pp(q) by {et }1<i<|0,n®, 4| SO that they satisfy the fol-
lowing two properties:

e If @ is a multipliable root, we assume that oy € [®,], where [®,] is as defined in §2.2.
(Note that a priori we have either oy or a3 in [®,].)

e Let y be the generator of I" as in Definition 3.1.1. Then for all a € ®g such that
| @, N Pyq)| = 3, there exists a minimal integer e’(a) such that y¢'@ preserves and
acts non-trivially on ®; N ®,,(,), and we require that yel(“)((xl) = 5. (Note that this
implies ye/(“)(az) = u3.)

We may (and do) assume that [®,] is chosen to be {y?(a1) | 0 <i < |®4| — 1}.

Definition/Proposition 3.4.9. There exists a unique group scheme homomorphism t :
Hz — Gz extending fs such that for all Z-algebras A, a € ®(H) = Ok and u € G,(A)
we have

T/ Iﬂn(a)|
Wsa@) = [ 000 (V20 50-1 gy 4oy (- (=1 T2 CT7OM2)

i=1

{y(i—l)(az)((—1)_a(x_x0)M\/Eu) (19)

if a is multipliable,

‘F/Fn(a)|
Wxsa@) =[] ye-v@)(—w)  ifaisdivisible, (20)
i=1
and
‘F/Fn(a)l ‘cbaﬂ(bn(a)l
—a(x—x0)M(j— .
e AR 1_[ 1_[ Ky(i—l)(aj)(élq)aa(:q)j:?s)‘(J Du)  otherwise, (21)
i=1 j=1

where §; is a primitive i-th root of unity, i = 1,2 or 3, and I'y(q) = Stabr (®,(qg)).
Moreover, there exist unique isomorphisms fsc : Gx — J{Fp and fyc 4 : Gy, > ﬂ{m,
for every prime q, such that we have commutative diagrams

L L
g, —— 9, Hg, —— JF,
fﬂflz :Tf f}C,qJ/z Zqu
L
Gy — =&, GF Gy, — , GE
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Proof. Combining Lemma 3.4.3 and Remark 3.4.4 with Lemmas 3.4.7 and 3.4.8, we
observe from Remark 3.1.2(i") and Lemma 3.4.6 that f otx r oX, and f o LKy, F, © xKa,
are described by the (reduction of the) right hand side of the three equations in the defin-
ition/proposition for all primes ¢. As (g, F, © xKa, (and LK,F O Xq ) are isomorphisms
from G, to g, F, (Uf") (and tx,F (Uyg)) for ¢ # 2 (and for p # 2), the signs of the Che-
valley systems {xX¢,},cq, coincide with those of {X,} and of {x ¢, } for all ¢. (Note
that I = —1 in characteristic 2, i.e. the previous statement is trivial in this Ncase.) This
implies for every prime ¢ the existence of a unique isomorphism f3¢ 4 : Gx, — H{F that

identifies Ty, with S]F and qu with (x }(a)]F for all a € @k, and similarly for G,.

Note that the equatlons (19)—(21) in the deﬁnltlon/proposmon define group scheme
homomorphisms f, : G, — G5 over Z for a € ®(H). The maps {f, taea) and fs
together with the requirement that x 5¢, (1)x 5c_q(€a,a)x 3ca (1) = fa(1) f—a(€a.a) fa(1)
for a € A(H) define by [8, XXIII, Theorem 3.5.1] a unique group scheme homomorphism
t : Hz — G7z. (The required relations asked for in [8, XXIII, Theorem 3.5.1] can be
checked to be satisfied using the fact that they hold in 117,1 for all primes g by the existence
of tx,,F, (similar to the subsequent argument).)

It remains to check that (19)—(21) hold for a € ® — A(H). For this, note
that ¢ (x 3¢, (@) (€p.a%)) = (fo (1) fp(€p,) fo (D)t (x 3¢, () (S5 (1) f-p(€pp) f5 (1) 7" for
a € ®,b e A(X), where {€, b }4,ped, are the signs of the Chevalley system {x 5¢, }acoy -
Fora,b € A(J), the validity of the equations in the proposition for s3 (a) for all u € G,(A)
is therefore equivalent to the vanishing of a finite number of polynomials with coefficients
in Z. As the latter vanish mod ¢ for all primes ¢, these polynomials vanish also over Z,
and the equations are satisfied for s;(a) (b,a € A(H)), and hence by repeating the argu-
ment for all roots a € P. u

Remark 3.4.10. The morphism ¢ can be defined over Z[x]/(x3 — 1) = Z[¢3] or even over
Z if none of the connected components of Dyn(G) is of type D4 with vertices contained
in only two orbits.

In order to provide a different construction of J{ in Section 4, we use the following
lemma.

Lemma 3.4.11. Let ¢ be as in Definition/Proposition 3.4.9. Then 15 : Hg — Sg is a
closed immersion.

Proof. 1t suffices to show that the kernel of ‘o is trivial [4, Proposition 1.1.1]. As @ is
of characteristic zero, the kernel of (g (a group scheme of finite type) is smooth. Hence

we only need to show that (g is injective on Q-points. Let g € H(Q). Let W be a set
of representatives of the Weyl group of J{ in the normalizer of 8. Without loss of gen-
erality, we assume that the elements of W are products of x 3¢, (1)x 3_q(€a.a)x 574 (1),
a € A(H), or the identity. Let U be the unipotent radical of the Borel subgroup cor-
responding to A(H), U™ the one of the opposite Borel corresponding to —A(¥), and
Uy = U@Q) NwU~(Quw™L. . By the Bruhat decomposition, we can write g uniquely as
uywtuy withw € W, t € 8(Q), u; € Uy, and u, € U(Q). By uniqueness 1 = i(g) =
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t(ur)e(w)e(t)e(uz) if and only if 1 = t(u1) = t(w) = 1(t) = t(u2). Note that t(w) = 1

implies w = 1 by our choice of W, and ¢(¢) = 1 implies 7 = 1. Choosing an order of the

positive roots of ®F, there is a unique way to write u, = HaECDJr X9 (Ug) Withu, € Q
K

foralla € dD;;. By choosing a compatible ordering of the roots in ®* and the uniqueness
of writing t(u2) = [[ycqo+ xa(ul) with u/, € Q together with the explicit description of
¢ on root groups given in Definition/Proposition 3.4.9, we conclude that u, = 0 for all
a e CIDZ, and hence u, = 1. Similarly, u; = 1, which shows that the map ¢ is injective as
desired. ]

3.4.2. Global Moy—Prasad filtration quotients. In this section we will also lift the injec-
tions tx Fr: Vx,r = V sand g, For i Va,r — qu » in such a way that we get a lift of

the commutative dlagram (10) Using these injections we view V , as a subspace of Vx .

and Vy, , as a subspace of Vx 4.r- We will afterwards modify the global action slightly to
also accommodate the case where p = 2 and there exists a € @2”1 with a(x — x¢) € ')
such that a(x — xo) —r € I', or such that there exists b € ®¥" with b(x — xo) —r € '}
and (d, b) # 0.

We begin with the construction of an integral model for Vy, . Fix r € v(F) = v(Fy)
(otherwise the diagram (10) would be trivial) and let {3 be a primitive M -th root of
unity in Z compatible with {3 in Proposition 3.4.9, i.e. if 3| M, then $Y; M[3 = (3. Let ¥
denote the composition of the action of y on Lie(T)(Z[1/N]) induced from its action on
R(S) = R(G) (as given by Definition 3.1.1), and multiplication by ¢*™ and define V7
to be the free Z[1/N]-submodule of Lie(T)(Z[1/N]) fixed by ¥.

Next consider a € ®g. We recall that I',,) denotes the stabilizer of the com-
ponent Cy(4) of the Dynkin diagram Dyn(G) inside I', and set Xy = Lie(xq)(1) €
Lie(S)(Z[1/N]) for a € ®. We define

Y, =

|q>an¢’n(a)‘ |F/Fn(a)‘
Z Z {Me(y(otl))(j—l)rMé_( a(xqg—xo, q)+r)|r/rn(a)‘ [@q ﬁ‘:Dn(a)‘(l l)x

[@aNDy(a)l yU=D(a;)
(22)

(note that éf;:rgxq;’;zfl'q)+r)lr/ Tr@li®an®n@lG=1 ¢y e ¢2}) and let V be the free

Z[1/ N]-submodule of Lie(G)(Z[1/N]) generated by V7 and Y, for all a € ®g with r —
a(xq —x0,4) € T, (Gy), or equivalently r —a(x —xo) € I';(G) by Lemma 3.3.1. Note that
Vasa Z[1/N]-module is a direct summand of the free Z[1/N]-module Lie($)(Z[1/N]).

Also note that the GE representation Vx , 1s isomorphic to the adjoint representa-
tion of Gf on Lle(Gf ), and similarly the qu representation qu r 18 isomorphic to the

adjoint representation of Gx on L1e(G 4. Hence the isomorphisms f : GF = S]F and
Jfq: GF" > SF from Lemmas 3.4.7 and 3.4.8 yield the 1som0rphlsms df = Lie(f) :
VI, ~ Lie(GE)(F,) > Lie(S)(Fp) and df, := Lie(f;) : qu,, = Lie(G)(F ).
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Proposition 3.4.12. The adjoint action of Sz, ,ny on Lie(S)(Z[1/N)) restricts to an
action of }CZ[I /N1 O V.

Let q be coprime to N. Then df (Vx,,) = T?Fp and dfy(Vx,,r) = T?Fq. Moreover, the
following diagrams commute:

g‘pr X VFP —_— VFp S‘CF X VFq —_— VF‘]
f}_chdf_ll: :ldf—l fﬁ}qxdfq—‘l: :ldfq—l
Gx X Vi, ——Vy, quXqur—>qur

unless p or q is 2 (for the left or right diagram, respectively) and there exists a € CD%‘”
with a(x — xo) € T, such that a(x — xo) —r € '}, or such that there exists b € O with
b(x —xo) —r € I'y and {a,b) # 0.

Proof. We first show that df; (qu r) = F for g coprime to N and df (Vx,,) =
by considering the intersection of V with the subspaces EBaeq)(G) Lie(S)(Z[1/N)) and
Lie(T)(Z[1/N]) of Lie(G)(Z[1/ N]) separately.

For o € ®, denote by I, the stabilizer of o in T, and let X, = Lie(qua)(l), Ng =
|y N D] € {1.2.3}and &y = g, " = 76,57V 1 <i < g

The image of (V n @aecp(G) Lle(S)(Z[l/N])a) ®Z11/N] Fq under dfq_1 is then
spanned by

ng |F/Fn(a)‘

- j— M( (x¢—x0.¢)+MIT/Tn(aylnai—1)——
Y. :Z Z é—y(] Dr axq X0,¢)TT n(a)Mall— y(lj 1)(a)qu(/ D)

|F/Fn(a)‘
M o (—a(xg—x0,¢)+1)IT/Tpaylnai—1) —a( M-
Z Z é_ (—-Dr é_ q—X0.q n(a) é— a(Xg—X0,q J— Xy(/—l)(ai)
i=1 j=1
IT/Tal _ T/Tal
3 U gy = 3 9D
i=1 j=1

fora € @k withr —a(xg — x0,4) € T, (G4) (Where pr maps to E under the surjection

Z[1/N]— ]ITq). Here the action of " on Vf;’ r is the one induced from the action on gfl‘,’ -
Thus by definition of the Moy—Prasad filtration and the inclusion tf, g,,r constructed in
the proof of Lemma 2.6.1 we obtain the equality

dfy (Vg,) N PLieGIHFe = dfy (V0 P L@ @I/ NDa ) @ Fy )

acd aed

= Vi N @LIC(G Y(F ) (23)

aed

inside Vx;’ r L1e(G )(]Fq)
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In order to show the analogous statement for Vy ., we claim that

(—a(xg—x0,¢)+0IT/Tna)lna@i—1) _ o(—alx—x0)+r)|T/Tpa)lna@—1)

ng — Sha
in Fp. This is obviously true for p # 2 as a(x — xo) = a(xq — Xo,¢) in this case. If p =2,
then {, = —1 = 1in F,, and we only have to consider the case n, = |®4 N Dyy(y)| = 3.

However, n, = 3 implies that the corresponding component C,(,) of Dyn(G) is of

type D4, and hence b(a) = 0 for all multipliable roots b € <I>+ sl

a(xq — xo,4) by definition (see (14)), and the claim follows.

Let ¢, = (¢ e(y(al)), Xy = Lie(x_a)(l) and use otherwise the same notation

as above. Then there exists a set of representatives [Gal(F /K)/Stabga(r/x)(@)] of
Gal(F/K)/StabGal(p/K)(oe) such that the image of (V N Dueco(c) Lie(S)(Z[1/N))a)
®zZ1/N] F, under df ~! is spanned by

. Thus a(x — xg) =

ng |F/Fn(a)|

v i—1 M ( a(xqg—x0,g)+7)IT/ Th(ayIna(i—1)——1 b7
:Z Z é-y(] )r q q (a) cy(j Da; )Xy(/—”(ozi)

R (—a(x—x0)+PIT/ Ty lmali—1)
j— —a(x—xo)+ n(@)Mal—1) e —aq(x— i—1)yv
= Z Z ;y(; DrM naax x0)+r @nai é_ya(x x0)M(j I)Xw—n(a,»)

T/ T
-y g, UDCabmx My > Y (Xay),
= v’ €[Gal(F/K)/Stabga(F/ k) (@)]

where the last equality follows from Lemma 3.4.6. Thus we obtain

df 7' (Vg,) N P Lie(GI)(Fp)a = Vi, N EPLie(GE)(Fp)a (24)
aed aed
inside V| =~ Lie(GE)(F ).

Let us consider V7. From the definition of the Moy—Prasad filtration tf’r of the Lie
algebra tg, of the torus TE, together with Lemma 3.1.3 and the observation that all p-
power roots of unity in IE‘ are trivial, we deduce (by sending {3 ® 1 to é‘G under the
isomorphism Z[1/N] ®Z[1/N] F, ~ F, as above) that

df (g, p.r CEL/EE ) = Lie@ @I/ N @701,3 Fp-

Moreover, by combining Propositions 4.6.1 and 4.6.2 from [26, §4.6], we have ty , =

(tf, 1)Gal(Ed/K) a5 E, is tamely ramified over K, and we deduce (using tameness of E;/K)
that

df (typ ters) = df (2 JEOGER) = (LieZ11/N)?" ©7710 Fp)’
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For g coprime to N, we denote by E; , the tamely ramified extension of degree N
of K. Then we obtain by the same reasoning (replacing E; by E; ;)

dfq(txq,r/txq,r+) =Vr ®Z[1/N] Fq. (26)
Combining (24) and (25), and (23) and (26), we find for g coprime to N that
df (Vx,) =Yg, and dfy(Ve,r) = Vg,

In order to show that the adjoint action of Sz, on Lie(S)(Z[1/N]) restricts to an

action of Hz /np on V), we observe that the following diagram commutes:

S, x Lie(9)(Z[1/N))g, — Lie(S)(Z[1/N))g,

fqlxdfq'l: :ldfq'

Fy Fy Fy
qu X qu,r qu,r

Since ik, F,(Gx,) preserves Vi, , (Lemma 2.6.1), we deduce that the induced action
of %Fq on Lie(9)(Fq) preserves \~7Fq for all ¢ coprime to N. Hence the induced action

of Hzpy,ny on Lie(S)(Z[1/N]) preserves V, and by construction and Lemma 2.6.1 and
Definition/Proposition 3.4.9 the diagrams in the proposition commute (assuming the con-
dition in the proposition in characteristic 2). ]

In order to also obtain commutative diagrams in the case when p or ¢ is 2 and
there exists a € CD?‘I with a(x — xo) € I'), we define the 7Z[1/N]-submodule V of
Lie(S)(Z[1/N]) to be generated by V7, Vom and Vyu, where Vo is the Z[1/N]-
submodule generated by Y, for all a € ®F" with r —a(x — xo) € I',(G) and Vy is the
Z[1/ N]-submodule generated by +/2 Y, for all a € CID%‘1 with r —a(x — xo) € I',(G).
Note that V is a finite index submodule of V, and the injection V — v yields an isomor-
phism V ® Z[1/2N)] = V® Z[1/(2N)].

Lemma 3.4.13. Let R be a Z[1/N]-algebra. Then the image of V ® R in V®R is
preserved by the action of H(R).

Proof. To simplify notation, we assume R = Z[1/N], but the proof is the same for gen-
eral R. We need to show that H(R) maps V7 & Vi, to Vr & Vi @ Vipu. Since 8
preserves V7 @ Vo, it suffices to consider the action of the root groups x 9¢,(R) for
a € O(H) = P(Gy) C Px(G). Leta € ®(H) C Pk (G). If o € O, is not contained in
the span of roots of a connected component of the Dynkin diagram Dyn(G) that is of
type Az, and on which Gal(E/K) acts non-trivially, then x 3¢, (R) preserves Vr @ Vim.
By the same reasoning as in the proof of Lemma 2.6.1, if a corresponds to a non-mul-
tipliable root in ®g (G), then x g¢,(R) preserves V7 @ Vi, as well. Thus assume a is
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multipliable. Hence, for u € G,(R), by Definition/Proposition 3.4.9 we have

‘F/Fn(a)|
Wasa@) =[] 0000 (V20 250-10 (@) 4a) (- (=) T4ET70OM )
i=1

“ Xy =1 (ay) ((—1)_a(x_x0)M «/Eu)

Let H € V. Using xo(u)(H) = H — Lie(a)(H)uX,, for all « € ®, we observe that
x9cq(W)(H) = t(x9¢,(m))(H) is contained in V7 & Vim & Vinul-

It remains to consider the action of x 3¢, (u) on Y, for b € " with r — b(x — xo)
€ I',(G). Let us assume (without influence on the arguments to follow) that oy and
o, above are the simple roots «; and B; of a Dynkin diagram of type A4,, as in Fig-
ure 1 (§2.5). Then x 9¢,(u)(Yp) = Yp unless b is the restriction of oy + --- + o or of
—(B1 + @1 + -+ + o) for some 2 < ¢t < n using the notation from Figure 1. In both
cases we observe using the explicit formulas for ¢(x 5¢,(#)) and Y that x 5¢,(1)(Yp) =
t(x9¢4(n))(Yp) is contained in V7 & Vim & Vinul- n

The lemma allows us to define an action of H{ on V by requiring that if R is an
Z[1/N]-algebra in which 2 # 0, then the action of 3{(R) on Vg is the restriction of the
action of 7{(R) on V. Note that if N is odd, then for g € H(F,) and v € V(F,) there
exist g € H(Z[1/N]) whose image in H(F,) is g (because this holds for the root groups
and the torus) and v € V(Z[1/N]) whose image in V(F5) is v, and g.v is the image of
g.v € V(Z[1/N]) in V(F,) (which is independent of the choice of g and v).

Notice that the action of H on V ® Z[1/2N] corresponds to the action of H on
Ve Z[1/2N] under the identification V ® Z[1/2N] = V® Z[1/2N] above. In order
to treat the special fiber over 5, we define isomorphisms fv : \ Vﬁp if p =2and
Sv2:Vayr — VFz if 2 4 N as follows.

Let p=2.Let fVigV NEDD, e 11a) ax NP @aecbl}? ng) > (VT)F2 S (Vnm)ﬁ2
X, a K

be given by the restriction of df, and let fy(Y,) = ~/Ao~/2Y, fora € (D%“l with r —

a(x — xo) € T'(G), where Mg is as defined in Lemma 2.5.1, v/A9~/2Y, denotes the
image of Vo V2 Y, € V under the surjection V — V ® F,, and Y is as introduced in
the proof of Proposition 3.4.12,i.e. Y, = 2y e[Gal(F/K)/Stabea ) 1) (@)] Y'(X o) with the
above notation.

Define the isomorphism fv , : Vi, , — Vp, analogously.

Proposition 3.4.14. For g coprime to N, the following diagrams commute:

j‘fﬁp X VFP —_— ,VF]) J‘fﬁq X Vﬁq —_— Vﬁq
fg?lev_llﬁ Zlfv“ f;(.]qva,q]l”—“ Zlfv,ql
Gx X Vi, ——Vy, qu X qu,r — qu,r

where fy :=df if p # 2 and fv , = dfy forq # 2.
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Proof. By Proposition 3.4.12 and the above observation that V ® Z[1/(2N)] < Ve
Z[1/(2N)] is an isomorphism of HZ[1 /2wy -modules, the right diagram commutes for
g # 2 and the left diagram commutes if p # 2.

Let us now consider the commutativity of the left diagram for p = 2; the commut-
ativity of the right diagram for ¢ = 2 follows from the same arguments.

By construction, the action of the maximal torus T, on V, , corresponds to the
action of Si, on V. and it remains to consider the action the root groups Uz C Gx

for a € ®(Gx) C Og. We first consider the action on gy, N (t H @aeq,l}? Ug) ~
(VT)E ® (Vam)F- In the proofs of Lemmas 2.6.1 and 3.4.13, we have seen that if  is non-

multipliable, then U, = X,(Gy,) preserves gx,, N (t @ @aeqy}? ug) and 3¢, ((Gm)g,)
preserves (Vr)g, © (Vam)f and hence, by construction, the actions agree under the iso-
morphisms fi|y, and fv|gx.rﬂ(t®®ae¢nKm )

So consider a multipliable, and let u € ]172. Then

%@ (X) = xo (V1) do xwler, yw)mheo(x)mher) - wieo)(X)

for X € gx,r, where we use the notation from Leglma 2.5.1and ? dencies the image of ?
ingxr/gx.r+ = Vx,r. On the other hand, if u € Z[1/N] maps to u € [, then

x3¢a @)(X) = t(x3ca ) (X)

for X € V, where ? denotes the image of ? in VE' Moreover, by Definition/Proposition
349,

‘F/Fn(u)l
o) = [T 0000 (V2025021 (@) 4ap) (- (=) T4ET7OM )
i=1

“ Xy =1 (ar) ((—1)_a(x_x0)M \/Eu)

Using these equations and the description of x, in (1), easy calculations show
that fy(Xa()(H)) = X3¢, @) (fv(H)) = foc(Xa@))(fv(H)) for H € gy, Nt and
oEa@)(Y b)) = x50, @) (Yp) = frc(Xa(@))(fv(Yp)) for b € O with r — b(x — xo)
€ I, (G).

It remains to consider the action on g N Pa € 6132”111“ = (Vmul)ﬁz- By Lemma
2.6.1 (and the definition of (g F,, in its proof) and the definition of V and Vp,, the
groups Gy and Hp, preserve gy, N @aeq,nKmlua and (Vmu)p,, respectively. Hence,

by the underlying constructions, their action agrees under the isomorphisms f5¢ and
f vlgx.r n&d : "

aE<I>mK“l ug

Now Theorem 3.4.1 is an immediate consequence of Proposition 3.4.14.
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4. Moy-Prasad filtration representations and global Vinberg-Levy theory

In this section we will give a different description of the reductive group scheme 3 and its
action on V from Theorem 3.4.1 as a fixed-point group scheme of a larger split reductive
scheme G acting on a graded piece of Lie G (see Theorem 4.1.1). This means we are in
the setting of a global version of Vinberg-Levy theory and the special fibers correspond
to (generalized) Vinberg-Levy representations for all primes ¢. In order to give such a
description integrally (i.e. over Z[1/N]), we will specialize to reductive groups G that
become split over a tamely-ramified field extension in §4.1. Afterwards, in §4.2, we will
show that such a description holds over Q for all good groups. This will also allow us to
study the existence of (semi)stable vectors in Section 5.

4.1. The case of G splitting over a tamely ramified extension

Let S be a scheme. We denote by u s s the group scheme of M -th roots of unity over S.
We will often omit S if it can be deduced from the context. Given an S-group scheme G,
we denote by Autg ¢ its automorphism functor, which sends an S-scheme S " to the group
of automorphisms of G- in the category of S’-group schemes, and by Autg /s its repres-
enting group scheme if it exists. We will often omit S if it can be deduced from the context.
Given, in addition, a morphism 6 : u M.S Autg, we denote by GY the scheme-theoretic
fixed locus of G under the action of u Mm.s Via 0, if it exists, i.e. G? represents the functor
that sends an S-scheme S’ to the elements of G(S”) on which i, ¢/ acts trivially. If gf
is a smooth group scheme over S of finite presentation, we denote by G%° its identity
component. Similarly, if ¥ is a quasi-coherent O s-module, we denote by Autgz /o its
automorphism functor, and by Autg o (or simply Autg ) the group scheme representing
Autg g if it exists.

Theorem 4.1.1. Suppose that G is a reductive group over K that splits over a tamely
ramified field extension E of degree e over K. Let r = d/M for some non-negative
integers d < M, and let 3 be the split reductive group scheme over Z[1/e] acting on
the free Z[1/e]-module V as provided by Theorem 3.4.1, i.e. such that the special fibers
each correspond to the action of a reductive quotient on a Moy—Prasad filtration quotient.
Then there exists a split reductive group scheme G defined over Z[1/e] and morphisms

O:mpy — Autg  and  dO: py — Autiie(g)
that induce a 7/ M Z.-grading Lie(9) = @l]‘il Lie(S); such that K is isomorphic to G%°,
V is isomorphic to Lie(G)p—q(Z[1/e]) and the action of H on 'V corresponds to the

restriction of the adjoint action of G on Lie(S)(Z[1/e]) via these isomorphisms.
In particular, this implies that for q coprime to e we have commutative diagrams

S5 xLie(S)u—a (Fp) + Lie(S)n-a(Fp) g xLie(9ar—a(Fy) + Lie(S)nr—a Fy)

:x:l lz :x:l l: 27

GixVyp ———V,, Gy XVyy ——— Voo s
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Remark 4.1.2. If p is odd, not torsion for G and does not divide m, then, if we choose
M to be m, the left diagram in (27) is proven to exist and commute in [20, Theorem 4.1].
The proof given in loc. cit. does not work for all primes p, because it relies crucially on
the assumption that p does not divide m.

Proof of Theorem 4.1.1. Lete’, f be integers such thate |e’, M = ¢’ f, ged(e’, f) =1
and e’ is minimal satisfying these properties. Let E.s be the splitting field of x¢ —1
over E, and let O, be the ring of integers in E,’.

We let G be a split reductive group scheme over O,/[1/¢] C Z[1/e] whose root datum
R(9) coincides with the root datum R(G) of G, i.e. G is as defined in §3.4.1 base changed
to O.s[1/e], and T denotes a split maximal torus of G. Let G,q be the adjoint group
of G and T’ the subtorus of T that consists of the images of the coroots of G. We
have the usual map G — G4, and we denote the image of 7" under this map by Tp.
Restricting the map to 7’ induces an injection X«(7T') < X, (T,) that yields an iso-
morphism X«(7") @z R = X.(Ta) ®z R, which we use to identify the two real vector
spaces. This allows us to choose A € Xy (Tog) C X4(T") @ R C X4(T) ® R such that
X = xo + (1/M)A. Note that then, using the identification of X.(7T) with X, (7}), we
have x; = x¢,4 + (1/M)A. We also denote by A the corresponding element in X (Tyq) C
X«(7) ® R under the identification of X, (7)) with X, (7). Consider the action 6, of u,,
on G given by composition of the closed immersion gy, — Gy, with A and the adjoint
action of G,q on G, i.e.

A
GA:ILM—>Gm—>‘J'adf—>9adﬁ>Aut9.

Let ¥ € Aut(R(G), A) denote the action of y € I' >~ Gal(E/K) on R(G) given in

the Definition 3.1.1 of a good group, and denote by Z/eZ 0. [1/e] the constant group

scheme over Spec Q,/[1/e] corresponding to the group Z/eZ. Using the Chevalley sys-
tem {xq : Gu = Ua C Glaea(g)=a for (G, T) (defined in §3.4.1), the automorphism ¢

defines a morphism of Spec Q,/[1/e]-schemes Z/eZO e Autg. Note that we have

an isomorphism of Spec O,/[1/e]-schemes p.,, — Z/e'Z ] that yields the following

0,[1/e
morphism, which we again denote by ¥

(,/

z)Z/eZ

. = !
O ihe > L/eL Z(99/[1/e] ———0,[1/e]

— Autg .

Fix an isomorphism g >~ p. X pr. This yields a projection map payer @ fpy —> o
and allows us to define 6 : ) — Autg as follows:
diag DPar.er X1d ¥x6; mult.
Oy — Wy X pyg —— R X by — Autg X Autg — Autg .
By [5, Proposition A.8.10], the fixed-point locus of G under the action of 6 is rep-
resentable by a smooth closed @,[1/¢]-subscheme G¢ of G. Moreover, by [5, Proposi-
tion A.8.12], the fiber 92’0 is a reductive group for all geometric points 5 of Spec O,/ [1/e].

Similarly, 790 = 799 is a smooth closed subscheme of T. Hence T is a split torus over
Spec O [1/e].
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Let us denote G%° by H’. We claim that 7% is a maximal torus of H’. In order to
prove the claim for geometric fibers, we use a similar argument to one used in [10, Sec-
tion 4]. Let ¢ be an arbitrary prime number coprime to e, B the Borel subgroup of G cor-
responding to the positive roots, and U its unipotent radical. As H’ T, is a closed subgroup
of g . H's,/(Bg, N H'g, ) is proper in G/ B, hence is proper. Thus By N H'g, is
a solvable parabolic subgroup, i.e. a Borel subgroup, and B, =By F, [ H'= F, . According
to [23, 8.2], u 1s connected, and hence Be 0 ‘J'9 0 x IL ThlS means that ‘.T’} 0 ‘3'9 0

(1
is a maximal torus of H’ F, . Hence ‘J' %isa max1mal torus 1n H's for all geometrlc p01nts
5 of Spec O,[1/e], because the locus of the former points is open. This means that 70
is a maximal torus of 3.

In addition, Pic(Spec Z[1/e]) is trivial (by the principal ideal theorem), and hence the
root spaces for (SZ[1 Jel Iz e]) are free line bundles. Using the fact that Spec Z[1 /e] is
connected, we conclude that H' Z1 /el is a split reductive group scheme.

If g is a large enough prime number, then by [20, Theorem 4.1] we have f}-CEfq >~ Gy,
Hence R(H') = R(J{?Fp) = R(Gy,) = R(F), and J{/Z[l el is (abstractly) isomorphic
to I as desired.

In order to give a new construction of V, let d : Autg — Auty ;¢ g) be the map
defined as follows. For any @./[1/e]-algebra R, and g € Autg(R), define dg := Lie(g) €
Aut(Lie(G) g). Then the action d6 defines a Z /M Z-grading on Lie(G), which we write
asLie G = @M, (Lie §);.

We define V' to be the free O./[1/e]-module Lie(G)pr—qg(Oc[1/e]), and the action
of H' := G%° on V' should be given by the restriction of the adjoint action of § on
Lie(5)(Oc[1/e]).

In order to show that the H-representation on V corresponds to the J’ Z[1/e]-TeprEs-

entation on V’ Zije Ve observe that \7, Zi1Je] is the M — d weight space of the action of

¥ - Ad(A(Zpr)) for some primitive M -th root of unity {ps in Z[1/e]. Using the notation
introduced in §3.4.1 preceding Remark 3.4.5, we let Cy = {j, e(@)alx=xo}M gy the same
arguments as in the proof of Lemma 3.4.7, we see that there exists an automorphism /
of SZ[I/e] that preserves TZ[l/e] and sends x o to x o © Cy for all o € ©.

Let g be a large enough prime, to be more precise: odd, not torsion for G and not
dividing M. Then we deduce from the arguments used in [20, Section 4] that we have

commutative diagrams

H'g, —— SF, vgfq<—c> Lie(9)(F,)
f(;lohbcfﬁq l: :lfqloh Lie(fq_loh)lvf(Fq)J/: :lLie(fqloh)
L L r

Gy, e, Gl V,, eter oyl
(28)

Moreover, the diagram on the right hand side is compatible with the action by the groups
of the diagram on the left hand side.
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Recall that in §3.4 we constructed a map ¢ : 3 — Gz, and V as a free Z[1/e]-

submodule of Lie(G)(Z[1/e]) (because if e is odd, then ®g does not contain multipliable
roots, and hence the submodules V and 'V agree in all cases) such that we have the follow-
ing commutative diagrams for all primes ¢ coprime to e:

I, —— S, Vg, — Lie(9)(F,)
zl Zlfql :l :luem,l) (29)
Gy, 5014 GFo V., ety gk

where the diagram on the right hand side is compatible with the action of the groups on
the left hand side by Proposition 3.4.12. Note that (g, F, is a closed immersion because
either ¢ is odd or e is odd (see §2.6).

Thus we conclude that 27! (L(S{Fq)) = f}{’ﬁq for large enough g.

Let ¢ now be any prime coprime to e, and let g € H(F,). As H(Z[l/e]) sur-
jects onto J—C(Fq) (because this holds for the root groups and the torus), we can
choose g € H(Z[1/e]) whose image in H(Fq) is g. By combining the diagrams (28)
and (29), we see that the image of h=1((g) in S(Fq/) is actually contained in H’ (Fq/)
for all sufficiently large primes ¢’. Hence h~'i(g) € H'(Z[1/e]) C G(Z[1/e]), and
h=lo L(J{(Fq)) cCH (Fq). Since we have observed that H’ F, is abstractly isomorphic

to Gy, ~h~'o f,(ik,,F,(Gx,) ~h7'o t(Hg, ), we conclude that

W ou(Hg,) = H'y, (30)
for all primes g coprime to e. The same arguments show that

]’l_l o L(%Fp) = %/Fp' (31)

Moreover, we claim that h~! o L(Hg) = H - In order to prove the claim, note that
(km)g = Z/M Z@, and hence the action of the group scheme p ), on Ggy corresponds

to the action of the finite group Z/M Z generated by 9 - Inn(A({a)). Therefore, by the
construction of ¢ : Hzyy ,) = G717 (see Proposition 3.4.9) and the definition of & :

SZ11/e) = 97Z[1/e)> We see that h= o (H(Q)) C §%(Q). As g Hg — Gg is aclosed
immersion by Lemma 3.4.11, hlo L(fH@) ~ 5{@ ~ 9%0 =X o and we conclude that

h~' o u(Hg) = H'g. (32)

Thus, as H' Z[1/e] is smooth over Spec 7Z[1/e], hence reduced, we deduce from the Null-
stellensatz that h~' o1 : H — 971 /e factors through the closed subscheme H'z,
of G7(1/¢p» 1-6- we may write h~" ot : F — 'z, 1. As we have proved that (™" 0 1),
Hy — (%/Z[l/e])s is an isomorphism for all s € Spec Z[1/e] (see (30)=(32)), we conclude
that by [9, 17.9.5] the morphism A1 o1 : H — }C/Z[l/e] is an isomorphism.
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Moreover, as Lie(h)(\??fq) = Vﬁq for large enough primes ¢, we deduce that Lie(4) :

Lie(S)(Z[1/e]) — Lie(S)(Z[1/e]) yields an isomorphism of the direct Z[1/e]-module
summands VZ[ Vel and V.
As the action of J{ on V was defined via the adjoint action of Gz, ,; D ¢(3() onto

Lie(SZ[l/e])(Z[l/e]) D 'V, the isomorphisms

W30 370 = 957,
and
Lie(h™") : V = Vo = Lie(Sz, o)m—a (Z[1/e])
map the action of H onto V to the action of (92[1/e])9’0 on Lie(gz[l/e])M_d (Z[1/e])

which arises from the restriction of the adjoint action of Gz, ,,; on Lie(Sz /e])(Z[l /e]).
The commutative diagrams in the theorem now follow by applying Theorem 3.4.1.

Remark 4.1.3. Let E,/ be as defined in the proof of Theorem 4.1.1. Denote by Eg the
Hilbert class field of E.s and by O the ring of integers in Ez . Then the group schemes
H and G and the action of H on V appearing in Theorem 4.1.1 can be defined over
Spec Og[1/e].

4.2. Vinberg—Levy theory for all good groups

Even though the Moy—Prasad filtration representation of groups that do not split over a
tamely ramified extension might not be described as in Vinberg—Levy theory, its lift to
characteristic zero can be described using Vinberg theory, i.e. as the fixed-point subgroup
of a finite order automorphism on a larger group acting on some eigenspace in the Lie
algebra of the larger group. To be more precise, we have the following corollary of The-
orem 4.1.1 combined with Theorem 3.4.1.

Corollary 4.2.1. Let G be a good reductive group over K, r = d/M for some non-
negative integer d < M, and let the representation of 3 on V be as in Theorem 3.4.1.
Then there exist a reductive group scheme Gy over Q and morphisms

0:pmy — Autg@/@ and dO : gy — AutLie(Q@)/@

such that Hg =~ 9%0 and Vg ~ Lie(Sg)m—-a (Q), and the action of Hg on Vg cor-
responds via these isomorphisms to the restriction of the adjoint action of Gg on

Lie(S9) @)

Proof. Let q be a prime larger than p* N. Then, by construction, the representation over
Z[1/(p*N)] associated to G, via the proof of Theorem 3.4.1 agrees with the repres-
entation of S{Z[l J(psN)] On VZ[I /(pSN)]* As Gy splits over a tamely ramified extension,
Theorem 4.1.1 allows us to deduce the corollary. ]
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5. Semistable and stable vectors

In this section we apply our results of Sections 3 and 4 to prove that the existence of
stable and semistable vectors in the Moy—Prasad filtration representations is independent
of the characteristic of the residue field. Recall that a vector v in a vector space V' over an
algebraically closed field is stable under the action of a reductive group Gy on V if the
orbit Gy v is closed and the stabilizer Stabg,, (v) of v in Gy is finite. A vector v € V is
called semistable if the closure of the orbit Gy v does not contain zero.

5.1. Semistable vectors

The global version of the Moy—Prasad filtration representation as provided by Theorem
3.4.1 allows us to show that the existence of semistable vectors is independent of the
residual characteristic p of K as follows, where N is the integer coprime to p introduced
in Definition 3.1.1.

Theorem 5.1.1. We keep the notation used in Theorem 3.4.1, in particular G is a good
reductive group over K and x € B(G, K). Then the following are equivalent:

(1) Vyx,r has semistable vectors under the action of Gy.

(ii) Vx,,r has semistable vectors under the action of Gy, for some prime q coprime
toN.

(i) Vy, , has semistable vectors under the action of Gy, for all primes q coprime to N.

Proof. We first show that (ii) implies (i). Suppose that (ii) holds, i.e. Vy, , contains
semistable vectors under Gy, for some prime g coprime to N. This implies by [14, Pro-
position 4.3] that V@q has semistable vectors under the action of J—C@q , where H and V
are as in Theorem 3.4.1. By [17, p. 41] (based on [16, Definition 1.7 and Proposition 2.2])
this means that there exists an J{(g_-invariant non-constant homogeneous element P,

in Sym V@q. Moreover, there exists X € \7@ C V@q such that P;(X) # 0, i.e. X is
semistable in V@q under the action of 9{@1. Hence X # 0 is also semistable in Vg

under the action of Hgy, which implies (Sym V@)}C(@ # Q. Thus, there also exists an

H(Z)-invariant non-constant homogeneous element P in Sym \V7Z. As P is non-constant
and homogeneous, we can assume without loss of generality that the image P of P in
Sym V7 ® Fp ~ Sym VFP is non-constant. Note that 3((Z) surjects onto U{(Fl,), which
follows from the surjections on all root groups and the split maximal torus. Hence P is
U-C(Fp) ~ Gy (]ITP)-invariant and there exists X € VFp =~ V, ; such that F(X) #0,ie.
X is semistable by [17, p. 41]. Thus (i) is true.

The same arguments show that if G, has semistable vectors, then qu’, has semi-
stable vectors for all primes ¢ coprime to N, i.e. (i) implies (iii). As (iii) implies (ii), we
conclude that all three statements are equivalent. ]

Note that the same holds for the linear duals \fo,r and \v/xq,, of Vy r and Vy_ , using v
instead of V in the proof above:
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Corollary 5.1.2. We use the same notation as above. Then \V’x,r has semistable vectors
under the action of Gy if and only if Vy, , has semistable vectors under the action

of Gy, for some prime q coprime to N if and only if \V/'xq,r has semistable vectors under
the action of Gy, for all primes q coprime to N.

Remark 5.1.3. For semisimple groups G that split over a tamely ramified extension and
sufficiently large residue field characteristic p, Reeder and Yu classified in [20, The-
orem 8.3] those x for which V , contains semistable vectors in terms of conditions that
are independent of the prime p. Corollary 5.1.2 allows us to conclude that these prime
independent conditions also classify points x such that V, , contains semistable vectors
for all good semisimple groups G (without any restriction on the residue field charac-
teristic). Note that the removal of the restriction on the residue field characteristic for
absolutely simple split reductive groups G is also contained in a joint paper of the present
author with Romano [7]. For this result, it suffices to construct H acting on V over Zp.

5.2. Stable vectors

In this section we show a result analogous to the one of §5.1 for stable vectors. This
allows us to generalize the criterion in [20] for the existence of stable vectors in the dual
of the first Moy—Prasad filtration quotient to arbitrary residual characteristics p and all
good semisimple groups, which in turn produces new supercuspidal representations.

Theorem 5.2.1. We keep the notation used above, in particular G is a good reductive
group over K and x € B(G, K). Then the following are equivalent:

(i) Vyx,r has stable vectors under the action of Gy.
(i) Vx,.r has stable vectors under the action of Gy, for some prime q coprime to N.

(iii) Vy,,, has stable vectors under the action of Gy, for all primes q coprime to N.

Before we prove the theorem, we mention that part of the following proof appears as
well in [7] in order to prove the result of Corollary 5.2.3 below in the case of G being
absolutely simple and split.

Proof of Theorem 5.2.1. We suppose without loss of generality that r = d/M for some
non-negative integers d < M.

Assume that (ii) is satisfied, i.e. there exists a prime ¢ coprime to N such that Vy, ,
contains stable vectors under the action of Gy, .

A slight variation of the proof by Moy and Prasad of [14, Proposition 4.3] (see [7,
Lemma 2] for a detailed proof) shows that then V@q contains stable vectors under ﬂ{@q,
where H and V are as in Theorem 3.4.1.

Recall that by Corollary 4.2.1, Hg =~ 9%0 and Vg =~ Lie(Sg)m—d (Q) such that the
action of Hgy on Vg corresponds via these isomorphisms to the restriction of the adjoint
action of Gy on Lie(9@)(@). Let £y be a primitive M -th root of unity in Q, denote

9g;—I\J)M/(d.M),O

o by ¢, its Weyl group by W’, and let ¢ be the action of 6({as) on the
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root datum R(qu)' Then by [19, Corollary 14], the existence of stable vectors in V@q
is equivalent to the action of 6({s) on 9@, (or, equivalently, on §') being principal and
M/(d, M) being the order of an elliptic Z-regular element of W'?}. Hence we conclude
by the same equivalence for the prime p that there exist stable vectors in V@p under the
action of Hg

Thus the set (VQ )s of stable vectors in VQ is non-empty and open (see [16, 1.4,
p- 37]). Hence there exists a non-zero polyn0m1al P in the space of global sections
Oy(Vg p) = Oy(V5 ,,) ®z, @p ~7 plX1, ..., Xn] ®z, Qp Qp[xl, ..., Xp] such that
the @p-points of the closed reduced subvariety V(P) of VQP defined by the vanishing
locus of P contain (V@p — (V@p)s) > 0. We can assume without loss of generality that

the coefficients of P are in Z,, i.e. P € Oy (VZP) C OV(V@p), and that at least one

coefficient of P has p-adic valuation zero. Let F_be the image of P under the reduction
map (9V(VZ,,) >~ Zplx1,....,xp] = OV(VF,,) ~ Fp[x1,...,x,]. Then P is not constant,

because P(0) = 0, and there exists X € Vg, = Va,r such that P(X) #0.

We claim that X is a stable vector under the action of G,. We will prove the claim
using the Hilbert—-Mumford criterion that states that a vector is stable if and only if it
has positive and negative weights for every non-trivial one-parameter subgroup (see [17,
p- 41] based on [16, Theorem 2.1]). Let A Gp — Gy >~ U-Cﬁp be a non-trivial one-

parameter subgroup. Then A is defined over some finite extension of F », and hence by
[21, IX, Corollaire 7.3] there exists a lift A : G, — Hz of A. The composition of A
with the action of J{Z,, on Vzp yields an action of G, on VZp , and we obtain a weight
decomposition Vz = €B,,ez V- Denote B,,ez_, Vim by V4 and B,z Vim by V-,
ie. VZ,, =V_®VodVyi.LetX € VZ,, be a lift of X, and write X = X_ + Xo + X,
with X_ e V_, Xy € Vy, X+ € V4. Note that the weight decomposition of pr under

the action of Gy, via the composition of A with the action of ﬂ{ﬁp on Vﬁp is the image of
the decomposition V_ @& Vo & V. ie. (V5 ,)- = Dmez_, Vg, )m = V)5, (Vﬁp)o =
(VO)Fp and (VFP)+ = @m€Z>o (va)m = (V+)Fp . Hence 7 = 7_ + Y() =+ Y+ (where
an overline denotes the image after base change to Fp) has positive and negative weights
with respect to A if and only if v(X_) = 0 = v(X4).

Suppose that v(X_) > 0. Then P(X) = P(Xo + X4+) modulo the maximal ideal

of Zp. However, Xy + X4 is not a stable vector, because it has no negative weights with
respect to the non-trivial one-parameter subgroup A XZ, Q,, which implies P(Xo + X+)

= 0. Hence P(X) = 0, contradicting the choice of X. The same contradiction arises if
we assume that v(X_) > 0. Thus, X has positive and negative weights for every non-
trivial one-parameter subgroup, i.e. X is stable by the Hilbert-Mumford criterion. Hence,
statement (i) of the theorem holds.

The same arguments show that if G, has stable vectors, then G ,.r has stable vectors
for all g coprime to N, i.e. (i) implies (iii). As (iii) implies (ii), the three statements are
equivalent.
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As in the semistable case, the same proof works for the linear duals of the Moy—Prasad
filtration quotients:

Corollary 5.2.2. We use the same notation as above. Then \V7x, r has stable vectors under
the action of Gy if and only if Vy,, , has stable vectors under the action of Gy, for some

prime q coprime to N if and only if qu,r has stable vectors under the action of Gy, for
all primes q coprime to N .

Denote by r(x) the smallest positive real number such that V, () # {0}, and let
o= % Y yea+ &, where ®T are the positive roots of ® = ®(G) (with respect to the
fixed Borel B). Then Corollary 5.2.2 allows us to classify the existence of stable vectors
in Vy ,(x) for arbitrary primes p and good semisimple groups below. This generalizes
the result of [20, Corollary 5.1] for large primes p and semisimple groups that split over
tamely ramified extensions.

Corollary 5.2.3. Let G be a good semisimple group and x a rational point of order m in
A(S, K) C B(G, K). Then Vx,r(x) contains stable vectors under Gy if and only if x is
conjugate under the affine Weyl group Wy of the restricted root system of G to xo + p/m,
r(x) = 1/m and there exists an elliptic Z-regular element wy of order m in Wy, where
W is the absolute Weil group of G and y is the automorphism of R(G) given in the
definition of a good group (Definition 3.1.1).

Proof. Note that by Lemma 3.3.1 the order of x; is m, and by Theorem 3.4.1 we have
r(xq) = r(x). Let g be sufficiently large, i.e. coprime to M, not torsion and odd. Then G,
is a semisimple group that splits over a tamely ramified extension, and we deduce from the
proof of [20, Lemma 3.1] that V_ ,(x,) can only admit stable vectors under Gy, if x4 is
a barycenter of some facet of A; = A(S,, K;), and hence r(x4) = 1/m. Therefore, as g
is chosen sufficiently large, we deduce from [20, Corollary 5.1] that V, 4.r(xg) has stable
vectors if and only if x, is conjugate under the affine Weyl group Wy, of the restricted
root system of G4 to xo4 + p/m, r(x) = 1/m and there exists an elliptic Z-regular
element wy of order m in Wy, because W is isomorphic to the absolute Weil group
of G4. Note that

)

§|b<

« . . 1 y
Xq ~Wysq X0,g +p/m ifandonlyif x ~w, xo + 1 Z V(Ag) -a +

=+ .mul
acdy

and xo + % Zaeq,;g,mul Vv(Ag) - d + p/m is conjugate to xo + p/m under the extended
affine Weyl group of the restricted root system of G. However, by checking the tables for
all possible points x,; whose first Moy—Prasad filtration quotient A 4.7 (xg) admits stable
vectors in [19] and [20], we observe that the latter conjugacy can be replaced by conjugacy
under the (unextended) affine Weyl group. Hence using Corollary 5.2.2, we conclude that
V. r(x) contains stable vectors under the action of Gy if and only if x ~w,, xo + p/m,
r(x) = 1/m, and there exists an elliptic Z-regular element of order m in Wy. ]

Recall that k is a non-archimedean local field with maximal unramified extension K.
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Corollary 5.2.4. Let G be a good semisimple group, and suppose that G is defined
over k. Assume that Wy contains an elliptic Z-regular element. Then using the con-
struction of [20, §2.5] we obtain supercuspidal (epipelagic) representations of G(k') for
some finite unramified field extension k' of k.

Proof. Let m be the order of an elliptic Z-regular element of Wy, and x = xo + p/m €
A(S, K). By Corollary 5.2.3, V, ,(x) contains stable vectors under the action of G. Since
x is fixed under the action of the Galois group Gal(K/ k") for some finite unramified
extension k” of k, the vector space Vy ,(x) is defined over the residue field {” of k”.
Hence there exists a finite unramified field extension k’ of k with residue field f’ such that
(’x,r(x) contains a stable vector defined over {'. Applying [20, Proposition 2.4] yields the
desired result. ]

6. Moy-Prasad filtration representations as Weyl modules

In this section we describe the Moy—Prasad filtration representations in terms of Weyl
modules. Recall that for A € X*(3) a dominant weight, the Weyl module V(L) (over
Z[1/N]) is given by
R \Y
V(A) = 1nd,B;(( wol)Y,
where By is the Borel subgroup of H corresponding to A(H), B, is the opposite Borel

subgroup corresponding to —A(H), wy is the longest element of the Weyl group of ®(H),
and () denotes the dual [11, I1.8.9]. We define

Oy, ={a €Dk |r—alx—x) €Tl,(G)}
PN ={a € D, |a+bddy, forallb e ®F(H) C Pk}

6.1. The split case
If G is split over K, then

OV ={eed|r—alx—xo) €Z, a+p¢dforall B e Ot (H) C ®}.

Theorem 6.1.1. Let G be a split reductive group over K, r a real number and x a rational
point of B(G, K). Let V be the corresponding global Moy-Prasad filtration representa-
tion of the split reductive group scheme H over 7, (Theorem 3.4.1). Then

YV~ Lie(3)(Z) if r is an integer,
B Dicoms V(1) otherwise.

Proof. If r is an integer, then by Theorem 4.1.1 we have V ~ Lie(S) (Z) = Lie(59)(Z)
= Lie(H)(Z).

Suppose 7 is not an integer. Then V C Lie(G)(Z) is spanned by X, = Lie(xq)(1)
for @ € @y, (§3.4.2). Thus the weights in @ are the highest weights of the rep-

resentation of J{ on V, and we have Vg =~ P, com: V(A)g. In order to show that
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V ~ @Aecbw V(A), it suffices by [11, I1.8.3] to prove that {H(Z)(xa)}aecpgi}; spans V,
ie. (%(Z)(Xa))ae@?; contains X for all @ € @y ;. Let & € Oy, \OYY. Then there

exists B € @1 (H) such that @ + B € ®. Let Ny g > 0 be the maximal integer such that
a+ NypgB € @, and let N, g be the maximal integer such that o — Na_ﬁﬁ € ®. We claim

that Xy + NogB € (H(Z)(Xa))aepm implies that Xy € (H(Z)(Xa))aeqms, which
will imply the theorem by induction.

Suppose that Xy 4+ Ny g8 € (S{(Z)(Xa))ae@e_‘;. Note that Nop + N, 5 € {1,2,3},
and recall that

N"‘-13+N07,B

X —p(U)(Kg+Ng 48) = Z Mo it Koy (N g—iyp ~ Withme,pg; € {£1}, (33)
i=0

foru € Ga(Z_). By varying u € G,(Z) and taking linear combinations, we conclude that
X is in the Z-span of {H(Z)(Xq) }aepyes - n

The following corollary follows immediately by combining Theorems 6.1.1 and 3.4.1.

Corollary 6.1.2. Let G be a split reductive group over K, r a real number and x a
rational point of B(G, K). Then the representation of Gx on Vy , is given by

V.. ~ Lie(Gx)(Fp) if r is an integer,
T Dicom VO, otherwise.

Remark 6.1.3. Note that if p is sufficiently large, then V(/\)Fp is an irreducible repres-
entation of Gy of highest weight A.

6.2. The general case

Let a € Y and let Uy be the unipotent radical of Bg¢. By Frobenius reciprocity, we

have [11, proof of Lemma I1.2.13a)]

Homy(V(a), Lie(S)(Z[1/N])) ~ Homy(Lie(S)(Z[1/N])", ind%%c (—woa))
~ Homs (Lie(S)(Z[1/N])". —woa)
~ Homs (woa, Lie(S)(Z[1/N])) =~ ((Lie(S)(Z[1/N])"™),.

Using these isomorphisms, the element Y, € ((Lie(G)(Z[1/N1))'*¢), C Lie($)(Z[1/N])
yields a morphism V(a) — Lie(5)(Z[1/N]) of representations of H. This morphism is
an injection, and we will identify V' (a) with its image in Lie(G)(Z[1/N]).

Theorem 6.2.1. Let G be a good reductive group over K, r a real number and x a
rational point of B(G, K). Let

N — 2N if ®k contains multipliable roots,
N otherwise.
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Then
Vzung = Oz + @ VWzp v C Lie(S)(EZ[1/N') (34)

reanps

as representations of Iz /-

Proof. By the definition of N” the subspace Vz;,n C Lie(S)(Z[1/N']) is spanned by
Vr and Y, for a € &, (§3.4.2). Thus, analogously to the argument in the proof of
Theorem 6.1.1, it suffices to show that (F((Z[1/N'])(Yy), Vr)aeays contains Y for all
b e Py, Leta e OVF\ Dy, and b € Ot (H) with a + b € Dy, and let Ngp >0
be the maximal integer such that a + N, b € ®, . We need to show that Y, n, ,» €
(H(Z[1/N'D)(Ya), V1 )acoy implies Y, € (H(Z[1/N')(Ya), V1)aeans. We assume

Yain, pb € (H(Z[1/N)(Y,), Vr)aeceps and distinguish four cases.
Case 1: aR # bR and b is not multipliable. In this case the result follows from the proof

of the split case (Theorem 6.1.1) and equations (21) of §3.4.1 and (22) of §3.4.2 (if b is
non-divisible) or equations (20) and (22) (if b is divisible).

Case 2: aR = bR and b is not multipliable. In this case a = —(a + N, pb), and the
element sp in the Weyl group of H corresponding to reflection in direction of b sends
YaiNg pbo 0 £Y (44w, ,5) = Y4 Hence ¥, € (H(Z[1/N'])(Ya), V7 )acans: -

Case 3: aR # bR and b is multipliable. By taking Galois orbits over different con-
nected components and using equations (19) and (22), it suffices to consider the case
that Dyn(G) = A,, with non-trivial Galois action. We label the simple roots by
Opn, Qp—1, ..., 02,01, B1, B2, ..., Bn as in Figure 1 (§2.5). Then b is the image of
o1 + -+ o for some 1 < s < n, and as (l;,a + Ny pb) > 0, the root a + Ny pb is
the image of

—(Ctg1 + -+ ay,) for some s < 57 < n,or
g, + -+ + o forsome 1 < 5, <, or
a1+ F+as+pi+-+Ps; forsomel <s3 <sors <s3<n.
To simplify notation, we will prove the claim for the case that b is the image of «; and

a + N, pb is the image of —or,. All the other cases are handled analogously. Combining
equations (19), (22) and (33), and using the fact that 9{2[1 /Nv] Preserves the subspace

Yz nn of Lie(S)(Z[1/N']), we obtain

x3c-p)Yatn, ,b)
= (7(,*/‘31 (\/5 M)X,f(oz] +ﬁ])(_(_l)b(x_XO)Muz)X,—a] ((_1)b(x—x())M \/zu))
(X_p, + (1)@ tNapb) =0+ 2 50 )

/ / 2
= YaiNapb + My p 1 V21UV Ny p-10 + M)y 28 Yat (N, p—2)b
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withm’ , . .m’ , € {%1}, forallu € Go(Z[1/N']). Since 2| N’, taking Z[1/N’]-linear

a
combinations of

/ / 2
Yat-Ngpb + My 1 V2UYa (N p—1)b + Ml 20 Yat (N 5200

for different u implies that Y,4,,-1» and Y,i(n,,-2)»p are contained in
(H(Z[1/N'])(Ya), VT )acaus, sO

X.r’

Y, € (F(Z[1/N'D(Ya), VT )acarp; -

Case 4: aR = bR and b is multipliable. As in Case 3, we can restrict to the case that
Dyn(G) = A2, and we may assume that b is the image of ;. Then a + N, 4 is the
image of o; orof oy + B1. If Na_,b denotes the largest integer such that a — Na_,bb € by,
then Y,_n—, 5 is conjugate to £Y, 4w, ,» under the Weyl group. Hence

Yoo b € (FUZ[1/N'D(Ya). V1 )acops-

If a + Ngpb is the image of ay, then N, = 0, and we are done. Thus, suppose that
a + N, pb is the image of oy + 1.
Recall that for ¢ € ® and H,, := Lie(a)(1), we have [4, Corollary 5.1.12]
X —a(U)(Xg) = Xg + €qouH _o — Ea,auzxfav
x—a(u)(H) = H + Lie(a)(H)uX_q

for all u € G,(Z[1/N’]) and all H € Lie(T)(Z[1/N’]). Using these identities, we obtain

x3t—p (W) (YatnN, »b)
= (t-p (V21 -0y -, (=DM g (DPETOMV2U) (K, 15,)
= YaiNapb + My s V2u¥ar Ny p-1yp + H +mj 5820 Yo (v, ,-3)b
+ miy g Yay (N, )b
withmy ,my 5 € {£1},my , €{£1,£3}and H € V1. As Y1 (w, ,—a)p = Ya,N;hb and
H are in (H(Z[1/N'])(Y,), Vr1)aceop, and since 2 | N’, we also see that Y, (v, ,—1)p

and Y, (n, ,—3)p are contained in (F(Z[1/N'])(Ya), VT )acoms. [

Corollary 6.2.2. Let G be a good reductive group, r ¢ pSINZ a real number, and x

a rational point of B(G, K). Then
Vir~ @ Vg,

Aean

Proof. If r ¢ ﬁZ, then V7 = {0}. Hence, if p # 2, the claim follows by combining
Theorems 6.2.1 and 3.4.1. The proof in the case p = 2 is completely analogous to the

proof of Theorem 6.2.1 using the fact that V is spanned by Vr, Y, for all a € ®F" with
r—a(x —x0) € T/(G) and v/2 Y, forall a € o with r — a(x — xo) € TL(G). [
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Selected definitions

Chevalley—Steinberg system, 4014 rational point, 4031

good reductive group, 4025 semistable, 4053
signs of a Chevalley—Steinberg system, 4014

induced torus, 4019 stable, 4053

order, 4031 valuation of Uy (K), 4015, 4016
parametrization of Uy, 4015 Weyl module, 4057

Selected notation

(Eq)?, 4017 Ho(L, Ly), 4015 Uy, 4014
(Eg)t, 4017 K, 4013 V(1), 4057
(Eq)L .. 4017 Kg, 4031 X*(T), 4017
B, 4013 L, 4015 X«(S), 4017
C;, 4026 Ls, 4015 Yg, 4042

Eq, 4014 M, 4031 [®,], 4016
EJ, 4016 N, 4025 V, 4045

E;, 4026 R(G), 4013 F, 4031
G%,4015 S,4013 GF,. 4022
Ggq, 4015 Sg,4032 T/ (Gq), 4032
Gg4, 4031 T,4013 T}, 4017
Gy, 4017 To, 4017 T, 4025

Gy r+,4018 Ty, 4032 Py, 4017
Gx.r, 4018 Ty, 4018 V)Ic:,r’ 4022
Gi,.r, 4034 UE, 4014 Vy.r, 4019

H(L, Ly),4016 Uy, 4018 Vi, .r, 4034
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®,4013 y. 4025 ax.r. 4018
Dk, 4013 Ik, F\ 4022 8xg.r- 4034
Rl 4022 1, 4040 ¢G, 4037
PN, 4022 IK,F,r» 4023 §Gy»> 4037
®;, 4026 20,4019 Cargr 4037
Dy ., 4057 T, 4036 Car 4037
OmX, 4057 04,4031 e(a), 4037
Wk, 4017 OF,, 4031 f.4038
G, 4022 Xa, 4042 fq,4039
Gy. 4018 Kar.ss 4048 Frc.qg» 4040
Gy, , 4034 11, 4015 Frc. 4040
Uy, 4019 G, 4037 k. 4013
Xq. 4019 To,. 4037 m, 4031
SUs, 4015 Cang 4037 med, 4032
H, 4034 Co» 4037 M, 4014
8, 4039 xF 4036 n(a), 4040
Vr, 4042 7, 4015 q. 4031
9294035 B(G, K), 4017 s, 4025

90’ 4048 v, 4013 Sa» 4014, 4020
570, 4048 a. 4016 u, 4025

7. 4036 924, 4016 ug, 4016
Ua, 4036 @a, 4015 ug, 4015
Ta, 4036 @y, 4031 U1 g, 4026
1 9¢a> 4040 wr,, 4031 v1.5. 4026
B, 4026 @, 4013 X, 4031
0.4013 o, 4031 xE., 4014
@, 4020 W, 4018 X0, 4017
1. 4019 9, 4042 xg, 4033
¥, 4018 & 4015 X0.g, 4033
Ea,ii;l‘zlé‘ g, 4016 Eg4, 4032
Zx/f 4018 X", 4032 Fa 4031
g, 4018 af,. 4022 xH4q, 4036
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