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Abstract. Let X and Y be `-connected Jordan domains, ` 2 N, with rectifiable boundaries in the
complex plane. We prove that any boundary homeomorphism ' W @X

onto
��! @Y admits a Sobolev

homeomorphic extension hW X onto
��!Y in W1;1.X;C/. If instead X has s-hyperbolic growth with s >

p � 1, we show the existence of such an extension in the Sobolev class W1;p.X;C/ for p 2 .1; 2/.
Our examples show that the assumptions of rectifiable boundary and hyperbolic growth cannot be
relaxed. We also consider the existence of W1;2-homeomorphic extensions with given boundary
data.

Keywords. Sobolev homeomorphisms, Sobolev extensions, Douglas condition

1. Introduction

Throughout this text X and Y are `-connected Jordan domains, ` D 1; 2; : : :, in the com-
plex plane C. Their boundaries @X and @Y are thus disjoint unions of ` simple closed
curves or points. If ` D 1, these domains are simply connected and will just be called
Jordan domains. In the simply connected case, the Jordan–Schönflies theorem states that
every homeomorphism ' W @X

onto
�! @Y admits a continuous extension h W X! Y which

takes X homeomorphically onto Y . In the first part of this paper we focus on a Sobolev
variant of the Jordan–Schönflies theorem. The most pressing demand for studying such
variants comes from the variational approach to geometric function theory [3, 19, 33] and
nonlinear elasticity [2, 5, 8]. Both theories share the ideas associated to determining the
infimum of a given energy functional
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among orientation preserving homeomorphisms h W X
onto
�! Y in the Sobolev space

W1;p.X;Y / with given boundary data ' W @X onto
�! @Y . We denote that class of mappings

by H
1;p
' .X; Y /. Naturally, a fundamental question is whether the class H

1;p
' .X; Y / is

non-empty.

Question 1.1. Under what conditions does a boundary homeomorphism ' W @X
onto
�! @Y

admit a homeomorphic extension h W X onto
�! Y of Sobolev class W1;p.X;C/?

A necessary condition is that ' is the Sobolev trace of some (possibly nonhomeo-
morphic) mapping in W1;p.X;C/. Hence to solve Question 1.1 one could first study the
following natural subquestion:

Question 1.2. Suppose that a homeomorphism ' W @X! @Y admits a W1;p-extension
to X. Does it then follow that ' also admits a homeomorphic W1;p-extension?

Our main results, Theorem 1.8 and its multiply connected variant (Theorem 1.11),
give an answer to these questions when p 2 Œ1; 2/. The construction of such extensions
is important not only to ensure the well-posedness of the related variational questions,
but also for example due to the fact that various types of extensions were used to provide
approximation results for Sobolev homeomorphisms [16, 18]. We touch upon variational
topics in Section 7, where we provide an application of one of our results. Apart from
Theorem 1.11 and its proof (§6), the rest of the paper deals with the simply connected
case.

Let us start by considering the above questions in the well-studied setting of the
Dirichlet energy, corresponding to p D 2 above. The Radó [32], Kneser [26] and Cho-
quet [7] theorem asserts that if Y � R2 is a convex domain then the harmonic extension
of a homeomorphism ' W @X! @Y is a univalent map from X onto Y . Moreover, by a
theorem of Lewy [29], this univalent harmonic map has a nonvanishing Jacobian and is
therefore a real analytic diffeomorphism in X. However, such an extension is not guar-
anteed to have finite Dirichlet energy in X. The class of boundary functions which admit
a harmonic extension with finite Dirichlet energy was characterized by Douglas [9]. The
Douglas condition for a function ' W @D onto

�! @Y readsZ
@D

Z
@D

ˇ̌̌̌
'.�/ � '.�/

� � �

ˇ̌̌̌2
jd�j jd�j <1: (1.2)

The mappings satisfying this condition are exactly the ones that admit an extension with
finite W1;2-norm. Among these extensions is the harmonic extension of ', known to have
the smallest Dirichlet energy.

Note that the Dirichlet energy is also invariant with respect to a conformal change of
variables in the domain X. Therefore thanks to the Riemann Mapping Theorem, when
considering Question 1.1 in the case p D 2, we may assume that X D D without loss
of generality. Now, there is no problem to answer Question 1.1 when p D 2 and Y is
Lipschitz. Indeed, for any Lipschitz domain there exists a global bi-Lipschitz change of
variables ˆ W C! C for which ˆ.Y / is the unit disk. Since the finiteness of the Dirichlet
energy is preserved under a bi-Lipschitz change of variables in the target, we may reduce
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Question 1.1 to the case when XD Y DD, for which the Radó–Kneser–Choquet theorem
and the Douglas condition provide an answer. In other words, if Y is Lipschitz then the
following are equivalent for a boundary homeomorphism ' W @D ! @Y :

(1) ' admits a W1;2-Sobolev homeomorphic extension h W D onto
�! Y .

(2) ' admits W1;2-Sobolev extension to D.
(3) ' satisfies the Douglas condition (1.2).

In the case when 1 � p < 2, the problem is not invariant under a conformal change of
variables in X. However, when X is the unit disk and Y is a convex domain, a complete
answer to Question 1.1 was provided by the following result of Verchota [38].

Proposition 1.3. Let Y be a convex domain, and let ' W @D onto
�! @Y be any homeomor-

phism. Then the harmonic extension of ' lies in the Sobolev class W1;p.D;C/ for all
1 � p < 2.

This result was further generalized in [15, 20, 24]. The case p > 2 will be discussed
in Subsection 2.3. Our main purpose is to provide a general study of Question 1.1 in the
case when 1 � p < 2.

Considering now the endpoint case p D 1, we find that Question 1.1 is equivalent
to the question of finding a homeomorphic Lipschitz map extending the given boundary
data '. In this case the Kirszbraun extension theorem [25] shows that a boundary map
' W @D

onto
�! @Y admits a Lipschitz extension if and only if ' is a Lipschitz map itself.

When X is the unit disk, a positive answer to Question 1.2 is given by the following
recent result by Kovalev [28].

Theorem 1.4 (p D 1). Let ' W @D ! C be a Lipschitz embedding. Then ' admits a
homeomorphic Lipschitz extension to the whole plane C.

Let us return to the case of the Dirichlet energy (see (1)–(3) above). The equiva-
lence of a W1;2-Sobolev extension and a W1;2-Sobolev homeomorphic extension for
non-Lipschitz targets is a more subtle question. In this perspective, a slightly more gen-
eral class of domains is the class of inner chordarc domains studied in geometric function
theory [17,31,35–37]. By definition [36], a Jordan domain Y with rectifiable boundary is
inner chordarc if there exists a constant C such that for every pair of points y1; y2 2 @Y
one has jy1 � y2j �C ��Y .y1;y2/, where �Y .y1;y2/ denotes the infimal length of curves
contained in Y with endpoints y1 and y2. For example, an inner chordarc domain may
have inward cusps on the boundary, as opposed to Lipschitz domains. According to a
result of Väisälä [36], the inner chordarc condition is equivalent to the requirement that
there exists a homeomorphism ‰ W Y

onto
�! D, C1-diffeomorphic in Y , such that the norms

of both the gradient matrices D‰ and .D‰/�1 are bounded from above.
Surprisingly, the following example shows that, unlike for Lipschitz targets, the

answer to Question 1.2 for p D 2 is in general negative when the target is only inner
chordarc.
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Example 1.5. There is an inner chordarc domain Y and a homeomorphism ' W @D
onto
�! @Y

satisfying the Douglas condition (1.2) which does not admit a homeomorphic extension
h W D

onto
�! Y in W1;2.D;Y /.

In [4], as a part of studies of mappings with smallest mean distortion, it was proved
that for C1-smooth Y the Douglas condition (1.2) can be equivalently formulated in terms
of the inverse mapping '�1 W @Y onto

�! @D:Z
@Y

Z
@Y

ˇ̌
log j'�1.�/ � '�1.�/j

ˇ̌
jd�j jd�j <1: (1.3)

It was recently shown that for inner chordarc targets this condition is necessary and suffi-
cient for ' to admit a W1;2-homeomorphic extension [27]. We extend this result both to
cover rectifiable targets and to give a global homeomorphic extension as follows.

Theorem 1.6 (p D 2). Let Y be a Jordan domain with @Y rectifiable. Every ' W @D onto
�!

@Y satisfying (1.3) admits a homeomorphic extension h W C ! C of class W1;2
loc .C;C/.

Without the rectifiability of @Y , Question 1.2 will in general have a negative answer
for all p � 2. This follows from the following example of Zhang [40].

Example 1.7. There exists a Jordan domain Y and a homeomorphism ' W @D
onto
�! @Y

which has a W1;2-Sobolev extension to D but has no homeomorphic extension in the
class W1;1.D;C/.

We now return to the case when 1 � p < 2. In this case it is natural to ask under
which conditions on the domains X and Y , any homeomorphism ' W @X

onto
�! @Y admits

a W1;p-Sobolev homeomorphic extension. Proposition 1.3 already implies that this is the
case for X D D and Y convex. Example 1.7, however, implies that this result does not
hold in general for nonrectifiable targets Y . A general characterization is provided by the
following theorem.

Theorem 1.8 (1 � p < 2). Let X and Y be Jordan domains in the plane with @Y rectifi-
able. Let ' W @X onto

�! @Y be a homeomorphism. Then there is a homeomorphic extension
h W X

onto
�! Y such that

(1) h 2W1;1.X;C/, provided @X is rectifiable, and

(2) h 2W1;p.X;C/ for 1 < p < 2, provided X has s-hyperbolic growth with s > p � 1.

Definition 1.9. Let X be a domain in the plane. Choose a point x0 2 X. We say that X
has s-hyperbolic growth, s 2 .0; 1/, if

hX.x0; x/ � C

�
dist.x0; @X/
dist.x; @X/

�1�s
for all x 2 X: (1.4)

Here hX stands for the quasihyperbolic metric on X and dist.x; @X/ is the Euclidean
distance from x to the boundary. The constant C is allowed to depend on s; x0; and the
domain X but not on the point x.
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It is easily verified that this definition does not depend on the choice of x0. Recall that
if � is a domain, the quasihyperbolic metric h� is defined by [13]

h�.x1; x2/ D inf
2�

Z


1

dist.x; @X/
jdxj; x1; x2 2 �; (1.5)

where � is the family of all rectifiable curves in � joining x1 and x2.
Definition 1.9 is motivated by the following example. For s 2 .0; 1/ we consider the

Jordan domain Xs whose boundary is given by the curve

�s D ¹.x; y/ 2 C W � 1 � x � 1; y D jxjsº [ ¹z 2 C W jz � i j D 1; Im.z/ � 1º:

Fig. 1. The Jordan domain Xs .

In particular, the boundary of Xs is locally Lipschitz except at the origin. Near the
origin the boundary of Xs behaves like the graph of the function jxjs . Then one can verify
that the boundary of Xs has t -hyperbolic growth for every t � s. Note that the smaller the
number s, the sharper the cusp is.

The results of Theorem 1.8 are sharp, as described by the following result.

Theorem 1.10.
(1) There exists a Jordan domain X with nonrectifiable boundary and a homeomorphism

' W @X! @D such that ' does not admit a continuous extension to X in the Sobolev
class W1;1.X;C/.

(2) For every p 2 .1; 2/ there exists a Jordan domain X which has s-hyperbolic growth,
with p � 1 D s, and a homeomorphism ' W @X! @D such that ' does not admit a
continuous extension to X in the Sobolev class W1;p.X;C/.
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To conclude, as promised earlier, we extend our main result to the case where the
domains are not simply connected. The following generalization of Theorem 1.8 holds.

Theorem 1.11. Let X and Y be multiply connected Jordan domains with @Y rectifiable.
Let ' W @X onto

�! @Y be a homeomorphism which maps the outer boundary component
of X to the outer boundary component of Y . Then there is a homeomorphic extension
h W X

onto
�! Y such that

(1) h 2W1;1.X;C/, provided @X is rectifiable, and

(2) h 2W1;p.X;C/ for 1 < p < 2, provided X has s-hyperbolic growth with s > p � 1.

2. Preliminaries

2.1. The Dirichlet problem

Let � be a bounded domain in the complex plane. A function u W �! R in the Sobolev
class W1;p

loc .�/, 1 < p <1, is called p-harmonic if

div jrujp�2ru D 0: (2.1)

We call 2-harmonic functions simply harmonic.
There are two formulations of the Dirichlet boundary value problem for the p-har-

monic equation (2.1). We first consider the variational formulation.

Lemma 2.1. Let uı 2 W1;p.�/ be a given Dirichlet data. There exists precisely one
function u 2 uı CW

1;p
ı .�/ which minimizes the p-harmonic energy:Z
�

jrujp D inf
²Z

�

jrwjp W w 2 uı CW1;p
ı .�/

³
:

Here W1;p
ı .�/ denotes the completion of compactly supported smooth functions in�

with respect to the W1;p.�/ Sobolev norm. The variational formulation coincides with
the classical formulation of the Dirichlet problem.

Lemma 2.2. Let � � C be a bounded Jordan domain and uı 2W1;p.�/\ C.�/. Then
there exists a unique p-harmonic function u 2W1;p.�/\ C.�/ such that uj@� D uıj@�.

For the proofs of these facts we refer to [18].

2.2. The Radó–Kneser–Choquet Theorem

Lemma 2.3. Consider a Jordan domain X � C and a bounded convex domain Y � C.
Let h W @X onto

�! @Y be a homeomorphism andH W X! C its harmonic extension. ThenH
is a C1-diffeomorphism of X onto Y .

For the proof of this lemma we refer to [11, 21]. The following p-harmonic ana-
logue of the Radó–Kneser–Choquet Theorem is due to Alessandrini and Sigalotti [1] (see
also [22]).
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Proposition 2.4. Let X be a Jordan domain in C, 1 < p <1, and h D uC iv W X! C
a continuous mapping whose coordinate functions are p-harmonic. Suppose that Y is
convex and h W @X onto

�! @Y is a homeomorphism. Then h is a diffeomorphism from X
onto Y .

2.3. Sobolev homeomorphic extensions onto a Lipschitz target

Combining the results in this section allows us to easily solve Question 1.2 for convex
targets.

Proposition 2.5. Let X and Y be Jordan domains in the plane with Y convex, and let 1 <
p <1. Suppose that ' W @X onto

�! @Y is a homeomorphism. Then there exists a continuous
g W X ! C in W1;p.X;C/ such that g.x/ D '.x/ on @X if and only if there exists a
homeomorphism h W X! Y in W1;p.X;C/ such that h.x/ D '.x/ on @X.

Proof. The “if” part is immediate. For the “only if” part we write g D uı C ivı 2

W1;p.X;C/ \ C.X;C/ and consider the unique p-harmonic functions u and v which
coincide with uı D Re ' and vı D Im ' respectively on @X. First, these classical solu-
tions agree with the variational ones (see Lemmas 2.1 and 2.2). In particular, we haveZ

X
jrujp �

Z
X
jruıj

p and
Z

X
jrvjp �

Z
X
jrvıj

p:

Second, according to Proposition 2.4 the mapping h 2W1;p.X;C/ is a homeomorphism.

Now, replacing the convex Y by a Lipschitz domain offers no challenge. Indeed, this
follows from a global bi-Lipschitz change of variables ˆ W C ! C for which ˆ.Y / is
the unit disk. If the domain in Proposition 2.5 is the unit disk D, then the existence of a
finite p-harmonic extension can be characterized in terms of a Douglas type condition.
If 1 < p < 2, then such an extension exists for an arbitrary boundary homeomorphism
(Proposition 1.3) and if 2 � p <1 the extension exists if and only the boundary home-
omorphism ' W @D

onto
�! @Y satisfiesZ

@D

Z
@D

ˇ̌̌̌
'.�/ � '.�/

� � �

ˇ̌̌̌p
jd�j jd�j <1: (2.2)

For the proof of this last fact we refer to [34, pp. 151–152].

2.4. Carleson measures and the Hardy space Hp

Roughly speaking, a Carleson measure on a domain G is a measure that is bounded from
above by the Hausdorff 1-measure on @G near the boundary of G. We will need the notion
of a Carleson measure only on the unit disk D.
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Definition 2.6. Let � be a Borel measure on D. Then � is a Carleson measure if there is
a constant C > 0 such that

�.S�.�// � C�

for every � > 0. Here

S�.�/ D ¹re
i˛
W 1 � � < r < 1; � � � < ˛ < � C �º:

Carleson measures have many applications in harmonic analysis. A celebrated result
by L. Carleson [6] (see also [10, Theorem 9.3]) tells us that a Borel measure � on D is
a bounded Carleson measure if and only if the injective mapping from the Hardy space
Hp.D/ into the measurable space Lp�.D/ is bounded.

Proposition 2.7. Let � be a Borel measure on the unit disk D. Let 0 < p < 1. Then
there exists a constant C > 0 such that�Z

D
jf .z/jp d�.z/

�1=p
� Ckf kHp.D/ for all f 2 Hp.D/

if and only if � is a Carleson measure.

Recall that the Hardy spaceHp.D/, 0 < p <1, is the class of holomorphic functions
f on the unit disk satisfying

kf kHp.D/ WD sup
0�r<1

�
1

2�

Z 2�

0

jf .rei� /jp d�

�1=p
<1:

Note that k � kHp.D/ is a norm when p � 1, but not when 0 < p < 1.

3. Sobolev integrability of the harmonic extension

At the end of this section we prove our main result in the simply connected case, The-
orem 1.8. The proof will be based on a suitable reduction of the target domain to the
unit disk, and the following auxiliary result which concerns the regularity of harmonic
extensions.

Theorem 3.1. Let X be a Jordan domain and ' W @X! @D an arbitrary homeomorphism.
Let h denote the harmonic extension of ' to X, which is a homeomorphism from X to D.
Then the following hold.

(1) If the boundary of X is rectifiable, then h 2W1;1.X;C/.

(2) If X has s-hyperbolic growth, then h 2W1;p.X;C/ for p < s C 1.

This theorem will be a direct corollary of the following theorem and the two proposi-
tions after it.
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Theorem 3.2. Let X be a Jordan domain, and denote by g W D ! X a conformal map
onto X. Let 1 � p < 2. Suppose that

sup
!2@D

Z
D

jg0.z/j2�p

j! � zjp
dz �M <1: (3.1)

Then the harmonic extension h W X! D of any boundary homeomorphism ' W @X! @D
lies in the Sobolev space W1;p.X;C/, with the estimate

khkW1;p.X;C/ � cM: (3.2)

Proposition 3.3. Let X be a Jordan domain with rectifiable boundary and let g W D! X
be conformal. Then condition (3.1) holds with p D 1.

Proposition 3.4. Let X be a Jordan domain which has s-hyperbolic growth with s 2 .0;1/
and let g W D! X be conformal. Then condition (3.1) holds for all p > 1 with p � 1 < s.

Proof of Theorem 3.2. First, since X is a Jordan domain, according to the classical Cara-
théodory’s theorem the conformal mapping g W D ! X extends continuously to a hom-
eomorphism from the unit circle onto @X. Second, since a conformal change of variables
preserves harmonicity, the map H WD h ı g W D ! D is a harmonic extension of the
boundary homeomorphism  WD ' ı gj@D .

We will now assume that H is smooth up to the boundary of D. The general result
will then follow by an approximation argument. Indeed, for each r < 1, we may take
the preimage of the disk B.0; r/ under H , and letting  r W D ! H�1.B.0; r// be the
conformal map onto this preimage we may define Hr WD H ı  r . Then Hr is harmonic,
smooth up to the boundary of D, and will converge to H locally uniformly along with
its derivatives as r ! 1. Hence the general result will follow once we obtain uniform
estimates for the Sobolev norm under the assumption of smoothness up to the boundary.

The harmonic extensionH WD h ı g W D!D of WD ' ı gj@D is given by the Poisson
integral formula [11],

.h ı g/.z/ D H.z/ D
1

2�

Z
@D

1 � jzj2

jz � !j
 .!/ d!:

Differentiating this, we find

2�i � .h ı g/z D

Z
@D

 .!/

.z � !/2
d! D

Z 2�

0

 .eit /

.z � eit /2
ieit dt D �

Z 2�

0

 0.eit /

z � eit
ieit dt;

where we have used integration by parts to arrive at the last equality [20, p. 147]. The
change of variables formula now givesZ

X
jhz. Qz/j

p d Qz D

Z
D
j.h ı g/z.z/j

p
jg0.z/j2�p dz

D
1

.2�/p

Z
D

ˇ̌̌̌Z 2�

0

 0.eit /

z � eit
ieit dt

ˇ̌̌̌p
jg0.z/j2�p dz:
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We now apply Minkowski’s integral inequality to find that�Z
D

ˇ̌̌̌Z 2�

0

 0.eit /

z � eit
ieit dt

ˇ̌̌̌p
jg0.z/j2�p dz

�1=p
�

Z 2�

0

j 0.eit /j

�Z
D

jg0.z/j2�p

jz � eit jp
dz

�1=p
dt �M

Z 2�

0

j 0.eit /j dt D 2�M:

This gives the uniform bound khzkLp.X/ � M . An analogous estimate for the Lp-norm
of hz now proves the theorem.

Proof of Proposition 3.3. Since @X is rectifiable, the derivative g0 of a conformal map
from D onto X lies in the Hardy space H 1.D/ by [10, Theorem 3.12]. By rotational
symmetry it is enough to verify condition (3.1) for ! D 1 and g W D ! X an arbitrary
conformal map. By Proposition 2.7, it suffices to verify that the measure �.z/ D dz

j1�zj
is

a Carleson measure (see Definition 2.6), to obtain the estimateZ
D

jg0.z/j

j1 � zj
dz � Ckg0kH1.D/;

which will imply that the proposition holds. Therefore, let us for each � define S�.�/ D
¹rei˛ W 1 � � < r < 1; � � � < ˛ < � C �º. We then estimate for small � that

�.S�.0// � �.B.1; 2�// D

Z
B.1;2�/

dz

j1 � zj
D

Z 2�

0

Z 2�

0

1

r
r dr d˛ D 4��:

It is clear that for any other angles � the �-measure of S�.�/ is smaller than for � D 0.
Hence � is a Carleson measure and our proof is complete.

Proof of Proposition 3.4. Recall that g denotes the conformal map from D onto X. Since
X has s-hyperbolic growth, we may apply Definition 1.9 with x0 D g.0/ to find that

hX.g.0/; g.z// � C

�
1

dist.g.z/; @X/

�1�s
for all z 2 D: (3.3)

Since X is simply connected, the quasihyperbolic distance is comparable to the hyperbolic
distance �X. By conformal invariance of the hyperbolic distance we find that

C1hX.g.0/; g.z// � �X.g.0/; g.z// D �D.0; z/ D log
1

1 � jzj2
:

Now by the Koebe 1
4

-theorem we know that the expression dist.g.z/; @X/ is comparable
to .1 � jzj/jg0.z/j with a universal constant. Combining these observations with (3.3)
leads to the estimate

log
1

1 � jzj2
� C

�
1

.1 � jzj/jg0.z/j

�1�s
;
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which we transform into

jg0.z/j �
C

.1 � jzj/ log1=.1�s/ 1
1�jzj

: (3.4)

Set ˇ D .2 � p/=.1 � s/, so that ˇ > 1 by assumption. We now apply the estimate (3.4)
to find that Z

D

jg0.z/j2�p

j1 � zjp
dz � C

Z
Dn 1

2 D

1

.1 � jzj/2�pj1 � zjp logˇ 1
1�jzj

dz

C

Z
1
2 D

jg0.z/j2�p

j1 � zjp
dz: (3.5)

It is enough to prove that the quantity on the right hand side above is finite as then rota-
tional symmetry will imply that the estimate (3.1) holds for all !. The second term is
easily seen to be finite, as the integrand is bounded on 1

2
D. To estimate the first integral

we will cover the annulus D n 1
2
D by three sets defined by

S1 D ¹1C re
i�
W r � 3=4; 3�=4 � � � 5�=4º;

S2 D ¹.x; y/ 2 D W � 1=
p
2 � y � 1=

p
2; x � 1; x � 1 � jyjº;

S3 D ¹re
i�
W 1=2 � r � 1; �=4 � � � 7�=4º

(see Figure 2). Since the sets S1;S2 and S3 cover the annulus in question, it will be enough
to see that the first integral on the right hand side of (3.5) is finite when taken over each of
these sets. On S1, one may find by geometry that 1 � jzj � cj1 � zj for some constant c.

Fig. 2. The sets Si , i D 1; 2; 3.
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Hence we may apply polar coordinates around z D 1 to find thatZ
S1

1

.1 � jzj/2�pj1 � zjp logˇ 1
1�jzj

dz � C

Z 5�=4

3�=4

Z 3=4

0

1

r logˇ 1
r

dr d� <1:

On S3, the expression j1 � zj is bounded away from zero. Hence bounding this term and
the logarithm from below and changing to polar coordinates around the origin yieldsZ

S3

1

.1 � jzj/2�pj1 � zjp logˇ 1
1�jzj

dz � C

Z 7�=4

�=4

Z 1

1=2

r

.1 � r/2�p
dr d� <1:

On S2, we change to polar coordinates around the origin. For each angle � , we let R�
denote the intersection of the ray with angle � starting from the origin and the set S2. On
each such ray, the expression j1� zj is comparable to j� j. Since 1� jzj< j1� zj, we may
also replace 1 � jzj by j1 � zj inside the logarithm, finally giving

1

j1 � zjp logˇ 1
1�jzj

�
C

j� jp logˇ 1
j� j

; z 2 R� : (3.6)

On each of the segments R� for small enough � , the modulus r D jzj ranges from a
certain distance � to 1. This distance � WD �.�/ is found by applying the sine theorem to
the triangle with vertices 0; 1 and �.�/ei� , giving us the equation

�.�/

sin.�=4/
D

1

sin.� � �=4 � �/
D

1

sin.�=4C �/
:

From this one finds that the expression 1 � �.�/ D sin.�=4C�/�sin.�=4/
sin.�=4C�/ , which is also the

length of the segment R� , is comparable to j� j. Using this and (3.6) we now obtainZ
S2

1

.1 � jzj/2�pj1 � zjp logˇ 1
1�jzj

dz � C

Z �=4

��=4

1

j� jp logˇ 1
j� j

Z 1

�.�/

1

.1 � r/2�p
dr d�

D C

Z �=4

��=4

1

j� jp logˇ 1
j� j

.1 � �.�//p�1

p � 1
dr d� � C

Z �=4

��=4

1

j� j logˇ 1
j� j

dr d� <1:

This finishes the proof.

Proof of Theorem 1.8. Since Y is a Jordan domain with rectifiable boundary, there exists
a constant speed parametrization  W @D ! @Y . Such a parametrization is then automat-
ically a Lipschitz embedding of @D to C, and hence Theorem 1.4 implies that  has a
homeomorphic Lipschitz extension G W D ! Y .

Let now ' W @X! @Y be a given boundary homeomorphism. We define a boundary
homeomorphism '0 W @X! @D by setting '0 WD �1 ı '. Let h0 denote the harmonic
extension of '0 to X, so that by the RKC Theorem (Lemma 2.3) the composed map
h WD G ı h0 W X! Y gives a homeomorphic extension of '. If h0 lies in the Sobolev
space W1;p.X;C/, then so does h, since the Sobolev integrability is preserved under
composition with a Lipschitz map. Hence Theorem 1.8 now follows from Theorem 3.1.
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4. Sharpness of Theorem 1.8

In this section we prove Theorem 1.10. We handle the two claims of the theorem sepa-
rately.

Example (1). In this example we construct a Jordan domain X with nonrectifiable bound-
ary and a boundary map ' W @X! @D which does not admit a continuous extension in
W1;1.X;C/. The domain X will be the following “spiral” domain.

Let Rk , k D 1; 2; : : : ; be a set of disjoint rectangles in the plane with bottom sides on
the x-axis. Each rectangle has width wk such that

P1
kD1 wk <1 and the rectangles are

sufficiently close to each other so that the collection stays in a bounded set. The heights
hk satisfy limk!1 hk D 0 and

P1
kD1 hk D1.

We now join these rectangles into a spiral domain as in Figure 3, and add a small
portion of boundary to the bottom side of R1. The exact way these rectangles are joined
is not significant, but it is clear that it may be done in such a way as to produce a Jordan
domain X with nonrectifiable boundary, for any sequence of rectangles Rk as described
above.

Fig. 3. The rectangles Rk joined into the spiral domain X.

Let us now define the boundary homeomorphism '. The map ' shall map the “end-
point" (i.e. the point on the x-axis to which the rectangles Rk converge) of the spiral
domain X to the point 1 2 @D. Furthermore, we choose disjoint arcs AC

k
on the unit circle

so that the endpoints of AC
k

are ei˛k and eiˇk with

�=2 > ˛1 > ˇ1 > ˛2 > ˇ2 > � � �

and limk!1 ˛k D 0. We mirror the arcs AC
k

in the x-axis to produce another set of
arcs A�

k
. The arcs are chosen in such a way that the minimal distance between AC

k
and
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A�
k

is greater than a given sequence of numbers dk with limk!1 dk D 0. It is clear that
for any such sequence we can make a choice of arcs as described here.

We now define ' to map the left side of the rectangle Rk to the arc AC
k

, and the right
side to A�

k
. On the rest of the boundary @X we define ' in an arbitrary way so as to

produce a homeomorphism ' W @X! @D.
Let now H be a continuous W1;1-extension of '. Let Ik denote any horizontal line

segment with endpoints on the vertical sides of Rk . Then by the above construction, H
must map the segment Ik to a curve of length at least dk , as this is the minimal distance
between AC

k
and A�

k
. Hence we find thatZ

Rk

jDH j dz �

Z hk

0

dk dz D hkdk :

Adding up, we obtain the estimateZ
X
jDH j dz �

1X
kD1

hkdk :

We may now choose, for example, hk D 1=k and dk D 1=log.1C k/ to make the above
sum diverge, showing that H cannot belong to W1;1.X;C/. This finishes the proof.

Example (2). Let 1 < p < 2. Here we construct a Jordan domain X whose boundary has
.p � 1/-hyperbolic growth and a boundary map ' W @X! @D which does not admit a
continuous extension in the Sobolev class W1;p.X;C/. In fact, we take the domain Xs
described after Definition 1.9 for s D p � 1.

The construction of the boundary map ' is as follows.
We set '.0/D 1. Furthermore, we choose two sequences of points pC

k
and p�

k
belong-

ing to the graph � WD ¹.x; jxjs/W � 1� x � 1º as follows. The points pC
k

all have positive
x-coordinates, their y-coordinates are decreasing in k with limit zero and the difference
between the y-coordinates of pC

k�1
and pC

k
is �k D k�2=10. We then let p�

k
be the reflec-

tion of pC
k

in the y-axis.
Similarly, we choose points aC

k
on the unit circle so that aC

k
D ei�k for a sequence of

angles �k 2 .0; �=2/ decreasing to zero. Letting a�
k

be the reflection of aC
k

in the x-axis,
we choose the sequence in such a way that the line segment between aC

k
and a�

k
has length

dk D .log.100C k//�1=p so that dk is decreasing and limk!1 dk D 0.
Let �C

k
denote the part of the graph � between pC

k�1
and pC

k
. We define the map '

to map ��
k

to the smaller arc of the unit circle between a�
k�1

and a�
k

with constant speed.
We define ��

k
and 'j��

k
similarly. Let now H denote any continuous W1;p-extension

of ' to X. By the above definition, any horizontal line segment with endpoints on �C
k

and ��
k

is mapped into a curve of length at least dk under H . Such a line segment is of
length at most the distance from pC

k�1
to p�

k�1
, which is comparable to .

P1
jDk �j /

1=s . If
Sk denotes the domain which is the union of all the horizontal line segments between �C

k
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Fig. 4. The portions of height �k get mapped onto slices with side length dk .

and ��
k

, this gives the estimateZ
Sk

jDH jp dz �
.
R
Sk
jDH j dz/p

jSkjp�1
�

c.
R �k

0
dk dy/

p

�
p�1

k
.
P1
jDk �j /

.p�1/=s
D

cd
p

k
�kP1

jDk �j
:

Now by our choice of �k D k�2=10, we see that
P1
jDk �j is comparable to 1=k, so by

adding up we obtain the estimateZ
S

k Sk

jDH jp dz � c

1X
kD1

d
p

k

k
: (4.1)

However, our choice of dk D .log.100C k//�1=p ensures that the right hand side of (4.1)
diverges. It follows that H cannot lie in W1;p.Xs;C/, which completes the proof.

5. The case p D 2

In this section we address Theorem 1.6 as well as Examples 1.5 and 1.7.

Example 1.5. For this example, let first ˆ� for any � 2 .0; 1� denote the conformal map

ˆ� .z/ D log��
�
1 � z

3

�
defined on the unit disk and having target Y� WD ˆ� .D/. In fact, Y� is a domain with
smooth boundary apart from one point at which it has an outer cusp of degree �=.1C �/
(i.e. it is bi-Lipschitz equivalent to the domain X�=.1C�/ pictured in Figure 1).
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Since ˆ� is conformal and maps the unit disk into a set of finite measure, it lies in
the Sobolev space W1;2.D;C/. However, it does not admit a homeomorphic extension to
the whole plane in the Sobolev class W1;2

loc .C;C/. The reason is a modulus of continuity
estimate for any homeomorphism in W

1;2
loc .C;C/. Indeed, let !z.t/ denote the modulus

of continuity of g W C ! C at a point z,

!z.t/ D osc
B.z;t/

g D sup¹jg.x1/ � g.x2/j W x1; x2 2 B.z; t/º:

If g is a homeomorphism in W
1;2
loc .C;C/, thenZ r

0

!z.t/
2

t
dt <1: (5.1)

Proof of (5.1). Since g is a homeomorphism, we have

osc
B.z;t/

g � osc
@B.z;t/

g:

According to Sobolev’s inequality on spheres, for almost every t > 0 we obtain

osc
@B.z;t/

g � C

Z
@B.z;t/

jDgj:

These together with Hölder’s inequality imply

!z.t/ D osc
B.z;t/

g � osc
@B.z;t/

g � C

�
t

Z
@B.z;t/

jDgj2
�1=2

;

and therefore for almost every t > 0 we have

!z.t/
2

t
� C

Z
@B.z;t/

jDgj2;

where C is independent of z. Integrating this from 0 to r > 0 yields the claim (5.1).

Now, since the map ˆ� for � � 1 does not satisfy the modulus of continuity esti-
mate (5.1) at the boundary point z D 1, it is not possible to extend ˆ� even locally as a
W1;2-homeomorphism around the point z D 1.

To address the exact claim of Example 1.5, we now define an embedding ' W @D! C
as follows. Fixing � 2 .0; 1�, in the set ¹z 2 @D W Re.z/� 0ºwe let '.z/Dˆ� .z/. We also
map the complementary set ¹z 2 @D W Re.z/ < 0º smoothly into the complement of Y� ,
and in such a way that '.@D/ becomes the boundary of a Jordan domain QY (see Figure 5).
It is now easy to see that ' satisfies the Douglas condition (1.2). Indeed, since ˆ� is in
the Sobolev space W1;2.D;C/, its restriction to the boundary must necessarily satisfy the
Douglas condition. Since ' agrees with this boundary map in a neighborhood of z D 1,
verifying the finiteness of the integral in (1.2) poses no difficulty in this neighborhood.
On the rest of @D we may choose ' to be locally Lipschitz, which shows that (1.2) is
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Fig. 5. The Jordan domains Y� and QY .

necessarily satisfied for '. Hence we have found a map from @D into the boundary of the
chordarc domain QY which admits a W1;2-extension to D but not a homeomorphic one.

Example 1.7. In [40], Zhang constructed an example of a Jordan domain, which we
shall denote by Y , such that the conformal map g W D ! Y does not admit a W1;1-
homeomorphic extension to the whole plane. We shall not repeat this construction here,
but will instead briefly show how it relates to our questions.

The domain Y is constructed in such a way that there is a boundary arc � � @Y over
which one cannot extend the conformal map g even locally as a W1;1-homeomorphism.
The complementary part of the boundary, @Y n � , is piecewise linear. Hence we may
employ the same argument as in the previous example. We choose a Jordan domain QY in
the complement of Y whose boundary consists of the arc � and, say, a piecewise linear
curve. We then define a boundary map ' W @D! @ QY so that it agrees with g in a neighbor-
hood of the set g�1.�/ and is locally Lipschitz everywhere else. With the same argument
as before, this boundary map must satisfy the Douglas condition (1.2). Hence this bound-
ary map admits a W1;2-extension to D but not even a W1;1-homeomorphic extension.
Naturally the boundary of the domain QY is quite ill-behaved, in particular nonrectifiable
(though its Hausdorff dimension is still 1).

Proof of Theorem 1.6. Let  W @D ! @Y denote a constant speed parametrization of the
rectifiable curve @Y . LetG W C!C be the homeomorphic Lipschitz extension of  given
by Theorem 1.4. Denoting f WD '�1 ı  , we find by a change of variables thatZ

@Y

Z
@Y

ˇ̌
log j'�1.�/ � '�1.�/j

ˇ̌
jd�j jd�j D

Z
@D

Z
@D

ˇ̌
log jf .z/ � f .!/j

ˇ̌
jdzj jd!j:

Now the result of Astala, Iwaniec, Martin and Onninen [4, Theorems 11.4 and 9.1] shows
that the inverse map f �1 W @D ! @D satisfies the Douglas condition (1.2). Thus f �1

extends to a harmonic W1;2-homeomorphism H1 from D to D by the RKC Theorem
(Lemma 2.3). Letting h WD G ıH1, we find that h lies in W1;2.D;C/ since G is Lip-
schitz. Moreover, the boundary values of h are equal to  ı .'�1 ı /�1 D ', giving us a
homeomorphic extension of ' in W1;2.D;C/.

To further extend ' into the complement of D, assume first without loss of generality
that 0 2 Y . We now let �.z/ D 1=z denote the inversion with respect to the unit circle,
which is a diffeomorphism in C n ¹0º. The map  WD � ı ' ı � is then a homeomorphism
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from @D to @�.Y /. Note that since � is the identity on @D, we also have  D � ı '.
Since � is locally bi-Lipschitz in C n ¹0º, there is L > 1 such that � is L-bi-Lipschitz in
a neighborhood of @�.Y /. Hence we may estimate thatZ

@�.Y/

Z
@�.Y/

ˇ̌
log j �1.˛/ �  �1.ˇ/j

ˇ̌
jd˛j jdˇj

D

Z
@�.Y/

Z
@�.Y/

ˇ̌
log j'�1.�.˛// � '�1.�.ˇ//j

ˇ̌
jd˛j jdˇj

D

Z
@Y

Z
@Y

ˇ̌
log j'�1.�/ � '�1.�/j

ˇ̌
j� 0.�/j j� 0.�/j jd�j jd�j

� L2
Z
@Y

Z
@Y

ˇ̌
log j'�1.�/ � '�1.�/j

ˇ̌
jd�j jd�j <1:

This shows that  satisfies condition (1.3), and hence the earlier part of the proof shows
that we may extend as a W1;2-homeomorphism Qh from D to the Jordan domain bounded
by @�.Y /. Hence � ı Qh ı � is a homeomorphism from C nD to C n Y , equal to ' on the
boundary, and in W1;2.U;C/ for any bounded subset U � C nD due to the bi-Lipschitz
bounds on � in C n ¹0º. This concludes the proof.

6. The multiply connected case: Proof of Theorem 1.11

In this section we consider multiply connected Jordan domains X and Y of the same
topological type. Any such domain can be equivalently obtained by removing from a
simply connected Jordan domain the same number, say 0 � ` < 1, of closed disjoint
topological disks or single points. Throughout what follows, we will assume that none of
the boundary components of X and Y are single points – this case will only be addressed
at the very end of the proof.

If ` D 1, the resulting doubly connected domain is conformally equivalent to a circu-
lar annulus A D ¹z 2 C W r < jzj < 1º with some 0 < r < 1. In fact, if ` � 1 then every
.`C 1/-connected Jordan domain can be mapped by a conformal mapping onto a circular
domain [14]. An .`C 1/-connected circular domain consists of the domain bounded by
the boundary of the unit disk D and k other circles in the interior of D. This conformal
equivalence to circular domains will be used in certain parts of the proof. The confor-
mal mappings between multiply connected Jordan domains extend continuously up to the
boundaries.

The idea of the proof of Theorem 1.11 is simply to split the multiply connected
domains X and Y into simply connected parts and apply Theorem 1.8 in each of these
parts. Let us consider first the case where X and Y are doubly connected.

6.1. Doubly connected X and Y

Case 1: p D 1. Suppose that the boundary of X is rectifiable. We split X into two rectifi-
able simply connected domains as follows. Take a line L passing through any point in the
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bounded component of C n X. Then there exist two open line segments I1 and I2 on L
that are contained in X and have endpoints on different components of the boundary of X.
These segments split the domain X into two Jordan domains X1 and X2 with rectifiable
boundaries.

For kD 1;2, let pk denote the endpoint of Ik lying on the inner boundary of X and Pk
the endpoint on the outer boundary. We let qk D '.pk/ andQk D '.Pk/, where ' denotes
the given boundary map from the statement of Theorem 1.11. We would now simply like
to connect qk toQk by a rectifiable curve k inside Y in such a way that 1 and 2 do not
intersect. It is quite obvious this can be done but we provide a proof regardless.

Let YC denote the Jordan domain bounded by the outer boundary of Y . Take a con-
formal map gC W D ! YC. Then g0C is in the Hardy space H 1 since @Y1 is rectifiable,
and by [10, Theorem 3.13] we find that gC maps the segment Œ0; g�1C .Qk/� into a recti-
fiable curve in YC. Let C

k
denote the image of the segment Œ.1 � �/g�1C .Qk/; g

�1
C .Qk/�

under gC for a sufficiently small �. Then C
k

is a rectifiable curve connecting Qk to an
interior point QC

k
of Y if � is small enough. With a similar argument, possibly adding a

Möbius transformation to the argument to invert the order of the boundaries, one finds a
rectifiable curve �

k
connecting qk to an interior point q�

k
. For � small enough the four

curves constructed here do not intersect.
If � denotes the union of these four curves, we may now use the path-connectedness

of the domain Y n � to join the points QC1 and q�1 with a smooth simple curve inside Y
that does not intersect � . By combining the curves C1 and �1 one obtains a rectifiable
simple curve 1 connecting Q1 and q1. Using the fact that Y n � is doubly connected,
we may now join QC2 and q�2 with a smooth curve that does not intersect 1 or � . This
yields a rectifiable simple curve 2 connecting Q2 and q2. This proves the existence of
the curves k with the desired properties. These curves split Y into two simply connected
Jordan domains Y1 and Y2.

We may now extend the homeomorphism ' to map the boundary of Xk to the bound-
ary of Yk homeomorphically. The exact parametrization which maps the segments Ik to
the curves k does not matter. The rest of the claim follows directly from the first part of
Theorem 1.8, giving us a homeomorphic extension of ' in the Sobolev class W1;1.X;C/,
as claimed.

Case 2: 1 < p < 2. Suppose that X has s-hyperbolic growth. Then we take an annulus A
centered at the origin such that there exists a conformal map g W A! X. By a result of
Gehring and Osgood [12], the quasihyperbolic metrics hX and hA are comparable via the
conformal map g. This shows that for any fixed x0 2 A and all x 2 A we have

hA.x0; x/ � ChX.g.x0/; g.x// �
C

dist.g.x/; @X/1�s
: (6.1)

Let now AC denote the simply connected domain obtained by intersecting A and the
upper half-plane. We claim that the domain XC WD g.AC/ has s-hyperbolic growth as
well.
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To prove this claim, fix x0 2 AC and take an arbitrary x 2 A. Let d D dist.x; @AC/.
We aim to establish the inequality

hAC.x0; x/ �
C

dist.g.x/; @XC/1�s
: (6.2)

Note that AC is bi-Lipschitz equivalent to the unit disk, implying that hAC.x0; x/ is
comparable to log.1=d/. The boundary of AC contains two line segments on the real
line; let us denote them by I1 and I2. Note that we have the estimate

dist.g.x/; @XC/ � dist.g.x/; @X/: (6.3)

If it happened that d D dist.x; @A/, meaning that the closest point to x on @AC is not
on I1 or I2, then the hyperbolic distances hAC.x0; x/ and hA.x0; x/ are comparable and
by the inequalities (6.1) and (6.3) the inequality (6.2) holds. Hence it is enough to prove
(6.2) when d D dist.x; I1 [ I2/. We may also assume that d is small. Due to the geometry
of the half-annulus AC, the projection of x to the real line lies on either I1 or I2, and the
vertical line segmentLx between x and its projection lies in AC and has length d . Letting
D denote the distance from x to @AC n .I1 [ I2/, we see that D � d .

We may now reiterate the proof of (3.4) to find that

jg0.z/j �
C

dist.z; @A/ log
1

1�s .dist.z; @A/�1/

for z 2A. We should mention that the simply connectedness assumption used in the proof
of (3.4) may be circumvented by using the equivalence of the quasihyperbolic metrics
under g instead of passing to the hyperbolic metric. Hence

dist.g.x/; @XC/ �
Z
Lx

jg0.z/j jdzj �
Cd

D log
1

1�s .1=D/
:

From this we find that (6.2) is equivalent to

log.1=d/ � C
D1�s log.1=D/

d1�s
;

which is true since D � d . Hence (6.2) holds, and this implies that XC has s-hyperbolic
growth by reversing the argument that gives (6.1).

We define X� similarly. Hence we have split X into two simply connected domains
with s-hyperbolic growth. On the image side, we may split Y into two simply connected
domains with rectifiable boundary as in Case 1. Extending ' in an arbitrary homeomor-
phic way between the boundaries of these domains and applying part 2 of Theorem 1.8(2)
gives a homeomorphic extension of ' in W1;p.X;C/ whenever s > p � 1.
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6.2. The general case

Case 3: p D 1. Assume that X and Y are `-connected Jordan domains with rectifiable
boundaries. By induction, we may assume that the result of Theorem 1.11 holds for
.` � 1/-connected Jordan domains. Hence we are only required to split X and Y into
two domains with rectifiable boundary, one which is doubly connected and the other is
.` � 1/-connected.

We hence describe how to ‘isolate’ a given inner boundary component X0 from an `-
connected Jordan domain X. Let Xouter ¤ X0 denote the outer boundary component of X.
Take a small neighborhood of X0 inside X. Let 0 be a piecewise linear Jordan curve
contained in this neighborhood and separating X0 from the other boundary components
of X. Let also 1 be a piecewise linear Jordan curve inside X and in a small enough
neighborhood ofXouter so that all the inner boundary components of X are inside 1. Take
y0 and y1 on 0 and 1 respectively, and connect them with a piecewise linear curve ˛y
not intersecting any boundary components of X. Choose z0 on 0 close to y0 and z1 on
1 close to y1 so that we may connect z0 and z1 by a piecewise linear curve ˛z arbitrarily
close to ˛y but intersecting neither ˛y nor any boundary components of X. Since the
region bounded by Xouter and 1 is doubly connected, by the construction in Case 1 we
may connect y1 and z1 to any two given points y2 and z2 on the boundary Xouter via
nonintersecting rectifiable curves ˇy and ˇz lying inside this region.

Let now � denote the union of the curves ˇy , ˇz , ˛y , ˛z , and the curve  00 obtained
by taking 0 and removing the part between y0 and z0. By construction � contains two
arbitrary points on Xouter and separates the domain X into a doubly connected domain
with inner boundary component X0 and an .n � 1/-connected Jordan domain. Since � is
rectifiable, both of these domains are also rectifiable.

Applying the same construction for Y , we may separate the boundary component
'.X0/ of Y by a rectifiable curve � 0. Since the boundary points y2 and z2 above were
arbitrary, we may assume that � 0 intersects the outer boundary of Y at the points '.y2/
and '.z2/. Extending ' to a homeomorphism from � onto � 0 and applying the induction
assumptions now gives a homeomorphic extension in the class W1;1.X;C/.

Case 4: 1 < p < 2. We still have to deal with the case where X has s-hyperbolic growth
and is `-connected. By the same arguments as in the previous case, it will be enough
to split X into a doubly connected and an .` � 1/-connected domain with s-hyperbolic
growth.

Since X is `-connected, there exists a domain� such that every boundary component
of� is a circle and there is a conformal map g W �! X. Let � �� be a piecewise linear
simple curve with both endpoints on the outer boundary of � such that � separates one
of the inner boundary components of @� from the others, which implies that the curve �
splits � into a doubly connected set �1 and an .` � 1/-connected set �2. We claim that
the domains X1 D g.�1/ and X2 D g.�2/ have s-hyperbolic growth.



A. Koski, J. Onninen 4086

The proof of this claim is nearly identical to the arguments in Case 2, so we will
summarize it briefly. For X2, we aim to establish the inequality

h�2
.x0; x/ �

C

dist.g.x/; @X2/1�s
(6.4)

for fixed x0 2 �2 and x 2 �2. For this inequality, it is only essential to consider x close
to @�2. If x is closer to the boundary of the original set @� than to � , then the hyperbolic
distance between x0 and x in �2 is comparable to the distance inside the larger set �.
Then the s-hyperbolic growth of � implies (6.4) as in Case 2. If x is closer to � but a
fixed distance away from the boundary of�, then the smoothness of g in compact subsets
of � implies the result. If x is closest to a line segment in � which has its other endpoint
on @�, then we may employ a similar estimate to that in Case 2, using the bound for
jg0.z/j in terms of dist.z; @�/, to conclude that (6.4) also holds here. This implies that X2
satisfies (6.4), and hence it has s-hyperbolic growth. The argument for X1 is the same.

After splitting X into two domains of smaller connectivity and s-hyperbolic growth,
we split the target Y accordingly into rectifiable parts using the argument from Case 3.
Applying induction on ` now proves the result in this case.

6.3. Punctured domains

We now address the case where X and Y are `-connected and where some of the inner
boundary components of X and Y may be single points. Let these points be x1; : : : ; xN
2X and y1; : : : ; yN 2 Y . Without loss of generality we may assume '.xj /D yj for all j .
Let QX denote the .` �N/-connected domain X [ ¹x1; : : : ; xN º and define QY similarly.

We now consider the boundary map 'j
@ QX W @

QX! @ QY and let Qh W QX! QY denote the
W1;p-homeomorphic extension of this boundary map. If such a map satisfied Qh.xj / D yj
for all j then we would be done. If not, let U � QY be a smooth simply connected domain
large enough to contain all the points Qh.x1/; : : : ; Qh.xN / and y1; : : : ; yN . Then consider
a diffeomorphic change of variables � W U ! U that is the identity map on the boundary
and sends the point Qh.xj / to yj for every j . Now the map h WD � ı QhjX W X! Y is the
desired Sobolev homeomorphic extension of '.

This finishes the proof of Theorem 1.11.

7. Monotone Sobolev minimizers

The classical harmonic mapping problem deals with the question of whether there exists
a harmonic homeomorphism between two given domains. Of course, when the domains
are Jordan such a mapping problem is always solvable. Indeed, according to the Riemann
Mapping Theorem there is a conformal mapping h W X

onto
�! Y . Finding a harmonic hom-

eomorphism which coincides with a given boundary homeomorphism ' W @X
onto
�! @Y is a

more subtle question. If Y is convex, then there always exists a harmonic homeomorphism
h W X

onto
�! Y with h.x/ D '.x/ on @X by Lemma 2.3. For a nonconvex target Y , however,
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there always exists at least one boundary homeomorphism whose harmonic extension
takes points in X beyond Y . To find a deformation h W X onto

�! Y which resembles harmonic
homeomorphisms Iwaniec and Onninen [23] applied the direct method of the calculus of
variations and considered minimizing sequences in H

1;2
' .X;Y /. They called such mini-

mizers monotone Hopf-harmonics and proved the existence and uniqueness result in the
case when Y is a Lipschitz domain and the boundary data ' satisfies the Douglas condi-
tion. Note that by the Riemann Mapping Theorem one may always assume that X D D.
Theorem 1.6 allows one to go beyond the Lipschitz targets. Indeed, under the assumptions
of Theorem 1.6, the class H

1;2
' .D; Y / is non-empty. Furthermore, if hı 2 H

1;2
' .D; Y /,

then hı satisfies the uniform modulus of continuity estimate

jhı.x1/ � hı.x2/j
2
� C

R
DjDhıj

2

log
�

1
jx1�x2j

�
for x1; x2 2 D such that jx1 � x2j < 1. This follows by taking the global W1;2

loc -homeo-
morphic extension given by Theorem 1.6 and applying a standard local modulus of con-
tinuity estimate for W1;2-homeomorphisms [19, Corollary 7.5.1, p. 155]. Now, applying
the direct method of the calculus of variations allows us to find a minimizing sequence
in H

1;2
' .D;Y / for the Dirichlet energy converges weakly in W1;2.D;C/ and uniformly

in D. Being a uniform limit of homeomorphisms the limit mappingH W D onto
�! Y becomes

monotone. Indeed, the classical Youngs approximation theorem [39] asserts that a contin-
uous map between compact oriented topological 2-manifolds (surfaces) is monotone if
and only if it is a uniform limit of homeomorphisms. Monotonicity, the concept of Mor-
rey [30], simply means that for a continuousH W X! Y the preimageH�1.yı/ of a point
yı 2 Y is a continuum in X. We have thus proved the following result.

Theorem 7.1. Let X and Y be Jordan domains and assume that @Y is rectifiable. If
' W @X

onto
�! @Y satisfies (1.3), then there exists a monotone Sobolev mappingH W X onto

�! Y
in W1;2.X;C/ such that H coincides with ' on @X andZ

X
jDH.x/j2 dx D inf

h2H
1;2
' .X;Y/

Z
X
jDh.x/j2 dx:
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