
© 2021 European Mathematical Society
Published by EMS Press. This work is licensed under a CC BY 4.0 licence.

J. Eur. Math. Soc. 23, 4091–4108 (2021) DOI 10.4171/JEMS/1104

Tamás Darvas

The isometries of the space of Kähler metrics

To Anita

Received February 16, 2019

Abstract. Given a compact Kähler manifold, we prove that all global isometries of the space of
Kähler metrics are induced by biholomorphisms and anti-biholomorphisms of the manifold. In par-
ticular, there exist no global symmetries for Mabuchi’s metric. Moreover, we show that the Mabuchi
completion does not even admit local symmetries. Closely related to these findings, we provide a
large class of metric geodesic segments that cannot be extended at one end, exhibiting the first such
examples in the literature.
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1. The main results

Let .X; !/ be a compact connected Kähler manifold. Given a Kähler metric !0 cohomo-
loguos to !, by the @N@-lemma of Hodge theory there exists u 2 C1.X/ such that !0 WD
! C i@N@u: Such a metric !0 is said to belong to the space H of Kähler metrics. By the
above, up to a constant, one can identify H with the space of Kähler potentials:

H! WD ¹u 2 C
1.X/ W ! C i@N@u > 0º:

This space can be endowed with a natural infinite-dimensionalL2 type Riemannian metric
[17, 25, 27]:

h�; �iv WD
1

V

Z
X

��!nv ; v 2 H! ; �; � 2 TvH! ' C
1.X/; (1)

where V D
R
X
!n. Additionally, Donaldson and Semmes pointed out that .H! ; h�; �i/ can

be thought of as a formal symmetric space [17, 28]:

H! ' HamC
! =Ham! ; (2)

where Ham! is the group of Hamiltonian symplectomorphisms of !, and HamC
! is its

formal complexification. Though (2) is not quite precise, the underlying heuristic led to
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many advances in the understanding of the geometry of H! , as well as the formulation of
stability conditions aiming to characterize existence of canonical metrics ([17,18]; for an
exposition see [29]).

Global L2 isometries and symmetries of H! . For finite-dimensional Riemannian mani-
folds, the existence of a symmetric space structure arising as a quotient of Lie groups, as
in (2), is equivalent to the existence of global symmetries at all points of the manifold [20].
Such maps are global involutive isometries reversing geodesics at a specific point. If such
symmetries existed for .H! ; h�; �i/ it would perhaps allow one to make a precise sense
of (2).

Recently a large class of local symmetries of H! were constructed in [3], via complex
Legendre transforms, having applications to interpolation of norms [2]. Moreover, it was
shown in [24] that all local symmetries of H! arise from the construction of [3]. Below
we show that global symmetries actually do not exist, in particular the local symmetries
cannot be extended to H! . This will follow from our characterization of the isometry
group of .H! ; h�; �i/.

First we recall some terminology. Let U;V � H! be open sets. We say that a map
F W U ! V is C 1, or (with slight abuse of terminology) differentiable, if .F; F�/ W
U � C1.X/ ! V � C1.X/ is continuous as a map of Fréchet spaces. Here F� is
the differential of F (see [21, p. 3] and references therein for more details). Moreover,
F WU!U is a differentiable L2 symmetry at � 2U if F 2 D Id, F.�/D �, F�j� D�Id
and Z

X

j�j2!nv D

Z
X

jF��j
2!nF .v/; v 2 H! ; � 2 TvH! : (3)

If F W U ! V is C 1, satisfies (3) and is bijective, then it is called a differentiable L2

isometry. Due to infinite-dimensionality, it is not yet known if differentiableL2 isometries
are automatically smooth [23], hence the isometries we consider in this work are possibly
more general than the ones in [3, 24].

A small class of global L2 isometries has been previously known in the literature
[23, p. 16]. One of them is the so called Monge–Ampère flip I WH! !H! , and is defined
by the formula I.u/ D u � 2I.u/, where I W H! ! R is the Monge–Ampère energy,

I.u/ D
1

V.nC 1/

nX
jD0

Z
X

u!j ^ !n�ju :

The map I is involutive and its name is inspired by the fact that it flips the sign of I .
Indeed, I.I.u// D �I.u/.

We say that a biholomorphism f W X ! X preserves the Kähler class Œ!� if
Œf �!� D Œ!�. Similarly, an anti-biholomorphism g W X ! X flips the Kähler class Œ!� if
Œg�!�D�Œ!�. Such maps f and g induce a class of global L2 isometries F WH!!H! ,
where at the level of Kähler metrics we have either !F.u/ D f �!u or !F.u/ D �g�!u.
We refer to Section 2.3 for the detailed construction.

In our first main result we point out that these maps and their compositions are the
only global differentiable L2 isometries:
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Theorem 1.1. Let F W H! ! H! be a differentiable L2 isometry. Then exactly one of
the following holds:

(i) F is induced by a biholomorphism or an anti-biholomorphism f W X ! X that pre-
serves or flips Œ!�, respectively.

(ii) F ı I is induced by a biholomorphism or an anti-biholomorphism f W X ! X that
preserves or flips Œ!�, respectively.

The space H! of potentials admits a Riemannian splitting H! D H ˚ R, via the
Monge–Ampère energy I . As the fixed point set of I is exactly H D I�1.0/, we obtain
the following corollary regarding isometries of H :

Corollary 1.2. Let F W H ! H be a differentiable L2 isometry. Then F is induced by
a biholomorphism or an anti-biholomorphism f W X ! X that preserves or flips Œ!�,
respectively.

The above results answer questions raised by Lempert regarding the extension prop-
erty of local isometries [23, p. 3], though questions surrounding the isometry group of
.H! ; h�; �i/ go back to early work of Semmes [27, 28].

Lastly, via the classification theorem of Lempert (recalled in Theorem 2.1), we will
see that neither of the maps in the statement of Theorem 1.1 are symmetries, immediately
giving the following non-existence result for differentiable L2 symmetries:

Corollary 1.3. There exists no differentiableL2 symmetry F WH!!H! at any � 2H! .

Non-existence of local L2 symmetries on the completions. It was shown in [8] that (1)
induces a path length metric space .H! ; d2/. We denote by .E2! ; d2/ the d2-metric com-
pletion of this space, which can be identified with a class of finite energy potentials [11].

By density, any differentiable L2 isometry F W H! ! H! extends to a unique metric
d2-isometry F W E2! ! E2! . The proof of Theorem 1.1 consists in showing that contra-
dictions arise in this extension process, unless F is very special. With this and the above
results in mind, one may hope that the isometry group of the metric space .E2! ; d2/ could
possibly admit elements beyond the ones that arise from the global differentiable L2 iso-
metries of H! . Though this may be true, we point out below that even local symmetries
fail to exist in the context of the completion, further elaborating Corollary 1.3.

Before stating our result, we recall some facts about the d2-geodesics of E2. For more
details we refer to Section 2.2 and the recent survey [13]. Let V � E2! be d2-open with
� 2 V \H! . Given a d2-geodesic Œ0; 1� 3 t 7! �t 2 V with �0 D �, since t 7! �t .x/ is
t -convex for almost every x 2 X , it is possible to introduce P�0 D d

dt

ˇ̌
tD0
�t . Moreover,

due to [10, Theorem 2], it follows that P�0 2 L2.!n�/:
LetG W V !G.V/� E2! be anL2 isometry, i.e., a bijective map satisfying d2.v1; v2/

D d2.G.v1/; G.v2// for v1; v2 2 V . It is clear that in this case t 7! G.�t / is also a
d2-geodesic. Furthermore, we say that G is a metric L2 symmetry at � if G2 D Id,
G.�/ D � and PG.�0/ D � P�0; i.e., G “reverses” d2-geodesics at �.
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Unfortunately, metric L2 symmetries actually do not exist, implying that the analog
of [3, Theorem 1.2] does not hold in the context of the metric completion. This answers
questions of Berndtsson and Rubinstein [26]:

Theorem 1.4. Let V � E2! be a d2-open set and � 2 V \H! . There exists no metric L2

symmetry F W V ! V at �.

Given that .E2! ; d2/ is CAT(0), the group of isometries of this metric space has special
structure [6], as pointed out by B. McReynolds during the Ph.D. thesis defense of the
present author. In light of the above result, we expect that the group of metric isometries
can be characterized as in Theorem 1.1, though this remains an open question.

The extension property of geodesic segments. As an intermediate step in the proof of
Theorem 1.4 we show that a large class of d2-geodesic segments inside E2! cannot be
extended at one of the endpoints. Previously no such examples were known.

Theorem 1.5. Let �0 2H! and �1 2 E2! nL
1. Then the d2-geodesic t 7!  t connecting

these potentials cannot be extended to a d2-geodesic .�"; 1� 3 t 7! �t 2 E2! for any " > 0.

For finite-dimensional manifolds, topological and geodesical completeness are equi-
valent due to the classical Hopf–Rinow theorem. According to the above result, this is
not the case for the completion .E2! ; d2/, despite the fact that this space is non-positively
curved [7, 11].

When restricting to toric metrics on a toric Kähler manifold, by means of the Legendre
transform it is not hard to construct toric geodesic segments that do not extend to longer
toric geodesic segments at one end. However it is not clear if one can extend these seg-
ments to longer non-toric geodesics.

It will be interesting to see if a similar non-extension property holds for the C 1;1-
geodesics of Chen [8] and Chu–Tosatti–Weinkove [9], joining the potentials of H! .

Relation to the Lp geometry of H! . In [10] the author introduced a family of Lp Finsler
metrics on H! for any p � 1, generalizing (1):

k�kp;v D

�
1

V

Z
X

j�jp!nv

�1=p
; v 2 H! ; � 2 TvH! :

These induce path length metric spaces .H! ; dp/, and in [10] the author computed the
corresponding metric completions, which later found applications to existence of canon-
ical metrics (for a survey see [13]). Though this more general context lacks the symmetric
space interpretation, all of our above results can be considered in the Lp setting as well.

As the reader will be able to deduce from our arguments below, the Lp version of
Theorem 1.4 holds for any p > 1. Our proof does not work when p D 1, since the class
of finite energy geodesics may not be stable under isometries in this case (see [14, The-
orem 1.2]). On the other hand, the Lp version of Theorem 1.5 does hold for all p � 1.
Lastly, our argument for Theorem 1.1 would most likely go through in the Lp context in
case one could obtain the analog of Theorem 2.1 for differentiable Lp isometries.
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2. Preliminaries

For simplicity we assume throughout the paper that the Kähler metric ! satisfies the
following volume normalization:

V D

Z
X

!n D 1:

Using a dilation of ! this can always be achieved and represents no loss of generality.

2.1. The classification theorem of Lempert

In this subsection we recall the particulars of a result due to Lempert on the classification
of local C 1 isometries on H! [23, Theorem 1.1], tailored to our global setting:

Theorem 2.1. Suppose that F W H! ! H! is a differentiable L2 isometry. Then for
u2H! there exists a uniqueC1 diffeomorphismGu WX!X such thatG�u!uD˙!F.u/
and

F�.u/� D a� ıGu � b

Z
X

�!nu ; � 2 TuH! ' C
1.X/; (4)

where a D 1 or a D �1, and b D 0 or b D 2a.

In the particular case of the (local) L2 symmetries constructed in [3], formula (4) is a
consequence of [3, Theorem 5.1, Theorem 6.1, Proposition 7.1] with a D �1 and b D 0.

Remark 2.2. It follows from [23, proof of Theorem 1.1] that the integers a and b in the
statement depend continuously on u 2 H! , hence in our case they are independent of u,
as H! is connected. This was pointed out to us by L. Lempert [22].

In addition, both the anonymous referee and L. Lempert generously pointed out that
one can also deduce this fact directly from the statement of Theorem 2.1. We provide
the clever argument of the anonymous referee: if � 2 C1.X/, let �u 2 TuH! � C

1.X/

be �u D � �
R
X
�!nu . Then �u; �2u depend continuously on u. We also have aF�.u/�u D

�u ıGu, hence

F�.u/�
2
u D a.�u ıGu/

2
� b

Z
X

�2u!
n
u D a.F�.u/�u/

2
� b

Z
X

�2u!
n
u : (5)

Taking differentials we get dXF�.u/�2u D a � dX .F�.u/�u/
2. Here all quantities depend

continuously on u, except perhaps a. Since F is a differentiable L2 isometry, F�.u/ W
C1.X/! C1.X/ is injective and depends continuously on u. Since the space of con-
stant functions of C1.X/ is merely one-dimensional, there are many choices of � for
which dX .F�.u/�u/2 is not identically zero in a neighborhood of u. Therefore a depends
continuously on u. By (5), b also depends continuously on u (and by (4), the same holds
for Gu, however this will not be needed later).

From the classification theorem we obtain the following simple monotonicity result:
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Proposition 2.3. Suppose that F WH! !H! is a differentiable L2 isometry with b D 0.
Let c 2 R and u; v 2 H! with u � v.

(i) If a D 1 then F.u/ � F.v/ and F.uC c/ D F.u/C c.

(ii) If a D �1 then F.u/ � F.v/ and F.uC c/ D F.u/ � c.

Proof. We only address (ii), as the proof of (i) is analogous. Let Œ0; 1� 3 t 7! 
t WD v C

t .u � v/ 2 H! . Then t 7! F.
t / is a C 1 curve connecting F.v/ and F.u/. Moreover,
Theorem 2.1 implies that

F.u/ � F.v/ D

Z 1

0

d

dt
F.
t / dt D

Z 1

0

�.u � v/ ıG
t dt � 0:

The fact that F.uC c/ D F.u/ � c follows after another application of Theorem 2.1 to
the curve Œ0; 1� 3 t 7! �t WD uC tc 2 H! .

Corollary 2.4. Suppose that F W H! ! H! is a differentiable L2 isometry with b D 0.
Then, in the language of Theorem 2.1 applied to F , we obtainGuCc DGu for all u 2H!

and c 2 R.

Proof. We only address the case a D 1, as the argument for a D �1 is identical. Let
� 2 C1.X/. By Proposition 2.3(i) and Theorem 2.1 we have

� ıGuCc DF�.uCc/� D
d

dt

ˇ̌̌̌
tD0

F.uC t�Cc/D
d

dt

ˇ̌̌̌
tD0

F.uC t�/DF�.u/� D � ıGu:

Since � 2 C1.X/ is arbitrary, we obtain GuCc D Gu.

2.2. The complete metric space .E2! ; d2/

In this subsection we recall some aspects of the author’s work related to the metric com-
pletion of .H! ; d2/. For details we refer to the survey [13].

As conjectured by V. Guedj [19], .H! ; d2/ can be identified with .E2! ; d2/, where
E2! � PSH.X; !/ is an appropriate subset of !-plurisubharmonic potentials [11, The-
orem 1]. Moreover, .E2! ; d2/ is a non-positively curved complete metric space, whose
points can be joined by unique d2-geodesics.

Given u0; u1 2 E2! , the unique d2-geodesic Œ0; 1� 3 t 7! ut 2 E2! connecting these
points has special properties. To start, we recall that this curve arises as the following
envelope:

ut WD sup ¹vt j t 7! vt is a subgeodesicº; t 2 .0; 1/: (6)

Here a subgeodesic .0; 1/ 3 t 7! vt 2 PSH.X; !/ is a curve satisfying lim supt!0;1 vt
� u0;1 and u.s; x/ WD uRe s.x/ 2 PSH.S �X;!/, where S D ¹0 < Re s < 1º � C.

It follows from (6) that t 7! ut .x/, t 2 .0; 1/, is convex for all x 2 X away from a
set of measure zero. On the complement, ut .x/ D �1 for t 2 .0; 1/. Moreover, due to
[11, Corollary 7], we also have

lim
t!0

ut .x/ D u0.x/ and lim
t!1

ut .x/ D u1.x/ (7)
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for all x 2 X away from a set of measure zero. In the particular case when u0; u1 2 H! ,
the curve t 7! ut is C 1;1 on Œ0; 1� �X [4, 8, 9].

We denote by C! the set of continuous potentials in PSH.X; !/. As pointed out
previously, a differentiable L2 isometry F W H! ! H! induces a unique d2-isometry
F W E2! ! E2! , extending the original map (by density). Going forward, we do not dis-
tinguish F from its unique extension. Moreover, if F is an isometry with b D 0 (see
Theorem 2.1), we point out that C! is stable under extension:

Proposition 2.5. Suppose F WH!!H! is a differentiableL2 isometry with bD 0. Then
F.C!/ � C! . More importantly, supX kuj � uk ! 0 implies supX kF.uj /� F.u/k ! 0

for any uj ; u 2 C! .

Proof. We only handle the case when a D 1, as in case a D �1 the proof is analogous.
Since d2-convergence implies pointwise a.e. convergence (see [10, Theorem 5]), Propos-
ition 2.3(i) holds for the extension F W E2! ! E2! and u; v 2 E2! satisfying u � v.

Let u 2 C! . Then [5] implies existence of uk 2 H! such that uk & u. In fact,
according to Dini’s lemma, the convergence is uniform. From Proposition 2.3 it fol-
lows that ¹F.uk/ºk � H! is decreasing. Due to uniform convergence, for any " > 0

there exists k0 such that u � uk � uC " for k � k0. Then Proposition 2.3 implies that
F.u/ � F.uk/ � F.u/C " for k � k0. This shows that F.uk/ converges to F.u/ uni-
formly, in particular F.u/ 2 C! .

Lastly, we can essentially repeat the above argument for continuous potentials uj
converging uniformly to u, deducing the last statement of the proposition.

2.3. Examples of differentiable L2 isometries on H!

In this subsection we describe three examples of global differentiable L2 isometries
on H! . Later we will argue that in fact all global isometries arise as compositions of
these examples.

� First we take a closer look at the Monge–Ampère flip I W H! ! H! , defined in
Section 1, perhaps first introduced in [23]. Let Œ0; 1� 3 t 7! 
t 2 H! be a smooth curve.
Since d

dt
I.
t / D

R
X
P
t!

n

t

, we obtainZ
X

�
d

dt
I.
t /

�2
!n
t D

Z
X

�
P
t � 2

Z
X

P
t!
n

t

�2
!n
t D

Z
X

P
2t !
n

t
;

hence I is indeed an involutive L2 isometry, with a D 1 and b D 2 (see Theorem 2.1).
This simple map has the following intriguing property, which will help us adjust the b
parameter of arbitrary isometries without changing the a parameter:

Lemma 2.6. Suppose thatF WH!!H! is a differentiableL2 isometry. The a parameter
of F and F ı I is always the same. Regarding the b parameter the following hold:

(i) If b D 0 for F , then b D 2a for F ı I.

(ii) If b D 2a for F , then b D 0 for F ı I.



T. Darvas 4098

Proof. Let Œ0; 1� 3 t 7! 
t 2 H! be a smooth curve. Then

d

dt
F.I.
t // D F�.I� P
t / D F�

�
P
t � 2

Z
X

P
t!
n

t

�
:

If a D 1 and b D 0 for F , then d
dt
F.I.
t //D P
t ıGu � 2

R
X
P
t!

n

t

. If a D�1 and b D 0
for F , then d

dt
F.I.
t // D � P
t ıGu C 2

R
X
P
t!

n

t

, addressing (i).
In case a D 1 and b D 2a for F , then d

dt
F.I.
t // D P
t ı Gu. Similarly, if a D �1

and b D 2a for F , then d
dt
F.I.
t // D � P
t ıGu, addressing (ii).

� Now let f W X ! X be a biholomorphism preserving the Kähler class Œ!�. Then f
induces a map Lf WH !H via pullbacks: !Lf .u/ WD f

�!u, where we make the natural
identification H ' I�1.0/. Using this identification it is possible to describe the action
of F at the level of potentials in the following manner [15, Lemma 5.8]:

Lf .u/ D Lf .0/C u ı F; u 2 I�1.0/; (8)

where 0 2 I�1.0/ is simply the zero Kähler potential. More importantly, Lf further
extends to a map Lf W H! ! H! in the following manner:

Lf .v/ D Lf .v � I.v//C I.v/; v 2 H! :

We point out that Lf thus described gives a differentiable L2 isometry of H! with
a D 1 and b D 0. To see this, let Œ0; 1� 3 t 7! 
t 2 H! be a smooth curve. Using (8) we
can write

d

dt
Lf .
t / D

d

dt
.
t ı f � I.
t //C

d

dt
I.
t / D P
t ı f:

In the language of Theorem 2.1 applied to Lf , we have obtained Gu D g for all u 2 H! .

� Now let g W X ! X be an anti-biholomorphism that flips the Kähler class Œ!�. By
definition, such a map is a diffeomorphism satisfying @gj

@zk
D 0 for all j; k 2 ¹1; : : : ; nº in

any choice of local coordinates. For example, the map g.z/D Nz is an anti-biholomorphism
of the unit torus C=ZŒi � that flips that class of the flat Kähler metric.

Such a map g induces another map Ng W H ! H via pullbacks: !Ng.u/ WD �g
�!u.

Here we again use the identification H ' I�1.0/. Similar to (8), it is possible to describe
the action of Ng at the level of potentials in the following manner:

Ng.u/ D Ng.0/C u ı g; u 2 I�1.0/: (9)

To show this, we have to go through the proof of [15, Lemma 5.8] in the anti-holomorphic
context. As a beginning remark, we notice that g�@N@v D �@N@v ı g for all smooth func-
tions v. With this in mind, we find that

! C i@N@.Ng.0/C u ı g/ D �g
�! � g�i@N@u D �g�!u D !Ng.u/ D ! C i@

N@Ng.u/:
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In particular, Ng.0/C u ı g �Ng.u/ is a constant. To show that this constant is zero, we
only need to argue that I.Ng.0/C u ı g/ D 0 D I.Ng.u//. But this holds because of the
following computation:

I.Ng.0/C u ı g/ D I.Ng.0/C u ı g/ � I.Ng.0//

D
1

nC 1

nX
jD0

Z
X

.u ı g/!
j

Ng.0/Cuıg
^ !

n�j

Ng.0/

D
˙1

nC 1

nX
jD0

Z
X

.u ı g/g�.!ju ^ !
n�j /

D
˙1

nC 1

nX
jD0

Z
X

u!ju ^ !
n�j
D ˙I.u/ D 0:

As above, Ng extends to a map Ng W H! ! H! in the following manner:

Ng.v/ D Ng.v � I.v//C I.v/; v 2 H! :

We point out that Ng thus described gives a differentiable L2 isometry of H! with a D 1
and b D 0. To see this, let Œ0; 1� 3 t 7! 
t 2 H! be a smooth curve. Using (9) we can
write

d

dt
Ng.
t / D

d

dt
.
t ı g � I.
t //C

d

dt
I.
t / D P
t ı g:

In the language of Theorem 2.1 applied to Ng , we have actually shown that Gu D g for
all u 2 H! .

3. Proof of Theorem 1.1

The proof of Theorem 1.1 is split into two parts. First we show that there exist no global
differentiable isometries with a D �1. Later we classify all global differentiable isomet-
ries with a D 1.

Before going into details, we recall the following simple lemma that will be used
numerous times in our arguments:

Lemma 3.1 ([12, Lemma 3.1]). Suppose that u0; u1 2 C! and Œ0; 1� 3 t 7! ut 2 E2! is
the d2-geodesic connecting these potentials. Then

inf
X
Pu0 D inf

X
.u1 � u0/; sup

X

Pu0 D sup
X

.u1 � u0/:

Proof. First we argue that infX Pu0 D infX .u1 � u0/. From (6) we obtain the estim-
ate ut � u0 C t infX .u1 � u0/ for t 2 Œ0; 1�. In particular, Pu0 � infX .u1 � u0/. Using
t -convexity it follows that ut .y/ D u0.y/ C t infX .u1 � u0/ for y 2 X such that
u1.y/ � u0.y/ D infX .u1 � u0/. This implies that t 7! ut .y/ is linear, implying that
infX Pu0 D infX .u1 � u0/.
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For the second identity, we notice that t -convexity implies supX Pu0 � supX .u1 � u0/.
In addition, (6) implies that u1 � .1 � t / supX .u1 � u0/ � ut for t 2 Œ0; 1�. Relying
on t -convexity again, we obtain Pu0.z/ D u1.z/ � u0.z/ D supX .u1 � u0/ for z 2 X
with u1.z/ � u0.z/ D supX .u1 � u0/. Summarizing, we conclude that supX Pu0 D
supX .u1 � u0/, as desired.

3.1. Isometries with a D �1

We start with a lemma:

Lemma 3.2. Suppose that F W H! ! H! is a differentiable L2 isometry with a D �1
and b D 0. Let � 2 H! and u 2 H! with u � �. Then F.u/ � F.�/ and

sup
X

.F.u/ � F.�// D � inf
X
.u � �/: (10)

Proof. That F.u/ � F.�/ follows from Proposition 2.3(ii). As pointed out in [23, p. 2],
Theorem 2.1 implies that F is a dp-isometry for any p � 1. This implies that dp.�; u/ D
dp.F.�/; F.u// for any p � 1.

Let Œ0; 1� 3 t 7! ut ; vt 2 H
1;1
! be the C 1;1 geodesic connecting u0 WD � to u1 WD u,

respectively v0 WD F.�/ to v1 WD F.u/. By the comparison principle for weak geodesics
(see for example [4, Proposition 2.2]) it follows that vt � F.�/ and ut � � for any t 2
Œ0; 1�. In particular, Pv0 � 0 and Pu0 � 0.

Using [10, Theorem 1] we arrive atZ
X

j Pu0j
p!n� D dp.�; u/

p
D dp.F.�/; F.u//

p
D

Z
X

j Pv0j
p!nF .�/; p � 1:

Raising to the 1
p

-th power and letting p !1 gives

sup
X

Pv0 D � inf
X
Pu0: (11)

From Lemma 3.1 we obtain infX Pu0 D infX .u � �/ and supX Pv0 D supX .F.u/ � F.�//.
Putting this together with (11), we obtain (10), as desired.

Theorem 3.3. There exists no differentiable L2 isometry F W H! ! H! with a D �1.

We note that this result already implies Corollary 1.3.

Proof of Theorem 3.3. Due to Lemma 2.6, after possibly composing F with I, we only
need to worry about the case a D �1 and b D 0.

If F W H! ! H! is a differentiable L2 isometry, it is also a d2-isometry, hence it
extends to a unique d2-isometry F W E2! ! E2! .

Let � 2H! . Let u 2 E2! nL
1 with u� � � 1, and choose uk 2H! such that uk& u

and uk � �. Such a sequence can always be found [5].
Due to our choice of uwe have infX .uk � �/&�1. From Lemma 3.2 it follows that

supX F.uk/D supX .F.uk/�F.�//%C1. Since F is a d2-isometry, d2.F.uk/;F .u//
D d2.u;uk/! 0. However, [10, Theorem 5(i)] implies supX F.uk/! supX F.u/<C1,
a contradiction.
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3.2. Isometries with a D 1

To start, we point out an important relationship between d2-geodesics and differentiable
L2 isometries with a D 1 and b D 0:

Proposition 3.4. Suppose that F WH! !H! is a differentiable L2 isometry with a D 1
and bD 0: Let Œ0; 1� 3 t 7! ut 2 E2! be the d2-geodesic connecting u0 2H! and u1 2 C! .
Then

Pu0 ıGu0 D
PF.u0/: (12)

Here and below Pu0 WD d
dt

ˇ̌
tD0
F.ut / and PF.u0/ WD

d
dt

ˇ̌
tD0
F.ut / are the initial tangent

vectors of the d2-geodesics t 7! ut and t 7!F.ut /, interpreted according to the discussion
preceding Theorem 1.4.

Proof. There is a constant c 2 R such that u0 > u1C c. Since F.ut C tc/D F.ut /C tc
(Proposition 2.3(i)), we can assume without loss of generality that u0 > u1.

First, we show (12) in case u1 2 H! . Let Œ0; 1� 3 t 7! u"t 2 H! be the smooth "-
geodesics of X. X. Chen, connecting u0 and u1 [8]. It is well known that u"t % ut as
"! 0, where t 7! ut is the C 1;1-geodesic joining u0 and u1. Due to Propositions 2.3 and
2.5, for the curves t 7! F.u"t /; F .ut / we find that F.u"t /% F.ut /. Since t 7! F.u"t / is a
C 1 curve, via Theorem 2.1 we obtain

Pu"0 ıGu0 D
PF.u"0/ �

PF.u0/ � 0; " > 0:

Taking the limit "! 0, since u" !C1;˛ u, we arrive at Pu0 ıGu0 � PF.u0/ � 0. By The-
orem 2.1 we have G�u0!

n
u0
D ˙!n

F .u0/
. Using this and [8] (see also [10, Theorem 1]) we

obtain Z
X

. Pu0 ıGu0/
2!nF .u0/ D

Z
X

Pu20!
n
u0
D d2.u0; u1/

2
D d2.F.u0/; F .u1//

2

D

Z
X

PF.u0/
2!nF .u0/:

Due to continuity we conclude that Pu0 ıGu0 D PF.u0/, as desired.
Now we treat the general case. Let uk1 2 H! for k 2 N be such that u0 > uk1 and

uk1 & u1 2 C! . Also, by Œ0; 1� 3 t 7! ut ; u
k
t 2 E2! we denote the d2-geodesics connecting

u0 to u1, respectively u0 to uk1 . Since F is a d2-isometry, we deduce that Œ0; 1� 3 t 7!
F.ut /; F .u

k
t / 2 E2! are the d2-geodesics connecting F.u0/ to F.u1/, respectively F.u0/

and F.uk1/. Due to t -convexity, k-monotonicity and Proposition 2.3, we find that Puk0& Pu0
and F. Puk0/& F. Pu0/. Letting k !1 we arrive at the desired conclusion: Pu0 ı Gu0 D
limk. Pu

k
0 ıGu0/ D limk F. Pu

k
0/ D F. Pu0/.

This result together with Lemma 3.1 gives the following corollary, paralleling Lem-
ma 3.2:

Corollary 3.5. Suppose that F W H! ! H! is a differentiable L2 isometry with a D 1
and b D 0. Suppose that u; v 2 C! . Then F.u/; F.v/ 2 C! and

inf
X
.F.u/ � F.v// D inf

X
.u � v/: (13)
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By switching the roles of u and v, we obtain the above identity for the suprema as
well.

Proof of Corollary 3.5. That F.u/; F.v/ 2 C! follows from Proposition 2.5. First we
deal with the case when u; v 2 H! . If Œ0; 1� 3 t 7! ht 2 H! is the C 1;1-geodesic con-
necting h0 WD u and h1 WD v, then Lemma 3.1 gives

inf
X
.v � u/ D inf

X

Ph0 and inf
X
.F.v/ � F.u// D inf

X

PF.h0/:

Putting this together with (12), we obtain infX .v � u/ D infX .F.v/ � F.u//, as desired.
When u; v 2 C! , by [5] one can find uk ; vk 2 H! such that supX ju

k � uj ! 0 and
supX jv

k � vj ! 0. Then Proposition 2.5 implies that supX jF.u
k/ � F.u/j ! 0 and

supX jF.v
k/ � F.v/j ! 0.

By uniform convergence we have

inf
X
.uk � vk/! inf

X
.u � v/ and inf

X
.F.uk/ � F.vk//! inf

X
.F.u/ � F.v//:

The conclusion follows after taking the k-limit of infX .uk � vk/D infX .F.uk/�F.vk//.

To continue, we need an auxiliary construction. Fixing x 2 X and a small enough
coordinate neighborhoodOx �X , we can find a function �x 2C1.X/ such that �x.y/D
e�1=ky�xk

2
for all y 2Ox , and there exists ˇ > 0 with ˇ � �x.y/� 1 for all y 2X nOx .

Proposition 3.6. For u 2 H! and x 2 X there exists ı > 0 such that Œ0; 1� 3 t 7! ut WD

uC ı.t C t2=2/�x 2 H! is a subgeodesic.

Proof. Let U.s; y/D uRe s.y/ 2 C
1.S �X/, where S D ¹0� Re z � 1º �C. It is clear

that for small enough ı > 0we have ut 2H! for all t 2 Œ0; 1�. More precisely, there exists
˛ > 0 such that !ut � ˛! for all t 2 Œ0; 1�.

This implies that ! C i@S�X N@S�XU has at least n non-negative eigenvalues for all
.s; y/ 2 S � X (relative to ! C i@N@jsj2). To conclude that ! C i@S�X N@S�XU � 0 it is
enough to show that the determinant of this Hermitian form is non-negative. This is equi-
valent to Rut � h@ Put ; N@ Put i!ut � 0 on Œ0; 1� �X: To show this, we start with the following
estimates:

Rut � h@ Put ; N@ Put i!ut D ı�x � ı
2.1C t /2h@�x ; N@�xi!ut

� ı�x �
ı2.1C t /2

˛
h@�x ; N@�xi! :

After possibly shrinking ı 2 .0; 1/, we find that it is enough to conclude that the last
expression is non-negative on the neighborhood Ox , where we know that �x.y/ D
e�1=ky�xk

2
for y 2 Ox . In particular, on Ox n ¹xº we have

h@�x ; N@�xi!=�x ' e
�1=ky�xk2 1

ky � xk6
;
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which is uniformly bounded. In particular, after possibly further shrinking ı 2 .0; 1/ we
obtain

Rut � h@ Put ; N@ Put i!ut � ı�x �
ı2.1C t /2

˛
h@�x ; N@�xi! � 0;

as desired.

Theorem 3.7. Suppose that F W H! ! H! is a differentiable L2 isometry with a D 1.
Then exactly one of the following holds:

(i) F is induced by a biholomorphism or an anti-biholomorphism f W X ! X that pre-
serves or flips the Kähler class Œ!�, respectively.

(ii) F ı I is induced by a biholomorphism or an anti-biholomorphism f W X ! X that
preserves or flips the Kähler class Œ!�, respectively.

Proof. Due to Lemma 2.6, after possibly composing F with I, we only need to worry
about the case a D 1 and b D 0. In this case we will show that F is induced by a biho-
lomorphism or an anti-biholomorphism f W X ! X that preserves or flips the Kähler
class Œ!�.

In the language of Theorem 2.1 applied to F , the first step is to show that Gu D Gv
for all u; v 2 H! .

We fix x 2X and u;v 2H! . We will show thatG�1u .x/DG�1v .x/. SinceGuCc DGu
for any c 2 R (Corollary 2.4), we can assume that u.x/ D v.x/. First we prove that
G�1u .x/ D G�1v .x/ under the extra non-degeneracy condition ru.x/ ¤ rv.x/.

Let � > 0 be such that w WD max.u; v/ C ��x 2 C! . From our setup it is clear
that w � max.u; v/, and the graphs of w, u and v only meet at x. Extending the iso-
metry F to the metric completion, we see that Propositions 2.3 and 2.5 imply that F.w/�
max.F.u/;F.v//; F.w/ 2 C! and F.u/;F.v/ 2H! . Below we will show that F.w/ and
F.u/ only meet at G�1u .x/, and moreover F.w/ and F.v/ only meet at G�1v .x/. Finally,
we will show that the graphs of F.w/, F.u/ and F.v/ have to meet at some point of X ,
implying that G�1u .x/ D G�1v .x/, as desired.

Let us denote by Œ0; 1� 3 t 7! ut ; vt 2 E2! the d2-geodesics joining u0 WD u to u1 WDw,
respectively v0 WD v to v1 WD w. From Proposition 3.4 it follows that

PF.u0/ D Pu0 ıGu; PF.v0/ D Pv0 ıGv: (14)

On account of (6) there exists a small enough ı > 0 in the statement of Proposition
3.6 such that uC ı.t C t2=2/�x � ut and v C ı.t C t2=2/�x � vt for t 2 Œ0; 1�. Using
this, t -convexity and (14), we obtain

F.w/ � F.u/ � PF.u0/ D Pu0 ıGu � ı�x ıGu;

F .w/ � F.v/ � PF.v0/ D Pv0 ıGv � ı�x ıGv:

Due to (13) these two estimates imply the existence of a unique y 2X and a unique z 2X
such that

F.w/.y/ � F.u/.y/ D 0 and F.w/.z/ � F.v/.z/ D 0: (15)
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In fact, we need to have y D G�1u .x/ and z D G�1v .x/. In particular, the graphs of F.w/
and F.u/ only meet at y, and the graphs of F.w/ and F.u/ only meet at z.

In case y ¤ z, uniqueness of y and z implies that y 2 ¹F.u/ > F.v/º and z 2
¹F.v/ > F.u/º (recall that F.w/ � max.F.u/; F.v/). This implies that the graphs of
F.w/ and max.F.u/; F.v// meet at only two points (y and z), away from the compact
set ¹F.u/D F.v/º. Consequently, using classical Richberg approximation [16, Chapter I,
Lemma 5.18], one can take a “regularized maximum” of F.u/ and F.v/ to obtain ˇ 2H!

satisfying
F.w/ � ˇ � max.F.u/; F.v//:

Since F W H! ! H! is surjective, there exists a unique ˛ 2 H! such that F.˛/ D ˇ.
Using (13) again, we obtain

max.u; v/C ı�x D w � ˛ � max.u; v/:

Sinceru.x/¤rv.x/ andw.x/D ˛.x/Dmax.u;v/.x/, this contradicts the smoothness
of ˛ at x. Consequently, G�1u .x/ D y D z D G�1v .x/, as desired.

In case ru.x/Drv.x/, one finds q 2H! (via a small perturbation) such that u.x/D
v.x/D q.x/ and ru.x/¤ rq.x/ along with rv.x/¤ rq.x/. By the above, G�1u .x/D

G�1q .x/ andG�1v .x/D G�1q .x/, ultimately givingG�1u .x/D G�1v .x/ for any u; v 2H! .
Let f WD Gw for (any) w 2 H! . Using Theorem 2.1, integration along the curve

t 7! tu gives

F.u/ � F.0/ D

Z 1

0

.u ı f / dt D u ı f; u 2 H! : (16)

Returning to the statement of Theorem 2.1, we either have f �!u D !F.u/ for all u 2H! ,
or f �!u D �!F.u/ for all u 2 H! .

Assuming that f �!u D !F.u/, using (16) we arrive at the identity

f �.i@N@u/ D i@N@.u ı f /:

Since after a dilation all elements of C1.X/ land in H! , we find that actually

f �.i@N@v/ D i@N@.v ı f / for all f 2 C1.X/.

According to the next lemma f has to be holomorphic, implying that F D Lf (see Sec-
tion 2.3).

In case f �!u D �!F.u/, by a similar calculation we arrive at f �.i@N@v/ D
�i@N@.v ı f / for all v 2 C1.X/. According to the next lemma f has to be anti-
holomorphic, showing that F D Nf (see Section 2.3), which finishes the proof.

Lemma 3.8. Suppose that g W X ! X is a smooth map.

(i) If i@N@.u ı g/ D g�.i@N@u/ for all u 2 C1.X/ then g is holomorphic.

(ii) If i@N@.u ı g/ D �g�.i@N@u/ for all u 2 C1.X/ then g is anti-holomorphic.
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Proof. We only show (i) as the proof of (ii) is analogous. We start with the following
computations expressed in local coordinates:

i@N@.u ı g/ D i
@2.u ı g/

@zj @zk
dzj ^ dzk D i

@2u

@za@zb

�
@ga

@zj

@gb

@zk
C
@ga

@zk

@gb

@zj

�
dzj ^ dzk

C i
@2u

@za@zb

@ga

@zj

@gb

@zk
dzj ^ dzk C i

@2u

@za@zb

@ga

@zj

@gb

@zk
dzj ^ dzk

C i
@u

@zb

@2gb

@zj @zk
dzj ^ dzk C i

@u

@zb

@2gb

@zj @zk
dzj ^ dzk : (17)

Knowing that g�.i@N@u/ is a .1; 1/ form we also have

g�.i@N@u/ D i
@2u

@za@zb

�
@ga

@zj

@gb

@zk
�
@ga

@zk

@gb

@zj

�
dzj ^ dzk : (18)

Clearly, it is enough to show that g is holomorphic in local coordinate charts. By linearity,
i@N@.u ı g/ D g�.i@N@u/ holds for complex valued smooth functions u.

Let x 2 X , and pick u such that in a coordinate neighborhood of x we have u.z/D zb
for some b 2 ¹1; : : : ; nº. Then i@N@.u ı g/ D g�.i@N@u/ gives @2gb=@zj @zk D 0 for all
j; k 2 ¹1; : : : ; nº at x. Similarly, after choosing u.z/D zb; b 2 ¹1; : : : ; nº in a coordinate
neighborhood of x, we obtain @2gb=@zj @zk D 0 for all j;k 2 ¹1; : : : ; nº at x. Since x 2X
was arbitrary, the terms in the last line of (17) vanish for any choice of u.

Repeating this reasoning for u.z/D zazb and u.z/D Nza Nzb , we conclude that the terms
in the second line of (17) vanish as well, for any choice of u.

Revisiting the identity i@N@.u ı g/ D g�.i@N@u/ one more time, after picking u such
that i@N@u is positive definite in a neighborhood of x 2 X , we find that @ga=@zj D 0 for
any a; j 2 ¹1; : : : ; nº at x, implying that g is indeed holomorphic.

4. Proofs of Theorems 1.4 and 1.5

We start with a lemma about the concatenation of geodesics in E2! :

Lemma 4.1. Suppose that Œ�1; 0� 3 t 7! vt 2 E2! and Œ0; 1� 3 t 7! ut 2 E2! are d2-
geodesics such that u0 D v0 2 H! and Pu0 D Pv0 2 L2.!n/. Then Œ�1; 1� 3 t 7!

wt 2 E2! , the concatenation of the curves t 7! ut and t ! vt , is the d2-geodesic joining
v�1; u1 2 E2! .

Proof. By possibly changing the background metric, we can assume that u0 D v0 D 0.
From the L2 version of [1, Lemma 3.4(ii)] (whose proof is identical to the L1 version,
presented in [1]) we obtain

d2.v�1; 0/
2
D

Z
X

j Pu0j
2!n D

Z
X

j Pv0j
2!n D d2.0; u1/

2: (19)
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Next we point out that for any a 2 Œ�1; 0� and b 2 Œ0; 1� we have

d2.va; ub/ D d2.va; 0/C d2.0; ub/: (20)

Indeed, from the triangle inequality we see that d2.va; ub/ � d2.va; 0/C d2.0; ub/. The
reverse inequality follows from (19) and [14, Theorem 3.1]:

d2.va; 0/C d2.0; ub/ D

�Z
X

j.b � a/ Pu0j
2!n

�1=2
� d2.va; ub/:

To finish the proof, due to uniqueness of d2-geodesic segments, we only need to show
that for any a; b 2 Œ�1; 1� with a < b we have

d2.wa; wb/ D
b � a

2
d2.v�1; u1/ D .b � a/d2.0; u1/ D .b � a/d2.v�1; 0/: (21)

The last two identities follow from (20) and (19).
Regarding the first identity, since t 7! ut and t 7! vt are d2-geodesics, we only need

to treat the case a 2 Œ�1; 0� and b 2 Œ0; 1�. Since wa D va and wb D vb , this follows
from (20) and the last two identities of (21).

Proof of Theorem 1.5. By changing the background metric, we can assume without loss
of generality that �0 D 0. From (6) it follows that t 7! �t C Ct is a d2-geodesic for any
C 2 R. As a result, we can also assume that �1 � 0.

To derive a contradiction, let us further assume that there exists a d2-geodesic Œ�";1�3
t 7! �t 2 E2! , as described in the statement of the theorem.

First we show that ��" � 0. This is a simple consequence of t -convexity. By the results
of [11] (see the discussion near (7)) there exists a set Z � X of measure zero such that
for all x 2 X nZ the map t 7! �t .x/ is convex, �0.x/ D 0, limt%1 �t .x/ D �1.x/ � 0,
and limt&�" �t .x/ D ��".x/. Due to t -convexity, we find that ��".x/ � 0 away from Z.
As ��" is usc, we obtain ��" � 0.

Since ��" is usc, it follows that supX ��" < C1, i.e., ��" 2 L1. Using (6) for the
d2-geodesic joining ��" and �0, it follows that

�t � ��" �
" � t

"
sup
X

��"; t 2 Œ�"; 0/:

Since .�"; 1/ 3 t 7! �t .x/ is t -convex for all x 2X nZ, it follows that the above estimate
extends to t 2 Œ�"; 1�, contradicting the assumption that �1 2 E2! n L

1.

Proof of Theorem 1.4. We can assume without loss of generality that � D 0.
To derive a contradiction, we further assume that there exists a metric L2 symmetry

F W V ! V , as described in the statement of the theorem.
Since V is d2-open, it follows that 0 2 B.0; ı/ � V for some ı > 0, where B.0; ı/

is the d2-ball of radius ı centered at 0. As F is a metric L2 symmetry it follows that
F W B.0; ı/! B.0; ı/ is bijective.
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Let  1 2 B.0; ı/ be such that  1 2 E2! nL
1. One can find such  1 as a consequence

of [10, Theorem 3]. Let Œ0; 1� 3 t 7!  t ; F . t / 2 B.0; ı/ be the d2-geodesics connecting
0 to  1, respectively 0 to F. 1/.

Since F is a metricL2 symmetry, by definition P 0 D� PF. 0/. Consequently, accord-
ing to Lemma 4.1, the concatenation Œ�1;1� 3 t 7!wt 2B.0;ı/ of the curves t 7!F. �t /

and t 7!  t is a d2-geodesic. But then t 7! wt extends t 7!  t at t D 0, contradicting
Theorem 1.5.
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