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Abstract. In this paper, we show that if the mean curvature of a closed smooth embedded mean
curvature flow in R3 is of type-I , then the rescaled flow at the first finite singular time converges
smoothly to a self-shrinker flow with multiplicity one. This result confirms Ilmanen’s multiplicity-
one conjecture under the assumption that the mean curvature is of type-I . As a corollary, we show
that the mean curvature at the first singular time of a closed smooth embedded mean curvature flow
in R3 is at least of type-I .
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1. Introduction

In this paper, we study finite time singularities of closed smooth embedded mean curva-
ture flow in R3. A one-parameter family of hypersurfaces x.p; t/ W †n ! RnC1 is called
a mean curvature flow, if x satisfies the equation

@x
@t
D �Hn; x.0/ D x0; (1.1)

where H denotes the mean curvature of the hypersurface †t WD x.t/.†/ and n denotes
the outward unit normal of †t . In the previous paper [46], we proved that the mean cur-
vature of (1.1) must blow up at the first finite singular time for a closed smooth embedded
mean curvature flow in R3: This paper can be viewed as a continuation of [46], and we
will develop the techniques in [46] further to study the finite time singularities of mean
curvature flow.

1.1. Singularities of mean curvature flow

The mean curvature flow with convexity conditions has been well studied during the
past several decades. In [35], Huisken proved that if the initial hypersurface is uniformly
convex, then after rescaling the mean curvature flow exists for all time and converges
smoothly to a round sphere. When the initial hypersurface is mean-convex or two-convex,
there are a number of estimates for the mean curvature flow (cf. Huisken and Sinestrari
[37, 38], Haslhofer and Kleiner [33]), and these estimates are important to study the
surgery of mean curvature flow (cf. Huisken and Sinestrari [39], Brendle and Huisken [8],
Haslhofer and Kleiner [34]). Moreover, for mean curvature flow with mean convex initial
hypersurfaces, B. White gave some structural properties of the singularities in [58, 59],
and B. Andrews also showed a noncollapsing estimate in [1].

However, all these results rely on convexity conditions of initial hypersurfaces, and it
is very difficult to study general cases. For the curve shortening flow in the plane, follow-
ing the work Gage [28, 29] and Gage and Hamilton [30] on convex curves Grayson [31]
proved that any embedded closed curve in the plane evolves to a convex curve and subse-
quently shrinks to a point, and Andrews and Bryan [2] gave a direct proof of Grayson’s
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theorem without using the monotonicity formula or classification of singularities. In the
higher dimensions, we know very little results without convexity conditions. Colding and
Minicozzi studied the generic singularities of the mean curvature flow in [19,22]. For the
classification of self-shrinkers without convexity conditions, S. Brendle [7] proved that
the round sphere is the only compact embedded self-shrinkers in R3 with genus 0, and
L. Wang [55] showed that each end of a noncompact self-shrinker in R3 of finite topology
is smoothly asymptotic to either a regular cone or a self-shrinking round cylinder. How-
ever, it still remains wide open to understand the behavior of mean curvature flow at the
singular time in the general cases.

1.2. The multiplicity-one conjecture and the main theorems

To study the singularities of mean curvature flow without convexity conditions, Ilmanen
proposed a series of conjectures in [40, 41]. Suppose that the mean curvature flow (1.1)
reaches a singularity at .x0; T / with T < C1: For any sequence ¹cj º with cj !C1;
we rescale the flow (1.1) by

†
j
t WD cj .†TCc�2

j
t � x0/; t 2 Œ�Tc2j ; 0/: (1.2)

By Huisken’s monotonicity formula [36] and Brakke’s compactness theorem [6], a sub-
sequence of †jt converges weakly to a limit flow Tt , which is called a tangent flow at
.x0; T /. In [40] Ilmanen showed that the tangent flow at the first singular time must be
smooth for a smooth embedded mean curvature flow in R3, and he conjectured

Conjecture 1.1 (Ilmanen [40, 41], the multiplicity-one conjecture). For a smooth one-
parameter family of closed embedded surfaces in R3 flowing by mean curvature, every
tangent flow at the first singular time has multiplicity one.

Moreover, Ilmanen pointed out that the multiplicity-one conjecture implies a conjec-
ture on the asymptotic structure of self-shrinkers in R3, and the latter conjecture has been
confirmed recently by L. Wang [55]. If the initial hypersurface is mean convex or sat-
isfies the Andrews condition, then the multiplicity-one conjecture holds (cf. White [58],
Haslhofer and Kleiner [33], Andrews [1]). Recently, A. Sun [52] proved that the generic
singularity of mean curvature flow of closed embedded surfaces in R3 modelled by closed
self-shrinkers with multiplicity has multiplicity one. In general the multiplicity-one con-
jecture is still wide open. It is well known to experts that this conjecture holds if the
second fundamental form A is of type-I . The main contribution of this paper is to con-
firm the multiplicity-one conjecture under the assumption that the mean curvature is of
type-I , which is a much weaker condition.

To state our result, we first introduce some notations. A hypersurface x W †n ! RnC1

is called a self-shrinker if x satisfies the equation

H D
1

2
hx;ni:

If † is a self-shrinker, then we call †t WD
p
�t † .t < 0/ a self-shrinker flow.

The main theorem of this paper is the following result.
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Theorem 1.2. Let x.t/ W †2 ! R3 (t 2 Œ0; T /) a closed smooth embedded mean curva-
ture flow with the first singular time T < C1. If the mean curvature satisfies

max
†t
jH j.p; t/ �

ƒ
p
T � t

for all t 2 Œ0; T /; (1.3)

for someƒ> 0, then for any a; b 2R with�1< a < b < 0 and any sequence cj !C1
there exists a subsequence, still denoted by ¹cj º, such that the flow ¹†jt ; a < t < bº
defined by equation (1.2) converges smoothly to a self-shrinker flow with multiplicity one
as j !C1.

It is not hard to see that Theorem 1.2 is equivalent to the following result.

Theorem 1.3. Let ¹.†2; x.t//; 0 � t < C1º be a closed smooth embedded rescaled
mean curvature flow �

@x
@t

�?
D �

�
H �

1

2
hx;ni

�
n (1.4)

satisfying

d.†t ; 0/ � D and max
†t
jH.p; t/j � ƒ (1.5)

for two constants D;ƒ > 0. Then for any sequence ti !C1 there exists a subsequence
of ¹†tiCt ;�1 < t < 1º such that it converges in smooth topology to a complete smooth
self-shrinker with multiplicity one as i !C1.

In [46], we showed Theorem 1.3 under the assumption that the mean curvature decays
exponentially to zero. In this special case, the flow (1.4) converges smoothly to a plane
passing through the origin with multiplicity one. Theorem 1.3 means that under the as-
sumption that the mean curvature is bounded for all time the flow (1.4) also converges
smoothly to a self-shrinker with multiplicity one. In fact, Theorem 1.3 is not stated with
the optimal condition. Checking the proof carefully, one can see that the conclusion
of Theorem 1.3 still holds under the assumption that the mean curvature is uniformly
bounded on any ball for all time:

max
BR.0/\†t

jH j.p; t/ � CR; (1.6)

where CR is a constant depending on R. Note that if the flow (1.4) converges smoothly
to a self-shrinker with multiplicity one, condition (1.6) automatically holds by the self-
shrinker equation. Thus, condition (1.6) is also necessary for the smooth convergence
of the flow (1.4). Therefore, the solution of the multiplicity-one conjecture, i.e., Conjec-
ture 1.1, is equivalent to the examination of (1.6), which will be an interesting subject of
study in the near future.

The multiplicity-one conjecture is closely related to the extension problem of mean
curvature flow. Huisken [35] proved that if the flow (1.1) develops a singularity at time
T <1, then the second fundamental form will blow up at time T . A natural question is
whether the mean curvature will blow up at the finite singular time of a mean curvature
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flow. Toward this question, A. Cooper [24] proved that jAjjH j must blow up at the sin-
gular time of the flow. In [44] Le and Sesum affirmatively answered this question under
the assumption that the multiplicity-one conjecture holds, or the condition that the second
fundamental form is of type-I at the singular time

max
†t
jAj �

C
p
T � t

for all t 2 Œ0; T /: (1.7)

Furthermore, Le and Sesum [45] proved that the mean curvature is at least of type-I for
a mean curvature flow satisfying (1.7). Using Theorem 1.2, we can remove the type-I con-
dition (1.7) of Le–Sesum’s result as follows, which can also be viewed as an improvement
of the extension theorem in [46].

Corollary 1.4. If x.t/ W †2 ! R3 (t 2 Œ0; T /) is a closed smooth embedded mean cur-
vature flow with the first singular time T < C1, then there is a constant ı > 0 such
that

lim sup
t!T

p
T � t max

†t
jH j � ı for all t 2 Œ0; T /:

1.3. Outline of the proof

Now we sketch the proof of Theorem 1.3. Assume that the mean curvature satisfies the
type-I condition (1.3) along the flow (1.1) and the first singular time T < C1. Then the
mean curvature is uniform bounded along the rescaled flow (1.4). We have to show that
the flow (1.4) converges smoothly to a self-shrinker with multiplicity one. The strategy is
similar to [46], we first show a weak-compactness theorem and obtain the flow conver-
gence is smooth away from a singular set. Then we use stability argument to remove the
singular set. However, the technique here is much more involved. The proof consists of
three steps:

Step 1. Convergence of the rescaled mean curvature flow with multiplicities. In this step,
since the mean curvature is uniformly bounded along the flow, we have the short-time
pseudolocality theorem and the energy concentration property, and we can follow the
arguments in [46] to develop the weak compactness theory of mean curvature flow. How-
ever, compared with [46], since the mean curvature does not decay to zero, we have the
following difficulties:
� No long time pseudolocality theorem.
� The space-time singularities in the limit do not move along straight lines.

Because of lacking these results, we face a number of new technical difficulties to show
the L-stability of the limit self-shrinker. These difficulties force us to use analysis tools
to study the asymptotical behavior of the solution of the limit parabolic equation near the
singular set.

Step 2. Show that the multiplicity of the convergence is one for one subsequence. As
in [46], it suffices to show that the limit self-shrinker is L-stable. By the convergence of
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the flow away from the singular set, if every limit has multiplicity greater than one, we can
renormalize the “height-difference” function to obtain a positive solution of the equation

@w

@t
D �w �

1

2
hx;rwi C jAj2w C

1

2
w; (1.8)

away from the singular set. To show the L-stability of the limit self-shrinker, we have to
show the following two estimates:
� For each time, the asymptotical behavior of w is “good” near the singular set.
� Uniform L1 norm of w independent of time.

By its construction, w is defined on any compact set away from the singular set and we
have no estimates near the singular set by the geometric method. However, we found that
w satisfies many good properties from the PDE point of view. In [42], Kan and Takahashi
studied similar problem for some semilinear parabolic equations along time-dependent
singularities in the Euclidean spaces. Kan and Takahashi showed their result for one time-
dependent singularity, and the solution of the equation looks like log 1

r
in dimension 2,

where r is the distance from any point x to the singularity. However, in our case the
solution of (1.8) may have multiple singularities, and these singularities may coincide at
one point. Thus, we cannot apply Kan–Takahashi’s result directly, and we need to develop
their techniques to show that the solution w is in L1 across the singularities and near the
singular set the solution w roughly looks like

w.x; t/ �

lX
kD1

ck.t/ log
1

rk.x; t/
;

where rk.x; t/ denotes the intrinsic distance from a point x to a singularity �k.t/ at time t .
Here the constant ci may depend on t . In general, theL1 norm ofw may tend to infinity as
t !C1. In order to show uniformL1 norm ofw, we refine the argument in [46] and also
use the estimate of w near the singularities to choose a sequence of time slices ¹tiº, and
then we show that for such a special sequence the corresponding function w has uniform
L1 bound independent of t . Thus, for the special sequence ti , the auxiliary function w
satisfies the two desired estimates. Then we can follow the argument in [46] to show that
the convergence of (1.4) is smooth and of multiplicity one, for the special sequence ¹tiº.

Step 3. Show the multiplicity-one convergence for each subsequence. This step is a new
difficulty beyond [46]. In [46], each limit, no matter what multiplicity it is, must be
a flat plane passing through the origin. Therefore, up to rotation, different limits can be
regarded as the same. By the monotonicity of the entropy, it is clear that if one limit is
a multiplicity-one plane, then each limit must also be a multiplicity-one plane. However,
in the current setting, each limit is only a self-shrinker and the limits may vary as the time
sequences change. A priori, it is possible that one sequence converge to a multiplicity-
one self-shrinker A, and the other sequence converge to a multiplicity two self-shrinker
B ¤ A. This possibility cannot be ruled out by only using the monotonicity of the entropy.
To overcome this difficulty, we essentially use the smooth compactness theorem of self-
shrinkers by Colding and Minicozzi [20]. Since the limit self-shrinkers form a compact
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set, we know that the local behavior of limit self-shrinkers are very close to that of planes
on a fixed small scale. From this and the volume continuity, we derive an argument to
show that the multiplicity is independent of the choice of subsequences. Therefore, every
subsequence converges with multiplicity one.

It is interesting to know whether the above argument still works for the multiplicity-one
conjecture without the mean curvature bound assumption (1.3). The main difficulty is the
loss of pseudolocality result as in [46], since the points in the evolving surfaces may move
drastically if the mean curvature is large. Furthermore, the loss of mean curvature bound
also induces difficulties in applying PDE tools to analyze the singular set. However, as we
discussed around (1.6), it is also logically possible to develop estimate (1.6) directly.

1.4. Relation with other geometric flows

It is interesting to compare the mean curvature flow with the Ricci flow. The extension
problem for Ricci flow has been extensively studied recently. Corollary 1.4 has a cousin
theorem in the Ricci flow. In [54, Theorem 1], it was shown that along the Ricci flow
¹.M; g.t//; 0 � t < T º with the singular time T < C1, we have

max
M
jRicjg.t/ �

ı
p
T � t

; t 2 Œ0; T /; (1.9)

which extends the famous Ricci extension theorem of N. Sesum [51]. Up to rescaling, the
gap inequality (1.9) is equivalent to

max
M
jRicjg.t/ � ı

along the rescaled Ricci flow solution

@tg D �RicC g; t 2 Œ0;1/: (1.10)

Actually, we even believe that a gap for scalar curvature holds for a rescaled Ricci flow
solution. In other words, along the rescaled Ricci flow (1.10) we should have

max
M
jRjg.t/ � ı:

It is easy to see that the scalar extension conjecture of the Ricci flow will hold automati-
cally if one can prove the above inequality along the rescaled Ricci flow (1.10), just like
the extension theorem of mean curvature in [46] follows directly from Corollary 1.4.

The similarity between the regularity theory of rescaled mean curvature flow (1.4) and
the rescaled Ricci flow (1.10) was noticed for a while. For example, such similarity was
discussed in the introduction of [46]. Along the rescaled flows, the mean curvature bound
condition (1.5) is comparable to the scalar curvature bound condition jRj � C . Note
that the Fano Kähler–Ricci flow provides many examples of the global solutions of the
rescaled Ricci flow (1.10) and Perelman showed that jRj � C holds automatically. The
boundedness of the scalar curvature is crucial to study the convergence of Kähler–Ricci
flow to a limit flow (cf. [13, Theorem 1.5], with journal version [14] and [15]). For time-
slice convergence, see Tian and Zhang [53], Bamler [3] and Chen and Wang [11] for
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example. Since (1.5) is the comparable condition of Perelman’s estimates, we can view
Theorem 1.2 as the analogue of the convergence results in the Fano Kähler–Ricci flow.
However, we have to confess that we do not know any non-trivial examples satisfying the
condition (1.5). By non-triviality we mean that the flow (1.4) is neither a self-shrinker nor
convex. It will be very interesting to find out such examples.

The rescaled mean curvature flow can also be compared with the Calabi flow. In [9]
E. Calabi studied the gradient flow of the L2 norm of the scalar curvature among Kähler
metrics in a fixed cohomology class on a compact Kähler manifold, which is now well
known as the Calabi flow. X. X. Chen conjectured that the Calabi flow always exists glob-
ally for any initial smooth Kähler potential. Very recently, Chen and Cheng [10] proved
that the Calabi flow exists as long as the scalar curvature is uniformly bounded. Therefore,
to study the long time existence of Calabi flow, it is crucial to control the scalar curvature,
which is similar to the mean curvature condition (1.5) for the rescaled mean curvature
flow. Assuming the long time existence and the uniform boundedness of the scalar curva-
ture, the current authors and K. Zheng showed the convergence of the Calabi flow in [47],
just as Theorem 1.3 for rescaled mean curvature flow.

1.5. List of notations

In the following, we list the important notations in this paper.
� d.x; y/: the Euclidean distance from x to y. Defined in Definition 2.7.
� Br .p/: the open ball in R3 centered at p with radius r . Defined in Definition 2.1.
� dg.x; y/: the intrinsic distance of .†; g/ from x to y. First appears in the beginning

of Section 4.
� Br .p/: the intrinsic geodesic ball in .†; g/ centered at p with radius r . Defined in

Definition 2.1.
� Cx.Br .p/ \†/: the connected component of Br .p/ \† containing x 2 †: Defined

in Definition 2.1.
� m.x; t/: the multiplicity at .x; t/. Defined in (2.14).
� � : the space-time singular set. Defined in Proposition 2.8.
� �t D ¹x 2 R3 j .x; t/ 2 �º: the singular set at time t . Defined in Proposition 2.8.
� �.t/: a Lipschitz singular curve in � . First appears in Lemma 2.11.
� � W RC ! RC: an increasing positive function. First appears in Definition 3.3.
� j�j: the volume of a set � � R3 with respect to the standard metric on R3. Defined

in Lemma 3.10.
� ��;R.t/: a subset of the limit self-shrinker away from singularities. Defined in (3.23).
� �I : the union of the singular set on a time interval I . Defined in (3.24).
� ui : the height difference function defined in (3.25).
� wi : the normalized difference function defined in (3.27).
� dH : the Hausdorff distance in the Euclidean space.
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� r.x; t/: the intrinsic distance function from x to the singular curve �.t/. Defined
in (4.21).
� rk.x; t/: the intrinsic distance function from x to the singular curve �k.t/. Defined in

(3.88) and Theorem 4.2.
� F

.k/
t .ı/ and A.k/t .ı; �/: a subset around the singularities on the limit self-shrinker.

Defined in (3.98) and (3.99).
� Mk;m.�;„/: a subset of a Riemannian manifold defined in Definition 4.1.
� �t ;Nt : the union of space-time singular curves. Defined in (4.17) and (4.51).
� Qr;t;Nt and OQr;t;Nt : the neighborhood of the singular curves. Defined in (4.18) and (4.51).
� �� : cutoff functions around the singular curves. Defined in Definitions 4.7 and 4.12.
� I� : a functional associated with a singular curve �: Defined in Definition 4.12.
� Qr.x; t/ and Qv.x; t/: defined in Definition 4.12.
� H.z/: a cutoff function defined in Definition 4.7. Note that the function H.z/ is only

used in Section 4. Since the mean curvature does not appear in Section 4, we keep the
same notation H.z/ as in [42].

1.6. The organization

The organization of this paper is as follows. In Section 2 we recall some facts on the
pseudolocality theorem and energy concentration property. Moreover, we will show the
weak compactness of mean curvature flow under some geometric conditions and we show
the multiplicity of the convergence is a constant. In Section 3 we show the rescaled mean
curvature flow with bounded mean curvature converges smoothly to a self-shrinker with
multiplicity one, under the assumption that the auxiliary function satisfies good growth
properties at the singular set. In Section 4 we will show the estimates of the auxiliary
function by developing Kan–Takahashi’s argument. Finally, we finish the proof of Theo-
rem 1.2 in Section 5. In the appendices, we include two versions of the parabolic Harnack
inequality and give the full details on the calculation of the linearized equation of rescaled
mean curvature flow.

2. Weak compactness of refined sequences

2.1. The pseudolocality theorem and energy concentration property

In this subsection, we recall some results in [46]. First, we have the following definition.

Definition 2.1. (1) We denote by Br .p/ the ball in RnC1 centered at p with radius r with
respect to the standard Euclidean metric, and Br .p/ � .M; g/ the intrinsic geodesic ball
on M centered at p with radius r with respect to the metric g.

(2) For any r > 0; p 2 RnC1 and †n � RnC1, we denote by Cx.Br .p/ \†/ the
connected component of Br .p/ \† containing x 2 †:

We first recall the following result of Chen and Yin [16].
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Lemma 2.2 (cf. [16, Lemma 7.1]). Let†n � RnC1 be properly embedded in Br0.x0/ for
some x0 2 † with

jAj.x/ �
1

r0
; x 2 Br0.x0/ \†:

Let ¹x1; : : : ; xnC1º be the standard coordinates in RnC1. Assume that x0 D 0 and the
tangent plane of † at x0 is xnC1 D 0: Then there is a map

u W

²
x0 D .x1; : : : ; xn/

ˇ̌̌̌
jx0j <

r0

96

³
! R

with u.0/ D 0 and jruj.0/ D 0 such that the connected component containing x0 of
† \ ¹.x0; xnC1/ 2 RnC1 j jx0j < r0

96
º can be written as a graph ¹.x0; u.x0// j jx0j < r0

96
º

and
jruj.x0/ �

36

r0
jx0j:

Using Lemma 2.2, we show that the local area ratio of the surface is very close to 1.

Lemma 2.3 (cf. [46, Lemma 3.3]). Suppose that†n � Br0.p/ � RnC1 is a hypersurface
with @† � @Br0.p/ and

sup
†

jAj �
1

r0
:

For any ı > 0, there is a constant �0 D �0.r0; ı/ such that for any r 2 .0; �0/ and any
x 2 Br0=2.p/ \† we have

1 � ı �
vol†.Cx.Br .x/ \†//

!nrn
� 1C ı: (2.1)

Proof. By Lemma 2.2, for any x 2 Br0=2.p/ \† the component Cx.B�0.x/ \†/ with
�0 D

r0
192

can be written as a graph of a function u over the tangent plane at x, which we
assume to be

P D ¹.x1; : : : ; xn; xnC1/ 2 RnC1 j xnC1 D 0º;

with
jruj.x0/ �

72

r0
jx0j;

where x0 D .x1; : : : ; xn/: Let r 2 .0; �0/. Denote by�r the projection ofCx.Br .x/ \†/
to the plane P . Then for any x0 2 @�r we have

u.x0/2 C jx0j2 D r2: (2.2)

On the other hand, for any x0 2 ��0 we have the inequality

ju.x0/j � ju.0/j C max
t2Œ0;1�

jruj.tx0/ � jx0j �
72

r0
jx0j2: (2.3)

Note that (2.2) and (2.3) imply that for any x0 2 @�r ,

jx0j2 � r2 D u.x0/2 C jx0j2 � jx0j2
�
1C

5184

r20
�20

�
: (2.4)
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Thus, we have

Qr WD
rq

1C 5184

r2
0

�20

� jx0j � r for all x0 2 @�r ;

which implies that
BQr .x/ \ P � �r � Br .x/ \ P: (2.5)

Thus, the volume ratio of Cx.Br .x/ \†/ is bounded from above

vol†.Cx.Br .x/ \†//
!nrn

D
1

!nrn

Z
�r

p
1C jruj2 d�

�
1

!nrn

Z
Br .x/\P

p
1C jruj2 d�

�

s
1C

5184

r20
r2; (2.6)

where we used (2.3) and (2.5). Moreover, the volume ratio of Cx.Br .x/ \†/ is bounded
from below

vol†.Cx.Br .x/ \†//
!nrn

�
1

!nrn

Z
BQr .x/\P

p
1C jruj2 d�

�
Qrn

rn
�

�
1C

5184

r20
�20

��n2
: (2.7)

Combining (2.6) with (2.7), for any ı > 0 we can choose �0 D �0.n; ı; r0/ further small
such that (2.1) holds. The lemma is proved.

Next we recall the two-sided pseudolocality theorem in [46]. If the initial hyper-
surface can be locally written as a graph of a single-valued function, then we have the
pseudolocality type results of the mean curvature flow by Ecker and Huisken [26, 27],
M. T. Wang [56], Chen and Yin [16] and Brendle and Huisken [8]. However, in our
case we have to apply the pseudolocality theorem for the hypersurfaces which may con-
verge with multiplicities. Thus, we use the boundedness of the mean curvature to get the
two-sided pseudolocality theorem in [46].

Theorem 2.4 (Two-sided pseudolocality, cf. [46]). For any r0 2 .0; 1�;ƒ; T > 0, there
exist � D �.n;ƒ/; � D �.n;ƒ/ > 0 satisfying

lim
ƒ!0

�.n;ƒ/ D �0.n/ > 0; lim
ƒ!0

�.n;ƒ/ D �0.n/ > 0

and the following properties. Let ¹.†n; x.t//;�T � t � T º be a closed smooth embedded
mean curvature flow (1.1). Assume that

(1) the second fundamental form satisfies jAj.x; 0/ � 1
r0

for any x 2 Cp0.Br0.p0/ \†0/
where p0 D x0.p/ for some p 2 †,

(2) the mean curvature of ¹.†n; xt /;�T � t � T º is bounded by ƒ.
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Then for any .x; t/ satisfying

x 2 Cpt .†t \ B 1
16 r0

.p0//; t 2

�
�

�r20
2.ƒCƒ2/

;
�r20

2.ƒCƒ2/

�
\ Œ�T; T �;

where pt D xt .p/; we have the estimate

jAj.x; t/ �
1

�r0
:

Using the pseudolocality theorem, we have the energy concentration property.

Lemma 2.5 (Energy concentration, cf. [46]). For any ƒ;K; T > 0, there exists a con-
stant �.n;ƒ;K; T / > 0 with the following property. Let ¹.†n; x.t//;�T � t � T º be
a closed smooth embedded mean curvature flow (1.1). Assume that

max
†t�Œ�T;T �

jH j.p; t/ � ƒ:

Then we have Z
†0\BQ�1 .q/

jAjn d�0 � �.n;ƒ;K; T /

whenever q 2 †0 with Q WD jAj.q; 0/ � K:

A direct corollary of Lemma 2.5 is the following �-regularity of the mean curvature
flow, which can be viewed as a generalization of the result of Choi and Schoen [17].

Corollary 2.6 (�-regularity, cf. [46]). There exists �0.n/ > 0 satisfying the following
property. Let ¹.†n; x.t//;�1 � t � 1º be a closed smooth embedded mean curvature flow
(1.1). Suppose that the mean curvature satisfies

max
†t�Œ�1;1�

jH j.p; t/ � 1:

For any q 2 †0, if Z
†0\Br .q/

jAjn d�0 � �0.n/

for some r > 0, then we have

max
B r
2
.q/\†0

jAj � max
²
1;
2

r

³
:

2.2. Weak compactness

As in [46], we use the pseudolocality theorem and the energy concentration property
to develop the weak compactness of the mean curvature flow. Here we will replace the
zero mean curvature condition in [46] by the boundedness of the mean curvature in the
definition of refined sequences. By “refined” we mean that the sequence is taken after
a point-selecting process such that many good properties already hold for the objects in
this sequence. The name of refined sequence originates from [12].
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Definition 2.7 (Refined sequences). Let ¹.†2i ; xi .t//;�1 < t < 1º be a one-parameter
family of closed smooth embedded surfaces satisfying the mean curvature flow equa-
tion (1.1). It is called a refined sequence if the following properties are satisfied for
every i :
(1) There exists a constant D > 0 such that d.†i;t ; 0/ � D for any t 2 .�1; 1/, where

d.†; 0/ denotes the Euclidean distance from the point 0 2 R3 to the surface † � R3

and †i;t D xi .t/.†i /.
(2) There is a uniform constant ƒ > 0 such that

max
†i;t�.�1;1/

jH j.p; t/ � ƒ: (2.8)

(3) There exists an increasing positive function � W RC ! RC such that for any R > 0;Z
†i;t\BR.0/

jAj2 d�i;t � �.R/ for all t 2 .�1; 1/: (2.9)

(4) There is uniform N > 0 such that for all r > 0 and p 2 R3 we have

Areagi .t/.Br .p/ \†i;t / � N�r
2 for all t 2 .�1; 1/: (2.10)

(5) There exist uniform constants Nr; � > 0 such that for any r 2 .0; Nr� and any p 2 †i;t
we have

Areagi .t/.Br .p/ \†i;t / � �r
2 for all t 2 .�1; 1/: (2.11)

(6) There exists T > 1 such that

lim
i!C1

Z 1

�1

dt

Z
†i;t

e�
jxi j
2

4.T�t/

ˇ̌̌̌
Hi �

1

2.T � t /
hxi ;ni

ˇ̌̌̌2
d�i;t D 0:

Following the arguments as in minimal surfaces (cf. White [57], or Colding and
Minicozzi [18]), we have the weak compactness for mean curvature flow.

Proposition 2.8. Let ¹.†2i ; xi .t//;�1 < t < 1º be a refined sequence. Then there exists
a subsequence, still denoted by ¹.†2i ; xi .t//;�1 < t < 1º, a smooth self-shrinker flow
¹.†1; x1.t//;�1 < t < 1º satisfying

H D
1

2.T � t /
hx1;ni; (2.12)

for some T > 1, and a space-time singular set � D ¹.x; t/ j t 2 .�1; 1/; x 2 R3º satis-
fying the following properties:

(1) The sequence ¹.†2i ; xi .t//;�1 < t < 1º converges locally smoothly, possibly with
multiplicity at most N0, to ¹.†1; x1.t//;�1 < t < 1º away from � .

(2) For each time t 2 .�1; 1/ the singular set �t D ¹x 2 R3 j .x; t/ 2 �º is locally finite
in the sense that ]¹�t \ BR.0/º is uniformly bounded by a number depending only
on �.R/.

(3) The sequence in (1) also converges in extrinsic Hausdorff distance.
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Proof. We first show that after taking a subsequence if necessary, †i;0 converges locally
smoothly to †1;0 away from a locally finite set �0: To this end, fix large R > 0 and
let � D BR.0/ � R3. By property (1) in Definition 2.7, we have †i;t \� ¤ ; for large
R > 0 and any t 2 .�1; 1/. For any U � �, we define the measures �i by

�i .U / D

Z
U\†i;0

jAi j
2 d�i;0 � �.R/;

where we used (2.9) in the inequality. The general compactness of Radon measures
implies that there is a subsequence, which we still denote by �i , converges weakly to
a Radon measure � with �.�/ � �.R/: We define the set

�0 D ¹x 2 � j �.x/ � �0º;

where �0 is the constant in Corollary 2.6. It follows that the set �0 contains at most �.R/
�0

points. Given any point y 2 �n�0, there exists some s > 0 such that B10s.y/ � � and
�.B10s.y// < �0: Since �i ! �, for i sufficiently large we haveZ

B10s.y/\†i;0

jAi j
2 d�i;0 < �0:

Corollary 2.6 implies that for i sufficiently large we have the estimate

max
B5s.y/\†i;0

jAj.x; 0/ � max
²
1;
1

5s

³
:

By Theorem 2.4 and (2.8) , there exists � D �.s; n/ > 0 such that

max
B�r0 .y/\†i;t

jAj.x; t/ �
1

�r0
for all t 2 Œ��r20 ; �r

2
0 �; (2.13)

where r0 D 5s: Therefore, for large i we have all higher order estimates of the second fun-
damental form at any point in †i;0nB2r0.�0/, where Br .�0/ D ¹x 2 R3 j d.x; �0/ � rº.
Using a diagonal sequence argument and taking s ! 0, we can show that a subsequence
of†i;0 converges in smooth topology, possibly with multiplicities, to a limit surface†1;0
away from the singular set �0: Properties (2.10)–(2.11) imply that the multiplicity of the
convergence is bounded by a constant N0.

Note that by (2.13) the second fundamental form is uniformly bounded for any point
.x; t/ 2 .†i;tnB2r0.�0// � .Œ��r

2
0 ; �r

2
0 � \ .�1; 1//: By compactness of mean curvature

flow (cf. [46, Theorem 2.6]), the flow ¹†i;tnB2r0.�0/; t 2 .��r
2
0 ; �r

2
0 / \ .�1; 1/º con-

verges smoothly to a limit flow ¹†1;tnB2r0.�0/; t 2 .��r
2
0 ; �r

2
0 /\ .�1; 1/º and by prop-

erty (6) in Definition 2.7 †1;tnB2r0.�0/ satisfies the self-shrinker equation (2.12) for
t 2 .��r20 ; �r

2
0 / \ .�1; 1/º. We can also replace t D 0 by any other t0 2 .�1; 1/ and

the above argument still works for the time interval .��r20 C t0; �r
2
0 C t0/ \ .�1; 1/:

Since r0 D 5s > 0 is arbitrary small, by using a diagonal sequence argument and tak-
ing s ! 0 we have that ¹.†2i ; xi .t//;�1 < t < 1º converges locally smoothly to the
flow ¹.†1; x1.t//;�1 < t < 1º away from � and †1;t satisfies equation (2.12). Note
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that †1 is a self-shrinker in R3 and it can be viewed as a minimal surface in .R3; gij /
with

gij D e
�
jxj2

4 ıij :

Thus, we can follow the argument in minimal surfaces (cf. White [57], or Colding and
Minicozzi [18]) to show that †1;t [ �t is smooth and embedded and †i;t converges to
†1;t in Hausdorff distance. The proposition is proved.

As in [46], we show that the multiplicity in Proposition 2.8 is constant. To study the
multiplicity, we define a function

‚.x; r; t/ WD lim
i!C1

Areagi .t/.†i;t \ Br .x//
�r2

for all .x; t/ 2 †1;t � .�1; 1/:

Then the multiplicity at .x; t/ 2 †1;t � .�1; 1/ is defined by

m.x; t/ WD lim
r!0

‚.x; r; t/: (2.14)

It is clear that m.x; t/ is an integer. In the following result, we show that m.x; t/ is
independent of x and t . Note that in [46, Lemma 3.14] we proved the same result under
the assumption that the mean curvature decays exponentially to zero. The first two steps
of the proof here are similar to that of [46] while the third step is different. We give all the
details for completeness.

Lemma 2.9. Under the assumption of Proposition 2.8, the function m.x; t/ is a constant
integer on †1;t � .�1; 1/. Namely, m.x; t/ is independent of x and t .

Proof. The proof can be divided into three steps.

Step 1. For each t 2 .�1; 1/, m.x; t/ is constant on †1;tn�t . Fix t0 2 .�1; 1/; R > 0
and x0 2 .†1;t0 \ BR.0//n�t0 . There exists r0 > 0 such that for large i ,

jAj.x; t0/ �
1

r0
for all x 2 Br0.x0/ \†1;t0 : (2.15)

By Lemma 2.2, we can assume r0 small such that Br0.x0/ \†1;t0 can be written as
a graph over the tangent plane of†1;t0 at x0. Since x0 is regular, we have d.x0; �t0/ > 0.
Let r1 D 1

4
min¹r0; d.x0; �t0/º. For any p 2 Br1.x0/\†i;t0 , we haveBr1.p/�Br0.x0/.

Thus, (2.15) implies that for large i;

jAj.x; t0/ �
1

r1
for all x 2 Br1.p/ \†i;t0 :

By Lemma 2.3, for any ı > 0 there exists �0 D �0.r1; ı/ 2 .0; r1200 / such that for any
r 2 .0; �0/ and any p 2 Br1=2.x0/ \†i;t0 we have

1 � ı �
Areagi .t0/.Cp.Br .p/ \†i;t0//

�r2
� 1C ı: (2.16)

Suppose that Br1.x0/ \†i;t0 has mi connected components, where mi is an integer
bounded by a constant independent of i by Proposition 2.8. After taking a subsequence
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of ¹†i;t0º if necessary, we can assume that mi are the same integer denoted by m with
m � 1: For any x 2 Br1=2.x0/ \†1;t0 , we denote by ˛x the normal line passing through
x of †1;t0 . Since each component of Br1.x0/ \†i;t0 converges to Br1.x0/ \†1;t0
smoothly and Br1.x0/ \†1;t0 is a graph over the tangent plane of †1;t0 at x0, ˛x
intersects transversally each component of †i;t0 at exactly one point. Suppose that

˛x \ .Br1.x0/ \†i;t0/ D ¹p
.1/
i ; p

.2/
i ; : : : ; p

.m/
i º:

Then (2.16) implies that for any integer j with 1 � j � m and any r 2 .0; �0/,

1 � ı �
Areagi .t0/.Cp.j/

i

.Br .p
.j /
i / \†i;t0//

�r2
� 1C ı: (2.17)

After shrinking r0 if necessary, we can assume that Br .x/ \†1;t0 has only one com-
ponent for any r 2 .0; r1

2
/ and any x 2 Br1=2.x0/ \†1;t0 . Since for any 1 � j � m

and r 2 .0; �0/ we have p.j /i ! x and Cp.j/
i
.Br .p

.j /
i / \†i;t0/ converges smoothly to

Br .x/ \†1;t0 as i !C1, (2.17) implies that

m.1 � ı/ � lim
i!C1

Areagi .t0/.Br .x/ \†i;t0/
�r2

� m.1C ı/:

In other words, for any x 2 Br1=2.x0/ \†1;t0 and any r 2 .0; �0/ we have

m.1 � ı/ � ‚.x; r; t0/ � m.1C ı/: (2.18)

Taking r ! 0 in (2.18), we have

m.x; t0/ D m for all x 2 Br1=2.x0/ \†1;t0 :

By the connectedness of †1;t0n�t0 , we know that m.x; t0/ is constant on †1;t0n�t0 .

Step 2. For each t 2 .�1; 1/, m.x; t/ is constant on †1;t . Fix t0 2 .�1; 1/. It suffices to
consider a singular point p0 2 �t0 . Suppose that Br .p0/ \†1;t0 has no other singular
points except p0 for any r 2 .0; r0/: Then all points in .Br .p0/nB�.p0// \†1;t0 are
regular and .Br .p0/nB�.p0// \†i;t0 has m connected components. Thus, we have

Areagi .t0/.†i;t0 \ Br .p0// � Areagi .t0/.†i;t0 \ .Br .p0/nB�.p0///

C Areagi .t0/.†i;t0 \ B�.p0//

� Areagi .t0/.†i;t0 \ .Br .p0/nB�.p0///CN�
2 (2.19)

and used (2.10) in the last inequality. Since each component of †i;t0 \ .Br .p0/nB�.p0//
converges to .Br .p0/nB�.p0// \†1 smoothly, we have

lim
i!C1

Areagi .t0/.†i;t0 \ .Br .p0/nB�.p0///

D mAreag1.t0/.†1;t0 \ .Br .p0/nB�.p0///: (2.20)

Note that m is also the multiplicity at each regular point in †1;t0 by Step 1. Combining



On Ilmanen’s multiplicity-one conjecture 17

estimates (2.19) with (2.20), we have

mAreag1.t0/.†1;t0 \ .Br .p0/nB�.p0///
� lim
i!C1

Areagi .t0/.†i;t0 \ Br .p0//

� mAreag1.t0/.†1;t0 \ .Br .p0/nB�.p0///CN�
2: (2.21)

Taking � ! 0 in (2.21), we have

lim
i!C1

Areagi .t0/.†i;t0 \ Br .p0// D mAreag1.t0/.†1;t0 \ Br .p0//:

Thus, we have

m.p0; t0/ D lim
r!0

Areagi .t0/.†i;t0 \ Br .p0//
�r2

D m lim
r!0

Areag1.t0/.†1;t0 \ Br .p0//
�r2

D m:

This implies that the multiplicity of each singular point is the same as that of any regular
point.

Step 3. The function m.x; t/ is constant in t . Fix any t0 2 .�1; 1/, radius R > 0 and
x0 2 .†1;t0 \ BR.0//n�t0 . There exists r0 > 0 such that for large i ,

jAj.x; t0/ �
1

r0
for all x 2 Br0.x0/ \†1;t0 ; (2.22)

and for any radius r 2 .0; r0/ the surface Br .x0/ \†1;t0 has only one component. Let
m0 D m.x0; t0/ and r1 D 1

4
min¹r0; d.x0; �t0/º > 0. For large i , Br1.x0/ \†i;t0 has

m0 connected components, which we denote by �i;1; : : : ; �i;m0 . Since for each integer
k 2 Œ1;m0� the component �i;k converges smoothly to †1;t0 \ Br1.x0/ as i !C1,
similar to Step 1, we can find xi;k 2 �i;k such that limi!C1 d.xi;k ; x0/ D 0. By the
choice of r1, we have

Br1.xi;k/ � Br0.x0/: (2.23)

Thus, (2.22) implies that for any integer k 2 Œ1;m0� and large i ,

jAj.x; t0/ �
1

r1
for all x 2 Cxi;k .Br1.xi;k/ \†i;t0/: (2.24)

By Lemma 2.3, for any ı > 0 there exists �0 D �0.r1; ı/ 2 .0; r12 / such that for any
r 2 .0; �0/ we have

1 � ı �
Areagi;t0 .Cxi;k .Br .xi;k/ \†i;t0//

�r2
� 1C ı: (2.25)

Note that by (2.23) and the definition of �i;k , for any large i we have

Cxi;k .B2�0.xi;k/ \†i;t0/ ¤ Cxi;k0 .B2�0.xi;k0/ \†i;t0/ for all k ¤ k0: (2.26)

Using (2.24) and the assumption that max†i;t jH j � ƒ by (2.8), Theorem 2.4 implies that
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there exists �.ƒ/ and �.ƒ/ > 0 such that

jAj.x; t/ �
1

� r1
for all x 2 Cxi;k;t .B 1

16 r1
.xi;k;t / \†i;t /; t 2 Œt0 � �r

2
1 ; t0 C �r

2
1 �;

where xi;k;t D xt .x�1t0 .xi;k//. Similar to (2.25), there exists �1 D �1.r1; ı/ 2 .0;
�0
10
/ such

that for any r 2 .0; �1/ we have

1� ı �
Areagi;t .Cxi;k;t .Br .xi;k;t / \†i;t //

�r2
� 1C ı; t 2 Œt0 � �r

2
1 ; t0C �r

2
1 �: (2.27)

We show that we can choose �1 and � D �.r0; ı;ƒ/ 2 .0; �r21 � small such that for
any k ¤ k0,

Cxi;k;t .B�1.xi;k;t /\†i;t / ¤ Cxi;k0;t .B�1.xi;k0;t /\†i;t /; t 2 Œt0 � �; t0 C ��: (2.28)

Suppose not, we can find �0 2 .0; �r21 �, a continuous curve �0.s/ (s 2 Œ0; 1�) connecting
xi;k;t0C�0 and xi;k0;t0C�0 with

�0 � B�1.xi;k;t0C�0/ \†i;t0C�0 ; �0 � B�1.xi;k0;t0C�0/ \†i;t0C�0 : (2.29)

Let � D xt0C� .x�1t0C�0.�0//. Then 0.s/.s 2 Œ0; 1�/ is a curve connecting xi;k and xi;k0 .
Since the mean curvature satisfies max†i;t jH j � ƒ, we have

jx.p; t/ � x.q; t/j � jx.p; s/ � x.q; s/j C 2ƒjt � sj: (2.30)

For small �0, (2.30) with (2.29) implies that

0 � B�0.xi;k/ \†i;t0 ; �0 � B�0.xi;k/ \†i;t0 ;

which contradicts (2.26). Therefore, (2.28) holds.
Since xi;k 2 Br1.x0/ and the mean curvature is uniformly bounded, it follows that the

point xi;k;t lies in a bounded domain for any t 2 Œt0 � �; t0 C ��. Thus, for each integer
k 2 Œ1;m0� and any t 2 Œt0 � �; t0 C �� a subsequence of Cxi;k;t .B�1.xi;k;t / \†i;t / con-
verges to Cxt .B�1.xt / \†1;t / smoothly, where xt 2 †1;t is a limit point of ¹xi;k;tº1iD1.
Then (2.27) and (2.28) imply that for any r 2 .0; �1/ and t 2 Œt0 � �; t0 C �� we have

lim
i!C1

Areagi .t/.Br .xi;t / \†i;t /
�r2

� lim
i!C1

Areagi .t/.Cxi;t .Br .xi;t / \†i;t //
�r2

� m0.1 � ı/:

Thus, we have

m.xt ; t / � m0 D m.x0; t0/ for all t 2 Œt0 � �; t0 C ��: (2.31)

By Step 2, (2.31) implies that for any x 2 †1;t and y 2 †1;t0 we have

m.x; t/ � m.y; t0/ for all t 2 Œt0 � �; t0 C ��:

Thus, the multiplicity m.x; t/ is a constant independent of x and t . The lemma is thus
proved.
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To characterize the singular and regular points in †1;t , we have the following result.

Lemma 2.10. The same assumption as in Proposition 2.8. Fix any t0 2 .�1; 1/ and any
ı; R > 0.

(1) If x0 2 .†1;t0 \ BR.0//n�t0 and xi 2 †i;t0 with xi ! x0, there exists a positive
number r 0 D r 0.ı;†1;t0 ; R; x0; �t0/ such that for any r 2 .0; r 0/ we have

1 � ı � lim
i!C1

Areagi .t0/.Cxi .Br .xi / \†i;t0//
�r2

� 1C ı: (2.32)

(2) If x0 2 �t0 \ BR.0/, there exist r 0 D r 0.ı;†1;t0 ; R;ƒ; x0; �t0/ > 0 and a sequence
xi 2 †i;t0 with xi ! x0 such that for any r 2 .0; r 0/ we have

lim
i!C1

Areagi .t0/.Cxi .Br .xi / \†i;t0//
�r2

� 2.1 � ı/:

Proof. (1) Since†1;t0 is a smooth self-shrinker, there exists r0 D r0.†1;t0 ; R/ > 0 such
that for large i we have

jAj.x; t0/ �
1

r0
for all x 2 Br0.x0/ \†1;t0 :

Since �t0 is locally finite and x0 2 .†1;t0 \ BR.0//n�t0 , the distance from x0 to �t0
satisfies d.x0; �t0/ > 0: Let r1 D 1

2
min¹r0; d.x0; �t0/º. Then for large i , we have

jAj.x; t0/ �
1

r1
for all x 2 Br1.xi / \†i;t0 :

By Lemma 2.3, for any ı > 0 there exists r 0 D �.ı; r1/ > 0 such that for any r 2 .0; r 0/
the area ratio of Cxi .Br .xi / \†i;t0/ is given by

1 � ı �
Areagi;t0 .Cxi .Br .xi / \†i;t0//

�r2
� 1C ı:

Thus, (2.32) holds.
(2) Let x0 2 �t0 \ BR.0/ and r0 D r0.†1;t0 ; R; x0; �t0/ > 0 such that the surface

†1;t0 \ B2r0.x0/ has only one component and no other singular points except x0: Let

Qi WD max
Br0 .x0/\†i;t0

jAj ! C1:

Then Qi is achieved by some point xi 2 Br0.x0/ \†i;t0 with xi ! x0: As in Step 2 of
the proof of Lemma 2.9, for any r 2 .0; r0/ we have

lim
i!C1

Areagi .t0/.Cxi .Br .xi / \†i;t0//
�r2

D m
Areag1.t0/.Br .x0/ \†1;t0/

�r2
; (2.33)

wherem is a positive integer. Note that Lemma 2.3 implies that for any ı > 0 there exists
r 00 D r

0
0.ı;†1;t0 ; R; x0; �t0/ 2 .0; r0/ such that

Areag1.t0/.Br .x0/ \†1;t0/
�r2

� 1C ı for all r 2 .0; r 00�: (2.34)
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Assume that m D 1. Then (2.34) and (2.33) imply that for large i ,

Areagi .t0/.Cxi .Br 0.xi / \†i;t0//

�r 02
� 1C 2ı for all r 2 .0; r 00�: (2.35)

We choose r 0 D r 0.ı;†1;t0 ; R;ƒ; x0; �t0/ 2 .0; r
0
0/ small such that

.1C 2ı/eƒr
0

� 1C 3ı:

Since the mean curvature satisfies max†i;t�.�1;1/ jH j � ƒ, by [46, Lemma 3.5] for any
r 2 .0; r 0/ we have

Areagi .t0/.Cxi .Br .xi / \†i;t0//
�r2

� eƒr
0 Areagi .t0/.Cxi .Br 0.xi / \†i;t0//

�r 02

� 1C 3ı; (2.36)

where we used (2.35). We rescale the surface by

Q†i;s D Qi .†i;t0CQ�2i s � xi / for all s 2 .�.1C t0/Q2
i ; .1 � t0/Q

2
i /:

Then ¹ Q†i;s;�1 < s < 1º is a sequence of mean curvature flow with

max
Q†i;s�.�1;1/

jH j � Q�1i ƒ! 0:

By the choice of Qi we have

sup
C0. Q†i;0\B 1

2
Qi r0

.0//

jAj � 1:

By [46, Theorem 3.8], there exists a universal constant � such that

sup
C0. Q†i;s\B 1

4
Qi r0

.0//

jAj �
1

�
for all s 2 .�1; 1/:

Thus, by the compactness of mean curvature flow (cf. [46, Theorem 2.6]) the surface
C0. Q†i;0 \ BQi r0=2.0// converges in smooth topology to a complete smooth minimal
surface Q†1 with

sup
Q†1

jAj � 1; jAj.0/ D 1: (2.37)

Since (2.36) implies that

Area Qgi .0/.C0.Br .0/ \ Q†i;0//
�r2

� 1C 3ı for all r 2 .0;Qir 0/;

we have
Area Qg1.0/.C0.Br .0/ \ Q†1//

�r2
� 1C 3ı for all r > 0:

By [46, Lemma 3.6], there exists a universal constant ı0 > 0 such that if we choose
ı D ı0

4
, then Q†1 must be a plane, which contradicts (2.37).
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Therefore,m � 2 in (2.33) for any r 2 .0; r 0/, where r 0 D r 0.ı;†1;t0 ; R;ƒ; x0; �t0/.
By Lemma 2.3 we can find r1 D r1.ı;†1;t0 ; R;ƒ; x0; �t0/ 2 .0; r

0/ such that for any
r 2 .0; r1/,

Areag1.t0/.Br .x0/ \†1;t0/
�r2

� 1 � ı:

Since m � 2, for any r 2 .0; r1/ we have

lim
i!C1

Areagi .t0/.Cxi .Br .xi / \†i;t0//
�r2

D m
Areag1.t0/.Br .x0/ \†1;t0/

�r2
� 2.1 � ı/:

The lemma is proved.

Using the boundedness of the mean curvature and Lemma 2.10, we show that the
singular set � consists of locally finitely many Lipschitz curves.

Lemma 2.11. Fix large R > 0: Under the assumption of Proposition 2.8, the singular
set � is the union of locally finitely many space-time singular curves, i.e.,

� \ .BR.0/ � .�1; 1// D

l[
kD1

¹.�k.t/; t/ j t 2 .�1; 1/; �k.t/ 2 BR.0/ \ �tº;

where �t is defined in Proposition 2.8 and ¹�k.t/ºlkD1 are ƒ0-Lipschitz curves, i.e.,

j�k.t1/ � �k.t2/j � ƒ
0
jt1 � t2j for all t1; t2 2 .�1; 1/:

Here ƒ0 depends only on the constant ƒ in (2.8).

Proof. For any t1 2 .�1; 1/ and any point pt1 2 �t1 \ BR.0/, we show that there exists
a Lipschitz curve in � passing through pt1 . Since pt1 is singular, by Lemma 2.10 we can
find a sequence of points pi;t1 2 †i;t1 and r 0 D r 0.†1;t1 ; R;ƒ; pt1 ; �t1/ > 0 such that
pi;t1 ! pt1 and for any r 2 .0; r 0/,

lim
i!C1

Area.Cpi;t1 .Br .pi;t1/ \†i;t1//

�r2
�
7

4
: (2.38)

We choose �0 > 0 and M0 D 200 such that

e�2ƒ
2�0

�
1C

2

M0

��2
�
6

7
; M0ƒ�0 < r

0: (2.39)

Let t2 2 .t1 � �0; t1 C �0/ \ .�1; 1/ and r1 DM0ƒjt2 � t1j. Then r1 < M0ƒ�0 < r
0.

By [46, Lemma 3.4] we have

Area.Cpi;t2 .Br2.pi;t2/ \†i;t2//

�r22

� e�ƒ
2jt2�t1j

�
1C

2ƒ

r1
jt2 � t1j

��2Area.Cpi;t1 .Br1.pi;t1/ \†i;t1//

�r21

� e�ƒ
2�0

�
1C

2

M0

��2Area.Cpi;t1 .Br1.pi;t1/ \†i;t1//

�r21
; (2.40)
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where r2 D r1 C 2ƒjt2 � t1j. Combining (2.38)–(2.40), we have

lim
i!C1

Area.Cpi;t2 .Br2.pi;t2/ \†i;t2//

�r22
�
3

2
; (2.41)

where pi;t2 D xi;t2.x�1i;t1.pi;t1//: Since the mean curvature is uniformly bounded along
the flow, all points ¹pi;t2º

1
iD1 lie in a bounded ball centered at pt1 . Thus, we can find

a subsequence of ¹pi;t2º
1
iD1 such that it converges to a point, which we denoted by pt2 .

Since Cpi;t2 .Br2.pi;t2/ \†i;t2/ converges locally smoothly to Br2.pt2/ \†1;t2 away
from singularities, by Step 2 of Lemma 2.9 we have

lim
i!C1

Area.Cpi;t2 .Br2.pi;t2/ \†i;t2//

�r22
D m

Area.Br2.pt2/ \†1;t2/
�r22

; (2.42)

where m 2 N. Note that BR.0/ \†1;t has bounded geometry for any t 2 .�1; 1/, we
can find a uniform r 02 > 0 such that for any .p; t/ 2 .†1;t \ BR.0// � .�1; 1/ and any
r 2 .0; r 02/,

Area.Br .p/ \†1;t /
�r2

�
5

4
: (2.43)

Moreover, we can choose �0 small such that

r2 D r1 C 2ƒjt2 � t1j D .M0 C 2/ƒjt2 � t1j � .M0 C 2/ƒ�0 < r
0
2: (2.44)

Combining (2.41)–(2.44), we havem � 2 in (2.42). Thus, Cpi;t2 .Br2.pi;t2/ \†i;t2/ con-
verges locally smoothly to Br2.pt2/ \†1;t2 with multiplicity m � 2. This implies that
Br2.pt2/ \†1;t2 contains a singular point, which we denoted by qt2 . Here we used the
fact that if Br2.pt2/ \†1;t2 contains no singular points, then Cpi;t2 .Br2.pi;t2/ \†i;t2/
will converge smoothly to Br2.pt2/ \†1;t2 with multiplicity one.

Note that

jpi;t1 � pi;t2 j �

Z t2

t1

jH j dt � ƒjt1 � t2j:

Taking the limit i !C1 we have

jpt1 � pt2 j � ƒjt1 � t2j:

Thus, for any t2 2 .t1 � �0; t1 C �0/ \ .�1; 1/ we have

jqt2 � pt1 j � jqt2 � pt2 j C jpt2 � pt1 j � r2 Cƒjt1 � t2j � .M0 C 3/ƒjt1 � t2j:

Therefore, pt1 lies in aƒ0-Lipschitz curve in � withƒ0 D 203ƒ. Since for any t 2 .�1; 1/
the set �t is locally finite by Proposition 2.8, the singular curves are locally finite. The
lemma is proved.

3. The rescaled mean curvature flow

In this section, we will show the smooth convergence of rescaled mean curvature flow
under uniform mean curvature bound. As is pointed out in the introduction, we have
no long-time pseudolocality of the flow and the singularities do not move along straight
lines. When the multiplicity of the convergence is greater than one, in order to show the
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L-stability of the limit self-shrinker we need an estimate on the asymptotical behavior
of the positive solution near the singular set (cf. Lemma 3.21 and Lemma 3.28), and the
proof of this estimate will be delayed to Section 4.

Theorem 3.1. Let ¹.†2; x.t//; 0 � t < C1º be a closed smooth embedded rescaled
mean curvature flow �

@x
@t

�?
D �

�
H �

1

2
hx;ni

�
n (3.1)

satisfying
d.†t ; 0/ � D and max

†t
jH.p; t/j � ƒ (3.2)

for two constants D;ƒ > 0. Then for any sequence ti !C1 there exists a subsequence
of ¹†tiCt ;�1 < t < 1º such that it converges in smooth topology to a complete smooth
self-shrinker with multiplicity one as i !C1.

We sketch the proof of Theorem 3.1. First, we show the weak compactness for any
sequence of the rescaled mean curvature flow in Lemma 3.4. Suppose that the multiplic-
ity is at least two. By using the decomposition of spaces (cf. Definition 3.5) we can select
a special sequence ¹tiº in Lemma 3.13 for each � > 0. This special sequence is needed
to control the upper bound of the function wi away from the singular set by using the
parabolic Harnack inequality (cf. Lemma 3.16). Then we can take the limit for the func-
tion wi and obtain a positive function w with uniform bounds on any compact set away
from the singular set (cf. Lemma 3.17). The function w satisfies the linearized mean cur-
vature flow equation. To study the growth behavior of w near the singular set, we take
a sequence of �i ! 0 and for each �i we repeat the above process to get a sequence of
functions ¹wi;kº1kD1. After choosing a diagonal sequence and taking the limit, we get
a function w with good growth estimates near the singular set (cf. Proposition 3.23) by
assuming Theorem 4.2 in the next section. The bounds of w imply the L-stability of the
limit self-shrinker (cf. Lemma 3.25), and this step also relies on Theorem 4.2. However,
the limit self-shrinker is not L-stable by Colding–Minicozzi’s theorem (cf. Theorem 3.7)
and we obtain a contradiction.

3.1. Convergence away from singularities

We recall Ilmanen’s local Gauss–Bonnet formula in [40] to control the L2 norm of the
second fundamental form. Let † be a smooth surface with smooth boundary @†: We
denote by e.†/ the genus of † which is the genus of the closed surface obtained by
capping off the boundary components of † by disks.

Lemma 3.2 (cf. Ilmanen [40]). Let R > 1 and let † be a surface properly immersed
in BR.p/. Then for any � > 0 we have

.1 � �/

Z
†\B1.p/

jAj2 d� �

Z
†\BR

jH j2 d�C 8�e.† \ BR.p//

C
24�R2

�.R � 1/2
sup

r2Œ1;R�

Area.† \ Br .p//
�r2

:
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For simplicity, we introduce the following definition.

Definition 3.3. Let � W RC ! RC be an increasing positive function. For anyN > 0, we
denote by C.N; �/ the space of all smooth embedded self-shrinkers †2 � R3 satisfying
the properties that for any r > 0 and p 2 †,Z

†\Br .0/

jAj2 � �.r/ and Area.Br .p/ \†/ � �Nr2:

We note that the space C.N; �/ is compact in the smooth topology by Colding and
Minicozzi [20], and the distance from the origin to any self-shrinker in R3 is at most 2 by
avoidance principle (cf. [25, Corollary 3.6]). The total curvature bound in Definition 3.3
can also be derived from genus bound by exploiting Lemma 3.2.

The following result shows that the rescaled mean curvature flow converges locally
smoothly to a self-shrinker away from singularities.

Lemma 3.4. Under the assumption of Theorem 3.1, for any sequence ti !C1, there is
a smooth self-shrinker †1 2 C.N; �/ and a space-time set � � †1 �R satisfying the
following properties:

(1) For any T > 1, there is a subsequence, still denoted by ¹tiº, such that the sequence
¹†tiCt ;�T < t < T º converges in smooth topology, possibly with multiplicities, to
†1 away from � .

(2) For any R > 0, � \ .BR.0/ � .�T; T // consists of finite many � -Lipschitz curves
with Lipschitz constant � depending only on ƒ; T and R.

(3) The convergence in part (1) is also in (extrinsic) Hausdorff distance.

(4) The limit self-shrinker †1 is independent of the choice of T . In other words, for dif-
ferent T we can choose two different subsequences of ¹tiº such that the corresponding
flows in part (1) have the same limit self-shrinker †1.

Proof. We divide the proof into the following steps.

Step 1. The area ratio along the flow (3.1) is uniformly bounded from above. In fact, we
rescale the flow (3.1) by

s D 1 � e�t ; O†s D
p
1 � s †� log.1�s/

such that ¹ O†s; 0 � s < 1º is a mean curvature flow satisfying equation (1.1). By [19,
Lemma 2.9] and [46, Lemma 2.3], we have that the area ratio of (3.1) is uniformly
bounded from above.

Step 2. For any large radius R, the energy of†t \ BR.0/ is uniformly bounded along the
flow (3.1). In fact, by Lemma 3.2 we haveZ

†t\BR.0/

jAj2 d�t � 2

Z
†t\B2R.0/

jH j2 d�t C C.N; e.†//

� 8�Nƒ2R2 C C.N; e.†//; (3.3)

where N denotes the upper bound of the area ratio. Therefore, for any t > 0 the energy
of †t \ BR.0/ is bounded by a constant C.N;ƒ;R; e.†//:
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Step 3. For each sequence ti !C1, we obtain a refined sequence converging to a limit
self-shrinker. For any sequence ti !C1; we rescale the flow †t by

s D 1 � e�.t�ti /; Q†i;s D
p
1 � s †ti�log.1�s/ (3.4)

such that for each i the flow ¹ Q†i;s; 1 � eti � s < 1º is a mean curvature flow satisfying
(1.1) with the following properties:
(a) For any small � > 0, the mean curvature of Q†i;s satisfies

max
Q†i;s�Œ1�e

ti ;1���

j QHi j.p; s/ � Qƒ WD
ƒ
p
�
:

(b) For any large R, the energy of Q†i;s \ BR.0/ is uniformly bounded.
(c) The area ratio is uniformly bounded from above.
(d) The area ratio is uniformly bounded from below.
(e) There exists a constant D0 > 0 such that d. Q†i;s; 0/ � D0 for any i .
(f) We have

lim
i!C1

Z 1��

�T

dt

Z
Q†i;s

e�
jQxi j
2

4.1�s/

ˇ̌̌̌
QHi �

1

2.1 � s/
hQxi ;ni

ˇ̌̌̌2
d Q�i;s D 0: (3.5)

In fact, property (a) and (e) follow from the assumption (3.2), and property (b) follows
from (3.3). Property (c) follows from Step 1, and property (d) follows from [46, Lem-
ma 3.5]. To prove property (f), by Huisken’s monotonicity formula along the rescaled
mean curvature flow (3.1) we have

d

dt

Z
†t

e�
jxj2
4 d�t D �

Z
†t

e�
jxj2
4

ˇ̌̌̌
H �

1

2
hx;ni

ˇ̌̌̌2
d�t :

This implies that Z 1
0

dt

Z
†t

e�
jxj2
4

ˇ̌̌̌
H �

1

2
hx;ni

ˇ̌̌̌2
d�t < C1:

Let T; � > 0 with �T < 1 � �. For any ti !C1, we have

lim
ti!C1

Z ti�log�

ti�log.1CT /
dt

Z
†t

e�
jxj2
4

ˇ̌̌̌
H �

1

2
hx;ni

ˇ̌̌̌2
d�t D 0: (3.6)

Then (3.5) follows from equations (3.4) and (3.6). Therefore, by Definition 2.7 for any
T > 0, small � > 0 and any s0 2 Œ�T C 1;��� the sequence ¹ Q†i;s0C� ;�1 < � < 1º is
a refined sequence. By Proposition 2.8 and Lemma 2.11, we have that a subsequence
of ¹ Q†i;s;�T < s < 1 � �º converges in smooth topology, possibly with multiplicities,
to a self-shrinker flow ¹ Q†1;s;�T < s < 1 � �º away from a space-time, Qƒ0-Lipschitz
singular set Q� with Qƒ0 D 203 Qƒ.

Step 4. Let t 0 D t � ti and †i;t 0 D †tiCt 0 . Since the sequence ¹ Q†i;s;�T < s < 1 � �º
converges locally smoothly to ¹ Q†1;s;�T < s < 1 � �º away from Q� , by equation (3.4)



H. Li, B. Wang 26

the flow ¹†i;t 0 ;� log.1C T / < t 0 < � log�º also converges locally smoothly to a self-
shrinker †1 satisfying

H �
1

2
hx;ni D 0

away from a space-time singular set � with

�t 0 D
1

p
1 � s

Q�s :

Here s D 1 � e�t
0

. Now we show the Lipschitz property of � . By (3.4), for any curve
�.t 0/ of � , we can find a curve �.s/ of Q� such that

Q�.s/ D
p
1 � s �.t 0/; t 0 D � log.1 � s/:

Since Q�.s/ is Qƒ0-Lipschitz, we have

j Q�.s1/ � Q�.s2/j � Qƒ
0
js1 � s2j for all s1; s2 2 .�T; 1 � �/;

which implies that

je�
t1
2 �.t1/ � e

�
t2
2 �.t2/j � Qƒ

0
je�

t1
2 � e�

t2
2 j:

Suppose that j�.t/j � R: For any t 01; t
0
2 with jt 01 � t

0
2j � 1 we have

j�.t 01/ � �.t
0
2/j D j�.t

0
1/ � e

t0
1
�t0
2

2 �.t 02/j C je
t0
1
�t0
2

2 � 1jj�.t 02/j

� Qƒ0j1 � e
t0
1
�t0
2

2 j C je
t0
1
�t0
2

2 � 1jj�.t 02/j

� . Qƒ0 CR/jt 01 � t
0
2j; (3.7)

where we used the inequality

jex � 1j � 2jxj for all x 2 Œ�1; 1�:

Note that the Lipschitz constant in (3.7) is given by � D Qƒ0 CR: Thus, if we consider the
convergence of ¹†tiCt ;�T < t < T º as in part (1), then � \ .BR.0/ � .�T; T // consists
of Lipschitz curves with Lipschitz constant �: The convergence is also in extrinsic Haus-
dorff distance by Proposition 2.8 and the limit self-shrinker is independent of the choice
of T by the argument of [46, Claim 4.3]. The lemma is proved.

3.2. Decomposition of spaces

In this subsection, we follow the argument in [46] to decompose the space and define an
almost “monotone decreasing” quantity, which will be used to select time slices such that
the limit self-shrinker is L-stable. First, we decompose the space as follows.

Definition 3.5 ([46]). Fix large R > 0 and small � > 0:
(1) We define the set S D S.†t ; �; R/ D ¹y 2 †t j jyj < R; jAj.y; t/ > ��1º:
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(2) The ball BR.0/ can be decomposed into three parts as follows:
� the high curvature part H, which is defined by

H D H.†t ; �; R/ D
²
x 2 R3

ˇ̌̌̌
jxj < R; d.x; S/ <

�

2

³
;

� the thick part TK, which is defined by

TK D TK.†t ; �; R/

D
®
x 2 R3

ˇ̌
jxj < R; there is a continuous curve  � BR.0/n.H [†t /
connecting x and some y with B.y; �/ � BR.0/n.H [†t /

¯
;

� the thin part TN, which is defined by TN D TN.†t ; �; R/ D BR.0/n.H [ TK/.

As is pointed out in [46], the high curvature part H is the neighborhood of points with
large second fundamental form, and the thin part TN is the domain between the top and
bottom sheets. Moreover, the thick part TK is the union of path connected components of
the domain “outside” the sheets. The readers are referred to [46] for more explanation on
the definition.

As in [20], we define the L-stability of a self-shrinker.

Definition 3.6. For any R > 0, a complete smooth self-shrinker †n � RnC1 is called
L-stable in the ball BR.0/ if for any function ' 2 W 1;2

0 .BR.0//, we haveZ
†

�'L†' e
�
jxj2

4 � 0; (3.8)

where L† is the operator on † defined by

L† D � �
1

2
hx;r. � /i C jAj2 C

1

2
:

The subindex † in L† will be omitted when it is clear in the context. We say † is not
L-stable in the ball BR.0/ if (3.8) does not hold for some ' 2 W 1;2

0 .BR.0//:We call that
† is L-stable in RnC1 if † is L-stable in the ball BR.0/ of RnC1 for any R > 0.

Recall Colding–Minicozzi’s result:

Theorem 3.7 (cf. [19,20]). There are noL-stable smooth complete self-shrinkers without
boundary and with polynomial volume growth in RnC1.

As a corollary of Theorem 3.7, we have the following result.

Lemma 3.8. Let N > 0 and let � be an increasing positive function. There exists a posi-
tive radius R0 D R0.N; �/ such that any self-shrinker† 2 C.N; �/ is not L-stable in the
ball BR0.0/.

Proof. For otherwise, we can find a sequenceRi !C1 and self-shrinkers†i 2 C.N; �/

such that †i is L-stable in the ball BRi .0/. By smooth compactness of C.N; �/ in [20],
a subsequence of ¹†iº converges smoothly to a self-shrinker †1 2 C.N; �/. By Theo-
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rem 3.7, †1 is not L-stable in a ball BR0.0/ for some R0 > 0. This implies that there
exists a smooth function '1 2 C10 .†1 \ BR0.0// such thatZ

†1

�'1L† '1 e
�
jxj2

4 < 0: (3.9)

Since †i converges smoothly to †1, we define the map fi W †1 \ BR0C1.0/! †i by

fi .x/ D x C ui .x/n.x/ for all x 2 †1 \ BR0C1.0/;

where n.x/ denotes the normal vector field of †1 and ui .x/ is the graph function of †i
over †1: Let � D †1 \ BR0C1.0/ and �i D fi .�/ � †i . We assume that i is large
such that �i � †i \ BR0C2.0/. Note that fi converges smoothly to the identity map
on� as i !C1 and for large i its inverse map f �1i W �i ! � exists and is also smooth.
Moreover, f �1i also converges smoothly to the identity map on� as i !C1. We define
the function 'i WD .f �1i /�'1 2 C

1
0 .�i / and we can extend 'i to †i such that ' is zero

on †in�i . Then by (3.9) the function 'i 2 C10 .†i / satisfies

lim
i!C1

Z
†i

�'iL†i 'i e
�
jxj2

4 D

Z
†1

�'1L† '1 e
�
jxj2

4 < 0:

Thus, for large i we have Z
†i

�'iL†i 'i e
�
jxj2

4 < 0: (3.10)

Note that Supp.'i / � �i � †i \ BR0C2.0/ for large i . Thus, inequality (3.10) contra-
dicts our assumption that †i is L-stable in the ball BRi .0/ and Ri !C1. The lemma
is proved.

Lemma 3.9. Let R;N > 0 and � an increasing positive function. For any † 2 C.N; �/

and x 2 †, we define r†.x/ the supreme of the radius r such that

Br .x C rn.x// \† D ;; Br .x � rn.x// \† D ;; (3.11)

where n.x/ denotes the normal vector of † at x. Then there exists �0.R;N; �/ > 0 such
that for any † 2 C.N; �/ and x 2 † \ BR.0/ we have

r†.x/ � �0:

Proof. We divide the proof into several steps.

Step 1. For otherwise, we can find a sequence of †i 2 C.N; �/ and xi 2 †i \ BR.0/
with ıi WD r†i .xi /! 0. By the smooth compactness of C.N; �/, there is a subsequence
of ¹†iº converging smoothly to a self-shrinker †1 in C.N; �/. We assume that

xi ! x1 2 †1 \ BRC1.0/:

By the embeddedness of †1, we have ı WD r†1.x1/ > 0: Since †1 is smooth and
embedded, there exists r 0 > 0 such that Br 0.x1/ \†1 has only one component and

inf
y2Br0 .x1/\†1

r†1.y/ �
ı

2
: (3.12)
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Moreover, we choose r 0 sufficiently small such that Br 0.x1/ \†1 is almost flat by
Lemma 2.2. Let

�

�
r 0;
ı

2

�
WD

[
y2Br0 .x1/\†1

�
B ı
2

�
y C

ı

2
n†1.y/

�
[ B ı

2

�
y �

ı

2
n†1.y/

��
:

Then (3.12) implies that �.r 0; ı
2
/ \†1 D ;: By the smooth convergence of †i to †1,

for large i we have

�

�
r 0

2
;
ı

4

�
\ .†inBr 0.x1// D ;: (3.13)

By the construction of �.r 0; ı
2
/, we have

B ı
4
.y/ � �

�
r 0

2
;
ı

4

�
[ .†1 \ Br 0.x1// for all y 2 B r0

4

.x1/ \†1: (3.14)

Step 2. Since xi ! x1, we can choose r 0 sufficiently small such that for all large i the
projection of xi to†1 lie in the ballBr 0=2.x1/. This can be done sinceBr 0.x1/ \†1 is
almost flat. Denote by yi the projection of xi to†1 and we have yi 2 Br 0=2.x1/ \†1.
Let si 2 R such that yi C sin†1.yi / D xi . Combining this with xi ! x1, we have

B2ıi .xi ˙ 2ıin†i .xi // � B4ıi .xi / � B4ıiCjsi j.yi /: (3.15)

On the other hand, jsi j ! 0 and for large i we have

B4ıiCjsi j.yi / � B ı
4
.yi /: (3.16)

Combining (3.14)–(3.16), we have

B2ıi .xi ˙ 2ıin†i .xi // �
�
�

�
r 0

2
;
ı

4

�
[ .†1 \ Br 0.x1//

�
: (3.17)

Step 3. We show that
B2ıi .xi ˙ 2ıin†i .xi // \†i D ;: (3.18)

Let †i D †
.1/
i [†

.2/
i , where †.1/i and †.1/i are defined by

†
.1/
i D †i \ Br 0.x1/; †

.2/
i D †inBr 0.x1/:

By the smooth convergence of†i to†1 and the choice of r 0 such that Br 0.x1/ \†1 is
almost flat, we have that for large i , Br 0.x1/ \†i is also almost flat. Consequently, for
large i we have

B2ıi .xi ˙ 2ıin†i .xi // \†
.1/
i D ;: (3.19)

On the other hand, (3.13) and (3.17) imply that

B2ıi .xi ˙ 2ıin†i .xi // \†
.2/
i �

�
�

�
r 0

2
;
ı

4

�
[ .†1 \ Br 0.x1//

�
\†

.2/
i

D �

�
r 0

2
;
ı

4

�
\†

.2/
i D ;; (3.20)

where we used that †.2/i \ Br 0.x1/ D ;. Thus, (3.18) follows from (3.19) and (3.20).
Note that (3.18) contradicts the definition of ıi D r†i .xi /. The lemma is proved.
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A direct corollary of Lemma 3.9 is the following result.

Lemma 3.10. Let R;N > 0 and an increasing positive function �. Then there exists
a constant �0.R;N; �/ > 0 such that for any � 2 .0; �0/ we have

jTN.†; �; R/j D 0 for all † 2 C.N; �/: (3.21)

Here the notation j�j denotes the volume of� with respect to the standard metric on R3.

Proof. We choose �0 the same constant in Lemma 3.9. Thus, equation (3.21) follows from
Lemma 3.9 and the definition of TN:

Using Lemma 3.10 we show that the quantity jTNj along the flow will tend to zero.

Lemma 3.11. Fix R;N > 0, and an increasing positive function �. Under the assump-
tion of Theorem 3.1, there exists a constant �0.R;N; �/ > 0 such that for any � 2 .0; �0/,
we have

lim
t!1
jTN.†t ; �; R/j D 0:

Proof. By Lemma 3.4, for any ti !1 there exists a subsequence, still denoted by ¹tiº,
such that it converges locally smoothly to a limit self-shrinker †1 2 C.N; �/ away from
the singular set �0 � R3. For any � > 0, by Definition 3.5 we have

TN.†ti ; �; R/! TN.†1; �; R/nB �
2
.�0/;

where B�.�0/ D
S
p2�0

B�.p/: Therefore, by Lemma 3.10 we have

lim
ti!C1

jTN.†ti ; �; R/j � lim
ti!C1

jTN.†1; �; R/j D 0;

where � 2 .0; �0/ and �0 is the constant in Lemma 3.10. The lemma is proved.

As in [46, Lemma 4.7], we have:

Lemma 3.12. Fix R > 0 and � 2 .0; 1/: Let ¹tiº be any sequence as in Lemma 3.4. If the
multiplicity of the convergence in Lemma 3.4 is more than one, then for any � > 0, there
exists i0 > 0 such that for any i � i0 we have

inf
t2Œti��;ti �

jTN.†t ; �; R/j > 0:

Proof. Since†t is embedded and ¹†tiCt ;�� � t � �º converges locally smoothly to the
limit self-shrinker†1, all components of .†t \ BR.0//nH.�;†t ; R/ with t 2 Œti � �; ti �
lie in the �

2
-neighborhood of †1. By the definition of TN, for any t 2 Œti � �; ti � the

quantity TN.�;†t ; R/ is nonempty and we have jTN.�;†t ; R/j > 0:

Using Lemmas 3.11 and 3.12, we have the following result as [46, Lemma 4.8].

Lemma 3.13. Let R; �; � > 0 and f .t; �/ D infs2Œt��;t� jTN.†s; �; R/j. For any t0 > 0
and l > 0, we can find a sequence ¹tiº with tiC1 > ti C l such that for any i 2 N,

sup
t2Œti ;tiCl�

f .t; �/ � 2f .ti ; �/: (3.22)
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Proof. By Lemma 3.12, we can find s1 > t0 C l with f .s1; �/ > 0. We search for time
t 2 Œs1; s1 C l � satisfying f .t; �/ > 2f .ti ; �/. If no such time exists, then we set t1 D s1.
Otherwise, we choose such a time and denote it by s.1/1 . Then search the time interval
Œs
.1/
1 ; s

.1/
1 C l �. Inductively, we search Œs.k/1 ; s

.k/
1 C l �. If we have

sup
t2Œs

.k/
1
;s
.k/
1
Cl�

f .t; �/ � 2f .s
.k/
1 ; �/;

then we denote
t1 D s

.k/
1

and stop the searching process. Otherwise, choose a time s.kC1/1 2 Œs
.k/
1 ; s

.k/
1 C l � with

more than doubled value and continue the process. Note that

f .s
.k/
1 ; �/ � 2kf .s1; �/!1 as k !1:

Since limt!C1 f .t; �/ D 0 by Lemma 3.11, this process must stop in finite steps, and
we can find k1 such that

sup
t2Œs

.k1/

1
;s
.k1/

1
Cl�

f .t; �/ � 2f .s
.k1/
1 ; �/:

We denote by t1 D s
.k1/
1 . After we find t1, set s.0/2 D t1 C l C 1 and continue the previous

process to find time in Œs.0/2 ; s
.0/
2 C l � such that f .t; �/ > 2f .s.0/2 ; �/. Similarly, for some k

we have
sup

Œs
.k/
2
;s
.k/
2
Cl�

f .t; �/ � 2f .s
.k/
2 ; �/:

Then we define t2 D s
.k/
2 . Inductively, after we find tl , we set s.0/

lC1
D tl C l C 1. Then

we start the process to search time in Œs.0/
lC1

; s
.0/

lC1
C l � with f .t; �/ > 2f .s.0/

lC1
; �/. This

process is well defined. Repeating this process and we can find a sequence of times ¹tiº
such that for any ti inequality (3.22) holds. The lemma is proved.

3.3. Construction of auxiliary functions

In this subsection, we construct functions which will be used to show the L-stability of
the limit self-shrinker. We fix R; T > 1 in this section. For any sequence ti !C1, by
Lemma 3.4 a subsequence of ¹†i;t ;�T < t < T º converges in smooth topology to a self-
shrinker †1 away from a locally finite, � -Lipschitz singular set � � R3 � .�T; T /: We
denote by �t D ¹x 2 R3 j .x; t/ 2 �º the singular set in R3 at time t . By Lemma 2.9,
we assume that the multiplicity of the convergence is a constant N0 � 2. As in [46], we
construct some functions as follows:
(1) Let � > 0 and large R > 0. We define

��;R.t/ D .†1 \ BR.0//nB�.�t / (3.23)

and for any time interval I � .�T; T / we define

��;R.I / D
\
t2I

��;R.t/; �I D
[
t2I

�t : (3.24)

For any � > 0, the surface †i;t \ BR.0/ is a union of graphs over the set ��;R.t/ for
large ti and any t 2 .�T; T /.
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(2) Let uCi .x; t/ and u�i .x; t/ be the graph functions representing the top and bottom
sheets ( which we denote by†Ci;t and†�i;t , respectively) over†1 \ BR.0/. The read-
ers are referred to [46] for the details on the construction of uCi .x; t/ and u�i .x; t/. By
the convergence property of the flow ¹.†i;t ; xi .t//;�T < t < T º, for any � > 0 and
large R there exists i0 > 0 such that for any i � i0 and any t 2 .�T; T / the functions
uCi .x; t/ and u�i .x; t/ are well defined on��;R.t/. By the calculation in Appendix C,
the function

ui .x; t/ D u
C

i .x; t/ � u
�
i .x; t/; (3.25)

which we call the height difference function of †i;t over †1, satisfies the equation

@ui

@t
D �0ui �

1

2
hx;rui i C jAj

2ui C
ui

2
C a

pq
i ui;pq C b

p
i ui;p C ciui (3.26)

for any .x; t/ 2 ��;R.I / � I . Here �0 denotes the Laplacian operator on †1. The
coefficients apqi ; b

p
i and ci are small on ��;R.I / � I as ti large and tend to zero as

ti !C1.
(3) Fix a point x0 2 .†1 \ BR.0//n�1. We choose a sequence of points

¹xiº
1
iD1 � .†1n�1/ \ BR.0/ with xi ! x0.

Then for sufficiently small � > 0 we have x0 2 ��;R.1/ and ¹xiº1iD1 � ��;R.1/: For
any t 2 .�T; T / and x 2 ��;R.t/we define the normalized height difference function

wi .x; t/ D
ui .x; t/

ui .xi ; 1/
; (3.27)

Thenwi .x; t/ is a positive function withwi .xi ; 1/ D 1 and by (3.26)wi .x; t/ satisfies
the equation on ��;R.I / � .I / for any I � .�T; T /,

@wi

@t
D �0wi �

1

2
hx;rwi i C jAj

2wi C
wi

2
C a

pq
i wi;pq C b

p
i wi;p C ciwi : (3.28)

Note that the construction of the function wi is slightly different from that of [46].
In (3.27) we choose a sequence of points ¹xiº � †1n�1 to normalize the func-
tion ui , while in [46] we choose a fixed point x0. The reason why we choose such
a normalization is that we need inequality (3.51) in Lemma 3.19 below.
As in [46], we have the following result which implies that for large ti the integral

of ui is comparable to the volume jTNj.

Lemma 3.14 (cf. [46]). Fix �; R and T as above. For any sequence ¹tiº chosen in Lem-
ma 3.4, there exists tT > 0 such that for any t 2 .�T; T / and ti > tT we have

1

2

Z
��;R.t/

ui .x; t/ d�1 � jTN.†i;t ; �; R/j � 2
Z
� �
5
;R.t/

ui .x; t/ d�1;

where d�1 denotes the volume form of †1.

The proof of Lemma 3.14 is similar to that of [46, Lemma 4.13]. Note that the coef-
ficients 2 and 1

2
are chosen to absorb the error term caused by the second fundamental

of †1.
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Since wi satisfies the parabolic equation (3.28), we have the following parabolic
Harnack inequality by using Theorem A.5 in Appendix A.

Lemma 3.15. For any�T < a < s < t < b < T , any � > 0, and any points x 2��;R.s/
and y 2��;R.t/, there exists a constant C D C.�;R; s � a; t � s;†1; �Œa;b�/ such that

wi .x; s/ � Cwi .y; t/:

Proof. We divide the proof into several steps.

Step 1. Since �t \ BR.0/ consists of finitely many points, we can choose sufficiently
small ı0.†1; �Œa;b�/ > 0 such that for any s 2 Œa; b�,

�2�;R.s/���;R.t/; � 1
2 �;RC2

.s/�� 1
5 �;RC2

.t/; t 2 Œs � ı0; sC ı0�\ Œa; b�: (3.29)

Let N be a positive integer satisfying

N > max
²
5.b � a/

ı0
;
b � a

s � a
;
5.b � a/

t � s

³
: (3.30)

Set

�k D aC
b � a

N
k for all k 2 ¹0; 1; : : : ; N º: (3.31)

Then �0 D a and �N D b. By (3.30) we have s � �1: Note that (3.29) and (3.31) imply
that for any k D 1; 2; : : : ; N � 1 we have

� 1
2 �;RC2

.�k/ � � �
5 ;RC2

.t/ for all t 2 Œ�k�5; �kC5� \ Œa; b�:

Step 2. Let

�0 WD ��;R.�k/; �00 WD � 2
3 �;RC1

.�k/; � WD � 1
2 �;RC2

.�k/:

Then we have�0 � �00 � �: Clearly,�00 has a positive distance ı D ı.�/ away from the
boundary of�: Sine N�0 is compact, we can cover�0 by finite many balls contained in�00

with radius r D �
100

and the number of these balls is bounded by a constant depending
only on �; R and †1. Since wi satisfies the parabolic equation (3.28), applying The-
orem A.5 in Appendix A for the function wi , the domains �0; �00; � and the interval
Œ�k�1; �kC1�, we have

wi .x; �k/ � Cwi .y; �kC1/ for all x; y 2 ��;R.�k/; (3.32)

where C D C.�;R; b � a;N;†1; �Œa;b�/ is a constant independent of i . Moreover, since
SŒa;b� \ BR.0/ consists of finitely many Lipschitz curves, there exists a sequence of points
¹zkº such that

zk 2 �2�;R.Œ�k�1; �k �/ \�2�;R.Œ�k ; �kC1�/ ¤ ;: (3.33)

Step 3. For s; t 2 .a; b/with s < t , there exist integers ks and kt such that s 2 Œ�ks ; �ksC1/
and t 2 .�kt ; �ktC1�. Note that (3.30) implies

t � s �
5.b � a/

N
: (3.34)
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On the other hand, (3.31) implies that

t � s � �ktC1 � �ks D
b � a

N
.kt C 1 � ks/: (3.35)

Combining (3.35) with (3.34), we have

kt � ks � 4: (3.36)

Thus, (3.32), (3.36)and (3.33) implies that

wi .zksC2; �ksC2/ � Cwi .zksC3; �ksC3/ � � � � � C
Nwi .zkt�1; �kt�1/; (3.37)

where C D C.�;R; b � a;N;†1; �Œa;b�/.

Step 4. Set

�0 D ��;R.s/; �00 D � 2
3 �;RC1

.s/; � D � 1
2 �;RC2

.s/:

Then by (3.29) we have

�0 � �00 � � D � 1
2 �;RC2

.s/ � � 1
5 �;RC2

.s0/ for all s0 2 Œ�ks�2; �ksC2�;

where we used the fact that Œ�ks�2; �ksC2� � Œs � ı0; s C ı0�: Note that by (3.33) and
(3.29), we have

zksC2 2 �2�;R.�ksC2/ � ��;R.s/: (3.38)
As in Step 2, �00 has a positive distance ı D ı.�/ from the boundary of �, and we
can cover �0 by finite many balls contained in �00 with radius r D �

100
and the num-

ber of these balls is bounded by a constant depending only on �; R and †1. Applying
Theorem A.5 for such�0; �00; � and the interval Œ�ks�2; �ksC2� and using (3.38), we have

wi .x; s/ � Cwi .zksC2; �ksC2/ for all x 2 ��;R.s/; (3.39)

where C D C.�;R; b � a;N;†1; �Œa;b�/.

Step 5. Set

�0 D ��;R.t/; �00 D � 2
3 �;RC1

.t/; � D � 1
2 �;RC2

.t/:

Then by (3.29) we have

�0 � �00 � � D � 1
2 �;RC2

.t/ � � 1
5 �;RC2

.t 0/ for all t 0 2 Œ�kt�2; �ktC2�;

where we used the fact that Œ�kt�2; �ktC2� � Œt � ı0; t C ı0�: Note that by (3.33) and
(3.29), we have

zkt�1 2 �2�;R.�kt�1/ � ��;R.t/: (3.40)
Applying Theorem A.5 as in Step 4 for such�0; �00; � and the interval Œ�kt�2; �ktC2� and
using (3.40), we have

wi .zkt�1; �kt�1/ � Cwi .y; t/ for all y 2 ��;R.t/;

where C D C.�;R; b � a;N;†1; �Œa;b�/. Combining this with (3.39) and (3.37), we
have

wi .x; s/ � Cwi .y; t/ for all x 2 ��;R.s/; y 2 ��;R.t/;

where C D C.�;R; b � a;N;†1; �Œa;b�/. The lemma is proved.
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For any fixed �; R and T , the following result shows that we can find a sequence ¹tiº
such that the functions wi are uniformly bounded on a compact set away from singulari-
ties. Note that we have no estimates of wi near the singularities.

Lemma 3.16. Fix �; � 2 .0; 1
2
/ andR; T large. Let ¹tiº be the sequence from Lemma 3.13

for such �; �; R and l D T . For any time interval I D Œa; b� � Œ�1; T � 2� and a compact
set K �� .†1 \ BR.0//n�I , there exists a constants C D C.K;†1; �Œ�2;bC2�/ > 0
such that the function wi defined by (3.27) satisfies

0 < wi .x; t/ < C for all .x; t/ 2 K � I:

Moreover, if a 2 Œ2; T � 2�/, there existsC 0 D C 0.K;†1; �Œ0;aC1�/ > 0 independent of b
such that

wi .x; a/ � C
0:

Proof. By the assumption, we can assume that K � ��0;R.I / and ¹xiº � ��0;R.1/ for
some �0 2 .0; �/, where ¹xiº is the sequence in (3.27). Note that wi .xi ; 1/ D 1:We divide
the rest of the proof into several steps.

Step 1. wi is bounded on K � I for the time interval I D Œ�1; 1
2
� and any K above.

Applying Lemma 3.15 for a D �2 and b D 2 we have

wi .x; t/ � C.�
0; R;†1; �Œ�2;2�/wi .xi ; 1/

D C.�0; R;†1; �Œ�2;2�/ for all .x; t/ 2 K � I: (3.41)

Step 2.wi is bounded from above onK � I for any I D Œa; b� � .0; T � 2/ andK above.
For any t 2 Œa; b� � .0; T � 2/, we have t 0 WD t C 1 2 .1; T � 1/. By Lemma 3.14 and
Lemma 3.13 for large i we have

inf
s2Œt 0��;t 0�

Z
��;R.s/

wi .x; s/ d� �
2

ui .xi ; 1/
inf

s2Œt 0��;t 0�
jTN.†tiCs; �; R/j

�
4

ui .xi ; 1/
inf

s2Œ��;0�
jTN.†tiCs; �; R/j

� 4 inf
s2Œ��;0�

Z
� �
5
;R.s/

wi .x; s/ d�: (3.42)

Moreover, by (3.41) we have

wi .x; 0/ � C.�;R;†1; �Œ�2;2�/ for all x 2 � �
5 ;R
.0/;

which implies that Z
� �
5
;R.0/

wi .x; 0/ � C.�;R;†1; �Œ�2;2�/: (3.43)

Combining (3.43) with (3.42), we have

inf
s2Œt 0��;t 0�

Z
��;R.s/

wi .x; s/ d� � C.�;R;†1; �Œ�2;2�/:
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This implies that for any t 2 .1; T � 1/ there exists s.t/ 2 Œt � �; t � such thatZ
��;R.s.t//

wi .x; s.t// d� � C.�;R;†1; �Œ�2;2�/: (3.44)

On the other hand, Lemma 3.15 implies that for any x 2 K � ��0;R.Œa; b�/; t 2 Œa; b�,
and y 2 ��;R.s.t C 1// � ��0;R.s.t C 1// we have

wi .x; t/ � C.�
0; R;†1; �Œa�1;bC2�/wi .y; s.t C 1//; (3.45)

where we used the fact that � 2 .0; 1
2
/ and

s.t C 1/ � t C 1 � � � t C
1

2
:

Integrating the right-hand side of (3.45) and using (3.44), we have

wi .x; t/ � C.�
0; R;†1; �Œa�1;bC2�/

Z
��;R.s.tC1//

wi .y; s.t C 1//

� C.�0; R;†1; �Œ�2;bC2�/ for all t 2 Œa; b�:

Step 3. wi .x; t/ is bounded from below on K � I for any I D Œa; b� � Œ2; T � 2� and K
above. By Lemma 3.15, for any .x; t/ 2 K � I we have

wi .x; t/ � C.�
0; R;†1; �Œ0;tC1�/wi .xi ; 1/: (3.46)

In particular, for t D a the constant in (3.46) depends only on �0; R;†1 and �Œ0;aC1�.
Thus, the lemma is proved.

Lemma 3.17. The same assumption as in Lemma 3.16. As ti !C1, we can take a sub-
sequence of the functions wi .x; t/ such that it converges in C 2 topology on any compact
subset K �� .†1 \ BR.0//n�I , where I D Œa; b� � Œ�1; T � 2�, to a positive function
w.x; t/ with w.x0; 1/ D 1 and satisfying

@w

@t
D �0w C jAj

2w �
1

2
hx;rwi C

1

2
w for all .x; t/ 2 K � I: (3.47)

Proof. Since wi is positive by definition and wi is uniformly bounded from above by
Lemma 3.16, by the interior estimates of the parabolic equation we have the space-time
C 2;˛ estimates of wi (cf. [50, Theorem 4.9]), and the estimates are independent of i .
Therefore, as i !C1; the function wi converges to a limit function w in C 2 topology
on K � Œa; b� with w.x0; 1/ D 1 and w is positive by the strong maximal principle. The
lemma is proved.

3.4. The auxiliary functions near the singular set

In this subsection, we show that there exists a refined sequence such that the limit auxiliary
function has uniform estimates across the singular set. Recall that by Lemma 3.17 the
functionw is uniformly bounded on any compact set away from the singular set andw has
no estimates near the singularities. In this subsection, we will use Lemma 3.13 repeatedly
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for a sequence ¹�iº decreasing to zero, and after taking a diagonal subsequence we can
construct a auxiliary function which has uniform estimates across the singular set.

Lemma 3.18. Let R > 1; � 2 .0; 1
2
/, and let ¹�iº be a sequence of positive numbers with

�i ! 0: For any i 2 N, there exists a sequence ¹ti;kº1kD1 with ti;kC1 > ti;k C i satisfying
the following properties:

(1) For any k 2 N,
sup
s2Œ0; i�

f .ti;k C s; �i / � 2f .ti;k ; �i /; (3.48)

where f .t; �/ D infs2Œt��;t� jTN.†s; �; R/j.
(2) For any T > 0, ¹†ti;kCs;�T < s < T º converges locally smoothly to a self-shrinker

†i;1 2 C.N; �/ away from the space-time singular set �i as k !C1.

(3) For large k the surface †ti;kCs can be written as a union of graphs over †i;1 away
from the singular set �i;s . We denote by QuC

i;k
.x; s/; Qu�

i;k
.x; s/ the graph functions of

the top and bottom sheets of †ti;kCs over Q�i;�;R.s/, where

Q�i;�;R.s/ D .†i;1 \ BR.0//nB�.�i;s/:

Let Qui;k.x; s/ D QuCi;k.x; s/ � Qu
�
i;k
.x; s/ be the height difference function of †ti;kCs

over Q�i;�;R.s/: These functions are constructed as in Section 3.3. By Lemma 3.14, we
can choose ki large such that for any k � ki and s 2 .�T; T /,

1

2

Z
Q�i;�i ;R.s/

Qui;k.x; s/ � jTN.†ti;kCs; �i ; R/j � 2
Z
Q�
i;
�i
5
;R
.s/

Qui;k.x; s/: (3.49)

(4) By the smooth compactness of C.N; �/ in [20], we assume that †i;1 in item (2)
converges smoothly to †1 2 C.N; �/.

(5) For any i 2 N, there exists ki > 0 satisfying the following property. For any ¹siº1iD1
with si > ki , ¹†ti;siCs;�T < s < T º converges locally smoothly to the same self-
shrinker †1 as in item (4) away from the space-time singular set �1. Moreover,
the singular set �i in item (2) converges to �1 in Hausdorff distance.

Proof. Applying Lemma 3.13 for �i and l D i , we have (3.48). Item (2) follows from
Lemma 3.4, and item (3) follows from Lemma 3.14. It is clear that item (4) follows from
Colding–Minicozzi’s compactness theorem [20].

To prove item (5), we first note that the convergence in item (2) is also in Hausdorff
distance by Lemma 3.4, for any i there exists ki > 0 such that for any k � ki and any
s 2 .�2; 2/ we have

dH
�
†ti;kCs \ BR.0/;†i;1 \ BR.0/

�
�
1

i
;

dH
�
S.†ti;kCs; �i ; R/; �i;s \ BR.0/

�
�
1

i
;

(3.50)

where dH denotes the Hausdorff distance. By item (4), we assume that †i;1 converges
smoothly to †1 2 C.N; �/. By Lemma 3.4 for any sequence of times ¹siº1iD1 with
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si > ki the surfaces ¹†ti;siCs;�T < s < T º converge locally smoothly to a self-shrinker,
which is denoted by O†1, away from a singular set �s � †1 as i !C1. Moreover,
as i !C1,

dH
�
O†1 \ BR.0/;†1 \ BR.0/

�
� dH

�
O†1 \ BR.0/;†ti;siCs

\ BR.0/
�
C dH

�
†ti;siCs

\ BR.0/;†i;1 \ BR.0/
�

C dH
�
†i;1 \ BR.0/;†1 \ BR.0/

�
� dH

�
O†1 \ BR.0/;†ti;siCs

\ BR.0/
�
C
1

i
C dH

�
†i;1 \ BR.0/;†1 \ BR.0/

�
! 0;

where we used (3.50). Thus, O†1 coincides with †1. Moreover, since S.†ti;siCs; �i ; R/
converges to �s \ BR.0/ as i !C1, we have

dH
�
�i;s \ BR.0/; �s \ BR.0/

�
� dH

�
S.†ti;siCs; �i ; R/; �s \ BR.0/

�
C dH

�
S.†ti;siCs; �i ; R/; �i;s \ BR.0/

�
� dH

�
S.†ti;siCs; �i ; R/; �s \ BR.0/

�
C
1

i

! 0;

where we used (3.50). Thus, �i;s \ BR.0/ converges to �1 \ BR.0/ as i !C1: The
lemma is proved.

Lemma 3.19. Under the same assumptions as in Lemma 3.18, we can choose a point
x0 2 .†1n�1/\BR.0/ and ¹xi;kº � .†i;1n�i;1/\BR.0/ satisfying the following prop-
erties:

(1) xi;k ! x0 as i !C1 and k !C1.

(2) For each i , there exists ki > 0 such that for any k � ki ,

Qui;k.xi;k ; 1/ � 2ui;k.x0; 1/ for all k � ki : (3.51)

Here ui;k denotes the height difference function of †ti;kCs over †1.

Proof. Choose x0 2 .†1n�1/ \ BR.0/ and we denote by lx0 the normal line of †1
passing through the point x0. Then the set†i;k \ lx0 is nonempty for large i and k. Since
†i;k can be viewed as a union of multiple graphs over †i;1 away from singularities,
we assume that lx0 intersects with the bottom sheet of †i;k at the point yi;k , and the
projection of yi;k on †i;1 is xi;k 2 †i;1. We denote by lxi;k the normal line of †i;1
passing through the point xi;k . Since x0 62 �1, we have xi;k 62 �i;1 for large i and k. By
the construction of xi;k , it is clear that xi;k converges to x0 as i !C1 and k !C1:

Fix �0 2 .0; �2 /. Since †i;1 converges smoothly to †1, the angle between the two
lines lx0 and lxi;k will lie in Œ0; �0/ for large i and there is a uniform r0 > 0 independent
of i such that

jAj.x/ �
1

r0
for all x 2 †i;1 \ Br0.x0/:
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We assume that †0 is †i;1, †0u1 is the top sheet of †i;k , †0u2 is the bottom sheet of †i;k
and P is the point xi;k as above. Then we apply Lemma 3.24 below for such†0; †0u1 ; †

0
u2

and the point P and we can get that the functions Qui;k and ui;k satisfy (3.51) for large k.
The lemma is proved.

By Lemma 3.17 for each i the function Qwi;k converges inC 2 to the limit function Qwi;1
on anyK � I with I � Œ�1; T � 2� andK �� .†i;1 \ BR.0//n�i;I , and xi;k ! xi;0 as
k !C1. Moreover, Qwi;1.xi;0; 1/ D 1. Note that Qwi;1 satisfies equation (3.47), and the
function

Owi D Qwi;1e
�
jxj2

8

satisfies the equation

@ Owi

@t
D � Owi C

�
jAj2 C

3

4
�
1

16
jxj2

�
Owi for all .x; t/ 2 K � I: (3.52)

We would like to show that Owi satisfies the parabolic Harnack inequality with uniform
constants independent of i . Note that here we need to use Theorem B.3 in Appendix B
instead of Theorem A.5 in Appendix A. The reason is that Owi are functions defined on
subdomains in †i;1, which varies when i is different. The constants in the Harnack
inequality of Theorem A.5 depend on the manifold †i;1 and it is difficult to show that
the constants are independent of i . However, we can use Theorem B.3 to avoid this dif-
ficulty since the constants can be explicitly written down by Theorem B.1. We note that
Theorem B.3 cannot be used for equation (3.28) of wi and we have to use Theorem A.5
in the proof of Lemma 3.15.

Lemma 3.20. Let Owi D Qwi;1e�
jxj2

8 . For any �T < a < s < t < b < T , any � > 0, and
any x 2 �i;�;R.s/ and y 2 �i;�;R.t/, there exists C D C.�;R; s � a; t � s;†1; �Œa;b�/
independent of i such that

Owi .x; s/ � C Owi .y; t/:

Proof. The lemma follows from the combination of the proof of Lemma 3.15 and Theo-
rem B.3. For the readers’ convenience, we give the detailed proof here.

By Lemma 3.18, �i converges to � in the Hausdorff topology. Since �t \ BR.0/ con-
sists of finitely many points, we can choose ı0.†1; �Œa;b�/ > 0 small such that for any
s 2 Œa; b�,

� 3
2 �;R

.s/���;R.t/; � 1
3 �;RC2

.s/�� 1
5 �;RC2

.t/; t 2 Œs � ı0; sC ı0�\ Œa;b�: (3.53)

Thus, for large i we have

�i;2�;R.s/ � �i;�;R.t/; �i; 12 �;RC2
.s/ � �i; 15 �;RC2

.t/; t 2 Œs � ı0; s C ı0� \ Œa; b�:

Let N be a positive integer satisfying

N > max
²
5.b � a/

ı0
;
b � a

s � a
;
5.b � a/

t � s

³
: (3.54)

Set

�k D aC
b � a

N
k for all k 2 ¹0; 1; : : : ; N º: (3.55)
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Then �0 D a and �N D b. By (3.54) we have s � �1: Note that (3.53) and (3.55) imply
that for any k D 1; 2; : : : ; N � 1 we have

�i; 12 �;RC2
.�k/ � �i; �5 ;RC2.t/ for all t 2 Œ�k�5; �kC5� \ Œa; b�:

Let
�0i WD �i;�;R.�k/; �00i WD �i; 23 �;RC1

.�k/; �i WD �i; 12 �;RC2
.�k/:

Then we have �0i � �
00
i � �i : By Lemma 3.18, †i;1 converges smoothly to †1, �i

converges to � , the domains �0i ; �
00
i ; �i converge to �0; �00; �, respectively, where

�0 WD ��;R.�k/; �00 WD � 2
3 �;RC1

.�k/; � WD � 1
2 �;RC2

.�k/:

Note that Owi satisfies equation (3.52), which is exactly the same as equation (B.2) in the
appendix B. Thus, we can apply Theorem B.3 in appendix B for the function wi , the
domains �0i ; �

00
i ; �i and the interval Œ�k�1; �kC1� to obtain

Owi .x; �k/ � C Owi .y; �kC1/ for all x; y 2 �i;�;R.�k/; (3.56)

where C D C.�;R; b � a;N;†1; �Œa;b�/ is a constant independent of i . Moreover, there
exists a sequence of points ¹zkº such that

zk 2 �i;2�;R.Œ�k�1; �k �/ \�i;2�;R.Œ�k ; �kC1�/ ¤ ;: (3.57)

For s; t 2 .a; b/ with s < t , there exist integers ks and kt such that s 2 Œ�ks ; �ksC1/ and
t 2 .�kt ; �ktC1�. Then we have

kt � ks � 4 (3.58)

as in Lemma 3.15. Set

�0i D �i;�;R.s/; �00i D �i; 23 �;RC1
.s/; � D �i; 12 �;RC2

.s/:

Applying Theorem B.3 for such sets �0; �00; � and the interval Œ�ks�2; �ksC2� as in Lem-
ma 3.15, we have

Owi .x; s/ � C Owi .zksC2; �ksC2/ for all x 2 �i;�;R.s/: (3.59)

Moreover, (3.56) and (3.57) implies that

Owi .zksC2; �ksC2/ � C Owi .zksC3; �ksC3/ � � � � � C
N
Owi .zkt�1; �kt�1/; (3.60)

where we used (3.58). Similar to the proof of (3.59), we have

Owi .zkt�1; �kt�1/ � C Owi .y; t/ for all y 2 �i;�;R.t/: (3.61)

Combining this with (3.59)–(3.61), we have

Owi .x; s/ � C Owi .y; t/ for all x 2 �i;�;R.s/; y 2 �i;�;R.t/: (3.62)

The constants C in (3.59)–(3.62) depend on �; R; b � a;N;†1 and �Œa;b�. The lemma is
proved.
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The next result shows that the normalized height difference function Qwi;k has uni-
formly L1 estimate away from the singular set near t D 0, and the estimate does not
depend on i . The proof of this result relies on the growth estimates of Qwi;1 near the
singular set, which is given in Theorem 4.2 in the next section.

Lemma 3.21. Fix � 2 .0; 1
2
/. Under the same assumptions as in Lemma 3.18, for each

i we can choose ki sufficiently large such that for any k � ki the normalized height
difference function

Qwi;k.x; s/ D
Qui;k.x; s/

Qui;k.xi;k ; 1/
;

where the points ¹xi;kº are chosen as in Lemma 3.19, satisfies the inequality

inf
s2Œ��;0�

Z
†i;1\ Q�

i;
�i
5
;R

Qwi;k.x; s/ � 2W0: (3.63)

Here W0 is a constant independent of i .

Proof. Fix large R > 0: Since †i;1 converges to †1 smoothly, there exist uniform con-
stants �0; „0 > 0 such that for any large i we haveBR.0/ \†i;1 2Mk0;2.�0; „0/. Here
the set Mk0;2.�0; „0/ is defined in Definition 4.1. Note that by Lemma 3.17 for each i the
function Qwi;k converges in C 2 to the limit function Qwi;1 away from �i and xi;k ! xi;0
as k !C1. Applying Theorem 4.2 to the function

Owi D Qwi;1e
�
jxj2

8 ;

we obtain that there exist uniform constants C D C.�0; „0; R/ and r1.�0; „0; R/ > 0
such that

k Qwi;1kL1..†i;1\BR.0//�Œ� 12 ;0�/
� C.R; �0; „0/k Qwi;1kL1.Ki /; (3.64)

where Ki is a compact set defined by

Ki WD

²
.x; t/ 2 .†i;1 \ BRC1.0// �

�
�1;

1

2

� ˇ̌̌̌
min

p2�i;t\BRC1.0/
dgi .x; p/ � r1

³
;

where dgi denotes the intrinsic distance function of .†i;1; gi /. For any t 2 .�T; T /, we
define

Ki;r .t/ D
°
x 2 †i;1

ˇ̌̌
min

p2�i;t\BRC1.0/
dgi .x; p/ � r

±
:

Since .†i;1; gi / converges smoothly to .†1; g1/ and �i converges to �1 by Lem-
ma 3.18, for any t 2 .�T; T /,Ki;r .t/ converges smoothly to a limit set, which we denote
by K1;r .t/ � †1. By part (5) of Lemma 3.18, K1;r .t/ \ �t D ;. Note that K1;r .t/
is defined with respect to the metric g1 while �r;R.t/ is with respect to the Euclidean
metric in R3: Let

r 01 WD
1

2
min

®
d.x; p/

ˇ̌
x 2 K1;r1.t/; p 2 �t ; t 2 Œ�2; 2�

¯
> 0;
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where d.x; p/ denotes the Euclidean distance in R3. Thus, we have

K1;r1.t/ � �r 01;RC1
.t/ � †1 for all t 2 Œ�2; 2�:

Since Ki;r1.t/ and Q�i;r 0
1
;RC1.t/ converge to K1;r1.t/ and �r 0

1
;RC1.t/, respectively, for

each t , for large i we have

Ki;r1.t/ �
Q�i; 12 r

0
1
;RC2.t/ for all t 2 Œ�2; 2�:

Applying Lemma 3.20 for Q�i; 12 r 01;RC2.t/ and Œ�2; 2�, we have

Qwi;1.x; t/ � C.r
0
1; R;†1; �Œ�2;2�/ Qwi;1.xi;0; 1/

D C.r 01; R;†1; �Œ�2;2�/ for all .x; t/ 2 Ki ; (3.65)

where we used the fact that Qwi;1.xi;0; 1/ D 1. Integrating both sides of (3.65) on Ki ,
we have

k Qwi;1kL1.Ki / � C.r
0
1; R;†1; �Œ�2;2�/Areagi .†i;1 \ BRC1.0//

� C.r 01; R;†1; �Œ�2;2�; N /; (3.66)

where we used the upper bound of area ratio in Lemma 3.4 in the last inequality. Com-
bining (3.64) with (3.66), we have

k Qwi;1kL1..†i;1\BR.0//�Œ� 12 ;0�/
� C.R;†1; �Œ�2;2�; N; �0; „0/: (3.67)

Thus, the L1 norm of Qwi;1 is uniformly bounded. Since Qwi;k converges to Qwi;1 on any
compact set away from singularities as k !C1, we can choose ki large such that for
any k � ki ,

inf
s2Œ��;0�

Z
†i;1\ Q�

i;
�i
5
;R

Qwi;k.x; s/ � 2 inf
s2Œ��;0�

Z
†i;1\ Q�

i;
�i
5
;R

Qwi;1.x; s/

�
2

�

Z 0

��

dt

Z
†i;1\BR.0/

Qwi;1.x; t/

� C.R;†1; �Œ�2;2�; N; �0; „0; �/;

where we used inequality (3.67). Thus, inequality (3.63) is proved.

Combining Lemma 3.18, Lemma 3.19 with Lemma 3.21, we have the following result.

Lemma 3.22. Let R > 0 and � 2 .0; 1
2
/. There is a sequence of times ti !1, a self-

shrinker †1 2 C.N; �/, a locally finite singular set � , and a constant W satisfying the
following properties:

(1) For any T > 1, there exists a subsequence ¹tik º
1
kD1

of ¹tiº such that the sequence
¹†tikCs

;�T < s < T º converges locally smoothly to †1 2 C.N; �/ away from � .

(2) Let x0 2 †1n�1. We define the functions ui as in (3.25) and wi by

wi .x; t/ D
ui .x; t/

ui .x0; 1/
:
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For any � > 0 and large ti , we have the inequality

inf
s2Œt��;t�

Z
��;R.s/

wi .x; s/ � W for all t 2 Œ2; T /; (3.68)

where W is a constant independent of �, i and T .

(2) For any I D Œa; b� � Œ�1; T � 2� and K �� .†1 \ BR.0//n�I , there exists a con-
stant C D C.�;K; �I ; a; b/ such that

0 < wi .x; t/ < C for all .x; t/ 2 K � I: (3.69)

Moreover, if a 2 Œ2; T � 2�, there exists C 0 D C 0.K;†1; �Œ0;aC1�/ independent of b
such that

wi .x; a/ � C
0 for all x 2 K: (3.70)

Proof. Fix a sequence of �i ! 0. We choose ti D ti;ki with ki large such that Lemma 3.19
and Lemma 3.21 hold. Note that ui .x; s/ D ui;ki .x; s/ is the height difference function
of †ti;kiCs over †1. Then for any T > 1 the sequence ¹†tiCs;�T < s < T º converges
locally smoothly to †1 2 C.N; �/ away from � . Note that the limit self-shrinker †1
is independent of the choice of T by Lemma 3.4. For any � > 0, we have �i 2 .0; �/ for
large i . Moreover, for large ti we have

inf
s2Œt��;t�

Z
��;R.s/

wi .x; s/ �
2

ui .x0; 1/
inf

s2Œt��;t�
jTN.†tiCs; �i ; R/j

�
4

ui .x0; 1/
inf

s2Œ��;0�
jTN.†tiCs; �i ; R/j;

where we used Lemma 3.14 in the first inequality and (3.48) in the second inequality.
Note that (3.49) implies that

jTN.†tiCs; �i ; R/j � 2
Z
Q�
i;
�i
5
;R

Qui;ki .x; s/:

Thus, we have

inf
s2Œt��;t�

Z
��;R.s/

wi .x; s/ �
4 Qui;ki .xi;ki ; 1/

ui .x0; 1/
�

1

Qui;ki .xi;ki ; 1/
inf

s2Œ��;0�
jTN.†tiCs; �i ; R/j

�
8 Qui;ki .xi;ki ; 1/

ui .x0; 1/
�

1

Qui;ki .xi;ki ; 1/
inf

t2Œ��;0�

Z
Q�
i;
�i
5
;R

Qui;ki .x; s/

�
8 Qui;ki .xi;ki ; 1/

ui .x0; 1/
� inf
s2Œ��;0�

Z
Q�
i;
�i
5
;R

Qwi;ki .x; s/

� 16W0 �
Qui;ki .xi;ki ; 1/

ui .x0; 1/
� 32W0; (3.71)

where we used (3.63) in the fourth inequality and (3.51) in the last inequality. As in the
proof of Lemma 3.16, (3.71) implies a uniform upper bound of wi on K, and we also
have the lower bounds (3.69)–(3.70) of wi . The lemma is proved.
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Proposition 3.23. Under the same assumption as in Lemma 3.22, wi converges in C 2 to
a positive function w.x; t/ satisfying (3.47) on .†1 � .0;1//n� with w.x0; 1/ D 1 and

inf
s2Œt��;t�

Z
†1\BR.0/

w.x; s/ � W for all t 2 Œ1;1/: (3.72)

Moreover, for any a 2 Œ2;1/ there exists a constant C D C.a;†1; �Œ1;aC1�; K/ > 0
such that the function w.x; t/ satisfiesZ

†1\BR.0/

w.x; a/ � C: (3.73)

Proof. For any I � Œ1; T � 2� and K �� .†1 \ BR.0//n�I , by Lemma 3.22 and the
interior estimates of the parabolic equations (cf. [50, Theorem 4.9]), we have the space-
time C 2;˛ estimates of wi on K � I . Taking the limit i !C1, wi converges in C 2 to
a limit function w.x; t/ on K � I with estimate (3.69)–(3.70). Moreover, (3.72) holds
on I by (3.68) and (3.73) holds on I \ Œ2;1/ by (3.70). Since †1 is independent of the
choice of T and the estimates of w are independent of T , by taking T !C1 we obtain
a function, still denoted by w, on .†1 � .0;1//n� with estimates (3.72)–(3.73). The
proposition is proved.

The following result was used in the proof of Lemma 3.19.

Lemma 3.24. Let † � R3 be a surface properly embedded in Br0.x0/ with

jAj.x/ �
1

r0
; x 2 Br0.x0/ \†:

Assume that †ui is the graph of a functions ui over † for i D 1; 2 and †u1 \†u2 D ;.
Let P 2 †, lP the normal of † at the point P , G D lP \†u1 and Q D lP \†u2 . For
any � 2 Œ0; �

2
/, we denote by l� the line which passes through Q and has angle � with

the line lP . Let B D †u1 \ l� . Then there are two constants � 2 .0; 1/ and �0 > 0 both
depending only on r0 such that if � 2 .0; �0/ and

ku1kC1.†\Br0 .x0//
C ku2kC1.†\Br0 .x0//

� �; (3.74)

then we have
jGQj � 2jBQj:

Proof of Lemma 3.24. Without loss of generality, we assume that the tangent plane of †
at P is the plane � WD ¹.x1; x1; 0/ j x1; x2 2 Rº and the point P is the origin O of R3:
Let OBı0.0/ D ¹.x1; x2; x3/ j x

2
1Cx

2
2 < ı

2
0º. By Lemma 2.2, there exists ı0 D ı0.r0/ > 0

such that † \ OBı0.0/ can be written as a graph of a function f over the plane �;

† \ OBı0.0/ D ¹.x1; x2; f .x1; x2// j jxj < ı0º; (3.75)

where x D .x1; x2/, and the graph function f satisfies

f .0/ D 0; Df .0/ D 0; jrf j.y/ � C0jyj: (3.76)
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Here the constant C0 depends only on r0. Note that the coordinates of G and Q are given
byG D .0; 0; u1.0// andQ D .0; 0; u2.0//, respectively. For the pointB 2 †u1 \ l� , we
define the point E 2 † the projection of B onto †, which means

��!
OE C u1.E/n.E/ D

��!
OB; (3.77)

where n.E/ is the unit normal vector of † at E.
We claim that there exist �0 D �0.ı0/ 2 .0; 1/ and �0 D arctan 3 > 0 such that if

� 2 .0; �0/ and (3.74) holds for some � 2 .0; �0/, thenE 2†\ OBı0.0/: In fact, we assume
that �0 D arctan ı0

4�
. Then for any � 2 .0; �0/, we have

j
��!
OBj � 2� C

ı0

2
:

Combining this with (3.77), we have

j
��!
OEj � j

��!
OBj C ju1.E/j � 3� C

ı0

2
�
3

4
ı0;

where we choose � 2 .0; 1
12
ı0/: Therefore, by (3.75) we haveE 2 † \ OBı0.0/: The claim

is proved.
Assume that E D .y; f .y// 2 † \ OBı.0/ with y D .y1; y2/ and ı 2 .0; ı0/. Note

that the normal vector at E is given by

n.E/ D
.�@y1f .y/;�@y2f .y/; 1/p

1C jrf .y/j2
;

and by (3.77) the coordinates of B D .B1; B2; B3/ are given by

B1 D y1 �
u1.y/@y1f .y/p
1C jrf .y/j2

; (3.78)

B2 D y2 �
u1.y/@y2f .y/p
1C jrf .y/j2

; (3.79)

B3 D f .y/C
u1.y/p

1C jrf .y/j2
; (3.80)

where we write u1.y/ D u1.y1; y2; f .y1; y2// for simplicity. Since

B21 C B
2
2 D jQBj

2 sin2 �;

using (3.78)–(3.79) we have

y21 C y
2
2 C

u1.y/
2jrf .y/j2

1C jrf .y/j2
� 2

u1.y/hy;rf .y/ip
1C jrf .y/j2

D jQBj2 sin2 �;

where hy;rf .y/i D y1@y1f .y/C y2@y2f .y/. Combining this with (3.76), we have

jQBj2 sin2 � � y21 C y
2
2 � 2

u1.y/hy;rf .y/ip
1C jrf .y/j2

� .1 � 2C0ju1.y/j/.y
2
1 C y

2
2/ � .1 � 2C0�/.y

2
1 C y

2
2/:
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Thus, if � 2 .0; 1
2C0

/, we have

jyj2 D y21 C y
2
2 �
jQBj2 sin2 �
1 � 2C0�

: (3.81)

Since l� has the angle � with the line lP , we assume that the unit direction vector of l�
is Ev D .v1; v2; cos �/. Thus, we have

jQBj D jh
��!
QB; Evij

D jB1v1 C B2v2 C .B3 � u2.0// cos � j
� j.B3 � u2.0// cos � j � jB1v1j � jB2v2j: (3.82)

Note that by (3.76),

jB3 � u2.0/j D

ˇ̌̌̌
f .y/C

u1.y/p
1C jrf .y/j2

� u2.0/

ˇ̌̌̌
� ju1.0/ � u2.0/j � ju1.0/ � u1.y/j

� ju1.y/j �

ˇ̌̌̌
1p

1C jrf .y/j2
� 1

ˇ̌̌̌
� jf .y/j

� ju1.0/ � u2.0/j � max
Bı.0/

jru1j � jyj � C0

�
1C max

Bı.0/
ju1j

�
jyj2

� ju1.0/ � u2.0/j � C1jyj; (3.83)

where C1 D � C C0.1C �/ı0; and by (3.76), (3.78)–(3.79) we have

jB1j � .1C C0�/jyj; jB2j � .1C C0�/jyj: (3.84)

Combining (3.81)–(3.84), we have

jQBj � ju1.0/ � u2.0/j cos � � C1jyj
� ju1.0/ � u2.0/j cos � � C1 sin � jQBj:

This implies that

jGQj

jQBj
D
ju1.0/ � u2.0/j

jQBj
�
1C C1 sin �

cos �
� 2

if we choose � sufficiently small. Thus, the lemma is proved.

3.5. The L-stability of the limit self-shrinker

In this subsection, we show that the limit self-shrinker is L-stable. The rough idea is
similar to that of [46], but the details are much more complicated. Compared with [46], the
singularities here no longer move along straight lines, we cannot choose time large enough
such that a given compact set does not contain the singularities (cf. [46, Lemma 4.13]).
Therefore, we have to choose a cutoff function near the singularities and analyze the
asymptotical behavior of the positive solution near the singular set. The analysis of the
asymptotical behavior is very difficult and we delay the arguments in the next section.

The main result in this subsection is the following lemma.
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Lemma 3.25. Fix R > 1. Let ¹tiº be the sequence of times and †1 2 C.N; �/ the self-
shrinker in Lemma 3.22. Then we have

�

Z
†1

. L /e�
jxj2

4 � 0 (3.85)

for any smooth function  2 C10 .†1;R/.

Letw be the function obtained in Proposition 3.23 and v D logw. Then v is a function
satisfying

@v

@t
D �0v C jAj

2
C
1

2
�
1

2
hx;rvi C jrvj2 for all .x; t/ 2 .†1 � .0;1//n� :

Let I D Œa; b� � .0;1/. We assume that �.x; t/ is a function satisfying the properties
that for any t 2 I we have

�. � ; t / 2 W
1;2
0 .†1;R/; Supp.�. � ; t // \ �t D ;: (3.86)

Then for any t 2 I , we have

0 D

Z
†1

div
�
�2e�

jxj2

4 rv
�

D

Z
†1

�
2�hr�;rvi C

�
@v

@t
�
1

2
� jAj2 � jrvj2

�
�2
�
e�
jxj2

4

�

Z
†1

�
jr�j2 �

1

2
�2 � jAj2�2 C

@v

@t
�2
�
e�
jxj2

4 :

This implies that for any t 2 I;

�

Z
†1

.�L�/e�
jxj2

4 � �

Z
†1

@v

@t
�2e�

jxj2

4

D �
d

dt

Z
†1

v�2e�
jxj2

4 C

Z
†1

2v�
@�

@t
e�
jxj2

4 :

Integrating both sides with respect to t 2 I , we have

�

Z b

a

Z
†1

.�L�/e�
jxj2

4 �

Z
†1

v�2e�
jxj2

4

ˇ̌̌
tDa
�

Z
†1

v�2e�
jxj2

4

ˇ̌̌
tDb

C

Z b

a

Z
†1

2v�
@�

@t
e�
jxj2

4 : (3.87)

To get inequality (3.85), the main difficulty is to estimate the last term of (3.87). Using
a cutoff function inspired by [46], we will see that the last term of (3.87) depends on the
asymptotical behavior of w near the singular set.

We now construct the cutoff function near the singular set. Let ¹�1.t/; �2.t/; : : : ; �l .t/º
(t 2 I ) be � -Lipschitz curves on †1. We denote by

�k D ¹.�k.t/; t/ j t 2 I º � †1 � I; � D

l[
kD1

�k :
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Choose 0 < ı < � < 1. We define the function � on R by

�.s/ D

´
log�

log jsj ; 0 < jsj < �;

1; jsj � �

and the function ˇ.s/ 2 C1.R/ such that ˇ.s/ D 0 for jsj < ı
2

, ˇ.s/ D 1 for jsj � ı,
0 � ˇ.s/ � 1 and jrˇj � 3

ı
. We define the function fı;� on †1 � I by

fı;�.x; t/ D

lY
kD1

�
�.rk.x; t//ˇ.rk.x; t//

�
2 W 1;2..†1 � I /n�/;

where
rk.x; t/ D dg.x; �k.t//: (3.88)

For any  .x/ 2 C10 .†1;R/, we define

�.x; t/ D  .x/fı;�.x; t/: (3.89)

Then �.x; t/ satisfies the properties in (3.86). With loss of generality, we assume that
sup†1 j j � 1: Then we have:

Lemma 3.26. For any small � > 0 we have

�

Z
†1

.�L�/e�
jxj2

4 � �

Z
†1

 L. /e�
jxj2

4 C‰.�; �; ı j †1;R/; (3.90)

where ‰ depends on �; ı; � and the geometry of †1;R and satisfies

lim
�!0

lim
�!0

lim
ı!0

‰.�; �; ı j †1;R/ D 0: (3.91)

Proof. Since the function �.x; t/ D  .x/fı;�.x; t/ satisfies

jr�j2 � .1C �/f 2ı;�jr j
2
C

�
1C

1

�

�
 2jrfı;�j

2;

we have

�

Z
†1

�L.�/e�
jxj2

4 D

Z
†1

�
jr�j2 �

�
1

2
C jAj2

�
�2
�
e�
jxj2

4

�

Z
†1

�
jr j2 �

�
1

2
C jAj2

�
 2
�
e�
jxj2

4

C

Z
†1

�
.1C �/f 2ı;� � 1

�
jr j2e�

jxj2

4

C

Z
†1

�
1

2
C jAj2

�
.1 � f 2ı;�/ 

2 e�
jxj2

4

C

�
1C

1

�

�Z
†1

 2jrfı;�j
2 e�

jxj2

4

DW I0 C I1 C I2 C I3: (3.92)
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Note that jfı;�j � 1 and lim�!0 limı!0 fı;�.x; t/ D 1 for any .x; t/ 2 .† � I /n� . The
Lebesgue dominated convergence theorem implies that

lim
�!0

lim
�!0

lim
ı!0

I1 D 0; lim
�!0

lim
ı!0

I2 D 0: (3.93)

We next estimate I3. Let fk.x; t/ D �.rk.x; t//ˇ.rk.x; t//. We define

„R WD inf
²
„ > 0

ˇ̌̌̌
1

„
ıij � gij .x/ � „ıij for all x 2 BR.0/ \†1

³
;

where gij is the induced metric on †1. Note thatZ
†1

jrfkj
2 e�

jxj2

4 � 2

Z
†1

�
ˇ2jr�j2 C �2jrˇj2

�
e�
jxj2

4 : (3.94)

We estimateZ
†1

ˇ.rk/2jr.�.rk//j2 e�
jxj2

4 �

Z
ı
2�rk��

.�0.rk//2 � C
Z �

ı
2

.log �/2

s.log s/4
ds

� C

�
1

jlog �j
C
.log �/2

jlog ı
2
j3

�
; (3.95)

where C is a constant depending on the metric g. Moreover,Z
†1

�2jrˇj2 e�
jxj2

4 �

Z
ı
2�rk�ı

�.rk/2.ˇ0.rk//2jrrkj2

� C

Z ı

ı
2

.log �/2

.log s/2
�
4

ı2
� s ds

� C

Z ı

ı
2

.log �/2

s.log s/2
ds � C

.log �/2

jlog ıj
;

where C is a constant depending on the metric g. Combining this with (3.94) and (3.95),
we have Z

†1

jrfkj
2 e�

jxj2

4 � 2

Z
†1

�
ˇ2jr�j2 C �2jrˇj2

�
e�
jxj2

4

� C

�
1

jlog �j
C
jlog �j2

jlog ıj

�
:

Since j j � 1 and jfkj � 1, we haveZ
†1

 2jrfı;�j
2 e�

jxj2

4 � l

Z
†1

lX
kD1

jrfkj
2 e�

jxj2

4

� C.l; g/

�
1

jlog �j
C
jlog �j2

jlog ıj

�
:

Therefore, we have
lim
�!0

lim
ı!0

I3 D 0: (3.96)

Combining (3.93)–(3.96) with (3.92), we have (3.90) and (3.91).
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Lemma 3.27. For the function � defined by (3.89), we haveZ
†1

2v�
@�

@t
e�
jxj2

4 � �2�.log �/2
lX

kD1

�Z
A
.k/
t . ı2 ;ı/\F

.k/
t . ı2 /

3jvj

ıjlog rkj2

C

Z
A
.k/
t . ı2 ;�/\F

.k/
t . ı2 /

jvj

rkjlog rkj3

�
; (3.97)

where F .k/t .ı/ and A.k/t .ı; �/ are defined by

F
.k/
t .ı/ D

\
i¤k

¹x 2 †1 j ri .x; t/ � ıº; (3.98)

A
.k/
t .ı; �/ D ¹x 2 †1 j ı < rk.x; t/ < �º: (3.99)

Proof. We use the same notations as in the proof of Lemma 3.26. Direct calculation shows
that ˇ̌̌̌ Z

†1

2v�
@�

@t
e�
jxj2

4

ˇ̌̌̌
�

lX
kD1

Z
†1\F

.k/
t . ı2 /

2jvjfk

ˇ̌̌̌
@fk

@t

ˇ̌̌̌
e�
jxj2

4

�

lX
kD1

Z
†1\F

.k/
t . ı2 /

2jvj�.rk/ˇ.rk/
�
j�0.rk/jˇ.rk/

C jˇ0.rk/j�.rk/
�ˇ̌̌̌@rk
@t

ˇ̌̌̌
e�
jxj2

4 : (3.100)

Note that for a.e. t 2 I , j @rk
@t
j � j� 0

k
.t/j � � , and we assumed that sup†1 j j � 1: There-

fore, using the definition of � and ˇ we haveZ
†1\F

.k/
t . ı2 /

2jvj�.rk/ˇ2.rk/j�0.rk/j �
ˇ̌̌̌
@rk
@t

ˇ̌̌̌
e�
jxj2

4

� 2�

Z
†1\F

.k/
t . ı2 /

�.rk/ˇ.rk/2jvj � j�0.rk/j

� 2�

Z
A
.k/
t .ı;�/\F

.k/
t . ı2 /

jvj
.log �/2

jlog rkj3rk
; (3.101)

Z
†1\F

.k/
t . ı2 /

2jvj�.rk/2ˇ.rk/jˇ0j �
ˇ̌̌̌
@rk
@t

ˇ̌̌̌
e�
jxj2

4

� 2�

Z
†1\F

.k/
t . ı2 /

jvj�2.rk/ˇ.rk/jˇ0.rk/j

�
6�

ı

Z
A
.k/
t . ı2 ;ı/\F

.k/
t . ı2 /

jvj

�
log �
log rk

�2
: (3.102)

Combining (3.100)–(3.102), we have (3.97).
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Lemma 3.28. For any t > 0, we have

lim
�!0

lim
ı!0

.log �/2
Z b

a

dt

Z
A
.k/
t .ı;�/\F

.k/
t . ı2 /

jvj

rkjlog rkj3
D 0; (3.103)

lim
�!0

lim
ı!0

.log �/2

ı

Z b

a

dt

Z
A
.k/
t . ı2 ;ı/\F

.k/
t . ı2 /

jvj

jlog rkj2
D 0: (3.104)

Proof. Since w.x; t/ satisfies (3.47) away from the singular set, the function

f .x; t/ D w.x; t/e�
jxj2

8

satisfies the equation

@f

@t
D �f C

�
jAj2 C

3

4
�
1

16
jxj2

�
f:

By Theorem 4.2, we have

lim
�!0

lim
ı!0

Z b

a

dt

Z
A
.k/
t .ı;�/\F

.k/
t . ı2 /

f

rkjlog rkj
D 0; (3.105)

lim
ı!0

1

ı

Z b

a

dt

Z
A
.k/
t . ı2 ;ı/\F

.k/
t . ı2 /

f < C1: (3.106)

Since near the singular curve �.t/, the function w is large and we have v D logw � w:
Thus, (3.105)–(3.106) also hold for v, and this directly implies (3.103)–(3.104). The
lemma is proved.

Combining the above results, we can show Lemma 3.25.

Proof of Lemma 3.25. Combining Lemma 3.26, Lemma 3.27 with inequality (3.87), we
have

� .b � a/

Z
†1

 L. /e�
jxj2

4 C‰.�; �; ı j†1;R/.b � a/

�

Z
†1

v�2 e�
jxj2

4

ˇ̌̌
tDa
�

Z
†1

v�2 e�
jxj2

4

ˇ̌̌
tDb

� 2�.log �/2
lX

kD1

�Z b

a

Z
A
.k/
t . ı2 ;ı/\F

.k/
t . ı2 /

3jvj

ıjlog rkj2

C

Z b

a

Z
A
.k/
t .ı;�/\F

.k/
t . ı2 /

jvj

rkjlog rkj3

�
: (3.107)

Taking ı ! 0 and next �! 0, and then � ! 0 in (3.107), we get

�

Z
†1

 L. /e�
jxj2

4 �
1

b�a

�Z
†1

v 2 e�
jxj2

4

ˇ̌̌
tDa
�

Z
†1

v 2 e�
jxj2

4

ˇ̌̌
tDb

�
: (3.108)
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Note that by Proposition 3.23, w.x; t/ is a function on .†1 � .0;1//n� with uniform
estimates (3.72) and (3.73). Thus, there is a sequence bi !C1 such thatZ

†1

v 2 e�
jxj2

4 d�1

ˇ̌̌
tDbi
�

Z
†1

w d�1

ˇ̌̌
tDbi
� W

for a constant W . Therefore, by taking bi !C1 and a D 2 in (3.108) we get (3.85).
The lemma is proved.

3.6. Proof of Theorem 3.1

In this subsection, we show Theorem 3.1. First, using Lemma 3.9 and the compactness
result of Colding and Minicozzi [20] we have the following result.

Lemma 3.29. Let R;N > 0 and let � be an increasing positive function. For any ı > 0,
there exists a constant � D �.R;N; �; ı/ > 0 such that for any † 2 C.N; �/ and any
r 2 .0; �� we have

1 � ı �
Area.† \ Br .x//

�r2
� 1C ı for all x 2 BR.0/ \†: (3.109)

Proof. We show that there exists a positive constant CR D C.R;N; �/ such that for all
† 2 C.N; �/ we have sup†\BRC1.0/ jAj � CR. For otherwise, we can find a sequence
†i 2 C.N; �/ such that

sup
†i\BRC1.0/

jAj ! C1: (3.110)

On the other hand, by the compactness theorem of Colding and Minicozzi [20], †i con-
verges smoothly to †1 2 C.N; �/, which has bounded jAj on any compact set. This
contradicts (3.110).

As sup†\BRC1.0/ jAj is uniformly bounded by CR, estimate (3.109) follows directly
from Lemma 2.3. The lemma is proved.

Using the uniform upper bound of the area ratio and Lemma 3.4, we have the follow-
ing result.

Lemma 3.30. Under the same assumption as in Lemma 3.4, if ¹†ti º converges locally
smoothly to †1 with multiplicity m 2 N away from a locally finite singular set �0, then
for any xi 2 †ti \ BR.0/ with xi ! x1 2 †1 \ BRC1.0/ and r > 0 we have

lim
i!C1

Area.†ti \ Br .xi // D m � Area.†1 \ Br .x1//: (3.111)

Proof. Since �0 is locally finite, without loss of generality we assume thatBr .x1/ \†1
consists of only one singular point y1. For any � > 0 by the smooth convergence of
†ti \ .Br .xi /nB�.y1// we have

lim
i!C1

Area
�
†ti \ .Br .xi /nB�.y1//

�
Dm �Area

�
†1 \ .Br .x1/nB�.y1//

�
: (3.112)

Since the area ratio is uniformly bounded from above along the rescaled mean curvature
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flow, we have
Area.†ti \ B�.y1// � N��

2
! 0 as � ! 0:

Taking � ! 0 in both sides of (3.112), we have (3.111). The lemma is proved.

Combining Lemma 3.29, Lemma 3.30 with Lemma 2.9, we show that the area ratio is
always close to an integer after a fixed time.

Lemma 3.31. Fix large R and small ı0 2 .0; 12 /. Under the same assumption as in Lem-
ma 3.4, there exists t0 > 0 such that for any t > t0 we have

m.1 � 2ı0/ <
Area.†t \ B�.x//

��2
< m.1C 2ı0/ for all x 2 BR.0/ \†t ; (3.113)

where m is a positive integer independent of x and t . Here � D �.RC 1;N; �; ı0/ is the
constants in Lemma 3.29 withN and � determined as in assumption (3.2) and Lemma 3.4.

Proof. We divide the proof into several steps.

Step 1. We show that there exists t0 > 0 such that for any t > t0, (3.113) holds for some
integer m.x; t/, which may depend on x and t . For otherwise, there exist a sequence
ti !C1 and xi 2 BR.0/ \†ti such thatˇ̌̌̌

Area.†ti \ B�.xi //
�m�2

� 1

ˇ̌̌̌
� 2ı0 for all m 2 N \ Œ1; N0�: (3.114)

By Proposition 2.8, by taking a subsequence if necessary we assume that †ti converges
locally smoothly to a self-shrinker †1 2 C.N; �/ with multiplicity m0 2 N and

xi ! x1 2 †1 \ BRC1.0/:

By the convergence of ¹†ti º and Lemma 3.30, we have

lim
i!C1

Area.†ti \ B�.xi //
��2

D m0
Area.†1 \ B�.x1//

��2
: (3.115)

Lemma 3.29 implies that

1 � ı0 �
Area.†1 \ B�.x1//

��2
� 1C ı0: (3.116)

Combining (3.115) with (3.116), for large ti we haveˇ̌̌̌
Area.†ti \ B�.xi //

�m0�2
� 1

ˇ̌̌̌
�
3

2
ı0; (3.117)

which contradicts (3.114).

Step 2. We show that m.x; t/ is independent of x and we can write m.t/ for short. For
otherwise, we can find a sequence ti !C1 and xi ; yi 2 †ti with m.xi ; ti / ¤ m.yi ; t /.
Because m.x; t/ 2 Œ1; N0�, by taking a subsequence if necessary we may assume that
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m.xi ; ti / D m1 for all i . Thus, for any i we have

m.yi ; ti / ¤ m1: (3.118)

By Proposition 2.8, by taking a subsequence if necessary we assume that †ti converges
locally smoothly to a self-shrinker †1 2 C.N; �/ with multiplicity m0 2 N, and

xi ! x1; yi ! y1; x1; y1 2 †1 \ BRC1.0/:

By (3.117), we have m.xi ; ti / D m0 D m.yi ; ti /, which contradicts (3.118).

Step 3. We show thatm.t/ is independent of t . It suffices to show that for any s 2 .�1
2
; 1
2
/,

we have
m.t/ D m.t C s/:

For otherwise, we can find a sequence ti !C1 and si 2 .�12 ;
1
2
/ such that for all i ,

m.ti / ¤ m.ti C si /: (3.119)

We follow the same argument as in Step 2. Since m.ti / is uniformly bounded, by taking
a subsequence if necessary we can assume that m.ti / D m1 for all i . By (3.119), for all i
we have

m.ti C si / ¤ m1: (3.120)
Note that m.ti C si / is also bounded, we can assume that a subsequence of ¹m.ti C si /º
converges to an integer m2 with

m2 ¤ m1 (3.121)
by (3.120). By Proposition 2.8, by taking a subsequence if necessary we assume that
¹†tiCs;�1 < s < 1º converges locally smoothly to a self-shrinker †1 2 C.N; �/ with
multiplicitym0 2 N. Inequality (3.117) implies thatm0 D m1. Since the multiplicitym0
of the convergence is independent of time by Lemma 2.9, we have m0 D m2. Thus, we
have m1 D m2, which contradicts (3.121).

Using Lemma 3.31 and the results in previous sections, we show Theorem 3.1.

Proof of Theorem 3.1. Fix largeR > R0, whereR0 is the constant chosen in Lemma 3.8,
and we choose a sequence ti !C1 as in Lemma 3.22. Then there is a self-shrinker
†1 2 C.N; �/ such that for any T > 1 we can find a subsequence, still denoted by ¹tiº,
such that ¹†tiCt ;�T < t < T º converges in smooth topology, possibly with multiplici-
ties at most N0, to †1 away from a singular set � . If the multiplicity of the convergence
is greater than one, Lemma 3.25 shows that the limit self-shrinker †1 is L-stable in
the ball BR.0/. This contradicts Lemma 3.8. Therefore, the multiplicity is one and the
convergence is smooth.

We next show that for any sequence of si !C1 there exists a subsequence such
that the multiplicity of the convergence is also one. For otherwise, there exists a sequence
si !C1 such that †si converges locally smoothly to a self-shrinker †01 2 C.N; �/

with multiplicity m0 > 1. By Lemma 3.31, there exists t0 > 0 such that for any t > t0
we have

m.1 � 2ı0/ <
Area.†t \ B�.x//

��2
< m.1C 2ı0/ for all x 2 BR.0/ \†t ; (3.122)
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wherem is a positive integer independent of x and t . By taking t D ti !C1 in (3.122),
we have m D 1. On the other hand, taking t D si !C1 in inequality (3.122), we have
m D m0 > 1, which is a contradiction. Thus, the theorem is proved.

4. Estimates near the singular set

In this section, we will study the asymptotical behavior of the functionw near the singular
set. These estimates are used in the proof of Lemma 3.21 and Lemma 3.28. In [42],
Kan and Takahashi studied time-dependent singularities in semilinear parabolic equations
along one singular curve. Here we develop Kan–Takahashi’s techniques to estimate the
solution when the singular sets consists of multiple singular curves.

First, we introduce the following notations. Throughout this section, we denote by
Br .p/ the (intrinsic) geodesic ball centered at p in .M; g/ and dg.x; y/ the distance
from x to y with respect to the metric g.

Definition 4.1. Let .M; g/ be a complete Riemannian manifold of dimension m. For any
k 2 N; �;„ > 0, we define Mk;m.�;„/ the set of all subsets A � .M; g/ such that
(1) for any p 2 A, the harmonic radius at p satisfies rh.p/ � �,
(2) for any p 2 A, the ball B�.p/ has harmonic coordinates ¹x1; x2; : : : ; xmº such that

the metric tensor gij in these coordinates satisfies

„�1ıij � gij � „ıij ;

ˇ̌̌̌
@˛gij

@x˛

ˇ̌̌̌
� „ on B�.p/

for any multi-index ˛ with 1 � j˛j � k:

The following theorem is the main result in this section, which gives the asymptotical
behavior of a positive solution of a parabolic equation near a time-dependent singular set.

Theorem 4.2. Let .†2; g/ be a two-dimensional complete surface and let ¹�1; �2; : : : ; �lº
with �k W ŒT1; T2�! † be � -Lipschitz curves in †. Assume that

u.x; t/ 2 L1loc

 
.† � .T1; T2//n

l[
kD1

�k

!
is a nonnegative solution of the equation

@u

@t
D �guC c.x; t/u; (4.1)

where c.x; t/ 2 L1loc.†� ŒT1; T2�/ and �k D ¹.�k.t/; t/º � †� ŒT1; T2�. Assume that for
any k 2 ¹1; 2; : : : ; lº and any t 2 ŒT1; T2� the ball B1.�k.t// is in Mk0;2.�0; „0/, where
k0 is an integer chosen as in Corollary 4.4. Then we have:

(1) u 2 L1loc.† � .T1; T2//:More precisely, for any .t1; t2/ � .T1; T2/, there exists a con-
stant r1 D r1.�0; „0; l; t1; t2; T1; T2/ > 0 such that

kukL1.Qr1;t1;t2 /
� CkukL1.K/; (4.2)
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where C is a constant depending on kckL1.Q1;T1;T2 /; �0; „0; �; t1; t2; T1; T2 and K
is defined by K D Q2r1;T1;T2nQr1;T1;T2 : Here Qr;t1;t2 is defined by

Qr;t1;t2 D

l[
kD1

¹.x; t/ 2 † �R j x 2 Br .�k.t// � †; t 2 .t1; t2/º:

(2) For any .t1; t2/ � .T1; T2/, we have

lim
R!0

lim
ı!0

Z t2

t1

dt

Z
A
.k/
t . ı2 ;R/\F

.k/
t . ı2 /

u

rkjlog rkj
dvol D 0; (4.3)

lim
ı!0

1

ı

Z t2

t1

dt

Z
A
.k/
t . ı2 ;ı/\F

.k/
t . ı2 /

udvol < C1; (4.4)

where A.k/t and F .k/t are defined by (3.98)–(3.99) and rk.x; t/ D d.x; �k.t//.

We sketch the proof of Theorem 4.2. First, we show an asymptotical formula for the
heat kernel on a Riemannian manifold in Theorem 4.3. Using this formula, we construct
a special function Uk.x; t/ for each singular curve �k and a measure �, and show that
Uk.x; t/ behaves like log 1=rk.x; t/ when the point x is near �k and � is the Lebesgue
measure in Lemma 4.5. Moreover, Uk.x; t/ satisfies the growth estimates (4.3)–(4.4) by
Lemma 4.6, and we use Uk.x; t/ to construct a function vk in Lemma 4.5, which satis-
fies the backward heat equation. The function vk is important to construct some cutoff
functions (cf. Definition 4.12). When the singular curves are disjoint, using these cutoff
functions we can show (4.2) directly in Lemma 4.9. When the singular curves are not
disjoint, we show the finiteness of a functional I and use the functional I to show the L1

norm of u (4.2) in Lemma 4.13. By using the functional I , we get a positive linear func-
tional �k for each singular curve �k in Lemma 4.15, and by Lemma 4.16 �k is uniformly
bounded even if the singular curves are not disjoint. Finally, we use �k to construct Uk
and show that u is controlled by Uk . By the properties of Uk , we have that u satisfies the
growth estimates (4.3)–(4.4).

4.1. Properties of the heat kernel

In this subsection, we will give the expansion of the heat kernel on Riemannian manifolds.
Let .M; g/ be a complete Riemannian manifold (without boundary) of dimensionm. Sup-
pose that p.x; y; t/ is the heat kernel. Then p.x; y; t/ has the following asymptotical
formula (cf. [48, Theorem 11.1]):

p.x; y; t/ � .4�t/�
m
2 e�

d2g.x;y/

4t

as t ! 0 and dg.x; y/! 0. The next result gives more estimates on the asymptotical
formula.

Theorem 4.3 (cf. [48, Theorem 11.1] or [5, Theorem 2.30]). Let �0; „0 > 0 and integers
m � 2; k � 0. There exists an integer k0 D k0.k/ depending only on k satisfying the
following property. Let .M; g/ be a complete Riemannian manifold of dimension m and
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x0 2M with B�0.x0/ 2Mk0;m.�0; „0/. There exists a sequence of smooth functions
¹ui .x; y/º with u0.x; x/ D 1 such that for any x; y 2 B�0=2.x0/ and t 2 .0; 1� we haveˇ̌̌̌

ˇp.x; y; t/ � .4�t/�m2 e�d2g.x;y/4t

kX
iD0

ui .x; y/t
i

ˇ̌̌̌
ˇ � C.�0; „0; m/tkC1�m2 (4.5)

andˇ̌̌̌
ˇrxp.x; y; t/ � rx

 
.4�t/�

m
2 e�

d2g.x;y/

4t

kX
iD0

ui .x; y/t
i

!ˇ̌̌̌
ˇ � C.�0; „0; m/tk�m2 : (4.6)

Proof. We follow the argument in [48, Theorem 11.1] to prove (4.5)–(4.6). Define the
function

G.x; y; t/ D .4�t/�
m
2 e�

d2g.x;y/

4t

kX
iD0

ui .x; y/t
i :

Direct calculation shows that�
�y �

@

@t

�
G D .4�t/�

m
2 e�

d2g.x;y/

4t �

 �
�
r�yr

2
C
m � 1

2

� k�1X
iD�1

uiC1t
i

� r

k�1X
iD�1

hrr;ruiC1it
i
C

kX
iD0

.�yui /t
i
�

k�1X
iD0

.i C 1/uiC1t
i

!
:

For fixed x and y 2 B�0=2.x/, there exists a sequence of function ¹ui .x; y/º satisfying�
r�yr

2
�
m � 1

2

�
u0 C rhrr;ru0i D 0;�

r�yr

2
�
m � 1

2

�
uiC1 C rhrr;ruiC1i C .i C 1/uiC1 D �yui ; 0 � i � k � 1:

This implies that �
�y �

@

@t

�
G D .4�t/�

m
2 e�

d2g.x;y/

4t �yuk t
k : (4.7)

As in the proof of [48, Theorem 11.1], we have

u0.x; y/ D Cdg.x; y/
m�1
2 J�

1
2 ;

uiC1 D dg.x; y/
m�3�2i

2 J�
1
2

Z r

0

s
2iC1�m

2 J
1
2�ui ds;

where C is a constant such that u0.x; x/ D 1 and J.y/ is the area element of the sphere
of radius dg.x; y/ at the point y. There exists integer k0 depending only on k such that
under the assumption B�0.x0/ 2Mk0;m.�0; „0/, for any integer i 2 Œ0; k� we have

jui .x; y/j C jryui .x; y/j C jrxryryui .x; y/j � C.�0; „0; m/ (4.8)

for all x; y 2 B�0=2.x0/:
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Let � D �0
4

. Now we choose a cutoff function �.r/with 0 � � � 1 such that �.r/ D 1
when r � � and �.r/ D 0 when r � 2�. Define

�.x; y/ D �.dg.x; y//

and
F.x; y; t/ D �.x; y/G.x; y; t/:

If dg.x; y/ � � and t � 1, identity (4.7) gives thatˇ̌̌̌�
�y �

@

@t

�
F

ˇ̌̌̌
D

ˇ̌̌̌�
�y �

@

@t

�
G

ˇ̌̌̌
� C.�0; „0/t

k�m2 e�
d2g.x;y/

4t

and ˇ̌̌̌�
�y �

@

@t

�
rxF

ˇ̌̌̌
D

ˇ̌̌̌�
�y �

@

@t

�
rxG

ˇ̌̌̌
D

ˇ̌̌̌
.4�t/�

m
2 tke�

d2g.x;y/

4t

�
�
1

2t
drxd�yuk Crx�yuk

�ˇ̌̌̌
� C.�0; „0/t

k�1�m2 e�
d2g.x;y/

4t ;

where we used (4.8) in the last inequality. Similarly, for � � dg.x; y/ � 2� we can also
check that ˇ̌̌̌�

�y �
@

@t

�
F

ˇ̌̌̌
� C.�0; „0/t

�m2 �1e�
d2g.x;y/

4t ;ˇ̌̌̌�
�y �

@

@t

�
rxF

ˇ̌̌̌
� C.�0; „0/t

�2�m2 e�
d2g.x;y/

4t :

Combining the above estimates, we have

jF.x; y; t/ � p.x; y; t/j

D

ˇ̌̌̌ Z t

0

ds

Z
M

p.z; y; t � s/

�
�z �

@

@s

�
F.x; z; s/ dz

ˇ̌̌̌
� C.�0; „0/

Z t

0

sk�
m
2 ds

Z
B�.x/

p.z; y; s/ dz

C C.�0; „0/

Z t

0

s�
m
2 �1e�

�2

4s ds

Z
B2�.x/nB�.x/

p.z; y; s/ dz

� C.�0; „0; m/t
kC1�m2 ; (4.9)

where we used the fact that Z
M

p.x; y; t/ dvoly � 1:
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Thus, (4.9) gives (4.5). Similarly, we can show that

jrxF.x; y; t/ � rxp.x; y; t/j

D

ˇ̌̌̌ Z t

0

ds

Z
M

p.z; y; t � s/

�
�z �

@

@s

�
rxF.x; z; s/ dz

ˇ̌̌̌
� C.�0; „0/

Z t

0

sk�
m
2 �1ds

Z
B�.x/

p.z; y; s/ dz

C C.�0; „0/

Z t

0

s�2�
m
2 e�

�2

4t ds

Z
B2�.x/nB�.x/

p.z; y; s/ dz

� C.�0; „0; m/t
k�m2 : (4.10)

Thus, (4.10) implies (4.6). The theorem is proved.

As a corollary, we have the following result in dimension two.

Corollary 4.4. Fix �0; „0 > 0 and an integer k0 D k0.0/ chosen as in Theorem 4.3 for
k D 0. Let .†2; g/ be a complete surface and x0 2 † with B1.x0/ 2Mk0;2.�0; „0/,
there exists a constant C.�0; „0/ > 0 such that for any x; y 2 B �0

2
.x0/ and t 2 .0; 1� we

have

p.x; y; t/ �
�
1C C.�0; „0/dg.x; y/

�
p0.x; y; t/C C.�0; „0/; (4.11)

p.x; y; t/ �
�
1 � C.�0; „0/dg.x; y/

�
p0.x; y; t/ � C.�0; „0/; (4.12)

jrxp.x; y; t/j �
�
1C C.�0; „0/dg.x; y/

�
jrxp0.x; y; t/j C

C.�0; „0/

t
; (4.13)

jrxp.x; y; t/j �
�
1 � C.�0; „0/dg.x; y/

�
jrxp0.x; y; t/j �

C.�0; „0/

t
; (4.14)

where p0.x; y; t/ D 1
4�t
e�

dg.x;y/
2

4t :

Proof. By (4.8), for any x; y 2 B�0=2.x0/ we have

ju0.x; y/ � 1j � sup
B�0=2.x0/

jryu0j � dg.x; y/ � C.�0; „0/ dg.x; y/: (4.15)

Applying Theorem 4.3 for k D 0 and using (4.15), we have (4.11)–(4.14). The corollary
is proved.

4.2. Properties of a solution with time-dependent singularities

In this subsection, we follow the arguments in [42, Section 3 ] to discuss a solution of the
linear equation on .†; g/

@f .x; t/

@t
D �f .x; t/C ı�.t/ ˝ �; (4.16)

where † is a complete two-dimensional surface. Here we assume that � W .T ; NT /! † is
a � -Lipschitz curve with �1 < T < NT < C1, ı�.t/ denotes the Dirac function with the
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pole �.t/ and � 2 .C0..T ; NT ///0. For 0 < r < C1 and T � t < Nt � NT , we set

�t ;Nt D ¹.�.t/; t/ 2 † �R j t 2 .t ; Nt /º; (4.17)

Qr;t;Nt D ¹.x; t/ 2 † �R j x 2 Br .�.t// � †; t 2 .t ; Nt /º: (4.18)

We say that f .x; t/ is a solution of (4.16) if for any ' 2 C10 .Q1;T ; NT /;Z
Q
1;T ; NT

f .x; t/

�
�
@'.x; t/

@t
��'.x; t/

�
dvol dt D

Z NT

T

'.�.s/; s/ d�.s/: (4.19)

We define the function U.x; t/ by

U.x; t/ D

Z t

T

p.x; �.s/; t � s/ d�.s/; (4.20)

where p.x; y; t/ is the heat kernel of .†; g/. Then U.x; t/ satisfies (4.19) (cf. [42]).
Moreover, we define

ˆ.x; y/ D
1

2�
log

1

dg.x; y/
; r.x; t/ D dg.x; �.t//: (4.21)

Following the argument in [42] and using Theorem 4.3, we have:

Lemma 4.5 (cf. [42]). Let � W .T ; NT /! † be a � -Lipschitz curve and T < t < Nt < NT .
Assume that for any t 2 .T ; NT / the ball B1.�.t// is in Mk0;2.�0; „0/ as in Corollary 4.4.
Then we have:

(1) Assume that � is the Lebesgue measure. For any � > 0, there exists a positive constant
r0 D r0.�; �;„0; �0; T ; NT / such that if r.x; t/ � r0 and t 2 .t ; Nt /, then we have

.1 � �/ˆ.x; �.t// � U.x; t/ � .1C �/ˆ.x; �.t//; (4.22)
.1 � �/jrˆ.x; �.t//j � jrU.x; t/j � .1C �/jrˆ.x; �.t//j: (4.23)

(2) For any  2 .1
2
; 1/, there exist a constant r0 D r0.�0; „0; �; T ; NT ; / 2 .0; 1/ and

a function v 2 C1.Q1;t;Ntn�t ;Nt / satisfying

@v

@t
C�v D 0 in Q1;t;Ntn�t ;Nt (4.24)

such that for all .x; t/ 2 Qr0;t ;Ntn�t ;Nt the following inequalities hold:

 log
1

r.x; t/
� v.x; t/ � log

1

r.x; t/
; (4.25)

r.x; t/�1 � jrv.x; t/j � r.x; t/�1: (4.26)

Proof. The proof is almost the same as that of [42, Proposition 3.1, Proposition 3.3 and
Lemma 4.1], and we sketch some details here. For r > 0; ˇ > 0 and ı > 0, we define

Sˇ .r/ D �
�1

Z ı

0

.4s/�
ˇ
2 e�

r2

4s ds:
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Since � is � - Lipschitz continuous, we have

jr.x; t/ � r.x; s/j � � jt � sj:

Thus, for any c > 0 we have

r.x; s/2 � .1C c/r.x; t/2 C
�
1C

1

c

�
�2jt � sj2:

This implies that

r.x; s/2 �
1

1C c
r.x; t/2 �

1

c
�2jt � sj2: (4.27)

Combining this with Corollary 4.4, we haveZ t

t�ı

p.x; �.s/; t � s/ ds

�
�
1C C.�0; „0/.r.x; t/C �ı/

�
e
�2ı
4c

Z t

t�ı

1

4�.t � s/
e�

r.x;t/2
4.1Cc/.t�s/ ds C C.�0; „0; ı/

D
�
1C C.�0; „0/.r.x; t/C �ı/

�
e
�2ı
4c S2

�
r.x; t/
p
1C c

�
C C.�0; „0; ı/:

Choosing the constant c D
p
ı, we have

U.x; t/ D

�Z t

t�ı

C

Z t�ı

T

�
p.x; �.s/; t � s/ds

�
�
1C C.�0; „0/.r.x; t/C �ı/

�
e
�2
p
ı

4 S2

�
r.x; t/p
1C
p
ı

�
C C.�0; „0; ı; T ; NT /:

Note that

lim
r!0

�
log

1

r

��1
S2.r/ D

1

2�
:

Therefore, for any � > 0 there exists a constant r0 D r0.�; �;„0; �0; T ; NT / such that for
any x with r.x; t/ � r0 we have

U.x; t/

ˆ.x; �.t//
� 1C �:

Similarly, we can show that
U.x; t/

ˆ.x; �.t//
� 1 � �

when r.x; t/ is small. Thus, (4.22) is proved. Similarly, we can use (4.13) and (4.14) of
Corollary 4.4 to estimate jrU j.

To prove part (2), we denote by U.x; t I �; �/ the function (4.20) constructed by �.t/
and the measure �: We define Q�.t/ D �.T C NT � t / and let � be the Lebesgue measure.
Then the function v.x; t/ D kU.x; T C NT � t I Q�; �/ satisfies the properties in part (2) by
choosing some k > 0. See [42, Lemma 4.1] for details.

Using Corollary 4.4, we have the following result.
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Lemma 4.6. Let � W .T ; NT /! † be a � -Lipschitz curve and T < t < Nt < NT . Assume
that for any t 2 .T ; NT / the ball B1.�.t// is in Mk0;2.�0; „0/ as in Corollary 4.4. Let
� 2 .C0..T ; NT ///

0 and U.x; t/ the function defined by (4.20). Then for T < t1 < t2 < NT
we have

lim
R!0

lim
ı!0

Z t2

t1

dt

Z
At .ı;R/

U.x; t/

r.x; t/jlog r.x; t/j
D 0; (4.28)

lim
ı!0

1

ı

Z t2

t1

dt

Z
At .

ı
2 ;ı/

U.x; t/ D 0; (4.29)

where At .ı; R/ D ¹x 2 † j ı < r.x; t/ < Rº:

Proof. We follow the arguments in the proof of [42, Proposition 3.3]. Without loss of gen-
erality, we can assume that the curve �.s/ (s 2 .T ; NT /) is contained in B�0=2.x0/ for some
x0 2 † and B�0.x0/ 2Mk0;2.�0; „0/. Corollary 4.4 gives that for any x 2 B�0=2.x0/

and t 2 .T ; NT /,

U.x; t/ �

Z t

T

�
C.�0; „0/p0.x; �.s/; t � s/C C.�0; „0/

�
d�

D C.�0; „0/U0.x; t/C C.�0; „0/. NT � T /;

where U0 is defined by

U0.x; t/ D

Z t

T

p0.x; �.s/; t � s/ d�:

Thus, it suffices to show (4.28)–(4.29) for U0.x; t/.
For t 2 .T ; NT / with jD�j < C1 we write

�..s; t �/ D D�.t/.t � s/ �G.s/; T1 < s < t;

where G.s/ satisfies lims!t�
G.s/
t�s
D 0 for a.e. t 2 .T ; NT /. Let � 2 .0; t � t /. Note that

U0 can be written as

U0.x; t/ D

Z t��

T

p0.x; �.s/; t � s/ d�.s/CD�.t/

Z t

t��

p0.x; �.s/; t � s/ ds

C

Z t

t��

p0.x; �.s/; t � s/ dG.s/ DW I1 C I2 C I3:

By Theorem 4.3 I1 satisfies I1 � 1
4��

�..T ; t � �// < C1. Thus, we haveZ t2

t1

dt

Z
At .ı;R/

I1.x; t/

r.x; t/jlog r.x; t/j
dvol

�
1

4��
�..T ; NT //

Z t2

t1

dt

Z
At .ı;R/

1

r.x; t/jlog r.x; t/j
dvol

D
1

2�
.t2 � t1/�..T ; NT //

Z R

ı

1

jlog rj
dr

�
1

2�
.t2 � t1/�..T ; NT //.R � ı/; (4.30)
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where we assumed that R is small such that jlog rj � 1 for any r 2 .0; R/. Moreover,
we have

1

ı

Z t2

t1

dt

Z
At .

ı
2 ;ı/

I1.x; t/ dvol �
C1

�
.t2 � t1/�..T ; NT //ı; (4.31)

where C1 is a universal constant. Next, we estimate I2. Using Corollary 4.4, (4.27) and
integration by parts we haveZ t

t��

p0.x; �.s/; t � s/ ds

�

Z �

0

1

4��
e�

r.x;s/2
4� d� � e

�2�
4c

Z �

0

1

4��
e�

r.x;t/2
4.1Cc/� d�

�
1

4�
e
�2�
4c

�
log

4.1C c/�

r.x; t/2
e�

r2

4.1Cc/� C

Z 1
r.x;t/2
4.1Cc/�

e�z log z dz
�

� C2jlog r.x; t/j C C2; (4.32)

where we can choose c D 1 and C2 is a constant depending on � and �: Therefore, we
have Z t2

t1

dt

Z
At .ı;R/

I2.x; t/

r.x; t/jlog r.x; t/j
dvol

� C2

Z t2

t1

d�.t/

Z R

ı

1

rjlog rj
.jlog rj C 1/ r dr

� 2C2 � .R � ı/�..t1; t2// (4.33)

and

1

ı

Z t2

t1

dt

Z
ı
2<r.x;t/<ı

I2.x; t/ dvol � C2 � .ı C ıjlog ıj/�..t1; t2//: (4.34)

Finally, we estimate the term I3: Using inequality (4.27) for c D 1 and integration by
parts, we haveZ t

t��

p0.x; �.t/; t � s/d jG.s/j

�
1

4�
e
�2�
4

Z t

t��

1

t � s
e�

r.x;t/2
8.t�s/

�
1

4�
e
�2�
4

�
�
1

�
e�

r.x;t/2
8� C

Z t

t��

jG.s/j

�
1

.t � s/2
C

r.x; t/2

8.t � s/3

�
e�

r.x;t/2
8.t�s/

�
ds

�
1

4�
e
�2�
4 sup

.t��;t/

jG.s/j

t � s
�

Z t

t��

�
1

.t � s/
C

r.x; t/2

8.t � s/2

�
e�

r.x;t/2
8.t�s/ ds

� C3 sup
.t��;t/

jG.s/j

t � s
� jlog r.x; t/j;
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where C3 depends on � and �. Thus, we haveZ t2

t1

dt

Z
At .ı;R/

jI3.x; t/j

r.x; t/jlog r.x; t/j
dvol

� C.�; �/ sup
.t��;t/

jG.s/j

t � s

Z t2

t1

dt

Z
At .ı;R/

1

r.x; t/
dvol

� C.�; �/ sup
.t��;t/

jG.s/j

t � s
� .R � ı/.t2 � t1/ (4.35)

and

1

ı

Z t2

t1

dt

Z
ı
2<r.x;t/<ı

jI3.x; t/j dvol � C.�; �/ sup
.t��;t/

jG.s/j

t � s
� .t2 � t1/jlog ıjı: (4.36)

Combining (4.30)–(4.36), we have (4.28)–(4.29).

4.3. Estimates of the solution with disjoint singularities

In this subsection, we follow [42, Section 4.1] to construct some cutoff functions and
show the integrability of the solution across the singular set when the singular curves are
disjoint. First, we construct some cutoff functions.

Definition 4.7 (cf. [42, Section 4.1]). (1) Let t3 < t1 < t2 < t4 and 0 < ı < r1. Define
� D �.t I t1; t2; t3; t4; ı; r1/ 2 C

1.R/ such that

�.t/ D

´
ı; t 2 Œt1; t2�;

r1; t 2 .�1; t3� [ Œt4;1/;

0 <

ˇ̌̌̌
@�

@t

ˇ̌̌̌
� 2r1

�
1

t1 � t3
C

1

t4 � t2

�
: (4.37)

(2) Let � be a smooth function on R satisfying

�.z/ D

´
0; z � 0;

1; z � 1;
0 < �0.z/ � 2 .0 < z < 1/; (4.38)

and define H.z/ D
R z
0
�.�/ d� . Then H.z/ satisfies the inequality

0 � zH 0.z/ �H.z/ � H 0.z/: (4.39)

We keep the same notation H.z/ as in [42]. Throughout this section, H always
denotes the function as above and it should not be confused with the mean curvature.

(3) Let 0 < r < Nr < 1, T1 <T < t < Nt < NT < T2 and let � W ŒT1; T2�! † be a continuous
curve. We define �� D ��.x; t I r; Nr; t ; Nt ; T ; NT ; T1; T2/ 2 C1.Q1;T1;T2/ satisfying

0 � �� � 1; �� D

´
1 on Qr;t;Nt ;
0 on Q1;T1;T2nQ Nr;T ; NT ;

rx�� D 0 in Qr;T1;T2 : (4.40)
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A direct corollary of Lemma 4.5 is the following result.

Lemma 4.8. Under the assumption of Lemma 4.5, we define

V.x; t/ D e�2v.x;t/ 2 C1.Q1;t;Ntn�t ;Nt /:

Then V.x; t/ satisfies

@V

@t
C�V D 4e�2vjrvj2 in Q1;t;Ntn�t ;Nt

By using inequalities (4.25)–(4.26), for all .x; t/ 2 Qr0;t ;Ntn�t ;Nt the following inequalities
hold:

r.x; t/2 � V.x; t/ � r.x; t/2 ; (4.41)

1 � V.x; t/�1jrV.x; t/j2 � 4r.x; t/2�2; (4.42)

1 �
@V

@t
C�V � 4r.x; t/2�2; (4.43)

where  2 .1
2
; 1/.

Consider the case that there is only one singular curve. We show that the solution
of (4.1) is in L1 across the singular set. The argument is the same as that of [42] and we
give all the details for the readers’ convenience.

Lemma 4.9 (cf. [42, Lemma 4.2]). Fix  2 .1
2
; 1/. Under the same assumption as in

Theorem 4.2, if there is only one singular curve � W ŒT1; T2�! †, then for any interval
.t1; t2/ � .T1; T2/ there exists r1 D r1.�0; „0; �; t1; t2; T1; T2; / > 0 such that

kukL1.Qr1;t1;t2 /
� CkukL1.K/; (4.44)

where C is a constant depending on kckL1.Q1;T1;T2 /; ; �0; „0; �; t1; t2; T1; T2 and K is
defined by K D Q2r1;T1;T2nQr1;T1;T2 :

Proof. Let
T1 < t5 < t3 < t1 < t2 < t4 < t6 < T2;

 2 .1
2
; 1/ and r0 D r0.�0; „0; �; t5; t6; / > 0 as in Lemma 4.5. Let 0 < ı < r1 < r0

2
.

We construct the function

�.x; t/ D �.x; t I r1; 2r1; t3; t4; t5; t6; T1; T2/

satisfying (4.40), and the function v 2 C1.Q�0;t5;t6n�t5;t6/ satisfying (4.24) with prop-
erties (4.25)–(4.26). Moreover, we define

V.x; t/ D e�2v.x;t/; w.x; t/ D �.t/�1V.x; t/ � 1 (4.45)

and
'.x; t/ D �.x; t/�.t/.H ı w/.x; t/;

where � D �.t I t1; t2; t3; t4; ı; r1/ andH are given in Definition 4.7. Note thatH ı w D 0
near � in Qr0;t5;t6 . This implies that ' 2 C10 .Qr0;t5;t6n�t5;t6/. By (4.1) we have

�

Z
Qr0;t5;t6

u

�
@'

@t
C�'

�
D

Z
Qr0;t5;t6

cu': (4.46)
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Note that (4.39) and (4.45) imply that

�H ı w � �wH 0 ı w � VH 0 ı w; (4.47)

we have ' � �VH 0 ı w: Thus, the right-hand side of (4.46) can be estimated byZ
Qr0;t5;t6

cu' � �kcV kL1.Qr0;t5;t6 /

Z
Qr0;t5;t6

u�H 0 ı w: (4.48)

On the other hand, direct calculation shows that

@'

@t
C�' D �AC B;

where

A D .@tV C�V /H
0
ı w � @t�

�
.w C 1/H 0 ı w �H ı w

�
C ��1jrV j2H 00 ı w;

B D .@t� C��/�H ı w C 2hr�;rV iH
0
ı w:

By (4.39) and (4.43) we have

A � .@tV C�V /H
0
ı w � 2j@t�jH

0
ı w � .1 � 2k@t�kL1.R//H

0
ı w:

Note that

Supp.B/ � Supp.jr�j C j@t�j/ \ ¹.x; t/ 2 Q2r1;t5;t6 j w � 0º

� ¹.x; t/ 2 Q2r1;t5;t6nQr1;t3:t4 j w � 0º

� ¹.x; t/ 2 Q2r1;t5;t6nQr1;t3:t4 j r.x; t/ � �.t/
1
2 º

� ¹.x; t/ 2 Q2r1;t5;t6 j r.x; t/ � r1º DW K;

where we used the construction of �.t/ in Definition 4.7. Thus, we have

jBj �
�
k@t� C��kL1.K/kV kL1.K/ C 2kr�kL1.K/krV kL1.K/

�
�K

� C.c�;K ; ; r1/�K ;

where c�;K D supK.j@t�j C j��j C jr�j/: Combining the above estimates, we have

@'

@t
C�' � .1 � 2k@t�kL1.R//�H

0
ı w � C.c�;K ; ; r1/�K : (4.49)

Combining (4.48)–(4.49) with (4.46), we have�
1 � 2k@t�kL1.R/ � kcV kL1.Qr0;t5;t6 /

� Z
Qr0;t5;t6

u�H 0 ı w � C.c�;K ; ; r1/

Z
K

u:

Taking r0 sufficiently small and using the assumption that c.x; t/ is locally bounded,
we have

1 � 2k@t�kL1.R/ � kcV kL1.Qr0;t5;t6 / �
1

2
:

Therefore, by the definition of � we haveZ
Qr1;t1;t2

uH 0 ı w �

Z
Qr0;t5;t6

u�H 0 ı w � C.c�;K ; ; r1/

Z
K

u: (4.50)
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Note that the function H 0 ı w converges to 1 on Qr1;t1;t2n�t1;t2 as ı ! 0. Thus, taking
ı ! 0 in (4.50), we have that u is integrable on Qr1;t1;t2 . The lemma is proved.

4.4. Estimates of the solution with multiple singularities

In this subsection, we show that the solution of (4.1) is L1 across the singularities when
multiple singular curves exist. If any two singular curves do not coincide at any time,
we can use Lemma 4.9 for each singular curve and get the L1 estimates. Otherwise, the
proof will be much more difficult. The idea comes from a combination of the arguments
in [42, Lemma 4.2 and Lemma 4.3], but we need to use some new cutoff functions in Def-
inition 4.12. We sketch the proof as follows. First, we control the L1 norm of u near the
intersection point .x0; t0/ by an integral which characterizes the growth of u near the sin-
gular curves away from .x0; t0/ (cf. (4.68)). Next, the integral of u is bounded by the L1

norm of u on some compact set K away from the singular curves (cf. (4.80)). Combining
the above two steps, we can bound the L1 norm of u near the intersection point.

First, we introduce the following definition.

Definition 4.10. Let ¹�1; �2; : : : ; �lº (t 2 ŒT1; T2�) be continuous curves in †, and let
I � ŒT1; T2�: We say that ¹�1.t/; : : : ; �l .t/º are disjoint on I if for any time t0 2 I , we
have

�i .t0/ ¤ �j .t0/ for all i ¤ j:
Let .x0; t0/ be a point in the singular set. By Lemma 2.11, there exists finitely many

singular curves passing through .x0; t0/. There are two cases for the singular curves:
(A) There exists an interval .t1; t2/with t0 2 .t1; t2/ and singular curves ¹�1.t/; : : : ; �l .t/º

(t 2 .t1; t2/) such that ¹�1.t/; : : : ; �l .t/º are disjoint on .t1; t2/n¹t0º and

�1.t0/ D �2.t0/ D � � � D �l .t0/:

(B) There exists an interval .t1; t2/ with t0 2 .t1; t2/, singular curves ¹c1.t/; : : : ; ck.t/º
(t 2 .t1; t0�) and ¹ Qc1.t/; : : : ; Qcl .t/º (t 2 Œt0; t2/) such that
(a) ¹c1.t/; : : : ; ck.t/º are disjoint on .t1; t0/,
(b) ¹ Qc1.t/; : : : ; Qcl .t/º are disjoint on .t0; t2/,
(c) The singular curves coincide at t0:

c1.t0/ D � � � D ck.t0/ D Qc1.t0/ D � � � D Qcl .t0/ D x0:

If k D l , then this is just the case .A/. Note that the union of two Lipschitz curves is
still a Lipschitz curve. Thus, for k < l we can construct the curves

�i .t/ D

´
ci .t/; t 2 .t1; t0�;

Qci .t/; t 2 .t0; t2/;
for 1 � i � k;

�i .t/ D

´
ck.t/; t 2 .t1; t0�;

Qci .t/; t 2 .t0; t2/;
for k < i � l;

Then ¹�1.t/; : : : ; �l .t/º.t 2 .t1; t2// are Lipschitz curves. For k > l we can also
construct similar curves ¹�1.t/; : : : ; �k.t/º.t 2 .t1; t2//.
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Summarizing the above discussion, we define:

Definition 4.11. Let I D Œt1; t2� or .t1; t2/ where t1 < t0 < t2. We call that the singular
curves ¹�1; �2; : : : ; �lº.t 2 I / are around .x0; t0/ on I , if the curves satisfy the conditions
in Case .A/ or are constructed as in Case .B/ on I .

We construct some cutoff functions when the singular curves are not disjoint.

Definition 4.12. Let 0 < r < Nr < 1, T1 < T < t < Nt < NT < T2 and let ¹�1; �2; : : : ; �lº
(t 2 ŒT1; T2�) be � -Lipschitz curves. We assume that ¹�1.t/; : : : ; �l .t/º are around .x0; t0/
on .T1; T2/ for some t0 2 .t ; Nt /.
(1) For each �k and .t1; t2/ � ŒT1; T2�, we define the notations Q.k/

r;t1;t2
and �.k/t1;t2 as in

(4.17)–(4.18), and we define

Qr;t1;t2 D

l[
kD1

Q
.k/
r;t1;t2

; �t1;t2 D

l[
kD1

�
.k/
t1;t2

; OQr;t1;t2 D

l\
kD1

Q
.k/
r;t1;t2

: (4.51)

(2) For each �k we define the function ��k .x; t I r; Nr; t ; Nt ; T ; NT ; T1; T2/ 2 C
1.Q

.k/
1;T1;T2

/

as in (4.40). Then the function

�.x; t Ir; Nr; t ; Nt ;T ; NT /D 1� .1� ��1/.1� ��2/ � � � .1� ��l /2C
1. OQ1;T1;T2/ (4.52)

satisfies the properties

0 � � � 1; � D

´
1 on OQ1;T1;T2 \Qr;t;Nt ;
0 on OQ1;T1;T2nQ Nr;T ; NT ;

Moreover, � satisfies the properties

Supp.�/ \ OQ1;T ; NT � Q Nr;T ; NT D
l[

kD1

¹.x; t/ 2 OQ1;T ; NT j rk.x; t/ � Nrº

and

Supp.jr�j C j@t�j/ \ OQ1;t;Nt � Q Nr;t;NtnQr;t;Nt

�

l[
kD1

¹.x; t/ 2 OQ1;t;Nt j r � rk.x; t/ � Nr; ri .x; t/ � r for all i ¤ kº: (4.53)

Here we assumed that Q
Nr;T ; NT �

OQ1;T ; NT by shrinking the interval ŒT1; T2� if neces-
sary.

(3) Fix  2 .1
2
; 1/. For each �k , we define

vk 2 C
1.Q

.k/

1;T ; NT
n�

.k/

T ; NT
/

as in (2) of Lemma 4.5, and let r .k/0 the constant in (2) of Lemma 4.5 such that
inequalities (4.25)–(4.26) hold for

.x; t/ 2 Q
.k/

r
.k/
0
;T ; NT
n�

.k/

T ; NT
:
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Set
r0 WD min¹r .1/0 ; r

.2/
0 ; : : : ; r

.l/
0 º: (4.54)

After shrinking the interval ŒT1; T2� if necessary, we can assume that

�T1;T2 �
OQr0;T1;T2 : (4.55)

By (4.54)–(4.55), we know that inequalities (4.25)–(4.26) hold for all functions vk
and all .x; t/ 2 OQr0;T ; NT n�T ; NT .

(4) For any � > 0 and .x; t/ 2 OQr0;T ; NT n�T ; NT , we define

Qv.x; t/ D

lX
kD1

vk.x; t/;

Qw�.x; t/ D 2 �
Qv.x; t/

log 1
�

;

Q'�.x; t/ D .H ı Qw�/.x; t/;

(4.56)

where H is defined in (2) of Definition 4.7. Note that H ı Qw� D 0 near each �k and
this implies that Q'� vanishes near �T ; NT . Moreover, for any .x; t/ 2 OQr0;T ; NT n�T ; NT we
have

lim
�!0
Q'�.x; t/ D H.2/; lim

�!0
jr Q'�j.x; t/ D 0; (4.57)

@ Q'�

@t
C� Q'� D H

00
ı Qw�jr Qw�j

2: (4.58)

Let
Qr.x; t/ D e�Qv.x;t/:

Then inequalities (4.25) imply that for any .x; t/ 2 OQr0T ; NT n�T ; NT

r1r2 � � � rl � Qr.x; t/ � .r1r2 � � � rl / : (4.59)

(5) Under the above assumptions, for � > 0 and h 2 L1.Qr0;t ;Nt / we define

I.�I t ; Nt ; h; r0/ D

Z
Qr0;t;Nt

\¹��Qr.x;t/�1º

hjr Qvj2

jlog �j2
;

where Qr.x; t/ and Qv.x; t/ are the function defined in (4) above.
(6) Assume that ¹�1.t/; : : : ; �l .t/º are disjoint on ŒT1; T2�. We choose N� > 0 such that

Q
.i/
N�;T1;T2

\Q
.j /
N�;T1;T2

D ;

for any 1 � i ¤ j � l: For any � 2 .0; N�/, T1 � t < Nt � T2 and h 2 L1.Q.k/

1;t;Nt
/, we

define

I�k .�I t ; Nt ; h; N�/ D
1

jlog �j2

Z Nt
t

Z
��rk.x;t/� N�

h

rk.x; t/2
:
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The next result gives the L1 estimate of the solution near the singularities when the
singular curves are not disjoint.

Lemma 4.13. Under the same assumption as in Theorem 4.2, for any .t1; t2/ � .T1; T2/
there exists r1 D r1.�0; „0; l; t1; t2; T1; T2; / > 0 such that

kukL1.Qr1;t1;t2 /
� CkukL1.K/; (4.60)

where C is a constant depending on kckL1.Q1;T1;T2 /; ; �0; „0; �; t1; t2; T1; T2 and K is
defined by K D Q2r1;T1;T2nQr1;T1;T2 . Moreover, we have

sup
�2.0; 12 /

I.�I t1; t2; u; r0/ < C1: (4.61)

Proof. We divide the proof into several steps:

Step 1. Without loss of generality, we can assume that c.x; t/ � 0 on Q1;T1;T2 . In fact,
let u.x; t/ be a solution of (4.1). Then for any k 2 R the function Qu.x; t/ D u.x; t/ekt

satisfies the equation

@ Qu

@t
D � QuC .c C k/ Qu for all .x; t/ 2 Q1;T1;T2n�T1;T2 :

Since c is locally bounded by the assumption, we can choose k large such that c C k � 0
on Q1;T1;T2 . Thus, it suffices to show Lemma 4.13 for c.x; t/ � 0:

Step 2. Assume that ¹�1.t/; : : : ; �l .t/º are around .x0; t0/ on ŒT1; T2�. Let T1 < t5 < t3 <
t1 < t0 < t2 < t4 < t6 < T2. We construct vk ; r0; Qw� and Q'� as in Definition 4.12 by setting

T D t5; NT D t6; t D t3; Nt D t4:

Assume that (4.55) holds. Let 0 < ı < r1 < r0
2

and set r D r1; Nr D 2r1. After shrink-
ing r1 and the interval ŒT1; T2� if necessary, we assume that Q2r1;T1;T2 � OQr0;T1;T2 : We
choose t7; t8 such that T1 < t7 < t5 < t6 < t8 < T2 and define the function

� D �.x; t I r1; 2r1; t5; t6; t7; t8; T1; T2/

as in Definition 4.12. Then by (4.53) the function � satisfies the properties

Supp.jr�j C j@t�j/ \Q2r1;t5;t6
� Q2r1;t5;t6nQr1;t5;t6

�

l[
kD1

¹.x; t/ 2 Q2r1;t5;t6 j r1 � rk.x; t/ � 2r1; ri .x; t/ � r1 for all i ¤ kº:

Moreover, we define the following functions on OQr0;t5;t6n�t5;t6 :

Vk.x; t/ D e
�2vk.x;t/; V .x; t/ D

lX
kD1

Vk.x; t/;

w.x; t/ D �.t/�1V.x; t/ � 1; '0.x; t/ D �.x; t/�.t/.H ı w/.x; t/;

where � D �.t I t1; t2; t3; t4; ı; r1/ is the function defined in (1) of Definition 4.7. By using
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properties (4.41)–(4.43), for any .x; t/ 2 OQr0;t5;t6n�t5;t6 we have
lX

kD1

rk.x; t/2 � V.x; t/ �
lX

kD1

rk.x; t/2 ; (4.62)

l �
@V

@t
C�V � 4

lX
kD1

rk.x; t/2�2; (4.63)

jrV j � 2

lX
kD1

rk.x; t/2�1: (4.64)

Note that the function '0.x; t/ vanishes near the point .�1.t0/; t0/, but '0.x; t/may not be
zero on �t5;t6 . The function Q'� defined in Definition 4.12 vanishes near �t5;t6 , but it does
not satisfy inequality (4.63) and inequality (4.49). Therefore, the argument of Lemma 4.9
does not work any more.

Step 3. Direct calculation as in the proof of Lemma 4.9 yields, for any .x; t/ 2 Q2r1;t5;t6 ,

'0.x; t/ � �.x; t/V .x; t/H
0
ı w; (4.65)

@'0

@t
C�'0 �

�
l � 2k@t�kL1.R/

�
�H 0 ı w � C.c�;K ; ; r1/�K ; (4.66)

where K and c�;K are defined by

K D Supp.jr�j C j@t�j/ \Q2r1;t5;t6 ; c�;K D sup
K

.j@t�j C j��j C jr�j/: (4.67)

Let ' D '0 Q'� 2 C10 .Q2r1;t5;t6n�t5;t6/. Then we have
@'

@t
C�' D

�
@'0

@t
C�'0

�
Q'� C

�
@ Q'�

@t
C� Q'�

�
'0 C 2hr Q'�;r'0i

D

�
@'0

@t
C�'0

�
Q'� CH

00
ı Q!�jr Q!�j

2'0 C 2�H
0
ı Q!�H

0
ı whr Q!�;rV i

C 2�H 0 ı Q!�H ı whr Q!�;r�i

�
�
.l � 2k@t�kL1.R//�H

0
ı w � C.c�;K ; ; r1/�K

�
Q'�

� 2�H 0 ı wjrV j � jr Q!�j�¹ Q!�>0º � 2VH
0
ı wH 0 ı Q!�jr Q!�j � jr�j;

where we used (4.47), (4.58), (4.66) and the definition of w. Combining this with (4.46)
and using the assumption c.x; t/ � 0, we have

0 �

Z
Q2r1;t5;t6

cu' D �

Z
Q2r1;t5;t6

u

�
@'

@t
C�'

�
� �

�
l � 2k@t�kL1.R/

� Z
Q2r1;t5;t6

u� Q'�H
0
ı w C C.c�;K ; ; r1/

Z
K

u Q'�

C 2krV kL1.Q2r1;t5;t6 /

Z
Q2r1;t5;t6

u�H 0 ı wjr Q!�j�¹ Q!�>0º

C 2kV kL1.Q2r1;t5;t6 /

Z
Q2r1;t5;t6

uH 0 ı wH 0 ı Q!�jr Q!�j � jr�j:
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Therefore, we have�
l � 2k@t�kL1.R/

� Z
Q2r1;t5;t6

u�H 0 ı w Q'�

� 2krV kL1.Q2r1;t5;t6 /

Z
Q2r1;t5;t6

u�H 0 ı wjr Q!�j�¹ Q!�>0º

C C.c�;K ; ; r1/

Z
K

u Q'�

C 2kV kL1.Q2r1;t5;t6 /

Z
Q2r1;t5;t6

ujr�j � jr Q!�j

� 2krV kL1.Q2r1;t5;t6 /

Z
Q2r1;t5;t6

u�H 0 ı w�¹ Q!�>0º

C 2krV kL1.Q2r1;t5;t6 /

Z
Q2r1;t5;t6

u�H 0 ı wjr Q!�j
2�¹ Q!�>0º

C C.c�;K ; ; r1/

Z
K

u Q'�

C 2kV kL1.Q2r1;t5;t6 /

Z
Q2r1;t5;t6

ujr�j � jr Q!�j: (4.68)

The main difficulty is to estimate the integralZ
Q2r1;t5;t6

u�H 0 ı wjr Q!�j
2�¹ Q!�>0º (4.69)

on the right-hand side of (4.68).

Step 4. We estimate the integral (4.69). For any � 2 .0; 1
2
/, we define the functions

Nw�.x; t/ D
1

3

�
2 �
Qv.x; t/

log. 1
�
/

�
;  .x; t/ D �.x; t/H ı Nw� 2 C

1
0 .Q2r1;t5;t6n�t5;t6/;

where Qv is the function defined in (4.56). Note that Nw�.x; t/ satisfies @t Nw� C� Nw� D 0:
Direct calculation shows that

@ 

@t
C� D �jr Nw�j

2H 00 ı Nw� C

�
@�

@t
C��

�
H ı Nw� C 2hr�;r Nw�iH

0
ı Nw�:

Since u satisfies

�

Z
Q2r1;t5;t6

u

�
@ 

@t
C� 

�
D

Z
Q2r1;t5;t6

cu � 0;

we haveZ
Q2r1;t5;t6

u�jr Nw�j
2H 00 ı Nw�

� �

Z
Q2r1;t5;t6

u

��
@�

@t
C��

�
H ı Nw� C 2hr�;r Nw�iH

0
ı Nw�

�
: (4.70)
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We estimate each term of (4.70). Note that°
.x; t/ 2 Q2r1;t5;t6

ˇ̌̌
H 00 ı Nw� � min

1
3�z�

2
3

H 00.z/
±

�

²
.x; t/ 2 Q2r1;t5;t6

ˇ̌̌̌
1

3
� N!� �

2

3

³
D ¹.x; t/ 2 Q2r1;t5;t6 j 1 � Q!� � 2º

D ¹.x; t/ 2 Q2r1;t5;t6 j � � Qr.x; t/ � 1º; (4.71)

where Q!� is defined in (4.56) and Qr.x; t/ D e�Qv.x;t/. Thus, the left-hand side of (4.70)
satisfies the inequalityZ

Q2r1;t5;t6

u�jr Nw�j
2H 00 ı Nw� � C

Z
Q2r1;t5;t6

u�jr Qvj2�¹1� Q!��2º

jlog �j2

D C

Z
Q2r1;t5;t6

u�jr Q!�j
2�¹1� Q!��2º; (4.72)

where C is a universal constant. We choose 2r1 < 1 and by (4.59) we have Qr.x; t/ < 1 on
Supp.�/ \Q2r1;t5;t6 . Thus, on Supp.�/ \Q2r1;t5;t6 we have

N!� D
1

3

�
2 �
Qv.x; t/

log. 1
�
/

�
�
2

3

and
H ı N!� � N!� �

2

3
:

Combining this with (4.70), the first term of the right-hand side of (4.70) satisfies the
inequality

�

Z
Q2r1;t5;t6

u

�
@�

@t
C��

�
H ı Nw� � C.c�;K/

Z
K

u; (4.73)

whereK and c�;K are given by (4.67). Note that by (4.53) for any i we have ri .x; t/ � r1
on Supp.jr�j/ \Q2r1;t5;t6 . Combining this with (4.26), we have

jr Qvj2 � l

lX
kD1

jrvkj
2
� l

lX
kD1

1

r2
k

�
l2

r21
for all .x; t/ 2 Supp.jr�j/ \Q2r1;t5;t6 :

Thus, when � 2 .0; 1
2
/, we have

jr N!�j D
2

3

jr Qvj

log 1
�

�
2l2

.3 log 2/ r21
for all .x; t/ 2 Supp.jr�j/ \Q2r1;t5;t6 : (4.74)

This implies that the second term of the right-hand side of (4.70) satisfies

�

Z
Q2r1;t5;t6

2uhr�;r Nw�iH
0
ı Nw� � C.c�;K ; r1; l/

Z
K

u: (4.75)
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Let � D �2. Note that Qr.x; t/ � 1 on Supp.�/ \Q2r1;t5;t6 . By (4.71) we have

¹.x; t/ 2 Q2r1;t5;t6 j Q!� > 0º \ Supp.�/

D ¹.x; t/ 2 Q2r1;t5;t6 j Qr.x; t/ > �
2
º \ Supp.�/

D ¹.x; t/ 2 Q2r1;t5;t6 j � � Qr.x; t/ � 1º \ Supp.�/;
D ¹.x; t/ 2 Q2r1;t5;t6 j 1 � Q!� � 2º \ Supp.�/: (4.76)

Combining (4.73)–(4.75) with (4.70), we haveZ
Q2r1;t5;t6

u�jr Nw�j
2H 00 ı Nw� � C.c�;K ; r1; l/

Z
K

u: (4.77)

This together with (4.72) implies thatZ
Q2r1;t5;t6

u�jr Q!�j
2�¹1� Q!��2º � C

Z
Q2r1;t5;t6

u�jr Nw�j
2H 00 ı Nw�

� C.c�;K ; r1; l/

Z
K

u: (4.78)

Thus, by (4.78) and (4.76) we haveZ
Q2r1;t5;t6\¹�<Qr<1º

u�jr Q!�j
2
D

Z
Q2r1;t5;t6

u�jr Q!�j
2�¹1� Q!��2º

� C.c� ; r1; l/

Z
K

u: (4.79)

Moreover, we have the estimate for the integral (4.69)Z
Q2r1;t5;t6

u�H 0 ı wjr Q!�j
2�¹ Q!�>0º �

Z
Q2r1;t5;t6\¹ Q!�>0º

u�jr Qvj2

jlog �j2

D 4

Z
Q2r1;t5;t6\¹1� Q!��2º

u�jr Q!�j
2

� C.c�;K ; r1; l/

Z
K

u: (4.80)

Step 5. Now we turn back to inequality (4.68). Moreover, by (4.74) we haveZ
Q2r1;t5;t6

ujr�j � jr Q!�j D 2

Z
Q2r1;t5;t6

ujr�j �
jr Qvj

log 1
�

� C.c�;K ; l; r1/

Z
K

u: (4.81)

Combining (4.68), (4.81) with (4.80), we have�
l � 2k@t�kL1.R/

� Z
Q2r1;t5;t6

u�H 0 ı w Q'�

� 2krV kL1.Q2r1;t5;t6 /

Z
Q2r1;t5;t6

u�H 0 ı w �¹ Q!�>0º

C C.c�;K ; r1; l/
�
krV kL1.Q2r1;t5;t6 /

C kV kL1.Q2r1;t5;t6 /
� Z
K

u

C C.c�;K ; ; r1/

Z
K

u Q'�: (4.82)
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Since all singular curves are disjoint on Q2r1;t5;t6 \ ¹w � 0º by our assumption, by
Lemma 4.9 u is integrable on Q2r1;t5;t6 \ ¹w � 0º. Taking � ! 0 in (4.82) and using
the dominated convergence theorem, we have�

l � 2k@t�kL1.R/
� Z
Q2r1;t5;t6

u�H 0 ı w

� 2krV kL1.Q2r1;t5;t6 /

Z
Q2r1;t5;t6

u�H 0 ı w C C.c�;K ; ; r1/

Z
K

u

C C.c�;K ; r1; l/
�
krV kL1.Q2r1;t5;t6 /

C kV kL1.Q2r1;t5;t6 /
� Z
K

u:

It follows that�
l � 2k@t�kL1.R/ � 2krV kL1.Q2r1;t5;t6 /

� Z
Q2r1;t5;t6

u�H 0 ı w

� C.c�;K ; ; r1/

Z
K

u: (4.83)

By (4.37) and (4.64), we choose r1 small such that

l � 2k@t�kL1.R/ � 2krV kL1.Q2r1;t5;t6 /
>
1

2
l:

Combining this with (4.83), we haveZ
Q2r1;t5;t6

u�H 0 ı w � C.c�;K ; ; r1; l/

Z
K

u: (4.84)

Note that the function H 0 ı w converges to 1 on Qr1;t1;t2n�t1;t2 as ı ! 0. Thus, taking
ı ! 0 in (4.84), we have Z

Qr1;t1;t2

u � C.c�;K ; ; r1; l/

Z
K

u;

which implies (4.60). Note that (4.79) implies (4.61) since

I.�I t1; t2; u; r0/ D

Z
Qr0;t1;t2\¹��Qr�1º

ujr Qvj

jlog �j2

D

Z
Qr1;t5;t6\¹�<Qr<1º

ujr Q!�j
2
C

Z
Qr0;t5;t6nQr1;t5;t6

ujr Q!�j
2

�

Z
Q2r1;t5;t6\¹�<Qr<1º

u�jr Q!�j
2
C C.l; r1/

Z
Qr0;t5;t6nQr1;t5;t6

u

� C.c� ; r1; l/

Z
K

uC C.l; r1/

Z
Qr0;t5;t6nQr1;t5;t6

u < C1: (4.85)

The lemma is proved.
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As a byproduct of the above proof, we have the following result.

Lemma 4.14. Under the same assumption as in Lemma 4.9, we have, for the singular
curve � W ŒT1; T2�! †,

sup
�2.0; 12 /

I�.�I t1; t2; u; 2r1/ < C1: (4.86)

Proof. Inequality (4.86) follows directly from inequality (4.85) and Step 4 of the proof of
Lemma 4.13 by choosing l D 1.

By using Lemma 4.9, Lemma 4.14 and following the same arguments as in [42], we
have the following results when the singular curves are disjoint.

Lemma 4.15 (cf. [42]). Under the same assumption as in Theorem 4.2, if we assume that
¹�1.t/; : : : ; �l .t/º are disjoint on ŒT1; T2� and N� is the constant in (6) of Definition 4.12,
then we have:

(1) For each �k and .t1; t2/ � ŒT1; T2�, the mapping Jk W C
1
0 .Q

.k/
N�;t1;t2

/! R

Jk.f / D

Z
Q
.k/
N�;t1;t2

�
u

�
�
@f

@t
��f

�
� cuf

�
dx dt

defines a distribution whose support is contained in �.k/t1;t2 , and satisfies

jJk.f /j � C
�

sup
�
.k/
t1;t2

jf j
�

lim inf
�!0

I�k .�I t1; t2; u; N�/;

where C is a universal constant. Here I�k .�I t1; t2; u; N�/ is defined in (6) of Defini-
tion 4.12 and it is finite by Lemma 4.14.

(2) There exists linear functionals ¹�1; : : : ; �lº with each�k 2 .C0..T1; T2///0 such that
for all ' 2 C10 .Q1;T1;T2/;Z
Q1;T1;T2

u

�
�
@'

@t
��'

�
D

Z
Q1;T1;T2

cu'C

lX
kD1

Z
.T1;T2/

'.�k.t/; t/d�k.t/: (4.87)

Identity (4.87) can be rewritten as

@u

@t
��u D cuC

lX
kD1

ı�k ˝ �k in D 0.Q1;T1;T2/:

(3) Let �k be one of the measures in part (2). For any function  2 C10 ..T1; T2// with
Supp. / � .t1; t2/, we haveZ T2

T1

 d�k D 2 lim
�!0

1

jlog �j2

Z
Q
.k/
N�;T1;T2

jrvkj
2�¹vk�jlog�jº u: (4.88)

(4) Each measure �k obtained in (3) is positive.
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Proof. Since ¹�1.t/; : : : ; �l .t/º are disjoint on Œt1; t2�, we can consider each �k as in [42].
After replacing the function g in [42, (4.21)] by the function c.x; t/, we know that part (1)
follows directly from [42, Lemma 4.4]. Part (2) follows from the proof of [42, Theo-
rem 2.1] (see [42, p. 7303]), (3) follows from [42, Lemma 5.2] and (4) follows from the
non-negativity of the right-hand side of (4.88). Since the proof is exactly the same as
in [42], we omit the details here.

When the singular curves are around .x0; t0/, the measures �k constructed in Lem-
ma 4.15 may blow up as t ! t0. The next result shows that �k is actually bounded when
t is close to t0:

Lemma 4.16. The same assumption as in Theorem 4.2. Suppose that the singular curves
¹�1.t/; : : : ; �l .t/º are around .x0; t0/ on Œt1; t2� as in Definition 4.11. Define the mea-
sure � on .t1; t2/ byZ t2

t1

 d� D lim
�!0

2

jlog �j2

Z
Q1;t1;t2

jr Qvj2�¹Qv�jlog�jº u dvol dt; (4.89)

where the right-hand side is finite by (4.61). Here Qv is the function defined by (4.56). Then
� 2 .C0..t1; t2///

0 and for each �k the measure �k obtained by Lemma 4.15 satisfies

0 � 4 �k.t/ � �.t/ for all t 2 .t1; t0/ [ .t0; t2/;

where  2 .1
2
; 1/ is the constant chosen in Lemma 4.5.

Proof. Since ¹�1.t/; : : : ; �l .t/º are around .x0; t0/ on .t1; t2/, by Definition 4.11 we can
assume that ¹�1.t/; : : : ; �l 0.t/º are disjoint for some l 0 � l on Œt1; t0/ and

�l 0.t/ D �l 0C1.t/ D � � � D �l .t/ for all t 2 .t1; t0/:

Let r0 be the constant defined by (4.54). After shrinking .t1; t2/ if necessary, we can
assume that Qr 0

0
;t1;t2
� OQr0;t1;t2 for some r 00 > 0. Let �1 > 0 be the constant such that

for any .x; t/ 2 Qr 0
0
;t1;t2

and 1 � i � l 0 we have ri .x; t/ � �1: Since for any ı > 0 the
curves ¹�1.t/; : : : ; �l 0.t/º are disjoint on Œt1; t0 � ı�, we define

dı WD min¹dg.�i .t/; �j .t// j 1 � i ¤ j � l 0; t 2 Œt1; t0 � ı� º > 0:

Let ˛0 D
dı
2

and .x; t/ 2 Qr 0
0
;t1;t0�ı

. By the choice of ˛0, if rk.x; t/ < ˛0, then we have

ri .x; t/ � ˛0 for all i ¤ k: (4.90)

For any �2 > 0, we can find some integer k 2 Œ1; l 0� such that if t 2 Œt1; t0 � ı� and
r1r2 � � � rl 0 � �2, we have

ri � ˛0 for all i ¤ k; rk �
�2

˛l
0�1
0

: (4.91)

We choose �2 such that
�2

�l
0�1
1

D ˛0: (4.92)
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By (4.91) for any k 2 ¹1; 2; : : : ; l 0º and � 2 .0; �2/,²
.x; t/ 2 Qr 0

0
;t1;t0�ı

ˇ̌̌̌
Qv.x; t/ � log

1

�

³
� ¹.x; t/ 2 Qr 0

0
;t1;t0�ı

j r1r2 � � � rl 0 � �º

� ¹.x; t/ 2 Qr 0
0
;t1;t0�ı

j �2 � r1r2 � � � rl 0 � �º

D

l 0[
kD1

�k;�;

where �k;� is defined by

�k;� WD

²
.x; t/ 2 Qr 0

0
;t1;t0�ı

ˇ̌̌̌
˛0 � ri � �1; i ¤ k;

�

˛l
0�1
0

� rk �
�2

�l
0�1
1

³
D

²
.x; t/ 2 Qr 0

0
;t1;t0�ı

ˇ̌̌̌
˛0 � ri � �1; i ¤ k;

�

˛l
0�1
0

� rk � ˛0
³
: (4.93)

Note that we used (4.92) in the equality of (4.93). By the definition of r 00 and Lemma 4.5,
for any .x; t/ 2 �k;� with 1 � k � l 0 � 1 we have

jr Qvj2 � jrvkj
2
�

X
i¤k

jrvi j
2
�
2

r2
k

�

X
i¤k

1

r2i
�
2

r2
k

�
l � 1

˛20
;

and for any .x; t/ 2 �k;� with l 0 � k � l we have

jr Qvj2 � .l � l 0 C 1/jrvkj
2
�

l 0�1X
iD1

jrvi j
2

� .l � l 0 C 1/
2

r2
k

�

l 0�1X
iD1

1

r2i
� .l � l 0 C 1/

2

r2
k

�
l 0 � 1

˛20
:

Consequently, by (4.89) for any k 2 ¹1; 2; : : : ; l 0 � 1º we haveZ t0�ı

t1

 d� � lim
�!0

2

jlog �j2

Z
�k;�

jr Qvj2 u

� lim
�!0

2

jlog �j2

Z
�k;�

�
2

r2
k

�
l � 1

˛20

�
 u

D 2 lim
�!0

2

jlog �j2

Z
�k;�

 u

r2
k

(4.94)

and for k 2 ¹l 0; : : : ; lº we haveZ t0�ı

t1

 d� � .l � l 0 C 1/2 lim
�!0

2

jlog �j2

Z
�k;�

 u

r2
k

� 2 lim
�!0

2

jlog �j2

Z
�k;�

 u

r2
k

: (4.95)



On Ilmanen’s multiplicity-one conjecture 79

On the other hand, taking
Q�
1
 D

�

˛l
0�1
0

and using (4.88), we haveZ t0�ı

t1

 d�k D 2 lim
Q�!0

1

jlog Q�j2

Z
Q
.k/

N�;t1;t0�ı

jrvkj
2�¹vk�jlog Q�jº u

D 2 lim
Q�!0

1

2jlog �j2

Z
Q
.k/

˛0;t1;t0�ı

jrvkj
2�¹vk�jlog Q�jº u

�
2

2
lim
�!0

1

jlog �j2

Z
Q
.k/

˛0;t1;t0�ı
\¹

�

˛l
0�1
0

�rkº

 u

r2
k

; (4.96)

where we used the fact that ¹vk � log 1
Q�
º � ¹ Q�

1
 � rkº. Note that

Q
.k/

˛0;t1;t0�ı
\

²
�

˛l
0�1
0

� rk
³

D

²
.x; t/ 2 Q˛0;t1;t0�ı

ˇ̌̌̌
�

˛l
0�1
0

� rk � ˛0
³

D

²
.x; t/ 2 Qr 0

0
;t1;t0�ı

ˇ̌̌̌
�

˛l
0�1
0

� rk � ˛0; ˛0 � ri � �1; i ¤ k
³
D �k;�; (4.97)

where we used (4.90) and (4.93). Combining (4.97) with (4.96), we haveZ t0�ı

t1

 d�k �
2

2
lim
�!0

1

jlog �j2

Z
�k;�

 u

r2
k

: (4.98)

Inequalities (4.94)–(4.95) and (4.98) implies thatZ t0�ı

t1

 d� � 4
Z t0�ı

t1

 d�k :

Thus, we have
0 � 4�k � � for all t 2 .t1; t0/:

Similarly, we can consider the case when ¹�1.t/; : : : ; �l 0.t/º are disjoint for some l 0 � l
on .t0; t2�: The lemma is proved.

4.5. Proof of Theorem 4.2

In this subsection we show Theorem 4.2. Part (1) of Theorem 4.2 follows from (4.44) and
(4.60). For part (2), the proof divides into the following steps.

Step 1. Without loss of generality, we can assume that c.x; t/ � 0: In fact, let u.x; t/ be
a solution of (4.1). Then for any k 2 R the function Qu.x; t/ D u.x; t/ekt satisfies

@ Qu

@t
D � QuC .c C k/ Qu:
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Therefore, for any compact set K in † � ŒT1; T2� we can choose k such that the function
Qc WD c C k is nonpositive on K. Thus, it suffices to show Theorem 4.2 for c.x; t/ � 0:

Step 2. Suppose that the curves ¹�1.t/; : : : ; �l .t/º are disjoint on the interval ŒT1; T2�. Let
T1 < t1 < t2 < T2. Lemma 4.9 implies that u is in L1. For any .x; t/ 2 † � .t1; t2/, we
define

wk.x; t/ D

Z t

t1

ds

Z
†

p.x; y; t � s/ Qgk.y; s/ dvoly ;

Qgk.x; t/ D c.x; t/u.x; t/�
.k/
Q 1
2
;t1�ı0;t2

;

Uk.x; t/ D

Z
.t1;t/

p.x; �k.s/; t � s/ d�k.s/; (4.99)

where �k is the measure obtained in Lemma 4.15, and ı0 > 0 is a constant chosen such
that t1 � ı0 > T1. Then u �

Pl
kD1 .Uk C wk/ satisfies the heat equation in D 0.Q 1

2 ;t1;t2
/,

which implies that u �
Pl
kD1 .Uk C wk/ is bounded in Q 1

2 ;t1;t2
. Since c.x; t/ � 0, we

have wk.x; t/ � 0 and

u.x; t/ �

lX
kD1

Uk.x; t/C f .x; t/;

where f .x; t/ is a bounded function on Q 1
2 ;t1;t2

. Therefore, by Lemma 4.6 u satisfies
inequalities (4.3)–(4.4).

Step 3. In general, the singular curves may not be disjoint. In this case, we assume that the
curves ¹�1.t/; : : : ; �l .t/º are around .x0; t0/ on .t1; t2/. Consider the interval .t1; t0/. By
Definition 4.11, we can find an integer l 0 2 Œ1; l� such that ¹�1.t/; : : : ; �l 0.t/º are disjoint
on .t1; t0/. By Lemma 4.15 we get positive measures �k 2 .C0..t1; t0///0 for each �k with
k 2 Œ1; l 0�, and by Lemma 4.16 we have

0 � 4�k.t/ � �.t/ for all t 2 .t1; t0/: (4.100)

For each k, we define Uk as in (4.99). Using the same argument as in (2), for any
t 2 .t1; t0/ we have

u.x; t/ �

lX
kD1

Uk.x; t/C f .x; t/ for all t 2 .t1; t0/; (4.101)

where f .x; t/ is a bounded function. By (4.100), we have

u.x; t/ �
1

4

l 0X
kD1

Z t

t1

p.x; �k.s/; t � s/ d�C f .x; t/ for all t 2 .t1; t0/: (4.102)

Similarly, we can prove that (4.102) also holds for t 2 .t0; t2/. Therefore, by Lemma 4.6,
u satisfies inequalities (4.3)–(4.4). The theorem is proved.
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5. Proof of main theorems

In this section, we prove Theorem 1.2 and Corollary 1.4.

Proof of Theorem 1.2. Suppose that the mean curvature flow (1.1) reaches a singularity
at .x0; T / with T < C1: Then [25, Corollary 3.6] implies that for all t < T we have

d.†t ; x0/ � 2
p
T � t :

We rescale the flow by

s D � log.T � t /; Q†s D e
s
2 .†T�e�s � x0/ (5.1)

such that the flow ¹. Q†s; Qx.p; s//;� logT � s < C1º satisfies the following properties:
(1) Qx.p; s/ satisfies the equation�

@Qx
@s

�?
D �

�
QH �

1

2
hQx;ni

�
n;

(2) the mean curvature of Q†s satisfies j QH.p; s/j � ƒ0 for some ƒ0 > 0,
(3) d. Q†s; 0/ � 2.
Fix � > 0. By Theorem 3.1, for any sequence si !C1 there exists a subsequence, still
denoted by ¹siº, such that the flow ¹ Q†siCs;�� < s < �º converges smoothly to a self-
shrinker with multiplicity one. In other words, taking

cj D e
sj
2 ;

the flow ¹ Q†js ;�� < s < �º, where
Q†js WD cj e

s
2 .†T�c�2

j
e�s � x0/;

converges smoothly to a self-shrinker with multiplicity one as j !C1. Consider the
corresponding flow

Qt D �e�s; †
j

Qt
WD

p
�Qt Q†

j

� log.�Qt/
D cj .†TCc�2

j
Qt � x0/:

Thus, for fixed � > 0 the flow ¹†j
Qt
;�e� < Qt < �e��º converges smoothly to a smooth

self-shrinker flow with multiplicity one as j !C1. Theorem 1.2 is proved.

Proof of Corollary 1.4. We follow the argument in the proof of Theorem 1.2. Suppose
that

ı0 WD sup
†�Œ0;T /

�p
T � t � jH j.p; t/

�
< C1:

Then the rescaled mean curvature flow (5.1) satisfies j QH j � ı0: There exists a sequence of
times si !C1 such that for any fixed � > 0 the flow ¹ Q†siCs;�� < s < �º converges
smoothly to a self-shrinker †1 2 C.N; �/ with multiplicity one. Moreover, the mean
curvature of the limit self-shrinker satisfies sup†1 jH j � ı0: On the other hand, we have:

Lemma 5.1. For any N > 0 and any increasing function �, there exists a positive con-
stant ı.N; �/ such that any self-shrinker † 2 C.N; �/ with jH j � ı must be a plane
passing through the origin.
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Proof. For otherwise, there exists a sequence of non-flat self-shrinkers†i 2 C.N; �/with
sup†i jH j � ıi ! 0: By the smooth compactness result of self-shrinkers in [20], we can
assume that †i converges smoothly to a self-shrinker †1 2 C.N; �/ with multiplicity
one. Since the convergence is smooth, the limit self-shrinker†1 has zero mean curvature
and by [19, Corollary 2.8] it must be a plane passing through the origin.

Let †i;t D
p
1 � t†i . Then ¹†i;t ; 0 � t < 1º is a solution of mean curvature flow

(1.1) which reaches x0 D 0 at T D 1. Consider the Heat kernel function

ˆ.x0;T /.x; t/ D
1

4�.T � t /
e�
jx�x0j

2

4.T�t/ for all .x; t/ 2 †i;t � Œ0; T /:

Thus, Huisken’s monotonicity formula (cf. [36, Theorem 3.1]) implies that

‚.†i;t ; 0; 1/ WD lim
t!1

Z
†i;t

ˆ.0;1/.x; t/ d�i;t

D
1

4�

Z
†i

e�
jxj2

4 d�i !
1

4�

Z
†1

e�
jxj2

4 d�1 D 1;

where we used the fact †i converges smoothly to the plane †1 with multiplicity one.
Therefore, by [60, Theorem 3.5] or [25, Theorem 5.6] we have

jA†i;t j.x; t/ �
C

r0
(5.2)

for some C; r0 > 0 and for all .x; t/ 2 .†i;t \ Br0.0// � .1 � r
2
0 ; 1/. For any p 2 †i ,

there exists tp 2 .1 � r20 ; 1/ such that for all t 2 .tp; 1/ we have
p
1 � tp 2 †i;t \ Br0.0/:

Thus, (5.2) implies that for any t 2 .tp; 1/,

jA†i j.p/ D
p
1 � t jA†i;t j.

p
1 � tp; t/ �

C

r0

p
1 � t :

Letting t ! 1, we have jA†i j.p/ D 0 which contradicts our assumption that †i is non-
flat.

Alternatively, one can also quote the results of C. Bao (cf. [4, Theorem 1.2]) or Guang
and Zhu (cf. [32]) to obtain that each†i is a plane and derive the same contradiction. The
lemma is proved.

Therefore, by Lemma 5.1 the limit self-shrinker †1 must be a plane passing through
the origin. Thus, Huisken’s monotonicity formula implies that

‚.†t ; x0; T / WD lim
t!T

Z
†t

ˆ.x0;T /.x; t/ d�t

D lim
si!C1

1

4�

Z
Q†si

e�
jxj2

4 d Q�si D 1;

which implies that .x0; T / is a regular point by [60, Theorem 3.1]. It follows that the flow
¹†t ; 0 � t < T º cannot blow up at .x0; T /. The corollary is proved.
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Appendix A. Krylov–Safonov’s parabolic Harnack inequality

In this appendix, we include the parabolic Harnack inequality from Krylov and Safonov
[43]. First, we introduce some notations. Let x D .x1; x2; : : : ; xn/ 2 Rn. Denote

jxj D

 
nX
iD1

.xi /2

! 1
2

; BR.x/ D ¹y 2 Rn j jx � yj < Rº;

Q.�;R/ D BR.0/ � .0; �R
2/:

Consider the parabolic operator

Lu D �
@u

@t
C aij .x; t/uij C b

i .x; t/ui � c.x; t/u; (A.1)

where the coefficients are measurable and satisfy the conditions

�j�j2 � aij .x; t/�i�j �
1

�
j�j2; (A.2)

jb.x; t/j �
1

�
; (A.3)

0 � c.x; t/ �
1

�
: (A.4)

Here b.x; t/ D .b1.x; t/; : : : ; bn.x; t//: Then we have

Theorem A.1 ([43, Theorem 1.1]). Suppose the operator L in (A.1) satisfies conditions
(A.2)–(A.4). Let � > 1;R � 2; u 2 W 1;2

nC1.Q.�;R//; u � 0 in Q.�;R/, and Lu D 0 on
Q.�;R/. Then there exists a constant C , depending only on �; � and n, such that

u.0;R2/ � C u.x; �R2/ for all x 2 BR
2
.0/: (A.5)

Moreover, when 1
��1

and 1
�

vary within finite bounds, C also varies within finite bounds.

Note that in our case equation (3.28) does not satisfy the assumption that c.x; t/ � 0
in (A.4). Therefore, we cannot use Theorem A.1 directly. The following result shows that
the Harnack inequality still works when c.x; t/ is bounded.

Theorem A.2. Let � > 1;R � 2. Suppose that u.x; t/ 2 W 1;2
nC1.Q.�;R// is a nonnega-

tive solution to the equation

Lu D �
@u

@t
C aij .x; t/uij C b

i .x; t/ui C c.x; t/u D 0; (A.6)

where the coefficients aij .x; t/ and bi .x; t/ satisfy (A.2)–(A.3), and c.x; t/ satisfies

jc.x; t/j �
1

�
for all .x; t/ 2 Q.�;R/: (A.7)

Then there exists a constant C , depending only on �; � and n, such that

u.0;R2/ � C u.x; �R2/ for all jxj <
1

2
R:
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Proof. Since u.x; t/ is a solution of (A.6) and c.x; t/ satisfies (A.7), the function

v.x; t/ D e�
1
� tu

satisfies

�
@v

@t
C aij .x; t/vij C b

i .x; t/vi C Qc.x; t/ D 0: (A.8)

where
�
2

�
� Qc.x; t/ D c.x; t/ �

1

�
� 0:

Applying Theorem A.1 to equation (A.8), we have

v.0;R2/ � C v.x; �R2/ for all jxj <
1

2
R;

where C depends only on �; � and n. Thus, for any x 2 BR
2
.0/ we have

u.0;R2/ � Ce�k.��1/R
2

u.x; �R2/ � C 0u.x; �R2/;

where C 0 depends only on �; � and n. Here we used R � 2 by the assumption. The
theorem is proved.

We generalize Theorem A.2 to a general bounded domain in Rn:

Theorem A.3. Let � be a bounded domain in Rn. Suppose u.x; t/ 2 W 1;2
nC1.� � .0; T //

is a nonnegative solution to the equation

Lu D �
@u

@t
C aij .x; t/uij C b

i .x; t/ui C c.x; t/u D 0;

where the coefficients aij .x; t/ and bi .x; t/ satisfy (A.2)–(A.3), and c.x; t/ satisfies (A.7)
for a constant � > 0. For any s; t satisfying 0 < s < t < T and any x; y 2 � with the
following properties:

(1) x and y can be connected by a line segment  with the length jx � yj � l ,

(2) Each point in  has a positive distance at least ı > 0 from the boundary of �,

(3) s and t satisfy T1 � t � s � T2 for some T1; T2 > 0,

we have
u.y; s/ � C u.x; t/;

where C depends only on n; �;min¹s; ı2º; l; T1 and T2.

Proof. Let  be the line segment with properties (1) and (2) connecting x and y. We set

p0 D y; pN D x; pi D p0 C
x � y

N
i 2 

for any 0 � i � N: Here we choose N to be the smallest integer satisfying

N > max
²
2.t � s/

s
;

l

min¹
p
s

4
; ı
4
º

³
: (A.9)



On Ilmanen’s multiplicity-one conjecture 85

We define

R D
2l

N
; � D 1C

t � s

R2N
: (A.10)

We can check that R � ı
2
: For any s; t 2 .0; T /, choose ¹tiºNiD0 such that t0 D s; tN D t

and
ti � ti�1 D

t � s

N
(A.11)

for all integers 1 � i � N . Note that (A.9)–(A.11) imply that for any 0 � i � N � 1,

tiC1 � �R
2
� s � �R2 D s �R2 �

t � s

N
�
s

4
> 0

and

jpiC1 � pi j D
jx � yj

N
�

l

N
D
R

2
:

Therefore, for any 0 � i � N � 1 we have

.tiC1 � �R
2; tiC1/ � .0; T / and piC1 2 BR

2
.pi /:

Applying Theorem A.2 on BR.pi / � .tiC1 � �R2; tiC1/ � � � .0; T /, we have

u.pi ; ti / � C u.piC1; tiC1/;

where C depends only on c; n; � and 1
��1
D

R2N
t�s

: Here we used the fact that

ti D .tiC1 � �R
2/CR2:

Therefore,
u.y; s/ D u.p0; t0/ � C

Nu.pN ; tN / D C
0u.x; t/; (A.12)

where the constant C 0 in (A.12) depends only on c; n; �;min¹s; ı2º; l; T1 and T2. The
theorem is proved.

A direct corollary of Theorem A.3 is the following result.

Theorem A.4. Let � be a bounded domain in Rn. Suppose u.x; t/ 2 W 1;2
nC1.� � .0; T //

is a nonnegative solution to the equation

Lu D �
@u

@t
C aij .x; t/uij C b

i .x; t/ui C c.x; t/u D 0;

where the coefficients aij .x; t/ and bi .x; t/ satisfy (A.2)–(A.3), and c.x; t/ satisfies (A.7)
for a constant � > 0. Suppose that �0; �00 are subdomains in � satisfying the following
properties:

(1) �0 � �00 � �, and �00 has a positive distance ı > 0 from the boundary of �,

(2) �0 can be covered by k balls with radius r , and all balls are contained in �00:

Then for any s; t satisfying 0 < s < t < T and any x; y 2 �0, we have

u.y; s/ � C u.x; t/; (A.13)

where C depends only on n; �;min¹s; ı2º; t � s; r and k.
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Proof. By the assumption, we can find finite many points A D ¹q1; q2; : : : ; qkº such that

�0 �
[
q2A

Br .q/ � �
00: (A.14)

For any x; y 2 �0, there exists two points in A, which we denote by q1 and q2, such that
x 2 Br .q1/ and y 2 Br .q2/. Then x and y can be connected by a polygonal chain  ,
which consists of two line segments xq1; yq2 and a polygonal chain with vertices in A

connecting q1 and q2. Clearly, the number of the vertices of  is bounded by k C 2 and
the total length of  is bounded by .k C 2/r: Moreover, by assumption we have  � �00

and each point in  has a positive distance at least ı > 0 from the boundary of �:
Assume that the polygonal chain  has consecutive vertices ¹p0; p1; : : : ; pN º with

p0 D y; pN D x and 1 � N � k C 2:

We apply Theorem A.3 for each line segment pipiC1 and the interval Œti ; tiC1�, where
¹tiº is chosen as in (A.11). Note that

t � s

k C 2
� tiC1 � ti D

t � s

N
� t � s:

Thus, for any 0 � i � N � 1 we have

u.pi ; ti / � Cu.piC1; tiC1/; (A.15)

where C depends only on c; n; �;min¹s; ı2º; r; k and t � s, and (A.15) implies (A.13).
This finishes the proof of Theorem A.4.

Theorem A.4 can be generalized to Riemannian manifolds by using the partition of
unity. Here we omit the proof since the argument is standard. Note that the constant in
(A.13) depends on the geometry of .M; g/.

Theorem A.5. Let .M; g/ be a Riemannian manifold with boundary @M and � �M
a bounded domain which does not intersect with @M: Suppose u.x; t/ 2W 1;2

nC1.��.0; T //

is a nonnegative solution to the equation

Lu D �
@u

@t
C aij .x; t/rirjuC b

i .x; t/riuC c.x; t/u D 0;

where the coefficients aij .x; t/ and bi .x; t/ satisfy (A.2)–(A.3), and c.x; t/ satisfies (A.7)
for a constant � > 0. Suppose that �0; �00 are subdomains in � satisfying the following
properties:

(1) �0 � �00 � �, and �00 has a positive distance ı > 0 from the boundary of �,

(2) �0 can be covered by k balls with radius r , and all balls are contained in �00:

Then for any s; t satisfying 0 < s < t < T and any x; y 2 �0, we have

u.y; s/ � C u.x; t/;

where C depends only on c; n; �;min¹s; ı2º; t � s; r; k and .M; g/.
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Appendix B. Li–Yau’s parabolic Harnack inequality

In this appendix, we include Li–Yau’s parabolic Harnack inequality in [49]. Compared
with the Harnack inequality in Appendix A, Li–Yau’s result gives explicit dependence
of the constants on the geometric quantities of the metric. Thus, we can apply Li–Yau’s
result to a class of Riemannian manifolds and we obtain uniform bounds of the constants
in the Harnack inequality.

Theorem B.1 (cf. [49, Theorem 2.1]). Let M be a Riemannian manifold with boundary
@M: Assume p 2M and let B2R.p/ be a geodesic ball of radius 2R centered at p which
does not intersect @M . We denote �K.2R/, with K.2R/ � 0, to be a lower bound of the
Ricci curvature on B2R.p/: Let q.x; t/ be a function defined on M � Œ0; T � which is C 2

in the x-variable and C 1 in the t -variable. Assume that

�q � �.2R/; jrqj � .2R/

on B2R.p/ � Œ0; T � for some constants �.2R/ and .2R/. If u.x; t/ is a positive solution
of the equation �

� � q �
@

@t

�
u.x; t/ D 0

on M � .0; T �, then for any ˛ > 1, 0 < t1 < t2 � T , and x; y 2 BR.p/, we have the
inequality

u.x; t1/ � u.y; t2/

�
t2

t1

�n˛
2

eA.t2�t1/C�˛;R.x;y;t2�t1/;

where

A D C
�
˛R�1

p
K C ˛3.˛ � 1/�1R�2 C 

2
3 .˛ � 1/

1
3˛�

1
3 C .˛�/

1
2 C ˛.˛ � 1/�1K

�
and

�˛;R.x; y; t2 � t1/ D inf
2�.R/

�
˛

4.t2 � t1/

Z 1

0

j P j2

C .t2 � t1/

Z 1

0

q..s/; .1 � s/t2 C st1/ ds

�
;

with inf taken over all paths in BR.p/ parametrized by Œ0; 1� joining y to x.

A direct corollary of Theorem B.1 is the following result.

Theorem B.2. The same assumptions as in Theorem B.1 onM;B2R.p/ and the function
q.x; t/. If u.x; t/ is a positive solution of the equation�

� � q �
@

@t

�
u.x; t/ D 0

on � � .0; T �, where � is a connected open subset of BR.p/. Let �0; �00 be connected
open subsets of � satisfying the following properties, which we called .ı; k; r/ property:

(1) �0 � �00 � �, and �00 has a positive distance ı > 0 from the boundary of �,

(2) �0 can be covered by k geodesic balls with radius r , and all balls are contained in�00.
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Then for any 0 < t1 < t2 � T and x; y 2 �0, we have the inequality

u.x; t1/ � Cu.y; t2/; (B.1)

where C depends only on n;K.2R/; �.2R/; .2R/; t1; t2 � t1; k; ı and r .

Proof. By the assumption on �0; �00 and �, x and y can be connected by a path  in �00

with bounded length and every point in  has a distance at least ı from the boundary of�.
Thus, the theorem follows directly from Theorem B.1 by choosing R D ı and ˛ D 2.

In the proof of Lemma 3.21, we need to use Theorem B.2 to a class of surfaces
with bounded geometry. In order to show that the constants in the Harnack inequality
is uniformly bounded, we have the following result.

Theorem B.3. Fix R > 0: We assume that:

(1) †2i � R3 is a sequence of complete surfaces which converges smoothly to a complete
surface † in R3.

(2) The Ricci curvature of † \ BR.0/ is bounded by a constant �K with K � 0: Here
BR.0/ � R3 denotes the extrinsic ball centered at 0 with radius R.

(3) �i ,�0i ,�
00
i are bounded domains in†i \ BR=2.0/ with�0i � �

00
i � �i , and�i ,�0i ,

�00i converges smoothly to �i , �0i , �
00
i with �0 � �00 � � � † \ BR=2.0/, respec-

tively. Here the smooth convergence of �i to � means that for any � > 0 and suffi-
ciently large i , there exists a smooth function ui on � with jui jC2.�/ � � such that
�i can be written as a normal exponential graph of ui over �.

(4) �00 has a positive geodesic distance ı > 0 from the boundary of �.

(5) �0 can be covered by k geodesic balls with radius r 2 .0; ı
2
/, and all balls are

contained in �00.

(6) qi .x; t/ is a function defined on †i � Œ0; T � which is C 2 in the x-variable and C 1 in
the t -variable. Assume that

�gi qi � �; jrqi jgi � �

on �i � Œ0; T � for some constant � .

If fi .x; t/ are positive functions satisfying�
�gi � qi .x; t/ �

@

@t

�
fi .x; t/ D 0 (B.2)

on �i � .0; T �, where qi .x; t/ 2 C 2.†i � Œ0; T �/, then for any 0 < t1 < t2 � T and any
points x; y 2 �0i , we have the inequality

fi .x; t1/ � Cfi .y; t2/;

where C depends only on n;K; �; t1; t2 � t1; k; ı and r .

Proof. It suffices to show that �0i ; �
00
i and �i satisfy the .ı0; k0; r 0/ property of Theo-

rem B.2 with uniform constants ı0; k0 and r 0. By the smooth convergence of �i to �, we
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define the map 'i W �! �i by

'i .x/ D x C ui .x/n.x/ for all x 2 �; (B.3)

where ui .x/ is the graph function of �i over � and n.x/ denotes the normal vector of †
at x. Note that 'i .�/ D �i and 'i converges in C 2 to the identity map on� as i !C1:
By the assumption (5), there exists k points ¹p˛ºk˛D1 � �

0 and � > 0 such that

�0 �

k[
˛D1

Br .p˛/; Br .p˛/ � �
00
4�;

where �004� D ¹x 2 �
00 j d†.x; @�

00/ � 4�º: Therefore, we have

�0i D 'i .�
0/ � 'i

 
k[
˛D1

Br .p˛/

!
D

k[
˛D1

'i .Br .p˛// (B.4)

Since the C l norms of ui in (B.3) are small, for large i we have

'i .Br .p˛// � Bi;rC�.'i .p˛// � �
00
i;2�; (B.5)

where �00i;2� D ¹x 2 �
00
i j d†i .x; @�

00
i / � 2�º and Bi;r .p/ denotes the geodesic ball of

†i centered at p with radius r . Combining (B.4) with (B.5), we have

�0i �

k[
˛D1

BrC�.'i .p˛// � �
00
i;2� � �

00
i :

Therefore,�0i can be covered by k geodesic balls with radius r C �, and all balls are con-
tained in�00i . It is clear that�00i has a positive geodesic distance ı

2
> 0 from the boundary

of �i for large i . Thus,�0i ; �
00
i and�i satisfy the . ı

2
; k; r C �/ property and the theorem

follows directly from Theorem B.2.

Appendix C. The linearized equation of rescaled mean curvature flow

In this appendix, we follow the calculation in [21, Appendix A] to show (3.26). See also
[23, Appendix A]. Let † be a hypersurface in RnC1 and †u the graph of a function u
over †: Then †u is given by

†u D ¹x C u.x/n.x/ j x 2 †º;

where n.x/ denotes the normal vector of† at x. We assume that juj is small. Let enC1 be
the gradient of the signed distance function to † and enC1 equals n on †: We define

�u.p/ D

s
detguij .p/

detgij .p/
; wi .p/ D henC1;nui; �u.p/ D hp C u.p/n.p/;nui;

where gij denotes the metric on † at p, guij is the induced metric on †u and nu is the
normal to †u:
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Lemma C.1 ([21, Lemma A.3]). There exist three functions w, � and � depending on
.p; s; y/ 2 † �R � Tp† that are smooth for jsj less than the normal injectivity radius
of † so that

wu.p/ D w.p; s; y/ D
p
1C jB�1.p; s/.y/j2; (C.1)

�u.p/ D �.p; s; y/ D w.p; s; y/ det.B.p; s//; (C.2)

�u.p/ D �.p; s; y/ D
hp;n.p/i C s � hp;B�1.p; s/.y/i

w.p; s; y/
; (C.3)

where the linear operator B.p; s/ D Id � sA.p/. Finally, we have:

(1) w satisfies

w.p; s; 0/ D 1; @sw.p; s; 0/ D 0; (C.4)
@y˛w.p; s; 0/ D 0; @y˛@yˇw.p; 0; 0/ D ı˛ˇ : (C.5)

(2) � satisfies

�.p; 0; 0/ D 1; @s�.p; 0; 0/ D H.p/;

@pj @s�.p; 0; 0/ D Hj .p/; @y˛@yˇ�.p; 0; 0/ D ı˛ˇ ;

@2s�.p; 0; 0/ D H
2.p/ � jAj2.p/:

(3) � satisfies
�.p; 0; 0/ D hp;ni; @s�.p; 0; 0/ D 1;

@y˛�.p; 0; 0/ D �p˛:

(4) Furthermore, we have

@yi �.p; 0; 0/ D 0; @pj @yi �.p; 0; 0/ D 0; (C.6)

@s@pj @yi �.p; 0; 0/ D 0; @yk@pj @yi �.p; 0; 0/ D 0: (C.7)

Proof. Parts (1)–(3) and (C.1)–(C.3) follow directly from [21, Lemma A.3]. It suffices
to show part (4). Following the notations in the proof of [21, Lemma A.3], we assume
that .p; s/ is the Fermi coordinates on the normal tubular neighborhood of † so that s
measures the signed distance to †: We define

B.p; s/ � .Id � sA.p// W Tp†! Tp†:

Let B.p; s/ D det.B.p; s// and J.p; s/ D B�1.p; s/. Then we have

B.p; 0/ D 1; @sB.p; 0/ D H.p/; (C.8)
@yiB.p; s/ � 0; @pjB.p; 0/ D �s@pjAjsD0 D 0; (C.9)

@pjB.p; 0/ D B.p; 0/ � tr.@pjB.p; 0// D 0: (C.10)

Since J D B�1, we have
@pj JB C J@pjB D 0:

This implies that

@pj J.p; 0/ D �J.p; 0/ � @pjB.p; 0/ � J.p; 0/ D 0: (C.11)
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Note that by (C.1), w can be rewritten as

w.p; s; y/ D
p
1C J˛ˇJ˛yˇy :

It follows immediately that

@yiw D
1

2w
J � J � y;

@piw D
1

w
@piJ � J � y � y;

@s@yiw D �
1

2w2
@sw � J � J � y C

1

w
@sJ � J � y;

@pj @yiw D �
1

2w2
@pjw � J � J � y C

1

w
@pj J � J � y;

where the notation “*” denotes the multiplication of two matrices. Furthermore, we cal-
culate

@s@pj @yiw D w
�3@sw@pjw � J � J � y �

1

2w2
@s@pjw � J � J � y

�
1

w2
@pjw � @sJ � J � y �

1

w2
@sw@pj J � J � y

C
1

w
@s@pj J � J � y C

1

w
@pj J � @sJ � y;

@yk@pj @yiw D w
�3@ykw@pjw � J � J � y �

1

2w2
@yk@pjw � J � J � y

�
1

w2
@pjw � @ykJ � J � y �

1

2w2
@pjw � J � J

�
1

w2
@ykw@pj J � J � y C

1

w
@yk@pj J � J � y

C
1

w
@pj J � @ykJ � y C

1

w
@pj J � J:

Combining the above identities with (C.4), (C.5) and (C.11), we have

@yiw.p; 0; 0/ D 0; @piw.p; 0; 0/ D 0; (C.12)
@s@yiw.p; 0; 0/ D 0; @pj @yiw.p; 0; 0/ D 0; (C.13)

@s@pj @yiw.p; 0; 0/ D 0; @yk@pj @yiw.p; 0; 0/ D 0: (C.14)

Moreover, we calculate the derivatives of the function �.p; s; y/ D w.p; s; y/B.p; s/:

@yi � D @yiwBCw@yiB;

@pj @yi � D @pj @yiwBC@yiw@pjBC@pjw@yiBCw@pj @yiB;

@s@pj @yi � D @s@pj @yiwBC@pj @yiw@sBC@s@yiw@pjBC@yiw@s@pjB

C@s@pjw@yiBC@pjw@yi @sBC@sw@pj @yiBCw@s@pj @yiB;

@yk@pj @yi � D @yk@pj @yiwBC@pj @yiw@ykBC@yk@yiw@pjBC@yiw@yk@pjB

C@yk@pjw@yiBC@pjw@yi @ykBC@ykw@pj @yiBCw@yk@pj @yiB:
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Combining this with (C.9)–(C.10), (C.12)–(C.14), we have (C.6)–(C.7). The lemma is
proved.

We have the following expression for the mean curvature of †u.

Lemma C.2 ([21, Corollary A.30]). The mean curvature Hu of †u is given by

Hu.p/ D
w

v

�
@s� � @p˛@y˛� � .@s@y˛�/u˛.p/ � .@yˇ@y˛�/u˛ˇ .p/

�
; (C.15)

where w; � and their derivatives are all evaluated at .p; u.p/;ru.p//:

Combining Lemma C.1 with Lemma C.2, we can show (3.26).

Lemma C.3. The function ui D uCi � u
�
i satisfies the following parabolic equations on

��;R.I / � I

@ui

@t
D �0ui �

1

2
hx;rui i C jAj

2ui C
ui

2
C a

pq
i ui;pq C b

p
i ui;p C ci ui ; (C.16)

where �0 denotes the Laplacian operator on †1 with respect to the induced metric, and
the coefficients apqi ; b

p
i and ci are small and tend to zero as uCi and u�i tend to zero.

Proof. We divide the proof into several steps.

Step 1. We calculate the difference of the mean curvature of †
u
C

i

and †u�
i

. Let

u D uCi � u
�
i and Qu� D u

�
i C �u

for � 2 Œ0; 1�. Thus, we have Qu0 D u�i and Qu1 D uCi . Note that

H
u
C

i

.p/ �Hu�
i
.p/ D

Z 1

0

@� .H Qu� .p// d�: (C.17)

For any function f .p; s; y/, we calculate the derivative with respect to �

@� .f .p; Qu� ;r Qu� // D .@sf /.p; Qu� ;r Qu� / � uC .@y˛f /.p; Qu� ;r Qu� / � u˛; (C.18)

where u˛ D @x˛u: Therefore, we have

@� .@s�/ D @
2
s� � uC @yi @s� � ui ;

@� .@p˛@y˛�/ D @s@p˛@y˛� � uC @yi @p˛@y˛� � ui ;

@�
�
.@s@y˛�/ Qu�;˛

�
D .@s@y˛�/u˛ C .@

2
s@y˛�/u Qu�;˛ C .@s@yi @y˛�/ui Qu�;˛

@�
�
.@yˇ@y˛�/ Qu�;˛ˇ

�
D .@yˇ@y˛�/u˛ˇ C @s@yˇ@y˛� � u Qu�;˛ˇ C @yi @yˇ@y˛� � ui Qu�;˛ˇ ;

where Qu�;˛ D @x˛ Qu� and Qu�;˛ˇ D @x˛@xˇ Qu� : By Lemma C.2 we have

@� .H Qu� .p// D

�
@s

�
w

�

�
uC @yi

�
w

�

�
ui

�
�
�
@s� � @p˛@y˛� � .@s@y˛�/ Qu�;˛ � .@yˇ@y˛�/ Qu�;˛ˇ

�
C

�
w

�

�
� @�

�
@s� � @p˛@y˛� � .@s@y˛�/ Qu�;˛ � .@yˇ@y˛�/ Qu�;˛ˇ

�
D EuC F˛u˛ CG˛ˇu˛ˇ ; (C.19)
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where E;F and G are given by

E.p; Qu� / D @s

�
w

�

��
@s� � @p˛@y˛� � .@s@y˛�/ Qu�;˛ � .@yˇ@y˛�/ Qu�;˛ˇ

�
C

�
w

�

�
�
�
@2s� � @s@p˛@y˛� � .@

2
s@y˛�/ Qu�;˛

� @s@yˇ@y˛� � Qu�;˛ˇ
�
; (C.20)

F .p; Qu� / D @y

�
w

�

��
@s� � @p˛@y˛� � .@s@y˛�/ Qu�;˛ � .@yˇ@y˛�/ Qu�;˛ˇ

�
C

�
w

�

��
@y @s� � @y @p˛@y˛� � @s@y � � .@s@yi @y �/ Qu�;i

� @y @yˇ@y˛� � Qu�;˛ˇ
�
; (C.21)

G˛ˇ .p; Qu� / D �

�
w

�

�
� @yˇ@y˛�: (C.22)

In view of (C.20)–(C.22), we define the functions depending on

.p; s; y;Q/ 2 † �R � Tp.†/ � GL.2;R/

such that

E.p; s; y;Q/ D @s

�
w

�

�
.p; s; y/

�
@s� � @p˛@y˛� � .@s@y˛�/y˛ � .@yˇ@y˛�/Q˛ˇ

�
C

�
w

�

�
.p; s; y/ �

�
@2s� � @s@p˛@y˛� � .@

2
s@y˛�/y˛

� @s@yˇ@y˛� �Q˛ˇ
�
;

F .p; s; y;Q/ D @y

�
w

�

�
.p; s; y/ �

�
@s� � @p˛@y˛� � .@s@y˛�/y˛ � .@yˇ@y˛�/Q˛ˇ

�
C

�
w

�

��
@y @s� � @y @p˛@y˛� � @s@y � � .@s@yi @y �/yi

� @y @yˇ@y˛� �Q˛ˇ
�
;

G˛ˇ .p; s; y/ D �

�
w

�

�
.p; s; y/ � @yˇ@y˛�:

Let Ou� D � Qu� for � 2 Œ0; 1�. Then we have

E.p; u� / D E.p; 0/C

Z 1

0

@�.E.p; Ou�// d�; (C.23)

F .p; u� / D F .p; 0/C

Z 1

0

@�.F .p; Ou�// d�; (C.24)

G˛ˇ .p; u� / D G˛ˇ .p; 0/C

Z 1

0

@�.G˛ˇ .p; Ou�// d�: (C.25)
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Note that

@�.E.p; Ou�// D .@sE/ � Qu� C .@yiE/ � Qu�;i C .@Q˛ˇE/ � Qu�;˛ˇ ; (C.26)

@�.F .p; Ou�// D .@sF / � Qu� C .@yiF / � Qu�;i C .@Q˛ˇF / � Qu�;˛ˇ ; (C.27)

@�.G˛ˇ .p; Ou�// D .@sG˛ˇ / � Qu� C .@yiG˛ˇ / � Qu�;i ; (C.28)

where the right-hand sides of (C.26)–(C.28) are evaluated at

.p; s; y;Q/ D .p; Ou�;r Ou�;r
2
Ou�/:

By Lemma C.1, we have

E.p; 0/ D �jAj2; (C.29)
F .p; 0/ D 0; (C.30)
G˛ˇ .p; 0/ D �ı˛ˇ : (C.31)

Combining (C.23) and (C.26) with (C.29), we have

E.p; u� / D �jAj
2
C Qu�

Z 1

0

.@sE/.p; Ou� ;r Ou� ;r
2
Ou� / d�

C Qu�;i

Z 1

0

.@yiE/.p; Ou� ;r Ou� ;r
2
Ou� / d�

C Qu�;˛ˇ

Z 1

0

.@Q˛ˇE/.p; Ou� ;r Ou� ;r
2
Ou� / d�: (C.32)

Similar, we have

F .p; u� / D Qu�

Z 1

0

.@sF /.p; Ou� ;r Ou� ;r
2
Ou� / d�

C Qu�;i

Z 1

0

.@yiF /.p; Ou� ;r Ou� ;r
2
Ou� / d�

C Qu�;˛ˇ

Z 1

0

.@Q˛ˇF /.p; Ou� ;r Ou� ;r
2
Ou� / d� (C.33)

and

G˛ˇ .p; u� / D �ı˛ˇ C Qu�

Z 1

0

.@sG˛ˇ /.p; Ou� ;r Ou� / d�

C Qu�;i

Z 1

0

.@yiG˛ˇ /.p; Ou� ;r Ou� / d�: (C.34)

Combining (C.32)–(C.34), (C.17) with (C.19), we have

H
u
C

i

.p/ �Hu�
i
.p/ D

Z 1

0

@� .Hu� .p// d�

D �jAj2u ��uC a
˛ˇ
1 u˛ˇ C b


1u C c1u; (C.35)

where the coefficients a˛ˇ1 ; b
i
1 and c1 are small, and tend to zero as uCi and u�i tend to zero.
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Step 2. We calculate the difference of �
u
C

i

and �u�
i

. Note that

�
u
C

i

.p/ D �u�
i
.p/C

Z 1

0

@� .� Qu� .p// d�: (C.36)

By (C.18), we have

@� .� Qu� .p// D .@s�/.p; Qu� ;r Qu� / � uC .@y˛�/.p; Qu� ;r Qu� / � u˛; (C.37)

where the function � of the right-hand side is defined by (C.3). Let Ou� D � Qu� as in Step 1.
Then we have

.@s�/.p; Qu� ;r Qu� / D .@s�/.p; 0; 0/C Qu�

Z 1

0

.@2s�/.p; Ou�;r Ou�/ d�

C Qu�;˛

Z 1

0

.@y˛@s�/.p; Ou�;r Ou�/ d�: (C.38)

Similarly, we have

.@y˛�/.p; Qu� ;r Qu� / D .@y˛�/.p; 0; 0/C Qu�

Z 1

0

.@s@y˛�/.p; Ou�;r Ou�/ d�

C Qu�;ˇ

Z 1

0

.@y˛@yˇ�/.p; Ou�;r Ou�/ d�: (C.39)

Combining (C.36)–(C.39) with part (3) of Lemma C.1, we have

�
u
C

i

.p/ D �u�
i
.p/C u � hp;rui C bi2ui C c2u; (C.40)

where c2 and b˛2 are small and tend to zero as uCi and u�i tend to zero.

Step 3. We calculate the difference of �
u
C

i

.p/ and �u�
i
.p/, where �u D Hu � 1

2
hxu;nui:

Combining (C.40) with (C.35), we have

�
u
C

i

.p/ � �u�
i
.p/ D �LuC a

˛ˇ
3 u˛ˇ C b


3u C c3u; (C.41)

where a˛ˇ3 ; b

3 and c3 are small and tend to zero as uCi and u�i tend to zero. Note that

.@txuC
i

/? D h@txuC
i

;n
u
C

i

i D @tu
C

i hn;nuC
i

i D @tu
C

i wuC
i

; (C.42)

where w
u
C

i

is defined by (C.1), and xu�
i

satisfies a similar equation as (C.42). Moreover,
we have

@tu
C

i wuC
i

� @tu
�
i wu�i D

Z 1

0

@� .@t Qu�w Qu� / d�:

As in (C.18), we have

@� .@t Qu�w Qu� / D @tuw Qu� C @t Qu� @�w Qu�

D @tuw Qu� C @t Qu�
�
.@sw/.p; Qu� ;r Qu� / � uC .@yiw/.p; Qu� ;r Qu� / � ui

�
:
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Since w.p; 0; 0/ D 1 by (C.4), we have

w Qu� .p/ D 1C

Z 1

0

.@�w Ou�/.p/ d�

D 1C Qu�

Z 1

0

.@sw/.p; Ou�;r Ou�/ d�C Qu�;i

Z 1

0

.@yiw/.p; Ou�;r Ou�/ d�:

Combining the above identities, we have

@tu
C

i wuC
i

� @tu
�
i wu�i D @tu.1C b

i
4 Qu�;i C c4 Qu� /C b

i
5ui C c5u; (C.43)

where c4; c5; bi4 and bi5 are small and tend to zero as uCi and u�i tend to zero. Combining
(C.43) and (C.41) with the equation of rescaled mean curvature flow, we have

@u

@t
D

1

1C bi4 Qu�;i C c4 Qu�

�
@tu
C

i wuC
i

� @tu
�
i wu�i � b

i
5ui � c5u

�
D

1

1C bi4 Qu�;i C c4 Qu�

�
LuC a

˛ˇ
6 u˛ˇ C b


6u C c6u

�
D LuC a

˛ˇ
7 u˛ˇ C b


7u C c7u;

where a˛ˇ6 ; b

6 ; c6; a

˛ˇ
7 ; b


7 and c7 are small and tend to zero as uCi and u�i tend to zero.

The lemma is proved.
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