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Abstract. In this paper, we show that if the mean curvature of a closed smooth embedded mean
curvature flow in R3 is of type-I, then the rescaled flow at the first finite singular time converges
smoothly to a self-shrinker flow with multiplicity one. This result confirms Ilmanen’s multiplicity-
one conjecture under the assumption that the mean curvature is of type-/. As a corollary, we show
that the mean curvature at the first singular time of a closed smooth embedded mean curvature flow
in R3 is at least of type-1.
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1. Introduction

In this paper, we study finite time singularities of closed smooth embedded mean curva-
ture flow in R3. A one-parameter family of hypersurfaces x(p, t) : £" — R"*1 is called
a mean curvature flow, if x satisfies the equation

3_X = —Hn, x(0)=x, (1.1)

ot

where H denotes the mean curvature of the hypersurface ¥; := x(¢)(X¥) and n denotes
the outward unit normal of ;. In the previous paper [46], we proved that the mean cur-
vature of (1.1) must blow up at the first finite singular time for a closed smooth embedded
mean curvature flow in R3. This paper can be viewed as a continuation of [46], and we
will develop the techniques in [46] further to study the finite time singularities of mean
curvature flow.

1.1. Singularities of mean curvature flow

The mean curvature flow with convexity conditions has been well studied during the
past several decades. In [35], Huisken proved that if the initial hypersurface is uniformly
convex, then after rescaling the mean curvature flow exists for all time and converges
smoothly to a round sphere. When the initial hypersurface is mean-convex or two-convex,
there are a number of estimates for the mean curvature flow (cf. Huisken and Sinestrari
[37, 38], Haslhofer and Kleiner [33]), and these estimates are important to study the
surgery of mean curvature flow (cf. Huisken and Sinestrari [39], Brendle and Huisken [8],
Haslhofer and Kleiner [34]). Moreover, for mean curvature flow with mean convex initial
hypersurfaces, B. White gave some structural properties of the singularities in [58, 59],
and B. Andrews also showed a noncollapsing estimate in [1].

However, all these results rely on convexity conditions of initial hypersurfaces, and it
is very difficult to study general cases. For the curve shortening flow in the plane, follow-
ing the work Gage [28,29] and Gage and Hamilton [30] on convex curves Grayson [31]
proved that any embedded closed curve in the plane evolves to a convex curve and subse-
quently shrinks to a point, and Andrews and Bryan [2] gave a direct proof of Grayson’s
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theorem without using the monotonicity formula or classification of singularities. In the
higher dimensions, we know very little results without convexity conditions. Colding and
Minicozzi studied the generic singularities of the mean curvature flow in [19,22]. For the
classification of self-shrinkers without convexity conditions, S. Brendle [7] proved that
the round sphere is the only compact embedded self-shrinkers in R* with genus 0, and
L. Wang [55] showed that each end of a noncompact self-shrinker in R3 of finite topology
is smoothly asymptotic to either a regular cone or a self-shrinking round cylinder. How-
ever, it still remains wide open to understand the behavior of mean curvature flow at the
singular time in the general cases.

1.2. The multiplicity-one conjecture and the main theorems

To study the singularities of mean curvature flow without convexity conditions, Illmanen
proposed a series of conjectures in [40,41]. Suppose that the mean curvature flow (1.1)
reaches a singularity at (xo, 7") with T < 4-o0. For any sequence {c;} with ¢; — 400,
we rescale the flow (1.1) by

s = ¢j(Br 42 = X0), 1 € [-Tc}.0). (1.2)

By Huisken’s monotonicity formula [36] and Brakke’s compactness theorem [6], a sub-
sequence of X/ converges weakly to a limit flow 7;, which is called a tangent flow at
(x0, 7). In [40] Ilmanen showed that the tangent flow at the first singular time must be
smooth for a smooth embedded mean curvature flow in R3, and he conjectured

Conjecture 1.1 (Ilmanen [40, 41], the multiplicity-one conjecture). For a smooth one-
parameter family of closed embedded surfaces in R3 flowing by mean curvature, every
tangent flow at the first singular time has multiplicity one.

Moreover, [lmanen pointed out that the multiplicity-one conjecture implies a conjec-
ture on the asymptotic structure of self-shrinkers in R, and the latter conjecture has been
confirmed recently by L. Wang [55]. If the initial hypersurface is mean convex or sat-
isfies the Andrews condition, then the multiplicity-one conjecture holds (cf. White [58],
Haslhofer and Kleiner [33], Andrews [1]). Recently, A. Sun [52] proved that the generic
singularity of mean curvature flow of closed embedded surfaces in R® modelled by closed
self-shrinkers with multiplicity has multiplicity one. In general the multiplicity-one con-
jecture is still wide open. It is well known to experts that this conjecture holds if the
second fundamental form A is of type-/. The main contribution of this paper is to con-
firm the multiplicity-one conjecture under the assumption that the mean curvature is of
type-1, which is a much weaker condition.

To state our result, we first introduce some notations. A hypersurface x : " — R”*1
is called a self-shrinker if x satisfies the equation

1
H = E(x,n).

If X is a self-shrinker, then we call X, := /—t X (¢t < 0) a self-shrinker flow.
The main theorem of this paper is the following result.
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Theorem 1.2. Let x(1) : 2 — R3 (¢ € [0, T)) a closed smooth embedded mean curva-
ture flow with the first singular time T < +o00. If the mean curvature satisfies

forallt €[0,T), (1.3)

max |H|(p,1) <
DIy

for some A >0, then for any a,b € R with —oo < a < b < 0 and any sequence c; — +00
there exists a subsequence, still denoted by {c;}, such that the flow {Z],a <t < b}
defined by equation (1.2) converges smoothly to a self-shrinker flow with multiplicity one
as j — +oo.

It is not hard to see that Theorem 1.2 is equivalent to the following result.

Theorem 1.3. Let {(22,x(1)),0 <t < +00} be a closed smooth embedded rescaled

mean Curvatureﬂow
ox\* H—Lxn)n (1.4)
_ = — — —(x .
ot 2

d(2,,0) <D and n)ljax|H(p,l)|§A (1.5)
t

satisfying

for two constants D, A > 0. Then for any sequence t; — +00 there exists a subsequence
of {Z¢; 41, —1 <t < 1} such that it converges in smooth topology to a complete smooth
self-shrinker with multiplicity one as i — +o0.

In [46], we showed Theorem 1.3 under the assumption that the mean curvature decays
exponentially to zero. In this special case, the flow (1.4) converges smoothly to a plane
passing through the origin with multiplicity one. Theorem 1.3 means that under the as-
sumption that the mean curvature is bounded for all time the flow (1.4) also converges
smoothly to a self-shrinker with multiplicity one. In fact, Theorem 1.3 is not stated with
the optimal condition. Checking the proof carefully, one can see that the conclusion
of Theorem 1.3 still holds under the assumption that the mean curvature is uniformly
bounded on any ball for all time:

B |H|(p,t) < Ck, (1.6)
where Cg is a constant depending on R. Note that if the flow (1.4) converges smoothly
to a self-shrinker with multiplicity one, condition (1.6) automatically holds by the self-
shrinker equation. Thus, condition (1.6) is also necessary for the smooth convergence
of the flow (1.4). Therefore, the solution of the multiplicity-one conjecture, i.e., Conjec-
ture 1.1, is equivalent to the examination of (1.6), which will be an interesting subject of
study in the near future.

The multiplicity-one conjecture is closely related to the extension problem of mean
curvature flow. Huisken [35] proved that if the flow (1.1) develops a singularity at time
T < oo, then the second fundamental form will blow up at time 7. A natural question is
whether the mean curvature will blow up at the finite singular time of a mean curvature
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flow. Toward this question, A. Cooper [24] proved that |A|| H | must blow up at the sin-
gular time of the flow. In [44] Le and Sesum affirmatively answered this question under
the assumption that the multiplicity-one conjecture holds, or the condition that the second
fundamental form is of type-/ at the singular time

max |A] < forallt € [0, T). (1.7)

p _
Furthermore, Le and Sesum [45] proved that the mean curvature is at least of type-/ for
amean curvature flow satisfying (1.7). Using Theorem 1.2, we can remove the type-/ con-
dition (1.7) of Le—Sesum’s result as follows, which can also be viewed as an improvement
of the extension theorem in [46].

Corollary 1.4. If x(t) : 2 — R3 (t € [0, T)) is a closed smooth embedded mean cur-
vature flow with the first singular time T < 400, then there is a constant § > 0 such
that
limsup vT —eréax|H| >§ forallt €0, T).
t

t—>T

1.3. Outline of the proof

Now we sketch the proof of Theorem 1.3. Assume that the mean curvature satisfies the
type-I condition (1.3) along the flow (1.1) and the first singular time 7" < 4-occ. Then the
mean curvature is uniform bounded along the rescaled flow (1.4). We have to show that
the flow (1.4) converges smoothly to a self-shrinker with multiplicity one. The strategy is
similar to [46], we first show a weak-compactness theorem and obtain the flow conver-
gence is smooth away from a singular set. Then we use stability argument to remove the
singular set. However, the technique here is much more involved. The proof consists of
three steps:

Step 1. Convergence of the rescaled mean curvature flow with multiplicities. In this step,
since the mean curvature is uniformly bounded along the flow, we have the short-time
pseudolocality theorem and the energy concentration property, and we can follow the
arguments in [46] to develop the weak compactness theory of mean curvature flow. How-
ever, compared with [46], since the mean curvature does not decay to zero, we have the
following difficulties:

e No long time pseudolocality theorem.
o The space-time singularities in the limit do not move along straight lines.

Because of lacking these results, we face a number of new technical difficulties to show
the L-stability of the limit self-shrinker. These difficulties force us to use analysis tools
to study the asymptotical behavior of the solution of the limit parabolic equation near the
singular set.

Step 2. Show that the multiplicity of the convergence is one for one subsequence. As
in [46], it suffices to show that the limit self-shrinker is L-stable. By the convergence of
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the flow away from the singular set, if every limit has multiplicity greater than one, we can
renormalize the “height-difference” function to obtain a positive solution of the equation

) 1 1
a—lf = Aw— 2 {x. Vo) + [4Pw + Jw, (1.8)

away from the singular set. To show the L-stability of the limit self-shrinker, we have to
show the following two estimates:

e For each time, the asymptotical behavior of w is “good” near the singular set.
e Uniform L! norm of w independent of time.

By its construction, w is defined on any compact set away from the singular set and we
have no estimates near the singular set by the geometric method. However, we found that
w satisfies many good properties from the PDE point of view. In [42], Kan and Takahashi
studied similar problem for some semilinear parabolic equations along time-dependent
singularities in the Euclidean spaces. Kan and Takahashi showed their result for one time-
dependent singularity, and the solution of the equation looks like log% in dimension 2,
where r is the distance from any point x to the singularity. However, in our case the
solution of (1.8) may have multiple singularities, and these singularities may coincide at
one point. Thus, we cannot apply Kan—Takahashi’s result directly, and we need to develop
their techniques to show that the solution w is in L! across the singularities and near the
singular set the solution w roughly looks like

I
1
w(x,t) ~ Z ¢k (t) log m
k=1
where ry (x, t) denotes the intrinsic distance from a point x to a singularity & (¢) at time .
Here the constant ¢; may depend on ¢. In general, the L! norm of w may tend to infinity as
t — +o00. In order to show uniform L! norm of w, we refine the argument in [46] and also
use the estimate of w near the singularities to choose a sequence of time slices {¢; }, and
then we show that for such a special sequence the corresponding function w has uniform
L' bound independent of ¢. Thus, for the special sequence f;, the auxiliary function w
satisfies the two desired estimates. Then we can follow the argument in [46] to show that
the convergence of (1.4) is smooth and of multiplicity one, for the special sequence {t; }.

Step 3. Show the multiplicity-one convergence for each subsequence. This step is a new
difficulty beyond [46]. In [46], each limit, no matter what multiplicity it is, must be
a flat plane passing through the origin. Therefore, up to rotation, different limits can be
regarded as the same. By the monotonicity of the entropy, it is clear that if one limit is
a multiplicity-one plane, then each limit must also be a multiplicity-one plane. However,
in the current setting, each limit is only a self-shrinker and the limits may vary as the time
sequences change. A priori, it is possible that one sequence converge to a multiplicity-
one self-shrinker A, and the other sequence converge to a multiplicity two self-shrinker
B # A.This possibility cannot be ruled out by only using the monotonicity of the entropy.
To overcome this difficulty, we essentially use the smooth compactness theorem of self-
shrinkers by Colding and Minicozzi [20]. Since the limit self-shrinkers form a compact
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set, we know that the local behavior of limit self-shrinkers are very close to that of planes
on a fixed small scale. From this and the volume continuity, we derive an argument to
show that the multiplicity is independent of the choice of subsequences. Therefore, every
subsequence converges with multiplicity one.

It is interesting to know whether the above argument still works for the multiplicity-one
conjecture without the mean curvature bound assumption (1.3). The main difficulty is the
loss of pseudolocality result as in [46], since the points in the evolving surfaces may move
drastically if the mean curvature is large. Furthermore, the loss of mean curvature bound
also induces difficulties in applying PDE tools to analyze the singular set. However, as we
discussed around (1.6), it is also logically possible to develop estimate (1.6) directly.

1.4. Relation with other geometric flows

It is interesting to compare the mean curvature flow with the Ricci flow. The extension
problem for Ricci flow has been extensively studied recently. Corollary 1.4 has a cousin
theorem in the Ricci flow. In [54, Theorem 1], it was shown that along the Ricci flow
{(M,g(t)),0 <t < T} with the singular time 7" < 400, we have

m}&x [Ric|gq) > tel0,7T), (1.9)

]
N/
which extends the famous Ricci extension theorem of N. Sesum [51]. Up to rescaling, the
gap inequality (1.9) is equivalent to

max |Ric >4
i | |g(t) -

along the rescaled Ricci flow solution
d;g = —Ric+ g, te][0,00). (1.10)

Actually, we even believe that a gap for scalar curvature holds for a rescaled Ricci flow
solution. In other words, along the rescaled Ricci flow (1.10) we should have

mﬁx|R|g(t) > 6.

It is easy to see that the scalar extension conjecture of the Ricci flow will hold automati-
cally if one can prove the above inequality along the rescaled Ricci flow (1.10), just like
the extension theorem of mean curvature in [46] follows directly from Corollary 1.4.
The similarity between the regularity theory of rescaled mean curvature flow (1.4) and
the rescaled Ricci flow (1.10) was noticed for a while. For example, such similarity was
discussed in the introduction of [46]. Along the rescaled flows, the mean curvature bound
condition (1.5) is comparable to the scalar curvature bound condition |R| < C. Note
that the Fano Kihler—Ricci flow provides many examples of the global solutions of the
rescaled Ricci flow (1.10) and Perelman showed that |R| < C holds automatically. The
boundedness of the scalar curvature is crucial to study the convergence of Kahler—Ricci
flow to a limit flow (cf. [13, Theorem 1.5], with journal version [14] and [15]). For time-
slice convergence, see Tian and Zhang [53], Bamler [3] and Chen and Wang [11] for
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example. Since (1.5) is the comparable condition of Perelman’s estimates, we can view
Theorem 1.2 as the analogue of the convergence results in the Fano Kéhler—Ricci flow.
However, we have to confess that we do not know any non-trivial examples satisfying the
condition (1.5). By non-triviality we mean that the flow (1.4) is neither a self-shrinker nor
convex. It will be very interesting to find out such examples.

The rescaled mean curvature flow can also be compared with the Calabi flow. In [9]
E. Calabi studied the gradient flow of the L2 norm of the scalar curvature among Kihler
metrics in a fixed cohomology class on a compact Kihler manifold, which is now well
known as the Calabi flow. X. X. Chen conjectured that the Calabi flow always exists glob-
ally for any initial smooth Kéhler potential. Very recently, Chen and Cheng [10] proved
that the Calabi flow exists as long as the scalar curvature is uniformly bounded. Therefore,
to study the long time existence of Calabi flow, it is crucial to control the scalar curvature,
which is similar to the mean curvature condition (1.5) for the rescaled mean curvature
flow. Assuming the long time existence and the uniform boundedness of the scalar curva-
ture, the current authors and K. Zheng showed the convergence of the Calabi flow in [47],
just as Theorem 1.3 for rescaled mean curvature flow.

1.5. List of notations

In the following, we list the important notations in this paper.
e d(x,y): the Euclidean distance from x to y. Defined in Definition 2.7.
e B,(p): the open ball in R3 centered at p with radius r. Defined in Definition 2.1.

e dg(x,y): the intrinsic distance of (X, g) from x to y. First appears in the beginning
of Section 4.

e B,(p): the intrinsic geodesic ball in (X, g) centered at p with radius r. Defined in
Definition 2.1.

e C,(Br(p) N X): the connected component of B,(p) N X containing x € X. Defined
in Definition 2.1.

e wi(x,?): the multiplicity at (x, ). Defined in (2.14).

e S: the space-time singular set. Defined in Proposition 2.8.

o S, ={x € R3| (x,1) € §): the singular set at time 7. Defined in Proposition 2.8.
e £(t): a Lipschitz singular curve in §. First appears in Lemma 2.11.

e p:R* — R™: an increasing positive function. First appears in Definition 3.3.

e |Q]: the volume of a set Q C R3 with respect to the standard metric on R3. Defined
in Lemma 3.10.

o Q¢ gr(t): asubset of the limit self-shrinker away from singularities. Defined in (3.23).
e S;: the union of the singular set on a time interval /. Defined in (3.24).

e u;: the height difference function defined in (3.25).

e w;: the normalized difference function defined in (3.27).

e dp: the Hausdorff distance in the Euclidean space.
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e r(x,?): the intrinsic distance function from x to the singular curve &£(¢). Defined
in (4.21).

e 1 (x,1): the intrinsic distance function from x to the singular curve & (¢). Defined in
(3.88) and Theorem 4.2.

o F ,(k) (§) and Agk) (8, p): a subset around the singularities on the limit self-shrinker.
Defined in (3.98) and (3.99).

® My (o, E): asubset of a Riemannian manifold defined in Definition 4.1.

e [ 7: the union of space-time singular curves. Defined in (4.17) and (4.51).

e O, rand QA,,L;: the neighborhood of the singular curves. Defined in (4.18) and (4.51).

e ¢¢: cutoff functions around the singular curves. Defined in Definitions 4.7 and 4.12.

o /¢: afunctional associated with a singular curve £. Defined in Definition 4.12.

e 1(x,t) and v(x,): defined in Definition 4.12.

e H(z): a cutoff function defined in Definition 4.7. Note that the function H(z) is only

used in Section 4. Since the mean curvature does not appear in Section 4, we keep the
same notation H(z) as in [42].

1.6. The organization

The organization of this paper is as follows. In Section 2 we recall some facts on the
pseudolocality theorem and energy concentration property. Moreover, we will show the
weak compactness of mean curvature flow under some geometric conditions and we show
the multiplicity of the convergence is a constant. In Section 3 we show the rescaled mean
curvature flow with bounded mean curvature converges smoothly to a self-shrinker with
multiplicity one, under the assumption that the auxiliary function satisfies good growth
properties at the singular set. In Section 4 we will show the estimates of the auxiliary
function by developing Kan—Takahashi’s argument. Finally, we finish the proof of Theo-
rem 1.2 in Section 5. In the appendices, we include two versions of the parabolic Harnack
inequality and give the full details on the calculation of the linearized equation of rescaled
mean curvature flow.

2. Weak compactness of refined sequences

2.1. The pseudolocality theorem and energy concentration property
In this subsection, we recall some results in [46]. First, we have the following definition.

Definition 2.1. (1) We denote by B, (p) the ball in R”*! centered at p with radius r with
respect to the standard Euclidean metric, and B, (p) C (M, g) the intrinsic geodesic ball
on M centered at p with radius r with respect to the metric g.

(2) For any r > 0, p € R""! and =" C R"*!, we denote by Cx(B,(p) N X) the
connected component of B,(p) N X containing x € X.

We first recall the following result of Chen and Yin [16].
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Lemma 2.2 (cf. [16, Lemma 7.1]). Let £" C R"*! be properly embedded in By, (xo) for
some xXog € X with

1
|[Al(x) < —, x € By (xo)NZ.
ro
Let {x',...,x" "1} be the standard coordinates in R"T1. Assume that xg = 0 and the

tangent plane of ¥ at xq is x"T1 = 0. Then there is a map

. I 1 n
u.{x (x*,...,x") %

.
|x’|<—0}—>]R

with u(0) = 0 and |Vu|(0) = 0 such that the connected component containing xo of
T N{, x" ) e R" | x| < g2} can be written as a graph {(x, u(x")) | |x'| < &%
and 36
Vul() < 1.
To

Using Lemma 2.2, we show that the local area ratio of the surface is very close to 1.

Lemma 2.3 (cf. [46, Lemma 3.3]). Suppose that £" C By, (p) C R" "1 is a hypersurface
with 0% C 0By, (p) and

1
sup |[A] < —.
b)) o

For any § > 0, there is a constant py = po(ro,8) such that for any r € (0, pg) and any
X € Bry/2(p) N X we have

vols (Cx (B (x) N X)) <1

1-6<
w1

+6. 2.1)

Proof. By Lemma 2.2, for any x € By,/2(p) N X the component Cx (B, (x) N X) with
Po = 1% can be written as a graph of a function u over the tangent plane at x, which we
assume to be

P ={(x1.....%n Xnt1) € R"T | x4y =0},

with 7
[Vul|(x) < —[x],
ro

where x’ = (x1,...,x). Letr € (0, pp). Denote by 2, the projection of Cyx(B,(x) N X)
to the plane P. Then for any x’ € 92, we have

u(x)? +|x')? =r% (2.2)
On the other hand, for any x” € Q,, we have the inequality

72
lu(x")] < [u(0)| + max |Vu|@x')-|x'| < =|x"|*. (2.3)
tef0,1] Fo

Note that (2.2) and (2.3) imply that for any x” € 02,

5184
Ix'12 <r? =u@x)? + |x'|? < |x'|2(1 + > ,0(2,). (2.4)
0
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Thus, we have

Fo= #42 <I|x'|<r foralx’ € dQ,,
1+ 52 Po
which implies that
B:(x)N P C 2, C By(x)N P, 2.5)

Thus, the volume ratio of Cy (B, (x) N X) is bounded from above

I5(Cx(B,(x)N'Z 1
volz (Cx ( riX) ) _ n[ 1+ |Vul2dp
wut Wnr Qr
1
< / L+ [Vul? du
B, (x)NP

wWp "
5184

1+ 5 r2, (2.6)
Ty

where we used (2.3) and (2.5). Moreover, the volume ratio of Cy (B, (x) N X) is bounded
from below

volx (Cx(Br(x) N X)) = : / vV1+|Vul2dp
- Bi(x)NP

wpr" wuT"
_ 5184 ,\ 2
=z (1) @7

Combining (2.6) with (2.7), for any § > 0 we can choose pg = po(n, §, ro) further small
such that (2.1) holds. The lemma is proved. ]

Next we recall the two-sided pseudolocality theorem in [46]. If the initial hyper-
surface can be locally written as a graph of a single-valued function, then we have the
pseudolocality type results of the mean curvature flow by Ecker and Huisken [26, 27],
M.T. Wang [56], Chen and Yin [16] and Brendle and Huisken [8]. However, in our
case we have to apply the pseudolocality theorem for the hypersurfaces which may con-
verge with multiplicities. Thus, we use the boundedness of the mean curvature to get the
two-sided pseudolocality theorem in [46].

Theorem 2.4 (Two-sided pseudolocality, cf. [46]). For any ro € (0,1], A, T > 0, there
existn =n(n,N),e = e(n,A) > 0 satisfying

lim n(n, A) =1no(n) >0, lim €(n, A) = eo(n) >0

and the following properties. Let {(X",x(t)), —T <t < T} be a closed smooth embedded
mean curvature flow (1.1). Assume that

(1) the second fundamental form satisfies | A|(x,0) < riofor any x € Cpy(Br,(po) N Xo)
where po = Xo(p) for some p € %,

(2) the mean curvature of {(X",%x;), =T <t < T} is bounded by A.
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Then for any (x,t) satisfying

_ g nrg
2(A + A2)" 2(A + A?)

x€Cp (S NBy1, (po), 1€ [

16

i| N[-T,T],
where p; = X;(p), we have the estimate
1
|Al(x, 1) = —.
€rg

Using the pseudolocality theorem, we have the energy concentration property.

Lemma 2.5 (Energy concentration, cf. [46]). For any A, K,T > 0, there exists a con-
stant €(n, A, K, T) > 0 with the following property. Let {(X",x(t)),—T <t < T} be
a closed smooth embedded mean curvature flow (1.1). Assume that

max |H|(p,t) < A.
)Z],x[—T,T]| [(p,1) <

Then we have
/ |A|" dpo > e(n, A, K, T)
ZoNB,—1(q)

whenever q € %o with Q := |A|(¢q,0) > K.

A direct corollary of Lemma 2.5 is the following e-regularity of the mean curvature
flow, which can be viewed as a generalization of the result of Choi and Schoen [17].

Corollary 2.6 (e-regularity, cf. [46]). There exists €o(n) > 0 satisfying the following
property. Let {(X",x(t)), —1 <t < 1} be a closed smooth embedded mean curvature flow
(1.1). Suppose that the mean curvature satisfies

max |H|(p,t) <1.
pmax [H|(p.1) <

/ AT duo < eo(n)
2oNBr(q)

for some r > 0, then we have

Forany q € Xy, if

2
max  |A] §max{1,—}.
B%(q)ﬂZO r

2.2. Weak compactness

As in [46], we use the pseudolocality theorem and the energy concentration property
to develop the weak compactness of the mean curvature flow. Here we will replace the
zero mean curvature condition in [46] by the boundedness of the mean curvature in the
definition of refined sequences. By “refined” we mean that the sequence is taken after
a point-selecting process such that many good properties already hold for the objects in
this sequence. The name of refined sequence originates from [12].



On [lmanen’s multiplicity-one conjecture 49

Definition 2.7 (Refined sequences). Let {(Zl-z,x,- (¢)),—1 <t < 1} be a one-parameter

family of closed smooth embedded surfaces satisfying the mean curvature flow equa-

tion (1.1). It is called a refined sequence if the following properties are satisfied for

every i:

(1) There exists a constant D > 0 such that d(%;,,0) < D for any ¢ € (—1, 1), where
d (X, 0) denotes the Euclidean distance from the point 0 € R3 to the surface ¥ C R3
and X;; = x; (1)(%)).

(2) There is a uniform constant A > 0 such that

H|(p,t) < A. 2.8
z,-,,ril?_xl,lﬂ I(p.1) = (2.8)

(3) There exists an increasing positive function p : R™ — R™ such that for any R > 0,
/ |A|1>du;; < p(R) forallt € (—1,1). (2.9)
Z; ;NBR(0)

(4) There is uniform N > 0 such that for all » > 0 and p € R3 we have
Areag,; (1) (Br(p) N Ziy) < Nrr? forallt € (—1,1). (2.10)

(5) There exist uniform constants 7, k¥ > 0 such that for any r € (0,7] and any p € ¥; ;
we have
Areag, 1y (Br(p) N i) > kr? forallt € (—1,1). (2.11)

(6) There exists 7" > 1 such that

lim dt e 4(T o)
i—>4o00 Tis

Following the arguments as in minimal surfaces (cf. White [57], or Colding and
Minicozzi [18]), we have the weak compactness for mean curvature flow.

2
(X,’,ll) d/l,,"t =0.

1
Hi 2T —1)

Proposition 2.8. Let {(£2,x;(t)),—1 <t < 1} be a refined sequence. Then there exists
a subsequence, still denoted by {(El-z,xi (1)),—1 <t < 1}, a smooth self-shrinker flow
{(Zo0, X0 (1)), —1 < t < 1} satisfying

1
H=—— ,n), 2.12
2T —1) (X00, 1) ( )
for some T > 1, and a space-time singular set § = {(x,t) | t € (=1,1), x € R3} satis-
fying the following properties:
(1) The sequence {(Eiz,xi (1)),—1 <t < 1} converges locally smoothly, possibly with
multiplicity at most Ny, t0 {(Zeo, Xeo(t)), —1 <t < 1} away from §S.
(2) Foreach timet € (—1,1) the singular set S; = {x € R3 | (x,t) € 8} is locally finite
in the sense that #{8; N Br(0)} is uniformly bounded by a number depending only
on p(R).
(3) The sequence in (1) also converges in extrinsic Hausdorff distance.
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Proof. We first show that after taking a subsequence if necessary, X; o converges locally
smoothly to X0 away from a locally finite set So. To this end, fix large R > 0 and
let @ = Bgr(0) C R3. By property (1) in Definition 2.7, we have %; , N Q # @ for large
R >0andanyt € (—1,1). Forany U C 2, we define the measures v; by

v (U) = /U P o < o).
N o

where we used (2.9) in the inequality. The general compactness of Radon measures
implies that there is a subsequence, which we still denote by v;, converges weakly to
a Radon measure v with v(2) < p(R). We define the set

So={xeQ|v(x)> e},

where € is the constant in Corollary 2.6. It follows that the set Sy contains at most %f)
points. Given any point y € Q\S§y, there exists some s > 0 such that Bjos(y) C € and
V(B1os(y)) < €. Since v; — v, for i sufficiently large we have

/ AP diig < co.
Bios(¥)NZ; o

Corollary 2.6 implies that for i sufficiently large we have the estimate

1
max_ |A|(x,0) §max{1,—}.
Bs;(y)NZ; o 5s

By Theorem 2.4 and (2.8) , there exists € = €(s,n) > 0 such that

1
max _ |A|(x,t) < — forallt € [—erZ, erd), (2.13)
Bery )NS1, €ro 0°m0

where ro = 5s. Therefore, for large i we have all higher order estimates of the second fun-
damental form at any point in X; 0\ B2r,(So), where B, (So) = {x € R3 | d(x, o) <r}.
Using a diagonal sequence argument and taking s — 0, we can show that a subsequence
of X; o converges in smooth topology, possibly with multiplicities, to a limit surface ¥ o
away from the singular set Sg. Properties (2.10)—(2.11) imply that the multiplicity of the
convergence is bounded by a constant Ny.

Note that by (2.13) the second fundamental form is uniformly bounded for any point
(x,1) € (i \B2r(80)) x ([—€rg,erd] N (—1,1)). By compactness of mean curvature
flow (cf. [46, Theorem 2.6]), the flow {Z;;\B2r,(S0).7 € (—erg,erd) N (=1, 1)} con-
verges smoothly to a limit flow {Z e ¢\ B2, (S0), 7 € (—€rg, erd) N (-1, 1)} and by prop-
erty (6) in Definition 2.7 Y ;\Bar,(So) satisfies the self-shrinker equation (2.12) for
te (—erg,erg) N (—1,1)}. We can also replace t = 0 by any other #5 € (—1,1) and
the above argument still works for the time interval (—erg + to, erg +1t0) N (—1,1).
Since rg = 5s > 0 is arbitrary small, by using a diagonal sequence argument and tak-
ing s — 0 we have that {(El.z,xl- (t)),—1 <t < 1} converges locally smoothly to the
flow {(X oo, Xoo(?)), —1 <t < 1} away from § and X satisfies equation (2.12). Note
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that X is a self-shrinker in R? and it can be viewed as a minimal surface in (R3, g;;)
with

lx|2

gij =e 8.
Thus, we can follow the argument in minimal surfaces (cf. White [57], or Colding and

Minicozzi [18]) to show that ¥, ; U §; is smooth and embedded and X; ; converges to
Y oo,+ in Hausdorff distance. The proposition is proved. ]

As in [46], we show that the multiplicity in Proposition 2.8 is constant. To study the
multiplicity, we define a function

O(x,r.1) = 1i21 reag,; ;) ( l,; (%))
1o r

forall (x,1) € oo x (—1,1).

Then the multiplicity at (x,7) € Yoo X (—1, 1) is defined by
m(x,t) ;= lin}) O(x,r,t). (2.14)
r—

It is clear that mi(x,?) is an integer. In the following result, we show that m(x,?) is
independent of x and 7. Note that in [46, Lemma 3.14] we proved the same result under
the assumption that the mean curvature decays exponentially to zero. The first two steps
of the proof here are similar to that of [46] while the third step is different. We give all the
details for completeness.

Lemma 2.9. Under the assumption of Proposition 2.8, the function w(x,t) is a constant
integer on Yoo X (—1, 1). Namely, m(x,t) is independent of x and t.
Proof. The proof can be divided into three steps.
Step 1. For each t € (—1,1), m(x,t) is constant on ¥, ;\S;. Fix typ € (=1,1),R >0
and xg € (X010 N Br(0))\S4,. There exists ro > 0 such that for large i,

1

|A|(x,10) < — forall x € By (x0) N Zoo - (2.15)
To

By Lemma 2.2, we can assume ro small such that B, (xo) N Yoz, can be written as
a graph over the tangent plane of X s, at xo. Since xo is regular, we have d(xg, Sz,) > 0.
Letr; = i min{ro, d(xo, $,)}. Forany p € B, (x0) N %, s, we have B, (p) C By,(xo).
Thus, (2.15) implies that for large i,

1
|[A|(x,20) < — forallx € By, (p) N X, 4.
r
By Lemma 2.3, for any § > 0 there exists pg = po(r1,6) € (0, ;ﬁ) such that for any

r € (0, po) and any p € B, 2(x0) N X; 4, we have

_ Areag, 10) (Cp(Br(p) N Zigy))

1-6
wr?

<1+36. (2.16)

Suppose that B, (xg) N X;,, has m; connected components, where m; is an integer
bounded by a constant independent of i by Proposition 2.8. After taking a subsequence
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of {Z;s,} if necessary, we can assume that m; are the same integer denoted by m with
m > 1. Forany x € B, /2(xg) N Loz, We denote by oy the normal line passing through
x of Yo, Since each component of By, (xo) N X; 4, converges to By (xo) N Yooz
smoothly and B, (x9) N X, is a graph over the tangent plane of Yz, at xo, ox
intersects transversally each component of %; ;, at exactly one point. Suppose that

@ N (Byy (x0) N Sige) = {p{. p? o p™).

Then (2.16) implies that for any integer j with 1 < j < m and any r € (0, po),

Areagi (IO)(Cpgj)(Br(p[(j)) N i)
r

After shrinking rg if necessary, we can assume that B, (x) N X 4, has only one com-
ponent for any r € (0, l) and any x € By j2(x0) N EOO,O Since for any 1 < j <m
and r € (0, pg) we have p ) 5 xand C ) (Br (p( ) N X;4,) converges smoothly to
Br(x) N ooy asi — 400, (2.17) 1mphes that

Areag, (to)(Br(x) N X4 1)

t—>+oo mr2

m(1—§) <

<m(1+3$).

In other words, for any x € By, /2(X0) N Xco,4, and any r € (0, pg) we have
m(l —38) < O(x,r,tg) <m(l +6). (2.18)
Taking r — 0in (2.18), we have
m(x,t9) =m forall x € By /2(x0) N Zoozq-

By the connectedness of o 1, \S1,, We know that m(x, #o) is constant on Xog 1, \ S, -

Step 2. For eacht € (—1,1), m(x,t) is constant on Y. Fix to € (—1,1). It suffices to
consider a singular point pg € S;,. Suppose that B, (po) N X s, has no other singular
points except po for any r € (0,r¢). Then all points in (B, (po)\Be(po)) N Loo,s, are
regular and (B, (po)\Be(po)) N Z; s, has m connected components. Thus, we have

Areag[(to)(zi,to N Br(po)) < Areay, (fo)(zi,to N (Br(po)\Be(po)))
+ Areag, () (Zitg N Be(po))
= Areagi (Zo)(zi,to N (Br (po)\Bé(pO))) + N€2 (219)

and used (2.10) in the last inequality. Since each component of %; 5, N (B, (po)\ Be(po))
converges to (B;(po)\Be(po)) N X smoothly, we have

lim _Areag; 1) (Ziro N (Br(po)\Be(po)))

i—>+

= m Areag (1) (Zoo,ty N (Br(po)\Be(po)))- (2.20)

Note that m is also the multiplicity at each regular point in X, s, by Step 1. Combining
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estimates (2.19) with (2.20), we have
m Areag (1) (Zoo,to N (Br(po)\Be(po)))
= i—leoo Areag, (1) (Zi iy N Br(po))
< m Areag, (1) (Zoo,ro N (Br(po)\Be(po))) + Ne?. (2.21)
Taking € — 01in (2.21), we have

h-lr{loo Areagi (Zo)(zi,to N Br(pO)) =m Areagoo(to)(Eoo,t() n Br(pO))

i—
Thus, we have

Areag, (to)(zi,to N Br(po))

m(po,to) = rlig})

wr?
— m lim Areagoo(l‘o)(zoo,l‘o N Br(po)) —m
r—0 wr?

This implies that the multiplicity of each singular point is the same as that of any regular
point.

Step 3. The function wi(x,t) is constant in t. Fix any ty € (—1, 1), radius R > 0 and
X0 € (Xoo,50 N Br(0))\S4,. There exists ro > 0 such that for large 7,

1
|A]|(x,t9) < a forall x € By, (x0) N Xoo,zs (2.22)

and for any radius r € (0, rp) the surface B,(xo) N X oo, has only one component. Let
mo = m(xg,%) and r| = %min{ro,d(xo, Sty)} > 0. For large i, By, (xo) N Zjy, has
mg connected components, which we denote by €2; 1, ..., ; »,. Since for each integer
k € [1,my] the component 2; ; converges smoothly to X s, N By, (Xp) as i — 400,
similar to Step 1, we can find x; x € €2; such that lim; 1o d(x; g, Xo) = 0. By the
choice of r1, we have

By (xi k) C Bry(xo). (2.23)
Thus, (2.22) implies that for any integer k € [1,m¢] and large i,
1
|[A|(x,t0) < — forallx € Cx, , (Br, (xix) N Zi ). (2.24)
ry ’

By Lemma 2.3, for any § > 0 there exists pg = po(r1,8) € (0, 2L) such that for any
r € (0, pp) we have

s< Areag; , (Cx; , (Br(xik) N Zizy))

g <1+ (2.25)
r

Note that by (2.23) and the definition of €2; ¢, for any large i we have
Cx; x (Bapy (xi k) N Tigy) # Cx, . (Bapy(Xikr) N Ziyy) forallk #k'.  (2.26)
Using (2.24) and the assumption that maxy, , | H| < A by (2.8), Theorem 2.4 implies that
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there exists 7(A) and €(A) > 0 such that
1
[A|(x,1) < o forall x € Cxl._k.t(Bl%r] (Xig) NEip), t€lto— nrlz,to + nrlz],
1
where x; ¢ ; = x,(x;)1 (xi x)). Similar to (2.25), there exists p; = p1(r1,6) € (0, f—g) such
that for any r € (0, p1) we have

< Areagi’[ (Cxi.k,z (Br(xi,k,t) N X))

1-6 .

<1468, telto—nrito+nr?]. 227
wr

We show that we can choose p; and T = 7(ro,8, A) € (0, nr#] small such that for
any k # k’,

Cxi,k_[ (Bm (xi,k,t) N Ei,t) # Cx,-.kfj (Bp1 (xi,k/,t) n Ei,t)s re [[0 — T, 0y + T]' (228)

Suppose not, we can find 7o € (0, nr?], a continuous curve y, (s) (s € [0, 1]) connecting
Xik,to+70 and Xi k' to+70 with

Yo C B,O] (xi,k,t()+‘r()) N Zi,t()+‘ro, Yo C Bp1 (xi,k’,t()-‘r‘r()) N Zi,t()-i-‘ro' (229)

Let y, = xt0+,(x;)1+10 (Yxo))- Then yo(s)(s € [0, 1]) is a curve connecting x;  and x; g.
Since the mean curvature satisfies maxy, , [H| < A, we have

Ix(p.1) —x(q.0)| = [x(p,s) —x(q.5)| + 2A[t —5]. (2.30)
For small g, (2.30) with (2.29) implies that
Yo C Bpo(Xik) N Zirgs Voo € Bpo(Xik) N Zi g

which contradicts (2.26). Therefore, (2.28) holds.

Since x; ¢ € By, (xo) and the mean curvature is uniformly bounded, it follows that the
point x; i, lies in a bounded domain for any ¢ € [to — 7, fp + t]. Thus, for each integer
k € [1,mo] and any ¢ € [tg — 7, + 7] a subsequence of Cy, , , (Bp, (xjk,) N Zj,) con-
verges to Cy, (Bp, (x;) N Teo,r) smoothly, where x; € Yoo, is a limit point of {x;  /}72 ;.
Then (2.27) and (2.28) imply that for any r € (0, p1) and ¢ € [ty — 7,9 + t] we have

Areagi(t)(Br(xi,t) N >~ lim Areag,—(t)(cxi_, (Br(xir) N X))

i
i 150 r? T it wr?
> mo(1 —§).
Thus, we have
m(xs, 1) > mo = m(xg, tp) forallt € [ty — 1,19 + 7]. (2.31)

By Step 2, (2.31) implies that for any x € Yoo ; and y € X0z, We have
m(x,t) > wm(y,tp) forallt € [ty — 7,10 + 7]

Thus, the multiplicity mi(x,?) is a constant independent of x and . The lemma is thus
proved. ]
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To characterize the singular and regular points in X, ;, we have the following result.

Lemma 2.10. The same assumption as in Proposition 2.8. Fix any to € (—1,1) and any
5,R>0.

(1) If xo € (Zoo,t0 N Br(0)\Ss, and x; € X, with x; — Xo, there exists a positive
number v’ = 1'(8, oo ,9. R, X0, S1,) such that for any r € (0,1") we have
|8 < lim 2re2a0)(Cxi (Br(xi) N Zis))
T i—>+oo wr?
(2) If xo € 81y, N Br(0), there exist 1’ = 1'(8, Zoo,ry» R, A, X0, S1,) > 0 and a sequence

Xi € Xz, With X; — xo such that for any r € (0,r') we have

i Areag, (1)) (Cx; (Br (x;) N Zi 1)) .
i—>+00 nr? B

<143 (2.32)

2(1-6).

Proof. (1) Since X, is a smooth self-shrinker, there exists ro = r9(Zoo,z0, R) > 0such
that for large i we have

1
|[Al(x,t9) < — forall x € Byy(x0) N Zoo -
ro
Since §y, is locally finite and xg € (Zoo,s0 N Br(0))\Sy,, the distance from xg to S,
satisfies d(xo, Sz,) > 0. Letr; = % min{rg, d(xo, $s,)}. Then for large i, we have
1
|[A|(x,20) < — forallx € By, (x;) N Zj 4.
r
By Lemma 2.3, for any § > 0 there exists r’ = p(8, r1) > 0 such that for any r € (0,r’)
the area ratio of Cy; (B, (x;) N X; 4,) is given by

1-8 < Areaguo (C)Cj (Br(xi) n 2i,l‘o)) < 1+ 5

wr?
Thus, (2.32) holds.
(2) Let x9 € 84, N Br(0) and ro = ro(Xc0,19- R, X0, Sz,) > 0 such that the surface
Y oo,10 N Bary(xo) has only one component and no other singular points except xo. Let

0, := max |A| = +o0.
BrO(XO)mE

ity

Then Q; is achieved by some point x; € B,,(xo) N X, s, with x; — xo. As in Step 2 of
the proof of Lemma 2.9, for any r € (0, o) we have

lim Areag, (1) (Cx; (Br (xi) N Xj 1)) _ mAreagoo(to) (Br(x0) N oo zy)
i—>4+00 7T7'2 JTI"2

. (2.33)

where m is a positive integer. Note that Lemma 2.3 implies that for any § > 0 there exists
ry =14(8, oo ry» R, X0, S1y) € (0. rp) such that

Areagcx}(t()) (Br (XO) N Eoo,to)
r?

<1468 forallr € (0,rg). (2.34)
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Assume that m = 1. Then (2.34) and (2.33) imply that for large 7,
Areag, (1) (Cx; (Br(xi) N i)

7r'?
We choose 1’ = r'(8, oo sy, R, A, X0, S1,) € (0, ) small such that

<1428 forallr € (0,rg). (2.35)

(1 +28)e™ <1+ 36.
Since the mean curvature satisfies maxy; ,x(—1,1) |H| < A, by [46, Lemma 3.5] for any
r € (0,r") we have

Areagi (t0) (Cx,- (Br (xi) n Ei,to)) < eAr/ Areagi (t0) (Cxl- (Br’ (xi) N Ei,to))
= 2

nr? nr
<1+ 34, (2.36)

where we used (2.35). We rescale the surface by
Sis = Qi (S 1402 — 1) foralls € (=(1 +10)07. (1= 10) Q7).
Then {f]i,s, —1 < § < 1} is a sequence of mean curvature flow with

max |H| < Ql-_lA — 0.
i gx(=1,1)

By the choice of Q; we have

sup |A] < 1.
Co(Ei.oﬂB%Ql_ro(O))

By [46, Theorem 3.8], there exists a universal constant € such that

1
sup |A| < - foralls € (—1,1).
Co(ZisNB) ., (0) €
1¥<i70

Thus, by the compactness of mean curvature flow (cf. [46, Theorem 2.6]) the surface
Co(ii,o N Bg,ry/2(0)) converges in smooth topology to a complete smooth minimal
surface X4, with
sup |A| <1, |A|(0) =1. (2.37)
EOO
Since (2.36) implies that

Areag, 0)(Co(Br(0) N Z;0))

> <1438 forallr €(0,Q;r),
nr

we have .
Areag_ (0)(Co(Br(0) N Xoo))
wr?
By [46, Lemma 3.6], there exists a universal constant 6y > 0 such that if we choose
5= 870, then o, must be a plane, which contradicts (2.37).

<1435 forallr > 0.
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Therefore, m > 21in (2.33) forany r € (0, ), where r’ = r'(8, Zoo 19, R, A, X0, St,)-
By Lemma 2.3 we can find r1 = r1(8, ooz, R. A, X0, Sy,) € (0,7) such that for any
r € (0,r),

Areagoo(to)(Br(XO) N Eoo,to) >1
wr? -
Since m > 2, for any r € (0, r1) we have

Areag,'(t())(cx,' (Br(xi) n Ei,to)) _ mAreagoo(t())(Br (X()) N Eoo,to)
i—>+00 wr? wr?

— 4.

>2(1 —9).
The lemma is proved. ]

Using the boundedness of the mean curvature and Lemma 2.10, we show that the
singular set § consists of locally finitely many Lipschitz curves.

Lemma 2.11. Fix large R > 0. Under the assumption of Proposition 2.8, the singular
set § is the union of locally finitely many space-time singular curves, i.e.,

I
$ N (Br(0) x (=1, 1)) = [ J{& (1), 1) | 1 € (=1,1), & () € Br(0) N S1},

k=1
where S, is defined in Proposition 2.8 and {&;, (l)}fc=1 are N'-Lipschitz curves, i.e.,
6c(t) — & ()] < Nty — 12| forallty, 12 € (=1,1).
Here A’ depends only on the constant A in (2.8).
Proof. For any t; € (—1,1) and any point p;, € §;; N Br(0), we show that there exists
a Lipschitz curve in § passing through py, . Since py, is singular, by Lemma 2.10 we can

find a sequence of points p;;, € ;s and ' = r'(Zeo sy R, A, pr;, St,) > 0 such that
Dit; — P, and for any r € (0, 1),

Area(C,. . (B,(p; N X;
lim ( Pz,tl( r(pl,tl) z,tl)) Z z (2.38)
i—+o00 wr? 4
We choose 19 > 0 and My = 200 such that
-2
28014 2} 58 poAne < 2.39
e ( + M, =5 oo <T1. (2.39)

Let 1, € (t; — 1o, t1 + o) N (—=1,1) and r; = MoAl|ty — t1]. Then ry < MoAno <r1'.
By [46, Lemma 3.4] we have

Area(cpi.t2 (Brz (pi,tz) N Ei,tz))
2

Try
-2 . .
2 e_Aztz_tll(l + %“2 _ [1|) Area(cp,’vtl (Br1 (fl,tl) N El,tl))
r Try

-2 . .
2 e_Azno (1 + 2 ) Area(cpi,tl (Br1 (pl,tl) N Z:l,tl)) (240)

M, 7T7’12 ’
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where r; = ri + 2A|t; — t1]. Combining (2.38)—(2.40), we have

Area(cpj,tz (Brz (pi,tz) N 2l',tz))

lim >

i—>+o0 Try
where p;: = X (thll (pi,;))- Since the mean curvature is uniformly bounded along
the flow, all points {p;,}72, lie in a bounded ball centered at p;,. Thus, we can find
a subsequence of {p; s, }72 such that it converges to a point, which we denoted by py,.
Since Cpl._t2 (Br,(pi,) N Zjt,) converges locally smoothly to By, (ps,) N Xoo s, away

from singularities, by Step 2 of Lemma 2.9 we have

Area(Cp, ., (Bry(Pi,) N Zigy)) Area(Br, (pi) N Toory)
2 - 2 ’

3
> =, 241
z 3 (2.41)

lim

(2.42)
i—+o00 Trp

JTryp
where m € N. Note that Br(0) N £, has bounded geometry for any ¢ € (—1,1), we

can find a uniform 5 > 0 such that for any (p,?) € (Zoo, N Br(0)) x (—1, 1) and any
r € (0,r}),

Area(B nx 5
r€a(B, (p) N Toor) _ 5 043
wr? 4
Moreover, we can choose 79 small such that
r,=r1 + 2A|[2 — tl| = (Mo + 2)A|[2 — [1| < (MO + 2)A7’}0 < ré. (2.44)

Combining (2.41)—(2.44), we have m > 2 in (2.42). Thus, Cpm2 (Br,(piy) N Zjy,) con-
verges locally smoothly to B, (ps,) N Yo, With multiplicity m > 2. This implies that
By, (p1,) N Xoo,s, contains a singular point, which we denoted by ¢;,. Here we used the
fact that if By, (ps,) N Too,r, contains no singular points, then Cp, . (Br, (Pii;) N Ziz,)
will converge smoothly to By, (ps,) N Lo s, With multiplicity one.

Note that ,

2
pia = pial = [ 1H1d1 < Al -l
n

Taking the limit i — +o00 we have

[Pty — Poo| < Alty — 12].
Thus, for any fr € (ll —no, 1 + ;70) al (_1’ 1) we have

|96, — Pty < |91, — Pry| + Pty — Pry| S 12+ Altn — 12| < (Mo + 3)Alty — 12].

Therefore, p;, liesina A’-Lipschitz curve in § with A’ = 203A.. Since forany ¢t € (—1, 1)
the set §; is locally finite by Proposition 2.8, the singular curves are locally finite. The
lemma is proved. L]

3. The rescaled mean curvature flow

In this section, we will show the smooth convergence of rescaled mean curvature flow
under uniform mean curvature bound. As is pointed out in the introduction, we have
no long-time pseudolocality of the flow and the singularities do not move along straight
lines. When the multiplicity of the convergence is greater than one, in order to show the
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L-stability of the limit self-shrinker we need an estimate on the asymptotical behavior
of the positive solution near the singular set (cf. Lemma 3.21 and Lemma 3.28), and the
proof of this estimate will be delayed to Section 4.

Theorem 3.1. Let {(22,x(t)),0 <t < 400} be a closed smooth embedded rescaled
mean curvature flow
ax\* 1

d(£,.0) <D and max|H(p.0)| <A (3.2)
t

satisfying

for two constants D, A > 0. Then for any sequence t; — +00 there exists a subsequence
of {Z¢; 41, —1 <t < 1} such that it converges in smooth topology to a complete smooth
self-shrinker with multiplicity one as i — +o0.

We sketch the proof of Theorem 3.1. First, we show the weak compactness for any
sequence of the rescaled mean curvature flow in Lemma 3.4. Suppose that the multiplic-
ity is at least two. By using the decomposition of spaces (cf. Definition 3.5) we can select
a special sequence {t;} in Lemma 3.13 for each € > 0. This special sequence is needed
to control the upper bound of the function w; away from the singular set by using the
parabolic Harnack inequality (cf. Lemma 3.16). Then we can take the limit for the func-
tion w; and obtain a positive function w with uniform bounds on any compact set away
from the singular set (cf. Lemma 3.17). The function w satisfies the linearized mean cur-
vature flow equation. To study the growth behavior of w near the singular set, we take
a sequence of €; — 0 and for each €; we repeat the above process to get a sequence of
functions {w; x}7— . After choosing a diagonal sequence and taking the limit, we get
a function w with good growth estimates near the singular set (cf. Proposition 3.23) by
assuming Theorem 4.2 in the next section. The bounds of w imply the L-stability of the
limit self-shrinker (cf. Lemma 3.25), and this step also relies on Theorem 4.2. However,
the limit self-shrinker is not L-stable by Colding—Minicozzi’s theorem (cf. Theorem 3.7)
and we obtain a contradiction.

3.1. Convergence away from singularities

We recall Ilmanen’s local Gauss—Bonnet formula in [40] to control the L2 norm of the
second fundamental form. Let ¥ be a smooth surface with smooth boundary 9%. We
denote by e(X) the genus of ¥ which is the genus of the closed surface obtained by
capping off the boundary components of ¥ by disks.

Lemma 3.2 (cf. Ilmanen [40]). Let R > 1 and let ¥ be a surface properly immersed
in BR(p). Then for any € > 0 we have

(1—¢) |A|2dus/ |H|? du + 87e(S 1 Br(p))
TNB(p) ZNBR

247 R? Area(T N By (p))
sup :
€(R—1)? .c[1,R] mr?
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For simplicity, we introduce the following definition.

Definition 3.3. Let p : Rt — R be an increasing positive function. For any N > 0, we
denote by € (N, p) the space of all smooth embedded self-shrinkers 2 C R3 satisfying
the properties that for any r > 0 and p € %,

f |A]?> < p(r) and Area(B,(p)NX) < aNr.
XNB;(0)

We note that the space €(N, p) is compact in the smooth topology by Colding and
Minicozzi [20], and the distance from the origin to any self-shrinker in R3 is at most 2 by
avoidance principle (cf. [25, Corollary 3.6]). The total curvature bound in Definition 3.3
can also be derived from genus bound by exploiting Lemma 3.2.

The following result shows that the rescaled mean curvature flow converges locally
smoothly to a self-shrinker away from singularities.

Lemma 3.4. Under the assumption of Theorem 3.1, for any sequence t; — +00, there is
a smooth self-shrinker Yo, € €(N, p) and a space-time set § C Yoo X R satisfying the
following properties:

(1) Forany T > 1, there is a subsequence, still denoted by {t;}, such that the sequence
{2444, —T <t < T} converges in smooth topology, possibly with multiplicities, to
Yoo away from §.

(2) For any R >0, § N (BRr(0) x (=T, T)) consists of finite many o-Lipschitz curves
with Lipschitz constant o depending only on A, T and R.

(3) The convergence in part (1) is also in (extrinsic) Hausdorff distance.

(4) The limit self-shrinker X~ is independent of the choice of T. In other words, for dif-
ferent T we can choose two different subsequences of {t; } such that the corresponding
flows in part (1) have the same limit self-shrinker X .

Proof. We divide the proof into the following steps.

Step 1. The area ratio along the flow (3.1) is uniformly bounded from above. In fact, we
rescale the flow (3.1) by

s=1—e"", ﬁ)s = V1 —=5X_j051-9)
such that {ﬁ?s,O < s < 1} is a mean curvature flow satisfying equation (1.1). By [19,

Lemma 2.9] and [46, Lemma 2.3], we have that the area ratio of (3.1) is uniformly
bounded from above.

Step 2. For any large radius R, the energy of ¥, N Br(0) is uniformly bounded along the
flow (3.1). In fact, by Lemma 3.2 we have

/ AP duy < 2/ \HI2 djts + C(N, e(S))
2:NBR(0) 2:NB2r(0)

<8nNA*R? + C(N,e(X)), (3.3)

where N denotes the upper bound of the area ratio. Therefore, for any ¢ > 0 the energy
of ¥; N Br(0) is bounded by a constant C(N, A, R, e(X)).
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Step 3. For each sequence t; — +00, we obtain a refined sequence converging to a limit
self-shrinker. For any sequence t; — 400, we rescale the flow X; by

s=1- e_(t_ti), i:i,s =V1l—s Et,~—log(1—x) (3.4)
such that for each i the flow {f),-,s, 1 —e'i <s < 1}is a mean curvature flow satisfying
(1.1) with the following properties:

(a) For any small A > 0, the mean curvature of f)i,s satisfies

~ ~ A
max |Hi|(p,s) < A :=—.
5 sx[1—eli ,1-A] l \/X

(b) For any large R, the energy of i,-’S N Br(0) is uniformly bounded.
(c) The area ratio is uniformly bounded from above.
(d) The area ratio is uniformly bounded from below.
(e) There exists a constant D’ > 0 such that d (ii,s, 0) < D’ forany i.
(f) We have

-~ (%m)

1-A
lim dt/ e 4(1 a>
i—>-+o00 2(1 —S)

In fact, property (a) and (e) follow from the assumption (3.2), and property (b) follows
from (3.3). Property (c) follows from Step 1, and property (d) follows from [46, Lem-
ma 3.5]. To prove property (f), by Huisken’s monotonicity formula along the rescaled
mean curvature flow (3.1) we have

d e_# dus = / e_#
dt Et ! Et

This implies that
ook
Xy

Let 7, A > 0 with =T < 1 — A. For any ¢; — 400, we have

ti—log A 12
lim dt / e 4
1i—=>+00 Jt; —log(1+T) =

Then (3.5) follows from equations (3.4) and (3.6). Therefore, by Definition 2.7 for any

T >0, small A > 0 and any so € [-T + 1, —A] the sequence {fJ,-,sOH,—l <t <l}is

a refined sequence. By Proposition 2.8 and Lemma 2.11, we have that a subsequence

of {f]l s»—T <s <1— A} converges in smooth topology, possibly with multiplicities,

to a self-shrinker flow {Zoo s,—T <s <1—A} away from a space-time, A’-Lipschitz
singular set S with A’ = 203A.

2
djiis = 0. (3.5)

2

1
H — E(x,n) duy.

2

1
dus < +oo.

5{x.m)

2

1
dp; = 0. (3.6)

2

{x,m)

Step 4. Lett' =t —1t; and Y = Xt +v. Since the sequence {ii,SJ T <s<1=2A}
converges locally smoothly to {¥s,—7T < s < 1— A} away from $, by equation (3.4)
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the flow {X;,—log(1 + T) <’ < —log A} also converges locally smoothly to a self-
shrinker ¥, satisfying

1
H——-(xn) =0
5 (x.m)
away from a space-time singular set § with
1 -
Ss.
V1—s

Here s = 1 —e™*'. Now we show the Lipschitz property of §. By (3.4), for any curve
£(t") of §, we can find a curve £(s) of § such that

EGs) =V1—sE@W), ' =—log(1—s).

Sl’ =

Since £(s) is A’-Lipschitz, we have
E(s1) = E(s2)| < Allsi —s2| forallsisz € (<T.1-2),

which implies that
t 15 ~ t 15
") —e T Ew) < AlemF e 3],
Suppose that |£(7)| < R. For any t{, t; with |t{ — 5| < 1 we have

’ 4 4 4
tl 7[2 t 7[2

6 —E@) = EG) —e 2 6@ + e 2 — 1]E()]
<K1—e 22 1122 —1)je@)
< (N + Bt —15], (3.7)

where we used the inequality
le* — 1] <2|x| forall x € [-1,1].

Note that the Lipschitz constant in (3.7) is given by & = A’ + R. Thus, if we consider the
convergence of {2, 1,,—T <t < T}asinpart(1),then$ N (Bg(0) x (=T, T)) consists
of Lipschitz curves with Lipschitz constant 0. The convergence is also in extrinsic Haus-
dorff distance by Proposition 2.8 and the limit self-shrinker is independent of the choice
of T by the argument of [46, Claim 4.3]. The lemma is proved. ]

3.2. Decomposition of spaces

In this subsection, we follow the argument in [46] to decompose the space and define an
almost “monotone decreasing” quantity, which will be used to select time slices such that
the limit self-shrinker is L-stable. First, we decompose the space as follows.

Definition 3.5 ([46]). Fix large R > 0 and small € > 0.

(1) We define the set S = S(Zs,6,R) ={y € Z; | |[y| < R, |A|(y, 1) > €'},
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(2) The ball Br(0) can be decomposed into three parts as follows:
o the high curvature part H, which is defined by

H=H(Z, e R) = {x e R3

x| < R,d(x.S) < g}

o the thick part TK, which is defined by

TK = TK(%;, €, R)
= {x eR3 | |x| < R, there is a continuous curve y C Br(0)\(HU ;)
connecting x and some y with B(y,€) C Bgr(0)\(HU E,)},

e the thin part TN, which is defined by TN = TN(Z;, €, R) = Br(0)\(H U TK).

As is pointed out in [46], the high curvature part H is the neighborhood of points with
large second fundamental form, and the thin part TN is the domain between the top and
bottom sheets. Moreover, the thick part TK is the union of path connected components of
the domain “outside” the sheets. The readers are referred to [46] for more explanation on
the definition.

As in [20], we define the L-stability of a self-shrinker.

Definition 3.6. For any R > 0, a complete smooth self-shrinker " C R”*! is called
L-stable in the ball B (0) if for any function ¢ € WOI’Z(B r(0)), we have

x|2
/ —¢Lxg 6’_7‘ >0, (3.8)
=
where Ly is the operator on X defined by
1 1
LE =A—- E(X, V()) + |A|2 + E

The subindex ¥ in Ly will be omitted when it is clear in the context. We say X is not
L-stable in the ball Bg(0) if (3.8) does not hold for some ¢ € WOI’Z(B r(0)). We call that
¥ is L-stable in R*T1 if ¥ is L-stable in the ball Bg(0) of R**! for any R > 0.

Recall Colding—Minicozzi’s result:

Theorem 3.7 (cf. [19,20]). There are no L-stable smooth complete self-shrinkers without
boundary and with polynomial volume growth in R*T1,

As a corollary of Theorem 3.7, we have the following result.

Lemma 3.8. Let N > 0 and let p be an increasing positive function. There exists a posi-
tive radius Ry = Ry (N, p) such that any self-shrinker ¥ € € (N, p) is not L-stable in the
ball Bg,(0).

Proof. For otherwise, we can find a sequence R; — 400 and self-shrinkers ¥; € €(N, p)
such that ¥; is L-stable in the ball Bg, (0). By smooth compactness of € (N, p) in [20],
a subsequence of {X;} converges smoothly to a self-shrinker X, € €(N, p). By Theo-
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rem 3.7, X is not L-stable in a ball Bg,(0) for some Ry > 0. This implies that there
exists a smooth function @ € C§° (X0 N BR,(0)) such that

x|2

/ —PooLy oo™ 4 <O. (3.9
Yoo

Since X; converges smoothly to X, we define the map f; : oo N Bry+1(0) = X; by
filx) =x4+u;(x)n(x) forallx € Yo N Bry+1(0),

where n(x) denotes the normal vector field of X, and u; (x) is the graph function of X;
over Yoo. Let Q = Xoo N Bry+1(0) and Q; = f;(R) C X;. We assume that i is large
such that Q; C X; N Bg,+2(0). Note that f; converges smoothly to the identity map
on 2 asi — +oo and for large 7 its inverse map fl-_1 : ©; — Q exists and is also smooth.
Moreover, fl-’l also converges smoothly to the identity map on 2 asi — +o00. We define
the function ¢; := (f;™1)*poo € C§°(R;) and we can extend ¢; to X; such that ¢ is zero
on X;\2;. Then by (3.9) the function ¢; € C5°(X;) satisfies

|2 x|2
lim —@iLs, pie” 4 = / oLz g0 F <0,
1—>400 Ei Too

Thus, for large i we have
x|2

/ —piLy, pie” 4 <O. (3.10)
i

Note that Supp(g;) C Q; C X; N Bry+2(0) for large i. Thus, inequality (3.10) contra-
dicts our assumption that X; is L-stable in the ball Bg; (0) and R; — +o00. The lemma
is proved. ]

Lemma 3.9. Let R, N > 0 and p an increasing positive function. For any ¥ € €(N, p)
and x € X, we define rs(x) the supreme of the radius r such that

B,(x+rn(x))NX =0, B (x—rnx)NI=0, (3.1D)

where n(x) denotes the normal vector of ¥ at x. Then there exists €g(R, N, p) > 0 such
that for any ¥ € €(N, p) and x € ¥ N Br(0) we have

rz(x) = eo.
Proof. We divide the proof into several steps.

Step 1. For otherwise, we can find a sequence of ¥; € €(N, p) and x; € X; N Br(0)
with §; := rx, (x;) — 0. By the smooth compactness of € (N, p), there is a subsequence
of {¥;} converging smoothly to a self-shrinker X, in € (N, p). We assume that

Xj = Xoo € Zoo N Br+1(0).

By the embeddedness of X, we have § := rg_ (Xo0) > 0. Since X, is smooth and
embedded, there exists 7’ > 0 such that B,/ (Xxc0) N oo has only one component and

8
inf > —, 3.12
yeB,/(chlo)ﬂEoo rEee (1) 2 2 ( )
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Moreover, we choose r’ sufficiently small such that B, (xe0) N oo is almost flat by
Lemma 2.2. Let

8 8 8
Q(r’, 5) = U (Bg (y + 5n>:oo(y)) UB;s (y - EnZ“’(y)))'

YEB,/(X00)NZoo

Then (3.12) implies that Q(r’, %) N X = @. By the smooth convergence of 3; to X,
for large i we have
ré
2(%.5) N A B (o) = 0. G.13)
. 8
By the construction of Q(r”, 5), we have
"8
Bs(y) C sz(% Z) U (00 N Br(xe0)) forall y € B, (Xoo) N Seo.  (3.14)
py

Step 2. Since x; — Xoo, We can choose r’ sufficiently small such that for all large i the
projection of x; to X lie in the ball B,//5(X o). This can be done since B,/ (Xo0) N Lo is
almost flat. Denote by y; the projection of x; to X, and we have y; € B,//5(X00) N Teo.
Lets; € R such that y; 4+ s;nx__(y;) = x;. Combining this with x; — xo, we have

Bos; (xi 285, (x;)) C Bas; (i) C Bag;+1s;1(Vi)- (3.15)
On the other hand, |s;| — 0 and for large i we have
Bas;+15;1(vi) C Bs (31 (3.16)
Combining (3.14)—(3.16), we have
ré
Bay v % 28ms, (o)  (2(5.5) U B N Bod). GaD)
Step 3. We show that
BZS,— (xl- + 28,’112[. (xi)) n 2,‘ = 0. (318)

Let¥; = Egl) U 21(2), where Zlgl) and El(l) are defined by
El(l) =%, N Br(X00), EEZ) = Zi\ By (Xo0)-

By the smooth convergence of X; to Y and the choice of r’ such that B, (Xeo) N Lo iS
almost flat, we have that for large i, B,/ (xo0) N X; is also almost flat. Consequently, for
large i we have

Bys, (xi £ 26my, (x1) N =P = 0. (3.19)
On the other hand, (3.13) and (3.17) imply that
r§
Bas, (xi + 28ms, (x1) N =2 ¢ (sz (5, Z) U(Ze N B,,(xoo))) nz®
2°4
where we used that 21(2) N By (xo0) = @. Thus, (3.18) follows from (3.19) and (3.20).
Note that (3.18) contradicts the definition of §; = rx, (x;). The lemma is proved. [ ]

!
- Q(r— -) n=® =g, (3.20)
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A direct corollary of Lemma 3.9 is the following result.

Lemma 3.10. Let R, N > 0 and an increasing positive function p. Then there exists
a constant €g(R, N, p) > 0 such that for any € € (0, €g) we have

ITN(Z,€,R)| =0 forall ¥ € €(N, p). (3.21)
Here the notation |2| denotes the volume of  with respect to the standard metric on R3.

Proof. We choose € the same constant in Lemma 3.9. Thus, equation (3.21) follows from
Lemma 3.9 and the definition of TN. [ ]

Using Lemma 3.10 we show that the quantity |TN| along the flow will tend to zero.

Lemma 3.11. Fix R, N > 0, and an increasing positive function p. Under the assump-
tion of Theorem 3.1, there exists a constant €g(R, N, p) > 0 such that for any € € (0, €p),
we have

lim |[TN(Z;, ¢, R)| = 0.

t—00

Proof. By Lemma 3.4, for any #; — oo there exists a subsequence, still denoted by {z;},
such that it converges locally smoothly to a limit self-shrinker ¥, € €(N, p) away from
the singular set §o C R3. For any € > 0, by Definition 3.5 we have

TN(XZ;, €, R) > TN(Zo, €, R)\B% (S0),
where B¢ (So) = Up6 so Be (p). Therefore, by Lemma 3.10 we have
lim [TN(Z;,e,R)| < lim [TN(Zw, €, R)| =0,

oo ) t;j—>+o00

ti—>+ i
where € € (0, €g) and ¢ is the constant in Lemma 3.10. The lemma is proved. ]
As in [46, Lemma 4.7], we have:

Lemma 3.12. Fix R > Oand t € (0, 1). Let {t;} be any sequence as in Lemma 3.4. If the
multiplicity of the convergence in Lemma 3.4 is more than one, then for any € > 0, there
exists ig > 0 such that for any i > iy we have
inf  |TN(Z;, €, R)| > 0.
teft;—t,t;]
Proof. Since X, is embedded and {¥;, ;;, —7 <t < 7} converges locally smoothly to the
limit self-shrinker ¥, all components of (X; N Bgr(0))\H(e, Z;, R) withz € [t; — 1, ;]
lie in the §-neighborhood of ¥oo. By the definition of TN, for any ¢ € [t; —7,] the
quantity TN(e, ;, R) is nonempty and we have |TN(e, ¥, R)| > 0. |

Using Lemmas 3.11 and 3.12, we have the following result as [46, Lemma 4.8].

Lemma 3.13. Let R,e,7 > 0 and f(t,€) = infyei—r 1) [TN(Zy, €, R)|. For any to > 0
andl > 0, we can find a sequence {t;} with t;+1 > t; + [ such that for anyi € N,

sup  f(t,€) <2f(t,¢). (3.22)
telt; ti+1]
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Proof. By Lemma 3.12, we can find 57 > t9 + [ with f(s1,€) > 0. We search for time
t € [s1,s1 + 1] satisfying f(¢,€) > 2f(t;, €). If no such time exists, then we set 1; = 5.
Otherwise, we choose such a time and denote it by sll Then search the time interval

(s sV 4 11, Inductively, we search [s\¥, s 11, If we have

sup f(t,e) < 2f(s§k),
rels{ s {0411

then we denote A @)
1

and stop the searching process. Otherwise, choose a time s§k+1) € [sgk) ® 4 ] with
more than doubled value and continue the process. Note that

f(sgk),e) > 2K f(s1,€) > 00 ask — .
Since lim;—, 4o f(#,€) = 0 by Lemma 3.11, this process must stop in finite steps, and
we can find k; such that

sup  f(t,e) < 2f (%D o).
(k1) (kl)+l]
0)

We denote by t; = s( D After we find#,sets, =t +1 + 1 and continue the previous
process to find time in [s2 0 50 S5 ) 41 ]suchthat f(t,€) > 2f (s2 , €). Similarly, for some k

we have (k)
sup ft,e) <2f(s, . €).
[ (k) (k)_,'_l]

tels,

Then we define 1, = sg ) Inductively, after we find #;, we set sl( ) — =1t; + 1+ 1. Then

we start the process to search time in [s, +)1, sl(?r)l + [] with f(z, 6) >2f (51(3)1’ €). This
process is well defined. Repeating this process and we can find a sequence of times {¢; }

such that for any #; inequality (3.22) holds. The lemma is proved. ]

3.3. Construction of auxiliary functions

In this subsection, we construct functions which will be used to show the L-stability of
the limit self-shrinker. We fix R, 7 > 1 in this section. For any sequence #; — 400, by
Lemma 3.4 a subsequence of {X; ;,, —T <t < T} converges in smooth topology to a self-
shrinker Yo, away from a locally finite, o-Lipschitz singular set § C R3 x (=T, T). We
denote by §; = {x € R?® | (x,7) € S} the singular set in R3 at time 7. By Lemma 2.9,
we assume that the multiplicity of the convergence is a constant Ny > 2. As in [46], we
construct some functions as follows:

(1) Lete > 0 and large R > 0. We define

Qe,r(1) = (Zoo N Br(0))\Be(Sr) (3.23)
and for any time interval / C (-7, T') we define
Qer() = Qer@®). S1=]JS: (3.24)
tel tel

For any € > 0, the surface X, ; N Bg(0) is a union of graphs over the set Q¢ g(¢) for
large t; and any ¢ € (=T, T).
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(2) Let u;r(x, t) and u; (x,1) be the graph functions representing the top and bottom
sheets ( which we denote by E?; and X, respectively) over oo N BR (0). The read-
ers are referred to [46] for the details on the construction of ul+ (x,t) and u; (x,t). By
the convergence property of the flow {(X;;,x;(¢)),—T <t < T}, for any € > 0 and
large R there exists ip > 0 such that for any i > ip and any ¢ € (—7, T') the functions
ui+(x, t) and u; (x,t) are well defined on Q2¢ (7). By the calculation in Appendix C,

the function

wi(x,1) = uf (x,1) —u; (x.1), (3.25)
which we call the height difference function of X; ; over X, satisfies the equation
du, A 1 2 Ui pq P
5 = oU;i — E(X,Vu;) + |A|fu; + > +a; uipg + b uip +ciu; (3.26)

for any (x,¢) € Q¢,r(I) x I. Here Ag denotes the Laplacian operator on ¥,. The

coefficients af’ 4 bf and ¢; are small on Q¢ g(/) x I as t; large and tend to zero as

t; = +o0.

(3) Fix a point xg € (X0 N Br(0))\S1. We choose a sequence of points
{Xi}?il C (Eoo\Sl) n BR(O) with x; — xg.

Then for sufficiently small € > 0 we have xo € Q¢ g(1) and {x;}$2, C Q¢ r(1). For

anyt € (—7,T)and x € Q¢ gr(t) we define the normalized height difference function
u;(x,1)
ui(x;, 1)
Then w; (x, t) is a positive function with w; (x;, 1) = 1 and by (3.26) w; (x, t) satisfies
the equation on Q¢ g(/) x ({) forany I C (=7, T),

wi(x,1) = (3.27)

Bw,-

ot
Note that the construction of the function wj; is slightly different from that of [46].
In (3.27) we choose a sequence of points {x;} C Xso\S; to normalize the func-
tion u;, while in [46] we choose a fixed point x¢. The reason why we choose such
a normalization is that we need inequality (3.51) in Lemma 3.19 below.

1 w;
= Aow; — E(x,Vw,-) + |A|Pw; + 71 + al?w;i pg + b wi p + ciwi. (3.28)

As in [46], we have the following result which implies that for large #; the integral
of u; is comparable to the volume | TN].

Lemma 3.14 (cf. [46]). Fix €, R and T as above. For any sequence {t;} chosen in Lem-
ma 3.4, there exists t > 0 such that foranyt € (=T, T) and t; > tT we have

1
—/ ui(x,t)dioo < |TN(Zis, €, R)| < 2/ Ui (x,1) ditoo,
2 Jac v Q¢ x 0

where dlieo denotes the volume form of .

The proof of Lemma 3.14 is similar to that of [46, Lemma 4.13]. Note that the coef-
ficients 2 and % are chosen to absorb the error term caused by the second fundamental
of Y.
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Since w; satisfies the parabolic equation (3.28), we have the following parabolic
Harnack inequality by using Theorem A.5 in Appendix A.

Lemma3.15. Forany—T <a <s <t <b < T, anye > 0, and any points x € Q¢ g(s)
and y € Q¢ r(t), there exists a constant C = C(e, R,s —a,t — 5, Lo, S[q,]) Such that

w;i(x,s) < Cw;(y,t).
Proof. We divide the proof into several steps.

Step 1. Since $; N Br(0) consists of finitely many points, we can choose sufficiently
small 8o (X0, S[4,51) > O such that for any s € [a, b],

Qo R(5) CRER(), Ry p2) TR, pya(t). 1 E[s o5 +8]N[a,b]. (3.29)

Let N be a positive integer satisfying

N >max{5(b_a),b_a,5(b_a)}. (3.30)
8o s—a t—s
Set
b—a
rk=a+Tk forallk € {0,1,...,N}. (3.31)

Then t9p = a and ty = b. By (3.30) we have s > 7. Note that (3.29) and (3.31) imply
that forany k = 1,2,..., N — 1 we have
Q%E,R+2(Tk) C Q%’R+2(t) forall t € [tx—_s, Tx+5] N [a, b].
Step 2. Let
Q' = Qer(tr), Q= Q2 ri1(m), Q= Q1 g (W)

Then we have Q' C Q" C Q. Clearly, Q" has a positive distance § = §(¢) away from the
boundary of Q. Sine Q' is compact, we can cover 2’ by finite many balls contained in "
with radius r = 155 and the number of these balls is bounded by a constant depending
only on €, R and ¥,. Since w; satisfies the parabolic equation (3.28), applying The-
orem A.5 in Appendix A for the function w;, the domains ', Q2”,Q and the interval

[Tk—1, Tk+1], We have
w; (x, %) < Cw; (y, %+1) forall x,y € Qe r(r), (3.32)

where C = C(e, R,b —a, N, X, S[4,5]) is a constant independent of i. Moreover, since
Sia,p] N Br(0) consists of finitely many Lipschitz curves, there exists a sequence of points
{zx} such that

zk € Qae, R([Tk—1. T]) N Q2e, R [Tk Th41]) # 9. (3.33)

Step 3. Fors,t € (a,b) withs < ¢, there exist integers ks and k, such that s € [tx,, Tx,+1)
and ¢ € (tg,, Tk, +1])- Note that (3.30) implies

t—s> 2 (3.34)
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On the other hand, (3.31) implies that
b—a
N

t—8 < Tg,41 — Ty, = ky + 1 —ky). (3.35)
Combining (3.35) with (3.34), we have
ke —ks > 4. (3.36)

Thus, (3.32), (3.36)and (3.33) implies that

Wi (Zky 42> Thy+2) < CWi (k43 Thg1+3) <+ < CNwi (zg, -1, Ty—1), (3.37)
where C = C(e,R,b —a, N, Zoo, S[a.5)-
Step 4. Set

Q' =Qcr(s), Q"= Q%G,Rﬂ(s), Q= Q%G,RH(S).

Then by (3.29) we have

QcQ'ca= Q%G,R_i_z(s) C Q%E,R+2(s') forall s" € [tk,—2., Thy+2)s

where we used the fact that [tx, >, Tk,+2] C [s — 80,5 + o). Note that by (3.33) and
(3.29), we have
Zkg+2 € 22¢,R(Thy+2) C Q2e,r(S). (3.38)
As in Step 2, Q” has a positive distance § = §(¢) from the boundary of €2, and we
can cover Q' by finite many balls contained in Q" with radius r = 55 and the num-
ber of these balls is bounded by a constant depending only on €, R and ¥,. Applying
Theorem A.5 for such @, Q”, Q and the interval [, 5, Tx,+2] and using (3.38), we have
w; (x,5) < Cw;(Zg,+2, Tky+2) forall x € Q¢ r(s), (3.39)
where C = C(¢, R, b —a, N, X, S[a.5))-
Step 5. Set
Q' =Qr(), Q"= Q%E,R+l(t)’ Q= Q%e,R+2(t)-
Then by (3.29) we have
QCQ'CQ=Qu (1) Ty pi,(t") forall s’ € [1r, 2. 7, 12].
where we used the fact that [tg, 5, Tk, +2] C [t — So.¢ + 8. Note that by (3.33) and
(3.29), we have
Zkt—l € QZE,R(Tkt—l) C Qf,R(t)° (340)
Applying Theorem A.5 as in Step 4 for such ', Q”, Q and the interval [tx, 5, Tk, +2] and
using (3.40), we have
Wi (Zk,—1, Tk,—1) < Cw; (y,t) forall y € Q¢ r(?),

where C = C(e,R,b —a, N, o, S[4,5]). Combining this with (3.39) and (3.37), we
have

w;(x,s) < Cw;(y,t) forallx € Q¢ r(s), y € Qer(?),
where C = C(e, R,b —a, N, X, S[g,57). The lemma is proved. [
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For any fixed €, R and T, the following result shows that we can find a sequence {t; }
such that the functions w; are uniformly bounded on a compact set away from singulari-
ties. Note that we have no estimates of w; near the singularities.

Lemma 3.16. Fixe,t € (0, %) and R, T large. Let {t; } be the sequence from Lemma 3.13
forsuche,t, Randl = T. For any time interval I = [a,b] C [-1,T — 2] and a compact
set K CC (200 N Br(0))\S;, there exists a constants C = C(K, Zoo, S[—2,542]) > 0
such that the function w; defined by (3.27) satisfies

0 <wi(x,t) <C forall (x,t) e K xI.

Moreover, ifa € [2, T —2]), there exists C' = C'(K, Zoo, S[0,a+1]) > 0 independent of b
such that
w;(x,a) > C'.

Proof. By the assumption, we can assume that K C Q¢ g(/) and {x;} C Q¢ r(1) for
some €’ € (0, €), where {x;} is the sequence in (3.27). Note that w; (x;, 1) = 1. We divide
the rest of the proof into several steps.

Step 1. w; is bounded on K x I for the time interval I = [—1, %] and any K above.
Applying Lemma 3.15 fora = —2 and b = 2 we have

w;(x,1) < C(', R, Too, Si—2,2))w; (xi, 1)
=C(€',R, Zo, S[—2,2)) forall (x,7) € K x 1. (3.41)

Step 2. w; is bounded from above on K x I forany I = [a,b] C (0, T —2) and K above.
For any ¢t € [a,b] C (0,T —2), we have t’ :=¢+ 1€ (1,T —1). By Lemma 3.14 and
Lemma 3.13 for large i we have

2
[ widps = it TN e R)
Qc.r(5) ] '

s€[t’—z,t’] u[(xi, 1) SE[t/—1,t

——  inf |TIN(Z, 4.6, R
_ui(xi’l)sefgr’o]l (X4 +5.€, R)|

<4 inf / w;(x,s)du. (3.42)
Q%.R(S)

s€[—1,0]

Moreover, by (3.41) we have
w;i(x,0) < C(¢, R, Yo, S[_z’z]) forall x € Q?R(O),

which implies that
[ w05 CeR B S, (3.43)
Q % ,R(O)
Combining (3.43) with (3.42), we have

inf / wi(x,s)dp < C(€, R, Zoo, S[—2,2])-
Qe r(s)

sSE€[t/—1,t']
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This implies that for any ¢ € (1, T — 1) there exists s(¢) € [t — 1, ] such that
f wi(x,s(1)) dp = C(€, R, Too, S[2,2))- (3.44)
Qe r(s(1)

On the other hand, Lemma 3.15 implies that for any x € K C Q¢ r([a,b]),t € [a, b],
and y € Q¢ r(s(t + 1)) C Q¢ r(s(t + 1)) we have

w;(x,1) < C(€', R, Doo, Sfa—1,5+2D)Wi (¥, s(t + 1)), (3.45)

where we used the fact that ¢ € (0, %) and
1
s(t+1)2t+1—tzt+§.

Integrating the right-hand side of (3.45) and using (3.44), we have

wi (.)C, t) =< C(elv R’ EOOv S[a—l,b+2]) Wi (y7 S([ + l))
Qe r(s@+1))

<C(¢',R,Zo0. 8[—2,p+2)) foralls € [a,b].

Step 3. w;(x,t) is bounded from below on K x I forany I = [a,b] C [2,T —2] and K
above. By Lemma 3.15, for any (x,7) € K x I we have

wi(x.1) = C(¢". R, Soo. Spo1)wi (x;. 1). (3.46)

In particular, for t = a the constant in (3.46) depends only on €, R, Yo, and S[0,a+1]-
Thus, the lemma is proved. [

Lemma 3.17. The same assumption as in Lemma 3.16. As t; — +o00, we can take a sub-
sequence of the functions w;(x,t) such that it converges in C? topology on any compact
subset K CC (Z00 N Br(0)\S1, where I = [a,b] C [-1,T — 2], to a positive function
w(x,t) with w(xg, 1) = 1 and satisfying

ow 5 1 1

i Aow + |A]"w — i(x,Vw) + zw forall (x,t) € K x 1. (3.47)
Proof. Since w; is positive by definition and w; is uniformly bounded from above by
Lemma 3.16, by the interior estimates of the parabolic equation we have the space-time
C?2% estimates of w; (cf. [50, Theorem 4.9]), and the estimates are independent of i.
Therefore, as i — +o0, the function w; converges to a limit function w in C? topology
on K X [a,b] with w(xg, 1) = 1 and w is positive by the strong maximal principle. The
lemma is proved. L]

3.4. The auxiliary functions near the singular set

In this subsection, we show that there exists a refined sequence such that the limit auxiliary
function has uniform estimates across the singular set. Recall that by Lemma 3.17 the
function w is uniformly bounded on any compact set away from the singular set and w has
no estimates near the singularities. In this subsection, we will use Lemma 3.13 repeatedly
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for a sequence {¢;} decreasing to zero, and after taking a diagonal subsequence we can
construct a auxiliary function which has uniform estimates across the singular set.

Lemma 3.18. Let R > 1,1 € (0, %) and let {€;} be a sequence of positive numbers with
€ — 0. Forany i € N, there exists a sequence {1; y }7. | With lj g +1 > lj x + i satisfying
the following properties:
(1) Foranyk € N,
sup  f(tig +5,€6) < 2f(ti, €), (3.48)
s€[0,i]

where f(t,€) = infser—r,) [TN(Zs, €, R)|.
(2) Forany T > 0,{Zy, ; +s.—T < s < T} converges locally smoothly to a self-shrinker

Yico € €(N, p) away from the space-time singular set S; as k — +o0.

(3) For large k the surface Xy,  +s can be written as a union of graphs over % o away
from the singular set S; 5. We denote by ﬁ:k (x,s), ﬁZk (x, s) the graph functions of
the top and bottom sheets of Ly, , +s over Qi ¢ r(S), where

Qi,e,R(S) = (Ei,oo N BR(O))\BG(Si,s)~

Let U g (x,s) = ft:“k (x,8) —u; , (x,5) be the height difference function of Ly, , +s
over Q; ¢ r(s). These functions are constructed as in Section 3.3. By Lemma 3.14, we
can choose k; large such that for any k > k; and s € (=T, T),

1 5 -
! / B (r.s) < [TN(S,, 45061 R)| <2 / fn(x). (3.49)
2% ¢ 1) Qg

i 4R

(4) By the smooth compactness of €(N, p) in [20], we assume that X; o in item (2)
converges smoothly to Y, € €(N, p).

(5) Foranyi € N, there exists k; > 0 satisfying the following property. For any {s;}
with s; > ki, {Eti.si +s,—T < s < T} converges locally smoothly to the same self-
shrinker Yoo as in item (4) away from the space-time singular set So,. Moreover,
the singular set §; in item (2) converges to Soo in Hausdorff distance.

s}
i=1

Proof. Applying Lemma 3.13 for ¢; and [ = i, we have (3.48). Item (2) follows from
Lemma 3.4, and item (3) follows from Lemma 3.14. It is clear that item (4) follows from
Colding—Minicozzi’s compactness theorem [20].

To prove item (5), we first note that the convergence in item (2) is also in Hausdorff
distance by Lemma 3.4, for any i there exists k; > 0 such that for any k > k; and any
s € (—2,2) we have

dy (Ztivk-l-s N BR(O), Ei,oo N BR(O)) =

)

(3.50)
dH (S(Zli’k-hﬁ €, R)’ Si,S N BR(O)) E

3

~ ] ] =

where dg denotes the Hausdorff distance. By item (4), we assume that X; o, converges
smoothly to X, € €(N, p). By Lemma 3.4 for any sequence of times {s;}{2, with
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s; > k; the surfaces {Ejz‘,si +s.—T < s < T} converge locally smoothly to a self-shrinker,
which is denoted by X, away from a singular set S; C X as i — +00. Moreover,
asi — +o00o,
dpr (Ec0 N Br(0), Too N BR(0))
< dp (Zc0 N BR0), Tp, ,, +5 N BR(0)) + dpi (4, ,,+5 N BR(0). 00 N BR(0))
+du (Zi,oo n BR(O)v Yoo N BR(O))

A 1
<dy (Zoo N BR(O)a Ez‘,-.x’. +s N BR(O)) + l_ +dy (Ei,oo N BR(O)» Yoo N BR(O))
— 0,

where we used (3.50). Thus, ﬁ?oo coincides with X ,. Moreover, since S(Zti,si +s,€i, R)
converges to g N Br(0) as i — 400, we have

dH(Si,s n BR(O)s Ss N BR(O))
=< dH (S(Eti‘si +s5 €is R)v SS N BR(O)) + dH (S(El‘i!_yi +s5 €i s R)5 si,S N BR(O))

1
< du(S(Zs;,, +s.€i, R), S5 N Br(0)) + 7
— 0,

where we used (3.50). Thus, S; s N Br(0) converges to Soc N Br(0) as i — +o0. The
lemma is proved. L]

Lemma 3.19. Under the same assumptions as in Lemma 3.18, we can choose a point
X0 € (Zoo\S81) N BRr(0) and {x; x} C (X 00\Si,1) N Br(0) satisfying the following prop-
erties:

(1) x; ) — xoasi — +oo and k — +o0.

(2) Foreach i, there exists k; > O such that for any k > k;,
ﬁi’k(xi’k, 1) < 2ui,k()C(), 1) fOV allk > kl‘. (3.51)
Here u; i denotes the height difference function of Xy, , +s over Yoo.

Proof. Choose xg € (£00\51) N Br(0) and we denote by /., the normal line of ¥
passing through the point x¢. Then the set X; x N Iy, is nonempty for large i and k. Since
Yk can be viewed as a union of multiple graphs over X; o, away from singularities,
we assume that [, intersects with the bottom sheet of X; x at the point y; x, and the
projection of y; x on X o0 1S Xk € Xj 0. We denote by lxi,k the normal line of %; o
passing through the point x; . Since xo & S1, we have x; x & ;1 for large i and k. By
the construction of x; g, it is clear that x; x converges to xg asi — +o00 and k — +o00.

Fix 6y € (0, Z). Since X; o converges smoothly to X, the angle between the two
lines I, and [y, , will lie in [0, ) for large i and there is a uniform ry > 0 independent
of i such that

1
|[A](x) < -~ for all x € X; oo N By, (x0).
0
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We assume that ' is ¥; o0, X, is the top sheet of ; ¢, ¥;, is the bottom sheet of %; &
and P is the point x; x as above. Then we apply Lemma 3.24 below for such X', %) | ¥;
and the point P and we can get that the functions #;  and u; x satisty (3.51) for large k.

The lemma is proved. ]

By Lemma 3.17 for each i the function w; x converges in C? to the limit function ;o0
onany K x [ with/ C [-1,T —2]and K CC (Z; 0 N Br(0))\S;,7,and x; x — Xx; 0 as
k — +00. Moreover, W; o0 (X;,0, 1) = 1. Note that W; » satisfies equation (3.47), and the

function
x|2

W; = Wi o0l

satisfies the equation

Wi _ a1+ |A|2+3 1||2 b; forall (x,1) € K x I (3.52)

— = Awy; - — — x| Jw; forall (x, x 1. .

ot ' 4 16 ’
We would like to show that w; satisfies the parabolic Harnack inequality with uniform
constants independent of i. Note that here we need to use Theorem B.3 in Appendix B
instead of Theorem A.5 in Appendix A. The reason is that w; are functions defined on
subdomains in X; o, which varies when i is different. The constants in the Harnack
inequality of Theorem A.5 depend on the manifold ¥; o and it is difficult to show that
the constants are independent of i. However, we can use Theorem B.3 to avoid this dif-
ficulty since the constants can be explicitly written down by Theorem B.1. We note that
Theorem B.3 cannot be used for equation (3.28) of w; and we have to use Theorem A.5
in the proof of Lemma 3.15.

N - Ix|2
Lemma 3.20. Let ; = Wjoce” 8 . Forany —T <a <s <t <b <T,anye >0, and

any x € Q¢ r(s) and y € Qj ¢ r(t), there exists C = C(e, R, s —a,t — 5, Yoo, S[a,b])
independent of i such that
uA),'(x,S) < le),'(y,[).

Proof. The lemma follows from the combination of the proof of Lemma 3.15 and Theo-
rem B.3. For the readers’ convenience, we give the detailed proof here.

By Lemma 3.18, §; converges to § in the Hausdorff topology. Since §; N Bg(0) con-
sists of finitely many points, we can choose 8o(Xco, S[4,5]) > 0 small such that for any
s € [a,b],

Q%e,R(S) C Qe r(), Q%G’R+2(S) C Qge,R+2(’)’ tels—68o,5 + 0] N[a,b]. (3.53)
Thus, for large i we have
Qi2e,R(5) C e r(), 1o pials) C R 1epia(t), 1€ [s—B0,5 + 8] Na,b].
Let N be a positive integer satisfying
5(b—a) b—a 5(b—a)}

) , 3.54
8o s—a t—s ( )

N>max{

Set
b_
tk:a—l—Tak forallk € {0,1,..., N}, (3.55)
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Then t9p = a and ty = b. By (3.54) we have s > 7;. Note that (3.53) and (3.55) imply
that forany k = 1,2,..., N — 1 we have

Qi 1e.re2(W) C Qi g ry2(t) forall? € [t—s, T 45] N [a, b].

Let
Q= Qier(n). Q= 2Rt (T)s S2i= Q1 gy (Th).

Then we have Qi C Q;/ C ;. By Lemma 3.18, X; o converges smoothly to X, $;
converges to §, the domains 7, Q7, Q; converge to ', Q”, Q, respectively, where

Q= Qe,R(Tk), Q= Q%E,R-}—I(Tk)’ Q= Q%E,R-I—Z(‘Ck)'

Note that w; satisfies equation (3.52), which is exactly the same as equation (B.2) in the
appendix B. Thus, we can apply Theorem B.3 in appendix B for the function w;, the
domains 7, QY, Q; and the interval [tx_y, Tx41] to obtain

Wi (x, %) < Cwi(y, th41) forallx,y € Qe r(tk), (3.56)

where C = C(€, R,b —a, N, T, S[4,5) is a constant independent of i . Moreover, there
exists a sequence of points {zz } such that

Zk € Qe R([Th—1, ™)) N Qi 26, R([Tk» Th11]) # 0. (3.57)

For s,t € (a,b) with s < t, there exist integers k; and k; such that s € [tx,, T, +1) and

t € (tk,, Tk,+1]- Then we have
ki —kg >4 (3.58)

as in Lemma 3.15. Set
Q= Qer(®) U =zern() 2= gl

Applying Theorem B.3 for such sets ', Q”, € and the interval [tg,_>, Tk, +2] as in Lem-
ma 3.15, we have

Wi (x,5) < CW; (Zry+2. Thy+2) forallx € Q; ¢ r(S). (3.59)
Moreover, (3.56) and (3.57) implies that
Wi (Zk 420 Thy+2) < CWi (Ziey 13, Thy43) < -+ < CV i (2hy—1. 1), (3.60)
where we used (3.58). Similar to the proof of (3.59), we have
Wi (2,1, Tey—1) < Cili(y.1) forall y € Qe r(0). (3.61)
Combining this with (3.59)—(3.61), we have
Wi (x,s) < Cwi(y,t) forallx € Qe r(s), ¥ € Qier(). (3.62)

The constants C in (3.59)—(3.62) depend on €, R, b —a, N, X and S|, 1. The lemma is
proved. ]
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The next result shows that the normalized height difference function w; x has uni-
formly L' estimate away from the singular set near ¢ = 0, and the estimate does not
depend on i. The proof of this result relies on the growth estimates of Ww;  near the
singular set, which is given in Theorem 4.2 in the next section.

Lemma 3.21. Fix 7 € (0, %) Under the same assumptions as in Lemma 3.18, for each
i we can choose k; sufficiently large such that for any k > k; the normalized height
difference function

ﬁi,k ()C, S)
Uik (Xig. 1)

where the points {x; ;. } are chosen as in Lemma 3.19, satisfies the inequality

Wik (x,5) =

inf f Wi k(x,5) < 2Wp. (3.63)
s€[—1,0] Ef.ooﬂﬁi e

A
VAR

Here Wy is a constant independent of i.

Proof. Fix large R > 0. Since X; o, converges to X, smoothly, there exist uniform con-
stants pg, E¢ > 0 such that for any large i we have Br(0) N X; o € M, 2(p0, Eo). Here
the set My, 2(po, Eo) is defined in Definition 4.1. Note that by Lemma 3.17 for each i the
function w; x converges in C 2 to the limit function Wi 0o away from §; and x; x — X; 0
as k — 4-o00. Applying Theorem 4.2 to the function

Ix]

2
W; = Wi e § ,

we obtain that there exist uniform constants C = C(pg, E¢, R) and r1(pg, E9, R) > 0
such that

||lbi=°°”L'((E,’AOOHBR(O))X[—%,O]) = C(R,po, E0)”1:[)1',00”LI(K,-)’ (3.64)

where K; is a compact set defined by

Ki = {(x,t) € (Zioo N Brs1(0)) x [—1, ﬂ

min dg;(x,p) > 11y,
PES; tNBRr+1(0) g,( p) 1}
where dg, denotes the intrinsic distance function of (X, «, g;). Forany ¢t € (=T, T), we
define

K; tz{er' ‘ min do. (x, >r}.

i (1) hoo PES; 1NBR+1(0) g,( p)=

Since (Z;,00, gi) converges smoothly to (X0, goo) and §; converges to o, by Lem-
ma 3.18, forany t € (-7, T), K; - (t) converges smoothly to a limit set, which we denote
by Koo,r(t) C Too. By part (5) of Lemma 3.18, Koo (t) N S; = @. Note that Koo ()
is defined with respect to the metric g, While 2, g(¢) is with respect to the Euclidean
metric in R3. Let

1
ry = Emin{d(x,p) | x € Koo, (1), p € 81,1 € [-2,2]} > 0,
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where d(x, p) denotes the Euclidean distance in R3. Thus, we have
Koo (1) C Qr;,R+1(f) C Yo forallt e[-2,2].

Since K; ,, (t) and Qi,ri,R+1(t) converge to Ko r, (t) and Qr;,RH(t)’ respectively, for
each ¢, for large i we have

Kir (1) € 11 gyo(t) forallz € [-2,2].
Applying Lemma 3.20 for Qi,%ri,R+2([) and [-2, 2], we have
Wi 00(x,1) < C(r{, R, oo, $[-2.2]) Wi, 00 (Xi,0. 1)

=C(r;,R. o0, S[—2)) forall (x,7) € K;, (3.65)
where we used the fact that W; oo (Xi,0,1) = 1. Integrating both sides of (3.65) on K,
we have

[Wi,00ll1(k;) < C(r1, R, oo, S[—2,2]) Areag, (Zi,00 N Br+1(0))
<C(r{. R, Zoo. 81-2,2. N), (3.66)

where we used the upper bound of area ratio in Lemma 3.4 in the last inequality. Com-
bining (3.64) with (3.66), we have

Hwi’oo”Ll((Ei!ooﬂBR(O))x[—%,O]) = C(R, Yoo 3[—2,2], N, Po, E0)- (3.67)

Thus, the L' norm of W; oo is uniformly bounded. Since W; x converges to W; « On any
compact set away from singularities as k — +00, we can choose k; large such that for
any k > k;,

inf / B Wi k(x,5) <2 inf / B Wi 00(X,5)
s€[-7,0] YN, € s€[-r,0] YicoN. €
1,§,R 1.§,R

2 0
< —f dt/ Wi,o0(x.1)
TJ-—¢ Z,‘!OOHBR(O)

=< C(Rv E()()’ S[—Z,Z]s N9 Lo, EO» T)v
where we used inequality (3.67). Thus, inequality (3.63) is proved. ]

Combining Lemma 3.18, Lemma 3.19 with Lemma 3.21, we have the following result.

Lemma 3.22. Let R > 0 and t € (0, %) There is a sequence of times t; — o0, a self-
shrinker Yoo € €(N, p), a locally finite singular set S, and a constant W satisfying the
following properties:

(1) For any T > 1, there exists a subsequence {t;, }3=, of {t;} such that the sequence
{Etik +s,—T < s < T} converges locally smoothly to Yo, € €(N, p) away from §.

(2) Let xg € Xoo\S51. We define the functions u; as in (3.25) and w; by
u;(x,1)

vt = )
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For any € > 0 and large t;, we have the inequality
inf / wi(x,s) < W forallt € 2,T), (3.68)
seft—tt1 JQ, r(s)

where W is a constant independent of €, i and T .

(2) Forany I = [a,b] C [-1,T —2] and K CC (Zc0 N Br(0))\S;, there exists a con-
stant C = C(¢, K, 81, a, b) such that

0<wi(x,t) <C forall (x,t) e K xI. (3.69)

Moreover, ifa € [2,T — 2], there exists C' = C'(K, X0, S[0,a+1]) independent of b
such that

w;i(x,a) > C' forallx € K. (3.70)

Proof. Fix asequence of ¢; — 0. We choose #; = #; x, with k; large such that Lemma 3.19
and Lemma 3.21 hold. Note that u; (x,s) = u;x, (x, s) is the height difference function
of Xy, k;+s OVer Y o. Then for any T > 1 the sequence {Xy, 15, —1 < s < T} converges
locally smoothly to Yoo € €(N, p) away from S. Note that the limit self-shrinker ¥
is independent of the choice of T by Lemma 3.4. For any € > 0, we have ¢; € (0, €) for
large i . Moreover, for large #; we have

2
inf / wi(x,5) < ——— inf [TN(S;45. 1, R)|
s€[t—1,t] Qc r() Mi()C(), 1) s€[t—1,t]

<——— inf |TIN(Z 45,6, R)],
u; (xg, 1) se[-,0]

where we used Lemma 3.14 in the first inequality and (3.48) in the second inequality.
Note that (3.49) implies that

TN(S4 44061, R <2 fg g (3. 5).

€;

i LR
Thus, we have
A g (X g 1 1
o / wl-(x,s) < l,k,( iki ) inf |TN(Etl«+s,€iv R)l
selt-tt] JQ,. r(s) u;(xo, 1) uj, k; (xi ki 1) sel=z.0l
81t k. (Xi ;5 1 1 i
< lakl( iki ) - inf / Ui k; (X,S)
u;i(xo, 1) Ui (Xijey» 1) rel=201 /@ o R
[,?’
8l g (Xik;» 1 =
< Sl (xiin D) [ Wi k; (X, )
ui(xO,l) [~7,0] Q. & R
l.?.
Ui g, (Xige;» 1
< 16w, ik ik D3 G.71)
Uu; (X(), ])

where we used (3.63) in the fourth inequality and (3.51) in the last inequality. As in the
proof of Lemma 3.16, (3.71) implies a uniform upper bound of w; on K, and we also
have the lower bounds (3.69)—(3.70) of w;. The lemma is proved. [
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Proposition 3.23. Under the same assumption as in Lemma 3.22, w; converges in C? to
a positive function w(x, t) satisfying (3.47) on (Zeo X (0, 00))\S with w(xg,1) = 1 and

inf / w(x,s) < W forallt €[1,00). (3.72)
YooNBR(0)

s€[t—1,t]

Moreover, for any a € [2,00) there exists a constant C = C(a, oo, S[1,44+1], K) > 0
such that the function w(x,t) satisfies

/ w(x,a) > C. (3.73)
YocoNBR(0)

Proof. Forany I C [1,T —2] and K CC (¥e N Br(0))\S;, by Lemma 3.22 and the
interior estimates of the parabolic equations (cf. [50, Theorem 4.9]), we have the space-
time C2* estimates of w; on K x I. Taking the limit i — +o0, w; converges in C? to
a limit function w(x, ) on K x I with estimate (3.69)—(3.70). Moreover, (3.72) holds
on [ by (3.68) and (3.73) holds on I N [2, 00) by (3.70). Since X is independent of the
choice of 7' and the estimates of w are independent of T, by taking T — +o00 we obtain
a function, still denoted by w, on (X X (0, 00))\S with estimates (3.72)—(3.73). The
proposition is proved. ]

The following result was used in the proof of Lemma 3.19.

Lemma 3.24. Let = C R3 be a surface properly embedded in By, (xo) with
1
|[Al(x) < —, x € Byy(xo) N Z.
To

Assume that X, is the graph of a functions u; over X fori = 1,2 and Xy, N Xy, = 0.
Let P € X, Ip the normal of ¥ at the point P, G =1p N Xy, and Q = [p N X,,. For
any 0 € [0, 3), we denote by lg the line which passes through Q and has angle 0 with
the line lp. Let B = X, N lg. Then there are two constants € € (0, 1) and 8y > 0 both
depending only on ry such that if 6 € (0, 6y) and

luillct=nB,y@xon + Iu2llct B, oy = € (3.74)

then we have

|GQO| =2|BQ|.

Proof of Lemma 3.24. Without loss of generality, we assume that the tangent plane of X
at P is the plane 7 := {(x1,x1,0) | x;.x2 € R} and the point P is the origin O of R3.
Let Bs, (0) = {(x1,x2,x3) | x? 4+ x2 < 62}. By Lemma 2.2, there exists 8o = 8o(ro) > 0
such that ¥ N ]§50 (0) can be written as a graph of a function f over the plane 7,

2N Bs, (0) = {(x1, %2, f(x1,%2)) | |x| < 8o}, (3.75)

where x = (x1, X2), and the graph function f satisfies

f(0)=0. Df(©)=0. [VfI(y)=Colyl. (3.76)
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Here the constant Cy depends only on rg. Note that the coordinates of G and Q are given
by G = (0,0,u(0)) and O = (0,0, u»(0)), respectively. For the point B € X,,, N[y, we
define the point £ € X the projection of B onto X, which means

OF + u\(E)n(E) = OB, (3.77)

where n(E) is the unit normal vector of ¥ at E.

We claim that there exist €9 = €9(8p) € (0,1) and 6y = arctan3 > 0 such that if
0 € (0, 6p) and (3.74) holds for some € € (0, €g), then E € ¥ N égo (0). In fact, we assume
that 8y = arctan %. Then for any 0 € (0, 6y), we have

— 1]
|OB| < 2¢ + —.
2
Combining this with (3.77), we have
— — ] 3
[OE| = [0B| + luy(E)| = 3¢ + 3 = J0.

where we choose € € (0, 1—1280). Therefore, by (3.75) we have E € ¥ N 3’30 (0). The claim
is proved. .
Assume that £ = (y, f(y)) € X N Bs(0) with y = (y1, y2) and § € (0, 5p). Note
that the normal vector at E is given by
(=0y, S (¥). =0y, f(»), D
VI+HIVIOP

and by (3.77) the coordinates of B = (Bj, B2, B3) are given by
ur(»)dy, f(»)

n(E) =

B =y, — , 3.78

T T ENIOR G79
u1(y)dy, f(y)

B, = - (3.79)

TR T TV IOR

By = f(y) + ur(y) (3.80)

VI+IVIOP

where we write u1(y) = u1(y1, y2, f(¥1, y2)) for simplicity. Since
B? + B? = |QB|*sin? 0,
using (3.78)—(3.79) we have

u (M IVLO)IP LW VIO
L+ VO VI+ VD)2

where (y, V f(»)) = y19y, f(¥) + y20,, f(¥). Combining this with (3.76), we have

ur (M. V()

VI+IVI)IP?

> (1-2Colur (MN(GF +33) = (1 =2Coe) (F + ¥3).-

yi+yi+ — |OB|?sin2 ),

|OB?sin® 0 > y? + y2 —2
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Thus, if € € (0, ﬁ), we have

B|?sin? 6

2_ 2y 2 |OBIsn76 3.81

yI"=yi+y; = 1= 2Coc (3.81)
Since /g has the angle 6 with the line /p, we assume that the unit direction vector of /g

is ¥ = (v1, v2, cos #). Thus, we have

08| = |(0B. )|
= |Byv1 + Bavz + (B3 — u2(0)) cos 0]
> |(B3 —u2(0)) cos 6| — |Byivy| — | B2v3|. (3.82)
Note that by (3.76),
u1(y)

- uz(O)‘

By —u2(0)| = VI+ V0P
| B3 — u(0)] 'f(y)Jr 1+ V()2

> |u1(0) — u2(0)| — u1(0) —u1(y)]

1
)] '——1 -

= 1 (0) ~ ua(0)] = max [V - [y = Co(1 -+ max ) [y
8 8

1' e

> [u1(0) —u2(0)| — Cilyl, (3.83)
where C1 = € + Co(1 + €)dp, and by (3.76), (3.78)—(3.79) we have
|Bi| = (14 Coe)lyl, [|B2] = (1 + Coe)lyl. (3.84)

Combining (3.81)—(3.84), we have
|0B] = [u1(0) —u2(0)| cos & — Cyy|
> |u1(0) — u2(0)| cos @ — Cy sinB|QB].
This implies that
GOl _ [u1(0) —ux@)] _ 1+ Cysin _
|OB| |OB] - cosh

if we choose 6 sufficiently small. Thus, the lemma is proved. |

3.5. The L-stability of the limit self-shrinker

In this subsection, we show that the limit self-shrinker is L-stable. The rough idea is
similar to that of [46], but the details are much more complicated. Compared with [46], the
singularities here no longer move along straight lines, we cannot choose time large enough
such that a given compact set does not contain the singularities (cf. [46, Lemma 4.13]).
Therefore, we have to choose a cutoff function near the singularities and analyze the
asymptotical behavior of the positive solution near the singular set. The analysis of the
asymptotical behavior is very difficult and we delay the arguments in the next section.
The main result in this subsection is the following lemma.
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Lemma 3.25. Fix R > 1. Let {t;} be the sequence of times and Yo, € €(N, p) the self-
shrinker in Lemma 3.22. Then we have

—/ (le//)e—# >0 (3.85)
Yoo

for any smooth function f € C5°(Zoo,R)-

Let w be the function obtained in Proposition 3.23 and v = log w. Then v is a function
satisfying

v

1 1
i Aov + |A]? + 3~ E(x Vo) 4 |Vo]? forall (x,1) € (Zoo X (0, 00))\S.

Let I = [a,b] C (0,00). We assume that ¢(x, ) is a function satisfying the properties
that for any r € I we have

P(-.1) € We*(Seor). Supp(@(-.2) NS, = 0. (3.86)

Then for any ¢ € I, we have

x|2
0= / div(qbze_%Vv)
Yoo

:/ (2¢(V¢,Vv)+(g_v_l_|14|2 |V’U|2)¢2)e_|x4|2
Too t

Vo[ A ~z2
< [, (1908 =302 = 14297 + 5 )e

This implies that for any 7 € I,

[ Lot =

Yoo

2
0V o,
ot

d _Ix? dp _ix2
d[/EOOwi)e 4—1—/200 vgba[e 4

Integrating both sides with respect to ¢ € I, we have

b lx|2 lx|2 1x[2
- / GLpeF = / R [ vge ¥
a Soo t=a Do t=b

/ / 2v¢>—e 2. (3.87)
Zoo

To get inequality (3.85), the main difficulty is to estimate the last term of (3.87). Using
a cutoff function inspired by [46], we will see that the last term of (3.87) depends on the
asymptotical behavior of w near the singular set.

We now construct the cutoff function near the singular set. Let {&1(¢), &2(¢), ..., & (2)}
(t € I) be o-Lipschitz curves on ¥,. We denote by

T ={(E@).0) [t €I} CZeox I, I'=|JI%.
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Choose 0 < § < p < 1. We define the function 1 on R by

oy | o<l <
1, Is| > p

and the function B(s) € C*(R) such that B(s) = 0 for |s| < &, B(s) =1 for |s| > 6,
0<B(s)<land|VP| < % We define the function fs , on Lo x I by

1
op(et) = [T (e 0)Baex. 1) € WH2(Seo x D\T),
k=1

where

rr(x,t) = dg(x, & (1)). (3.88)
For any ¥ (x) € C§°(Xc0,r), We define

P(x.1) = ¥ (x) fs,p(x.1). (3.89)

Then ¢(x,t) satisfies the properties in (3.86). With loss of generality, we assume that
supy,__ |¥| < 1. Then we have:

Lemma 3.26. For any small € > 0 we have

|2

[ gLy < - /E VL) 1 U 0.8 Soor).  (3.90)

Yoo

where VU depends on p, 8, € and the geometry of Yoo, g and satisfies

lim lim lim W(e, p,6 | Too,r) = 0. (3.91)
e—>0 p—>085—0

Proof. Since the function ¢(x,¢) = ¥ (x) fs5,,(x, t) satisfies

VP < (1 + ) f2, VY + (1 + l)‘ﬂ2|vf8,p|2,
’ €

- [ ot = [ (1ver— (5 +1a7)e )
= fzw (IWI2 - (% + |A|2)1p2)e—’“4'2
+ /Eoo (14052, — DIVy2e T
* /Zoo (% + IAIZ)(1 et

1 _Ix?
+ (1 + —) YAV fs o7 e 4
€ Too

= ]0+11+12+13. (392)

we have
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Note that | f5 ,| < 1 and lim,_¢ lims_¢ f5 ,(x,7) = 1 for any (x,7) € (£ x I)\I". The
Lebesgue dominated convergence theorem implies that

lim lim lim /; =0, lim lim I, = 0. (3.93)
e—>0 p—>085—>0 p—>05—>0

We next estimate I3. Let fr(x,1) = n(rg(x,1))B(rg(x,t)). We define

ER = inf{E >0

1
:8[j < gij(x) < E&'j for all x € BR(O) n 200}7

where g;; is the induced metric on X ,. Note that
Ix|2

P 2
/E IV 2 e 52/2 (BIViP + P2IVBR) e (3.94)
We estimate

2 2 —# ! 2 ? —(logp)2
/E APV e < /gsww ) SC/g s(ogsy® **

1 1 2

< (o + s ) (395)
llogp|l ~ |log 51

where C is a constant depending on the metric g. Moreover,

/ PIVEP e < / 10 (B/ (1)) | Vg [
Yoo *frkfé

2

’ (logp)* 4
- s (logs)* 62

8 2 2
(log p) ds < C (log p) 7
s s(logs)? [log d|

sds

<C

where C is a constant depending on the metric g. Combining this with (3.94) and (3.95),
we have
x|

1x2 _Ix2
/ IV il e 52/ (B2 + 2| VBP) e
Yoo Yoo

2
< C( 1 n |log p| )
[logp| ~ [logd|

Since || < 1 and | fx| < 1, we have

\fz l ’Cz
VAV Sl e <1 | Y [VAPe
Too Too =1
1 |log p|?
< c(, .
=« g’(uogm llog 3
Therefore, we have
lim lim 75 = 0. (3.96)

p—>05—>0
Combining (3.93)—(3.96) with (3.92), we have (3.90) and (3.91). [
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Lemma 3.27. For the function ¢ defined by (3.89), we have

l

5 - aotognr 3" 3
Lm2¢ e > 20(10gp)2/ ]

A% & ,5)nFP (4 Sllogri|?

k=1
+ LB) (3.97)
A9 (8 pnFR (3) Tr[log |
where F,(k) () and Agk)(S, p) are defined by
FR@) = (x € Soo | 1i(x.1) > 8, (3.98)
i#k
ARG, p) = {x € Teo | 8§ < 1 (x.1) < p}. (3.99)

Proof. We use the same notations as in the proof of Lemma 3.26. Direct calculation shows

that
2 f
2v —e 4 -_—
[ ,

1
< k
Z [Ewm() ol f

Z | I CLCACACATEEN
1 OO

_1x)?

T (3.100)

+ 1 0lm) | 5

Note that fora.e.t € I, |ar" | < [§,(#)] < 0, and we assumed that supy,__ [y/| < 1. There-
fore, using the definition of  and § we have

lx|2

or Ix2
/ " 2|v|n(rg) 32(l’k)|7’]’(rk)| . ’8_’" e 4
Yoo Ft (%) :

=78 iy MBI 0 @)

1 2
<2 / logp) (3.101)
AP EpnF® &) [logre| ry
ark 1x|2
Ly 2Bl |G e
ZooNF () 4
20 [ PIPEOBEOIA )
ZeoNF ()
6 !
_6o Ivl(ﬂ) , (3.102)
§ Ja @ anr® @) \logrk

Combining (3.100)—(3.102), we have (3.97). [
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Lemma 3.28. Foranyt > 0, we have

b [v]
lim lim (logp)® | dt — =0, 3.103
pg% sl—rﬂ)(ng) / /A"‘)(s pNFHF (8) ry [log e |3 ( )
1 2
lim lim (ng) / / bl Lo, (3.104)
p—05-0 A0 3 5HnFF 3 |logr]

Proof. Since w(x, t) satisfies (3.47) away from the singular set, the function

x\z

f(x, 1) = w(x, t)e“T

satisfies the equation

of 3
L =A AP 4+ = — —|x? ) f.
L= af+ (148 + 5 - Gl £
By Theorem 4.2, we have
b S
lim lim dz/ — S _o, (3.105)
p—05-0J, 40 @$,0nFR (8) T |logry|
| b
lim -/ dz/ f < +oo. (3.106)
§506 Ja A9 S HNFR (S

Since near the singular curve £(¢), the function w is large and we have v = logw < w.
Thus, (3.105)—(3.106) also hold for v, and this directly implies (3.103)—(3.104). The
lemma is proved. ]

Combining the above results, we can show Lemma 3.25.

Proof of Lemma 3.25. Combining Lemma 3.26, Lemma 3.27 with inequality (3.87), we
have

x2
~0-a) [ L@ 4 e p s Tt -a)
Too
_lx2 _lx)?
zfz v¢e4t=a—/ vpTe 4
3
—20(lo 2 (/ /
(log ) 48 (3 5)nFP (3) Sllogry 2

L Lo, e ) @10
A9 6.0nFR (3) Tk [logrk|

Taking § — 0 and next p — 0, and then € — 0 in (3.107), we get

,(2
—f vyle St ) (3.108)
t=a Too t=b

t=b

1x|2

x|2 1
— L Y 2 - y:
VL(Y)e > (/Eoovlﬁ e

Too b—a
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Note that by Proposition 3.23, w(x, t) is a function on (X X (0,00))\S with uniform
estimates (3.72) and (3.73). Thus, there is a sequence b; — + o0 such that

= / wdploo
1=b; Too

for a constant W. Therefore, by taking b; — 400 and a = 2 in (3.108) we get (3.85).
The lemma is proved. ]

22
/ vy e_%duoo <w

t=b,'

3.6. Proof of Theorem 3.1

In this subsection, we show Theorem 3.1. First, using Lemma 3.9 and the compactness
result of Colding and Minicozzi [20] we have the following result.

Lemma 3.29. Let R, N > 0 and let p be an increasing positive function. For any § > 0,
there exists a constant £ = £(R, N, p,8) > 0 such that for any ¥ € €(N, p) and any
r € (0, ] we have

- Area(X N By (x))
- Tr

1-46 <1468 forallx € BR(O)NX. (3.109)
Proof. We show that there exists a positive constant Cr = C(R, N, p) such that for all
3 € €(N, p) we have SUPENB 4, (0) |A| < Cgr. For otherwise, we can find a sequence
3; € €(N, p) such that
sup |A| = 4o0. (3.110)
XiNBRr4+1(0)
On the other hand, by the compactness theorem of Colding and Minicozzi [20], £; con-
verges smoothly to Yo, € €(N, p), which has bounded |A| on any compact set. This
contradicts (3.110).
As SUPEAB L. (0) |A| is uniformly bounded by Cg, estimate (3.109) follows directly
from Lemma 2.3. The lemma is proved. ]

Using the uniform upper bound of the area ratio and Lemma 3.4, we have the follow-
ing result.

Lemma 3.30. Under the same assumption as in Lemma 3.4, if {Z,,} converges locally
smoothly to X oo with multiplicity m € N away from a locally finite singular set Sy, then
forany x; € ;, N BR(0) with x; = Xoo € Xoo N Br41(0) and r > 0 we have
lim Area(X; N Br(x;)) = m - Area(Zq N By (X0)). 3.111)
i—+o0
Proof. Since § is locally finite, without loss of generality we assume that B, (Xs0) N Zeo

consists of only one singular point Y. For any € > 0 by the smooth convergence of
Xy N (Br(xi)\Be(yo0)) we have

lim Area(Sy, N (B, (x)\Be(yso))) = m - Area(Eoo N (By (o) \ Be (Vo). (3.112)

i—+o00

Since the area ratio is uniformly bounded from above along the rescaled mean curvature



On Ilmanen’s multiplicity-one conjecture 89

flow, we have
Area(X;; N Be(Yoo)) < Nme? -0 ase — 0.

Taking € — 0 in both sides of (3.112), we have (3.111). The lemma is proved. ]

Combining Lemma 3.29, Lemma 3.30 with Lemma 2.9, we show that the area ratio is
always close to an integer after a fixed time.

Lemma 3.31. Fix large R and small §y € (0, %) Under the same assumption as in Lem-
ma 3.4, there exists to > 0 such that for any t > to we have

Area(X; N Bg(x))
w§?

where m is a positive integer independent of x and t. Here § = §(R + 1, N, p, 8¢) is the
constants in Lemma 3.29 with N and p determined as in assumption (3.2) and Lemma 3.4.

m(l —268p) < <m(l +28g) forallx € BR(0)N Z;, (3.113)

Proof. We divide the proof into several steps.

Step 1. We show that there exists #y > 0 such that for any ¢ > £, (3.113) holds for some
integer m(x,t), which may depend on x and ¢. For otherwise, there exist a sequence
i — +ooand x; € Bg(0) N Xy, such that

Area(Z;; N Be(x;))

Tmé?

1| > 28, forallm e N NI, No]. (3.114)

By Proposition 2.8, by taking a subsequence if necessary we assume that ¥, converges
locally smoothly to a self-shrinker X, € €(N, p) with multiplicity m¢ € N and

Xi = Xoo € Lo N BR+1(O).
By the convergence of {2, } and Lemma 3.30, we have

Area(X;; N Bg(x;)) Area(Xoo N Be(Xo0))
= my .

li 3.115
i oo €2 g2 ( )
Lemma 3.29 implies that
Area(Xoo N B
15y < Areales 5 600 _ 4 5. (3.116)
13
Combining (3.115) with (3.116), for large #; we have
Area(Xy; N Be(x; 3
rea(Xy 0 Be()) (| 35 (3.117)
TmoE? 2

which contradicts (3.114).

Step 2. We show that m(x, t) is independent of x and we can write m(t) for short. For
otherwise, we can find a sequence #; — +oo and x;, y; € Xy, withm(x;, 1) # m(y;,t).
Because m(x,t) € [1, Ny], by taking a subsequence if necessary we may assume that
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m(x;,t;) = my for all i. Thus, for any i we have

m(yi, t;) # my. (3.118)

By Proposition 2.8, by taking a subsequence if necessary we assume that ¥,, converges
locally smoothly to a self-shrinker X, € € (N, p) with multiplicity m¢ € N, and

Xi = Xoos Vi = Yoor Xoos Voo € Xoo N Br+1(0).
By (3.117), we have m(x;,t;) = mg = m(y;, t;), which contradicts (3.118).

Step 3. We show that m(¢) is independent of ¢. It suffices to show that for any s € (— % %),
we have

m(t) = m(t + s).
For otherwise, we can find a sequence ¢t; — +o0o and §; € (—%, %) such that for all 7,

m(t;) £ m(t; + s;). (3.119)

We follow the same argument as in Step 2. Since m(¢;) is uniformly bounded, by taking
a subsequence if necessary we can assume that m(z;) = m; for all i. By (3.119), for all i
we have
m(t; + s;) # my. (3.120)
Note that m(t; + s;) is also bounded, we can assume that a subsequence of {m(t; + s;)}
converges to an integer m, with
moyp 75 nmj (3 1 21)

by (3.120). By Proposition 2.8, by taking a subsequence if necessary we assume that
{2445, —1 <5 < 1} converges locally smoothly to a self-shrinker X, € €(N, p) with
multiplicity mo € N. Inequality (3.117) implies that m¢ = m;. Since the multiplicity m
of the convergence is independent of time by Lemma 2.9, we have my = m,. Thus, we
have m{ = m,, which contradicts (3.121). ]

Using Lemma 3.31 and the results in previous sections, we show Theorem 3.1.

Proof of Theorem 3.1. Fix large R > Ry, where R is the constant chosen in Lemma 3.8,
and we choose a sequence t; — +oo as in Lemma 3.22. Then there is a self-shrinker
Yoo € €(N, p) such that for any 7' > 1 we can find a subsequence, still denoted by {#; },
such that {3, 4., —T <t < T} converges in smooth topology, possibly with multiplici-
ties at most Ny, to X, away from a singular set §. If the multiplicity of the convergence
is greater than one, Lemma 3.25 shows that the limit self-shrinker ¥, is L-stable in
the ball Br(0). This contradicts Lemma 3.8. Therefore, the multiplicity is one and the
convergence is smooth.

We next show that for any sequence of s; — +o00 there exists a subsequence such
that the multiplicity of the convergence is also one. For otherwise, there exists a sequence
s; — +oo such that X, converges locally smoothly to a self-shrinker . € € (N, p)
with multiplicity m’ > 1. By Lemma 3.31, there exists #o > 0 such that for any 7 > fg
we have
Area(X; N Bg(x))

m(l —280) < 7'[&2

<m(l+28g) forallx € BR(0)NX;, (3.122)
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where m is a positive integer independent of x and 7. By taking ¢t = #; — +o00in (3.122),
we have m = 1. On the other hand, taking r = s; — +00 in inequality (3.122), we have
m = m’ > 1, which is a contradiction. Thus, the theorem is proved. |

4. Estimates near the singular set

In this section, we will study the asymptotical behavior of the function w near the singular
set. These estimates are used in the proof of Lemma 3.21 and Lemma 3.28. In [42],
Kan and Takahashi studied time-dependent singularities in semilinear parabolic equations
along one singular curve. Here we develop Kan—Takahashi’s techniques to estimate the
solution when the singular sets consists of multiple singular curves.

First, we introduce the following notations. Throughout this section, we denote by
B, (p) the (intrinsic) geodesic ball centered at p in (M, g) and dg(x,y) the distance
from x to y with respect to the metric g.

Definition 4.1. Let (M, g) be a complete Riemannian manifold of dimension 7. For any
k e N,p, E > 0, we define My ,,(p, E) the set of all subsets A C (M, g) such that

(1) for any p € A, the harmonic radius at p satisfies r,(p) > p,

(2) for any p € A, the ball 8,(p) has harmonic coordinates {x1, X2, ..., X} such that
the metric tensor g;; in these coordinates satisfies

8agij

——1 =
E70i = gij = By, |G

<& onB,(p)

for any multi-index o with 1 < |a| < k.

The following theorem is the main result in this section, which gives the asymptotical
behavior of a positive solution of a parabolic equation near a time-dependent singular set.

Theorem 4.2. Let (X2, g) be a two-dimensional complete surface and let {£1,&,, . ... &}
with & : [Ty, Tz] — X be o-Lipschitz curves in X. Assume that

I
u(x.t) e L ((2 < (T1. T\ | Fk)

k=1
is a nonnegative solution of the equation

0
8—7: = Agu +c(x,t)u, 4.1

where c(x,t) € LY (E x[T1, T2]) and Tk = {(§x (2).1)} C X x [T, T2). Assume that for

anyk €{1,2,...,1} and any t € [T1, T3] the ball B1(§x(t)) is in My, 2(p0, Eo), where
ko is an integer chosen as in Corollary 4.4. Then we have:

(1) u € LL (X x (Ty,T»)). More precisely, for any (t1,t2) C (T}, T»), there exists a con-

loc
stant ry = Vl(p(), Zo.l, 11,12, T1, Tz) > 0 such that

lulliico,, iy = ClullLix). 4.2)
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where C is a constant depending on ||C||L00(Q1’T1'T2), po, Bo,0,t1,t2, T1, T2 and K
is defined by K = Qar, 1, 7, \Qr\,T\.T,- Here Qry, 1, is defined by
1

Qrine = (JIx, 1) e xR | x € B (§(1) C T, 1 € (11, 12))}.
k=1

(2) Forany (t1,t2) C (T1, T2), we have

2
lim lim dt/ _—
R—06-0 4 A9 (8 R)NFHF (3) Tk [log Ty

1 [~
lim —/ dt/ u dvol < +o0, 4.4)
6>08 Jy  JaP @ HnEPG)

where A% and F® are defined by (3.98)~(3.99) and vy (x,1) = d(x, & (1)).

dvol = 0, (4.3)

We sketch the proof of Theorem 4.2. First, we show an asymptotical formula for the
heat kernel on a Riemannian manifold in Theorem 4.3. Using this formula, we construct
a special function Uy (x,t) for each singular curve & and a measure v, and show that
Ui (x,t) behaves like log 1/r;(x,t) when the point x is near & and v is the Lebesgue
measure in Lemma 4.5. Moreover, Uy (x, t) satisfies the growth estimates (4.3)—(4.4) by
Lemma 4.6, and we use U (x,t) to construct a function v in Lemma 4.5, which satis-
fies the backward heat equation. The function vy is important to construct some cutoff
functions (cf. Definition 4.12). When the singular curves are disjoint, using these cutoff
functions we can show (4.2) directly in Lemma 4.9. When the singular curves are not
disjoint, we show the finiteness of a functional I and use the functional I to show the L!
norm of u (4.2) in Lemma 4.13. By using the functional 7, we get a positive linear func-
tional pj for each singular curve & in Lemma 4.15, and by Lemma 4.16 jij is uniformly
bounded even if the singular curves are not disjoint. Finally, we use i to construct Uy
and show that u is controlled by Uy . By the properties of Uy, we have that u satisfies the
growth estimates (4.3)—(4.4).

4.1. Properties of the heat kernel

In this subsection, we will give the expansion of the heat kernel on Riemannian manifolds.
Let (M, g) be a complete Riemannian manifold (without boundary) of dimension m. Sup-
pose that p(x, y,t) is the heat kernel. Then p(x, y,t) has the following asymptotical
formula (cf. [48, Theorem 11.1]):

d%(x.y)

p(x,y,t) ~ (4nt)_%e_ a

as t — 0 and dg(x, y) — 0. The next result gives more estimates on the asymptotical
formula.

Theorem 4.3 (cf. [48, Theorem 11.1] or [5, Theorem 2.30]). Let pg, E¢ > 0 and integers
m > 2,k > 0. There exists an integer ko = ko(k) depending only on k satisfying the
following property. Let (M, g) be a complete Riemannian manifold of dimension m and
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Xo € M with 8,,(x0) € My m(po, Eo). There exists a sequence of smooth functions
{u; (x, y)} with ug(x, x) = 1 such that for any x,y € 8Bp,/2(x0) and t € (0, 1] we have

m dFx.y) k ) m
Py ) — @) Zem A Y ui(x, p)t| < Clpo, Bo.m)tkH1=E (45)

i=0

and

< C(po, Bo,m)t*=% . (4.6)

m d3(x.y) k .
Vap(x,y.1) = Vx ((4nt)_2e_ “ar Z”i(va’)tl)
i=0

Proof. We follow the argument in [48, Theorem 11.1] to prove (4.5)—(4.6). Define the
function

w3 K .
G(x,y,t) = (4mt)"2e” Zui(x, ).
i=0

Direct calculation shows that

9 m dZx.) A —1\ & .
o2 =1 (45 Eo

i=—1

k-1 k k-1
—r > AVEVuip)tt + Y (At =) i+ 1)Mi+1li)-
i=—1 i=0 i=0

For fixed x and y € 8B,,/2(x), there exists a sequence of function {u; (x, y)} satisfying

A -1
(r 2yr — m2 )uo + r{Vr,Vug) =0,
rAyr m—1
( 2y 2 )ui+1 +r(Vr,. Vi) + (0 + Duiyr = Ay, 0<i<k-1
This implies that
0 m dZ(x.y) k
(Ay_a)g = (rt) B e T Ay 1 7

As in the proof of [48, Theorem 11.1], we have
uo(x, y) = Cdg(x, )T J 72,

r .
m—3—-2i __ 1 2it1—m 1
Uip1 =dg(x,y) 2 J 2/ s 2 J2Au;ds,
0

where C is a constant such that u(x, x) = 1 and J(y) is the area element of the sphere
of radius d (x, y) at the point y. There exists integer ko depending only on k such that
under the assumption 8B, (xo) € My, .m (00, Eo), for any integer i € [0, k] we have

[u; (x, )| 4 [Vyu; (x, )| + [VxV, Vyu;(x, y)| < C(po, Eo,m) (4.8)
forall x,y € B,,/2(x0).
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Letp = %0. Now we choose a cutoff function 7(r) with 0 < n < 1 such that n(r) = 1
when r < p and n(r) = 0 when r > 2p. Define
x(x.y) = n(dg(x,y))

and
F(x,y,t) = x(x,y)G(x, y,1).
Ifdg(x,y) < pandt <1, identity (4.7) gives that

(o2 (-2

o gm 4z
< C(po, Eo)t* "2 e

(-2 (o-2)e

Gt e B (L v d A + VoA
27 x yUk xRyUk

and

o m_dExy
< C(po, Bo)tF 172 ¢ ar

where we used (4.8) in the last inequality. Similarly, for p < dg(x, y) < 2p we can also

check that
d
Ay, — — | F
(&-7)

ad
‘(Ay — E)VXF

Combining the above estimates, we have

az(x.,y)
- ,—m_q 4%
< C(po, Bo)t~ 2 e @

dz,(x.y)
—~\_p_m _9%
< C(po, Bo)t > 2e @

|F(x,y.t) — p(x,y,1)]

t
= ‘/ ds/ p(z,y,t—s)(Az—E)F(x,z,s)dz
0 M ds

t
< Clpo. Eo) / &4 ds / P y.s) dz
0 Bp(x)

t m 2
+ C(po, Eo)[ s_7_le_%5ds/ p(z,y,s8)dz
0 B2p (X)\Bp (x)

< C(po, Bo, m)tkt1-% 4.9)

where we used the fact that

/ p(x,y,t)dvol, < 1.
M
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Thus, (4.9) gives (4.5). Similarly, we can show that

|VxF(.X, yvt) - vxp(x’ y,l)|

t
= ‘/ ds/ p(z,y,t—s)(Az—E)VXF(x,z,s)dz
0 M 3S

t
< C(po, Eo)/ sk_%_lds/ p(z,y,s)dz
0 Bp(x)

t m 2
+ C(po, Eo)/ s_z_Te_%tdsf p(z,y,8)dz
0 B2p ()\Bp (x)
< C(po. Bo.m)t*™7%. (4.10)
Thus, (4.10) implies (4.6). The theorem is proved. [

As a corollary, we have the following result in dimension two.

Corollary 4.4. Fix py, B¢ > 0 and an integer ko = ko(0) chosen as in Theorem 4.3 for
k = 0. Let (32, g) be a complete surface and xo € T with B1(xo) € My, 2(po, Eo),
there exists a constant C(pg, E¢) > 0 such that forany x,y € 58%0 (xo) andt € (0,1] we
have

p(x.y.1) = (14 C(po. Bo)dg (x.)) po(x.y.1) + Clpo. Eo). (4.11)
p(x.y.1) = (1= C(po. Bo)dg (x.y)) po(x. y.1) = C(po. Eo). (4.12)
- C(po. Eo)
IVxp(x, v, D) = (1+ Clpo, Eo)dg (x, 1)) Vxpolx, y, )] + ————.  (4.13)
= C(po. Eo)
[Vep(x. 3.0l = (1= Clpo. Bo)dy (5. ) Vapol, y 1) = —H2=2, (@.14)
X, 2
where po(x,y,t) = 4—31”e_dg(4ty) .
Proof. By (4.8), for any x, y € B,,/2(xo) we have
luo(x,y) =1 = sup  [Vyuol- dg(x.y) = C(po. Eo) dg(x. ). (4.15)
By /2(x0)
Applying Theorem 4.3 for k = 0 and using (4.15), we have (4.11)—(4.14). The corollary
is proved. ]

4.2. Properties of a solution with time-dependent singularities

In this subsection, we follow the arguments in [42, Section 3 ] to discuss a solution of the
linear equation on (X, g)

af (x,1)
ot

where ¥ is a complete two-dimensional surface. Here we assume that § : (T, T) — X is
a o-Lipschitz curve with —oo < T < T < 400, 8¢(;) denotes the Dirac function with the

= Af(x,1) + 8¢y ® v, (4.16)
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pole £(t) and v € (Co((T,T))).For0 <r < +ocand T <t <t < T, we set

I ={E@.0) e SxR |1 e (LD}, @.17)
0ri={(x.1) € TxR|x € B (E(W) C .1 € (L.7). (.18)

We say that f(x, 1) is a solution of (4.16) if for any ¢ € C5°(Q . 7 7).

J.

We define the function U(x, t) by

T
f(x,t)(—%—mp(x,t))dvoldt=/ 0(E(s),s)dv(s). (4.19)

oo, T.T T

U(x,t) =/T p(x,E(s),t —s)dv(s), (4.20)

where p(x, y,t) is the heat kernel of (X2, g). Then U(x,t) satisfies (4.19) (cf. [42]).
Moreover, we define

1 1
P(x,y) = Elog m, r(x,t) =dg(x,£(1)). 4.21)

Following the argument in [42] and using Theorem 4.3, we have:

Lemma 4.5 (cf. [42]). Let§ : (T, T) — X be a o-Lipschitz curve and T <t <t < T.
Assume that for any t € (I, T) the ball B1(§(t)) is in My, 2(po, Eo) as in Corollary 4.4.
Then we have:

(1) Assume that v is the Lebesgue measure. For any € > 0, there exists a positive constant
ro = ro(e,0, B, po, I, T) such that if r(x,t) < roandt € (¢,1), then we have

(1-)P(x,5@1)) =Ux,1) = (1 +6)P(x, (), (4.22)

(I =e)VO(x,§()] = [VU(x,0)| = (1 + €)[VP(x,§(1))]. (4.23)

(2) For any y € (%, 1), there exist a constant ro = ro(po. 9.0, T, T,y) € (0,1) and
a function v € C*(Qy 7 \I'; 7) satisfying

av )
o +Av=0 inQy,;\I';7 (4.24)
such that for all (x,t) € Q. ,:\I'; ; the following inequalities hold:
1 1
1 < 1) <log ——, 4.25
vlog i = v(x, 1) < log — (4.25)
yr(x, )" < |Vo(x,0)] <r(x,0)~L. (4.26)

Proof. The proof is almost the same as that of [42, Proposition 3.1, Proposition 3.3 and
Lemma 4.1], and we sketch some details here. For r > 0, 8 > 0 and § > 0, we define

§ B r2
Sg(r) = 71_1/ (4s)"2e % ds.
0



On Ilmanen’s multiplicity-one conjecture 97

Since £ is o- Lipschitz continuous, we have
Ir(x,t) —r(x,s)| <ot —s|.
Thus, for any ¢ > 0 we have

1
r(x,s)? < (1 +o)r(x,1)> + (1 + —)02|t — 52
c

This implies that

1
r(x,s)? > 7 r(x,t)? — —o2|t —s|°. (4.27)
¢

¢
Combining this with Corollary 4.4, we have

t
/4P@£®J—ﬂﬁ

025 (! 1 r(x.n)?
< (1 + C(po, Eo)(r(x,t) + 05))eTc‘s / PREE R + C(po, E¢,8)

-5 4m(t —s)

r(x,t)
+ C(pg, B9, 96).
L)+ Clom. B0.5)

= (1 + C(po. Eo)(r(x,1) + 08))e042v852(

Choosing the constant ¢ = V8, we have

t t—§
U(x,t) = (/t—8+/T )p(x,é(s),t—s)ds

< (14 C(po. Eo)(r(x,1) + 05))6@52 (M

+ C(IO()v EOy 8717 T)
1+ «/3)

Note that

lim (log l) 1Sz(r) = L

r—0 r 2
Therefore, for any € > 0 there exists a constant ro = ro(€, 0, Eg, po, L, 7_") such that for
any x with r(x,?) < ro we have

U(x,t)

oty -~ TE

Similarly, we can show that
U(x,t)
- - " > 1 —
P(x,£(r) —
when r(x, t) is small. Thus, (4.22) is proved. Similarly, we can use (4.13) and (4.14) of
Corollary 4.4 to estimate |[VU |.

To prove part (2), we denote by U(x,;§, v) the function (4.20) constructed by ()
and the measure v. We define £(t1) = §&(T + T — 1) and let v be the Lebesgue measure.
Then the function v(x, ) = kU(x,T + T —t; £, v) satisfies the properties in part (2) by
choosing some k > 0. See [42, Lemma 4.1] for details. [

€

Using Corollary 4.4, we have the following result.
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Lemma 4.6. Let § : (T, T) — X be a o-Lipschitz curve and T <t <t < T. Assume
that for any t € (I, T) the ball B,(£(t)) is in Mo,2(po, Eo) as in Corollary 4.4. Let
v € (Co((T, T))) and U(x,t) the function defined by (4.20). Then for T <t; <ty < T
we have

f2 U(x,t
lim lim [ d / 0, (4.28)
R—05—0 J;, At(gg R) r(x,t)|logr(x,?)|
hm dt/ U(x,t) =0, (4.29)
808 A:(4.9)

where A;(6,R) ={x e X |§<r(x,t)< R}.

Proof. We follow the arguments in the proof of [42, Proposition 3.3]. Without loss of gen-
erality, we can assume that the curve £(s) (s € (T, T)) is contained in B, /2(x0) for some
Xo € X and By, (x0) € Mg,,2(00, Eo). Corollary 4.4 gives that for any x € B, /2(xo)
andt € (T, T),

t
Ulx.1) < /T (Cpo. E0) po(x. £(5).1 — 5) + Clpo. Eo)) dv

= C(po. Eo)Uo(x,1) + C(po. Eo)(T — T),
where U is defined by

t
Uatxot) = [ pole (01t =) dv.
Thus, it suffices to show (4.28)—(4.29) for Up(x, 7).
Fort € (T, T) with |[Dv| < +00 we write
v((s,t]) = Dv(@)(@t —s)—G(s), Ty <s<t,

where G(s) satisfies limg_,,— Gis) =0forae.t € (T,T). Let A € (0,t —1t). Note that
Uy can be written as

t—A t
Up(x,t) = /T po(x,&(s),t —s)dv(s) + Dv(z) /t_)L po(x,&(s),t —s)ds

t
+/ po(x,E(s),t —s5)dG(s) =: I} + I, + I5.

By Theorem 4.3 1, satisfies I; < 4m\v((T t —A)) < 4o00. Thus, we have

I (x,t
/ dt/ 1, 1) dvol
f 4,6.R) T(x,1)[logr(x,1)|

_ 2 1
= _v(@’ T))/ dt /A,(S R) r(x,1)|logr(x,1)| dvol
= S~ 1T, 7)) / uo d
< ﬁ(zz — (T TR - 5), (4.30)
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where we assumed that R is small such that [logr| > 1 for any r € (0, R). Moreover,
we have

1 2 C -
! / di / L.ty dvol < (6, — t)w(T. T))S. @31)
§ Ju 4:(3.5) A

where (7 is a universal constant. Next, we estimate /. Using Corollary 4.4, (4.27) and
integration by parts we have

/—A po(x,&(s),t —s)ds

4 1 71'(X.S)2 o2 A 1 _ r(x.0)?
——e 4t dr<ed ——e d+ar dt
0 0

- 4t drt
1 o2 4(1 A r2 o0
S —ETL‘)L log ue_4(l+(f))~ + / e_z logz dz
4z r(x,)? r(x.)2
4(1+c)A
< Gallogr(x,1)| + C, (4.32)

where we can choose ¢ = 1 and C; is a constant depending on o and A. Therefore, we

have
2 L(x,t
/ dt/ 2(x.7) dvol
t 4,,R) T(x, 1)[logr(x,7)]

tr R 1
< C2/ dv(t)/ (Jlogr| + Drdr
n §

r|logr|
<2C3 - (R—=38)v((t1,12)) (4.33)
and
1 (2
—/ dt/ Ir(x,t)dvol < Cy - (8 + 8|logé§|)v((t1,12)). (4.34)
) 31 %<r(x,t)<8

Finally, we estimate the term /3. Using inequality (4.27) for ¢ = 1 and integration by
parts, we have

t
[ potx.0).0 =216

1 a2 ! 1 _r(x.l‘)2
< —p¢ 4 e 8i—s)
(= L=

1 2af 1 _ran? ! 1 r(x,1)? \ _re.n?
< — ——e 81 4+ G + 87— | d
< (3 [ 1001 + g )
1 o2 G ! 1 1 2 _r(x.n)?
<1 ap |G (s)] / ( N r(x )2)e 2l
4 t-rn) L—s Jima\(—s)  8(—s)

|G(s)]
p —_—
t-Arp) L =S

IA
®
w

llogr(x. 7).
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where C3 depends on o and A. Thus, we have

/tz dt/ [13(x.1)| dvol
f 4,8,R) T(x,1)[logr(x,1)]

G(s 12 1
<C(o,A) s | ()|/ dt/ dvol
(- At) t—=s Ju 4,8,R) T(x,1)

<C(o,A) s GOl ( )| “(R=6)(12—11) (4.35)
(t— )L t)
1o |G (s )I
= dt [I5(x,t)|dvol < C(0,A) sup —= - (t, —t1)|logd|s. (4.36)
§ 8 <r(x,1)<8 a0 T~
Combining (4.30)—(4.36), we have (4.28)—(4.29). ]

4.3. Estimates of the solution with disjoint singularities

In this subsection, we follow [42, Section 4.1] to construct some cutoff functions and
show the integrability of the solution across the singular set when the singular curves are
disjoint. First, we construct some cutoff functions.

Definition 4.7 (cf. [42, Section 4.1]). (1) Let t3 < t; <t, <t4 and 0 < § < ry. Define
=1C(t;t1,12,13,14,8,r1) € C®(R) such that

é’(l‘) _ {8, t e [11,[2],

ry, te (—00,13] @] [14,00),

1 1
< 2r1( + ) (4.37)
11— 13 4y — 1

(2) Let n be a smooth function on R satisfying

07 z S 01 /
n(z) = 0<n(z)<2 (O<z<l), (4.38)
1, z>1

b

and define H(z) = foz n(t) dz. Then H(z) satisfies the inequality
0<zH'(z)— H(z) < H'(2). (4.39)
We keep the same notation H(z) as in [42]. Throughout this section, H always

denotes the function as above and it should not be confused with the mean curvature.

(3) LetO<r<r<1,T} <Z<L<t_<7_“<T2_andlet§ : [Ty, T;] — X be a continuous
curve. We define ¢¢ = ¢z (x.t5r,7,1,1,T, T, T, T5) € C*°(Q1,71,.1,) satisfying

1 on@Q,,7

Vi¢e =0in Q, 7,,1,. (4.40)
0 on Q1,T1,T2\Q;,LT, e R

0<¢s =<1, ¢s={
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A direct corollary of Lemma 4.5 is the following result.

Lemma 4.8. Under the assumption of Lemma 4.5, we define
V(x,t) =e 20D e (0, \T,0)
Then V(x,t) satisfies
av

e + AV =4 ?"|Vo* in Q1 7:\Ts7

By using inequalities (4.25)—(4.26), for all (x,t) € Q,, ;i\I'; i the following inequalities
hold:

r(x,1)> < V(x,1) <r(x,0)%, (4.41)
1<V, t) YVV(x,t)]? < 4r(x,1)? 2, (4.42)

14
I < 38_[ b AV < dr(e, )22, (4.43)

where y € (%, 1).

Consider the case that there is only one singular curve. We show that the solution
of (4.1)is in L1 across the singular set. The argument is the same as that of [42] and we
give all the details for the readers’ convenience.

Lemma 4.9 (cf. [42, Lemma 4.2]). Fix y € (%, 1). Under the same assumption as in
Theorem 4.2, if there is only one singular curve & : [Ty, T,] — X, then for any interval
(ll, lz) C (T], Tz) there exists r1 = rq (,00, Bo,0,t1,t, 11, T2, )/) > 0 such that
lullrco,, iy = ClullLiky. (4.44)
where C is a constant depending on ||C||Loo(Q1VT1!T2), Y, o, 80,0, t1,t2, T1, T> and K is
defined by K = Qor\ 1, 17,\Qr\,11.T>-
Proof. Let
Ti <ts <tz <t <th <ty <tg<Tp,
y € (% 1) and rg = ro(pg, Eo,0,15,t6,y) > 0 as in Lemma 4.5. Let 0 < § <r; < %0.
We construct the function
d(x,1) = P(x,1;r1,2r1,13,14, 15,16, T1, T2)

satisfying (4.40), and the function v € C*°(Q p 15,16 \I'z5,1) satisfying (4.24) with prop-
erties (4.25)—(4.26). Moreover, we define

V(x,t) = e &0 w(x,1) =) 'W(x,1)—1 (4.45)
and

p(x,1) = ¢(x, 1){(1)(H o w)(x, 1),

where ¢ = ¢(¢;11,12,13,14,0,r1) and H are given in Definition 4.7. Note that H o w = 0
near I' in Q) ss,15- This implies that ¢ € C5°(Qr.15,16 \'s,6)- By (4.1) we have

0
—/ u(—(p + Aqo) :/ cue. (4.46)
Oroisig \ 01 0

ro.ls5.tg
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Note that (4.39) and (4.45) imply that

(How <{wH' ow <VH' ow, (4.47)
we have ¢ < ¢V H’ o w. Thus, the right-hand side of (4.46) can be estimated by
/ cup > —||cV||Loo(Qr04t5't6)/ upH' ow. (4.48)
Oro.t5.t6 ro.ts.tg

On the other hand, direct calculation shows that
g—f + Ap = ¢pA + B,

where

A= @V +AV)H ow—3,f((w+ DH ow—How) +{ ' [VV|?H" ow,

B = (0;¢ + A®)CH ow +2(Ve, VVYH o w.
By (4.39) and (4.43) we have

A>(0;V+AV)H ow —2]3:¢|H ow > (1 —2||0:¢||Leowr)) H' 0 w.

Note that

Supp(B) C Supp(|Ve| + [9:¢[) N {(x.1) € Qar 1516 | w = 0}
C {(xv[) € QZI‘] ,t5,t6\ Qr] ,13.04 | w Z 0}
_ 1
- {(X,l) € Q2r1,t5,te\ er,t3.l‘4 | I‘(X,l) = C(I)zy}
C {(.X,t) € Q2r1,t5,16 | r(xvt) > rl} = Ka
where we used the construction of ¢ (¢) in Definition 4.7. Thus, we have
1B] < (18:¢ + Adllroe IV ILoox) + 21 VP llLoe i) IVV oo k) XK
< C(cp,k, Vs AK>
where ¢y k = supg (|0:¢| + |A¢| + |V¢|). Combining the above estimates, we have

d¢
E + A(p > (1 — 2||8t§||Loo(R))¢H’ ow — C(C¢’K, Y, V])){K. (449)
Combining (4.48)—(4.49) with (4.46), we have
(1= 20008l = [V w0y ) [ gl 0w = Clepuyor) [ .
ro.t5.tg K
Taking ro sufficiently small and using the assumption that c(x,¢) is locally bounded,
we have

1
1=2019:8llLoe@) = lleVllLoo(@ry i506) = 5-
Therefore, by the definition of ¢ we have
/ uH/owE/ u¢H’ow§C(C¢,K,y,r1)/ u. (4.50)
Or .t1.12 Org.t5.16 K
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Note that the function H' o w converges to 1 on Qy, 1,1, \I's, 1, as § — 0. Thus, taking
8 — 01in (4.50), we have that u is integrable on Q;, ;, s, The lemma is proved. [

4.4. Estimates of the solution with multiple singularities

In this subsection, we show that the solution of (4.1) is L! across the singularities when
multiple singular curves exist. If any two singular curves do not coincide at any time,
we can use Lemma 4.9 for each singular curve and get the L' estimates. Otherwise, the
proof will be much more difficult. The idea comes from a combination of the arguments
in [42, Lemma 4.2 and Lemma 4.3], but we need to use some new cutoff functions in Def-
inition 4.12. We sketch the proof as follows. First, we control the L' norm of u near the
intersection point (xg, o) by an integral which characterizes the growth of u near the sin-
gular curves away from (xg, tp) (cf. (4.68)). Next, the integral of u is bounded by the L1
norm of ¥ on some compact set K away from the singular curves (cf. (4.80)). Combining
the above two steps, we can bound the L! norm of u near the intersection point.
First, we introduce the following definition.

Definition 4.10. Let {£1,£5,...,&} (t € [Ty, T,]) be continuous curves in X, and let
I C [T, T7]. We say that {&(¢),...,&(t)} are disjoint on [ if for any time ty € I, we
have
&i(to) #&i(tp) foralli # j.
Let (x¢, to) be a point in the singular set. By Lemma 2.11, there exists finitely many
singular curves passing through (x¢, #p). There are two cases for the singular curves:

(A) There exists an interval (¢, t;) with ¢y € (1, t2) and singular curves {&1(¢), ..., & (¢)}
(t € (t1,12)) such that {£{(¢), ..., & (¢)} are disjoint on (¢1, 2)\{to} and
€1(to) = &2(to) = -+ = &1(t0).
(B) There exists an interval (1, ;) with ¢ty € (¢1, t2), singular curves {c1(¢), ..., cx(2)}

(t € (t1,10]) and {¢1(¢),...,C;(2)} (¢ € [to, t2)) such that
(@ {c1(t),...,cx(t)} are disjoint on (t1, tp),
(b) {ci(t),...,c;(t)} are disjoint on (¢, t2),
(c) The singular curves coincide at #y:
c1(to) = -+ = cx(to) = ¢1(to) = -+ = ¢1(to) = xo.

If k = [, then this is just the case (A). Note that the union of two Lipschitz curves is
still a Lipschitz curve. Thus, for k < [ we can construct the curves

gy = | rennl ey oy
l ci(t), te(t.r2), -

E(Z) _ {Ck(t)» t e (ll,to]7

- fork <i <,
¢i(t), tel(tot2),

Then {&1(¢),...,&(¢)}(t € (t1,12)) are Lipschitz curves. For k > [ we can also
construct similar curves {£1(¢), ..., & ()} € (t1,12)).
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Summarizing the above discussion, we define:

Definition 4.11. Let I = [tq, 3] or (t1,12) where t; < ty < t,. We call that the singular
curves {£1,&,...,&}(t € I) are around (xg, #p) on I, if the curves satisfy the conditions
in Case (A) or are constructed as in Case (B) on /.

We construct some cutoff functions when the singular curves are not disjoint.

Definition 4.12. Let 0 <r <7 <1, Ty <T <t <t <T < T, and let {&1,&,....&)}
(t € [T1, T2]) be o-Lipschitz curves. We assume that {&1(¢), ..., & (¢)} are around (xo, Zo)
on (T, T,) for some ty € (¢,1).

(1) For each & and (t1,1;) C [T1, T2], we define the notations Qﬁkt)] 1, and Ft(lk)tz as in
(4.17)—(4.18), and we define

1

1 1
(k) (k) 3 (k)
Qr,tl,tz = U Qr,tl,tz’ Ftl,tz = U Ftl 1 Qr,tl,tz = m Qr,tl,tz' (4.51)

k=1 k=1 k=1

(2) For each & we define the function ¢¢, (x,1;7,7,1, t.T.T. T, T») € C“(Qilf%]’Tz)
as in (4.40). Then the function

¢(X?I;L’77£’ t_vza T) =1- (1 _¢§'])(1 _¢§2) '(1 _¢§']) € COO(QAl,Tl,Tz) (452)

satisfies the properties

L onQi,71,,15 N Qs

0<¢p<1 ¢= A 0 .
{O on Q1,7 15\Q5 7 7

Moreover, ¢ satisfies the properties
l
Supp(¢) N Oy 7.7 C Qs r7 = (J{(x.0) € Oy 1.7 | mi(x.0) <7}
k=1

and

Supp(|V¢| +10:0) N 0147 C 0rri\Qrisi

cU{(xz)eQ1 |r <ri(x,t) <7, ri(x.t) >rforalli #k}. (4.53)
k=1

Here we assumed that Q; 1 7 C QAI,T,T by shrinking the interval [T, T3] if neces-
sary. N N
(3) Fixy € (% 1). For each &, we define
o nE) k)
vee =) Arf)

as in (2) of Lemma 4.5, and let r ) the constant in (2) of Lemma 4.5 such that
inequalities (4.25)—(4.26) hold for

wneo® \ry .

'O T
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“4)

(&)

(6)

Set
ro == min{r", r$?, ey (4.54)

After shrinking the interval [T, T3] if necessary, we can assume that
Ir,.15 C Qro.11.Ts- (4.55)

By (4.54)~(4.55), we know that inequalities (4.25)—(4.26) hold for all functions vy
andall (x,2) € Q, 7 7\I'r 7.
For any € > O and (x,¢) € QrO,Z,T\FZ,T’ we define

i
Bl 1) = Y vi(x. 1),
k=1
U(x,1) (4.56)

log% '

Pe(x,1) = (H o we)(x, 1),

where H is defined in (2) of Definition 4.7. Note that H o we = 0 near each & and
this implies that e vanishes near I'y 7. Moreover, for any (x,7) € Qo #\[p 7 we
have N T

We(x,1) =2 —

lim ¢gc(x,t) = H(2), lim|V@e|(x,t) =0, (4.57)
€e—>0 €—0
8956 ~ " -~ ~ 12

Let 3
F(x,1) = e 70,

Then inequalities (4.25) imply that for any (x,t) € Q ol P \[ .7
riry-r; <¥(x,t) < (rrp---rp)”. (4.59)

Under the above assumptions, for p > O and & € Ll(Q,O,L,-) we define

_ h|Vi|?
1(p: 1,7, h. ro) =/ Vot
0,,..iNto=ix.n=1} [log ol

where r(x, ) and v(x, t) are the function defined in (4) above.
Assume that {£1(¢), ..., & (¢)} are disjoint on [T}, T3]. We choose p > 0 such that

@) 0 _
Osr.m, N Q5 =0

forany 1 <i # j <I[.Foranype (0,p), Ty <t <t <T,andh € L'(Q
define

%)

1.7 We

_ 1 d h
Lo (pit P ) = —— o
6 (P 2 [log p|? /t /psrk(x,t)sﬁ I (x,1)?
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The next result gives the L! estimate of the solution near the singularities when the
singular curves are not disjoint.

Lemma 4.13. Under the same assumption as in Theorem 4.2, for any (t1,t2) C (T1,T2)
there exists r1 = ri1(po, Eo,.,t1,t2, T1, T2, y) > 0 such that

lullizico,, 4.0 = CllullLik) (4.60)
where C is a constant depending on ||C||Loo(Q1yT] 752 Vs Po, E0.0,11,t2, T1, T and K is
defined by K = Q2r, 11,17, \Qr\,11,T,- MoTeover, we have

sup I(p:ty,t2,u,rp) < +00. (4.61)
0€(0,%)
Proof. We divide the proof into several steps:
Step 1. Without loss of generality, we can assume that c(x,¢) > 0 on Oy 1,,7,. In fact,

let u(x, ) be a solution of (4.1). Then for any k € R the function @ (x, 1) = u(x, 1)ek?
satisfies the equation

ou - .

o = At + (c +kyu forall (x,t) € Qv1,,1\I'1,,75-

Since c is locally bounded by the assumption, we can choose k large such thatc + k > 0
on O1,1,,7,- Thus, it suffices to show Lemma 4.13 for c¢(x, t) > 0.

Step 2. Assume that {£1(¢), ..., & (z)} are around (x¢, fp) on [T, T2]. Let T <t5 <t3 <
1 <ty <ty <ty <tg <T,. We construct vg, rg, We and @ as in Definition 4.12 by setting
T=t5, T=ts L=t (=t

Assume that (4.55) holds. Let 0 < § < r; < %0 and set r = rq,7 = 2r;. After shrink-

ing r; and the interval [T}, T3] if necessary, we assume that Q»,,.1,.15 C QA,O,TI,TZ. We
choose t7, tg such that T} < t7 < t5s < tg < tg < T, and define the function
¢ = ¢(-x7 t» ry, 2r17 t57 t65 t7, [87 T15 TZ)

as in Definition 4.12. Then by (4.53) the function ¢ satisfies the properties

Supp(IV| + [0:91) N Q2r, 5,16

C Q2r1 Jt5,t6 \ er \ts.te
1

C (U 1) € Qarysi | 11 ST, t) < 271, 1 (x. 1) = 1y forall i 5 k}.
k=1

Moreover, we define the following functions on Qg 5.6 \I'ss.16

I
Vie(x,1) = e 2600, Vix, ) =) Vi(x,1),
k=1

w(x, 1) =¢@) V(. 0) = 1, @o(x.1) = ¢(x. )¢ () (H o w)(x,1),
where ¢ = ¢(t;11,12,13, 14,6, 1) is the function defined in (1) of Definition 4.7. By using
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properties (4.41)—(4.43), for any (x,7) € Qyg.1s.16 \I'1s.14 We have

I I

D or(e )2 V() <) m(x 0¥, (4.62)

k=1 k=1

)4 !
2y—2
l§W+AV§4Zrk(x,t) r=2, (4.63)
k=1
1
YV <23 re(x. )7 (4.64)
k=1

Note that the function ¢g (x, ¢) vanishes near the point (&1 (¢9), to), but go(x, f) may not be
zero on I'y, ;.. The function ¢, defined in Definition 4.12 vanishes near I'; ;, but it does
not satisfy inequality (4.63) and inequality (4.49). Therefore, the argument of Lemma 4.9
does not work any more.

Step 3. Direct calculation as in the proof of Lemma 4.9 yields, for any (x,7) € Qar, 15,165

0o(x,1) < p(x,)V(x,t)H ow, (4.65)

9
% + Ago = (I = 2[10,Lll o) pH 0w — Clcgk. v.r)xk.  (4.66)

where K and ¢y, g are defined by
K = Supp(IVl +10:91) 0 Qorisse - ok = sup (10,81 + Al + V). (4.67)

Let ¢ = @o@e € C5°(Q2r 15,16 \'1,15)- Then we have

9 9 Rz i i
L ap= (ﬂ + A@o)we + (& + A%)wo + 2(Vée, Vo)

ot ot ot
0
= (% + A(po)gﬁe + H" 0 &c|Vie|* 0o + 2¢0H' 0 dcH' o w(Vde, VV)

+2LH' o & H o w(Va, Vo)
> (I =2/10:¢ [l Loo))@H 0 w — Ccg k. ¥ T1) XK ) Pe
—2¢H' o w|VV |- |Vd¢|xio.>0y —2VH' o wH' 0 &c|Vde| - V|,

where we used (4.47), (4.58), (4.66) and the definition of w. Combining this with (4.46)
and using the assumption c¢(x,?) > 0, we have

a
05/ cufpz—/ u(—(p—i-Ago)
Q2r1,t5,t6 Q2r1,t5,t6 at

< (1 =213l m) / wpGH' 0w+ Cleox.y.r1) fK 4 e

0271 ,15.16
P2V im0y [ udH' 0 ul Vel 5,00
2ry.t5.16
+ 2||V||L°°(Q2rl.t5.t6) / MH/ o U)H/ o (Z)€|VCDE| . |V¢)|

2ry.t5.16
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Therefore, we have

(1 = 2198l Loo ) f upH' 0w e

Q2r] RERTS

<2Vl [ uH' 0 wlVolzgm0

2ry.t5.16

+ C(C¢,K,)/,7”1)/ U Qe
K

P2V i@ [ uIVOI- V]

2ry.l5.1¢

= 2[VVllLoo(Qar, 15.46) / ugH' o wy (s >0)

2ry.t5.t¢

+ 2 VV |Loo(0ar, 1) f upH' o w|Vae|* 11z.>0)
2ry.t5.t¢

+ C(co,k. s 71)/ U Qe
K

+ 2||V||Loo(erl js%)[ ulVe| - |[Voe|. (4.68)
2ry.t5.1¢
The main difficulty is to estimate the integral
/ udH' o w|Vde? 1. >0 (4.69)
Q2r1 15,16

on the right-hand side of (4.68).

Step 4. We estimate the integral (4.69). For any p € (0, %) we define the functions

1(2_ (x,1)

D0 =312 log(h)

3
where ¥ is the function defined in (4.56). Note that w,(x, t) satisfies d;w, + Aw, = 0.
Direct calculation shows that

aa—lf + AY = ¢V |2 H" 01D, + (%—‘f + Acp)H 0 W, +2(Vep, Vii,) H' o 1.

Since u satisfies
d
—/ u(—w-i-Al//):/ cuy > 0,
Q2ry.15.16 ot OQor.15.16
we have

/ u¢|Vio,|*H" 0w,
Q2r1 15,16

)» 'W(xvl) = ¢(X,Z)H o II)p € CSO(QZrl,ts,ZG\Fts,ZG)v

< —/ u((%—‘f + A¢>)H 0 W, + 2(Ve., Vib,)H' o u‘)p). (4.70)
Q2r1.15.t6
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We estimate each term of (4.70). Note that

{(-xa t) € Q2r1 ,15,16

H" ow, > mlnzH”(z)}

35253
1 _ 2
) (X,l) € Q2r1,t5,t6 3 =< Wp 3

= {(xvl) € Q2r1,t5,t6 | 1 S a)p S 2}
={(x,t) € Oor 1506 | p < T(x,1) <1}, 4.71)

where @, is defined in (4.56) and ¥(x,7) = e~?*). Thus, the left-hand side of (4.70)
satisfies the inequality

ugp|Vil|? 5
Q2r1 5.6 Q2r1 5.6 |10g p|

= C/Q up| V| ri1<a,<at (4.72)

2ry.t5.t6

where C is a universal constant. We choose 2r; < 1 and by (4.59) we have r(x,¢) < 1 on
Supp(¢) N Q2 15,16- Thus, on Supp(¢) N Q2 15,1, We have

_ 1 v(x,t)
Wy = —(2 ) < —
3 log(p)

2
Hoa_)pfd)pfg.

and

Combining this with (4.70), the first term of the right-hand side of (4.70) satisfies the

inequality
ad
_/ u(_¢ n Aqb)H o, < C(cd,,K)/ “, 4.73)
Qory.15.16 ot K

where K and ¢y, g are given by (4.67). Note that by (4.53) for any i we have r; (x, 1) > rq
on Supp(|Ve|) N Q2 15,4 Combining this with (4.26), we have

1 I
VO <1) |Vl < Z

k=1

for all (x, ) € Supp(IVe|) N Oar) 1s.16-

?c-wl -
I“
Hw

Thus, when p € (0, l), we have

2|va| _
3 log 1 (3 log2) r?

|Vo,| = for all (x,1) € Supp(|VP|) N O2r) 15,06  (4.74)

This implies that the second term of the right-hand side of (4.70) satisfies

—/ 2u(Ve, Vi) H o w, < C(c¢,K,r1,l)/ u. (4.75)
Q2r1 i5.l¢ K
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Let p = €2. Note that F(x,7) < 1 on Supp(¢) N Q2r, 1s.16- By (4.71) we have
{(x.7) € Q2ry 15,16 | @e > 0} N Supp(¢)
={(x,1) € Qar 5.5 | F(x,1) > €} N Supp(e)
={(x,1) € Q2ry 1505 | p = F(x,1) = 1} N Supp(9),
={(x,1) € Q2r 15,66 | | < @p =<2} N Supp(¢h).
Combining (4.73)-(4.75) with (4.70), we have

[ wewapa o, < Ceprriid) [
Qor.15.16 K
This together with (4.72) implies that

/ u¢|va~)p|2)({1§a3052} = C/ u¢|V1Dp|2H” CRT
Q2ry.15.16 927y

15.l6

< Cl(cp,x.71.1) / u.
K
Thus, by (4.78) and (4.76) we have

wglVanl = [ uplVa,P paza,<

Qor|.15.16

/QZrl 5.6 N{p<t<1}
< C(cg,11,1) / u.
K
Moreover, we have the estimate for the integral (4.69)

. u ¢|Vo|?
/ upH' o w|Vae|* Yo >0y < / Ll
Q2ry.15.16 Q27 15,16 M@ >0} log €]

—4 /
Q2r1 ,15,t6n{15(4~),052}

< C(C¢,K,r1,l)/ u.
K

Step 5. Now we turn back to inequality (4.68). Moreover, by (4.74) we have
Vo

/ u|V¢|-|Vcae|=2/ uvg) - V7 sC(c¢,K,z,r1)/ .
Q27,1516 Qo1 .15.16 log ) K

Combining (4.68), (4.81) with (4.80), we have

(I =200, Lo wy) / ugpH' o w e

Q2r1 5.6

< 2[VV Lo (Qar, t5.46) f upH' o w x>0}

2ry.t5.16

+ Cleg.k. 1. D(IIVV Lo (0sy, 1o i) T+ ||V||L°°(Q2rl.t5,,6))/Ku

+ C(cp.k,7s rl)/ U Qe.
K

u¢>|Va~)p|2

(4.76)

4.77)

(4.78)

(4.79)

(4.80)

4.81)

(4.82)
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Since all singular curves are disjoint on Oz, 5.5, N {w > 0} by our assumption, by
Lemma 4.9 u is integrable on Qo 15,56 N {w > 0}. Taking € — 0 in (4.82) and using
the dominated convergence theorem, we have

(1 =29, Loom)) / uGH 0w

Q2r1 5.l

< 2||VV”L°O(Q2r1,t5,r6)/ u¢H’ ow + C(C¢,K, VY, rl)/ u
2ry.t5.16 Kk

+ Cleg,k 11 D(IVV IILo0(0ay, 15.0) + ||V||L°°<er1.t5,t(,))/K”-

It follows that

(1 = 200:¢ll o) — 21V lLoo(@ar, 1s ) / wpH 0w

Q2r1,t5,t6
< C(cp.kx- 75 rl)[ u. (4.83)
K

By (4.37) and (4.64), we choose r; small such that

1
I =2[10:8llLee®) =21V V L0021y 15.00) > El'

Combining this with (4.83), we have
/ ugH ow 5C(c¢,K,y,r1,l)/ u. (4.84)
Oor.15.16 K

Note that the function H' o w converges to 1 on Oy, .1, \I'¢, 1, as 8§ — 0. Thus, taking
8§ — 01in (4.84), we have
l

which implies (4.60). Note that (4.79) implies (4.61) since

u|Vo|
I(p; 11,12, 7o) = / 2
Qro.ty . Np<i<1} [10g Pl

=/ u|VcZ)p|2+/ u|Vé,|*
er.ts.fém{p<F<]} QrO-tS-IG\Q”JSJﬁ

/ u |V, + C(l,r1) u
Q2r1.t5,t60{p<ﬁ<1} Qro‘15,16\Qr1,t5.t6

§C(C¢,r1,l)[u+C(l,r1) u < +oo. (4.85)
K

Org.15.16 \Qry 15,16

u < Cleg.x. 7 rl,l)/ “,
K

r1.t1.12

<

The lemma is proved. ]
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As a byproduct of the above proof, we have the following result.

Lemma 4.14. Under the same assumption as in Lemma 4.9, we have, for the singular
curve £ 1 [T1, ] - %,

sup Ig(psti,t2,u,2r1) < +oo. (4.86)
pe(0,%)

Proof. Inequality (4.86) follows directly from inequality (4.85) and Step 4 of the proof of
Lemma 4.13 by choosing [ = 1. L]

By using Lemma 4.9, Lemma 4.14 and following the same arguments as in [42], we
have the following results when the singular curves are disjoint.

Lemma 4.15 (cf. [42]). Under the same assumption as in Theorem 4.2, if we assume that
{&1(1), ..., & (1)} are disjoint on [Ty, T>] and p is the constant in (6) of Definition 4.12,
then we have:

(1) Foreach & and (t1,t2) C [Ty, Tz), the mapping Jy. C(?O(Q(k) ) >R

pst1,t2

o
wur = [, (n(-5r—ar)—eur ) avar

ﬁvll Ny
(k)
1,02’

(I = C( sup 1) limint T, (pitr, 12,1 ).

(
Ftl N

defines a distribution whose support is contained in I and satisfies

where C is a universal constant. Here Ig, (p;t1,t2,u, p) is defined in (6) of Defini-
tion 4.12 and it is finite by Lemma 4.14.

(2) There exists linear functionals {{L1, . . ., )t } with each g € (Co((Ty, T2)))’ such that
forall ¢ € C(;)O(Ql,Tl,Tz)’

1
0
[oou(-ese)= [ e[ e dio. @
01.7.7, ! 01.71.7, k=1 T1.T2)

Identity (4.87) can be rewritten as

ou

!
Frie Au = cu + kz_:l 8g ® . in D'(Q1,1y,1)-

(3) Let puy be one of the measures in part (2). For any function ¥ € C§°((T1, T»)) with
Supp(¥) C (11, 12), we have

TZ 1
Vdug =2 lim —/Q IV Uk X {vg <ltog o} V- (4.88)

T =0 |log p|*> Jo &)

0.T1.Ty

(4) Each measure Wy obtained in (3) is positive.
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Proof. Since {£1(¢),...,&(z)} are disjoint on [z, ,], we can consider each & as in [42].
After replacing the function g in [42, (4.21)] by the function c(x, t), we know that part (1)
follows directly from [42, Lemma 4.4]. Part (2) follows from the proof of [42, Theo-
rem 2.1] (see [42, p. 7303]), (3) follows from [42, Lemma 5.2] and (4) follows from the
non-negativity of the right-hand side of (4.88). Since the proof is exactly the same as
in [42], we omit the details here. ]

When the singular curves are around (xg, fp), the measures jx constructed in Lem-
ma 4.15 may blow up as t — f¢. The next result shows that py is actually bounded when
t is close to 1.

Lemma 4.16. The same assumption as in Theorem 4.2. Suppose that the singular curves
{&1(),....&(t)} are around (xg,to) on [t1,1t2] as in Definition 4.11. Define the mea-
sure L on (t1,1t2) by

Vvdu = lim —— / IV3|2 x5 <lioe oy W1 dvoldt, (4.89)
/ i |1ogp|2 0111, {o=llogpl)

where the right-hand side is finite by (4.61). Here 0 is the function defined by (4.56). Then
i € (Co((t1,12))) and for each & the measure juy obtained by Lemma 4.15 satisfies

0 <y*ur(t) < p(t) forallt € (11,10) U (1o, 12),
where y € (%, 1) is the constant chosen in Lemma 4.5.

Proof. Since {£1(¢),...,&(¢)} are around (x¢, tp) on (#1, t2), by Definition 4.11 we can
assume that {£1(¢), ..., & (¢)} are disjoint for some [’ <[ on [t1, tp) and

§r(t) = &y (t) = - = (1) forallt € (11, 2).

Let ro be the constant deﬁned by (4.54). After shrinking (#1,1,) if necessary, we can
assume that Q, .t C Qr0 11.,1» for some ry > 0. Let p; > 0 be the constant such that
for any (x,t) € Q,O,,] 1 and 1 <i <[’ we have r;(x,t) < p;. Since for any § > 0 the
curves {£1(), ..., &y (t)} are disjoint on [t1, 1y — §], we define

ds :=min{dg (5 (1), &) |1 <i #j <I',t €[t1,t0— 8]} > 0.
Let oy = % and (x,1) € Qré,,l,,o_,g. By the choice of g, if rg (x,¢) < o, then we have
ri(x,t) > a9 foralli # k. (4.90)

For any p, > 0, we can find some integer k € [1,[’] such that if ¢ € [t;,¢y — §] and
rir;---ry < py, we have

P2

r; > a9 foralli #k, Ty =~
o
0

(4.91)

We choose p; such that 0o
/-1
1

= . (4.92)
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By (4.91) forany k € {1,2,...,I’} and p € (0, p2),

. 1
T.0) < 10g b 2 (00) € Qpgapiges | Tim2e o102 )

{50 € Qs

2 {(0.1) € Qg ot | P2 = Fi¥2 -1 = p)
l/

= U Qs
k=1

where Q. , is defined by

Qk,p = {(x’t) € Qré,tl,to—(g

Oloirifpl,i;«ék,%<rk§ pz}
o) P1
0

-1
o)

ap <r; <p1, i #k,

= {(X,l) € Qr(/),tl,to—(s =< Ir =< Olo}- (493)

Note that we used (4.92) in the equality of (4.93). By the definition of r; and Lemma 4.5,
for any (x,7) € Qg , with 1 <k <[’ —1 we have

V~2>V 2 \v4 2>y2 1>)/2 -1
|U|_|Uk|—Z| vi|_r_2_Zr_.2_r_2_ o2
i#k ko itk i k 0
and for any (x,1) € Qi , with !’ < k <[ we have
I'—1
IVE|> = (1 = 1"+ D|Voe = Y [Voi?
i=1
2 -1 2 /

1 I"'—1
A L T (A LS ) Lt
e 5 N e %

Consequently, by (4.89) for any k € {1,2,...,]” — 1} we have

to—48 2
/ Ydp > lim ——— / |V)>yu
0 r—0 |log p|* Jq,

-0

> i 2 / (y2 - I)W
= 11mm ——— — — u
p—0 [logp? Jo, , \rz  of

2
= »? lim —— w_zu (4.94)
r—0 |log p|* Jo, , 17
and for k € {I’,...,1} we have
to—48 2

/ Yduz=(—1'+ 1y lim —— ‘”—2”

n r—0 [log p|* Jo, , 1%
> 2 lim yu (4.95)

=0 [log pl* Ja , 17
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On the other hand, taking
P

X|=

p - Ol(l)/_l
and using (4.88), we have
/105 1 5
Ve =21tim o [ Vi
" —o [logp? Jo) y
1
lim—/ [Vue|®x log YU
5—0 y2|10g p|2 Q‘(XIE))JI'ZO_S {vk <llog pl}
2 1
< Zmo [ n (4.96)
y? p=0 |log p| an.n,to—sm{alo%lfrk} T

where we used the fact that {vy < log %} C {,5% < rr}. Note that

(k) P
Qa0,11,t0—5 n {al’—l = rk}
0

= {(X’t) € Qap,t1,t0—8

% =Tk 5050}
@y

_r
77—
o)

where we used (4.90) and (4.93). Combining (4.97) with (4.96), we have

= {(x’t) € Qr(’),tl ,20—8

STk S0 0o ST S prL i F k} = Qi p, (497

to—38 2 1
/ Y < 5 tm —— [ Y (4.98)
. y? p—~0 [logpl* Jo, , 17

Inequalities (4.94)—(4.95) and (4.98) implies that

to—38 to—48
/ ydu >y / ¥ dpi.
t

1 n
Thus, we have
0< V4Mk <p forallt € (11, t9).

Similarly, we can consider the case when {£1(¢), ..., &y (¢)} are disjoint for some I’ < [
on (tg, t2]. The lemma is proved. L]

4.5. Proof of Theorem 4.2

In this subsection we show Theorem 4.2. Part (1) of Theorem 4.2 follows from (4.44) and
(4.60). For part (2), the proof divides into the following steps.

Step 1. Without loss of generality, we can assume that c(x,¢) < 0. In fact, let u(x, 1) be
a solution of (4.1). Then for any k € R the function i (x, ) = u(x, t)eX! satisfies
ou

a7 = Qi+ (e TR
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Therefore, for any compact set K in X x [Ty, T»] we can choose k such that the function

¢ := ¢ + k is nonpositive on K. Thus, it suffices to show Theorem 4.2 for ¢(x,1) < 0.

Step 2. Suppose that the curves {£1(¢), ..., & (¢)} are disjoint on the interval [T, T»]. Let
Ty <t; <ty < Tp. Lemma 4.9 implies that u is in L'. For any (x,t) € X x (t1,13), we
define

t
wi(x,1) =/ ds/Ep(x,y,t—s)gk(y,s)dvoly,
15}

Zr(x.1) = c(x. Dulx, 02 ,
jvtlftso,tz
Uk (. 1) = [( P (0.~ dis), (4.99)
,t

where uj is the measure obtained in Lemma 4.15, and 8y > 0 is a constant chosen such
that#; — 8o > T7. Thenu — Zizl (Ur + wy) satisfies the heat equation in @/(Q%,tl,tz)a
which implies that u — > ", _; (Ux + wy) is bounded in Q11,1 Since ¢(x,1) <0, we
have wg (x,¢) < 0 and

I
u(x, 1) < Y Up(x0) + f(x,1),

k=1
where f(x,t) is a bounded function on Q Lt Therefore, by Lemma 4.6 u satisfies
inequalities (4.3)—(4.4).

Step 3. In general, the singular curves may not be disjoint. In this case, we assume that the
curves {£1(¢), ..., & (¢)} are around (xo, #p) on (¢, #;). Consider the interval (¢;, 7). By
Definition 4.11, we can find an integer I’ € [1,1] such that {£1(¢), ..., & (¢)} are disjoint
on (11, ). By Lemma 4.15 we get positive measures ;. € (Co((f1,1)))’ for each & with
k € [1,1’], and by Lemma 4.16 we have

0 < y*ur(t) < u(t) forallr e (11, 10). (4.100)

For each k, we define Uy as in (4.99). Using the same argument as in (2), for any
t € (t1,t9) we have

1

u(x.1) <Y Ur(x.1) + f(x.1) forallt € (11, 10), (4.101)
k=1

where f(x, ) is a bounded function. By (4.100), we have

U
u(x,t) < % Z / p(x, &k (s),t —s)du + f(x,t) forallt € (t1,19). (4.102)
k=171

Similarly, we can prove that (4.102) also holds for ¢ € (¢, t2). Therefore, by Lemma 4.6,
u satisfies inequalities (4.3)—(4.4). The theorem is proved.
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5. Proof of main theorems

In this section, we prove Theorem 1.2 and Corollary 1.4.

Proof of Theorem 1.2. Suppose that the mean curvature flow (1.1) reaches a singularity
at (xg, T') with T < 4o00. Then [25, Corollary 3.6] implies that for all t < T we have

d(2s,x0) <23T —1.
We rescale the flow by
s =—log(T —1), Sy =e3(S7—e—s —X0) (5.1)
such that the flow {(Z, %(p. 5)), —log T < s < +o0} satisfies the following properties:
(1) x(p, s) satisfies the equation

(5] (ot

(2) the mean curvature of = satisfies |H (p, s)| < Ao for some Ag > 0,
(3) d(5.0) <2.
Fix t > 0. By Theorem 3.1, for any sequence s; — oo there exists a subsequence, still

denoted by {s;}, such that the flow {isi +s5,—T < § < T} converges smoothly to a self-
shrinker with multiplicity one. In other words, taking
SJ
C o= e 2 s
the flow {if,—r < § < 1}, where

oy s
PIABES Cje2(ZT_C7zeﬂv — Xo),

converges smoothly to a self-shrinker with multiplicity one as j — +oco. Consider the
corresponding flow

S - Y/ _

f=—e %, Et{ = —tZ_log(_a = CJ(ET+CJT2t~_x0)'
Thus, for fixed v > 0 the flow {Zti, —e® < i < —e~ "} converges smoothly to a smooth
self-shrinker flow with multiplicity one as j — +o00. Theorem 1.2 is proved. ]

Proof of Corollary 1.4. We follow the argument in the proof of Theorem 1.2. Suppose
that
8o := sup (vT —t- |H|(p,t)) < +o0.
=x[0,T)

Then the rescaled mean curvature flow (5.1) satisfies | H| < 8o. There exists a sequence of
times s; — 400 such that for any fixed 7 > 0 the flow {isi +s,—T < § < T} converges
smoothly to a self-shrinker X, € €(N, p) with multiplicity one. Moreover, the mean
curvature of the limit self-shrinker satisfies supy,__ |H| < 8o. On the other hand, we have:

Lemma 5.1. For any N > 0 and any increasing function p, there exists a positive con-
stant §(N, p) such that any self-shrinker 3 € €(N, p) with |H| < § must be a plane
passing through the origin.
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Proof. For otherwise, there exists a sequence of non-flat self-shrinkers X; € €(N, p) with
supy, |[H| < §; — 0. By the smooth compactness result of self-shrinkers in [20], we can
assume that ¥; converges smoothly to a self-shrinker X+, € €(N, p) with multiplicity
one. Since the convergence is smooth, the limit self-shrinker ¥, has zero mean curvature
and by [19, Corollary 2.8] it must be a plane passing through the origin.

Let ¥;; = ~/1 —1tX;. Then {¥;;,0 <t < 1} is a solution of mean curvature flow
(1.1) which reaches xo = 0 at T = 1. Consider the Heat kernel function

Ix—xql%

I
Peo.1)(601) = e a0 forall (x.,1) € i x [0, 7).

Thus, Huisken’s monotonicity formula (cf. [36, Theorem 3.1]) implies that

O(X;;,0,1) := thrr{ / Do,y (x, 1) dLis
1 JE

1 _Ixi2 1 2
=— [ e " duy - — e 4 die =1,
4 hoF T JYeo

where we used the fact 3; converges smoothly to the plane X, with multiplicity one.
Therefore, by [60, Theorem 3.5] or [25, Theorem 5.6] we have

C
[As,  [(x.1) < P (5.2)

for some C,ro > 0 and for all (x,7) € (Z;, N By,(0)) x (1 —r2,1). For any p € %;,
there exists 7, € (1 —rZ, 1) such that for all 7 € (z,, 1) we have

V1 —tp e Xi; N By (0).
Thus, (5.2) implies that for any ¢ € (¢, 1),

C
45 1(p) = V1 —t]dz, [(V1—tp,1) = —V1—1.
0

Letting ¢t — 1, we have |As, |(p) = 0 which contradicts our assumption that X; is non-
flat.

Alternatively, one can also quote the results of C. Bao (cf. [4, Theorem 1.2]) or Guang
and Zhu (cf. [32]) to obtain that each ¥; is a plane and derive the same contradiction. The
lemma is proved. L]

Therefore, by Lemma 5.1 the limit self-shrinker ¥, must be a plane passing through
the origin. Thus, Huisken’s monotonicity formula implies that

(X, x9,T) := lim Do, 1) (X, 8) dits
oy

t—>T

. 1 _lx2
= lim — e” 4 dis =1,
§s;i—~>+o00 47 isi
which implies that (xo, T') is a regular point by [60, Theorem 3.1]. It follows that the flow
{34,0 <t < T} cannot blow up at (xg, T'). The corollary is proved. |
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Appendix A. Krylov—Safonov’s parabolic Harnack inequality

In this appendix, we include the parabolic Harnack inequality from Krylov and Safonov
[43]. First, we introduce some notations. Let x = (x!, x2,..., x") € R". Denote

x| = (Z(x")z) . Br() ={y €R"[lv—y| <R},

i=1
0(6, R) = Br(0) x (0, 6R?).

Consider the parabolic operator

d . .
Lu = _8_2; +a" (x,u;; + b (x,Hu; —c(x, tu, (A.1)
where the coefficients are measurable and satisfy the conditions
.. 1
1g? < a” (x, 0)&E; < ;IEIZ, (A2)
1
Ib(x,0)] = —. (A3)
n
1
0<c(x,t)<—. (A4)
I

Here b(x,t) = (b'(x,1),...,b"(x,1)). Then we have

Theorem A.1 ([43, Theorem 1.1]). Suppose the operator L in (A.1) satisfies conditions
(A2)~(A4). Let > 1,R <2,u € W, 2(Q(0,R)),u>0in OO, R), and Lu = 0 on

n

Q (0, R). Then there exists a constant C, depending only on 0, i and n, such that

u(0, R?) < Cu(x,0R?) forallx € B g (0). (A.5)

Moreover, when 91T1 and ;% vary within finite bounds, C also varies within finite bounds.

Note that in our case equation (3.28) does not satisfy the assumption that c(x,?) > 0
in (A.4). Therefore, we cannot use Theorem A.1 directly. The following result shows that
the Harnack inequality still works when c(x, t) is bounded.

Theorem A.2. Let 6 > 1, R < 2. Suppose that u(x,t) € Wnlfl (Q(8, R)) is a nonnega-
tive solution to the equation

du
ot
where the coefficients a'’ (x,t) and b’ (x,t) satisfy (A.2)~(A.3), and c(x, t) satisfies

Lu = +a" (x,Hui; + b (x,)u; + c(x,t)u =0, (A.6)

1
le(x,t)| < — forall (x,t) € Q(0, R). (A7)
n
Then there exists a constant C, depending only on 6, u and n, such that

1
u(0, R?) < Cu(x,0R?) forall |x| < ER'
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Proof. Since u(x,t) is a solution of (A.6) and c¢(x, t) satisfies (A.7), the function
_1,
v(x,t) =e #'u

satisfies

P , .
— 5+ (v 0y + B (e )v; + 8 ) = 0. (A8)

where

1
<c(x,t) =c(x,t)—— <0.
m

TN

Applying Theorem A.1 to equation (A.8), we have
1
v(0, R?) < C v(x,06R?) forall |x| < R
where C depends only on 6, i and n. Thus, for any x € B B (0) we have

u(0, R?) < Ce™*O=DR?, (x 9R?) < C'u(x, OR?),

where C’ depends only on 6, u and n. Here we used R < 2 by the assumption. The
theorem is proved. ]

We generalize Theorem A.2 to a general bounded domain in R”.

Theorem A.3. Let 2 be a bounded domain in R”. Suppose u(x,t) € Wnl_’,_z1 (2 x(0,7))
is a nonnegative solution to the equation

_ du
0t
where the coefficients a'’ (x,t) and b' (x, t) satisfy (A.2)—(A.3), and c(x, t) satisfies (A.7)

for a constant > 0. For any s,t satisfying 0 <s <t < T and any x,y € Q with the
following properties:

Lu +a" (x,Hui; + b (x,t)u; + c(x,t)u =0,

(1) x and y can be connected by a line segment y with the length |x — y| <1,
(2) Each point in y has a positive distance at least § > 0 from the boundary of <,
(3) sandt satisfy Ty <t —s < T, for some Ty, T>» > 0,
we have
u(y,s) < Cu(x,1),
where C depends only on n, ju, min{s, §2},1, Ty and T».
Proof. Let y be the line segment with properties (1) and (2) connecting x and y. We set
x —
N
forany 0 <i < N. Here we choose N to be the smallest integer satisfying

2(t —s) / }

yiey

Po=Y, PN =X, pi=po+t

53 (A9)

N>max{
44

,
§ min{
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We define
R=2 gl (A.10)
N T R2N’ '
We can check that R < ‘%. For any s,t € (0, T'), choose {ti}zN=o such that tg = s, ty =t

and
r—s

N
for all integers 1 <i < N. Note that (A.9)—(A.11) imply thatforany 0 <i < N — 1,

>0

r—s
=

N
[H_l—eRZZS—@RZ:S—Rz— N Z

and
-y _1 _R

lpivi—pil=—F— =5 =7
Therefore, for any 0 <i < N — 1 we have
(tit1 —OR?.1i41) C (0.T) and piyq € B (pi).
Applying Theorem A.2 on Br(p;) X (ti+1 — OR?,t;+1) C  x (0, T), we have
u(pi,ti) < Cu(pisi,ti+1),

2
where C depends only on c, n, i and 9%1 = %. Here we used the fact that

ti = (ti+1 — 9R2) + R2.

Therefore,

u(y.s) = u(po.to) < CNu(py.tn) = C'u(x,1), (A.12)
where the constant C’ in (A.12) depends only on ¢, n, i, min{s, §2},1, T} and T». The
theorem is proved. [

A direct corollary of Theorem A.3 is the following result.

Theorem A.4. Let Q2 be a bounded domain in R". Suppose u(x,t) € Wnl_fl (2 x(0,7))
is a nonnegative solution to the equation

9 N .
Lu = —8—1: +a’ (x,Hu;; + b (x,Hu; +c(x,HHu =0,

where the coefficients a'/ (x,t) and b’ (x, t) satisfy (A.2)—(A.3), and c(x, t) satisfies (A.7)
for a constant p > 0. Suppose that Q', Q" are subdomains in Q satisfying the following
properties:

(1) Q' C Q" C R, and Q" has a positive distance § > 0 from the boundary of 2,
(2) Q' can be covered by k balls with radius r, and all balls are contained in Q" .

Then for any s, t satisfying 0 < s <t < T and any x,y € Q', we have
u(y,s) < Cu(x,t), (A.13)

where C depends only on n, v, min{s, §2},t — s, r and k.
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Proof. By the assumption, we can find finite many points 4 = {q1, ¢2, ..., gk} such that

Qcl)B@ca" (A.14)
geA

For any x, y € Q/, there exists two points in », which we denote by g1 and ¢, such that
X € Br(q1) and y € B,(g2). Then x and y can be connected by a polygonal chain y,
which consists of two line segments Xq1, yq, and a polygonal chain with vertices in
connecting ¢ and ¢,. Clearly, the number of the vertices of y is bounded by k& + 2 and
the total length of y is bounded by (k + 2)r. Moreover, by assumption we have y C Q"
and each point in y has a positive distance at least § > 0 from the boundary of €2.
Assume that the polygonal chain y has consecutive vertices {po, p1, ..., py} with

po=y, py=x and 1 <N <k+2.

We apply Theorem A.3 for each line segment p; p;+; and the interval [¢;,#;41], where
{t;} is chosen as in (A.11). Note that

t—s < ; r—s <
i1 — i = — .
k+2 - TN T N S
Thus, forany 0 <i < N — 1 we have
u(pi,t;) < Cu(piti,ti+1), (A.15)
where C depends only on ¢, n, u, min{s, §2},r,k and ¢ — s, and (A.15) implies (A.13).
This finishes the proof of Theorem A .4. ]

Theorem A.4 can be generalized to Riemannian manifolds by using the partition of
unity. Here we omit the proof since the argument is standard. Note that the constant in
(A.13) depends on the geometry of (M, g).

Theorem A.5. Let (M, g) be a Riemannian manifold with boundary oM and Q C M
a bounded domain which does not intersect with OM . Suppose u(x,t) € Wnlfl (2x(0,7T))
is a nonnegative solution to the equation

ou
ot
where the coefficients a'’ (x,t) and b' (x, t) satisfy (A.2)—(A.3), and c(x, t) satisfies (A.7)
for a constant i > 0. Suppose that Q', Q" are subdomains in Q satisfying the following
properties:
(1) Q' c Q" C Q, and Q" has a positive distance § > 0 from the boundary of Q,

Lu = + aij(x,t)ViVju + b (x,)Viu + c(x,)u = 0,

(2) Q' can be covered by k balls with radius r, and all balls are contained in Q" .

Then for any s, t satisfying 0 < s <t < T and any x,y € Q/, we have
u(y.s) < Cu(x,1),
where C depends only on ¢, n, w, min{s, §2},t —s,r, k and (M, g).
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Appendix B. Li-Yau’s parabolic Harnack inequality

In this appendix, we include Li—Yau’s parabolic Harnack inequality in [49]. Compared
with the Harnack inequality in Appendix A, Li—Yau’s result gives explicit dependence
of the constants on the geometric quantities of the metric. Thus, we can apply Li—Yau’s
result to a class of Riemannian manifolds and we obtain uniform bounds of the constants
in the Harnack inequality.

Theorem B.1 (cf. [49, Theorem 2.1]). Let M be a Riemannian manifold with boundary
oM. Assume p € M and let Brr(p) be a geodesic ball of radius 2R centered at p which
does not intersect OM . We denote —K (2R), with K(2R) > 0, to be a lower bound of the
Ricci curvature on Bog(p). Let q(x,t) be a function defined on M x [0, T] which is C?
in the x-variable and C in the t-variable. Assume that

Ag =0Q2R). [Vq| =y(2R)

on Brr(p) x [0, T] for some constants 0(2R) and y(2R). If u(x, t) is a positive solution

of the equation
ad
(A —q— g)u(x,t) =0

on M x (0, T), then for any o« > 1, 0 <ty <t, <T, and x,y € Br(p), we have the
inequality

R

u(‘x’tl) E u()’»lz) (;—2) eA(fZ—fl)+Pa.R(X,y,t2—t1),
1
where
A=C@R'VK+@—-1)""R?+y3(@—1)3a"3 + (@0)? +al@—1)""K)

and

1
o
Vifa =) = inf | S 4
Pa,R(X, Y, 12 — 1) yelrI'I(R)(4(t2—ll)/0 7!

1
+ (tr — tl)/ qy(s), (1 —s)tz + st1) ds),
0
with inf taken over all paths in Br(p) parametrized by [0, 1] joining y to x.
A direct corollary of Theorem B.1 is the following result.

Theorem B.2. The same assumptions as in Theorem B.1 on M, Bar(p) and the function
q(x,t). If u(x,t) is a positive solution of the equation

(A —q— %)u(x,t) =0

on Q x (0, T], where Q is a connected open subset of Br(p). Let Q', Q" be connected
open subsets of Q2 satisfying the following properties, which we called (8, k, r) property:

() Q'Cc Q" CQ, and Q" has a positive distance § > 0 from the boundary of ,

(2) Q' can be covered by k geodesic balls with radius r, and all balls are contained in Q.
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Then forany 0 < t; <t < T and x,y € Q', we have the inequality
u(x,t1) < Cu(y,tz), (B.1)
where C depends only onn, K(2R),0(2R),y(2R),t1,t —t1,k, 8 and r.

Proof. By the assumption on ', Q" and 2, x and y can be connected by a path y in Q"
with bounded length and every point in y has a distance at least § from the boundary of €.
Thus, the theorem follows directly from Theorem B.1 by choosing R =anda =2. =

In the proof of Lemma 3.21, we need to use Theorem B.2 to a class of surfaces
with bounded geometry. In order to show that the constants in the Harnack inequality
is uniformly bounded, we have the following result.

Theorem B.3. Fix R > 0. We assume that:

(D 21-2 C R3 is a sequence of complete surfaces which converges smoothly to a complete
surface ¥ in R3,

(2) The Ricci curvature of ¥ N Br(0) is bounded by a constant —K with K > 0. Here
Br(0) C R3 denotes the extrinsic ball centered at 0 with radius R.

(3) Qi, Qf, QY are bounded domains in X; N Br/>(0) with Q; C Q7 C Q;, and Q;, Q/,
Q7 converges smoothly to Q;, Q, Q) with Q" C Q" C Q@ C £ N Bg/2(0), respec-
tively. Here the smooth convergence of Q2; to Q2 means that for any € > 0 and suffi-
ciently large i, there exists a smooth function u; on Q2 with |u;|c2(qy < € such that
Q; can be written as a normal exponential graph of u; over 2.

(4) Q" has a positive geodesic distance § > 0 from the boundary of Q2.

(5) Q' can be covered by k geodesic balls with radius r € (0, 85) and all balls are
contained in Q.

(6) gi(x,t) is a function defined on T; x [0, T] which is C? in the x-variable and C' in
the t-variable. Assume that

Agiqi <90, |Vql'|gi =0
on Q; x [0, T for some constant 6.

If fi(x,t) are positive functions satisfying

3
(Ag,- —qi(x,1) — E)fi(x’ 1)=0 (B.2)

on Q; x (0, T, where g; (x,t) € C*>(Z; x [0, T)), then forany 0 < t; < t, < T and any
points x,y € Q}, we have the inequality

fi(xvtl) = Cﬁ(y»t2)7
where C depends onlyonn,K,0,t,,t, —t1,k,8 and r.

Proof. It suffices to show that Q7, Q7 and ; satisfy the (8, k', r") property of Theo-
rem B.2 with uniform constants §’, k” and r’. By the smooth convergence of €; to 2, we
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define the map ¢; : Q@ — 2; by
0i(x) =x 4+ u;(x)n(x) forall x € 2, (B.3)

where u; (x) is the graph function of €; over € and n(x) denotes the normal vector of X
at x. Note that ¢; () = ; and ¢; converges in C? to the identity map on Q asi — +o0.
By the assumption (5), there exists k points { py }";:1 C @’ and € > 0 such that

k
Q' C U Br(pa), Br(pa) C 945’

a=1

where Q). = {x € Q" | dx(x,0Q") > 4¢}. Therefore, we have

k k
Qi =¢i(Q) C go,~< g i%r(pa)) = | % (8:(po)) (B.4)
a=1

a=1

Since the C! norms of u; in (B.3) are small, for large i we have

@i (Br(pa)) C Bir+e(pi(pa)) C Q;'/,zea (B.5)
where Q7

x € Q) |dg,(x,0R7) > 2¢} and B;,(p) denotes the geodesic ball of
i, 2¢ — i i i >
i centered at p with radius r. Combining (B.4) with (B.5), we have

Q/ C U Br1e(pi(pa)) C Q; 2¢ C Q;/-

a=1

Therefore, Q can be covered by k geodesic balls with radius r + €, and all balls are con-
tained in Q7. It is clear that 7 has a positive geodes1c distance 5 > 0 from the boundary
of Q; for largel Thus, 7, Q” and Q; satisfy the (& 5.k, r + €) property and the theorem

follows directly from Theorem B.2. [ ]

Appendix C. The linearized equation of rescaled mean curvature flow

In this appendix, we follow the calculation in [21, Appendix A] to show (3.26). See also
[23, Appendix A]. Let ¥ be a hypersurface in R”*! and ¥, the graph of a function u
over X. Then X, is given by

Ty = {x +uln(x) [ x € X,

where n(x) denotes the normal vector of ¥ at x. We assume that || is small. Let ;41 be
the gradient of the signed distance function to ¥ and e, equals n on . We define

det g (p)
be() = || P i (p) = (ensro ) () = (p + u(pIn(p). M),
detgu(l’)

where g;; denotes the metric on X at p, g}‘j is the induced metric on ¥, and n, is the
normal to X,,.
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Lemma C.1 ([21, Lemma A.3]). There exist three functions w, v and n depending on
(p.s.y) € xR x T, X that are smooth for |s| less than the normal injectivity radius
of X so that

wu(p) = w(p,s,y) = V1+BHp.s))2, (C.1)
Vu(p) = U(p,S, y) = U)(p,S,y) det(B(p,s)), (CZ)
,n( ) +5— 9B—1( 9S)( )
mu(p) =n(p.s,y) = 0. 0(p)) » Lk >, (C.3)
w(p,s,y)
where the linear operator B(p, s) = Id — sA(p). Finally, we have:
(1) w satisfies
w(p,s,0) =1, dsw(p,s,0) =0, (C4)
dyew(p,s,0) =0, 0y,0y,w(p,0,0) = dqp. (C.5)
(2) v satisfies
v(p,0,0) =1, dsv(p,0,0) = H(p),
dp; dsv(p,0,0) = H;(p), 0yq 0y4v(p,0,0) = 8yp,
93v(p.0.0) = H>(p) — |4 (p).
(3) n satisfies
n(p.0.0) = (p.m), In(p,0.0) =1,
Ay (P, 0,0) = —pq.
(4) Furthermore, we have
d,,v(p,0,0) =0, 81,]. 0,,v(p,0,0) =0, (C.6)
asa,,_,. d,,v(p,0,0) =0, ayka,,j 0,,v(p,0,0) =0. (C.7

Proof. Parts (1)—(3) and (C.1)—(C.3) follow directly from [21, Lemma A.3]. It suffices
to show part (4). Following the notations in the proof of [2], Lemma A.3], we assume
that (p,s) is the Fermi coordinates on the normal tubular neighborhood of ¥ so that s
measures the signed distance to ¥. We define

B(p.s)=(1d—-sA(p)) : T,Z — T, X.
Let B(p,s) = det(B(p,s)) and J(p,s) = B~ !(p,s). Then we have

B(p,0) =1, dsB(p.0) = H(p), (C.8)
0y, B(p,s) =0, dp; B(p,0) = —s0p; Als=0 = 0, (C.9)
dp; B(p,0) = B(p,0) - tr(dp; B(p,0)) = 0. (C.10)

Since J = B!, we have
3ijB +J8ij =0.

This implies that
dp,; J(p.0) = =J(p.,0)-3p, B(p.0)- J(p,0) = 0. (C.11)
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Note that by (C.1), w can be rewritten as

w(p,s,y) = 1+ JapJayypyy.

It follows immediately that
1
0y w=—J*J *y,
W = oS * Tk y
1
Op,w= —0p,J xJ xyx*y,
w
1 1
050y, w=——=0w-J *Jxy+ —0sJ %xJ xy,
2w? w

1 1
apjayiw:_ﬁapjw-J*J*y—kaaij*J*y,

where the notation “*” denotes the multiplication of two matrices. Furthermore, we cal-
culate

050p; 0y, w = w_3asw8pjw-J *J ky— ﬁasapjw-J *J %y
—%E)pjw-asJ*J*y—#aswé)pjj*J*y
+%8581,J.J*J*y+%8ij*3sJ*y,

Ay 0p; By, w = Wy wdp,w- J * J *y—ﬁaykapij xJ xy
—%%jw-aykj*J*y—ﬁapij*J
—%E?ykwaij *Jxy+ %8yk8pjj *J xy

1 1
+ Eap‘,J * 0y, J xy+ Eaij * J.
Combining the above identities with (C.4), (C.5) and (C.11), we have

3y, w(p.0,0) =0, 3, w(p.0,0) =0, (C.12)
059y, w(p,0,0) =0, dp; dy; w(p,0,0) =0, (C.13)
050p; 0y, w(p,0,0) =0, 3y, 3p;dy,w(p,0,0) = 0. (C.14)

Moreover, we calculate the derivatives of the function v(p, s, y) = w(p, s, y)B(p, s):
0y, v =0,,wB +wda,, B,
Op; O0y; v = 0p; 0y, wB + 0y, Wy, B+ p; Wy, B + wdp, dy, B,
050p; 0y, v = 050p; 0y, WB + 0p, 0y, WIs B + 050y, Wy, B + dy, wWdsp, B
+ 050p; Wiy, B + 9p, w0y, 0sB + dswdp; dy; B + wdsdp, dy, B,
Qyy Op; 0y; v = 0y, Op,; Oy, WB + dp; 0y; Wy, B + 0y, y; Wy, B + 3y, wy, dp; B
+ 0y, 0p; Wy, B + 0p; Wy, Dy, B + 0y, Wy, 0y, B + Wy, dp, dy; B.
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Combining this with (C.9)—(C.10), (C.12)—~(C.14), we have (C.6)—(C.7). The lemma is
proved. ]

We have the following expression for the mean curvature of %,,.

Lemma C.2 ([21, Corollary A.30]). The mean curvature H, of ¥, is given by

w
Hy(p) = ; (asv - apa aya v — (8s8ya V)ug(p) — (ay/g 8ya V)”otﬁ (P))’ (C.15)
where w, v and their derivatives are all evaluated at (p,u(p), Vu(p)).
Combining Lemma C.1 with Lemma C.2, we can show (3.26).

Lemma C.3. The function u; = ul+ —u; satisfies the following parabolic equations on
Qe,R (I) x 1
au,-

1 U;
W = Aou[ — E(X,Vl”) + |A|2M[ + El

where Ag denotes the Laplacian operator on X, with respect to the induced metric, and

the coefficients aip 9 bip and c; are small and tend to zero as ul.+ and uj tend to zero.

+ aipqui,pq + bipui,p + ¢ u;, (Cl6)

Proof. We divide the proof into several steps.
Step 1. We calculate the difference of the mean curvature of X + and %, Let
+

u=u —u; and uU;=u; +7tu

for z € [0, 1]. Thus, we have tip = u; and #1; = ul‘Ir Note that

He ()~ () = [ ontrta, (o 1)

For any function f(p,s, y), we calculate the derivative with respect to t

A (f(p. iz, Viig)) = (05 f)(p. iz, Viiz) -t + (Oyg f)(p.tie, Viie) ~uq,  (C.18)
where uy = 0x,u. Therefore, we have

3:(5v) = 2v - u + 9y, 05V - u;,
0:(0pg 0yy V) = 050540y, V - U 4 0y, 0py Oy V - U,
2 ((D50yq V)iira) = (950yy VU + (020y, V)Uilz g + (350y,; Dy, V)UiTica
81((8},[, 8ya1))ﬁr’m3) = 0y, 0y, V)Ugp + 050y,0y,V - Ulig g + 0y, 0,0y, V - Uitz g8,

where ti;,q = Ox, ¢ and ti¢gg = Ox, dx4t;. By Lemma C.2 we have
e(Ha, (p) = (as(ﬂ)u 0y, (E)Mf)
v v
. (asv — Opg Oy V — (050y, V)iiz,a — (3y40y, v)ﬁ,,aﬁ)
n (3) 02 (350 — Dpg By — (D5 By V)il — (Byp Dy V)il g.0p)
v

= Eu + Fyug + Gogigg, (C.19)
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where E, F and G are given by

~ w ~ -
E(p.ii;) = as(—)(asv — Opg 0y V — (D5 Oyg V)i, — (5030 V)Tz.0p)

( ) — 0 apa 8)’0( V= (af aya V)ﬁr,oz
— 050y,0y,V - Tz 0p), (C.20)
~ w B B
Fy(P»ur) - 8yy ;) 8 v 8paaya1) - (asayav)uf,ot - (8Yﬁa)’av)ur,aﬁ)

+ (;) (8, D5V — By, Bpg, DoV — D5y, v — (35Dy; Dy, V)i,
— 0y, 0y 0y, V * z,ap) (€21)
Gap(p.tuz) = —(%) “ 0y 0yg V. (C.22)
In view of (C.20)—(C.22), we define the functions depending on
(p.5,9,0) € xR x T,(Z) x GL(2, R)

such that

E(p,s,y,Q)=8s(

< |8

)<p 5. 3) (50 = By Dy — (533 )Y — (3B ) Oap)
+ ( )(p,s y) 8 v—asapafiyav—(afayav)ya
- 8S3y3 ayav . Qaﬂ)’

w
F)/(pvs’y» Q) = ayy - (PvS,J’)‘(asv_apaayav_(asayav))’a—(aygayav)Qaﬂ)

Vv

< |8

n (%) By, s — By, Do Dy ¥ — Dy, v — (BDy; By, ) Y
— 0y, 0y 0y, v - Qaﬁ)’
w
Gap(p.s.y) = —(;)(p,s, ) - 0y50y, V.

Let 1 = Ati, for A € [0, 1]. Then we have
1
E(pouz) = E(p.0) + / 02 (E(p.i12)) dA, (C23)
0
1
Fy(pous) = Fy(p.0) + / 3,(F, (p. 1)) d2. (C.24)
0

1
Gap (p.112) = Gap (p.0) + /0 03 (Gap (p.112)) dA. (C.25)
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Note that
a)L(E(p»ﬁ)L)) = (asE) “Ue + (ayi E) . ﬁr,i + (aQaﬁ E) : ﬁt,aﬂ’ (C.26)
aA(Fy(p» ﬁ)t)) = (8SFV) : izr + (8y,~ Fy) . ﬁr,i + (aQaﬂ Fy) . ﬁr,aﬂ’ (C.27)
01 (Gap(p, 1)) = (05Gap) - Ui + (dy, Gap) - lic,, (C.28)
where the right-hand sides of (C.26)—(C.28) are evaluated at
(p,S, Y, Q) = (ps ﬁlv Vﬂkv vzﬁ/\)-
By Lemma C.1, we have
E(p,0) = —|4]%, (C.29)
Fy(p,0) =0, (C.30)
Gop(p,0) = —ap. (C.31)
Combining (C.23) and (C.26) with (C.29), we have
1
E(p,u;) = —|AP* + u/ s E)(p,fig, Viig, Vi) dA
0
1
+ g / 0y, E)(p,fiz, Viig, V1) dA
0
1
+ fir0p f (00us E)(p. iz, Viie, Vi) dA. (C.32)
0
Similar, we have
1
Fy(paie) = i [ @uF)(petie, Ve, V211 d
0
1
bites [ @ B (P, Vite, Vi) d
0
1
+ firop [ (000 Fy)(p. tic, Viig, VZii) d A (C.33)
0
and
1
Gop(p.ug) = —8ap + ﬁr/ (05Gop)(p,tiz, Viig) dA
0
1
bites [0, Gup) (0.1 Vi) A (C34)
0
Combining (C.32)—(C.34), (C.17) with (C.19), we have
1
H,+(p) — Hu: (p) = fo 0e(Hu, (p)) d
= —|APu — Au+ a%Pugp + b, + cru, (C.35)

where the coefficients a‘fﬁ , b’i and c¢; are small, and tend to zero as ui+ and u; tend to zero.
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Step 2. We calculate the difference of 7, + and 7,,-. Note that

1
- (0) = () + [ (o (P (36)
By (C.18), we have

ar(nﬁz (p)) = (Osn)(p,tig, Viig) - u + (aya M(p, iy, Viig) - Ug, (C.37)

where the function 7 of the right-hand side is defined by (C.3). Let 1), = Ai, asin Step 1.
Then we have

1
@) (p. fiz. Viiz) = (857)(p. 0,0) + iis /0 (@20)(p. 1y Viiy) dA

1
+ﬁm/ 0y, dsm) (P, 1ip, Vi) dA. (C.38)
0

Similarly, we have
1
Oy M(P. 1z, Viig) = (dy,1)(p. 0,0) +ﬁr/0 (950y M (P, ita, Vity) dA

1
bty [ Gudpin Vit ©39)
0
Combining (C.36)—(C.39) with part (3) of Lemma C.1, we have
M (P) = Mz (p) + = (p. Vu) + bui + cau, (C.40)

where ¢, and b§ are small and tend to zero as u l+ and u; tend to zero.

Step 3. We calculate the difference of ¢, + (p) and ¢y (p), where ¢y, = Hy — % (Xy, My).
Combining (C.40) with (C.35), we have '

¢+ () = bu=(p) = —Lu + a5 uag + bYuy + c3u, (C41)
where a‘;ﬂ , b and ¢ are small and tend to zero as u; and u; tend to zero. Note that
(a,xu?)l = (0X,+.1,4) = deu;t (n, n,+) = 8,ul.+wul+, (C.42)

where w, + is defined by (C.1), and X+ satisfies a similar equation as (C.42). Moreover,

we have ' )

Z),Lt;"wugr —atui_wui— =/ 0: (07t wg, ) dr.
i 0

Asin (C.18), we have

ar(atﬁrwﬁf) = 0/u Wy, + 0l arwﬁf

= 0;u wi, + 9rtic((Qsw)(p.tiz, Viig) - u + (dy, w)(p, ti, Viig) - u;).
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Since w(p,0,0) = 1 by (C.4), we have
1
wa (p) = 1 + /0 (@xwa,)(p) dA

1 1
= Ut [ @), Vi) a2 + ey [ @) (0., Vi) d.
0 0
Combining the above identities, we have
8tu?wu_+ - 8,ul~_wu1f = d,u(l+ biﬁr,i + cqtiz) + bgui + csu, (C.43)

where ¢4, ¢s, b}, and bL are small and tend to zero as u;" and u;” tend to zero. Combining
(C.43) and (C.41) with the equation of rescaled mean curvature flow, we have

ou 1 )

— = . ulTw 4+ — du; wy— —biu; —csu

B T By + a1 T Doy = Pt = o)
1

= : Lu + a®Pugg + b u, + cou
T Bjieg + cai (4 F 9 et bty o)

= Lu+ a%ugp + bYuy + cu,

where agﬁ ,bY . ce, agﬁ ,b¥ and c7 are small and tend to zero as u;” and u;" tend to zero.
The lemma is proved. ]
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