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Abstract. We prove that a locally compact space with an upper curvature bound is a topologi-
cal manifold if and only if all of its spaces of directions are homotopy equivalent and not con-
tractible. We discuss applications to homology manifolds, limits of Riemannian manifolds and
deduce a sphere theorem.
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1. Introduction

1.1. Main results

We prove the following:

Theorem 1.1. Let X be a connected, locally compact metric space with an upper curva-
ture bound. Then the following are equivalent:

(1) X is a topological manifold.

(2) All tangent spaces TpX of X are homeomorphic to the same space T , and T is of
finite topological dimension.

(3) All spaces of directions†pX are homotopy equivalent to the same space†, and† is
non-contractible.

Theorem 1.1 answers a folklore question about the infinitesimal characterization of
topological manifolds among spaces with upper curvature bounds, cf. [4]. It implies the
following affirmative answer to a question of F. Quinn, [54, Problem 7.2].
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Theorem 1.2. LetX be a metric space with an upper curvature bound. IfX is a homology
manifold, then there exists a locally finite subset E of X such that X nE is a topological
manifold.

We refer the reader to [44] and to Section 2.4 below for basics on homology manifolds
and to Section 6 for a stronger result.

If X in Theorem 1.1 is a topological manifold of dimension n, then all tangent spaces
TpX turn out to be homeomorphic to Rn and all spaces of directions turn out to be
homotopy equivalent to Sn�1.

For n � 5, the spaces of directions may not all be homeomorphic to Sn�1, [7], as
a consequence of the double suspension theorem of R. Edwards [23], [17]. However, for
n � 4, all spaces of directions †pX are homeomorphic to Sn�1, see Theorem 6.4. This
answers a question of V. Berestovskii [9, Problem 1].

We deduce the following topological stability theorem:

Theorem 1.3. For � 2 R and r > 0, let a sequence of complete n-dimensional Riemann-
ian manifolds Mi with sectional curvature � � and injectivity radius � r converge in the
pointed Gromov–Hausdorff topology to a locally compact space X . Then X is a topolog-
ical manifold and any space of directions †xX of X is homeomorphic to Sn�1.

Moreover, if X is compact, then Mi is homeomorphic to X , for all i large enough.

In particular, the double suspension of a non-simply connected homology sphere,
Example 2.5, is not a limit of CAT.�/ Riemannian manifolds, proving the conjecture
formulated in [7].

1.2. Analogies and differences

For spaces with lower curvature bounds the analogs of Theorem 1.1 and the stability
part of Theorem 1.3 are special cases of the fundamental topological stability theorem of
G. Perelman, [49], [38]. Moreover, Theorem 1.2 for Alexandrov spaces is a direct conse-
quence of Perelman’s stability theorem, as observed in [62]. The analog of the additional
statement in Theorem 1.3 about the homeomorphism type of the spaces of directions (see
also Theorem 7.1 below, for a more general statement) has been proved for Alexandrov
spaces by V. Kapovitch in [37].

However, for spaces with an upper curvature bound there is no analog of the stabil-
ity theorem, even for finite graphs. Moreover, already in dimension 2, locally compact,
geodesically complete spaces with an upper curvature bound do not need to admit a topo-
logical triangulation, as has been observed by B. Kleiner, [39]. Thus, unlike their analogs
for Alexandrov spaces, our results are not special cases of much more general statements.

On the other hand, our approach requires less geometric control and should be appli-
cable beyond our setting. For instance, it might simplify Perelman’s stability theorem for
Alexandrov spaces.

As in Perelman’s topological theory of Alexandrov spaces, a major role in our topo-
logical results play the so-called strainer maps investigated in [41]. Perelman has proved
in [49] that in the realm of Alexandrov spaces strainer maps are local fiber bundles. Simi-
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larly to the failure of topological stability, the example in [39] demonstrates that in spaces
with upper curvature bounds the local fiber bundle structure can not be expected. Never-
theless, from the homotopy point of view, strainer maps behave well and turn out to be
(local) Hurewicz fibrations. This result, Theorem 5.1, is deduced from general topological
statements and the local contractibility of fibers of strainer maps obtained in [41]. Theo-
rem 5.1 might be useful in further investigations of spaces with upper curvature bounds
and beyond.

We further mention, that the main theorems of [30] ([31]), [26] imply (in a more
general situation) the finiteness of topological types of manifolds in the sequence appear-
ing in the final statement of Theorem 1.3. However, no conclusion about the limit space
itself can be deduced in the generality of [30], [26] besides the fact that the limit space is
a homology manifold.

Finally, Theorems 1.1, 1.2 in dimensions� 3 and some related insights in dimension 4
are due to P. Thurston, [58].

1.3. Two applications

In order to state yet another manifold characterization we recall, [41], that a space X
with an upper curvature bound is locally geodesically complete if any local geodesic
 W Œa; b�! X can be extended as a local geodesic to some larger interval Œa � �; aC ��.
All homology manifolds, thus all spaces appearing in the previous theorems, are always
locally geodesically complete, Lemma 2.2.

Theorem 1.4. LetX be a connected, locally compact space which has an upper curvature
bound and is locally geodesically complete. If X is not a topological manifold, then it
contains an isometrically embedded compact metric tree different from an interval.

Theorem 1.4 states that a non-manifold must have geodesics which branch at an angle
at least � . It can be seen as a soft version of the following much more special and rigid
result. If a connected, locally compact space X with an upper curvature bound is locally
geodesically complete and has no branching geodesics, then X is a smooth manifold
whose distance is defined by a continuous Riemannian metric g (with some additional
properties), [8], [41, Theorem 1.3].

Theorem 1.4 is a consequence of Theorem 1.1 and the following sphere theorem.

Theorem 1.5. Let † be a compact, locally geodesically complete space with curvature
bounded from above by 1. If the injectivity radius of† is at least � and† does not contain
a triple of points with pairwise distances at least � , then † is homeomorphic to a sphere.

Our Theorem 1.5 has a well-known analog for spaces with lower curvature bounds,
due to K. Grove and P. Petersen, later reproved by A. Petrunin: An Alexandrov space of
curvature at least 1 and radius larger than �

2
is homeomorphic to a sphere, [29], [52]. In

terms of the packing radii investigated in [28], [32], the assumption about the triple of
points in X reads as pack3.X/ <

�
2

.
From Theorem 1.5 it is easy to deduce a volume sphere theorem, see Theorem 8.3

below, generalizing [20], [46].
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1.4. Structure of the paper

After Preliminaries in Section 2, we study in Section 3 homology manifolds with upper
curvature bounds and prove those parts of our main theorems, which do not rely on proper-
ties of strainer maps. In Section 4 we recall several topological results relating fibrations,
fiber bundles and local uniform contractibility. In Section 5 we recall from [41] basic
properties of strainer maps and apply results from Section 4 to deduce Theorem 5.1 dis-
cussed above. In Section 6, we apply the general topological statements inductively to
strainer maps and prove Theorems 1.1–1.2. In Section 7 we discuss iterated spaces of
directions and prove Theorem 1.3 and its generalization. In the final Section 8 we discuss
basic properties of pure-dimensional spaces and prove Theorems 1.4, 1.5 and 8.3.

2. Preliminaries

2.1. Notations

We refer to [2], [13], [16], [3], [41] for the basics on upper curvature bounds in the sense
of Alexandrov.

We will stick to the following notations. By d we denote the distance functions on
metric spaces. For a point p in a metric space X , we denote by dx W X ! R the distance
function to the point x. By Br .p/ (respectively, by NBr .p/) we denote the open (respec-
tively, closed) metric ball of radius r around the point p. By B�r .p/ we will denote the
punctured ballBr .p/ n ¹pº. By Sr .p/we will denote the metric sphere of radius r around
the point p. Geodesics will always be globally minimizing and parametrized by arclength.

For two maps '; from a set G into a metric space Y , we set

d.';  / WD sup
x2G

d
�
'.x/;  .x/

�
:

The dimension of a metric space X will always be the covering dimension and will be
denoted by dim.X/.

A metric space X has curvature bounded from above by � if every point of X has
a CAT.�/ neighborhood. IfX is a space with an upper curvature bound and x 2 X a point,
we denote by†x or by†xX the space of directions at x and by Tx or by TxX the tangent
cone at x of X , which is canonically identified with the Euclidean cone over †x .

We denote by Hk.X; Y / the k-th singular homology with integer coefficients of the
pair Y � X of topological spaces.

2.2. Basic topological properties of spaces with upper curvature bounds

Any spaceX with an upper curvature bound is an absolute neighborhood retract, abbrevi-
ated as ANR, [48], [40]. In particular, X is homotopy equivalent to a simplicial complex.
We have, [40]:

Lemma 2.1. For any point x in a space X with an upper curvature bound, there exists
some r > 0 such that for each 0 < s � r , the ball Bs.x/ is contractible and the punctured
ball B�s .x/ is homotopy equivalent to the space of directions †x .
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Due to [39], for any separable space X with an upper curvature bound

dim.X/ D 1C sup
x2X

.dim.†xX//

D sup
x2X

.dim.TxX//:

Moreover, if dim.X/ is a finite number n, there exists some x 2 X such thatHn�1.†xX/
is not 0.

2.3. Tiny balls, GCBA spaces

LetX be a locally compact space with an upper curvature bound �. We will say that a ball
Br .x/ is tiny if the closed ball with radius 10 � r around x is a compact CAT.�/ space
and if 100 � r is smaller than the diameter of the simply connected, complete surface of
constant curvature �.

In a tiny ball all geodesics are determined by their endpoints.
A space X with an upper curvature bound is locally geodesically complete if every

local geodesic defined on any compact interval can be extended as a local geodesic beyond
its endpoints. The following observation, [42, Theorem 1.5], goes back to H. Busemann:

Lemma 2.2. Let X be a space with an upper curvature bound. If for any x 2 X there
exist arbitrary small r such that the punctured ball B�r .x/ is non-contractible, then X is
locally geodesically complete.

Due to the long exact sequence and the contractibility of small balls, the local homol-
ogy Hm.X;X n ¹xº/ at x coincides with Hm�1.B�r .x//, for any x in a space X with an
upper curvature bound, any small r > 0 and any natural m. Thus, the non-vanishing of
H�.X;X n ¹xº/, for all x 2 X implies, that X is locally geodesically complete.

A GCBA space is a locally compact, separable metric space with an upper curvature
bound, which is locally geodesically complete. IfX is GCBA, then so is any tangent space
TxX and space of directions †xX . Moreover, any space of directions †xX is compact
and any tangent space TxX is the limit in the pointed Gromov–Hausdorff topology of
rescaled balls around x, [2], [41, Section 5].

Every GCBA spaceX has locally finite dimension, [41, Theorem 1.1], and contains an
open and dense topological manifold (possibly of non-constant dimension), [41, Theor-
em 1.2]. Moreover, X contains a dense set of points with tangent spaces isometric to
Euclidean spaces, possibly of different dimension, [41, Theorem 1.3].

The following result has been shown in [41, Theorems 1.12 and 13.1]:

Proposition 2.3. Let x be a point in a GCBA space X . Then there exists some rx > 0
such that for all r < rx the following hold true:

(1) The metric sphere Sr .x/ is homotopy equivalent to †x .

(2) Let B10�r .xi / be a sequence of tiny metric balls in GCBA spaces Xi with the same
upper curvature bound �. If NB10�r .xi / converge to NB10�r .x/ in the Gromov–Hausdorff
topology, then, for all i large enough, Sr .xi / is homotopy equivalent to Sr .x/.
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2.4. Homology manifolds

We denote byDn the closed unit ball in Rn. We callD2 the unit disk and denote it byD.
Let M be a locally compact, separable metric space of finite topological dimension.

We say that M is a homology n-manifold with boundary if for any p 2M we find
a point x 2 Dn such that the local homology H�.M;M n ¹pº/ at p is isomorphic to
H�.D

n;Dn n ¹xº/. The boundary @M of M is defined as the set of all points at which
the n-th local homologies are trivial. In the case where the boundary of M is empty, we
simply say that M is a homology n-manifold.

If M is a homology n-manifold with boundary, then @M is a closed subset of M and
it is a homology .n � 1/-manifold by [45].

Any homology n-manifold (with boundary) has dimension n. For n � 2, we have the
following theorem of R. Moore, see [61, Chapter IX].

Theorem 2.4. Any homology n-manifold with n � 2 is a topological manifold.

2.5. Examples

The following example is well known, [6], [29].

Example 2.5. Consider a closed Riemannian .n � 2/-manifold Y which has the homol-
ogy of Sn�2 but is not simply connected (such manifolds exist for n � 5). Rescaling the
metric, we may assume that Y is CAT.1/. The spherical suspension X1 D S0 �Y of Y is
a CAT.1/ space which is a homology manifold and has exactly two non-manifold points.
The double suspension X D S1 �Y of Y is a CAT.1/ space homeomorphic to Sn by the
double suspension theorem, [17], [23]. But for any point x on the S1-factor, the space of
directions †xX is isometric to X1, hence not homeomorphic to Sn�1.

Some additional assumption on the tangent spaces and spaces of directions are needed
in Theorem 1.1:

Example 2.6. Let X be the Hilbert cube, hence a compact CAT.0/ space. At any x 2 X
the space of directions †x is contractible. Moreover, at any x 2 X , the tangent space Tx
is homeomorphic to the Hilbert space, as can be deduced from [10], [59].

3. Homology manifolds with upper curvature bounds

3.1. General observations

We start with the following:

Lemma 3.1. Let X be a locally compact space with an upper curvature bound. The
space X is a homology n-manifold if and only if H�.†x/ D H�.Sn�1/, for all x 2 X . In
this case, X is locally geodesically complete.

Proof. For any x 2 X and r > 0 as in Lemma 2.1, †x is homotopy equivalent to B�r .x/
and QHk.B�r .x// D HkC1.X;X n ¹xº/, for any k.
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Thus, if X is a homology n-manifold, then any space of directions †xX has the
homology of Sn�1.

If all spaces of directions have the homology of Sn�1, then they are non-contractible
and, therefore, X is locally geodesically complete. For any x 2 X , we have

Hm.X;X n ¹xº/ D Hm.S
n�1/:

Thus, X has the same local homology as Rn. Since X , as any GCBA space, has locally
finite dimension, X is locally a homology n-manifold. Thus X has topological dimen-
sion n and it is a homology n-manifold.

Using the contraction along geodesics to the center of a ball, [45] and the Poincaré
duality, [12], we obtain [58, Proposition 2.7]:

Lemma 3.2. Let Br .x/ be a tiny ball in a homology n-manifold X with an upper curva-
ture bound. Then NBr .x/ is a compact, contractible homology manifold with boundary
Sr .x/. In particular, Sr .x/ is a homology .n � 1/-manifold with the same homology
as Sn�1.

3.2. Stability under convergence

The following observation is a special case of result of E. Begle, [5], see also [30, Theo-
rem 2.1]. In our situation the proof can be simplified using the homotopy properties of
distance spheres.

Lemma 3.3. Let Xi be compact CAT.�/ spaces converging in the Gromov–Hausdorff
topology to a compact spaceX . Let xi 2 Xi converge to x 2 X and let r > 0 be such that
for all i , the ball Br .xi / � Xi is a homology n-manifold. Then Br .x/ � X is a homology
n-manifold.

Proof. Due to Lemma 3.1, the open balls Br .xi / are GCBA spaces, hence so is Br .x/,
compare [41, Example 4.3]. In particular, the dimension of Br .x/ is locally finite.

It remains to prove that H�.†zX/ D H�.Sn�1/ for all z 2 X . Write z as a limit
of points zi 2 Br .xi /. By Proposition 2.3 we find some r > t > 0, such that St .z/ is
homotopy equivalent to †zX and to St .zi /, for all i large enough. Thus, the homology
of †zX coincides with the homology of Sn�1 by Lemma 3.2.

As a consequence we deduce:

Corollary 3.4. Let X be a homology n-manifold with an upper curvature bound. Then,
for any x 2 X , the tangent space TxX is a homology n-manifold and †x is a homology
.n � 1/-manifold.

Proof. The space X is GCBA by Lemma 3.1. Thus, the tangent space .TxX; 0/ is a limit
of rescaled metric balls around x in X . Due to Lemma 3.3, Tx is a homology n-man-
ifold. The homology n-manifold Tx n ¹0º is homeomorphic to †x �R. Therefore, †x is
a homology .n � 1/-manifold.
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3.3. Simple implications in the main theorem

We can already discuss the simple implications in our main theorem. We start with the
following (folklore) result, compare [15, Proposition 3.12]:

Lemma 3.5. Let X be a topological n-manifold with an upper curvature bound. Then
any space of directions †x is homotopy equivalent to Sn�1.

Proof. Any space of directions †x is an ANR and compact homology .n � 1/-manifold
with the homology of Sn�1, Lemma 3.1, Corollary 3.4.

If n � 3, then †x is homeomorphic to Sn�1 by Theorem 2.4.
If n � 3, then, by Whitehead’s theorem, it suffices to prove that †x is simply con-

nected. To this end, consider a small neighborhood U of x homeomorphic to a Euclidean
ball and small numbers r1; r2 > 0 such that Br1.x/ � U � Br2.x/. Note that the inclu-
sionB�r1.x/! B�r2.x/ is a homotopy equivalence factoring through the simply connected
space U n ¹xº. This implies that all small punctured balls B�r .x/ are simply connected.
Due to Lemma 2.1, †x is simply connected, finishing the proof.

Lemma 3.6. Let X be a locally compact space with an upper curvature bound. Assume
that all spaces of directions †xX are homotopy equivalent to the same non-contractible
space †. Then † is homotopy equivalent to Sn�1, for some n, and X is a homology
manifold.

Proof. By assumption, all spaces of directions are non-contractible. By Lemma 2.2, X is
a GCBA space. Any GCBA space has a point with space of directions isometric to
a sphere Sn�1, [41, Theorem 1.3]. Then, by assumption, all spaces of directions are
homotopy equivalent to Sn�1. By Lemma 3.1, X must be a homology n-manifold.

Lemma 3.7. Let X be a locally compact space with an upper curvature bound. Assume
that all tangent spaces TxX are homeomorphic to the same finite-dimensional space T .
Then T is homeomorphic to Rn, for some n, and all spaces of directions are homotopy
equivalent to Sn�1.

Proof. For points x; y 2 X there is, by assumption, a homeomorphism

I W Tx D C.†x/! Ty D C.†y/:

Restricting I to a large distance sphere in Tx around the origin, we obtain an embedding
I W †x ! C.†y/ n ¹yº D .0;1/ �†y . Composing with the projection to the second
factor we obtain a map OI W †x ! †y , and it is easy to see (using the cone structures of Tx
and Ty) that OI is a weak homotopy equivalence. Since the spaces of directions are ANRs,
OI is a homotopy equivalence. Thus, all spaces of directions are homotopy equivalent.

Due to [39], X has finite dimension n, equal to the dimension of T . Then, by [39]
there exists some x such that †x is not contractible. By Lemma 3.6, there exists some n
such that all spaces of directions are homotopy equivalent to Sn�1.

Moreover, X is a homology n-manifold and a GCBA space by Lemma 3.1. By [41]
there exists a point x 2 X with tangent space isometric to Rn. Therefore, T is homeo-
morphic to Rn.
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4. Homotopy stability and Hurewicz fibrations

4.1. Uniform local contractibility

Following [51], we say that a function � W Œ0; r0/! Œ0;1/ is a contractibility function if
�.0/ D 0, �.t/ � t , for all t 2 Œ0; r0/, and � is continuous at 0.

Definition 4.1. We say that a family F of metric spaces is locally uniformly contractible
if there exists a contractibility function � W Œ0; r0/! Œ0;1/ such that for any space X in
the family F , any point x 2 X and any 0 < r < r0, the ball Br .x/ is contractible within
the ball B�.r/.x/.

For example, the family of all CAT.�/ spaces is locally uniformly contractible with
� W Œ0; �p

�
/! Œ0;1/ being the identity map.

A compact, finite-dimensional space is locally uniformly contractible if and only if it
is an ANR.

We will use the notion of �-equivalence, [19], a controlled version of homotopy equiv-
alence. A continuous map f W X ! Y between metric spaces is called an �-equivalence if
there exists a continuous map g W Y ! X with the following property. There exist homo-
topies F and G of f ı g and g ı f to the respective identity map of Y and X such that
the F -flow line of any point in Y and the f -image of the G-flow line of any point in X
has diameter less than � in Y .

The following result is due to P. Petersen, [51, Theorem A]:

Theorem 4.2. For any n; � > 0 and any family F of locally uniformly contractible metric
spaces of dimension at most n, there exists some ı > 0 such that the following holds true.
Any pair of spacesX; Y 2F , with Gromov–Hausdorff distance at most ı are �-equivalent.

When dealing with the family of fibers of a map the following variant of Definition 4.1
seems more suitable, compare [60].

Definition 4.3. Let F W X ! Y be a map between metric spaces. We say that F has
locally uniformly contractible fibers if the following condition holds true for any point
x 2 X and every neighborhood U of x in X . There exists a neighborhood V � U of x
in X such that for any fiber F �1.y/ with non-empty intersection F �1.y/ \ V , this inter-
section is contractible in F �1.y/ \ U .

For X compact, a map F W X ! Y has locally uniformly contractible fibers in the
sense of Definition 4.3 if and only if the family of the fibers is locally uniformly con-
tractible in the sense of Definition 4.1.

4.2. Relation to Hurewicz fibrations

A map F W X ! Y between metric spaces is called a Hurewicz fibration if it satisfies the
homotopy lifting property with respect to all spaces, [33, Section 4.2], [60].

The map F is called open if the images of open sets are open. It is called proper if the
preimage of any compact set is compact.
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Any locally compact metric space carries a complete metric. This allows us to for-
mulate Theorems 4.4–4.6 below for locally compact metric spaces, while the original
formulations in [43], [60] are done for complete metric spaces.

We formulate a special case of the continuous selection theorems of E. Michael,
[43, Theorem 1.2], as in [22, Theorem M]:

Theorem 4.4. Let F W X ! Y be an open map with locally uniformly contractible fibers
between finite dimensional, locally compact metric spaces. Then, for any x 2 X , there
exist a neighborhood U of F.x/ in Y and a continuous map s W U ! X such that F ı s
is the identity.

The following result is proved in [60, Theorem 1], see also [1] and [24] for related
statements.

Theorem 4.5. Let X; Y be finite-dimensional, compact metric spaces and let Y be an
ANR. Let F W X ! Y be an open, surjective map with locally uniformly contractible
fibers. Then F is a Hurewicz fibration.

In the locally compact case one can not expect that an open, surjective map with
locally uniformly contractible fibers is a Hurewicz fibration, as we see by restricting
a Hurewicz fibration to a complicated open subset. However, the following result is
deduced in [60, Theorem 2] from Michael’s selection theorem mentioned above.

Theorem 4.6. Let X and Y be finite-dimensional locally compact metric spaces. Assume
that an open, surjective map F W X ! Y has locally uniformly contractible fibers. If all
fibers F �1.y/ of F are contractible then F is a Hurewicz fibration.

4.3. Fibrations and fiber bundles

In some situations, Hurewicz fibrations turn out to be fiber bundles. Most results in this
direction are based on the famous ˛-approximation theorem, proved by T. Chapman and
S. Ferry in dimensions n � 5, [19], and extended by S. Ferry and S. Weinberger to dimen-
sion n D 4, [27, Theorem 4], and by W. Jakobsche to dimensions n D 2; 3, [35], [36].
Note that the 3-dimensional statement in [36] relies on the resolution of the Poincaré
conjecture. For n D 1, the ˛-approximation theorem is rather clear.

Theorem 4.7. Let the metric space M be a closed topological n-manifold. For any
˛ > 0 there is some � D �.M; ˛/ > 0 such that for any closed topological n-manifold
M 0 and any �-equivalence f WM 0 !M there exists a homeomorphism f 0 WM 0 !M

with d.f; f 0/ < ˛.

This theorem combined with the fiber-bundle recognition developed in [22] implies
[25, Theorems 1.1–1.4], [55, Theorem 2]:

Theorem 4.8. Let X; Y be finite-dimensional locally compact ANRs. Let F W X ! Y be
a Hurewicz fibration. If all fibers of F are closed n-manifolds, then F is a locally trivial
fiber bundle.
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We also apply the following local variant of this global result proved in [25, Propo-
sition 4.2]. The case n D 3, excluded in [25, Proposition 4.2], need not be excluded due
to the solution of the Poincaré conjecture (and [36]):

Theorem 4.9. Let F W X ! I be a Hurewicz fibration from a locally compact metric
space X to an open interval I . Assume that all fibers are topological n-manifolds. Then
X is a topological .nC 1/-manifold.

4.4. Fibrations and homology manifolds

Finally, we will use the following result proved by F. Raymond in [55, Theorem 1]. Rely-
ing on the local orientability of homology n-manifolds [12], Raymond’s Theorem 1 can
be slightly strengthened as explained in [55, pp. 52–53]. (The result will be used only for
Euclidean balls Y .)

Theorem 4.10. Let X be a homology n-manifold and let F W X ! Y be a Hurewicz
fibration. If Y is connected and locally contractible, then there exists some k � n such
that any fiber of F is a homology .n � k/-manifold and Y is a homology k-manifold.

5. Strainer maps

5.1. Basic properties

We recall the basic properties of strainer maps in GCBA spaces, a tool invented in [14]
for Alexandrov space, and applied to GCBA and investigated in this context in [41]. We
are not going to recall the exact definition but state instead the properties of strainer maps
which will be used below.

Let O be a tiny ball of a GCBA space X . For any natural k � 0, and any ı > 0 there
is the family

Fk;ı D Fk;ı.O/

of the so-called .k; ı/-strainer maps F W U ! Rk defined on open subsets U of O with
the following properties, [41, Sections 7–8].
(0) By convention, for k D 0, any ı > 0 and any open U � O , we let the constant map

F W U ! ¹0º D R0 be a .0; ı/-strainer map.
(1) For any F 2 Fk;ı.O/, the coordinates fi of F are distance functions to some points

p1; : : : ; pk 2 O .
(2) For ı1 > ı2, we have the inclusion

Fk;ı2
.O/ � Fk;ı1

.O/:

(3) For any F 2 Fk;ı.O/ and l < k, the first l coordinate functions of F W U ! Rk

define a map QF W U ! Rl contained in Fl;ı.O/.
(4) The restriction of any .k; ı/-strainer map to any open subset is a .k; ı/-strainer map.



A. Lytchak, K. Nagano 148

5.2. Extension properties

All extendability properties of strainer maps and the “largeness” of the sets Fk;ı.O/

depend on the following:
(5) For any x 2 X and any ı > 0, there exists some r > 0 such that dx W B�r .x/! R is

contained in F1;ı , [41, Proposition 7.3].
This result has the following generalization, [41, Proposition 9.4]:
(6) Let F W U ! Rk be a map in Fk;ı . Let x 2 U be a point and let … be the fiber

F �1.F.x//. Then there is r > 0 and an open set V � U containing B�r .x/ \…
such that the map OF D .F; f / W V ! RkC1 with last coordinate f D dx is contained
in FkC1;12�ı .

This property (6) is the “fiber-wise” statement of the following closely related result,
contained in [41, Theorem 10.5] in a stronger form:
(7) Let F W U ! Rk be in Fk;ı . Consider the set K of points x 2 U at which F can

not be locally extended to a .k C 1; 12 � ı/-map OF D .F; f / W Ux ! RkC1. Then the
closed set K intersects any fiber of F in U in a finite set of points.

5.3. Topological properties

The following property is contained in [41, Theorem 1.10]:
(8) Let F W U ! Rk be a map in Fk;ı with ı < 1

20�k
. Then the map F is open. Moreover,

for any compact subset K of U , there exists some � > 0 such that for all r < � and
all x 2 K the intersection Br .x/ \ F �1.F.x// is contractible.

Now we easily derive:

Theorem 5.1. Let U be an open subset of a GCBA space X , and let F W U ! Rk

be a .k; ı/-strainer map, for some k and any ı < 1
20�k

. Then any x 2 U has arbitrary
small open contractible neighborhoods V such that the restriction F W V ! F.V / is
a Hurewicz fibration with contractible fibers. If a fiber F �1.b/ is compact, there exists an
open neighborhood V of F �1.b/ in U such that F W V ! F.V / is a Hurewicz fibration.

Proof. By property (8) of strainer maps, the map F is open and it has locally uniformly
contractible fibers.

Let x 2 U be arbitrary. Using Theorem 4.4, we find a neighborhoodW of F.x/ in Rk

and a continuous section s W W ! U such that F ı s is the identity. Making W smaller,
if needed, we may assume that W is an open ball and s.W / is contained in a compact
subset K � U .

Take a positive number � provided by property (8). Making � smaller, we may assume
that the distance from K to the boundary of U in X is larger than �. Consider the
set V � U (the union of balls-in-the-fiber of radius �) of all z 2 F �1.W / such that
d.z; s.F.z/// < �.

Then V is open inU and contains x. We have F.V / D W and every fiber F �1.t/ \ V
of F in V is a contractible. By Theorem 4.6, F W V ! F.V / is a Hurewicz fibration.
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Since W D F.V / and the fibers of the Hurewicz fibration F W V ! W are contractible,
V is contractible as well.

Let now F �1.b/ be a compact fiber of F in U . Take a compact neighborhood V0
of F �1.b/ in U . Let C be its boundary @V0. Consider a closed ball B around b which is
contained in the neighborhoodF.V0/ of b but does not intersect the compact image F.C/.
Let V1 be the intersection V0 \ F �1.B/.

SinceF �1.B/ does not intersectC , the set V1 is compact. The restrictionF W V1 ! B

has locally uniformly contractible fibers. Applying Theorem 4.5, we deduce that the map
F W V1 ! B is a Hurewicz fibration. If we takeW to be any open ball around b contained
in B and let V be the preimage F �1.B/ \ V1, then F W V ! B is a Hurewicz fibration
as well. This finishes the proof.

Since being a homology k-manifold is a local property, we directly deduce from
Theorem 5.1 and Theorem 4.10:

Corollary 5.2. Let F W U ! Rk be a .k; ı/-strainer map with ı < 1
20�k

defined on an
open subset of a GCBA space X . If U is a homology n-manifold, then any non-empty
fiber … of F is a homology .n � k/-manifold.

6. Topological regularity

6.1. Disjoint disk property

A metric space M has the disjoint disk property if for any two continuous maps

'i W D !M; i D 1; 2;

on the unit disk D and for any � > 0, there are two continuous maps

e'i W D !M

such that
d.'i ;e'i / � � and e'1.D/ \e'2.D/ D ;:

For a homology n-manifold Y we denote by M.Y / the set of manifold points in Y ,
thus of all points in Y with a neighborhood homeomorphic to Rn. We recall the follow-
ing special case of the celebrated manifold recognition theorem of Edwards and Quinn,
[44, Theorem 2.7]:

Theorem 6.1. Let the connected metric space Y be an ANR and a homology n-manifold
with n � 5. Then Y is a topological manifold if and only if the set of manifold points
M.Y / is not empty and Y has the disjoint disk property.

For n � 5 the next result easily follows from Theorem 6.1 and is a very special case
of the main theorem of [18]. For n D 4, the next result is a very special case of the main
theorem of [11].
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Theorem 6.2. Let Y be an ANR and a homology n-manifold with n � 4. Let K � Y be
a discrete set of points such that Y nK is a topological n-manifold. If every point x 2 K
has arbitrary small neighborhoods U in Y such that U n ¹xº is simply connected, then Y
is a topological n-manifold.

6.2. Structure of GCBA homology manifolds

We are going to formulate and prove the main technical result.

Theorem 6.3. For natural numbers k and n with 0 � k � n, let U � X be an open
subset of a GCBA spaceX . Assume thatU is a homology n-manifold. Let F W U ! Rn�k

be an .n � k; ı/-strainer map and let … be a fiber of the map F . Let E � … be the set of
points at which F does not have a local extension to an .n � k C 1; 12 � ı/-strainer map
OF D .F; f /.

Assume finally that ı < 20�nCk�1. Then the setE is finite and the complement… nE
is a topological k-manifold. Moreover, if k � 3, then … is a topological k-manifold.

Proof. By our assumption,

ı <
1

20 � .n � k/
and 12 � ı <

1

20 � .n � k C 1/
:

Thus, Corollary 5.2 and Theorem 5.1 apply to F and the extensions of F provided by
Section 5.2. Hence, … is a homology k-manifold by Corollary 5.2. Due to Section 5.2,
the set E � … is finite.

We fix n and proceed by induction on k. For k � 2, we deduce from Theorem 2.4 that
… is a topological k-manifold.

Assume k D 3. Let x 2 … be arbitrary. By Section 5.2, we find some r > 0 such
that the ball NBr .x/ � U is compact and has the following property. There exists an open
set V � X containing B�r .x/ \… such that the map OF D .F; f / W V ! Rn�kC1 is an
.n � k C 1; 12 � ı/-strainer map, where f is the distance function f D dx .

The fibers of the map OF through points z 2 B�r .x/ \… are compact distance spheres
…t WD St .x/ \… around x in…. By Theorem 5.1 the restriction of OF to a neighborhood
of any such fiber…t is a Hurewicz fibration. Hence, the restriction of f to a neighborhood
of…t in… is a Hurewicz fibration, for any 0 < t < r . Therefore, f WB�r .x/\…! .0; r/

is a Hurewicz fibration.
By the already verified case k D 2, the fibers of OF (hence of f ) are topological

2-manifolds. Due to Theorem 4.8, the Hurewicz fibration f must be a fiber bundle.
Since the base of the bundle is a contractible interval, the bundle must be trivial. Thus,
B�r .x/ \… is homeomorphic to .0; r/ �M for a topological 2-manifold M .

From the uniqueness of one-point compactifications, we see that Br .x/ \… is home-
omorphic to the cone CM over M . Since … is a homology 3-manifold, M must have the
homology of S2. Therefore,M is homeomorphic to S2 and Br .x/ \… is homeomorphic
to R3. Since the point x was arbitrary, … is a topological 3-manifold.

Assume k D 4. For any x 2 … nE, there exists a neighborhood Ux of x in X and an
extension of F to an .n� kC 1;12 � ı/-strainer map OF D .F; f / WUx!Rn�kC1. Apply-
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ing the case k D 3, we know that the fibers of OF are topological 3-manifolds. Due to Theo-
rem 5.1, we may restrict to a smaller neighborhood of x and assume that OF WUx! OF .Ux/

is a Hurewicz fibration. Then so is the restriction OF W … \ Ux ! OF .… \ Ux/, which is
nothing else but the last coordinate f . Applying Theorem 4.9, we see that … \ Ux is
a 4-manifold. Since x 2 … nE was arbitrary, this finishes the proof for k D 4.

Assume now k � 5 and that the claim is true for k � 1. We consider an arbitrary point
x 2…nE, a neighborhoodUx of x and an extension ofF to an .n� kC 1;12 � ı/-strainer
map OF D .F; f / as before. Making Ux smaller, we may assume by Theorem 5.1, that the
restriction OF W Ux ! OF .Ux/ is a Hurewicz fibration with contractible fibers.

Consider the intersection W WD … \ Ux and the restriction f W W ! f .W / � R
which is a Hurewicz fibration with contractible fibers. By making Ux smaller (if needed),
we may and will assume that f .W / is an open interval J � R. In this setting we will
prove that W is a topological k-manifold.

For t 2 J we let Wt the preimage f �1.t/ � W , which is a contractible fiber of
the strainer map OF W Ux ! Rn�kC1.

LetK1 be the closed subset of points of Ux at which OF does not (locally) extend to an
.n � k C 2; .12/2 � ı/-strainer map. By the inductive assumption, the intersection of any
fiber of OF with Ux nK1 is a topological .k � 1/-manifold. Applying Theorem 4.9 to the
Hurewicz fibration f W W ! J , we deduce that W nK1 is a topological k-manifold.

Consider the set of manifold points M.W / and its complement K0 WD W nM.W /,
the set of non-manifold points in W . We have just shown that K0 is contained in K1. We
assume that K0 is not empty, and we are going to derive a contradiction.

By the inductive assumption, the set K1 intersects every fiber of OF only in finitely
many points. Hence, for any t 2 J the intersection Wt \K0 is finite.

The Hurewicz fibration f W W ! J has contractible base and fibers, henceW is con-
tractible, in particular, it is connected. The setW nK0 is not empty, as we have seen. Due
to Theorem 6.1, it suffices to prove that W satisfies the disjoint disk property, in order to
conclude that W is a topological k-manifold and to achieve a contradiction.

The verification of the disjoint disk property occupies the rest of the proof and happens
in several steps.

Step 1. For any map  W S1 ! W and any � > 0 there exists a map O W S1 ! W with
d.; O/ < � such that f ı O is piecewise monotone.

Indeed, we easily find a homotopy of the map �0 WD f ı  W S1 ! J through maps
�t such that each �t for t > 0 is piecewise linear. Using that f is a Hurewicz fibration we
can lift �t to a homotopy of  D 0. Then we find the required map O as t for a small t .

Step 2. The set M.W / D W nK0 is connected.

Indeed, for any t 2 J , the fiber Wt is a connected homology .k � 1/-manifold. Since
Wt \K0 is discrete, it follows that the complementWt nK0 is not empty and connected,
see [21, Lemma 2.1]. For any connected component W 0 of M.W / we deduce

W 0 D f �1.f .W 0// \M.W /:

Since J is connected, this implies f .W 0/ D J and W 0 DM.W /.
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Step 3. For any y 2 W , the complement W n ¹yº is simply connected.

Indeed, consider an arbitrary curve  W S1 ! W n ¹yº. In order to fill  by a disk, we
use the local contractibility ofW and Step 1, and may assume that � D f ı  is piecewise
monotone. If the image of � does not contain t0 WD f .y/, then  lies in the contractible
set f �1.�.S1// (which does not contain the point y) and the statement is clear.

If the image of � contains t0, we can write � as a concatenation of finitely many curves
�i based in t0, each of them completely contained either in Œt0;1/ or in .�1; t0�. The
corresponding decomposition of S1 decomposes  in a finite concatenation of possibly
non-closed curves i each of them ending and starting on Wt0 .

The homology .k � 1/-manifold Wt0 is connected, hence so is Wt0 n ¹yº. Therefore,
we can connect the endpoints of each i in Wt0 .

Concatenating these “connection curves” with  , we obtain a closed curve O , homo-
topy equivalent to  in W n ¹yº. Moreover, O is a concatenation of finitely many closed
curves Q , such that f ı Q is contained either in .�1; t0� or Œt0;1/.

For any such curve Q we can now fill f ı Q in J by a disk none of whose interior
point is sent to t0. Using the homotopy lifting property, we can lift this disk to a filling
of Q in W n ¹yº. Thus, any of the curves Q and hence  are contractible in W n ¹yº.

Step 4. For any curve  W S1 ! W nK0, there exists an extension of  to a disk

� W D ! W

intersecting K0 only in finitely many points.

Indeed, arguing as in Step 3, we can assume that f ı  is piecewise monotone. Sub-
dividing f ı  and using connection curves in single fibers of f , as in the previous step,
we reduce the question to the case that f ı  is the concatenation of two monotone curves.
Reparametrizing  we can assume that  is parametrized on an interval Œ�a; a� such that
f ı .q/ D f ı .�q/ for all q 2 Œ0; a�.

For any q 2 Œ0; a� we choose any curve q in Wf ..q// nK0 connecting the points
.�q/ and .q/. Let Q denote the set of numbers q 2 Œ0; a� such that the concatenation
of q and  jŒ�q;q� can be filled by a disk inW intersecting only finitely many points inK0.

Clearly Q contains 0. We are done if Q contains a. Using a connectedness argu-
ment it suffices to prove that for any q0 there exists some � > 0 such that for any q with
jq � q0j < � the concatenation q;q0

of q; q0
and the parts of  between ˙q and ˙q0

can be filled in W by a disk intersecting K0 only in a finite number of points.
We fix q0 2 J .
Since the Hurewicz fibration f W W ! J has contractible fibers, we can find a con-

tinuous family Ps , s 2 J , of homotopy retractions Ps W W � Œ0; 1� fromW toWs . Indeed,
the map f satisfies the homotopy extension property for every pair of finite-dimensional
spaces, see [43, Theorem 1.2]. Thus, we can extend a continuous map

P W W � J � Œ0; 1�! W

such that P.w; f .w/; t/ D P.w; s; 0/ D w for all w 2 W; t 2 Œ0; 1� and s 2 J and such
that f ı P.w; s; t/ D .1 � t / � f .w/C t � s for all .w; s; t/ 2 W � J � Œ0; 1�.
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By continuity we find some � > 0 such that for all q 2 Œ0; a� with jq � q0j < � the
homotopy retraction Pf ..q// from W onto the fiber Wf ..q// has the following property:
The trace under this homotopy retraction of q0

and both parts of  between˙q0 and˙q
do not intersect K0.

Therefore, the homotopy retraction Pf ..q// defines a homotopy (not intersectingK0)
of the curve q;q0

to a closed curve c completely contained in the fiber Wf ..q//. Filling
the curve c inside the contractible fiberWf ..q// by any disk, we obtain the required filling
of the curve q;q0

. This finishes the proof of Step 4.

Step 5. For all z 2 W and all � > 0 there exists an open contractible neighborhood V z

of z in W with diameter smaller than � such that the restriction f W V z ! f .V z/ is
a Hurewicz fibration with contractible fibers.

Indeed, this follows from Theorem 5.1 in the same way as in the construction of W .

Step 6. The conclusions of Steps 3 and 4 are valid for all neighborhoods V z constructed
in Step 5.

Indeed, the proofs of the respective steps apply literally.

Step 7. For every disk � W D ! W and every � > 0, there exists a disk �� W D ! W

with pointwise distance to � at most � and such that the image of �� meets K0 only in
a finite set.

Indeed, we consider a covering of the �.D/ by the sets V z described above each of
them of diameter at most �

3
. Using the Lemma of Lebesgue, we find a triangulation of the

disk D by a finite graph � such that for any 2-simplex � of the triangulation, the image
�.�/ is contained in one of the sets V z .

We slightly move the images of the vertices of � and use Step 2 and Step 6 in order
to find a map �� W � ! U which does not meet K0 and such that for any 2-simplex � of
the triangulation � the images ��.@�/ and �2.�/ are contained in one set V z . Applying
Step 4 and Step 6, we can extend �� from the boundary @� of any 2-simplex � such that
this extension lies inside the same open set V z and intersects K0 only in a finite set of
points. Taking all these extensions together, we obtain the required disk �� .

Step 8. The disjoint disk property holds in W .

Thus, let �1; �2 W D ! W and � > 0 be given. Apply the previous Step 4 and obtain
a map Q�1 W D ! W with distance at most �

2
to �1, whose image intersects K0 only in

a finite set of points Q D ¹x1; : : : :; xlº.
We find a covering of the compact image �2.D/ by finitely many open neighborhoods

V z as above of diameter smaller than �
2

, such that any subset V z contains at most one of
the points xi .

We find a triangulation of the disk D by a finite graph � , such that for any 2-simplex
� of the triangulation, the image �2.�/ is contained in one of these sets V z . Arguing as
in the previous Step 7 (applying Step 2), we find a map Q�2 W � ! W which does not meet
K0 and such that for any 2-simplex � of the triangulation the image �2.@�/ is contained
in one of the sets V z .
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By Step 3 and Step 6, for any of our sets V z , the complement V z nQ is simply
connected. Therefore, we can extend Q�2 W � ! W to a map Q�2 W D ! W nQ such that
Q�2.�/ and �2.�/ are in the same set V z of our covering.

By construction, the intersection Q�2.D/ \ Q�1.D/ is contained in the set of manifold
points U nK0. Since in the n-manifold U nK the disjoint disk property holds true, we
can slightly perturb Q�2 and Q�1 (outside of K), so that the arising disks do not intersect.

This finishes the proof of Step 8 and therefore of the theorem.

6.3. Main theorems

We now finish the proof of the main theorems.

Proof of Theorem 1.2. Let X be a metric space with an upper curvature bound, which is
a homology n-manifold. By Lemma 3.1,X is a GCBA space. We coverX by tiny ballsO ,
and apply Theorem 6.3 in the case k D n and the constant map F W O ! R0 D ¹0º. We
deduce that X is a topological manifold outside a discrete set of points.

Proof of Theorem 1.1. We have seen in Lemma 3.5 and Lemma 3.7 that (1) implies (3)
and that (2) implies (3).

Assume now that (3) holds, thus all spaces of directions are homotopy equivalent
to a non-contractible space. We have seen in Lemma 3.6 that X must be a homology
n-manifold and all spaces of directions are homotopy equivalent to Sn�1.

By Theorem 6.3, X is a topological manifold if dim.X/ � 3.
Let the dimension of X be at least 4. Then all †x are simply connected, hence so are

all small punctured balls B�r .x/. The result that X is a topological manifold follows now
directly as a combination of Theorem 1.2 and Theorem 6.2.

Thus (3) implies (1).
It remains to prove that (1) implies (2). Assuming that X is a topological n-manifold

let x 2 X be arbitrary. We deduce from Corollary 3.4 that any space of directions †x is
a homology .n � 1/-manifold and any tangent space Tx D C.†x/ is a homology n-man-
ifold. Moreover, any space of direction is homotopy equivalent to Sn�1 by Lemma 3.5.

If n � 3, then †x is a topological manifold, Theorem 6.3, homeomorphic to Sn�1 by
Lemma 3.5. Thus, Tx is homeomorphic to Rn.

Assume n � 4. By Theorem 1.2, the set of non-manifold points of Tx is discrete.
Due to the conical structure, this directly implies that Tx n ¹0º is a topological manifold.
But †x and, therefore, all punctured balls around 0 in Tx are simply connected. From
Theorem 6.2 we deduce that Tx is a topological n-manifold.

Thus, Tx is a contractible n-manifold, simply connected at infinity, since†x is simply
connected. Therefore, Tx is homeomorphic to Rn.

6.4. Some improvements

Theorem 1.1 can be slightly strengthened in dimensions � 4. The first of these results is
contained in [58].
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Theorem 6.4. Let X be a locally compact space with an upper curvature bound. If X is
a homology n-manifold with n � 3, thenX is a topological manifold. IfX is a topological
n-manifold with n � 4, then any space of directions †x in X is homeomorphic to the
sphere Sn�1.

Proof. The first statement is local and is therefore contained (as the case k D n D 3) in
Theorem 6.3.

To prove the second statement, we use Lemma 3.4 and Lemma 3.5 to deduce that †x
is a homology .n � 1/-manifold, homotopy equivalent to Sn�1. By the first statement and
the resolution of the Poincaré conjecture, †x is homeomorphic to Sn�1.

Theorem 6.3 and, therefore, Theorem 1.1 can be strengthened as follows. Since the
result is not used in the sequel, the proof will be somewhat sketchy. For definitions and
fundamental results about ends of manifolds we refer to [56] and [34].

Theorem 6.5. Under the assumptions of Theorem 6.3, for any point x 2 … there exists
a neighborhood of x in … homeomorphic to the open cone C.M/ over a topological
.k � 1/-manifold M , with the homology of Sk�1.

Proof. We proceed by induction on k.

Cases k � 3. In this cases the statement is clear, since … is a topological manifold.

Case k D 4. One argues in the same way as in the case k D 3 in the proof of Theorem
6.3. Using that the fibers of the Hurewicz fibration f W B�r .x/ \…! .0; r/ are topo-
logical 3-manifolds, one concludes that B�r .x/ \… is homeomorphic to .0; r/ �M for
a topological 3-manifoldM . Thus Br .x/ \… is homeomorphic to the cone C.M/. Since
… is a homology 4-manifold, M must be a homology 3-sphere.

Cases k � 5. Find a small number r > 0 such that the .n�k; ı/-strainer mapF extends to
an .n�kC1; 12 � ı/-strainer map OF D .F; f / on a neighborhood V ofN WD B�r .x/\…
in X . Here f denotes as before, the distance function f D dx . By Theorem 6.3, N is
a topological k-manifold and, as we have seen in the proof of Theorem 6.3, the map
f W N ! .0; r/ is a Hurewicz fibration.

We claim that the end of the manifold N corresponding to the point x is collared.
Thus, N contains a subset homeomorphic to M � Œ0;1/, whose closure in … contains
a neighborhood of x, for some manifold M . Since … is a homology manifold, this would
imply that M must have the homology of Sk�1 and finish the proof of the theorem.

For k � 6 the statement is a direct consequence of Siebenmann’s theorem on collared
ends, [56], [34, Theorem 10.2], and the observation that N homotopically retracts onto
any compact fiber of f .

The following elegant argument due to Steven Ferry covers the case k D 5 as well as
the case k � 6.

Fix a fiber…t D f
�1.t/ for some t . By induction,…t is a homology .k�1/-manifold

with a finite set K of singularities (each of whom has a neighborhood in …t homeomor-
phic to a cone). By the main result of [53], there exists a resolution g WM ! …t which
is a homeomorphism outside the preimages g�1.K/.
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Consider the spaceNC obtained by gluing the cylinderM � .�1; 1� to f �1.0; t/ � N
by identifying M � ¹1º with …t along the map g. The space NC is by construction
a topological manifold outside the finitely many singularities in K � …t . Computing
the local homology at points in K, we see that NC is a homology k-manifold. Finally,
arguing as in the proof of Theorem 6.3, we see that all points in K have arbitrary small
simply connected punctured neighborhoods in NC. Applying Theorem 6.2, we conclude
that NC is a topological k-manifold.

We apply the main theorem from [57] and see that the topological k-manifold with
boundary NC nM � .�1; 0/ (the boundary isM �¹0º) is homeomorphic toM � Œ0;1/.
Thus the end of the manifold N is collared.

7. Limits of manifolds

7.1. Topological stability

We start with a part of Theorem 1.3:

Theorem 7.1. Let a sequence of complete CAT.�/ Riemannian manifolds Mi of dimen-
sion n converge in the pointed Gromov–Hausdorff topology to a space X . Then X is
a topological n-manifold.

Proof. Note that X is a GCBA space, [41, Example 4.3]. Due to Theorem 1.1, it suffices
to prove that for all x 2 X the space of directions †x is homotopy equivalent to Sn�1.
Due to Proposition 2.3, it suffices to prove that for all r small enough, the distance sphere
Sr .x/ is homotopy equivalent to Sn�1.

Fix a sequence xi 2 Xi converging to x. For all r small enough, the injectivity radius
of the Riemannian manifold Xi is larger than r , hence the distance sphere Sr .xi / is
homeomorphic to Sn�1. According to Proposition 2.3, the spheres Sr .xi / are homotopy
equivalent to Sr .x/, for all i large enough. This proves the claim.

The ˛-approximation theorem (Theorem 4.7) and Petersen’s stability theorem (Theo-
rems 4.2) give us:

Corollary 7.2. Under the assumptions of Theorem 7.1, assume in addition that X is
compact. Then Mi is homeomorphic to X , for all i large enough.

7.2. Iterated spaces of directions

In order to prove the remaining statement in Theorem 1.3, we need to understand spaces of
directions of spaces of directions. For a GCBA space X , we call any space of directions
†xX of X a first order space of directions of X . Inductively we define a k-th iterated
space of directions of X to be a space of directions †zY of a .k � 1/-st iterated space of
directions Y of X .

Using Theorem 1.1, we can easily derive the following lemma, clarifying the second
statement in Theorem 1.3.
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Lemma 7.3. Let X be a locally compact space with an upper curvature bound. Then the
following are equivalent:

(1) X is a topological manifold and, for any 1 � k < n, all k-th iterated spaces of
directions of X are homeomorphic to Sn�k .

(2) For any 1 � k < n, all k-th iterated spaces of directions of X are homotopy equiva-
lent to Sn�k .

Proof. Clearly (1) implies (2).
Assuming (2), we deduce from Theorem 1.1 that X is a topological manifold. Thus,

X is a GCBA space and all of its iterated spaces of directions are compact CAT.1/ spaces.
Let † be a k-th iterated space of directions of X . By assumption, all of its spaces of
directions are homotopy equivalent to Sn�k�1. By Theorem 1.1, the space † is a topo-
logical manifold. Due to the resolution of the (generalized) Poincaré conjecture, † is
homeomorphic to Sn�k .

Iterated spaces of directions can be seen in factors of blow-ups of the original space.
More generally, we have:

Lemma 7.4. Let Xi be complete GCBA spaces which are CAT.�/ for a fixed �, and
assume that .Xi ; xi / converge in the pointed Gromov–Hausdorff topology to a GCBA
space .X; x/. Then, for any non-empty k-th iterated space of directions †k of X , there
exist a sequence of points zi 2 Xi and a sequence ti � 1 such that, possibly after choos-
ing a subsequence, we have the following convergence in the pointed Gromov–Hausdorff
topology:

.Rk�1 �C†k ; 0/ D lim
i!1

.ti �Xi ; zi /:

Proof. Consider the set L of (isometry classes of) all pointed locally compact spaces
.Y; y/ which can be obtained as a pointed Gromov–Hausdorff limit of a subsequence of
a sequence .ti �Xi ; yi /, for some yi 2 Xi and some sequence ti � 1.

The set L consists of complete GCBA spaces, it contains the space .X; x/. With any
space .Y; y/, the family L contains the space .Y; y0/, for any y0 2 Y . Thus, we may
ignore the base points. Moreover, L is closed under rescaling with numbers t � 1 and
under pointed Gromov–Hausdorff convergence. Thus, with every space Z the family L

contains any of the tangent spaces TzZ.
For any k � 1 and any non-empty k-th iterated space of directions †k of X , we need

to prove that Z D Rk�1 �C†k is contained in L.
We proceed by induction on k. The case k D 1, thus C†1 being a tangent cone of X

at some point is already verified.
Assume that we have already verified the claim for k. Let †k be any k-th iterated

space of directions of X and let v 2 †k be an arbitrary point such that † WD †v†k is not
empty.

By the inductive assumption, the space Z D Rk�1 �C†k is contained in L. Then
also TvZ D Rk �C† is contained in L. This verifies the claim for k C 1 and finishes the
proof of the lemma.
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7.3. Limits of Riemannian manifolds

We are in a position to formulate and to prove the following generalization of the remain-
ing part of Theorem 1.3. Its proof relies on some stability properties of strainer maps.

Theorem 7.5. Under the assumptions of Theorem 1.3, for any k � n, any k-th iterated
space of directions of X is homeomorphic Sn�k .

Proof. It suffices to prove that, for all k < n, any k-th iterated space of directions †k

of X is homotopy equivalent to Sn�k , Lemma 7.3.
Let us fix such † D †k . Due to Corollary 7.4 we get (by rescaling the manifoldsMi )

a sequence of pointed Riemannian manifolds .Ni ; pi / with the following properties. The
manifold Ni is CAT.�i /, with �i converging to 0, and the sequence .Ni ; pi / converges in
the pointed Gromov–Hausdorff topology to Y D .Rk�1 �C†; 0/.

We fix the standard coordinate vectors e1; : : : :; ek�1 2 Rk�1 �¹0º � Y and consider
the map F W Y ! Rk�1 whose coordinates f1; : : : ; fk�1 are the distance functions to the
points ej . The geodesics from ej to 0 do not branch at 0. By the definition of strainer
maps, [41, Sections 7, 8], we know that for every ı > 0 there exists some � > 0 such that
F is a .k � 1; ı/-strainer map in the ball B of radius � around 0 in Y . We fix ı < 1

20�k2

and � as above.
We take .k � 1/-tuples of points in Ni converging to .e1; : : : ; ek�1/ and consider the

correspondingly defined maps Fi W Ni ! Rk�1 which converge to F . By the openness
property of strainers the following holds true, [41, Lemma 7.8]: For all i large enough,
the map Fi is a .k � 1; ı/-strainer in the ball B i of radius � around pi .

Denote by… the fiber of F in B through 0 and by…i the fiber of Fi in B i through pi .
The fibers …i are locally uniformly contractible. More precisely, by [41, Lemma 7.11
and Theorem 9.1], there exists some �1 > 0 with the following property: For all i large
enough, any q 2 …i and any r < �1 such that NBr .q/ \…i is compact, this compact set is
contractible.

Denote by g W …! R and by gi W …i ! R the distance functions to the points 0
and pi , respectively.

By the extension property of strainers, we may assume, after making � smaller, that
the map OF D .F; g/ W V ! Rk is a .k; 12 � ı/-strainer map on an open neighborhood V
of B�� .0/ \… in Y . The fibers of the map OF through points on … are (compact) distance
spheres in … around 0.

From the homotopy stability of fibers of strainer maps [41, Theorem 13.1], for any
0 < r < � there exists some i0 such that for all i > i0 the following holds true: The dis-
tance sphere Sr .pi / \…i is compact and homotopy equivalent to the distance sphere
Sr .0/ \….

We subdivide the rest of the proof into six steps.

Step 1. The manifold Ni has injectivity radius larger than 2, for all large i . The strainer
map Fi W B i ! Rk�1 is smooth. The distance function gi W B i ! R is smooth outside pi .

Indeed, the first statement is a consequence of our assumption thatNi is CAT.�i /with
�i converging to 0. The remaining statements follow from the first one.



Regularity of spaces with an upper curvature bound 159

Step 2. The strainer map Fi W B i ! Rk�1 is a submersion. Thus …i is a smooth sub-
manifold of Ni .

Indeed, the strainer map Fi is a 2
p
k-open map, see [41, Lemma 8.2]. In particular,

the differential of Fi at any point of B i is surjective. This implies the first and, therefore,
the second claim.

Step 3. There exists �0 with 0 < �0 <
�1

2
such that, for all i large enough, the map

gi W …i \ B
�
�0
.pi /! R

has at all points a gradient of norm between 1
2

and 1, with respect to the intrinsic metric
of …i .

Indeed, for any x 2 B�� .pi / the gradient rxgi of the map gi W B i ! R is the unit
velocity vector of the geodesic connecting pi with x. Thus, for every x 2 …i n ¹piº the
gradient of gi at x with respect to the induced metric of …i is the projection of rxgi to
the tangent space Tx…i .

There exists some �0 > 0 such that for all i large enough and all x 2 …i \ B
�
�0
.pi /,

the inequality

jDFi .rxgi /j � k � 2 � ı <
1

10 � k
holds, due to [41, Lemmas 7.6, 7.10 and 7.11].

Since the differential of Fi at x is 2
p
k-open, this implies that the projection of rxgi

to the tangent space Tx…i has norm at least 1
2

.

Step 4. In the notations above, for all i large enough and all 0 < r < �0, the distance
sphere Sr .pi / D g�1i .r/ � …i is diffeomorphic to Sn�k . Moreover, Sr .pi / is locally
uniformly contractible with respect to the contractibility function � W Œ0; r/! R given
by �.s/ D 2s.

Indeed, for all sufficiently small r (depending on i ), the fact that Sr .pi / is diffeomor-
phic to a sphere is true for every smooth submanifold of a smooth Riemannian manifold,
as easily seen in local coordinates.

The fact that for all r < �0 the level sets of gi are diffeomorphic among each other is
a consequence of the (easy part) of Morse theory, since gi has no critical points in …i .

Finally, the gradient flow of the function gi on …i retracts …i n ¹piº onto Sr .pi /.
Moreover, along this retraction, any point moves with velocity less than 1 and the distance
to Sr .pi / decreases with velocity at least 1

2
. Thus, for any point q 2 Sr .pi / and any s < r

the retraction sends the ball NBs.q/ \…i into the ball NB2s.q/ \ Sr .pi /.
Since the ball NBs.q/ \…i is contractible, we deduce that the ball NBs.q/ \ Sr .pi / is

contractible inside the ball NB2s.q/ \ Sr .pi /. Finishing the proof of Step 4.

Step 5. For every r < �0 the distance sphere Sr .0/ \… is homotopy equivalent to Sn�k .
Moreover, Sr .0/ \… is uniformly locally contractible with respect to the contractibility
function � W Œ0; r/! R given by �.s/ D 2s.

Indeed, the sets Sr .pi / converge to Sr .p/ in the Gromov–Hausdorff topology. Hence
the result follows from [50, Section 5].
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Step 6. The space Y is a cone, hence invariant under rescalings. However, the rescaled
sequence .m �…; 0/ � Y converges to the factor .C†; 0/, for m!1.

Under this convergence the rescaled spheres m � .S 1
m
.0/ \…/ converge to †. All

these spheres are homotopy equivalent to Sn�k and are uniformly locally contractible.
Applying Theorem 4.2 once more, we deduce that† is homotopy equivalent to Sn�k .

8. A sphere theorem

8.1. Pure-dimensional spaces

In order to deduce Theorem 1.4 from Theorem 1.5, we need to show that a GCBA space
all of whose spaces of directions are spheres (of a priori different dimensions) must be a
manifold. We address this question in a slightly more general setting.

A GCBA space X is purely n-dimensional if all of its non-empty open subsets have
dimension n. We say thatX is pure-dimensional ifX is purely n-dimensional for some n.

Due to [41, Corollary 11.6], a GCBA space X is purely n-dimensional if and only if
all of its tangent spaces TxX have dimension n. This happens if and only if all spaces
of directions †xX have dimension n � 1. Using the stability of dimension under conver-
gence proved in [41], we can show:

Proposition 8.1. A connected GCBA space X is pure-dimensional if and only if all
tangent spaces of X are pure-dimensional.

Proof. Let X be purely n-dimensional and x 2 X arbitrary. Applying [41, Lemma 11.5]
to the convergence of the rescaled balls in X around x to TxX we deduce, that for any
v 2 TxX the dimension of Tv.TxX/ is n. Thus, TxX is purely n-dimensional.

Assume that all spaces of directions ofX are pure-dimensional. By the connectedness
of X it suffices to prove that every point x 2 X has a pure-dimensional open neighbor-
hood. Therefore, we may replace X by a small ball around some of its points and assume
that X is a geodesic space and has finite dimension n. Consider the set Xn of all points in
X for which TxX has dimension n. By [41, Corollary 11.6] the set Xn is closed in X .

Assume that Xn is not X . Then we find a point y 2 X nXn such that there exists
a point x 2 Xn closest to y among all points of Xn. Consider the geodesic  from x

to y and set xi D .1i /. Then the ball B 1
i
.xi / does not intersectXn, hence has dimension

less than n. Under the convergence of .i �X; x/ to TxX , the closed balls i � NB 1
i
.xi / in X

converge to the closed ball of radius 1 around the starting direction v D  0.0/ 2 †x � Tx .
Applying [41, Lemma 11.5] again, we see that the open ball B1.v/ in Tx has dimen-

sion less than n. Since TxX is n-dimensional, this contradicts the assumption that TxX is
pure-dimensional. This contradiction shows X D Xn and finishes the proof.

8.2. Conclusions

The proof of Theorem 1.5 relies on the following observation, well known to experts.
We could not find a reference and include a short proof.
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Lemma 8.2. If a closed topological n-manifold M is covered by two contractible open
subsets U; V , then M is homeomorphic to Sn.

Proof. By assumption, for any commutative ring R, the cup product of any two elements
in the reduced cohomology QH�.M;R/ is 0, [33, Section 3.2, Exercise 2].

By Poincaré duality, M has the same cohomology with R-coefficients as Sn if M is
R-orientable. Applying this for R D Z2, we deduce that Hn�1.M;Z2/ D 0. Therefore,
M is orientable with respect to integer coefficients, [33, Chapter 3, Corollary 3.28], and
has the same integer homology and cohomology as Sn.

By the theorem of Mayer–Vietoris, 0 D H1.M/ D H0.U \ V /. Thus, U \ V is con-
nected. Applying van Kampen’s theorem, we deduce that M is simply connected. By
the theorem of Whitehead, M is homotopy equivalent to Sn. By the resolution of the
(generalized) Poincaré conjecture, M is homeomorphic to Sn.

Now we can finish:

Proof of Theorem 1.5. We proceed by induction on the (always finite) dimension of the
compact GCBA space †. By assumption, † is CAT.1/.

If the dimension of † is 0, then † is discrete and not a singleton. All points in † have
distance at least � from each other. The assumption on the triples of points implies that
† has exactly two points. Hence † is homeomorphic to S0.

Assume now that the statement is proven for all spaces of dimension less than n
and let † be n-dimensional. Let x 2 † be a point. Then the space of directions †x is
a GCBA space of dimension less than n. If there exists a triple of points v1; v2; v3 in †x
with pairwise distances at least � , then we consider geodesics i in † starting in x in
the directions of vi (which exist by the geodesical completeness, see [41, Section 5.5]).
Then the points xi D i .�2 / have in † pairwise distances � , in contradiction to our
assumption.

Thus, by the inductive assumption, each space of directions †x is homeomorphic to
some sphere. Therefore, all spaces of directions †x in † and hence all tangent spaces Tx
are pure-dimensional. Due to Proposition 8.1, the space † must be purely n-dimensional.
Then all spaces of directions †x are .n � 1/-dimensional, hence homeomorphic to Sn�1

by the inductive hypothesis.
By Theorem 1.1, the space † is a topological n-manifold.
Consider a pair of points x; y 2 † at distance � . By the assumption on triple of points,

there are no points z 2 † with distance at least � to x and y. Therefore, all of † is
contained in B�.x/ [ B�.y/. By the CAT.1/ assumption, both balls are contractible.
Thus, † is homeomorphic to Sn, by Lemma 8.2.

Proof of Theorem 1.4. Let X be a connected GCBA space that does not contain an iso-
metrically embedded tree different from an interval.

Let x 2 X be a point. If there is a triple of points v1; v2; v3 in †x with pairwise
distances at least � , then we obtain an isometrically embedded tree by taking the union of
three short geodesics i starting in the direction of vi , in contradiction to our assumption.
By Theorem 1.5, †x must be homeomorphic to some sphere.
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As in the first part of the proof of Theorem 1.5, we now deduce from Proposition 8.1
and Theorem 1.1 that X is a topological manifold.

Finally, from Theorem 1.5 and the optimal lower bound on the volume of balls,
[47, Proposition 6.1], we deduce:

Theorem 8.3. Let † be a purely n-dimensional, compact, locally geodesically complete
CAT.1/ space. If Hn.†/ < 3

2
�Hn.Sn/, then† is homeomorphic to Sn, where Hn is the

n-dimensional Hausdorff measure.

Proof. Otherwise, X contains a triple of points at pairwise distances at least � . The open
balls of radius �

2
around these points are disjoint. Each of these balls has Hn-measure not

less than 1
2
�Hn.Sn/. This contradicts the prescribed upper volume bound of X .
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