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Abstract. We prove the first direction of a recently posed conjecture by Gan, Gross and Prasad,
which predicts branching laws that govern restriction from p-adic GLn to GLn�1 of irreducible
smooth representations within the Arthur-type class. We extend this prediction to the full class of
unitarizable representations, by exhibiting a combinatorial relation that must be satisfied for any pair
of irreducible representations, in which one appears as a quotient of the restriction of the other. We
settle the full conjecture for the cases in which either one of the representations in the pair is generic.
The method of proof involves a transfer of the problem, using the Bernstein decomposition and the
quantum affine Schur–Weyl duality, into the realm of quantum affine algebras. This restatement of
the problem allows for an application of the combined power of a result of Hernandez on cyclic
modules together with the Lapid–Mínguez criterion from the p-adic setting.
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1. Introduction

Let � be a smooth irreducible representation of the group GLn.F /, where F is a p-adic
field. Let us consider GLn�1.F / as a subgroup of GLn.F /, embedded in a natural way,
which in matrix form is described as�

GLn�1.F / 0n�1;1

01;n�1 1

�
< GLn.F /:

We study the branching laws that govern the decomposition of the restricted representa-
tion �jGLn�1.F / into irreducible representations of GLn�1.F /. As an approachable goal,
we focus on the description of the possible isomorphism classes of irreducible represen-
tations which appear as quotients of �jGLn�1.F /.
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One fundamental result in that direction was achieved in [1], where it was shown
that, for all � 2 Irr GLn.F / and � 2 Irr GLn�1.F /, HomGLn�1.F /.�; �/ is at most one-
dimensional.

As a step forward, we are seeking for a meaningful description of the collection of
pairs .�; �/, for which the latter morphism space is non-zero.

An irreducible representation is said to be generic, if it can be produced on a Whittaker
model of functions. It is a classical fact proved in [29] through the study of L-functions,
that for every pair of generic representations .�; �/ as above, HomGLn�1.F /.�; �/ ¤ 0.

In later years, great efforts were focused on posing and proving analogous rules for
(quasi-split) classical groups, in place of the general linear group [20, 21, 37, 44]. The
resulting branching laws became known as the local Gan–Gross–Prasad conjectures.
In similarity with GLn, these laws for classical groups were always set to pertain the
generic case, in the sense of generic Langlands parameters which parameterize irreducible
representations.

Back in the GLn case, an effective answer for the general restriction problem is still
largely considered unpractical. Yet, recently Gan, Gross and Prasad [18] have revisited
this problem in an attempt to formulate branching laws that would extend beyond the
generic case.

They stipulated a principle that clear combinatorial rules should describe the pairs
.�; �/ with non-zero HomGLn�1.F /.�; �/, when � and � belong to a well-behaved class
of representations. More precisely, they formulated a conjecture which concerns a sub-
class of unitarizable representations which is described by Arthur parameters.

An Arthur parameter for GLn.F /, in the definition of [18], stands for an admissible
homomorphism

� W WF � SL2.C/ � SL2.C/! GLn.C/;

such that the image ofWF is bounded, and the restriction of � to each SL2.C/ component
is algebraic. Here WF stands for the Weil group of the field F .

In particular, an Arthur parameter � is a completely reducible representation, which
decomposes as

� D

kM
iD1

 i ˝ Vai ˝ Vbi ;

where ¹ iº are irreducible representations ofWF with bounded image, and Vd , d 2 Z>0,
denotes the unique isomorphism class of a d -dimensional irreducible algebraic represen-
tation of SL2.C/.

Given an Arthur parameter �, one can attach an L-parameter to it. Consequently, by
the established local Langlands reciprocity this L-parameter gives rise to an irreducible
representation �.�/ of GLn.F /. We will say that a representation which is constructed in
this manner is of Arthur type.

Conjecture 1.1 ([18]). Suppose that

�1 D

kM
iD1

 i ˝ Vai ˝ Vbi ; �2 D

lM
iD1

 0i ˝ Va0i
˝ Vb0

i
;
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are two Arthur parameters for GLn.F /;GLn�1.F /, respectively. Then

HomGLn�1.F /.�.�1/jGLn�1.F /; �.�2// ¤ 0

holds, if and only if, there are disjoint partitions

¹1; : : : ; kº D I1 [ I2 [ I3; ¹1; : : : ; lº D J1 [ J2 [ J3;

and bijections u W I1 ! J2, d W I2 ! J1, which satisfy

.a0u.i/; b
0
u.i// D .ai ; bi C 1/;  0u.i/ Š  i for all i 2 I1;

.a0d.i/; b
0
d.i// D .ai ; bi � 1/;  0d.i/ Š  i for all i 2 I2;

bi D 1 for all i 2 I3; b0j D 1 for all j 2 J3:

The results of this article are as follows:
� Theorem 5.6, which provides a full proof of one direction of Conjecture 1.1 through

the use of tools from the representation theory of quantum affine algebras.
� Theorem 5.7, which extends the conjecture’s statement to the class of all unitarizable

representations.
� Theorem 5.10, which settles some families of cases of the converse direction of the

conjecture.
Combining these results, we settle both directions for the case when at least one of �.�1/
and �.�2/ is generic.

One motivation for the formulation of Conjecture 1.1 were the works of Clozel [15],
Venkatesh [43] and Lapid and Rogawski [35] in the setting of unitary representations.
They studied a restriction problem in the sense of direct integral decomposition, and
showed that the Burger-Sarnak principle for automorphic representations implies some
necessary combinatorial conditions to occur in a restriction.

Even though there is no immediate relation between the smooth and unitary problems,
our Theorem 5.6 is consistent with [43, Proposition 2 (1)] in a certain sense. Namely, the
cases where I1 D J2 D ; hold in the statement of Conjecture 1.1 produce a refinement
of the SL.2/-type condition required by the mentioned proposition from [43]. Further
discussion of this relation can be found in [18].

Following the publication of results stated here, a new encompassing treatment of
Conjecture 1.1, using rather different techniques, was made public in [8].

1.1. Outline of proof

When attempting to tackle Conjecture 1.1 with standard techniques in hand, it appears
unavoidable to encounter the intricacies of the structure of the Bernstein–Zelevinsky prod-
uct. As explain below, we are able to isolate the required information on such products in
the form of Theorem 1.2.

We next prove Theorem 1.2 by transferring it into other Lie-theoretic Abelian cate-
gories. Namely, we move into the representation theories of affine Hecke algebras and
quantum affine algebras of type A.
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Let us discuss the steps of the proof in more detail.
We first make use of the classical Bernstein–Zelevinsky filtration for the space

of �jGLn�1 . This special feature of general linear groups allows for a translation (Propo-
sition 5.4) of the restriction problem into questions on spaces of the form

HomGLn�i .F /.�
1=2
˝ �.i/; .i�1/�/; (1.1)

where �1=2 is a certain character, and � 7! �.i/, � 7! .i/� are the Bernstein–Zelevinsky
derivative functors, which attach finite-length representations of a smaller rank group to
a given irreducible representation.

Thus, we are left with questions on morphism spaces inside a category of finite-
length representations. Moreover, derivatives of Arthur-type representations are built out
of (Bernstein–Zelevinsky) products of derivatives of Speh representations. We call these
derived Speh representations (which happen to be irreducible) quasi-Speh representations.

The reasoning portrayed thus far was employed already in [18] to tackle the problem
and to prove some basic cases of Conjecture 1.1 (such as when �.�1/; �.�2/ are Speh
representations themselves).

Yet, the spaces (1.1) for the general case of Arthur-type representations were discov-
ered to be substantially more intricate: Products of quasi-Speh representations are often
reducible. The subrepresentation structure of such Bernstein–Zelevinsky products is often
a highly non-trivial issue, as evidenced by a batch of recent works ([23, 33, 34, 42]).

Such difficulties are manifested in our problem through the following key statement,
on which the resolution of the first direction of Conjecture 1.1 (Theorem 5.6) is highly
dependent.

Theorem 1.2 (restatement of Proposition 4.3). For any choice of quasi-Speh represen-
tations �1; : : : ; �k , there is an ordering ! (permutation of ¹1; : : : ; kº), for which the
Bernstein–Zelevinsky product representation

�!.1/ � � � � � �!.k/

has a unique irreducible quotient, whose Langlands parameter is given as the sum of
Langlands parameters of �1; : : : ; �k .

We show (Proposition 4.2) that the case of k D 2 in Theorem 1.2 follows from the
recent work of Lapid and Mínguez [33] on behavior of products of representations in the
ladder class.

As a consequence, we are now left with the problem of whether Theorem 1.2 can be
settled by looking on products of pairs of representations. Namely, we prove the following
general phenomenon.

Theorem 1.3. Suppose that �1; : : : ; �k are irreducible smooth representations of gen-
eral linear groups, such that for all 1 � i < j � k, the product representation �i � �j
has a unique irreducible quotient whose Langlands parameter is given as the sum of
Langlands parameters of �i and �j . Then the product representation

�1 � � � � � �k
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has a unique irreducible quotient, whose Langlands parameter is given as the sum of
Langlands parameters of �1; : : : ; �k .

The mechanism of Bernstein decomposition (Section 3.1) presents the category of
smooth representations of GLn.F / as a product of smaller Abelian categories called
Bernstein blocks. It is sufficient to prove Theorem 1.3 for each such block.

It is well known that each block can be described as modules over a complex algebra.
The identification of these algebras with affine Hecke algebras (for GLn) was done in
[6, 7] through type theory, and independently in [25] through a more explicit approach.
Thus, it is enough to solve the problem of Theorem 1.3 for modules over affine Hecke
algebras (stated as Theorem 3.3).

Next, we are able to pass from modules over affine Hecke algebras to modules over
quantum affine algebras by using the quantum affine Schur–Weyl duality functors (Sec-
tion 6.3), developed by Chari and Pressley [14]. Since all functors involved turn out to
be monoidal, in a suitable sense, we are finally left with a statement regarding the simple
quotients of tensor products of quantum affine modules.

The advantage of posing our problem in a language of quantum groups lies in a recent
result of Hernandez [27] dealing with cyclic modules. These are not necessarily simple
modules, that are generated by their highest weight vector. It states that a product

V1 ˝ � � � ˝ Vk

of simple modules V1; : : : ; Vk is cyclic if all the products Vi ˝ Vj , 1 � i < j � k, are
cyclic.

When transferring the notion of a cyclic products back to the p-adic setting through
our sequence of functors, we see that the theorem of Hernandez gives the precise state-
ment of Theorem 1.3.

We comment that in a later work with Alberto Mínguez [24], we were able to extract to
the key arguments of [27] and use them to construct an alternative “purely p-adic” proof
of Theorem 1.3 for certain (so-called square irreducible) cases. Those cases are sufficient
for the applications of this theorem in the current article.

1.2. Paper structure

Section 2 surveys the basic tools needed to study the smooth representation theory of
p-adic GLn, together with some necessary lemmas. In particular, we recall the Zelevinsky
multisegment parametrization, which is an essential tool in our work. We make note of
the basic Proposition 2.3, whose statement has not appeared previously in the literature to
the best of our knowledge. Section 2.5 recovers the necessary results from [33].

Section 3 portrays the categorical passage from representations of GLn.F / into those
of affine Hecke algebras. Proposition 3.2 delves into the resulting correspondence between
irreducible representations. The proof of the key Theorem 3.3 is delayed to Section 6.

Section 4 contains the gist of the combinatorial work in the class of quasi-Speh
representations and their products, which is necessary for the proof of Conjecture 1.1.

In Section 5 we prove the main theorems discussed above.
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Finally, Section 6 surveys the necessary ingredients from the representations the-
ory of Uq. yslN / with the aim of proving Theorem 3.3, which is shown to be essentially
a translation of the main result of [27].

2. Background on representation theory of p-adic GLn

Let F be a p-adic field. Unless explicitly stated, F will be fixed and omitted from our
notation. We are interested in the representation theory of the groups Gn WD GLn.F /, for
all n � 1.

For a given n, let ˛ D .n1; : : : ; nr / be a composition of n. We denote by M˛ the
subgroup ofGn isomorphic toGn1 � � � � �Gnr consisting of matrices which are diagonal
by blocks of size n1; : : : ; nr and by P˛ the subgroup of Gn generated by M˛ and the
upper unitriangular matrices. A standard parabolic subgroup of Gn is a subgroup of the
form P˛ and its standard Levi factor is M˛ .

For a p-adic group G, let S.G/ be the category of smooth complex representations
of G, and let R.G/ be the subcategory of objects of finite length. Denote by Irr.G/ the
set of equivalence classes of irreducible objects in R.G/. Denote by C.G/ � Irr.G/ the
subset of irreducible supercuspidal representations.

We write i˛ W R.M˛/! R.Gn/ for the parabolic induction functor associated to P˛ .
For �i 2 R.Gni /, i D 1; : : : ; r , we write

�1 � � � � � �r WD i.n1;:::;nr /.�1 ˝ � � � ˝ �r / 2 R.Gn1C���Cnr /:

We also write
Irr D

[
m�0

Irr.Gm/ and C D
[
m�1

C.Gm/:

For any n, let
�s D jdetjsF ; s 2 C;

denote the family of one-dimensional representations of Gn, where j � jF is the absolute
value of F . For � 2 R.Gn/, we write

�s� D ��s WD � ˝ �s 2 R.Gn/:

The map s 7! �s is a group homomorphism from C to the group of characters of Gn,
whose kernel is .2�i=log qF /Z, where qF is the residue characteristic of F .

The group of (unramified) characters ¹�s W s 2 Cº of Gn acts on C.Gn/ by � 7! ��s .
For � 2 C.Gn/, we write o.�/ for the (finite) order of the stabilizer of � for that action.

For � 2 Irr, the central character �� of � is a representation ofG1. Hence, j�� j D �s�
for a number s� 2 R. We will write Re.�/ D s� 2 R.

Given a set X , we write N.X/ for the commutative monoid of maps from X to
N D Z�0 with finite support. We will sometimes treat an element A 2 N.X/ as a finite
subset of X , by writing x 2 A for a given x 2 X , in case A.x/ > 0.

There is a natural embedding X ! N.X/ which sends an element to its indicator
function. Thus, we will often treat elements of X as elements in N.X/.
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2.1. Multisegments

The elements of Irr are classified by multisegments in the following manner.
A segment � D Œa; b�� is a formal object defined by a triple .Œ��; a; b/, where � 2 C

and a � b are two integers, up to the equivalence Œa; b�� D Œa0; b0��0 , when ��a Š �0�a
0

and ��b Š �0�b
0

.
It is also useful to refer to the empty segment given in the form Œa; a � 1��, for any

� 2 C and integer a.
For a segment � D Œa; b��, we will write b�.�/ D a and e�.�/ D b.
A segment�1 is said to precede a segment�2 if�1 D Œa1; b1��; �2 D Œa2; b2�� and

a1 � a2 � 1 � b1 < b2. We will write �1 � �2 in this case.
Let Seg denote the collection of all segments. Elements of Mult WD N.Seg/ are called

multisegments.
The Zelevinsky classification [45] defines a bijection

Z W Mult! Irr:

Let us briefly recall the process that constructs Z. First, Z.�/ is defined directly for
every segment �. It is easily verified that each m 2 Mult can be written additively as
m D �1 C � � � C�k , where�i are segments whose order is chosen so that�i ˜ �j , for
any i < j . Next, the standard representation

�.m/ D Z.�1/ � � � � �Z.�k/

is constructed. While �.m/ may be reducible, its unique irreducible subrepresentation is
defined to be Z.m/.

We say that n�m if the isomorphism class ofZ.n/ appears as a subquotient in �.m/.
It is shown in [45] that this is a partial order on Mult (the Zelevinsky order).

Similarly, the Langlands (quotient) classification, which describes irreducible repre-
sentations of any reductive p-adic group, can be stated for the case of the groups ¹Gnº1nD1,
as another1 bijection

L W Mult! Irr:

The relation between both bijections Z and L is further discussed in Section 3.2.
For a segment� D Œa; b�� and s 2 C, we write��s WD Œa; b���s . We naturally extend

this to an operation m 7! m�s on Mult. It is easy to check that, Z.m�s/ D Z.m/�s and
L.m�s/ D L.m/�s hold.

Let �1 D Z.m1/; �2 D Z.m2/; : : : ; �t D Z.mt / 2 Irr be given. Then �1 � � � � � �t
contains Z.m1 C � � � Cmt / with multiplicity one in its composition series (see, e.g.,
[33, Proposition 2.5 (5)]). In particular, when �1 � � � � � �t is irreducible, we must have

�1 � � � � � �t Š Z.m1 C � � � Cmt /:

The analogous statements remain true when replacing the Z bijection with L.

1In fact, the Zelevinsky classification can also be obtained as a variation of the Langlands clas-
sification, when considering the anti-tempered spectrum of the group, rather than the tempered
spectrum.
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Lemma 2.1. Let �1 D L.m1/; : : : ; �k D L.mk/ and �1 D L.n1/; : : : ; �l D L.nl / be
irreducible representations, for which L.m1 C � � � Cmk/ is the unique irreducible quo-
tient of �1 � � � � � �k and L.n1 C � � � C nl / is the unique irreducible subrepresentation
of �1 � � � � � �l . Suppose that

Hom.�1 � � � � � �k ; �1 � � � � � �l / ¤ ¹0º:

Then m1 C � � � Cmk D n1 C � � � C nl .

Proof. Let 0 ¤ f be a homomorphism in Hom.�1 � � � � � �k ; �1 � � � � � �l /, and let
� denote its image. By assumption � contains L.m1 C � � � Cmk/ as a quotient, and
L.n1 C � � � C nl / as a subrepresentation. In particular, we see that L.m1 C � � � Cmk/ is
a subquotient of �1 � � � � � �l . It is known that for every subquotientL.t/ of �1 � � � � � �l ,
we have t � n1 C � � � C nl . Hence, m1 C � � � Cmk � n1 C � � � C nl . We claim analo-
gously that n1 C � � � C nl � m1 C � � � Cmk and the statement follows.

Given a supercuspidal representation � 2 C , let Seg� denote the collection of seg-
ments of the form Œa; b���s , for some integers a; b and s 2 C.

We also define the submonoid

Mult� WD N.Seg�/ � Mult:

When �0 2 Irr.G1/ is the trivial representation (thought of as a supercuspidal representa-
tion), we write

Mult0 D Mult�0 :
We will also let the field F vary for this part of the discussion, and write SegF� , MultF� ,

MultF0 for the corresponding objects, defined for an arbitrary p-adic field F .
Given �1 2 C.GLn1.F1// and �2 2 C.GLn2.F2// with

q
o.�1/
F1

D q
o.�2/
F2

;

we have a well-defined bijection

��1;�2 W SegF1�1 ! SegF2�2 ; �.Œa; b��1�s / D Œa; b��2�s ;

which naturally extends to an isomorphism of monoids ��1;�2 W MultF1�1 ! MultF2�2 .

2.2. Gelfand–Kazhdan involution

The outer automorphism g 7! .gt /�1 on Gn, gives an involutive auto-equivalence � of
the category R.Gn/. Let us write � for the composition of � with the operation of taking
the contragredient (smooth dual) representation.

The resulting involution � is a contragredient functor with satisfies the special property
�.�/ Š � , for all � 2 Irr, as shown by a classical result of Gelfand and Kazhdan [19].

It is easy to check that � is compatible with the parabolic induction product, in the
sense of

�.�1 � � � � � �t / Š �.�t / � � � � � �.�1/

for any �i 2 R.Gni /, i D 1; : : : ; t .
The existence of � also gives the following well-known corollary.
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Proposition 2.2. For all �1; : : : ; �t 2 Irr, the socle (maximal semisimple subrepresen-
tation) of �1 � � � � � �t is isomorphic to the co-socle (maximal semisimple quotient)
of �t � � � � � �1 . In particular, when �1 � � � � � �t is irreducible, it is isomorphic to
�w.1/ � � � � � �w.t/, for any permutation w on ¹1; : : : ; tº.

2.3. Supercuspidal support

For every class � 2 Irr there exist �1; : : : ; �r 2 C for which � is a subrepresentation of
�1 � � � � � �r . The notion of supercuspidal support can then be defined as the multiset

supp.�/ 2 N.C/;

given by the tuple .�1; : : : ; �r /. It is known that for any �1; �2 2 Irr, the product �1 � �2
is irreducible, unless there is a supercuspidal representation � 2 supp.�1/, so that either
��1 2 supp.�2/ or ���1 2 supp.�2/.

For � 2 R.Gn/, we will write supp.�/ D I , in case supp.�/ D I holds, for all irre-
ducible subquotients � of � .

We recall from the general theory of the Bernstein center, that any representation
� 2 R.Gn/ splits uniquely to the form � D

L
I �I , where the sum goes over distinct

multisets I 2 N.C/, so that supp.�I / D I .
In particular, for �; � 2 R.Gn/, we have Hom.�; �/ D

L
I Hom.�I ; �I /.

Proposition 2.3. Suppose that �i ; �i 2 R.Gni / are given for i D 1; : : : ; t such that

supp.�i / D supp.�i / D Ii

for pairwise disjoint multisets I1; : : : ; It 2 N.C/. Then we have a natural identification

Hom.�1 � � � � � �t ; �1 � � � � � �t / Š Hom.�1; �1/˝ � � � ˝ Hom.�t ; �t /:

Proof. Consider the parabolic induction functor

i˛ W R.Gn1 � � � � �Gnt /! R.GN /;

whereN D n1 C � � � C nt . It clearly gives an embedding of the space
Nt
iD1 Hom.�i ; �i /

into Hom.�1 � � � � � �t ; �1 � � � � � �t /. We are left to show that any morphism in the
latter space is contained in the image of i˛ .

Recall that parabolic induction has an exact left-adjoint functor r˛ , that is, the Jacquet
functor. This adjunction gives a canonical morphism

�� W r˛.�1 � � � � � �t /! �1 ˝ � � � ˝ �t :

Similarly, we have
�� W r˛.�1 � � � � � �t /! �1 ˝ � � � ˝ �t :

The suitable Mackey theory in the form of the geometric lemma of Bernstein and
Zelevinsky ([4], or see [33, Section 2.2]) predicts a more precise information on �� .

First, �� is surjective. Second, for any irreducible subquotient � D �1 ˝ � � � ˝ �t of
r˛.�1 � � � � � �t /, there is a matrix of multisets .J ji /

t
i;jD1 in N.C/ such that

Ii D J
1
i C � � � C J

t
i and supp.�j / D J

j
1 C � � � C J

j
t :
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Moreover, when � is a subquotient of ker �� , we know that J ji ¤ 0, some i ¤ j . In
particular, by the disjointness assumption .supp.�1/; : : : ; supp.�t // ¤ .I1; : : : ; It / in that
case. Hence, the projection �� splits, and we can view �1 ˝ � � � ˝ �t as a subrepresenta-
tion of r˛.�1 � � � � � �t /.

Now, let � be a morphism in Hom.�1 � � � � � �t ; �1 � � � � � �t /. By considerations of
supercuspidal support, the image of  WD r˛.�/j�1˝���˝�t is contained in �1 ˝ � � � ˝ �t
(after running similar arguments on �� ). Thus, we obtain the commutative diagram

r˛.�1 � � � � � �t /
��
// �1 ˝ � � � ˝ �t

r˛.�1 � � � � � �t /

r˛.�/

OO

��
// �1 ˝ � � � ˝ �t ,

 

OO

which implies by adjunction of functors the commutativity of the diagram

�1 � � � � � �t
id // �1 � � � � � �t

�1 � � � � � �t

�

OO

id // �1 � � � � � �t .

i˛. /

OO

The proposition is proved.

Corollary 2.4. Suppose that �i ; �i 2 R.Gni / are given for i D 1; : : : ; t , together with
pairwise disjoint multisets I1; : : : ; It 2 N.C/, such that for every irreducible subquotient
� of either �i or �i , supp.�/ � Ii holds. Then we have a natural identification

Hom.�1 � � � � � �t ; �1 � � � � � �t / Š Hom.�1; �1/˝ � � � ˝ Hom.�t ; �t /:

Proof. It follows directly by decomposing each �i ; �i into direct sums according to super-
cuspidal support, and applying Proposition 2.3 on each of the summands.

2.4. Tadic classification of the unitary spectrum

Let Irru � Irr be the subset of irreducible representations that are unitarizable, that is,
those whose space can be equipped with a positive definite Hermitian form invariant under
the group action.

A classification of Irru in terms of multisegments was achieved by Tadic in [41]. Let us
briefly recall this classification. It is easy to check that Irru \ C D ¹� 2 C W Re.�/ D 0º.

For each pair of integers a; b 2 Z>0 and a supercuspidal � 2 Irru\C , we define the
Speh multisegment

ma;b
� D

bX
iD1

�
b � a

2
C 1 � i;

b C a

2
� i

�
�

2 Mult :

We then set �a;b� WD L.ma;b
� / to be a (unitary2) Speh representation.

2It is also common to define a general Speh representation without the requirement that � is
unitarizable.
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Let B � Mult denote the collection of Speh multisegments. Let us also define

Bcomp
D ¹m�˛ Cm��˛ W m 2 B; 0 < ˛ < 1

2
º:

Theorem 2.5. Let U � Mult be the submonoid generated by B t Bcomp in Mult. Then

L.U / D Z.U / D Irru :

It is known ([3]) that �1 � �2 is irreducible, for any �1; �2 2 Irru. Hence, the theo-
rem above states that any � 2 Irru can be written in the form � D �1 � � � � � �t , where
�i D L.mi / with mi 2 B t B

comp for all i D 1; : : : ; t .

Definition 2.6. We say that � 2 Irru is of Arthur type if mi 2 B for all i D 1; : : : ; t in
the decomposition above.3

In other words, Arthur-type representations are products of Speh representations.

Definition 2.7. We say that � 2 Irru is of proper Arthur type if � Š �a1;b1� � � � � ��
ak ;bk
�

for a fixed � 2 Irru \ C and integers ai ; bi 2 Z>0.

Note that proper Arthur-type representations built out of non-isomorphic elements of
Irru \ C will always have disjoint supercuspidal supports.

Given an Arthur-type representation � D L.m/ and a real number 0 < ˛ < 1
2

, let us
write

�.˛/ WD ��˛ � ���˛ D L.m�˛ Cm��˛/ 2 Irru :

It is easy to deduce from Theorem 2.5 that for every � 2 Irru there is a unique, up to
order, factorization of the form

� Š �0 � �1.˛1/ � � � � � �k.˛k/;

where �0; �1; : : : ; �k 2 Irru are of Arthur type4 and 0 < ˛1; : : : ; ˛k < 1
2

are distinct real
numbers.

2.5. Ladder representations and the Lapid-Mínguez criterion

Speh representations are a special case of a class of irreducible representations known as
ladder representations. A representation � 2 Irr is called a proper5 ladder representation
if it is given as � D L.�1 C � � � C�k/ for segments �i , i D 1; : : : ; k, satisfying

�k � � � � � �2 � �1:

3There may be an ambiguity regarding this definition, when compared to other sources. Arthur-
type representations were defined with the goal of parameterizing the local components of the
discrete automorphic spectrum of a group. Assuming the Ramanujan conjecture for GLn, our
definition should coincide with this global notion.

4At least for the purposes of this decomposition, we need to consider L.0/ 2 Irr.G0/ (treated
as neutral to multiplication) as an Arthur-type representation.

5For ease of exposition, we do not define a general ladder here. The ladder representations that
occur in this manuscript are all proper ladder.
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Ladder representations were shown (e.g., [22,32,33]) to possess certain remarkable prop-
erties, which often make the ladder class more approachable for treatment of questions
on general irreducible representations. Essentially the same class of representations was
also studied in the literature under various names in various type A settings, such as cal-
ibrated affine Hecke algebra modules, snake modules for quantum affine algebras and
homogeneous modules for KLR algebras.

Given a ladder representation � 2 Irr and any representation � 2 Irr, it was shown
[33, Proposition 6.15] that both � � � and � � � have a unique irreducible subrepre-
sentation. Lapid and Mínguez have also devised an algorithm in [33] for computing the
multisegment classifying that subrepresentation. We recall in what follows one corollary
of that algorithm.

Suppose, for that purpose, that

m1 D �1 C � � � C�k1 ; m2 D �
0
1 C � � � C�

0
k2
;

are two multisegments with

�k1 � � � � � �1 and �0k2 � � � � � �
0
1:

Recall thatZ.m1 Cm2/ always appears as a subquotient inZ.m1/�Z.m2/. Among
the results of [33] is a combinatorial criterion for determining when does Z.m1 Cm2/

actually appear as a subrepresentation of Z.m1/ �Z.m2/.
Consider the set of indices I D ¹1; : : : ; k1º � ¹1; : : : ; k2º, and the following bipartite

graph on the set of vertices I1 t I2, where I1 D I2 D I (two copies of I ). We say that
elements .i1; j1/ 2 I1 and .i2; j2/ 2 I2 are in relation .i1; j1/$ .i2; j2/ if either i1 D i2
and j2 D j1 C 1, or j1 D j2 and i2 D i1 � 1.

Consider the sets

Xm1Im2 D ¹.i; j / 2 I1 W �i � �
0
j º; Ym1Im2 D ¹.i; j / 2 I2 W �i �

�!
� 0j º:

Here
�!
� means the segment Œs C 1; t C 1��, for a segment � D Œs; t ��.

We can consider the bipartite graph .Xm1Im2 ; Ym1Im2 ;$/ created by restricting the
relation$ onto edges betweenXm1Im2 (as a subset of I1) and Ym1Im2 (as a subset of I2).

Recall that a matching function on a bipartite graph whose two parts of vertices are
described by sets X; Y , is a function f W X ! Y , such that there is an edge between x
and f .x/, for all x 2 X .

Theorem 2.8 ([33, Lemma 6.21]). The unique irreducible subrepresentation ofZ.m1/�

Z.m2/ is isomorphic to Z.m1 Cm2/ if and only if there is a matching function for the
bipartite graph .Xm1Im2 ; Ym1Im2 ;$/, i.e., there exists an injective function

f W Xm1Im2 ! Ym1Im2 ;

which satisfies x $ f .x/ for all x 2 Xm1Im2 .

2.6. Bernstein–Zelevinsky derivatives

For given n1; n2, consider the subgroup U < Gn1 �Gn2 of upper unitriangular matrices
in Gn2 . Let  be a non-degenerate character of U .
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We then have an obvious functor of taking co-invariants:

Wn1;n2 W R.Gn1 �Gn2/! R.Gn1/; V 7! V= span¹g � v �  .g/v W g 2 Gn2 ; v 2 V º:

The Bernstein–Zelevinsky derivatives of [4] can be defined as functors

R.Gn/! R.Gn�i /

constructed by composingW with the Jacquet functor. More precisely, given � 2 R.Gn/,
we set its i -th derivative to be

�.i/ WD Wn�i;i .r.n�i;i/.�// 2 R.Gn�i /

for all 1 � i � n. Here r.n�i;i/ is the Jacquet functor left-adjoint to i.n�i;i/.
We set �.0/ D � .
The derivatives comply with a Leibniz rule, in the following sense.

Proposition 2.9. Suppose that �i 2 R.Gni /, i D 1; : : : ; k, are given.

(1) The representation .�1 � � � � � �k/.j / has a filtration whose constituents are given by
all representations of the form

�
.s1/
1 � � � � � �

.sk/

k
;

with 0 � si � ni for all i D 1; : : : ; k and j D s1 C � � � C sk .

(2) Suppose that �.mi /i is the highest non-zero derivative of �i , for all i D 1; : : : ; k. Sup-
pose that j D mt CmtC1 C � � � Cmk , for some 1 � t � k. Then the representation

�1 � � � � � �t�1 � �
.mt /
t � � � � � �

.mk/

k

is a quotient of .�1 � � � � � �k/.j /, that is, the uppermost piece of the above filtration.

Proof. See [4, Corollary 4.14 (c)] together with its proof.

3. Affine Hecke algebras

Given n 2 Z>0 and q 2 C (which for our needs will be assumed to be non-root of unity),
the root datum of GLn gives rise to the (extended) affine Hecke algebra H.n; q/. In fact,
we will not be using here the concrete algebraic structure of these algebras, but rather
some abstract information on their categories of representations.

Yet, to avoid confusion let us recall a possible presentation of H.n; q/: This is the
complex algebra generated by T1; : : : ; Tn�1 and invertible y1; : : : ; yn, subject to the rela-
tions

TiTiC1Ti D TiC1TiTiC1 for all 1 � i � n � 2;
.Ti � q/.Ti C 1/ D 0 for all 1 � i � n � 1;

TiTj D TjTi for all jj � i j > 1;
yiyj D yjyi for all 1 � i; j � n;

TiyiTi D qyiC1 for all 1 � i � n � 1;
Tiyj D yjTi for all j ¤ i; i C 1:

We denote by M
q
n the category of finite-dimensional modules over the algebra H.n; q/.
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For any n1; : : : ; nt 2 Z>0, there is a natural embedding of algebras

H.n1; q/˝ � � � ˝H.nt ; q/ ,! H.n1 C � � � C nt ; q/:

This embedding gives rise to an induction functor

i.n1;:::;nt / WM
q
n1
� � � � �Mq

nt
!M

q
n1C���Cnt

;

which we will simply denote as a product operation, i.e., �1 � �2 WD i.n1;n2/.�1 ˝ �2/,
for �i 2M

q
ni .

3.1. Equivalence to Bernstein blocks

Let � be an equivalence relation on the elements of N.C/ defined as follows: For two
elements A;B 2 N.C/, we say that A � B if there are representations �1; : : : ; �t 2 C

and numbers s1; : : : ; st 2 C such that

A D �1 C � � � C �t ; B D �1�
s1 C � � � C �t�

st :

Note that the number NA WD n1 C � � � C nt , where �i 2 C.Gni /, for i D 1; : : : ; t , is an
invariant of the�-equivalence class of A (also known as the inertia class). Hence, we will
write N‚, where ‚ denotes that equivalence class.

Each inertia class ‚ defines the Bernstein block6 R.‚/, which is the full subcate-
gory of R.GN‚/ consisting of representations � , such that supp.�/ belongs to ‚ for all
irreducible subquotients of � .

The Bernstein decomposition [2] (in the case of GLn) states that we have a decompo-
sition of Abelian categories

R.Gn/ D
Y
‚

R.‚/;

where the product goes over all inertia classes ‚, for which N‚ D n.
When writing such a decomposition, we mean that every object M in R.Gn/ is

decomposed uniquely as M Š
L
‚M‚, where each M‚ is an object in R.‚/, all but

finitely many M‚ are zero (we deal with finite length objects), and

HomR.Gn/ D

M
‚

HomR.‚/.M‚; N‚/

holds, for all M;N in R.Gn/.
We will call R.‚/ a simple block if ‚ D ‚.�; d/ has a representative of the form

d � � 2 N.C/, where � 2 C and d � 1 is an integer.
It is evident that for �1 2 R.‚.�; n1// and �2 2 R.‚.�; n2//, the representation

�1 � �2 belongs to the block R.‚.�; n1 C n2//.
The clear consequence of the above is that for any � 2 C , the irreducible representa-

tions appearing in the sequence of blocks ¹R.‚.�; n//º1nD0 are precisely those given by
Z.Mult�/ or L.Mult�/.

6These subcategories may become blocks in the more axiomatic treatment of Abelian categories
when dealing with larger categories of all smooth representations of a group.
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For the trivial representation �0 of G1, we set ‚n D ‚.�0; n/ for all n � 1. The
simple block R.‚n/ is called the principal (or Iwahori-invariant) block of R.Gn/.

It was shown in [7] and [25] that for every simple block ‚ D ‚.�; d/, we have an
equivalence of categories

U‚ W R.‚/
�
�!M

q
o.�/
F

d
:

The equivalences ¹U‚º are not canonical, yet they can be chosen in a way that is
compatible with parabolic induction [39]. Namely, we are allowed to assume that

U‚.�;n1Cn2/.�1 � �2/ Š U‚.�;n1/.�1/ � U‚.�;n2/.�2/ (3.1)

holds for all �1 2 R.‚.�; n1// and �2 2 R.‚.�; n2//.
The particular case of equivalences for principal blocks

Un D U‚n W R.‚n/
�
�!MqF

n for all n

is in fact a classical theorem7 of Borel [5] and Casselman.
We will fix a canonical choice of ¹Unº which is supplied by said theorem.
Let us note that the irreducible representations of the algebraH.1; qF / D CŒy1; y�11 �

are naturally given by the variety C�. Note further that the irreducible representations
in R.‚1/ are given by the group of unramified characters ¹�s W s 2 Cº. Under these
identifications, the canonical equivalence U1 takes �s to the character given by qsF 2 C�.

We can use the equivalence Un to push a parametrization of the irreducible represen-
tations ofH.n; qF / in terms of multisegments. Recall that the irreducible representations
in R.‚n/ are parameterized by Mult0, either through Z or L. Hence, we write bijections

OZ; OL W Mult0 !
[
n�0

Irr.MqF
n /;

defined by OZ.m/ D Unm.Z.m//, where Z.m/ 2 Irr.Gnm/. Similarly, OL is defined by L.

Remark 3.1. Note that OZ (or OL) can in fact be described intrinsically (that is, without use
of p-adic groups) as was done in [40]. In particular, these classifications are independent
of the field F .

The following proposition shows that all equivalences ¹U‚º preserve the Zelevinsky
and Langlands parametrizations of irreducible representations, in a natural sense.

Proposition 3.2. Let � 2 C be given. Let E be a p-adic field with residue cardinality
qE D q

o.�/
F . Let

� D ��0
E
;� W MultE0 ! Mult�

be the isomorphism defined in Section 2.1, where �0E stands for the trivial representation
of GL1.E/. Let us write

OZ W MultE0 !
[
n�0

Irr.MqE
n /

7More precisely, the cited theorem relates the principal block to representations of the Iwahori-
Hecke algebra ofGn, which is then known by a result of Bernstein to be isomorphic to our definition
of H.n; q/ (see, for example, the lectures [28]).
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for the map as defined above (but for the field E in place of F ). Then we can choose the
collection ¹U‚.�;n/ºn, so that it satisfies

OZ.m/ Š U‚.�;nm/.Z.�.m///

for all m 2 MultE0 , where OZ.m/ 2M
qE
nm

.

Proof. Recall that for a multisegment m D
Pk
iD1�i 2 MultE0 ,Z.m/ is defined to be the

unique irreducible subrepresentation of �.m/ D Z.�1/ � � � � �Z.�k/ (for a prescribed
ordering of the segments of m, see Section 2.1). Furthermore, each Z.�i / is the unique
irreducible subrepresentation of

�
si
1

E � � � � � �
sini
E ;

for some numbers si1; : : : ; s
i
ni
2 C.

Similarly, Z.�.m// is constructed by the same process, replacing the role of each �
si
j

E

by ��s
i
j .

Hence, using the compatibility property (3.1), the fact that ¹U‚º are all equivalences
of abelian categories and Remark 3.1, it is enough to check the statement for U‚.�;1/. In
other words, we need to verify that U‚.�;1/ is allowed to be chosen so that for all s 2 C,
the representation ��s in R.‚.�; 1// is sent to the character of H.1; qE / D CŒy1; y�11 �

given by y1 7! qsE .
Let us recall the construction of U‚.�;1/ in [25]. Let V be the space of the representa-

tion � 2 C.Gm/. Then Gm acts on the space V Œt; t�1� by

�.g/ � .vtk/ D �.g/vtkCval.det.g// for all g 2 Gm; v 2 V; k 2 Z;

where jajF D q
val.a/
F for a 2 F .

The natural action of the ring of Laurent polynomials CŒt; t�1� on V Œt; t�1� inter-
twines the � action of Gm. The construction in [25] specifies a subrepresentation

W < V Œt; t�1�

of � which is stable under the action of the subalgebra H D CŒto.�/; t�o.�/� � CŒt; t�1�.
Moreover, we have

End.�jW / D H:

The functor U‚.�;1/ is then defined by taking � 2 R.‚.�; 1// to

U‚.�;1/.�/ WD HomGm.W; �/;

viewed as a H Š H.1; qE /-module.
For all s 2 C, there is a projection of representations  s W �! ��s given by

 s.vt
k/ D qksF v:

It is easy to verify that U‚.�;1/.��s/ is a one-dimensional space spanned by  sjW .
Note that for the generator to.�/ 2 H and w 2 W , we have

 s.t
o.�/
� w/ D q

o.�/s
F  s.w/:

Hence, H.1; qE / acts on U‚.�;1/.��s/ through the character y1 7! qsE .
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3.2. Consequences of a result of Hernandez

Section 6 deals with quantum affine algebras and the quantum affine Schur–Weyl duality
functor. The following theorem on representations of affine Hecke algebras will be shown
to be a manifestation of a theorem of Hernandez [27], when transferred through the duality
functor.

Theorem 3.3. Let �1 D OZ.m1/; �2 D OZ.m2/; : : : ; �t D OZ.mt / be irreducible repre-
sentations in M

qF
k1
;M

qF
k2
; : : : ;M

qF
kt

, respectively. If �i � �j has a unique irreducible
quotient which is parameterized by OZ.mi Cmj /, for all 1 � i < j � t , then the rep-
resentation �1 � � � � � �t has a unique irreducible quotient which is parameterized by
OZ.m1 C � � � Cmt /.

We would like to extend the statement of the theorem above slightly.
For that purpose let us recall that each algebra H.n; q/ is equipped with the Iwahori–

Matsumoto involutive automorphism �n (see [36, Section I.6]). It gives rise to an involu-
tive auto-equivalence of M

q
n. In order to ease notation, we will simply write � for all these

involutions.
It is known [36, Lemme I.7.1]8 that the Iwahori–Matsumoto involution is compatible

with the induction product, in the following sense. For all representations �1; : : : ; �t in
M
q

k1
; : : : ;M

q

kt
, respectively, we have

�.�1 � � � � � �t / Š �.�t / � � � � � �.�1/:

When restricting � to irreducible representations, we obtain [36, Proposition I.7.3]
what is known as the Zelevinsky involution in the context of p-adic groups, that is,

�. OZ.m// Š OL.m/

for all m 2 Mult0.

Corollary 3.4. The statement of Theorem 3.3 remains valid when OZ is replaced with OL.
In addition, “quotient” may be replaced with “subrepresentation”.

Proof. It follows from an application of the functor � and Proposition 2.2, which remains
valid for representations of affine Hecke algebras through the equivalences ¹Unº.

4. Classes of irreducible representations

We would like to study certain classes of representations in Irr which naturally occur in
the derivatives of unitarizable representations.

4.1. Quasi-Speh representations

We will first deal with a subclass of ladder representations, which we will call quasi-
Speh representations. These are parameterized by integers a; b 2 Z>0, c 2 Z, so that

8There is an obvious typo in the statement of the lemma in that source.
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0 � c � a, and a representation � 2 Irru\C . For such data, we define the multisegment

ma;b;c
� D

�
b C a

2
� c;

b C a

2
� 1

�
�

C

bX
iD2

�
b � a

2
C 1 � i;

b C a

2
� i

�
�

2 Mult� :

We then set �a;b;c� WD L.ma;b;c
� / to be a quasi-Speh representation.

Note that for a D c, these are the usual Speh representations �a;b� D �
a;b;a
� defined

in Section 2.4. We also note that for b > 1 and all a, we have �a;b;0� D �
a;b�1
� ��1=2.

The following identities make the class of quasi-Speh representations relevant to our
discussion. See [32, Section 5.4] for the proof, which is attributed to Tadic.

Proposition 4.1. Let � 2 Irru\C be a given representations of Gd . Let a; b 2 Z>0 be
given. Then the formula

.�a;b� /.i/ Š

´
�
a;b;a�k
� ; i D kd; 0 � k � a;

0; otherwise;

gives the derivatives of the Speh representation �a;b� .

Let us define a preorder on the class of quasi-Speh representations. We will write

�a1;b1;c1� � �a2;b2;c2�

if a1 C b1 < a2 C b2, or if a1 C b1 D a2 C b2 and a1 � a2.
For any given � 2 Irru\C , the restriction of � to the collection ¹�a;b;c� ºa;b;c gives a

total preorder.

Proposition 4.2. If �1 D L.m1/ and �2 D L.m2/ are two quasi-Speh representations,
which satisfy �2 � �1, then �1 � �2 has a unique irreducible quotient which is given by
L.m1 Cm2/.

Proof. Suppose that �1 D �
a1;b1;c1
� and �2 D �

a2;b2;c2
� . Let us denote

m1 D ma1;b1;c1
� D �1 C � � � C�k1 ; m2 D ma2;b2;c2

� D �01 C � � � C�
0
k2
;

so that�k1 � � � � ��1 and�0
k2
� � � � ��01 are the defining segments. When c1 (resp. c2)

equal to zero, the condition �2 � �1 (resp. �02 � �
0
1) is waived, but we will still write

�1 (resp. �01), while referring to the empty segment.
By the same considerations as in the proof of Corollary 3.4, it is enough to prove that

Z.m1 Cm2/ is the socle of Z.m1/ �Z.m2/. To show that, we will apply the Lapid–
Mínguez criterion of Theorem 2.8.

Recall the sets X D Xm1Im2 ; Y D Ym1Im2 and the relation$, as they were defined
in Section 2.5.

We need to show there is an injective function f W X ! Y , which satisfies x $ f .x/

for all x 2 X .
Let us write the set of indices

K D ¹.i; i � 1/ 2 Œ1; : : : ; k1� � Œ1; : : : ; k2�º:
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Note that ifX \K ¤ ;, we have e�.�i1/ < e�.�
0
i1�1

/ D e�.�
0
i1
/C 1 for some index i1.

It follows that b1 C a1 � b2 C a2. Yet, since �2 � �1 holds, we must have

b1 C a1 D b2 C a2 and a2 � a1:

This implies b1 � b2 and that .i; i/ 2 Y holds, for all 2 � i � k1.
For every .i; i � 1/ 2 X \K, let us set f .i; i � 1/ D .i; i/.
Now, let us consider the Speh representations given as O�1 D �

a1;b1
� and O�2 D �

a2;b2
� .

Then

O�1 D L. Om1/ D L

 
k1X
iD1

O�i

!
; O�2 D L. Om2/ D L

 
k2X
iD1

O�0i

!
;

where O�i D �i and O�0i D �
0
i for all 2 � i , while b�.�1/ � b�. O�1/, b�.�01/ � b�. O�

0
1/,

e.�1/ D e. O�1/ and e.�01/ D e. O�
0
1/.

It is known that O�1 � O�2 is irreducible, as a product of unitarizable irreducible repre-
sentations. Hence, we can apply Theorem 2.8 to obtain a matching function g W OX ! OY

for the restricted bipartite graph . OX D X Om1Im2 ; OY D Y Om1I Om2 ;$/.
Note that since �2 � �1, we know that

e�.�1/ D
1

2
.b1 C a1/ � 1

is no smaller than e�.�0j / for all 1 � j � k2. Thus, X; OX � Œ2; : : : ; k1� � Œ1; : : : ; k2�.
Clearly, we also have

X \ .Œ2; : : : ; k1� � Œ2; : : : ; k2�/ D OX \ .Œ2; : : : ; k1� � Œ2; : : : ; k2�/;

Y \ .Œ2; : : : ; k1� � Œ2; : : : ; k2�/ D OY \ .Œ2; : : : ; k1� � Œ2; : : : ; k2�/:

Suppose that .i; j / 2 .X \ OX/ nK, and denote

.i 0; j 0/ D g.i; j / 2 OY :

In case j 0 D j C 1, we see that i 0; j 0 � 2, which implies that .i 0; j 0/ 2 Y . Otherwise,
.i 0; j 0/ D .i � 1; j /. In case that i > 2, we have

�i�1 D
�!
�i �

�!
�0j ;

since .i; j / 2 X . Thus, again we have .i 0; j 0/ 2 Y .
As for the case that i D 2, the inclusion .2; j / 2 X would have implied that

e�.�
0
1/ � e�.�

0
j / � e�.�2/C 1 D

b1 C a1

2
� 1:

On the other hand, it follows from �2 � �1 that e�.�01/ �
b1Ca1
2
� 1. Hence, j D 1 and

.i; j / 2 K would have given a contradiction.
Having established that g..X \ OX/ nK/ is always contained in Y , we can define

f D g on .X \ OX/ nK. Injectivity is not interfered with the definition of f jK , because
when x 2 X satisfies x $ .i; i/ for an index i , we clearly must have x 2 K.
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We are left with the task of extending f injectively to

X n . OX [K/ � Œ3; : : : ; k1� � ¹1º:

Suppose that .i; 1/ 2 X n . OX [K/. Since i � 1 > 1, we again have

�i�1 D
�!
�i �

�!
�01;

which gives .i � 1; 1/ 2 Y . Moreover, the same argument shows that .i; 1/ 62 OX implies
.i � 1; 1/ 62 OY . Hence, we can extend f by setting f .i; 1/ D .i � 1; 1/ without harming
injectivity.

4.2. Quasi-Arthur-type representations

We say that � 2 Irr is of quasi-Arthur type if it has the form

� D L
�
ma1;b1;c1
� C � � � Cmak ;bk ;ck

�

�
for some integers ¹ai ; bi ; ciºkiD1 and � 2 Irru\C .

The significance of quasi-Arthur-type representations appears through the following
corollary of previous discussions.

Proposition 4.3. Let � 2 Irru\C be fixed. Suppose that

�ak ;bk ;ck� � � � � � �a1;b1;c1�

are given quasi-Speh representations, for some integers ¹ai ; bi ; ciº. Then the product

�a1;b1;c1� � � � � � �ak ;bk ;ck�

has a unique irreducible quotient, whose isomorphism class is given by the quasi-Arthur-
type representation

L
�
ma1;b1;c1
� C � � � Cmak ;bk ;ck

�

�
:

Proof. By Proposition 3.2 and property (3.1), we can assume that we are dealing with
finite-dimensional representations of the corresponding affine Hecke algebras. The state-
ment then follows from Proposition 4.2 combined with Corollary 3.4.

For � 2 R.Gn/, we write �_ 2 R.Gn/ for the contragredient (smooth dual) repre-
sentation. Recall, that this involution of the category was composed with the Gelfand–
Kazhdan involution of Section 2.2 to obtain Proposition 2.2.

For a segment � D Œa; b�� 2 Seg, we write

�_ D Œ�b;�a��_ :

This is an involution which naturally extends to Mult. When � D L.m/ D Z.n/ 2 Irr,
we have

�_ D L.m_/ D Z.n_/

(in particular, the operation of smooth dual commutes with the Zelevinsky involution, that
is, sending Z.m/ to L.m/).
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Let � 2 Irru\C be given. We would like to define a similar involution on Mult�.
Given � D Œa; b���s 2 Seg�, we set

�Š D Œ�b;�a����s ;

and extend it to an involution m 7! mŠ, for all m 2 Mult�.
When � Š �_, we clearly have mŠ D m_.
Now, given m 2 Mult�, we can write a unique decomposition m D ms Cma, with

ms;ma 2 Mult�, so that mŠ
s D ms and ms is the maximal multisegment with that prop-

erty.
Clearly, for a segment � 2 ma, we have �Š 62 ma.

Lemma 4.4. Suppose that � is a quasi-Arthur-type representation. If � WD ��1=2�_ is
of quasi-Arthur type as well, given as

� D L
�
ma1;b1;c1
� C � � � Cmak ;bk ;ck

�

�
;

then we can write

� D L

 X
i2I�

m
ai ;bi�1

�_ C

X
i2IC

m
ai ;biC1;0

�_

!
for a certain disjoint partition ¹1; : : : ; kº D I� [ IC, where ma;o

� is viewed as an empty
multisegment. In particular,

� Š L.mCm0��1=2/

for some proper Arthur-type representations L.m/; L.m0/.

Proof. We can assume that

� D L
�
m
a0
1
;b0
1
;c0
1

�_ C � � � Cm
a0m;b

0
m;c
0
m

�_

�
for some integers a0i ; b

0
i ; c
0
i . Let us write

n D
�
m
a0
1
;b0
1
;c0
1

�_ C � � � Cm
a0m;b

0
m;c
0
m

�_

�
�1=2:

Clearly, we have

ns D m
a0
1
;b0
1
�1

�_ C � � � Cm
a0m;b

0
m�1

�_ ;

and for every segment � 2 na, we have

b�_.�/C e�_.�/ > 0: (4.1)

From �1=2� D �_ we deduce that

n D .ma1;b1;c1
� /_ C � � � C .mak ;bk ;ck

� /_

D m
a1;b1�2
�_ C � � � Cm

ak ;bk�2

�_ C�C1 C � � � C�
C

k
C��1 C � � � C�

�
k ;

where

�Ci D

´ �
bi�ai
2
; biCai

2
� 1

�
�_
; bi > 1;

0; bi D 1;
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and

��i D

�
�
bi C ai

2
C 1;�

bi C ai

2
C ci

�
�_
;

and ma;0
�_ ;m

a;�1
�_ are understood as empty multisegments. Clearly,

t WD m
a1;b1�2
�_ C � � � Cm

ak ;bk�2

�_ � ns :

Note that b�_.��i /C e�_.�
�
i / � 0 for all i with non-empty ��i . Suppose that ��i is

such a non-empty segment. Then, by (4.1) ��i 62 na, which means ��i 2 ns . In case that
b1 D 1 and ci D ai , we have

��i D m
ai ;1

�_ D .m
ai ;1

�_ /
Š:

Otherwise, ��i ¤ .�
�
i /
Š 2 n. Since tŠ D t and b�_..��i /

Š/C e�_..�
�
i /
Š/ > 0, we must

have .��i /
Š D �Cj , for some j . It follows that

m
aj ;bj
�_ D m

aj ;bj�2

�_ C��i C�
C

j � ns :

We then can write

ns D
X
j2J

m
aj ;bj�2
� C

X
j2K

m
aj ;bj
� ; na D

X
j2J

�Cj

for disjoint subsets J;K � ¹1; : : : ; kº such that ¹�Cj ºj2J are non-empty. Note that we
have bi D 1 for all i 2 ¹1; : : : ; kº n .J [K/.

The statement follows from the observations

��1=2m
aj ;bj
�_ D m

aj ;bjC1;0

�_ ; ��1=2.m
aj ;bj�2

�_ C�Cj / D m
aj ;bj�1

�_ :

Corollary 4.5. Suppose that

�1 D L
�
ma1;b1;c1
� C � � � Cmak ;bk ;ck

�

�
;

�2 D L
�
m
a0
1
;b0
1
;c0
1

�_ C � � � Cm
a0
l
;b0
l
;c0
l

�_

�
;

are two quasi-Arthur-type representations satisfying �2 D ��1=2�_1 . Then there are dis-
joint partitions ¹1; : : : ; kº D I1 [ I2 [ I3 and ¹1; : : : ; lº D J1 [ J2 [ J3 and bijections
u W I1 ! J2 and d W I2 ! J1, which satisfy

.a0u.i/; b
0
u.i// D .ai ; bi C 1/ for all i 2 I1;

.a0d.i/; b
0
d.i// D .ai ; bi � 1/ for all i 2 I2;

bi D 1 for all i 2 I3;

b0j D 1 for all j 2 J3:

Proof. By Lemma 4.4 we have an equality of multisegments of the formX
j2J1

m
a0
j
;b0
j
C1;0

� C

X
j2J2

m
a0
j
;b0
j
�1

� D ma1;b1;c1
� C � � � Cmak ;bk ;ck

�

for a disjoint partition ¹1; : : : ; lº D J1 [ J2 [ J3 such that b0j D 1 for all j 2 J3, and
b0j > 1 for all j 2 J2.
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Let us further write a disjoint partition J2 D J 02 [ J
00
2 , where J 02 D ¹j 2 J2 W b

0
j D 2º.

Similarly, we write ¹1; : : : ; kº D I 0 [ I 00, where I 0 D ¹i 2 I W bi D 1º.
For a multisegment m D

P
s2K Œ˛s; ˇs�� 2 Seg�, let us write a decomposition

m D m� Cm0 CmC;

where
m� D

X
s2K;˛sCˇs<0

Œ˛s; ˇs��;

m0 D

X
s2K;˛sCˇsD0

Œ˛s; ˇs��;

mC D
X

s2K;˛sCˇs>0

Œ˛s; ˇs��:

We obtain the identity�
ma1;b1
� C � � � Cmak ;bk

�

�
�
D
�
ma1;b1;c1
� C � � � Cmak ;bk ;ck

�

�
�

D

� X
j2J1

m
a0
j
;b0
j
C1;0

� C

X
j2J2

m
a0
j
;b0
j
�1

�

�
�

D

� X
j2J1

m
a0
j
;b0
j
C1

� C

X
j2J2

m
a0
j
;b0
j
�1

�

�
�

:

A moment’s reflection will show that such an identity forces a bijection t W I 00 ! J1[J
00
2 ,

so that
.ai ; bi / D .a

0
t.i/; b

0
t.i/ C 1/;

in case that t .i/ 2 J1, and

.ai ; bi / D .a
0
t.i/; b

0
t.i/ � 1/

in case that t .i/ 2 J 002 .
In particular, we see that� X
j2J1

m
a0
j
;b0
j
C1;0

� C

X
j2J 00

2

m
a0
j
;b0
j
�1

�

�
0

D

� X
j2J1

m
a0
j
;b0
j
C1

� C

X
j2J 00

2

m
a0
j
;b0
j
�1

�

�
0

D

�X
i2I 00

mai ;bi
�

�
0

D

�X
i2I 00

mai ;bi ;ci
�

�
0

;

which also impliesX
j2J 0

2

m
a0
j
;1

� D

� X
j2J 0

2

m
a0
j
;1

�

�
0

D

�X
i2I 0

mai ;1;ci
�

�
0

:

Since

.ma;1;c
� /0 D

´
ma;1
� ; c D a;

0; c < a;
;
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we see that X
j2J 0

2

m
a0
j
;1

� D

X
i2 QI

mai ;1
�

for a subset QI � I 0. This implies a bijection s W QI ! J 02 such that

.ai ; bi / D .a
0
s.i/; b

0
s.i/ � 1/

for all i 2 QI .
The desired bijections u and d are easily constructed out of t and s after denoting

I1 D QI [ t
�1.J 002 /, I2 D t

�1.J1/ and I3 D I1 n QI .

5. Main theorems

We would like to determine for which pairs of representations �1; �2 2 Irru such that
�1 2 Irr.Gn/ and �2 2 Irr.Gn�1/, the space

Hom.�1jGn�1 ; �2/

is non-zero. Here we consider Gn�1 as a subgroup of Gn embedded in the corner, as
described in the introduction section.

Now, suppose that �1; �2 are Arthur-type representations. It is easy to verify that they
can be written uniquely (up to ordering) in the form

�1 D L
�
ma1;b1
�1

C � � � Cmak ;bk
�k

�
;

�2 D L
�
m
a0
1
;b0
1

�0
1

C � � � Cm
a0
l
;b0
l

�0
l

�
:

Definition 5.1. We say that a pair .�1; �2/ of Arthur-type representations is in GGP
position if, in terms of the decomposition above, there are disjoint partitions

¹1; : : : ; kº D I1 [ I2 [ I3; ¹1; : : : ; lº D J1 [ J2 [ J3;

and bijections u W I1 ! J2, d W I2 ! J1, which satisfy

.a0u.i/; b
0
u.i// D .ai ; bi C 1/; �0u.i/ Š �i for all i 2 I1;

.a0d.i/; b
0
d.i// D .ai ; bi � 1/; �0d.i/ Š �i for all i 2 I2;

bi D 1 for all i 2 I3; b0j D 1 for all j 2 J3:

Our terminology GGP position stands for the authors’ names Gan, Gross and Prasad,
who have coined this condition in their Conjecture 1.1.

We are now going to prove two main intermediate steps that together will imply that a
non-zero Hom space between two Arthur-type representations �1; �2 of Gn; Gn�1 must
imply that the pair .�1; �2/ is in GGP position.

The first step (Section 5.1, Proposition 5.4) will transfer the non-vanishing of the
restricted Hom space into the non-vanishing of another Hom space between certain der-
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ivatives of �1; �2. This will have the immense advantage of translating the problem into
one about the category of finite-length representations of a smaller group. It will be
possible due the useful Bernstein–Zelevinsky filtration occurring when restricting to the
mirabolic group situated amidst Gn�1 and Gn.

The second step is proved in the following theorem, that states (using the tools devel-
oped in Section 4) that the non-zero derivative Hom space implies a combinatorial condi-
tion that can be read as the GGP position.

Put together, these steps will be summed up in Section 5.2 to state our main results.

Theorem 5.2. Suppose that �1; �2 2 Irru are two Arthur-type representations, which
satisfy

Hom.�1=2�.i/1 ;
.j /�2/ ¤ ¹0º

for some i; j . Then .�1; �2/ is in GGP position.

Proof. Let us write

�1 Š �
a0
1
;b0
1

�0
1

� � � � � �
a0
k
;b0
k

�0
k

and �2 Š �
a1;b1
�1

� � � � � �al ;bl�l
:

Since the above products are independent of the order in which the factors are taken,
we can assume that

ai C bi � aj C bj and a0i C b
0
i � a

0
j C b

0
j

for all i < j and that ai � aj (respectively, a0i � a
0
j ), in case that ai C bi D aj C bj

(respectively, a0i C b
0
i D a

0
j C b

0
j ).

Recall that
.�a;b� /_ Š �

a;b
�_ :

Then, by Propositions 2.9, 4.1 and the assumption on the non-vanishing homomorphism
space, we deduce that

Hom
�
�1=2

�
�
a0
1
;b0
1
;c0
1

�0
1

� � � � � �
a0
l
;b0
l
;c0
l

�0
l

�
;
�
�
a1;b1;c1
�_
1

� � � � � �
ak ;bk ;ck
�_
k

�_�
¤ ¹0º

for some integers c1; : : : ; ck ; c01; : : : ; c
0
l
.

By rearranging the factors in the product if necessary and using Corollary 2.4, we can
decompose the above homomorphism space as

tO
iD1

Hom
�
�1=2

�
�
a0
r0
i
.1/
;b0
r0
i
.1/
;c0
r0
i
.1/

�i
� � � � � �

a0
r0
i
.s0
i
/
;b0
r0
i
.s0
i
/
;c0
r0
i
.s0
i
/

�i

�
;

�
�
ari .1/;bri .1/;cri .1/

.�i /_
� � � � � �

ari .si /;bri .si /;cri .si /

.�i /_

�_�
;

where ¹�1; : : : ; �tº D ¹�iºkiD1 [ ¹�
0
iº
l
iD1 such that the �i are pairwise non-isomorphic

unitary supercuspidal representations, ri W ¹1; : : : ; siº ! ¹1; : : : ; kº are ascending injec-
tions such that ¹1; : : : ; kº D P

S
i Im ri and �r.i/ Š �i , and r 0i W ¹1; : : : ; s

0
iº ! ¹1; : : : ; lº

are ascending injections such that ¹1; : : : ; lº D P
S
i Im r 0i and �0

r 0.i/
Š �i .9

9Here P[ stands for a disjoint union.
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In particular, the above decomposition shows that it is enough to consider the case
where all �i ’s and �0j ’s are isomorphic. In other words, we are free to assume for the rest
of the proof that �1; �2 are of proper Arthur type and that �i Š �0j Š � for all i; j and
one fixed � 2 C \ Irru.

Now, note that the given quasi-Speh representations satisfy

�
ak ;bk ;ck
�_ � � � � � �

a1;b1;c1
�_ and �

a0
l
;b0
l
;c0
l

� � � � � � �
a0
1
;b0
1
;c0
1

� :

Hence, by Proposition 4.3, we have the quasi-Arthur-type representation

�2 WD L
�
m
a1;b1;c1
�_ C � � � Cm

ak ;bk ;ck
�_

�
as the unique irreducible quotient of �a1;b1;c1�_ � � � � � �

ak ;bk ;ck
�_ , while

�1 WD L
�
m
a0
1
;b0
1
;c0
1

� C � � � Cm
a0
l
;b0
l
;c0
l

�

�
as the unique irreducible quotient of �

a0
1
;b0
1
;c0
1

� � � � � � �
a0
l
;b0
l
;c0
l

� .
By applying Lemma 2.1, we can deduce from the non-vanishing Hom space that

�1�
1=2 Š �_2 . Finally, the statement follows from Corollary 4.5.

5.1. Bernstein–Zelevinsky filtration

In order to study the morphism space above, we will make use of the analysis in [4]
of restrictions of representations in Irr. Let us sketch the main ingredients used in that
reference. The reader can also refer to [9, 38] for very similar discussions.

Recall the p-adic mirabolic groups ¹Pnº situated within the inclusions

Gn�1 < Pn < Gn:

In matrix form, Pn is defined to be the subgroup of Gn consisting of matrices whose
bottom row is given by .0 : : : 0 1/.

Bernstein and Zelevinsky defined families of exact functors

ˆ� W S.Pn/! S.Pn�1/; ˆC; Ô C W S.Pn/! S.PnC1/;

‰� W S.Pn/! S.Gn�1/; ‰C W S.Gn/! S.PnC1/;

together with a set of identities between them. We will not use the definition of these func-
tors, but let recall they are all defined through suitable induction (in case of C functors)
or restriction of coinvariants (in case of � functors). The functor ˆC is the subfunctor
of Ô C that takes the compactly supported sections of the induced representation.

In particular, ˆ� is both left adjoint to Ô C and right adjoint to ˆC, while ‰� is left
adjoint to ‰C.

In terms of these functors, for every 0 < i � n, the i -th derivative of a representation
� 2 R.Gn/ is given as

�.i/ D ‰�.ˆ�/i�1.�jPn/ 2 R.Gn�i /;

where .ˆ�/i�1 denotes the .i � 1/-st consecutive composition of ˆ�.
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Proposition 5.3. For any representation � 2 R.Pn/ on a vector space V , there is a fil-
tration of Pn-representations

¹0º D Vn � Vn�1 � � � � � V0 D V

such that
Vi=ViC1 Š .ˆ

C/i‰C‰�.ˆ�/i .�/

as a Pn-representation, for all 0 � i < n.

Following the terminology of [9], let us define the left i -th derivative of � 2 R.Gn/
by setting

.i/� WD
�
.�_/.i/

�_
:

Proposition 5.4. Let �1 2 R.Gn/ and �2 2 R.Gn�1/ be given. Let ¹Viº be the filtra-
tion of �1jPn as described in Proposition 5.3. Then we have a natural identification of
homomorphism spaces

HomGn�1.Vi=Vi�1; �2/ Š HomGn�i�1.�
1=2�

.iC1/
1 ; .i/�2/

for all 0 � i < n. In particular, a non-zero element in HomGn�1.�1jGn�1 ; �2/ gives rise
to a non-zero element in HomGn�i�1.�

1=2�
.iC1/
1 ; .i/�2/ for some i .

Proof. Let I (respectively, i ) denote the induction (respectively, compact induction) func-
tor from R.Gn�1/ to R.Pn/. Recall that by standard Mackey theory, the restriction
functor R.Pn/! R.Gn�1/ is left adjoint to I (see, e.g., [4, Proposition 1.9]).

Thus, by Proposition 5.3,

HomGn�1.Vi=Vi�1; �2/ Š HomGn�1

��
.ˆC/i‰C

�
�
.iC1/
1

��ˇ̌̌
Gn�1

; �2

�
Š HomPn

�
.ˆC/i‰C

�
�
.iC1/
1

�
; I.�2/

�
Š HomPn

�
I.�2/

_;
�
.ˆC/i‰C

�
�
.iC1/
1

��_�
:

Now, by [4, Proposition 3.4], we know that�
.ˆC/i‰C

�
�
.iC1/
1

��_
Š ��1. Ô C/i‰C

��
�
.iC1/
1

�_�
Š ��1=2. Ô C/i‰C

�
��1=2

�
�
.iC1/
1

�_�
holds, while similarly I.�2/_ Š ��1i.�_2 / Š �

�1=2i.��1=2�_2 /.
From the above mentioned adjunctions of functors, we now see that

HomGn�1.Vi=Vi�1; �2/ Š HomPn
�
i.��1=2�_2 /; .

Ô C/i‰C
�
��1=2

�
�
.iC1/
1

�_��
Š HomGn�i�1

�
‰�.ˆ�/i

�
i.��1=2�_2 /

�
; ��1=2

�
�
.iC1/
1

�_�
:

Yet, it follows from [4, Proposition 4.13 (c)] that ˆ�.i.��1=2�_2 // Š �
_
2 jPn�1 . Hence,

HomGn�1.Vi=Vi�1; �2/ Š HomGn�i�1

��
�_2
�.i/
; ��1=2

�
�
.iC1/
1

�_�
Š HomGn�i�1.�

1=2�
.iC1/
1 ; .i/�2/:



M. Gurevich 292

Corollary 5.5. Let �1 2 R.Gn/ and �2 2 R.Gn�1/ be given. Let ¹Viº be the filtration of
�1jPn as described in Proposition 5.3. Then we have a natural identification of homology
spaces

Ext1Gn�1.Vi=Vi�1; �2/ Š Ext1Gn�i�1.�
1=2�

.iC1/
1 ; .i/�2/

for all 0 � i < n.

Proof. The proof of Proposition 5.4 works for this case as well, after recalling that adjunc-
tions of exact functors give natural identifications of Ext-spaces, as well as Hom-spaces.
See, e.g., [38, Proposition 2.2].

5.2. Branching laws

We will first treat the Arthur-type case which was considered in Conjecture 1.1.

Theorem 5.6. Let �1; �2 2 Irru be Arthur-type representations such that �1 2 Irr.Gn/
and �2 2 Irr.Gn�1/. If

HomGn�1.�1jGn�1 ; �2/ ¤ ¹0º

holds, then .�1; �2/ must be in GGP position.

Proof. The last part of Proposition 5.4 implies that under the stated condition,

HomGn�i�1.�
1=2�

.iC1/
1 ; .i/�2/ ¤ ¹0º

for a certain i . Hence, the result follows from Theorem 5.2.

The above theorem can also be extended into a branching law governing the irre-
ducible unitarizable quotients of a restriction of any unitarizable irreducible representa-
tion.

Theorem 5.7. Let �; � 2 Irru be two representations with the property that � 2 Irr.Gn/
and � 2 Irr.Gn�1/. Let

� Š �0 � �1.˛1/ � � � � � �k.˛k/;

� Š �0 � �1.ˇ1/ � � � � � �l .ˇl /

be their decomposition as described in Section 2.4, that is, �i ; �i 2 Irru are Arthur-type
representations and ¹˛iº; ¹ˇiº are sets of real numbers. If

HomGn�1.�jGn�1 ; �/ ¤ ¹0º

holds, then:

(1) The pair .�0; �0/ is in GGP position.

(2) For every i; j for which ˛i D ǰ holds, the pair .�i ; �j / is in GGP position.

(3) If ˛i 62 ¹ˇ1; : : : ; ˇlº for some i , then �i is generic (equivalently, �i is tempered, or
equivalently, �i .˛i / is generic), i.e.

�i D L.m
a1;1
�1
C � � � Cmat ;1

�t
/:

(4) Similarly, if ǰ 62 ¹˛1; : : : ; ˛kº for some j , then �j is generic.
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Proof. By Proposition 5.4 we know that Hom.�1=2�.iC1/; .i/�/ is non-zero, for some i .
By Proposition 2.9 that means

H WD Hom
�
�1=2

�
�
.c0/
0 � �1.˛1/

.c1/ � � � � � �k.˛k/
.ck/

�
;

.d0/�0 �
.d1/

�
�1.ˇ1/

�
� � � � �

.dl /
�
�l .ˇl /

��
¤ ¹0º

holds, for some c0; : : : ; ck ; d0; : : : ; dl .
It is easy to see that given Arthur-type representations �; � 0; � 00 and numbers 
; 
 0 with

0 < 
 < 
 0 < 1
2

, the representations �; � 0.
 0/; � 00.
 00/ have pairwise disjoint supercuspi-
dal supports. The same clearly holds for their derivatives.

Hence, for ˛i 62 ¹ˇ1; : : : ; ˇlº, we must have �i .˛i /.ci / 2 Irr.G0/. Claim (3) then fol-
lows, with claim (4) following similarly.

Also, arguing as in the proof of Theorem 5.2, using Corollary 2.4, we see that

H D Hom
�
�1=2�

.c0/
0 ; .d0/�0

�
˝

� O
.i;j /W ˛iD ǰ

Hom
�
�1=2�i .˛i /

.ci /; .dj /
�
�j . ǰ /

���
:

Claim (1) now follows from Theorem 5.2.
In order to establish claim (2), we need to note that for ˛ D ˛i D ǰ , by Proposi-

tion 2.9 and Corollary 2.4, we have

Hom
�
�1=2�i .˛/

.ci /; .dj /.�j .˛//
�
¤¹0º H)

´
Hom

�
�1=2C˛�

.c/
i ; �˛..d/�j /

�
¤ ¹0º

Hom
�
�1=2�˛�

.c0/
i ; ��˛..d

0/�j /
�
¤ ¹0º

for some c C c0 D ci , d C d 0 D dj . The claim then follows again from Theorem 5.2.

5.3. Converse direction

Let us first state a certain corollary from a discussion in [33].

Lemma 5.8. Let �1; �2 2 Irru be two Speh representations. Then �1=2�1 � �2 is irre-
ducible. In particular, �1=2�1 � �2 Š �2 � �1=2�1.

Proof. Let us write �1 D L.m
a1;b1
�1 / and �2 D L.m

a2;b2
�2 /. If �1 6Š �2 holds, the state-

ment is clear. Otherwise, let us apply the irreducibility criterion from [33, Corollary 5.10].
For the purposes of this proof, let us view supp.�1=2/�1 and supp.�2/ as elements of

Seg in a natural way. Namely,

supp.�1=2�1/ D
�
�
a1 C b1 � 3

2
;
a1 C b1 � 1

2

�
�1

;

supp.�2/ D
�
�
a2 C b2 � 2

2
;
a2 C b2 � 2

2

�
�2

:

By [33, Corollary 5.10], it is enough to show that as segments, supp.�1=2�1/ and supp.�2/
do not precede each other. If a1 C b1 and a2 C b2 have distinct parities, it follows imme-
diately. Otherwise, it is easy to see that the inequalities implied by demanding either of
the segments to precede the other do not have a solution.
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Proposition 5.9. Let .�1; �2/ be a pair of Arthur-type representations in GGP posi-
tion such that �1 2 Irr.Gn/ and �2 2 Irr.Gn�1/. Let ¹Viº be the filtration of �1jPn as
described in Proposition 5.3. Then

HomGn�1.Vi=Vi�1; �2/ ¤ ¹0º

for some i .

Proof. From the assumption on the GGP position, we are able to write the Arthur-type
representations as products of Speh representations of a certain form. Namely,

�1 D �
a1;b1
�1

� � � � � �at ;bt�t
� �d1;1%1

� � � � � �ds ;1%s
� �

a0
1
;b0
1
C1

�0
1

� � � � � �
a0
t0
;b0
t0
C1

�0
t0

;

�2 D �
a0
1
;b0
1

�0
1

� � � � � �
a0
t0
;b0
t0

�0
t0

� �
d 0
1
;1

%0
1

� � � � � �
d 0
s0
;1

%0
s0
� �a1;b1C1�1

� � � � � �at ;btC1�t

for some ¹�iº; ¹�0iº; ¹%iº; ¹%
0
iº � C \ Irru and positive integers ¹aiº, ¹biº, ¹a0iº, ¹b

0
iº,

¹diº, ¹d 0i º.
Now, let us also define the representations

…1 D �
a1;b1
�1

� � � � � �at ;bt�t
� ��1=2�

a0
1
;b0
1

�0
1

� � � � � ��1=2�
a0
t0
;b0
t0

�0
t0

;

…2 D �
a0
1
;b0
1

.�0
1
/_
� � � � � �

a0
t0
;b0
t0

.�0
t0
/_
� ��1=2�

a1;b1
�_
1

� � � � � ��1=2�
at ;bt
�_t

:

By Propositions 2.9 and 4.1, …1 appears as a quotient of �.i/1 , while …2 appears as
a quotient of .�_2 /

.j /, for a certain choice of i; j .
Note that by successive application of Lemma 5.8, we see that

…2 Š �
�1=2�

a1;b1
�_
1

� � � � � ��1=2�
at ;bt
�_t

� �
a0
1
;b0
1

.�0
1
/_
� � � � � �

a0
t0
;b0
t0

.�0
t0
/_
;

which, in particular, implies the isomorphism

�1=2…1 Š …
_
2 :

Hence, Hom.�1=2�.i/1 ;
.j /�2/ ¤ ¹0º.

Note also that since …1;…2 turn out to be representations of the same group, we can
deduce j D i � 1 from the assumption that �1 2 Irr.Gn/ and �2 2 Irr.Gn�1/. Finally,
the statement follows from Proposition 5.4.

Let �1 2 Irr.Gn/ and �2 2 Irr.Gn�1/ be given. Let ¹Viº be the filtration of �1jPn as
described in Proposition 5.3.

We would like to make the straightforward observation, that in order to show the non-
vanishing of HomGn�1.�1jGn�1 ; �2/, it is enough to find a number 0 � i < n, for which
the conditions ´

HomGn�1.Vi=Vi�1; �2/ ¤ ¹0º;

Ext1Gn�1.Vj =Vj�1; �2/ D ¹0º for all 0 � j < i
(5.1)

hold.
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By Proposition 5.4 and Corollary 5.5, the set of conditions (5.1) is equivalent to´
HomGn�1.�

1=2�
.iC1/
1 ; .i/�2/ ¤ ¹0º;

Ext1Gn�1.�
1=2�

.jC1/
1 ; .j /�2/ D ¹0º for all 0 � j < i:

Recall that an Arthur-type representation

� D L
�
ma1;b1
�1

C � � � Cmak ;bk
�k

�
is generic, when bi D 1, for all i D 1; : : : ; k.

Theorem 5.10. Let .�1; �2/ be a pair of Arthur-type representations in GGP position
such that �1 2 Irr.Gn/ and �2 2 Irr.Gn�1/ and at least one of �1; �2 is generic. Then

HomGn�1.�1jGn�1 ; �2/ ¤ ¹0º:

Proof. Let us assume for simplicity that �1 is generic. The case of generic �2 is proved
by same arguments, while exchanging the roles of �1; �2.

From the assumptions we are able to write (in similarity with the proof of Proposi-
tion 5.9)

�1 D �
a1;1
�1
� � � � � �at ;1�t

� �d1;1%1
� � � � � �ds ;1%s

;

�2 D �
d 0
1
;1

%0
1

� � � � � �
d 0
s0
;1

%0
s0
� �a1;2�1

� � � � � �at ;2�t

for some ¹�iº; ¹%iº; ¹%0iº � C \ Irru and positive integers ¹aiº; ¹diº; ¹d 0i º.
From Proposition 5.9 we know that HomGn�1.Vi0=Vi0�1; �2/ ¤ ¹0º for some i0.

Hence, by the discussion above, it is enough to show that Ext1Gn�1.�
1=2�

.iC1/
1 ; .i/�2/

vanishes, for all 0 � i < i0.
Let us assume the contrary, that is, Ext1Gn�1.�

1=2�
.i1C1/
1 ; .i1/�2/ ¤ ¹0º for a given

0 � i1 < i0. By Propositions 2.9 and 4.1, that means we have

Ext1Gn�1.�
1=2�1; �

_
2 / ¤ ¹0º

for some representations

�1 D �
a1;1;c1
�1

� � � � � �at ;1;ct�t
� �d1;1;e1%1

� � � � � �ds ;1;es%s
;

�2 D �
d 0
1
;1;e0

1

.%0
1
/_
� � � � � �

d 0
s0
;1;e0

s0

.%0
s0
/_
� �

a1;2;f1
�_
1

� � � � � �
at ;2;ft
�_t

:

Since non-trivial extensions can occur only between representations with the same central
character, we see that

Re.�1=2�1/ D Re.�_2 / D �Re.�2/:

As a consequence, the equality

Re.�1=2�2/ D �Re.�1/ D �
tX
iD1

Re.�ai ;1;ci�i
/ �

sX
iD1

Re.�di ;1;ei%i
/
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holds. Yet,

Re.�a;1;c� / D Re
�
��a=2�cC1=2 � ��a=2�cC3=2 � � � � � ��a=2�1=2

�
D k�

cX
iD1

�
aC 1

2
� i

�
� 0

for all � 2 C.Gk�/ \ Irru and integers 0 � c � a. Hence, Re.�1=2�2/ � 0.
On the other hand, for all 1 � i � t , we have

Re
�
�1=2�

ai ;2;fi
�_
i

�
D Re

�
�_i �

� a�12 � �_i �
� a�12 C1 � � � � � �_i �

a�1
2

�
C Re

�
�1�

ai ;1;fi
�_
i

�
D Re

�
�1�

ai ;1;fi
�_
i

�
� Re

�
�
ai ;1;fi
�_
i

�
� 0:

Moreover, it is clear that the above inequality is strict, unless fi D 0. Thus,

Re.�1=2�2/ D
s0X
iD1

Re
�
�1=2�

d 0
i
;1;e0

i

.%0
i
/_

�
C

tX
iD1

Re
�
�1=2�

ai ;2;fi
�_
i

�
D 0

with fi D 0 and e0i D 0 for all i .
Now, this implies that �2 appears only in the highest non-zero derivative of �_2 . This

is a contradiction to the facts that i1 < i0 and that .i0/�2 is non-zero.

6. Quantum affine algebras

We would like to prove Theorem 3.3 by applying results from the representation theory
of quantum affine algebras.

6.1. Setting

Let us recall parts of the theory of quantum affine algebras and their finite-dimensional
representations. We refer the reader to [13], [12, Chapter 12], [17] for comprehensive
study and discussions of these objects.

We are interested in the Hopf C-algebra AN;q D Uq. OslN /, which is defined for a fixed
parameter q 2 C�. Its definition involves generators and relations which depend on the
Cartan matrix of the affine Lie algebra OslN . We will refrain from stating the full definition,
which can be easily found in the sources mentioned above, since our applications will not
require it. Our assumption for the rest of this section will be that q is not a root of unity.

Recall from [13, Proposition 2.3] that, as vector spaces, we have a triangular decom-
position

AN;q D U
�
˝ U 0 ˝ UC;

where U�; U 0; UC are subalgebras of AN;q .
Also, recall that the definition of AN;q involves the invertible elements

ki 2 U
0; i D 1; : : : ; N � 1;
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which generate a commutative co-commutative Hopf-subalgebra K < AN;q . This subal-
gebra can be seen as the Cartan algebra (zero-part) in the triangular decomposition of the
smaller quantum group Uq.slN /, which is naturally embedded in AN;q .

Let � be the set of complex characters � of K, which satisfy �.ki / 2 qZ for all
i D 1; : : : ; N � 1. Since K is co-commutative, � is an abelian group. Given a complex
character P of the algebra U 0, we will write !.P / to be its restriction to K.

We are further interested in the category C
q
N of type 1 representations of AN;q . It

consists of all finite-dimensional representations V in which a certain specified central
element c1=2 2 U 0 acts trivially, and which comply with a weight space decomposition
for the subalgebra K, of the form

V D
M
�2�

V�;

where V� is the �-eigenspace of V .

6.2. Cyclic modules

For a representation V in C
q
N , we say that a vector v 2 V is highest weight if v is an eigen-

vector for the algebra U 0 and UC � v D C � v. The character of U 0 by which it acts on
a highest weight vector v is called the `-weight of v (not to be confused with the previous
weight decomposition by characters of the smaller algebra K).

Given an irreducible representation V in C
q
N , it is known there is a unique, up to

scalar, highest weight vector v 2 V . The `-weight P of v characterizes the isomorphism
class of V . We can write in this case V D V.P /.

Let us write DN for the set of characters of U 0 which give rise to irreducible repre-
sentations V.P /, P 2 DN . The set DN can be described using what is known as Drinfeld
polynomials.

The set DN also comes with a natural monoid structure, in the following sense. Given
highest weight vectors vP 2 V; vQ 2 W of respective `-weights P;Q 2 DN , the vector
vP ˝ vQ 2 V ˝W is also a highest weight vector of `-weight P �Q 2 DN .

Let V1; : : : ; Vk be irreducible representations in CN . Let vi 2 Vi , 1 � i � k, be the
corresponding highest weight vectors. Let W � V1 ˝ � � � ˝ Vk be the subrepresentation
generated by the vector v1 ˝ � � � ˝ vk .

Inspired by the terminology of [27], we say that the tuple .V1; : : : ; Vk/ is cyclic if
W D V1 ˝ � � � ˝ Vk .

We would like to reformulate the notion of cyclic tuples into a more categorical
language.

Proposition 6.1. Let
V D .V .P1/; : : : ; V .Pk//

be a tuple of irreducible representations in C
q
N , with P1; : : : ; Pk 2 DN . The tuple V is

cyclic if and only if the representation

V.P1/˝ � � � ˝ V.Pk/

has a unique irreducible quotient whose isomorphism class is given by V.P1 � � � Pk/.
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Proof. For P 2 DN , note that !.P / 2 � by the assumptions on C
q
N .

Recall from [16, Theorem 1.3 (3)] that dimV.Pi /w.Pi / D 1, and that for any � 2 �
with V.Pi /� ¤ ¹0º, we have w.Pi / > �. This inequality is meant in a sense of the partial
order, which comes from the natural identification of�with the wight lattice of the simple
Lie algebra slN .

It easily follows that the representation M WD V.P1/˝ � � � ˝ V.Pk/ has

dimM!.P1/C���C!.Pk/ D 1:

Define vi 2 V.Pi /, i D 1; : : : ; k, to be the corresponding highest weight vectors, with
`-weights Pi . Then

m WD v1 ˝ � � � ˝ vk 2M!.P1/C���C!.Pk/:

In particular,
w.P1 � � � Pk/ D w.P1/C � � � C w.Pk/:

Let W �M be the subrepresentation generated by the vector m. By standard argu-
ments on weight decompositions, the one-dimensionality of W!.P1���Pk/ DM!.P1�������Pk/

implies thatW has a unique irreducible quotient Z to whichm has a non-zero projection.
In particular, the projection of m in Z is a highest weight vector of `-weight P1 � � � Pk ,
which means Z Š V.P1 � � � Pk/. One direction of the proposition readily follows.

Conversely, suppose thatM has an irreducible quotient Y Š V.P1 � � � Pk/. Again, the
one-dimensionality of M!.P1���Pk/ requires m, and hence W , to project non-trivially on
Y . Since Y is irreducible, we must have W DM .

Theorem 6.2 (Hernandez [27]). Let V1; : : : ; Vk be irreducible representations in C
q
N ,

such that for all 1 � i < j � k, the pair .Vi ; Vj / is cyclic. Then the tuple .V1; : : : ; Vk/ is
cyclic.

Remark 6.3. The motivation for the above theorem slightly differs from its current appli-
cation in our work. It was proved as part of a systematic study of the non-semisimple
category C

q
N . Since a cyclic representation whose dual is cyclic as well must be irre-

ducible, the theorem implies an irreducibility criterion for tensor products of representa-
tions (which, in fact, was proved earlier in [26]). Thus, this result generalized the crite-
rion and described a factorization of a family of cyclic representations into a product of
irreducible ones.

Remark 6.4. In our considerations for the problem at hand we will apply Theorem 6.2
on a family of representations analogous (through a Schur–Weyl duality, see next section)
to quasi-Speh representations as in Proposition 4.3. It would be interesting to compare
this application to the special case of Theorem 6.2 that was presented in [10].

6.3. Quantum affine Schur–Weyl duality

Let q 2 C� be fixed. For each k � 1 and N � 2, Chari and Pressley [14] have defined
a quantum affine Schur–Weyl duality functor

Fk;N WM
q2

k
! C

q
N :
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Recall from Section 3 that M
q2

k
stands for the category of finite-dimensional repre-

sentations of the affine Hecke algebra H.k; q2/.
These functors served as an affine generalization of the work of Jimbo [30] on a quan-

tum Schur–Weyl duality between quantum groups and (finite) Hecke algebras.
Let us recall some of the properties of these duality functors, as were studied in [14].
When k � N , Fk;N is a fully faithful functor. In other words, it serves as an embed-

ding of the category M
q2

k
into a certain full subcategory of C

q
N . In fact, this subcategory

can be easily characterized by an intrinsic property of representations in C
q
N (these are

called level k representations). We will not need this characterization in our discussion.
Moreover, the duality functors are monoidal ([14, Proposition 4.7]), in the sense that

Fk1;N .�1/˝ Fk2;N .�2/ Š Fk1Ck2;N .�1 � �2/ (6.1)

for all representations �1; �2 in M
q2

k1
;M

q2

k2
, respectively. Recall that �1 � �2 denotes the

induction product which produces a representation in M
q2

k1Ck2
.

Let us now return to the setting of the first sections and assume that q2 D qF . Recall
the bijection

OZ W Mult0 !
[
k�0

Irr.MqF
k
/;

that is given by the Zelevinsky(–Rogawski) classification.
The following proposition implies, in particular, that for all k � N , the duality functor

Fk;N sends irreducible representations to irreducible representations.
This correspondence of irreducible objects from different categories is rather intrigu-

ing. For example, the family of irreducible Speh representations is sent by the composed
functor Fk;N ı U‚ (U‚ as in Section 3.1) to the family of Kirillov–Reshetikhin mod-
ules in C

q
N . The latter is an important family of modules for the study of quantum affine

algebras, which was initially explored in [31] (see the survey [11], for example).

Proposition 6.5 ([14, Theorem 7.6]). For every N � 2, there is a natural embedding of
monoids �N W DN ! Mult0, for which there holds

FkP ;N .
OZ.�N .P /// Š V.P / 2 Irr.CqN /

for all P 2 DN with kP � N , where kP is the integer for which OZ.�N .P // 2 Irr.MqF
kP
/.

Moreover, for every 1 � k � N , the collection of multisegments OZ�1.Irr.MqF
k
// is con-

tained in the image of �N .

We finish by noting that the combination of Proposition 6.1, Theorem 6.2, Proposi-
tion 6.5 and (6.1) directly give the proof of Theorem 3.3.
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(2014) Zbl 1288.22013 MR 3163355

[33] Lapid, E., Mínguez, A.: On parabolic induction on inner forms of the general linear group
over a non-archimedean local field. Selecta Math. (N. S.) 22, 2347–2400 (2016)
Zbl 1355.22005 MR 3573961

[34] Lapid, E., Mínguez, A.: Geometric conditions for �-irreducibility of certain representations of
the general linear group over a non-archimedean local field. Adv. Math. 339, 113–190 (2018)
Zbl 1400.20047 MR 3866895

[35] Lapid, E., Rogawski, J.: On a result of Venkatesh on Clozel’s conjecture. In: Automorphic
Forms and L-Functions II. Local Aspects, Contemp. Math. 489, American Mathematical
Society, Providence, 173–178 (2009) Zbl 1262.11063 MR 2533004

https://zbmath.org/?q=an:07305886&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4190046
https://zbmath.org/?q=an:0348.22011&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=0404534
https://zbmath.org/?q=an:0787.22018&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1186476
https://zbmath.org/?q=an:0829.22031&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1295124
https://zbmath.org/?q=an:07319804&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4172670
https://zbmath.org/?q=an:07314004&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4213657
https://arxiv.org/abs/2006.04118
https://zbmath.org/?q=an:1246.22021&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2827179
https://zbmath.org/?q=an:1221.17015&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2660455
https://zbmath.org/?q=an:07031140&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3916087
https://zbmath.org/?q=an:1050.22022&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1979924
https://zbmath.org/?q=an:0525.22018&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=701565
https://zbmath.org/?q=an:0602.17005&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=841713
https://zbmath.org/?q=an:0637.16007&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=906858
https://zbmath.org/?q=an:1288.22013&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3163355
https://zbmath.org/?q=an:1355.22005&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3573961
https://zbmath.org/?q=an:1400.20047&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3866895
https://zbmath.org/?q=an:1262.11063&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2533004


M. Gurevich 302

[36] Mœglin, C., Waldspurger, J.-L.: Sur l’involution de Zelevinski. J. Reine Angew. Math. 372,
136–177 (1986) Zbl 0594.22008 MR 863522

[37] C. Mœglin and J.-L. Waldspurger: Sur les Conjectures de Gross et Prasad. II. Astérisque 347,
Société Mathématique de France, Paris, (2012)

[38] Prasad, D.: Ext-analogues of branching laws. In: Proceedings of the International Congress
of Mathematicians—Rio de Janeiro 2018. Vol. II. Invited Lectures. World Scientific, Hacken-
sack, 1367–1392 (2018) Zbl 1443.11086 MR 3966813

[39] Roche, A.: Parabolic induction and the Bernstein decomposition. Compos. Math. 134,
113–133 (2002) Zbl 1014.22013 MR 1934305

[40] Rogawski, J. D.: On modules over the Hecke algebra of a p-adic group. Invent. Math. 79,
443–465 (1985) Zbl 0579.20037 MR 782228

[41] Tadić, M.: Classification of unitary representations in irreducible representations of general
linear group (non-Archimedean case). Ann. Sci. Éc. Norm. Supér. (4) 19, 335–382 (1986)
Zbl 0614.22005 MR 870688
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