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Abstract. In the mathematical physics literature, there are heuristic arguments, going back three
decades, suggesting that for an open set of initially smooth solutions to the Einstein-vacuum equa-
tions in high dimensions, stable, approximately monotonic curvature singularities can dynami-
cally form along a spacelike hypersurface. In this article, we study the Cauchy problem and give
a rigorous proof of this phenomenon in sufficiently high dimensions, thereby providing the first
constructive proof of stable curvature-blowup (without symmetry assumptions) along a spacelike
hypersurface as an effect of pure gravity. Our proof applies to an open subset of regular initial data
satisfying the assumptions of Hawking’s celebrated “singularity” theorem, which shows that the
solution is geodesically incomplete but does not reveal the nature of the incompleteness. Specif-
ically, our main result is a proof of the dynamic stability of the Kasner curvature singularity for
a subset of Kasner solutions whose metrics exhibit only moderately (as opposed to severely) spa-
tially anisotropic behavior. Of independent interest is our method of proof, which is more robust
than earlier approaches in that (i) it does not rely on approximate monotonicity identities and (ii) it
accommodates the possibility that the solution develops very singular high-order spatial derivatives,
whose blowup-rates are allowed to be, within the scope of our bootstrap argument, much worse than
those of the base-level quantities driving the fundamental blowup. For these reasons, our approach
could be used to obtain similar blowup-results for various Einstein-matter systems in any number
of spatial dimensions for solutions corresponding to an open set of moderately spatially anisotropic
initial data, thus going beyond the nearly spatially isotropic regime treated in earlier works.
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1. Introduction

Hawking’s celebrated “singularity” theorem (see, e.g., [59, Theorem 9.5.1]) shows that an
interestingly large set of initial data for the Einstein-vacuum1 equations leads to geodesi-
cally incomplete solutions. The chief drawback of this result is that the proof is by con-
tradiction and therefore does not reveal the nature of the incompleteness; see Section 1.4
for further discussion. In this article, for an open2 subset of regular initial data in high
spatial dimensions that satisfy the assumptions of Hawking’s theorem, we show that the
solution’s incompleteness is due to the formation of a Big Bang, that is, the formation
of a curvature singularity along a spacelike hypersurface. For more detailed statements
of our main results, readers can jump ahead to Theorem 1.8d for a rough summary or to
Theorem 11.1 for the precise versions.

Before proceeding, we note that the Einstein-vacuum equations in D spatial dimen-
sions are

Ric�� �
1

2
Rg�� D 0 .�; � D 0; 1; : : : ;D/; (1.1)

where Ric is the Ricci curvature of the Lorentzian spacetime metric g (which has signa-
ture .�;C; � � �;C/), and R D Ric˛˛ is3 its scalar curvature. Throughout, M denotes the
.1CD/-dimensional spacetime manifold, on which system (1.1) is posed. In this article,
the spacetimes under study are cosmological, i.e., they have compact spacelike Cauchy
hypersurfaces. In particular, the solutions that we study are such that M D I � TD ,
where I is an interval of time and D is the standard D-dimensional torus (i.e., Œ0; 1�D

with the endpoints identified).
Our work provides the first constructive proof of stable curvature-blowup along

a spacelike hypersurface as an effect of pure gravity (i.e., without the presence of matter)
for Einstein’s equations in more than one spatial dimension without symmetry assump-
tions. The present work can be viewed as complementary to our previous works [50, 51,
53], in which we proved similar results in the presence of scalar field or stiff fluid4 matter.
As we explain below, out of necessity, we had to devise a new and more robust analytic

1Hawking’s theorem also applies to any Einstein-matter system whose energy-momentum
tensor verifies the strong energy condition.

2By “open,” we mean relative to a suitable Sobolev norm topology.
3We summarize our index and summation conventions in Section 1.8.1.
4A stiff fluid is such that the speed of sound is equal to the speed of light, i.e., it obeys the equa-

tion of state p D �, where p is the pressure and � is the density. The stiff fluid is a generalization of
the scalar field in the sense that it reduces to the scalar field matter model when the fluid’s vorticity
vanishes.
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framework to treat the Einstein-vacuum equations, since many of the special structures
that we exploited in [50, 51, 53] are not available in the vacuum case.

For the singularities that we study here, the blowup is rather “controlled” in the
sense that the solutions exhibit approximately monotonic behavior as the singularity is
approached. For example, relative to an appropriately constructed time coordinate t , the
Kretschmann scalar Riem˛ˇ
ı Riem˛ˇ
ı blows up like Ct�4 as t # 0 (see Lemma 10.1
for the precise statement), where Riem is the Riemann curvature of g. A main theme of
this paper is that the monotonic behavior is not just a curiosity, but rather it lies at the heart
of our analysis. Heuristic evidence for the existence of a large family of (non-spatially
homogeneous) approximately monotonic spacelike-singularity-forming Einstein-vacuum
solutions for large D goes back more than 30 years to the work [25], which was pre-
ceded by other works of a similar vein that we review in Section 1.4.1. In [25] and in
the present work as well, the largeness of D is used only to ensure the existence of
background solutions with certain quantitative properties (in our case Kasner solutions
whose exponents verify the condition (1.8e)); for the Einstein-vacuum equations in low
space dimensions, the only obstacle to the existence of such solutions is the Hamiltonian
constraint equation (1.2a). Given such a background solution, the rest of our analysis is
essentially dimensionally independent.5 Although our main theorem applies only when
D � 38, our approach here is of interest in itself since it is more robust compared to
prior works on stable blowup for various Einstein-matter systems, and since it has fur-
ther applications, for example in three spatial dimensions; see the end of Section 1.2 for
further discussion of this point.

1.1. The evolution problem and the initial data

Before further describing our results, we first provide some background material on the
evolution problem for Einstein’s equations. The foundational works [14, 26] collectively
imply that the Einstein-vacuum equations (1.1) have an evolution problem formulation in
which all sufficiently regular initial data verifying the constraint equations (1.2a)–(1.2b)
launch a unique6 maximal classical solution .M.Max/; g.Max//, known as the maximal glob-
ally hyperbolic development of the data (MGHD for short). Below we will discuss the
evolution equations. For now, we recall that the initial data are .†1; Vg; Vk/, where
� †1 is a D-dimensional manifold,
� Vg is a Riemannian metric on †1, and
� Vk is a symmetric type

�
0
2

�
†1-tangent tensorfield.

The subscript “1” on †1 emphasizes that in our main theorem, †1 will be identified with
a hypersurface of constant time 1. Vg and Vk represent, respectively, the first and second
fundamental form of †1, viewed as a Riemannian submanifold of the spacetime to be

5Aside from the number of derivatives that we need to close the estimates.
6More precisely, the maximal globally hyperbolic development (MGHD) is unique up to

isometry in the class of globally hyperbolic spacetimes.
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constructed. The constraints are the well-known Gauss and Codazzi equations (which are
often referred to, respectively, as the Hamiltonian and momentum constraint equations):

VR � Vkab Vk
b
a C .

Vkaa/
2
D 0; (1.2a)

ra
Vkaj � rj

Vkaa D 0: (1.2b)

In (1.2a)–(1.2b), r denotes the Levi-Civita connection of Vg.
In analyzing solutions to (1.1), we will use the well-known constant-mean-curvature-

transported spatial coordinates gauge. The corresponding PDE system involves hyper-
bolic evolution equations for the first and second fundamental forms of the constant-
time hypersurface †t coupled to an elliptic PDE for the lapse n > 0, which verifies
g.@t ; @t / D �n2. See Section 2.1.1 for a review of this gauge. Here we only note that the
elliptic PDE for n is essential for synchronizing the singularity across space. To employ
this gauge in the context of our main theorem, we assume that the initial data verify the
constant-mean-curvature (CMC from now on) condition

Vkaa D �1: (1.3)

Remark 1.4 (The CMC assumption is not a further restriction). In the context of our main
theorem, equation (1.3) should not be viewed as a further restriction on the initial data
since for the near-Kasner solutions that we study, we can always construct a CMC hyper-
surface lying near the initial data hypersurface. This can be achieved by making minor
modifications to the arguments given in [51], where we constructed a CMC hypersurface
in a closely related context.

1.2. Some additional context and preliminary comments on the new ideas in the proof

The aforementioned results [14, 26], while philosophically of great importance, reveal
very little information about the nature of the MGHD. In our main theorem, we derive
sharp information about the MGHDs of an open set of nearly spatially homogeneous ini-
tial data (i.e., initial data along a spacelike hypersurface that “vary only slightly” from
point to point) given along the D-dimensional torus †1 D TD , where D � 38. The
largeness of D allows us to consider initial data that are only moderately (as opposed
to severely) spatially anisotropic, in the sense that the data are close to a Kasner solution
(1.6) whose Kasner exponents verify (1.8e) (see below for further discussion). Broadly
speaking, the main analytic themes of our work can be summarized as follows (see
Section 1.5 for a more detailed outline of our proof):

The amount of spatial anisotropy exhibited by the solutions under study is tied
to the strength of various nonlinear error terms that depend on spatial deriva-
tives. Below a certain threshold, the error terms become sub-critical (in the sense
of the strength of their singularity) with respect to the main terms. This allows
us to give a perturbative proof of stable blowup through a bootstrap argument,
where the blowup is driven by “ODE-type” singular terms that are linear in
time derivatives, and, at least at the low derivative levels, the nonlinear spatial-
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derivative-involving error terms are strictly less singular than the singular
linear time derivative terms. Put differently, at the low derivative levels, the
spatial derivative terms remain negligible (in a relative sense) throughout the evo-
lution, a phenomenon that, in the general relativity literature, is sometimes referred
to as asymptotically velocity term dominated (AVTD) behavior. In contrast, at the
high derivative levels, the spatial derivative terms can be very singular; bounding
the maximum strength of the high-order spatial derivative singularities and show-
ing that highly singular behavior does not propagate down into the low derivative
levels together constitute the main technical challenges of the proof.

We stress that in the absence of matter, spatially homogeneous and isotropic Big Bang
solutions do not exist; they are precluded by the Hamiltonian constraint equation (1.2a).
Hence, it is out of necessity that our main theorem concerns spatially anisotropic solu-
tions. In our previous works [50, 51, 53], we proved related stable blowup-results for
the Einstein-scalar field and Einstein-stiff fluid systems in three spatial dimensions. In
those works, the presence of matter allowed for the existence of spatially homogeneous,
spatially isotropic Big-Bang-containing solutions, specifically, the famous Friedmann–
Lemaître–Robertson–Walker (FLRW) solutions, whose perturbations we studied. The
approximate spatial isotropy of the perturbed solutions lied at the heart of the analysis
of [50, 51, 53], and we therefore had to develop a new approach to handle the moderately
spatially anisotropic solutions under study here. We now quickly highlight the main new
contributions of the present work; in Section 1.5, we provide a more in depth overview of
how they fit into our analytical framework.
� In [50, 51, 53], the presence and the precise structure of the matter model was used

in several key places, leaving open the possibility that the blowup was essentially
“caused” by the matter. In contrast, our present work shows that for suitable initial
data (which exist forD � 38), stable curvature-blowup can occur in general relativity
as an effect of pure gravity.
� Our previous works [50, 51, 53] relied on approximate monotonicity identities, which

were L2-type integral identities in which the special structure of the matter models
and the spatially isotropic nature of the FLRW background solutions were exploited
to exhibit miraculous cancellations. The cancellations were such that dangerous sin-
gular error integrals with large coefficients were replaced, up to small error terms,
with coercive ones. That is, the identities led to the availability of friction-type space-
time integrals that were used to control various error terms up to the singularity. The
net effect was that we were able to prove that the very high spatial derivatives of the
solution are not much more singular than the low-order derivatives; this was a fun-
damental ingredient in the analytic framework that we used to control error terms. In
contrast, in the present article, we completely avoid relying on approximate mono-
tonicity identities, which might not even exist for the kinds of solutions that we study
here. This leads, at the high spatial derivative levels, to very singular energy estimates
near the Big Bang, which our proof is able to accommodate; see Section 1.5 for an
outline of the main ideas behind the estimates. For these reasons, our approach here
is significantly more robust compared to [50, 51, 53] and could be used, for example,
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to substantially enlarge the set of initial data for the Einstein-scalar field and Einstein-
stiff fluid systems in three spatial dimensions that are guaranteed to lead to curvature-
blowup. More precisely, it could be used to prove stable blowup for perturbations
of generalized Kasner solutions (i.e., non-vacuum Kasner solutions) to these systems
that exhibit moderate spatial anisotropy. We stress that it might not be possible to
extend these stable blowup-results to Einstein-matter systems that feature g-timelike
characteristics, such as the Euler-Einstein system under a general equation of state; in
[50,51,53], the analysis relied on the fact that for the matter models studied, the char-
acteristics of the system are exactly the null hypersurfaces of g, a feature that is tied
to the following crucial structural property: the absence of time-derivative-involving
error-terms in various equations. Readers can consult [50] for further discussion on
this point.

1.3. Kasner solutions and a rough summary of the main theorem

As we have mentioned, in our main theorem, we consider initial data given on

†1 WD TD; (1.5)

where D is the standard D-dimensional torus (i.e., Œ0; 1�D with the endpoints identi-
fied) and, relative to the coordinates that we use in proving our main results, †1 will
be identified with a spacelike hypersurface of constant time 1, i.e., †1 D ¹1º � TD . Our
assumption on the topology of †1 is for convenience and is not of fundamental impor-
tance; we expect that similar results hold for other spatial topologies, much in the same
way that the blowup-results of [50, 51] in the case of T3 spatial topology were extended
to the case of S3 spatial topology in [53] (see Section 1.4.4 for further discussion of these
works). Our main theorem addresses the evolution of perturbations of the initial data (at
time 1) of the Kasner solutions [32]eg WD �dt ˝ dt C�g; .t; x/ 2 .0;1/ � TD; (1.6)

where

�g WD DX
iD1

t2qidxi ˝ dxi ; (1.7)

and the constants qi 2 .�1; 1�, known as the Kasner exponents, are constrained by

DX
iD1

qi D 1; (1.8a)

DX
iD1

q2i D 1: (1.8b)

In the rest of the paper, we will also use the notation

�k WD �t�1 DX
iD1

qi@i ˝ dx
i (1.8c)
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to denote the Kasner mixed second fundamental form (see definition (2.3)), i.e.,

�kij D �12.�g�1/ia@t�gaj
relative to the coordinates featured in (1.6)–(1.7). Aside from exceptional cases in which
one of the qi are equal to 1 and the rest are equal to 0, Kasner solutions have Big Bang
singularities at ¹t D 0º, where their Kretschmann scalar Riem˛ˇ
ı Riem˛ˇ
ı blows up
like t�4 (see Lemma 10.1 for a proof of this fact). We now briefly summarize our main
results. See Theorem 11.1 for the precise statements.

Theorem 1.8d (Rough summary of main results). Kasner solutions whose exponents
satisfy the inequality

max
iD1;:::;D

jqi j <
1

6
; (1.8e)

which is possible when D � 38 (see Section 2.3), are nonlinearly stable solutions to the
Einstein-vacuum equations (1.1) near their Big Bang singularities. More precisely, per-
turbations (belonging to a suitable high-order Sobolev space) of the Kasner initial data
along †1 D ¹t D 1º launch a perturbed solution that also has a Big Bang singularity
in the past of †1. In particular, relative to a set of CMC-transported spatial coordinates
normalized by kaa D �t

�1, where kij is the (mixed) second fundamental form of †t , the
perturbed solution’s Kretschmann scalar blows up like Ct�4. Hence, the past of†1 in the
maximal (classical) globally hyperbolic development of the data is foliated by a family of
spacelike CMC hypersurfaces †t . Furthermore, every past-directed causal geodesic that
emanates from †1 crashes into the singular hypersurface †0 in finite affine parameter
time. That is, the perturbed solutions are geodesically incomplete to the past, and the
incompleteness coincides with curvature-blowup.

Remark 1.9 (Additional information about the solution). Theorems 1.8d and 11.1 reveal
only the most fundamental aspects of the singularity formation. It is possible to derive
substantial additional information about the solution using the estimates that we prove
in this paper. For example, one could show that various time-rescaled variables, such as
the time-rescaled second fundamental form components tkij .t; x/, converge to regular
functions of x as t # 0, which is a manifestation of the AVTD behavior mentioned above.
For brevity, we have chosen to neither state nor prove such additional results in this article
since, thanks to the a priori estimates yielded by Proposition 9.3, their statements and
proofs are similar to the ones given in [51, Theorem 2].

Remark 1.10 (On the bound of 1=6). The value of 1=6 on the right-hand side of (1.8e) is
possibly not optimal. This bound for q emerges from considering the strength of various
error terms; see Section 1.5 for further discussion on this point.

1.4. Previous breakdown results for Einstein’s equations

The study of the breakdown of solutions in general relativity was ignited by the classic
Hawking–Penrose “singularity” theorems (see, e.g., [28, 40], and the discussion in [29]),
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which show that for appropriate matter models and spatial topologies, a compellingly
large set of initial conditions (with non-empty interior relative to a suitable function
space topology) leads to geodesically incomplete solutions. In particular, Hawking’s the-
orem (see [59, Theorem 9.5.1]) guarantees that under assumptions satisfied by the initial
data featured in our main theorem, all past-directed timelike geodesics are incomplete.
Although these theorems are robust with respect to the kinds of initial data and mat-
ter models to which they apply, they are “soft” in that they do not reveal the nature of
the incompleteness, leaving open the possibilities that (i) it is tied the blowup of some
invariant quantity, such as a spacetime curvature scalar, or (ii) it is due to some other
more sinister phenomenon, such as the formation of a Cauchy horizon (beyond which the
solution cannot be classically extended in a unique sense due to lack of sufficient informa-
tion). In the wake of the Hawking–Penrose theorems, many authors studied the nature of
the breakdown, though, with only a few key exceptions, the works produced were heuris-
tic, numerical, concerned initial data with symmetry, or yielded information only about
“special” solutions (as opposed to an open set of solutions corresponding to regular initial
data given along a spacelike Cauchy hypersurface). In the next several subsubsections, we
review some of these works.

1.4.1. Heuristic and numerical work. The famous-but-controversial work of Belinskiı̆,
Khalatnikov and Lifshitz [11] gave heuristic arguments suggesting that for the Einstein-
vacuum equations in three spatial dimensions, the “generic” (in an unspecified sense)
solution that breaks down should (i) be local near the breakdown, i.e., be well-modeled
by a family of Bianchi IX7 ODE solutions8 that are parameterized by space; (ii) become
highly oscillatory in time near the breakdown-points,9 like the Bianchi IX solutions do;
and (iii) the breakdown-points should collectively form a spacelike singularity. We refer
readers to the recent monograph [9] for a detailed, modern account of [11] and related
works. Although the work [11] has stimulated a lot of research activity, as of the present,
it is not clear to what extent the heuristic picture it painted holds true. The picture is
almost certainly not true in a generic sense, for the recent breakthrough work [22] shows,
assuming only a widely believed (but not yet proven) quantitative version of the sta-
bility of the Kerr black hole family of solutions to the Einstein-vacuum equations, that
the Cauchy horizon inside the black hole is dynamically stable. Specifically, in [22], the

7Readers can consult [18] for an overview of the Bianchi IX symmetry class and other symmetry
classes that we mention later.

8More precisely, the authors argued that they should be well-modeled by the so-called
“Mixmaster” [36] solutions, which are of the form

g D �dt2 C
3X
iD1

`2i .t/!
.i/
˝ !.i/;

where ¹!.i/ºiD1;2;3 are one-forms on S3 verifying d!.i/ D 1
2 Œijk�!

.j / ^ !.k/, and Œijk� is the
fully antisymmetric symbol normalized by Œ123� D 1.

9Here, by “breakdown-points,” we roughly mean points on the boundary of the MGHD.
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authors showed that the metric is C 0-extendible past the Cauchy horizon, which is a null
hypersurface that is contained in the boundary of the MGHD. This result in particular con-
tradicts the vision of spacelike singularities posited in [11]. In the opposite direction (i.e.,
in accordance with [11]), in three spatial dimensions, Ringström [45] confirmed the oscil-
latory picture10 of solutions near singularities for solutions with Bianchi IX symmetry to
the Einstein-vacuum equations and to the Euler–Einstein equations under the equations of
state p D c2s �, where p is the pressure, � is the density, and the constant 0 < cs < 1 is the
speed of sound. However, outside of the class of spatially homogeneous solutions, there
are currently no known examples of Einstein-vacuum solutions that exhibit the oscillatory
behavior suggested by [11].

There are also heuristic results concerning the existence of non-oscillatory solutions
to various Einstein-matter systems that form a spacelike singularity. Specifically, in [10],
Belinskiı̆ and Khalatnikov noted that if one considers the Einstein-scalar field system in
three spatial dimensions, then the heuristic arguments given in [11] concerning oscilla-
tions no longer seem plausible. They argued that instead, the generic incomplete solution
should exhibit monotonic behavior near the breakdown-points, which should still collec-
tively form a spacelike singularity. In [8], Barrow gave a similar heuristic argument for the
Einstein-stiff fluid system. Most relevant for our work here is the work [25] that we men-
tioned at the beginning, in which, forD � 10 (i.e., at least eleven spacetime dimensions),
the authors gave heuristic arguments, similar to the type given in [8, 10], suggesting that
there is a nontrivial regime for the Einstein-vacuum equations in which solutions exhibit
non-oscillatory spacelike singularity formation. This suggests that indeed, in high spa-
tial dimensions, stable blowup-results of the type that we prove in our main theorem
should hold. Note that there is a significant gap between the assumption D � 10 used in
the heuristic arguments of [25] and the assumption D � 38 that we make in our main
theorem. In Section 1.6, we will further discuss this gap.

We close this subsubsection by noting that the above works and others like them
have stimulated a large number of numerical studies that have been designed to probe
the validity of the heuristic predictions. We do not attempt to survey the vast literature
here, but instead refer to the works [3, 12, 27, 43], which serve as useful starting points
for exploring the subject of numerical analysis in the context of singularities in general
relativity.

1.4.2. Construction of (but not the stability of) singular solutions. There are a variety of
works showing the existence of, but not the stability of, singularity-containing solutions to
various Einstein-matter systems that exhibit the same kind of AVTD behavior11 near the
singularity exhibited by the solutions in our main theorem. Typically, the constructions
rely on deriving/solving a Fuchsian PDE system. Roughly speaking, a Fuchsian PDE is

10Ringström also studied the stiff fluid case cs D 1 in Bianchi IX symmetry and proved
monotonic-type singularity formation results similar to the ones we obtained in [50, 51, 53] and
in the present work.

11That is, time-derivative dominated behavior, as we described in Section 1.2.
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a system of the following form, the key point being that the equation degenerates as t # 0
(where for convenience we restrict out attention to one spatial dimension):

tA0.t; x; u/@tuC tA
1.t; x; u/@xuC B.t; x; u/u D f .t; x; u/: (1.11)

In (1.11), u is the array of unknowns, A˛ and B are matrices (which are often assumed
to be symmetric so that the symmetric hyperbolic framework for energy estimates can be
invoked), and f is an array, all of which must satisfy a collection of technical assump-
tions. A typical Fuchsian analysis is based on splitting the solution as u D u0 C w, where
u0 is the leading order part and w is an error term that one would like to show is small
compared to u0 as t # 0. The leading order part u0, which typically is singular as t # 0,
must be guessed/solved for using an appropriate ansatz. Here we do not describe how this
is typically accomplished; readers can consult [50] for a further description of Fuchsian
analysis in the context of singular solutions in general relativity. Although the Fuchsian
approach can sometimes be used to show the existence of singular solutions, it is inad-
equate for treating the true stability problem, i.e., the problem of posing initial data on
a regular Cauchy hypersurface ¹t D constº with const > 0 and then solving the equations
all the way down to the singular hypersurface ¹t D 0º.

We now describe some of the Fuchsian-type existence results in more detail. Notable
among these is the work of Andersson and Rendall [5], in which they constructed a fam-
ily of spatially analytic Big-Bang-containing solutions to the Einstein-scalar field and
Einstein-stiff fluid systems in three spatial dimensions that exhibit approximately mono-
tonic behavior near the singularities. The family of solutions that the authors constructed
was large in the sense that its number of degrees of freedom coincides with the number
of free functions in Einstein initial data for the standard Cauchy problem. However, the
results of [5] do not show the stability of the blowup under Sobolev-class perturbations
of initial data given along a spacelike hypersurface near the expected singularity. Another
notable work in the spirit of [5] is [24], in which the authors proved similar results for
various Einstein-matter systems in various spatial dimensions, including for the Einstein-
vacuum equations in ten or more spatial dimensions (i.e., D � 10 in the notation of the
present article). Note that the Einstein-vacuum result with D � 10 supports the heuristic
work [25] mentioned in the previous subsubsection.

There are many additional works that yield the construction of (but not the stability of)
singularity-containing solutions to select Einstein-matter systems. We do not attempt to
exhaustively survey the literature here, but we mention the following ones, which concern
various symmetry-reduced equations: [1, 6, 13, 15, 30, 33, 41, 54].

There are also results in which the authors constructed singular solutions by essen-
tially prescribing “singular data” on the singular hypersurface itself and then solving to
the future; see, for example, [7, 20, 37, 38, 55–57]. One drawback of this approach is
that there are fewer degrees of freedom in the singular data compared to the initial data
corresponding to a standard Cauchy problem on a regular spacelike hypersurface. Thus,
generic solutions cannot be constructed in this fashion; this is explained in more detail
in [44, Section 6.1].

We close this subsubsection by mentioning that the Fuchsian techniques behind the
above results have applications outside of general relativity. There are techniques for con-
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structing solutions to large classes of hyperbolic Fuchsian PDEs; see, for example, [2].
Readers can consult Rendall’s work [42] for a more detailed comparison of many of the
results described above as well as application of the Fuchsian framework to prove the
existence of singular solutions to the Einstein-vacuum equations with Gowdy symmetry.

1.4.3. Constructive stable blowup-results under symmetry assumptions. There are a vari-
ety of works on symmetry-reduced Einstein-matter systems in which the authors gave
a constructive proof of stable singularity formation. In the spatially homogeneous case,
in which the equations reduce to a system of ODEs, there are many results, including the
constructive work of Ringström [45] mentioned earlier. We do not attempt to survey the
literature here; instead we direct readers to [44, 58] for an overview of ODE-blowup for
solutions to Einstein’s equations.

There are also constructive proofs of stable singularity formation for various sym-
metry-reduced Einstein-matter systems in which the equations reduce to a 1C 1-dimen-
sional system of PDEs; see, e.g., [19, 31, 46, 48]. Chief among these are Christodoulou’s
remarkable works [16, 17] on the Einstein-scalar field system in three spatial dimen-
sions in spherical symmetry for 1- or 2-ended asymptotically flat data. In those works,
he showed that the maximal globally hyperbolic future developments of generic data
are future-inextendible as time-oriented Lorentzian manifolds with a C 0 metric; i.e., the
breakdown is severe, at the level of the metric itself. See also the recent works [34, 35]
on the spherically symmetric Einstein–Maxwell-(real) scalar field system with asymp-
totically flat 2-ended initial data, in which the authors proved that the maximal globally
hyperbolic future developments of generic data are future-inextendible as time-oriented
Lorentzian manifolds with a C 2 metric. This is an especially intriguing result in view of
the fact that Dafermos and Rodnianski [21, 23] showed that the statement is false for
this system if one replaces C 2 with C 0, i.e., the maximal globally hyperbolic future
development can sometimes be extended as a time-oriented Lorentzian manifold with
a C 0 metric.

1.4.4. Constructive stable blowup-results without symmetry assumptions. The only prior
works exhibiting stable spacelike singularity formation for solutions to Einstein’s equa-
tions without symmetry assumptions are [51, 53], which are closely related to the present
work. In [51,53], we showed that a curvature singularity develops along a spacelike hyper-
surface for open sets of solutions to two Einstein-matter systems: the Einstein-scalar field
system and the Einstein-stiff fluid system; see also our related work [50] concerning
the linear analysis and Ringström’s recent monograph [49], which concerns estimates
for solutions to a large family of linear wave equations whose corresponding metrics
model the behavior that can occur in solutions to Einstein’s equations near cosmological
singularities.

Specifically, in [51], we showed that in three spatial dimensions with spatial topol-
ogy T3, the FLRW solution is nonlinearly stable in a neighborhood of its Big Bang
singularity. In [53], we proved the same result in the case of S3 spatial topology, a key
new feature being that the solutions are not approximately spatially flat in the S3 case
(although they are nearly spatially homogeneous and isotropic). As we stressed earlier,
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the analytic framework of [50, 51, 53] was quite different from that of the present work,
due to the availability of L2-based approximate monotonicity identities tied to the special
structure of the matter models and the spatially isotropic nature of the FLRW background
solutions.

1.5. An overview of the proof of the main theorem

In this subsection, we outline the ideas behind the proof of our main results, i.e., Theo-
rem 11.1. As in our prior works [50, 51, 53], we analyze solutions relative CMC-trans-
ported spatial coordinates, in which the spacetime metric is decomposed into the lapse n
and a Riemannian metric g on the constant time hypersurfaces †t as follows:

g D �n2dt ˝ dt C gabdxa ˝ dxb : (1.12)

In such coordinates, the Einstein-vacuum evolution problem consists of the Hamiltonian
and momentum constraint equations, hyperbolic evolution equations for the first funda-
mental form g of †t and the second fundamental form k of †t , and an elliptic PDE
for n along †t , supplemented by initial data for g and k given along †1 that satisfy the
constraints; see Proposition 2.10 for the details. Here we only note that the mixed sec-
ond fundamental form kij verifies @tgij D �2ngiakaj and that we normalize t so that
kaa D �t

�1, i.e., †t is a hypersurface of constant mean curvature �D�1t�1.
The main part of the proof is showing that the solution .g; k; n/ exists classically for

.t; x/ 2 .0; 1� � TD , i.e., long enough to form a curvature singularity. The proofs that the
Kretschmann scalar blows up as t # 0 and that the spacetime is geodesically incomplete
follow as straightforward consequences of estimates that we use in proving existence on
.0; 1� � TD; we refer readers to Section 10 for details on the nature of the breakdown,
which we will not discuss here.

The main step in proving that the solution exists classically for .t; x/ 2 .0; 1� � TD is
to obtain suitable a priori estimates showing that various solution norms along †t do not
blow up until t D 0. For this reason, in our discussion here, we describe only the a priori
estimates. At the heart of the proof lies the following task, whose importance we describe
below:

Showing that for perturbed solutions, the t -rescaled type
�
1
1

�
spatial Ricci com-

ponents tRicij are, at each fixed spatial point x 2 TD , integrable in time over
t 2 .0; 1�. Here and throughout, Ric denotes the Ricci curvature of g.

Remark 1.13 (On the significance of working with the type
�
1
1

�
spatial Ricci tensor). One

might wonder why we work with the spatial Ricci tensor in type
�
1
1

�
form, i.e., as Ricij ,

instead of working with it in type
�
0
2

�
form. The reason is that our work crucially relies

on working with the evolution equation for the type
�
1
1

�
tensorfield tkij , which features

a source term proportional to tRicij ; see equation (6.5). One might now wonder what
the advantage is of working with tkij instead of tkij . The answer is that the evolution
equation (6.5) for tkij does not feature any Riccati-type term that is proportional to k � k,
while an evolution equation of type @t .tkij / D � � � would feature such a Riccati term.
The absence of Riccati-type terms in the evolution equation for tkij is quite helpful for
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proving the boundedness of tkij as t # 0, which as we describe below, is central for our
results. See also Remark 2.6.

The task of proving that tRicij .t; x/ is integrable in time over .0; 1� is essentially
a quantified version of the following idea, which has its origins in the heuristic works
discussed in Section 1.4.1:

For near-Kasner initial data, we can prove stable blowup in regimes where we can
prove that time-derivative terms dominate spatial derivative terms in the equa-
tions, i.e., when we can prove that the AVTD behavior described in Section 1.2
occurs.

In practice, to prove the time-integrability of tRicij (and the many other estimates that
we need to close the proof), we rely on a bootstrap argument involving various norms
that capture the following behavior: the solution’s high-level derivatives are allowed to be
substantially more singular than its low-level derivatives. Here we will not describe the
logical flow of our bootstrap argument in detail, but rather only describe how the various
estimates fit together consistently. Moreover, we will not focus on the “smallness assump-
tions” (i.e., near-Kasner assumptions) on the initial data that we need in our detailed proof,
but rather only on the main feature of the analysis: the various powers of t that arise; in
this subsection, we will simply denote all quantities that can be estimated in terms of the
near-Kasner initial data by “Data”. We stress already that our proof relies on commut-
ing the evolution equations with up to N spatial derivatives, where N has to be chosen
sufficiently large in a manner that we explain below.

We now recall that we are studying perturbations of a Kasner solution (1.6) whose
exponents satisfy (1.8e) (see Section 2.3 for a proof that such Kasner solutions exist when
D � 38). We also recall that for the Kasner solution .�g;�k;en/, we haveen � 1, while�g and�k are respectively given by (1.7) and (1.8c). Note also that the Kasner solution is spatially
flat and thus the Ricci tensor of �g vanishes. For the perturbed solution, to obtain the
desired time integrability of the components tRicij described in the previous paragraph,
it clearly suffices to prove that

jRicij j . t�p for some constant p < 2: (1.14)

We stress that (1.14) is essentially the same as the heuristic estimates featured in the works
[8,10,25], and that the estimate was verified by the solutions that we studied in [50,51,53].
Before describing how we prove (1.14), we first outline the two main consequences that
it affords:
(1) n � 1! 0 as t # 0.
(2) The components tkij remain bounded as t # 0.
The proof of (1) follows from a simple application of the maximum principle to the elliptic
PDE

t2gabrarbn D .n � 1/C t
2nR;

where R D Ricaa is the scalar curvature of g; see the proof of (5.2) for the details. The
proof of (2) essentially follows from freezing the spatial point and integrating the follow-
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ing evolution equation (see equation (6.5)) from time t to time 1: @t .tkij /D tRicij C � � �,
and from using a few additional estimates that allow one to show that, like tRicij , the
error terms denoted by � � � are integrable over t 2 .0; 1�; see the proof of Proposition 6.1
for the details.

We now return to the crucial issue of proving that jRicij j . t�p for some constant
p < 2, a bound that is tied to all aspects of the proof. To achieve this, we first, in view
of (1.8e), fix a constant q such that

max
iD1;:::;D

jqi j < q <
1

6
:

To control Ricij , we rely on the following estimates, whose proof we will describe below:

max
i;jD1;:::;D

jgij j . t�2q; max
i;jD1;:::;D

jgij j . t�2q : (1.15)

Note that the bounds (1.15) represent an absolute worst-case scenario, in which all com-
ponents of g and g�1 are allowed to be slightly more singular than the most singular
component of the background Kasner spatial metric and its inverse. As will become clear,
the bounds (1.15) are the most fundamental ones in our analysis. One might think of
(1.15) as allowing for the “complete mixing” of the Kasner exponents in the perturbed
solutions; this is the most glaring spot in the proof that has potential for improvements in
future studies. To control Ricij , we first express it in terms of the Christoffel symbols of
the transported spatial coordinates (see (2.15b) for the precise expression). For the solu-
tions under study, the most singular term in the component Ricij is not a top-order term,
but rather lower-order terms (i.e., the last two products on the right-hand side of (2.15b))
that have the following schematic form: g�3.@g/2, where @ denotes the spatial gradi-
ent with respect to the transported spatial coordinates. An interpolation argument, which
heavily relies on (1.15) and which we explain below, yields that for large N (where we
again stress that N is the maximum number of times that we commute the equations with
spatial derivatives), the low-level spatial derivatives of the components of g, including @g,
are only slightly more singular than the components of g itself. Thus, in view of (1.15), we
see that g�3.@g/2 is only slightly more singular than .t�2q/5 D t�10q . Since q < 1=6, we
conclude that the product g�3.@g/2 is less singular than t�2, consistent with the desired
bound (1.14).

Remark 1.16. Since g�3.@g/2 is fifth-order in .g; @g/, the discussion above suggests
that the proof should close assuming only q < 1=5. However, in the top-order energy
estimates, we encounter some below-top-order error terms that seem to prevent the proof
from closing unless we assume q < 1=6; as we further describe below, we encounter such
error terms, for example, in the proof of (7.21b).

Having outlined how to obtain the desired bound for Ricij , we can, as we described
above, show that as t # 0, n � 1! 0 and tkij remains bounded. Then, given these bounds
for n and k, we can integrate the evolution equations

@tgij D �2ngiak
a
j ;

@tg
ij
D 2ngiakja



I. Rodnianski, J. Speck 182

and use a near-Kasner assumption on the initial data to obtain, through standard argu-
ments, the desired estimates (1.15) (see Proposition 6.1 and its proof for the precise
statements).

We now return to the issue of the interpolation argument mentioned above, which we
used to show, for example, that @g is only slightly more singular than g. To appreciate the
role of interpolation, it is essential to already know that the best energy estimates we are
able to obtain allow for the following rather singular behavior:

The top-order derivatives of g can be as large (in L2) as Data � t�.AC1/, where
A > 0 is a large universal constant, independent of the maximum number of times
(i.e., N ) that we commute the equations with spatial derivatives.

That is, under appropriate bootstrap assumptions, we can prove only that12

tAC1k@gk PHN .†t / . Data: (1.17)

Then standard Sobolev interpolation (see Lemma 4.5) yields the following bound for the
components of @g:

k@gkL1.†t / . kgk1�.1CbD=2c/=.NC1/
L1.†t /

k@gk
.1CbD=2c/=.NC1/

PHN .†t /
C kgkL1.†t /: (1.18)

From (1.18), we see that even if the top-order homogeneous norm k@gk PHN .†t / is as sin-
gular as Data� t�.AC1/, as long as we takeN to be sufficiently large (relative toA andD),
the singular nature of k@gkL1.†t / will not be much worse than that of kgkL1.†t /, i.e.,
no worse than t�.2qC’/, where ’ is small; see the beginning of Section 4.4 for further
discussion of this issue.

It remains for us to discuss the top-order energy estimates for g and k. In reality,
these must be complemented with top-order elliptic estimates for n, but we will ignore
this (relatively standard) issue in this subsection in order to condense our summary of
the proof. Let EI be a top-order spatial derivative multi-index, i.e., j EI j D N . Using the
evolution equations and integration by parts, and using appropriate bootstrap assumptions
to control error terms, we are able to derive an estimate of the following form, valid for
t 2 .0; 1� (see Proposition 7.1 for the details and Section 3.3 for the definition of the
norm k � kL2g.†t /):

tAC1@ EIk

2L2g.†t / C 1

4



tAC1@@ EIg

2L2g.†t /
� Data � ¹2A � C�º

Z 1

sDt

s�1
°

sAC1@ EIk

2L2g.†s/ C 1

4



sAC1@ EI@g

2L2g.†s/± ds
C � � � ; (1.19)

where � � � denotes error terms that, while they require some care to handle, are less singu-
lar. We stress the following points.

12The bound (1.17) is slightly inaccurate in that it does not feature the precise norm that we use
in proving the main theorem; see Section 3.3 for the precise definitions of the norms.
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� The constant C� on the right-hand side of (1.19) is universal, i.e., independent of N
and A. Roughly, C� is generated by the coefficients of the most singular linear terms
in the evolution equations and the elliptic PDE for n; the most singular linear terms
involve the top-order derivatives of g, k, and n, and because the terms are linear, their
coefficient does not change when the term is differentiated (i.e., when N increases),
nor does it depend on A. In our prior works [50, 51, 53], we were able to show that
C� is small or vanishing, thanks to the approximate monotonicity13 identities that we
mentioned earlier in the paper. For the solutions under study here, C� can be large but
fixed (and we do not bother to carefully track the precise value of C�).
� We inserted the time weights tAC1 “by hand” into the energies in equation (1.19). We

note that when proving (1.19) (roughly, by taking the time derivative of the left-hand
side and integrating by parts), one encounters terms in which @t falls on the weights.
Roughly, this leads to the integrals preceded by the factor of �2A on the right-hand
side of (1.19) (note that t 2 .0; 1�, which explains why the factors �2A are on the
right-hand side).

The key point is that if we choose A to be sufficiently large, then the factor �¹2A � C�º
on the right-hand side of (1.19) is negative, and the corresponding integral has an overall
“friction” sign. In particular, it can be discarded, leaving only the less singular error terms
“� � �” on the right-hand side of (1.19). A careful analysis of the error integrals “� � �” allows
one to conclude, via Gronwall’s inequality, the top-order a priori energy estimate

tAC1@ EIk

2L2g.†t / C 1

4



tAC1@@ EIg

2L2g.†t / . Data

as desired.
Although the above discussion summarizes the main ideas, in our detailed proof,

we encounter several hurdles that we overcome using additional ideas. While concep-
tually simple, these ideas are somewhat technically involved. We close this subsection by
highlighting some of the features of this analysis.

(1). To control error terms, we rely on a variety of norms. In the next point below, we will
shed some light on how we use the different kinds of norms; see Sections 3.2 and 3.3 for
the precise definitions. For example, when bounding†t -tangent tensors, we rely on point-
wise norms j � jFrame that measure the size of components relative to the transported spatial
coordinate frame as well as the more geometric norm j � jg , which measures the size of
tensors using the dynamic spatial metric g. Similarly, our analysis relies on Sobolev norms
for the frame components, such as k � kHN

Frame.†t /, as well as more geometric Sobolev
norms k � kHN

g .†t /
.

13One might say that inequality (1.19) also signifies a form of “approximate monotonicity.” The
difference between (1.19) and the “approximate monotonicity identities” from [50, 51, 53] is that
these works relied on the “natural” time weights in which A D 0, whereas in the present paper, we
must choose A to be sufficiently large in order to “force the approximate monotonicity to reveal
itself.”
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(2). Although the interpolation estimates described above are sufficient for controlling
various error terms at the low derivative levels, interpolation is not quite sufficient, in
itself, for controlling some of the error terms in the high-order energy estimates. For
example, our proof of the error term estimate (7.21b) relies not only on interpolation, but
also on controlling the term in the norm on the left-hand side of (7.21b) (which we decom-
pose in (7.5d)) by exploiting the structure of Einstein’s equations in our gauge to derive
improved estimates for the below-top-order derivatives of the solution via derivative-
losing transport equation estimates. In Remark 1.20, we explain these issues in detail
in the context of proving estimate (7.21b). Here we will provide a schematic overview of
these issues. First, the top-order energy estimates can be directly obtained only in terms of
geometric norms such as k � k PHN

g .†t /
, since the basic energy identities involve these kinds

of norms. In contrast, for M � N , Sobolev interpolation estimates involving the “back-
ground differential operators” @i are most naturally stated and derived in terms of the less
geometric norms k � k PHM

Frame.†t /. Therefore, to close our estimates, we must compare the
geometric norms with the frame-based norms. For tensorfields, the discrepancy between
the norms k � k PHM

Frame.†t / and k � k PHM
g .†t / is factors of g and g�1 (where the number of

factors depends on the order of the tensorfield inside the norms), and by (1.15), the two
norms can differ in strength by (singular) powers of t�q ; in some cases, these powers
of t�q are strong enough so that in the energy estimates, certain below-top-order error
terms seem, at first glance, to be more singular than the main top-order terms. If this were
the case, then our bootstrap argument would not close. Fortunately, this is not the case,
but to prove this, we use an argument that involves deriving energy estimates not only at
the very highest level, but also at down-to-two derivatives below top. In deriving these
below-top-order energy estimates, we use arguments that lose one derivative, by treat-
ing the evolution equations like transport equations along the integral curves of @t with
derivative-losing source terms. These transport-type estimates lead to better below-top-
order estimates compared to the ones that pure interpolation would afford, and we stress
that this approach is viable only because in the solution regime under study, in our gauge,
the source terms in the transport equations exhibit a favorable size (in various norms) with
respect to powers of t . To implement this procedure in a consistent fashion, we rely on a
hierarchy of energies that features different t weights at different orders and that involves
both geometric norms k � k PHM

g .†t / and coordinate frame norms k � k PHM
Frame.†t /. See Defini-

tions 3.14 and 3.16 for the precise definitions of the t -weighted norms that use to control
the solution; in our main theorem, we prove that the norms from Definitions 3.14 and 3.16
are uniformly bounded up to the singularity.

(3). In carrying out our bootstrap argument, we find it convenient to derive, as a prelimi-
nary step, estimates showing that the lapse n can be controlled in terms of g and k. This is
the content of Section 5. We have downplayed these estimates in this subsection since they
are based on deriving standard estimates for elliptic equations. One feature worth noting
is that for most lapse estimates, in particular the estimates at the lower-order derivative
levels, we rely on the elliptic PDE®

gabrarb � .t
�2
C R/

¯
.n � 1/ D R:
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This is a “good” equation for n � 1 in the sense that it involves source terms that depend
only on spatial derivatives of g, which are less singular than time derivatives of g (as
represented by k). However, to obtain the top-order lapse estimates, we do not use the
elliptic lapse PDE in the form stated above. Instead, we first use the Hamiltonian con-
straint (2.11a) to algebraically replace R with terms that depend on k; see equation (5.11)
and its proof. This algebraic replacement leads to error terms that can be controlled within
the scope of our bootstrap approach, both from the point of view of regularity and from
the point of view of the structure of the singular error terms that our framework can
accommodate.

Remark 1.20 (We need below-top-order estimates that are better than interpolation). For
concreteness, here we explain why our proof of (7.21b) cannot be carried out using only
interpolation. That is, we will explain why we need more than just interpolation, the
highest-order energies, and the lowest-order L1-type bootstrap assumptions to bound
the terms in the sum (7.5d) by . RHS (7.21b). This remark would perhaps more natu-
rally fit in with the analysis in Section 7, but we have placed it here so that the interested
reader can obtain further preliminary insights on why we need to supplement our top-
order energy norms with norms that control the solution down to two derivatives below
top. We refer readers to Section 3 for the definitions of the norms relevant for the discus-
sion here. Using only the aforementioned ingredients, which are sufficient for allowing us
to use the comparison estimate (4.4) and the product estimate (4.10), and the ideas used
in the proof of the interpolation results provided by Lemma 4.11, we can deduce that the
terms in the sum (7.5d) verify the following bound:

tAC1k.@ EI1
g�1/.@ EI2

g�1/.@@ EI3
g/@ EI4

kkL2g.†t /

. tAC1kg�1kL1Frame.†t /
kg�1kL1Frame.†t /

k@gkL1Frame.†t /
kkk PHNFrame.†t /

C � � �

. tAC1�8q�’kkk PHNg .†t /
C � � � ;

where ’ > 0 goes to 0 as N !1. The exponent portion �8q comes from the fact
that each factor of g or g�1 contributes a factor of t�2q (coming from our bootstrap
assumptions), which yields three factors of t�2q , while bounding kkk PHN

Frame.†t / in terms
of kkk PHN

g .†t /
produces yet another factor of t�2q , coming from equation (4.4) and the

fact that k is type
�
1
1

�
. The factor t�’ comes from interpolation and is not important for

the present discussion. In view of definition (3.17a), we see that the terms under consid-
eration are . t�8q�’H.g;k/.t/C � � � . Since q can be as large as 1=6, t�8q�’ can be more
singular than t�1, which is singular enough to destroy the viability of our proof and in any
case is not good enough to yield our estimate (7.21b). Thus, our proof of (7.21b) relies on
the additional below-top-order norms mentioned above.

1.6. Further comparisons with two related works and open questions

In this subsection, we compare and contrast the reasons behind the assumed minimum
values of D in the present work and in the aforementioned works [24, 25]. We start by
recalling that, as we described in Section 1.4.1, the work [25] provided heuristic evidence



I. Rodnianski, J. Speck 186

for the existence of a large family of monotonic spacelike singularity-forming Einstein-
vacuum solutions whenever D � 10, and that such solution families were constructed
in [24] (though stability in the sense of the present article was not proved there). There
is a substantial gap between the assumption D � 10 and the assumption D � 38 of the
present article. In the remainder of this subsection, we provide an overview of how the
assumption D � 10 is used in [24, 25], and shed some light on how one might approach
the problem of extending the results of the present article to apply to a larger range of D
values. Actually, we will focus on the heuristic work [25], which allows for a simplified
presentation of the main ideas.

In [24, 25] and the present work, a crucial step is justifying that, in some sense, the
spatial derivative terms in the Einstein-vacuum equations are negligible compared to the
time derivative terms near the singularity. For example, in the present work (see in par-
ticular Section 1.5), this step is embodied by estimate (1.14), that is, our proof that the
components of the Ricci tensor of g obey the following bound: jRicij j . t�p for some
constant p < 2. Similarly, the heuristic arguments given in [25] were designed exactly to
yield a bound of this type. From this perspective, a primary analytic difference between
the present work and the works [24, 25] is that the latter works precisely accounted for,
in a tensorial fashion, partial cancellations of singular powers of t that can occur in the
products featured in the coordinate expression of the Ricci tensor Ricij of g (i.e., the
products on the right-hand side of (2.15b)), at least for metrics that can be interpreted
as having “spatially dependent Kasner exponents” (see below for more on this point). In
contrast, in the present article, we allow for the possibility that all components of g and
g�1 are as singular as t�2q (see, for example, the discussion surrounding (1.15)), and we
have therefore ignored the possibility of exploiting such cancellations; this is apparent
from the proof outline that we gave in Section 1.5. We now further explain the connec-
tion between the work [25] and the notion of a spatial metric having “spatially dependent
Kasner exponents.”

The starting point of [25] is the hope that there are singular solutions to the Einstein-
vacuum equations that are somehow well-described by a spacetime metric having “spa-
tially dependent Kasner exponents”, that is, a metric of the following form, defined for14

.t; x/ 2 .0; 1� � TD:

g D �dt2 C
DX
iD1

t2qi .x/!.i/.x/˝ !.i/.x/; (1.21)

where ¹!.i/.x/ºiD1;:::;D are a linearly independent set of time-independent one-forms on
TD (in particular, !.i/.x/ D !.i/a .x/dxa relative to local coordinates), ¹qi .x/ºiD1;:::;D
are “x-dependent” Kasner exponents, subject to the following “spatially dependent Kasner
constraints” (i.e., x-dependent analogs of (1.8a)–(1.8b)):

DX
iD1

qi .x/ D 1 D

DX
iD1

.qi .x//
2: (1.22)

14As in our main results, here we have assumed the spatial topology TD ; in [25], the spatial
topology was not specified.
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Given the above assumptions, the authors of [25] then observe (through straightforward
but tedious computations) that for metrics of the form (1.21), the Ricci tensor components
of the spatial metric verify

lim
t#0
jt2Ricij .t; x/j D 0 .i; j D 1; : : : ;D/; (1.23)

as long as the following system of inequalities holds:

2qi .x/C
X
l¤i;j;k

ql .x/ > 0 whenever i ¤ j; i ¤ k; and j ¤ k: (1.24)

Note that (1.23) is essentially equivalent to estimate (1.14) that we rigorously obtain in
proving our main results; as we described in Section 1.5, (1.14) is a quantified version of
the idea that spatial derivative terms should be negligible. The main conclusions of [25]
can be summarized as follows.

In view of (1.22), it is not possible to simultaneously satisfy all inequalities (1.24)
when D � 9. However, there does exist an open set of ¹qiºiD1;:::;D satisfying
(1.22) and (1.24) whenever D � 10.

We now stress that the metric g featured in equation (1.21) does not generally solve the
Einstein-vacuum equations. However, it does solve a truncated version of the equations
in which all spatial derivative terms, including Ricij , are discarded; in the mathematical
general relativity literature, the truncated system is often referred to as the Velocity Term
Dominated (VTD) system. For this reason, condition (1.23), which is supposed to capture
the negligibility of the spatial derivative terms, suggests that one can think of the VTD
solution g as “asymptotically solving” the Einstein-vacuum equations of Proposition 2.10
as t # 0. That is, for metrics of the form (1.21), the k-involving product in equation
(2.12c) (specifically t�1kij ) is of size t�2 while, by (1.23), the term Ricij in equation
(2.12c) is less singular. Put differently, the metrics g featured in (1.21) solve a PDE sys-
tem obtained from the Einstein equations by throwing away terms that can be shown to
be small in the sense of (1.23). The work [25] can therefore be viewed as providing a kind
of “consistency argument” for metrics (1.21) that satisfy (1.24), i.e., an argument based
on ignoring terms in the evolution equations that, for the non-solution g, are small com-
pared to the main terms. For this perspective, it is reasonable to speculate that, for metrics
g of the form (1.21) that satisfy (1.23), there might be true Einstein-vacuum solutions
lying “close” to g. We clarify that this speculation was rigorously shown to be true in [24]
whenever D � 10, though the results of [24] did not yield the dynamic stability of the
singularity and relied on the assumption that the tensorfields qi .x/ and !.i/.x/ appearing
in (1.21) are analytic.

We now explain some further connections between the heuristic picture painted in
[25] and the results of the present article. As we described in Section 1.5, estimate (1.14)
(which is almost the same as condition (1.23) from [25]) is a main ingredient needed to
show that at each fixed x, @t .tkij .t; x// is integrable over the time interval .0; 1� (we refer
the readers to Remark 1.13 for a discussion on why we work with k in type

�
1
1

�
form).

From this integrability condition, one can easily show not only that tkij .t; x/ remains
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bounded as t # 0 (which is what we prove in our main theorem), but also that the follow-
ing stronger result holds: tkij .t; x/ converges uniformly to a function Kij .x/ as t # 0;
see [50, 51] for proofs of these kinds of convergent results in a related context, and see
also Remark 1.9. Combining these kinds of convergence estimates with related ones (in
particular for the lapse n), one could rigorously prove that for the Einstein-vacuum solu-
tions g under study in this article, g is asymptotic to a metric that behaves like the family
of metrics that satisfy (1.21)–(1.24); again, readers can consult [50,51] for proofs of these
kinds of results in a related context.

The situation can be summarized as follows: the singular solutions that can be shown
to be dynamically stable under our framework are asymptotic (as the singularity is
approached) to a metric that is well-described by the family of metrics satisfying condi-
tions (1.21)–(1.24). The following question is glaring: whether or not, under assumptions
(1.22) and (1.23), the “VTD solutions” g defined by (1.21) are always the asymptotic
end-state of a true singularity-forming solution of the Einstein-vacuum equations. As of
present, not much is rigorously known about this issue. In fact, there are no results outside
of symmetry for any Einstein-matter or Einstein-vacuum system that definitively show
that the set of “asymptotic end-states near the Big Bang” is open with respect to a func-
tion space topology that is natural from the point of view of well-posedness theory (such
as a topology induced by a Sobolev norm). A second question also stands out: whether
or not it is possible to extend the stable blowup-results of the present article to apply to
perturbations of all Kasner solutions (1.6) whose Kasner exponents ¹qiºiD1;:::;D satisfy
(1.8a)–(1.8b) and (1.24), which in particular would extend our results to the casesD � 10.
If such a result is in fact true, then its proof would almost certainly involve detecting the
kinds of tensorial cancellations that the authors of [25] exploited to derive the bound
(1.23), a feat that we did not attempt in the present work. It is likely that capturing these
kinds of tensorial cancellations would involve substantial new ideas and techniques, going
beyond our work here. This is a worthy avenue for future investigation, especially since it
is intimately tied to the fundamental question of which terms in Einstein’s equations are
the ones driving the breakdown of solutions.

1.7. Paper outline

The remainder of the paper is organized as follows.
� In Section 1.8, we summarize the notation and conventions that we use in the rest of

the article.
� In Section 2, we set up the ensuing analysis by providing the Einstein-vacuum equa-

tions in CMC-transported spatial coordinates and showing that Kasner solutions veri-
fying our assumptions exist when D � 38.
� In Section 3, we define the norms that we use to control solutions and formulate the

bootstrap assumptions that we use in our analysis.
� In Section 4, we provide some preliminary technical estimates, which are standard.
� In Section 5, we derive elliptic estimates showing that the lapse n can be controlled,

in various norms, in terms of g and k.
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� In Section 6, we derive preliminary estimates for g and k at the low derivative levels.
� In Section 7, we derive preliminary estimates for g and k at the top derivative levels,

i.e., our main top-order energy estimates.
� In Section 8, we derive preliminary energy estimates for g and k at the near-top-order

derivative levels; as we explained near the end of Section 1.5, for technical reasons,
we need these estimates to close our bootstrap argument.
� In Section 9, we combine the results of Sections 5–8 to obtain the main technical result

of the article: a priori estimates showing that appropriately defined solution norms can
be uniformly controlled by the initial data, all the way up to the singularity.
� In Section 10, we derive some results that describe the breakdown as t # 0, e.g., the

curvature blows up and past-directed timelike geodesics terminate with a finite length.
� In Section 11, we synthesize the results of the previous sections and give a relatively

short proof of the main stable blowup theorem.

1.8. Notation and conventions

For the reader’s convenience, in this subsection, we provide some notation and conven-
tions that we use throughout the article. Some of the concepts referred to here are not
defined until later.

1.8.1. Indices and their lowering and raising. Greek “spacetime” indices ˛; ˇ; : : : take on
the values 0;1; : : : ;D, while Latin “spatial” indices a; b; : : : take on the values 1;2; : : : ;D.
Repeated indices are summed over (from 0 to D if they are Greek, and from 1 to D if
they are Latin). We use the same conventions for primed indices such as a0 as we do
for their non-primed counterparts. Spacetime indices are lowered and raised with the
Lorentzian metric g˛ˇ and its inverse .g�1/˛ˇ . Spatial indices are lowered and raised
with the Riemannian metric gij and its inverse gij .

1.8.2. Spacetime tensorfields and †t -tangent tensorfields. We denote spacetime tensor-
fields T�1����m�1����l in bold font. We denote †t -tangent tensorfields Tb1���bm

a1���al in non-
bold font.

1.8.3. Coordinate systems and differential operators. We often work in a fixed standard
local coordinate system .x1; : : : ; xD/ on TD . The vectorfields @j WD @

@xj
are globally

well-defined even though the coordinates themselves are not. Hence, in a slight abuse of
notation, we use ¹@1; : : : ; @Dº to denote the globally defined vectorfield frame. We denote
the corresponding basis-dual co-frame by ¹dx1; : : : ; dxDº. In CMC-transported spatial
coordinates, the spatial coordinate functions are transported along the unit normal to †t ,
thus producing a local coordinate system .x0; x1; : : : ; xD/ on manifolds-with-boundary
of the form .T; 1� � TD , and we often write t instead of x0. The corresponding vectorfield
frame on .T; 1� � TD is ¹@0; @1; : : : ; @Dº, and the corresponding basis-dual co-frame is
¹dx0; dx1; : : : ; dxDº. Relative to this frame, Kasner solutions are of the form (1.6)–(1.7).
The symbol @� denotes the frame derivative @

@x�
, and we often write @t instead of @0 and
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dt instead of dx0. Many of our equations and estimates are stated relative to the frame
¹@�º�D0;1;:::;D and basis-dual co-frame ¹dx�º�D0;1;:::;D .

We use the notation @f to denote the spatial coordinate gradient of the scalar-valued
function f relative to the coordinates described above, which we view to be a†t -tangent
one-form. That is, .@f /i WD @if . More generally, if ! is a type

�
l
m

�
†t -tangent tensorfield

with components !b1���bm
a1���al relative to the frame described above, then @! denotes the

type
�
l

mC1

�
†t -tangent tensorfield with components

.@!/b1���bmC1
a1���al WD @b1!b2���bmC1

a1���al

relative to the same frame. Similarly, @2! denotes the type
�
l

mC2

�
†t -tangent tensorfield

with components

.@2!/b1���bmC2
a1���al WD @b1@b2!b3���bmC2

a1���al :

If EI D .n1; n2; : : : ; nD/ is an array comprising D non-negative integers, then we
define the spatial multi-indexed differential operator @ EI by

@ EI WD @
n1
1 @

n2
2 � � � @

nD
D :

The notation j EI j WD n1 C n2 C � � � C nD denotes the order of EI .
If ! is a type

�
l
m

�
†t -tangent tensorfield with components !b1���bm

a1���al relative to the
frame described above, then @ EI! denotes the type

�
l
m

�
†t -tangent tensorfield with com-

ponents
.@ EI!/b1���bm

a1���al WD @ EI .!b1���bm
a1���al /:

In particular, under this definition, the operators @ EI do not change the order of tensorfields;
this is in contrast to the operators @ and @2 introduced two paragraphs above.

Throughout, D denotes the Levi-Civita connection of g. We write

D�T�1����m
�1����l D @�T�1����m

�1����l C

lX
rD1

� �r
� ˛T�1����m

�1����r�1˛�rC1����l

�

mX
sD1

� ˛
� �s

T�1����s�1˛�sC1����m
�1����l

(1.25)

to denote a component of the covariant derivative of a tensorfield T (with components
T�1����m�1����l ) defined on the set .T; 1� � TD . The Christoffel symbols of g, which we
denote by � �

� � , are defined by

� �
� � WD

1

2
.g�1/��¹@�g�� C @�g�� � @�g��º: (1.26)

We use similar notation to denote the covariant derivative of a †t -tangent tensor-
field T (with components Tb1���bn

a1���am ) with respect to the Levi-Civita connection r of
the Riemannian metric g, i.e., the first fundamental form of †t . The Christoffel symbols
of g, which we denote by � i

j k
, are defined by

� i
j k WD

1

2
gia¹@jgak C @kgja � @agjkº: (1.27)
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1.8.4. Integrals and basic norms. Throughout this subsection, f denotes a scalar func-
tion defined on the hypersurface †t D ¹.s; x/ 2 R � TD j s D tº. We defineZ

†t

f dx WD

Z
TD

f .t; x1; : : : ; xD/ dx: (1.28)

Above, the notation “
R

TD f dx” denotes the integral of f over TD with respect to the
measure corresponding to the volume form of the standard Euclidean metric E on TD ,
which has the components diag.1; 1; : : : ; 1/ relative to the coordinate frame described in
Section 1.8.3. Note that dx is not the canonical integration measure associated to the
Riemannian metric g.

All of our Sobolev norms are built out of the (spatial) L2 norms of scalar quanti-
ties (which may be the components of a tensorfield). We define the standard L2 norm
k � kL2.†t / as follows:

kf kL2.†t / WD

�Z
†t

f 2 dx

�1=2
: (1.29)

For integers M � 0, we define the standard HM norm k � kHM .†t / as follows:

kf kHM .†t / WD

� X
j EI j�M

k@ EIf k
2
L2.†t /

�1=2
: (1.30)

We also define the following standard homogeneous analog of (1.30):

kf k PHM .†t / WD

� X
j EI jDM

k@ EIf k
2
L2.†t /

�1=2
: (1.31)

Finally, we define the Lebesgue norm k � kL1.†t / of scalar functions f in the usual way:

kf kL1.†t / WD ess sup
x2TD

jf .t; x/j: (1.32)

In Sections 3.2 and 3.3, we will introduce additional norms for tensorfields, many of
which are built out of the basic ones from this subsubsection.

1.8.5. Parameters.

� A � 1 denotes a “time-weight exponent parameter” that is featured in the high-order
solution norms from Definition 3.16. To close our estimates, we will choose A to be
large enough to overwhelm various universal constants C� (see Section 1.8.6). This
corresponds to our use of high-order energies featuring large powers of t , which leads
to weak high-order energies near t D 0.
� 0 < q < 1=6 is a constant, fixed throughout the proof, that bounds the magnitude of

the background Kasner exponents.
� ¢ > 0 is a small constant, fixed throughout the proof, that we use to simplify the proofs

of various estimates that “have room in them.”
� q and ¢ are constrained by (3.2).
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� N denotes the maximum number of times that we commute the equations with spatial
derivatives (e.g., k 2 HN .†t / and g 2 HNC1.†t /). To close our estimates, we will
chooseN to be sufficiently large in a (non-explicit) manner that depends onA,D, q, ¢ .
� • > 0 is a small .N;D/-dependent parameter that is allowed to vary from line to line

and that is generated by the estimates of Lemma 4.11. We use the convention that
a sum of two constants • is another •. The only important feature of • that we exploit
in the proof is the following: at fixed D, we have limN!1 • D 0. In particular, if A
is also fixed, then limN!1A• D 0.
� " is a small “bootstrap parameter” that, in our bootstrap argument, bounds the size

of the solution norms; see (3.18). The smallness of " needed to close the estimates is
allowed to depend on the parameters N , A, D, q, and ¢ .

1.8.6. Constants.

� C denotes a positive constant that is free to vary from line to line. C can depend onN ,
A,D, q, and ¢ , but it can be chosen to be independent of all " > 0 that are sufficiently
small in the manner described in Section 1.8.5.
� C� denotes a positive constant that is free to vary from line to line and that can depend

on D. Like C , C� can be chosen to be independent of all " > 0 that are sufficiently
small in the manner described in Section 1.8.5. However, unlike C , C� can be chosen
to be independent ofN and A. The constant C� can also be chosen to be independent
of q and ¢ , but that is less important in the sense that we view q and ¢ to be fixed
throughout the article; see Remark 3.3. For example, 1C CNŠ" � C� while NŠ D C
and NŠ=¢ D C , where C and C� are as above.
� We write v . w to indicate that v � Cw, with C as above.
� We write v D O.w/ to indicate that jvj � C jwj, with C as above.

1.8.7. Schematic notation.

� We write v D
QR
rD1 vr to indicate that the †t -tangent tensorfield v is a tensor prod-

uct, possibly involving contractions, of the †t -tangent tensorfields vr . We use this
notation only when the precise details of the tensor product are not important for our
analysis. We sometimes display the indices of v to indicate its order; for example, the
expression vij D

QR
rD1 vr emphasizes that v is type

�
1
1

�
.

� We write v '
PR
rD1 vr to indicate that the †t -tangent tensorfield v is a linear com-

bination of the †t -tangent tensorfields vr , where the coefficients in the linear com-
bination are constants ˙C , with C as in Section 1.8.6. As above, we sometimes
display the indices of v to indicate its order. For example, vijk ' v1 C v2 means that
v is type

�
0
3

�
and that v D ˙C1v1 ˙ C2v2, where the Ci can depend on N , A, D, q,

and ¢ .
� We write v

�
'
PR
rD1 vr to indicate that the †t -tangent tensorfield v is a linear com-

bination of the †t -tangent tensorfields vr , where the coefficients in the linear com-
bination are constants ˙C�, with C� universal constants enjoying the properties
described in Section 1.8.6. As above, we sometimes display the indices of v to indi-
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cate its order. For example, vij
�
' v1 C v2 means that v is type

�
1
1

�
and that v D

˙C�;1v1 ˙ C�;1v2, where the C�;i are independent of N and A.

2. Setting up the analysis

In this section, we start by providing the Einstein-vacuum equations in the gauge that
we use to prove our main theorem. Next, we provide some standard expressions for the
curvature tensors of the first fundamental form of†t . Finally, we show that whenD � 38,
there exist Kasner solutions that satisfy the Kasner exponent assumptions in our main
theorem.

2.1. The Einstein-vacuum equations in CMC-transported spatial coordinates

In this subsection, we recall the Einstein-vacuum equations in CMC-transported spatial
coordinates gauge; this is the gauge that we use throughout the article.

2.1.1. Basic ingredients in the setup. In CMC-transported spatial coordinates, the space-
time metric is decomposed into the lapse n and a Riemannian metric g on the constant
time hypersurfaces †t (known as the first fundamental form of †t ) as follows:

g D �n2dt ˝ dt C gabdxa ˝ dxb : (2.1)

We use gab to denote the components of the inverse Riemannian metric g�1. Above
and throughout, t is a time function on the spacetime manifold M that we will describe
just below and ¹xaºaD1;:::;D are standard (locally defined) “spatial coordinates” on the
constant-time hypersurfaces†t WD ¹.s; x/ 2M j s D tº, which are diffeomorphic to TD .
We refer readers to Section 1.8.3 for further discussion of these coordinates and notation
tied to them. In view of (2.1), we see that the future-directed unit normal ON to †t can be
expressed as

ON D n�1@t : (2.2)

Note that ONxa D 0 for a D 1; : : : ;D. Thus, in the gauge under consideration, the spa-
tial coordinates are transported along the flow lines of ON.

The second fundamental form k of †t is defined by requiring that the following
relation holds for all vectorfields X; Y tangent to †t :

g.DX ON; Y / D �k.X; Y /; (2.3)

where D is the Levi-Civita connection of g. It is a standard fact that k is symmetric:

k.X; Y / D k.Y;X/: (2.4)

For such X; Y , the action of the spacetime connection D can be decomposed into the
action of the Levi-Civita connection r of g and k as follows:

DXY D rXY � k.X; Y / ON: (2.5)
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Remark 2.6. As we described in Section 1.5, when analyzing the components of k (and
in particular when differentiating the components of k), we will always assume that
it is written in mixed form (i.e., type

�1
1

�
form) as ki

j
with the first index upstairs

and the second one downstairs. This convention is absolutely essential for some of our
analysis; in the problem of interest to us, the evolution and constraint equations verified
by the components kij have a more favorable structure than the corresponding equations
verified by kij . We refer to Section 1.8.1 regarding our conventions for lowering and
raising indices.

Throughout the vast majority of our analysis, we normalize the CMC hypersurfaces
†t as follows:

kaa D �
1

t
; t 2 .0; 1�: (2.7)

In order for (2.7) to hold, the lapse has to verify the elliptic equation (2.13b).
We adopt the following sign convention for the Riemann curvature Riem of g:

D˛DˇX� � DˇD˛X� D Riem˛ˇ�� X� : (2.8)

Similarly, we adopt the following sign convention for the Riemann curvature Riem of g:

rarbXc � rbraXc D Riemabcd X
d : (2.9)

2.1.2. Statement of the equations. In this subsubsection, we state a proposition that pro-
vides the Einstein-vacuum equations relative to CMC-transported spatial coordinates. The
proposition can be proved using standard calculations; we refer readers to [51, Appen-
dix B] and [52, Section 6.2] for details.

Proposition 2.10 (The Einstein-vacuum equations in CMC-transported spatial coordi-
nates). In CMC-transported spatial coordinates normalized by kaa D �t

�1, the Einstein-
vacuum equations (1.1) take the following form.

� The Hamiltonian and momentum constraint equations verified by g and k are re-
spectively

R � kabk
b
a C t

�2
D 0; (2.11a)

rak
a
i D 0; (2.11b)

where r denotes the Levi-Civita connection of g, R D Ricaa denotes the scalar cur-
vature of g, and Ric denotes the Ricci curvature of g (a precise expression is given
in (2.15b)).
� The evolution equations verified by g, g�1, and k are

@tgij D �2ngiak
a
j ; (2.12a)

@tg
ij
D 2ngiakja; (2.12b)

@t .k
i
j / D �g

ia
rarjnC n.Ricij � t

�1kij /: (2.12c)
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� The elliptic lapse equation can be written in either of the following two forms (by
virtue of the constraint (2.11a)):®

gabrarb � t
�2
¯
.n�1/ D .n�1/

®
kabk

b
a� t

�2
¯
C
®
kabk

b
a� t

�2
¯
; (2.13a)®

gabrarb � .t
�2
CR/

¯
.n�1/ D R: (2.13b)

Remark 2.14 (The form of equations (2.13a)–(2.13b)). We have written (2.13a)–(2.13b)
in a form that is useful for studying perturbations of the background Kasner solution
.�g;�k;en/, which is such that �kab�kba � t�2 and en � 1
and such that �g has vanishing curvature. In the relevant spots in Sections 5–8, we will
rewrite some of the other equations in Proposition 2.10 to make it easier to study pertur-
bations of the background Kasner solution, and we will also derive equations satisfied by
the derivatives of perturbed solutions.

2.2. Standard expressions for curvature tensors of g

For future use, we note the following standard facts: relative to an arbitrary coordinate
system on †t (and in particular relative to the transported spatial coordinates that we use
in our analysis), the components of the type

�
0
4

�
Riemann curvature Riem of g and the

type
�
1
1

�
Ricci curvature Ric of g can be expressed, respectively, as

Riemijkl D
1

2

®
@i@lgjk C @j @kgil � @i@kgjl � @j @lgik

¯
C gab�ial�jbk � g

ab�iak�jbl ; (2.15a)

Ricij D
1

2
gcdgie

®
@e@cgdj C @c@jged � @e@jgcd � @c@dgej

¯
C gabgcdgie�eac�jbd � g

abgcdgie�eaj�cbd ; (2.15b)

where �ijk WD gja� a
i k

and � i
j k

are the Christoffel symbols of g (see (1.27)).

2.3. The existence of Kasner solutions verifying our exponent assumptions when D � 38

Note that in view of (1.8b), if D � 36, then there do not exist any Kasner solutions that
satisfy the exponent assumption (1.8e). In this subsection, we show that forD � 38, such
Kasner solutions do exist; recall that this is equivalent to finding real numbers ¹qiºiD1;:::;D
that satisfy (1.8a)–(1.8b) and (1.8e).

To start, we note that in the case D D 36, the following Kasner exponents satisfy
(1.8a)–(1.8b) but just barely fail to satisfy (1.8e):

q1 D q2 D � � � D q15 WD �
1

6
;

q16 D q17 D � � � q36 D
1

6
:

(2.16)
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Considering now the caseD D 38, we let � > 0 be a small parameter, and we perturb
the 36Kasner exponents from (2.16) by � so that they are bounded in magnitude by< 1=6:

q1 D q2 D � � � D q15 WD �
1

6
C �;

q16 D q17 D � � � q36 D
1

6
� �:

(2.17)

Notice that by (1.8a)–(1.8b), assuming (2.17), any solution .q37; q38/ to the following
system yields, when complemented with the exponents (2.17), a complete set of Kasner
exponents:

q37 C q38 D 6�; (2.18a)

q237 C q
2
38 D 12� � 36�

2: (2.18b)

Using (2.18a) to solve for q38 in terms of q37 and then substituting into (2.18b), we obtain
the equation q237 � 6�q37 � 6� C 36�

2 D 0, which has the solutions

q37 D 3� ˙
p

6� � 27�2: (2.19)

We now observe that for any � > 0 sufficiently small, the corresponding solutions q37
to (2.19) are real and bounded in magnitude by .

p
�. From (2.18a), we deduce that

the same statement holds for the corresponding exponent q38. In view of (2.17), we see
that for � > 0 sufficiently small, the exponents ¹qiºiD1;:::;38 constructed in this fashion
satisfy (1.8a)–(1.8b) and (1.8e). Moreover, in the cases D � 39, we can complement
these 38 Kasner exponents with others as follows: qi D 0 for 39 � i � D. In total, we
have constructed, for any D � 38, sets of Kasner exponents ¹qiºiD1;:::;D that satisfy
(1.8a)–(1.8b) and (1.8e). That is, the Kasner solutions whose perturbations we study in
our main theorem exist when D � 38.

3. Norms and bootstrap assumptions

In this section, we define the norms that we use to control the solution. We also state
bootstrap assumptions for the solution norms; the bootstrap assumptions are convenient
for our analysis in subsequent sections.

3.1. Fixed constants appearing in the norms

The norms that we define in Section 3.4 involve the positive numbers q and ¢ featured in
the following definition.

Definition 3.1 (The constants q and ¢). Assuming that the Kasner exponents satisfy the
condition (1.8e), we fix positive numbers q and ¢ verifying the following inequalities:

0 < ¢ < ¢ C max
iD1;:::;D

jqi j < q < q C 2¢ <
1

6
: (3.2)

Remark 3.3. We consider q and ¢ to be fixed for the remainder of the article. In particu-
lar, q and ¢ do not vary when we choose N and A to be large.
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3.2. Pointwise norms

To control†t -tangent tensorfields, we will rely on two kinds of pointwise norms: one that
refers to the transported spatial coordinate frame, and the standard geometric norm that is
based on the Riemannian metric g.

Definition 3.4 (Pointwise norms). For †t -tangent type
�
l
m

�
tensorfields T , we define

jT jFrame WD

´
DX

a1;:::;al ;b1;:::;bmD1

jTb1���bm
a1���al j

2

µ1=2
; (3.5a)

jT jg WD
°
ga1a01

� � �gala0l
gb1b

0
1 � � �gbmb

0
mTb1���bm

a1���alTb0
1
���b0m

a0
1
���a0
l

±1=2
: (3.5b)

3.3. Lebesgue and Sobolev norms

In this subsection, we define the Lebesgue and Sobolev norms that we will use to control
the solution. We start by defining the @ EI -derivative of a tensorfield.

Definition 3.6 (Derivative of a tensorfield). If Tb1���bm
a1���al is a type

�
l
m

�
†t -tangent

tensorfield and EI is a spatial multi-index, then we define @ EIT to be the type
�
l
m

�
tensor-

field whose components .@ EIT /b1���bm
a1���al relative to the CMC-transported spatial coor-

dinate frame are the following:

.@ EIT /b1���bm
a1���al WD @ EI .Tb1���bm

a1���al /: (3.7)

Remark 3.8. The operator @ EI , when acting on †t -tangent tensorfields, can be given
the following invariant interpretation: it can be viewed as repeated Lie differentiation
with respect to the (globally defined) spatial coordinate partial derivative vectorfields
¹@iºiD1;:::;D .

Remark 3.9. We remind the reader that, as we described in Section 1.8.3, if T is a type�
l
m

�
†t -tangent tensorfield, then @T is by definition type

�
l

mC1

�
and @2T is by definition

type
�
l

mC2

�
. Thus, for example, in the ensuing equations and estimates, readers should

carefully distinguish between the meaning of @2T and @@ EIT when j EI j D 1 (the former
tensorfield is type

�
l

mC2

�
while the latter is type

�
l

mC1

�
).

In what follows, k � kL2.†t / and k � kL1.†t / denote the standard Lebesgue norms for
scalar functions on†t ; see Section 1.8.4. We now define additional Sobolev and Lebesgue
norms that we will use in our analysis.

Definition 3.10 (Sobolev and Lebesgue norms). If T is a type
�
l
m

�
†t -tangent tensorfield,

p 2 ¹2;1º, and M � 0 is an integer, then we define

kT kLpFrame.†t /
WD kjT jFramekLp.†t /; kT kLpg .†t / WD kjT jgkLp.†t /; (3.11a)

kT k
W
M;1

Frame .†t /
WD

X
j EI j�M

kj@ EIT jFramekL1.†t /;

kT k
W
M;1
g .†t /

WD

X
j EI j�M

kj@ EIT jgkL1.†t /;
(3.11b)
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kT k PWM;1
Frame .†t /

WD

X
j EI jDM

kj@ EIT jFramekL1.†t /;

kT k PWM;1
g .†t /

WD

X
j EI jDM

kj@ EIT jgkL1.†t /;
(3.11c)

kT kHMFrame.†t /
WD

² X
j EI j�M

kj@ EIT jFramek
2
L2.†t /

³1=2
;

kT kHMg .†t /
WD

² X
j EI j�M

kj@ EIT jgk
2
L2.†t /

³1=2
;

(3.11d)

kT k PHMFrame.†t /
WD

² X
j EI jDM

kj@ EIT jFramek
2
L2.†t /

³1=2
;

kT k PHMg .†t /
WD

² X
j EI jDM

kj@ EIT jgk
2
L2.†t /

³1=2
:

(3.11e)

Remark 3.12 (The omission of norm subscripts when appropriate). If T is a scalar func-
tion, then we typically omit the subscripts “Frame” and “g” in the norms since there is
no danger of confusion over how to measure the norm of T . For example if f is scalar
function, then we write kf kL1.†t / instead of kf kL1Frame.†t /

or kf kL1g .†t /.

Remark 3.13 (Simple comparison estimates that we use silently use in our analysis).
Here, by way of example, we note some simple but important comparison estimates that
we often silently use in our analysis. First, by using the g-Cauchy–Schwarz inequality,
it is straightforward to see that if T is any type

�
l
m

�
†t -tangent tensorfield and @2T is the

type
�
l

mC2

�
tensorfield defined as in Section 1.8.3, then

j@2T j2g � g
ab
j@a@T jg j@b@T jg ;

where we are viewing @a@T and @b@T as type
�
l

mC1

�
†t -tangent tensorfields (i.e., we are

not imposing any tensorial structure on @a or @b). It follows that

j@2T .t; x/jg . kg�1k1=2
L1Frame.†t /

X
j EI jD1

j@@ EIT .t; x/jg

and that
k@2T k PHMg .†t /

. kg�1k1=2
L1Frame.†t /

k@T k PHMC1g .†t /
:

The same reasoning yields, for example, that

j@T .t; x/jg . kg�1k1=2
L1Frame.†t /

X
j EI jD1

j@ EIT .t; x/jg

and that
k@T k PHMg .†t /

. kg�1k1=2
L1Frame.†t /

kT k PHMC1g .†t /
:
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Estimates of this type, together with the singular behavior of kg�1kL1Frame.†t /
as t # 0, are

the primary reason that our analysis relies on the complete hierarchy of norms defined in
Section 3.4.

3.4. The specific norms that we use to control the deviation of the solution from the
Kasner background

Let A� 1 be a large parameter, to be chosen later. We recall that q > 0 and ¢ > 0 are
the real numbers fixed in Section 3.1.

To control the solution variables .g; k; n/, we will rely on a combination of norms
for the low-order derivatives of the solution and norms for its high-order derivatives. Our
norms are designed to measure the deviation of the perturbed solution from the back-
ground Kasner solution .�g;�k;en/, which is spatially homogeneous (in particular,�gij does
not depend on x) with �ka

b
�kba � t�2 anden � 1.

We now define the low-order norms.

Definition 3.14 (Low norms). Let �g and �k denote the background Kasner solution vari-
ables and let q and ¢ be the fixed constants (which depend on the background Kasner solu-
tion .�g;�k/) satisfying (3.2). We define

L.g;k/.t/ WD max
°
t2qkg ��gkL1Frame.†t /

; t2qkg�1 ��g�1kL1Frame.†t /
;

tkk ��kk
W
2;1

Frame .†t /
; kjtkjg � 1kL1.†t /

±
; (3.15a)

L.n/.t/ WD t
�.2�10q�¢/

kn � 1kL1.†t /: (3.15b)

We clarify that t j�kj�g D 1 by (1.8b)–(1.8c) and thus the term kjtkjg � 1kL1.†t / on the
right-hand side of (3.15a) is a measure of the deviation of k from �k.

We will use the following norms to control the high-order derivatives of the solution.

Definition 3.16 (High norms). Let q and ¢ be the fixed constants (which depend on the
background Kasner solution .�g;�k/) that satisfy (3.2). Let A� 1 be a real parameter (to
be chosen later) and let N � 1 be an integer-valued parameter (also to be chosen later).
We define

H.g;k/.t/ WD max
°
tAC1kkk PHNg .†t /

; tAC1k@gk PHNg .†t /
;

tAC3qC¢kkk PHN�1g .†t /
; tAC3qC¢kkk PHN�1Frame .†t /

;

tACqC¢kgk PHNg .†t /
; tACqC¢kg�1k PHNg .†t /

;

tAC2qC¢k@gk PHN�1g .†t /
; tAC2qC¢kgk PHNFrame.†t /

;

tAC2qC¢kg�1k PHNFrame.†t /
; tAC5qC3¢�1kgk PHN�1Frame .†t /

;

tAC5qC3¢�1kg�1k PHN�1Frame .†t /

±
; (3.17a)

H.n/.t/ WD max
°
tAC1k@nk PHNg .†t /

; tAknk PHN .†t /; t
ACq�1

knk PHN�1.†t /

±
: (3.17b)
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3.5. Bootstrap assumptions

To facilitate our analysis, we find it convenient to rely on bootstrap assumptions. Let
T.Boot/ 2 .0; 1/ be a “bootstrap time”. Until the proof of Theorem 11.1, we assume that the
perturbed solution exists classically for .t; x/ 2 .T.Boot/; 1� � TD and that the following
bootstrap assumptions hold for the norms from Definitions 3.14 and 3.16:

L.g;k/.t/CH.g;k/.t/C L.n/.t/CH.n/.t/ � "; t 2 .T.Boot/; 1�; (3.18)

where " > 0 is a small bootstrap parameter.

Remark 3.19 (The required smallness of " depends on various parameters). We will con-
tinually adjust the required smallness of " throughout our analysis. The required smallness
of " is allowed to depend on N , A, D, q, and ¢ , but we will often avoid pointing this out.

4. Estimates for the Kasner solution and preliminary technical estimates

In this section, we derive some simple estimates for the background Kasner solution and
provide other basic estimates that we will use throughout the paper.

4.1. Basic estimates for the Kasner solution

In controlling various error terms, we will rely on the following simple estimates for the
background Kasner solution.

Lemma 4.1 (Basic estimates for the Kasner solution). The following estimates hold for
t 2 .0; 1�:

k�gkL1Frame.†t /
� t¢�2q; k�g�1kL1Frame.†t /

� t¢�2q; (4.2a)

k�kkL1Frame.†t /
� t�1: (4.2b)

Proof. Recall that the Kasner solution variables �g and �k are given, relative to the trans-
ported spatial coordinates, respectively, by expressions (1.7) and (1.8c). All estimates
stated in the lemma follow as straightforward consequences of these expressions and the
inequalities in (3.2).

4.2. Norm comparisons

In controlling various error terms, we will compare the pointwise norms j � jFrame and j � jg .
Our comparisons will often rely on the following lemma.

Lemma 4.3 (Pointwise norm comparisons). Let T be a type
�
l
m

�
†t -tangent tensorfield.

Under the bootstrap assumptions (3.18), there exists a universal constant C� > 1 inde-
pendent of N and A (but depending on m and l) such that if " � 1, then the following
estimates hold for the pointwise norms of Definition 3.4 for t 2 .T.Boot/; 1�:

C�1� t .lCm/qjT jg � jT jFrame � C�t
�.lCm/q

jT jg : (4.4)
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Proof. Let ı denote the standard Euclidean metric on †t , i.e., relative to the transported
spatial coordinates, ı has components ıij equal to diag.1; 1; : : : ; 1/, and likewise for the
inverse Euclidean metric ı�1. Then in view of the definition of the norm j � jFrame, we
have, schematically,

jT jFrame D j.ı/
l .ı�1/mT 2j1=2;

and by g-Cauchy–Schwarz, the right-hand side of the previous expression is

� jıjl=2g jı
�1
j
m=2
g jT jg D

®
gacgbd ıabıcd

¯l=4®
ga0c0gb0d 0.ı

�1/a
0b0.ı�1/c

0d 0
¯m=4
jT jg :

From Definitions 3.4 and 3.14, estimate (4.2a), and the bootstrap assumptions, we deduce
that the right-hand side of the above expression (which we consider from the perspective
of the transported coordinate frame) is

� jg�1j
l=2
Framejgj

m=2
FramejT jg � C�t

�.mCl/q
jT jg ;

which yields the second inequality in (4.4). To obtain the first inequality in (4.4), we note
that we have, schematically,

jT jg D j.g/
l .g�1/mT 2j1=2:

The same Cauchy–Schwarz argument as before, but with the role of g and ı interchanged,
yields (relative to the transported coordinate frame) that the right-hand side of the previous
expression is � jgjl=2Framejg

�1j
m=2
FramejT jFrame. From Definition 3.14, estimate (4.2a), and the

bootstrap assumptions, we deduce that the right-hand side of the previous expression is
� C�t

�.mCl/qjT jFrame, which yields the first inequality in (4.4).

4.3. Sobolev interpolation and product inequalities

In this subsection, we provide some Sobolev interpolation and product inequalities that
we will use to control various error terms. We start with the following lemma, which
provides basic interpolation estimates.

Lemma 4.5 (Basic interpolation estimates). IfM1 andM2 are non-negative integers with
M1 �M2 and v is a scalar function, then the following inequalities hold:

kvk PHM1 .†t / . kvk1�M1=M2
L1.†t /

kvk
M1=M2
PHM2 .†t /

. kvkL1.†t / C kvk PHM2 .†t /: (4.6)

IfM1 andM2 are non-negative integers withM1C 1CbD=2c�M2 and v is a scalar
function, then the following inequalities hold:

kvk PWM1;1.†t /
. kvkHM1C1CbD=2c.†t / . kvkL1.†t / C kvk PHM2 .†t /: (4.7)

Proof. The first inequality in (4.6) follows as a special case of Nirenberg’s famous inter-
polation results [39], except that on the right-hand side, we have replaced the norm
k � kL2.†t / with k � kL1.†t /; the replacement is possible because of the estimate

kvkL2.†t / . kvkL1.†t /
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for scalar functions v (which holds because TD is compact). Strictly speaking, Nirenberg
stated his results for functions defined on RD , but the arguments given in his paper can
be used to derive the same estimates for functions defined on TD . The second inequality
in (4.6) follows from the first and Young’s inequality.

The first inequality in (4.7) is a standard Sobolev embedding result on TD . The second
inequality in (4.7) follows from the first inequality in (4.7) and the second inequality
in (4.6).

Lemma 4.8 (Sobolev product estimates for tensorfields). Let M be a non-negative inte-
ger, let ¹vrºRrD1 be a finite collection of †t -tangent tensorfields, and let v D

QR
rD1 @ EIr

vr
be a (schematically denoted) tensor product, possibly involving contractions. Assume that
the bootstrap assumptions (3.18) hold for some " with " � 1. Then the following estimate
holds for t 2 .T.Boot/; 1�:

maxPR
rD1 j

EIr jDM







RY
rD1

@ EIr
vr







L2Frame.†t /

.
RX
rD1

kvrk PHMFrame.†t /

Y
s¤r

kvskL1Frame.†t /
: (4.9)

Moreover, under the same assumptions as above, and assuming that v is type
�
l
m

�
, the

following estimate holds for t 2 .T.Boot/; 1�:

maxPR
rD1 j

EIr jDM







RY
rD1

@ EIr
vr







L2g.†t /

. t�.lCm/q
RX
rD1

kvrk PHMFrame.†t /

Y
s¤r

kvskL1Frame.†t /
: (4.10)

Proof. If the ¹vrºRrD1 are all scalar functions (and hence l D m D 0), then inequality
(4.9) is standard; it is proved, for example, as [47, Lemma 6.16]. If one or more of the
vr are not scalar functions, then estimate (4.9) follows a straightforward consequence of
the estimate (4.9) for scalar functions, essentially by writing out the definition of the left-
hand side of (4.9) relative to the transported spatial coordinate frame and estimating the
components of all tensorfields.

To prove (4.10), we first use (4.4) to deduce that

maxPR
rD1 j

EIr jDM







RY
rD1

@ EIr
vr







L2g.†t /

. t�.lCm/q maxPR
rD1 j

EIr jDM







RY
rD1

@ EIr
vr







L2Frame.†t /

:

We then use (4.9) to conclude that the right-hand side of the previous expression is
. RHS (4.10) as desired.

4.4. Sobolev embedding

We will use the following lemma to obtain L1.†t /-control over some additional low-
order derivatives that are not directly controlled by the low-order norms from Defini-
tion 3.14. To achieve the desired control, we borrow, via interpolation with sufficiently
large N , a small amount of the high norm. Because the high norms are quite weak near
t D 0 (at least when A is large), the interpolation introduces singular behavior into the
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estimates of the lemma, represented by the factors of t�A• on the right-hand sides of the
estimates. However, •! 0 as N !1. Thus, at fixed A, if N is large, then the following
basic principle, central to our approach, applies:

The singular contribution to the behavior of the low-order norms coming from the
high-order norms is very small.

Lemma 4.11 (Sobolev embedding, borrowing only a small amount of high norm). There
exists a parameter15 • > 0, depending onN andD, such that limN!1 • D 0 (at fixedD)
and such that if N � 5C bD=2c, then the following estimates hold for t 2 .T.Boot/; 1�:

kg ��gk
W
4;1

Frame .†t /
. t�2q�A•¹L.g;k/.t/CH.g;k/.t/º; (4.12a)

kg�1 ��g�1k
W
4;1

Frame .†t /
. t�2q�A•¹L.g;k/.t/CH.g;k/.t/º; (4.12b)

kn � 1kW 4;1.†t /
. t2�10q�¢�A•¹L.n/.t/CH.n/.t/º: (4.12c)

Proof. To prove (4.12c), we first use the second inequality in (4.7) to deduce

kn � 1kW 4;1.†t /
. kn � 1kL1.†t / C kn � 1k PH5CbD=2c.†t /:

Then using the first inequality in (4.6), we deduce that forN � 5C bD=2c, the right-hand
side of the previous expression is

. kn � 1kL1.†t / C kn � 1k
1�•
L1.†t /

knk•
PHN .†t /

;

where • WD .5C bD=2c/=N . Combining these estimates and appealing to definitions
(3.15b) and (3.17b), we find that

kn � 1kW 4;1.†t /
. t2�10q�¢L.n/.t/C ¹t

2�10q�¢L.n/.t/º
1�•
¹t�AH.n/.t/º

•:

Finally, we use Young’s inequality to deduce

t2�10q�¢L.n/.t/C ¹t
2�10q�¢L.n/.t/º

1�•
¹t�AH.n/.t/º

•

D t2�10q�¢L.n/.t/C t
.2�10q�¢/.1�•/�A•

¹L.n/.t/º
1�•
¹H.n/.t/º

•

. t2�10q�¢�A•¹L.n/.t/CH.n/.t/º; (4.13)

where in obtaining the last inequality in (4.13), we have used (3.2), the assumptionA � 1,
and our running convention that • is free to vary from line to line, subject only to the
restriction limN!1 • D 0. In total, we have derived the desired bound (4.12c).

The remaining estimates in the lemma can be proved using similar arguments that take
into account Definitions 3.14 and 3.16, and we omit the details.

15Recall that, as we described in Section 1.8.5, we allow • to vary from line to line and we use
the convention that a sum of two parameters • is another •.
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5. Control of n in terms of g and k

Our primary goal in this section is to prove the next proposition, in which we derive
the main estimates for n. The proof of the proposition is located in Section 5.3. In Sec-
tions 5.1–5.2, we derive the identities and estimates that we will use when proving the
proposition. The proposition shows that n is controlled, in various norms, by complemen-
tary norms of g and k. Achieving such control is possible since n solves the elliptic PDEs
(2.13a)–(2.13b), which feature source terms that depend, respectively, on k and R.

Proposition 5.1 (Control of n in terms of g and k). We recall that L.g;k/.t/, L.n/.t/,
H.g;k/.t/, and H.n/.t/ are the norms from Definitions 3.14 and 3.16, and assume that
the bootstrap assumptions (3.18) hold. There exists a constant C� > 0 independent of N
and A and a constant C D CN;A;D;q;¢ > 0 such that ifN is sufficiently large in a manner
that depends on A, D, q, and ¢ , and if " is sufficiently small (in a manner that depends
on N , A, D, q, and ¢), then the following estimates hold for t 2 .T.Boot/; 1�.

� Estimates at the lowest order. The following estimate holds:

L.n/.t/ � C ¹L.g;k/.t/CH.g;k/.t/º: (5.2)

� Estimate for @tn. The following estimate holds:

k@tnkL1.†t / � Ct
1�10q�¢

¹L.g;k/.t/CH.g;k/.t/º: (5.3)

� Top-order estimates. If j EI j D N , then the following estimates hold (see Remark 3.9):

tAC1k@@ EInkL2g.†t / C t
A
k@ EInkL2.†t /

� C�t
AC1
k@ EIkkL2g.†t / C Ct

¢
¹L.g;k/.t/CH.g;k/.t/º

� C�H.g;k/.t/C Ct
¢
¹L.g;k/.t/CH.g;k/.t/º: (5.4)

� Near-top-order estimates. The following estimate holds:

tACq�1knk PHN�1.†t / � C ¹L.g;k/.t/CH.g;k/.t/º: (5.5)

5.1. The equations

In this subsection, we derive some equations that we use to control n in terms of g and k.

5.1.1. The equations verified by the time derivative of the lapse. The next lemma pro-
vides an analog of equation (2.13b) for @tn, and we will use it to derive estimates for
k@tnkL1.†t /. We remark that we need estimates for k@tnkL1.†t / only in Section 10.2,
when we bound the length of past-directed causal geodesic segments.

Lemma 5.6 (The @t -commuted lapse equation). The quantity @tn verifies the following
elliptic PDE on †t :

gabrarb@tn � .@tn/.t
�2
C R/ D N0; (5.7)
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where (see Remarks 2.6 and 3.9)

N0 '
X

i1Ci2Ci3D2

1X
pD0

.n � 1/p.g�1/2.@i1n/.@i2g/@i3k

C

X
i1Ci2Ci3D1

1X
pD0

.n � 1/p.g�1/3.@g/.@i1n/.@i2g/@i3k C t�3.n � 1/

C ng�1k@2nC n.g�1/2k.@g/@n

C

X
i1Ci2Ci3D1

.g�1/2.@n/.@i1n/.@i2g/@i3k: (5.8)

Proof. Relative to CMC-transported spatial coordinates, the elliptic PDE (2.13b) can be
expressed as

gab@a@bn � g
ab� c

a b@cn � .n � 1/.t
�2
C R/ D R;

where, schematically,
R ' .g�1/2@2g C .g�1/3.@g/2

(see (2.15b) and recall that R D Ricaa) and

gab� c
a b ' g

�2@g:

Commuting the elliptic PDE with @t , using equations (2.12a) and (2.12b) to algebraically
substitute for @tg and @tg�1, and carrying out straightforward computations, we conclude
the desired equation (5.7).

5.1.2. The equations verified by the high-order derivatives. We will use the equations in
the next lemma to control the L2.†t /-norms of high-order derivatives of n.

Remark 5.9 (Borderline error terms vs. junk error terms). In the rest of the paper, we
will denote difficult “borderline” error terms by decorating them with “.Border/”, e.g.,
.BorderI EI/N. These error terms must treated with care since at the top derivative level, there
is no room (in the sense of powers of t ) in our estimates for such terms. In contrast, the
error terms that we decorate with “.Junk/”, such as .JunkI EI/N, are such that there is some
room in our estimates, though we sometimes rely on subtle arguments to show that there
is room.

Lemma 5.10 (The EI -commuted lapse equation). For each spatial multi-index EI with
j EI j D N , @ EIn verifies the following equation:

tAC2gab@a@b@ EIn � t
A@ EIn D

.BorderI EI/NC .JunkI EI/N; (5.11)

where16 (see Section 1.8.7 regarding our use of notation
�
' and ', and see Remarks 2.6

16We clarify that the factor .tk/ � .tk/ � 1 in braces on the right-hand side of (5.12a) can be
written more precisely as .tka

b
/.tkba/ � 1, which, in view of the symmetry property kab D kba,

can alternatively be expressed as the following term (that is controlled by the norm L.g;k/.t/ from
Definition 3.14): .jtkjg � 1/.jtkjg C 1/.
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and 3.9)

.BorderI EI/N
�
' .tA@ EIn/¹.tk/ � .tk/ � 1º C .tk/.t

AC1@ EIk/; (5.12a)

.JunkI EI/N '
X

EI1CEI2CEI3DEI

j EI1j�j EI j�1

tAC2¹@ EI1
.n � 1/º.@ EI2

k/@ EI3
k

C

X
EI1CEI2DEI

j EI1j;j EI2j�j EI j�1

tAC2.@ EI1
k/@ EI2

k

C

X
EI1CEI2CEI3CEI4DEI

tAC2.@ EI1
g�1/.@ EI2

g�1/.@@ EI3
g/@@ EI4

n

C

X
EI1CEI2DEI

j EI2j�j EI j�1

tAC2.@ EI1
g�1/@2@ EI2

n: (5.12b)

Furthermore, for each spatial multi-index EI with j EI j D N � 1, @ EIn verifies the fol-
lowing equation:

tAC1Cqgab@a@b@ EIn � t
ACq�1.1C t2R/@ EIn D

. EI/eN; (5.13)

where

. EI/eN ' X
EI1CEI2CEI3DEI

tAC1Cq.@ EI1
g�1/.@ EI2

g�1/@2@ EI3
g

C

X
EI1CEI2C���C EI5DEI

tAC1Cq.@ EI1
g�1/.@ EI2

g�1/.@ EI3
g�1/.@@ EI4

g/@@ EI5
g

C

X
EI1CEI2CEI3CEI4DEI

j EI1j�j EI j�1

tAC1Cq¹@ EI1
.n � 1/º.@ EI2

g�1/.@ EI3
g�1/@2@ EI4

g

C

X
EI1CEI2C���C EI6DEI

j EI1j�j EI j�1

tAC1Cq¹@ EI1
.n � 1/º.@ EI2

g�1/.@ EI3
g�1/.@ EI4

g�1/

� .@@ EI5
g/@@ EI6

g

C

X
EI1CEI2CEI3CEI4DEI

tAC1Cq.@ EI1
g�1/.@ EI2

g�1/.@@ EI3
g/@@ EI4

n

C

X
EI1CEI2DEI

j EI2j�j EI j�1

tAC1Cq.@ EI1
g�1/@2@ EI2

n: (5.14)



On the nature of Hawking’s incompleteness for the Einstein-vacuum equations 207

Remark 5.15 (The decay of kn � 1kL1.†t / and its role in yielding “Junk” terms). From
definition (3.15b) and the bootstrap assumption (3.18), we see that

kn � 1kL1.†t / � "t
.2�10q�¢/:

Thus, in view of the parameter inequalities (3.2), we see that kn � 1kL1.†t / decays to 0 at
least as fast as t to a positive power as t # 0. This explains, for example, why we charac-
terized the top-order product tAC2.n � 1/k@ EIk featured in the first sum on the right-hand
side of (5.12b) as a “Junk” term, even though we characterized the similar-looking top-
order product .tk/.tAC1@ EIk/ on the right-hand side of (5.12a) as a “Borderline” term; the
extra decay yielded by the factor n � 1 makes it easy for us to control the top-order prod-
uct tAC2.n � 1/k@ EIk compared to the difficult product .tk/.tAC1@ EIk/. Similar remarks
apply throughout the rest of the paper to top-order products featuring the factor n � 1.

Proof of Lemma 5.10. First, we multiply equation (2.13a) by tAC2 and use the relation
gabrarbn D g

ab@a@bn � g
ab� c

a b
@cn to obtain the equation

tAC2gab@a@bn � t
A.n � 1/ D tA.n � 1/¹.tkab/.tk

b
a/ � 1º � t

A

C tAC2kabk
b
a C t

AC2gab� c
a b@cn:

(5.16)

Commuting equation (5.16) with @ EI and using the schematic identity

gab� c
a b@cn ' g

�2.@g/@n;

we easily deduce (5.11). We clarify that the terms on the right-hand side of (5.12a)
arise, respectively, when all j EI j derivatives fall on the factor n � 1 in the first product
on the right-hand side of (5.16) or on one of the factors of k in the next-to-last product
tAC2ka

b
kba on the right-hand side of (5.16). It is for this reason that the coefficients in

the corresponding products do not depend on N or A, as is indicated by the symbol
�
' in

equation (5.12a).
Equation (5.13) follows similarly from multiplying equation (2.13b) by tAC1Cq and

using the schematic identity

R ' .g�1/2@2g C .g�1/3.@g/2;

which follows from (2.15b) and the fact that R D Ricaa.

5.2. Control of the error terms in the lapse estimates

In this subsection, we derive estimates for the error terms in the equations of Lemmas 5.6
and 5.10.

Lemma 5.17 (Control of the error terms in the elliptic estimates). Assume that the boot-
strap assumptions (3.18) hold. There exists a constant C� > 0 independent of N and A
and a constant C D CN;A;D;q;¢ > 0 such that if N is sufficiently large in a manner that
depends on A, D, q, and ¢ , and if " is sufficiently small (in a manner that depends on N ,
A, D, q, and ¢), then the following estimates hold for t 2 .T.Boot/; 1�.
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� Control of the error term in the equation verified by @tn. The following estimate
holds for the error term N0 defined in (5.8):

kN0kL1.†t / � Ct
�1�10q�¢

¹L.g;k/.t/CH.g;k/.t/C L.n/.t/CH.n/.t/º: (5.18)

� Borderline top-order error term estimates. If j EI j D N , then the following estimate
holds for the error term from (5.12a):

k
.BorderI EI/NkL2.†t / � C�"t

A
k@ EInkL2.†t / C C�t

AC1
k@ EIkkL2g.†t /: (5.19)

� Non-borderline top-order error term estimates. The following estimate holds for
the error term from (5.12b):

max
j EI jDN

k
.JunkI EI/NkL2.†t / � Ct

¢
¹L.g;k/.t/CH.g;k/.t/º: (5.20)

� Just-below-top-order error term estimates. The following estimate holds for the
error term from (5.14):

max
j EI jDN�1

k
. EI/eNkL2.†t / � C ¹L.g;k/.t/CH.g;k/.t/º: (5.21)

Proof. Throughout this proof, we will assume that A• is sufficiently small (and in partic-
ular that A• < ¢); in view of the discussion in Section 4.4, we see that at fixed A, this can
be achieved by choosing N to be sufficiently large. We also freely use the observations of
Remark 3.13.

Proof of (5.18). This estimate follows in a straightforward fashion from using (3.2), Def-
inition 3.14, Lemma 4.1, and Lemma 4.11 to control the products on the right-hand side
of (5.8) in the norm k � kL1.†t /, where we bound each factor in the products in the norm
k � kL1Frame.†t /

. We remark that the most singular (in the sense of powers of t ) products
on the right-hand side of (5.8) are t�3.n � 1/ and the terms in the second sum with
p D i1 D 0.

Proof of (5.19). From Definition 3.14 and the g-Cauchy-Schwarz inequality, we deduce
that the magnitude of the right-hand side of (5.12a) is

� C�¹1C L.g;k/.t/º
®
L.g;k/.t/jt

A@ EInj C jt
AC1@ EIkjg

¯
:

From this bound and the bootstrap assumption bound L.g;k/.t/ � ", we conclude (5.19).

Proof of (5.20). : Let EI be a spatial multi-index with j EI j D N . To bound the first sum on
the right-hand side of (5.12b), we first consider the top-order case in which j EI2j D N or
j EI3j D N . Then using g-Cauchy–Schwarz, we see that the terms under consideration are
bounded in the norm k � kL2.†t / by

. tAC2kn � 1kL1.†t /kkkL1g .†t /kkk PHNg .†t /
:

From Definitions 3.14 and 3.16 and the bootstrap assumptions, we see that the right-hand
side of the previous expression is . t2�10q�¢H.g;k/.t/. In view of (3.2), we see that the
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right-hand side of the previous expression is . RHS (5.20) as desired. We now consider
the remaining cases, in which j EI1j; j EI2j; j EI3j � N � 1. Using (4.6) and (4.9), we bound
(using that j EI j D N ) the terms under consideration as follows:X

EI1CEI2CEI3DEI

j EI1j;j EI2j;j EI3j�N�1

tAC2k¹@ EI1
.n � 1/º.@ EI2

k/@ EI3
kkL2.†t /

. tAC2kn � 1kW 1;1.†t /
kkk

W
1;1

Frame .†t /
kkk PHN�1Frame .†t /

C tAC2kkk
W
1;1

Frame .†t /
kkk PW 1;1

Frame .†t /
knk PHN�1.†t /

C tAC2kn � 1kW 1;1.†t /
kkk

W
1;1

Frame .†t /
kkk PW 1;1

Frame .†t /
: (5.22)

From Definitions 3.14 and 3.16, estimates (4.2b) and (4.12c), and the bootstrap assump-
tions, we deduce that

RHS (5.22) . t3�13q�2¢�A•H.g;k/.t/C t
1�qL.g;k/.t/:

In view of (3.2), we see that the right-hand side of the previous expression is. RHS (5.20)
as desired.

To bound the second sum on the right-hand side of (5.12b), we first use (4.9) to deduce
that the terms under consideration are bounded in the norm k � kL2.†t / by

. tAC2kkk PW 1;1
Frame .†t /

kkk PHN�1Frame .†t /
:

From Definitions 3.14 and 3.16 and the bootstrap assumptions, we see that the right-
hand side of the previous expression is . t1�3q�¢H.g;k/.t/, which, in view of (3.2), is
. RHS (5.20) as desired.

To bound the third sum on the right-hand side of (5.12b), we first consider the top-
order case in which j EI3j D N . Using g-Cauchy–Schwarz and the fact that jg�1jg . 1,
we see that the terms under consideration are bounded in the norm k � kL2.†t / by

. tAC2k@nkL1g .†t /k@gk PHNg .†t /
:

Applying (4.4) (with l D 0 andm D 1) to k@nkL1g .†t /, we see that the right-hand side of
the previous expression is

. tAC2�qknk PW 1;1.†t /
k@gk PHNg .†t /

:

From Definition 3.16, estimate (4.12c), and the bootstrap assumptions, we see that the
right-hand side of the previous expression is

. t3�11q�¢�A•H.g;k/.t/;

which, in view of (3.2), is . RHS (5.20) as desired. We now consider the top-order case
in which j EI4j D N . Arguing as above, we deduce that the terms under consideration are
bounded in the norm k � kL2.†t / by

. tAC2k@gkL1g .†t /k@nk PHNg .†t /
. tAC2�3qkgk PW 1;1

Frame .†t /
k@nk PHNg .†t /

:
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From Definition 3.16, estimate (4.12a), and the bootstrap assumptions, we see that the
right-hand side of the previous expression is

. t1�5q�A•¹L.g;k/.t/CH.g;k/.t/ºH.n/.t/ . t1�5q�A•¹L.g;k/.t/CH.g;k/.t/º;

which, in view of (3.2), is . RHS (5.20) as desired. It remains for us to handle the cases
in which j EI3j; j EI4j � N � 1. Using (4.6) and (4.9), we bound (using that j EI j D N ) the
terms under consideration as follows:X

EI1CEI2CEI3CEI4DEI

j EI3j;j EI4j�N�1

tAC2k.@ EI1
g�1/.@ EI2

g�1/.@@ EI3
g/@@ EI4

nkL2.†t /

. tAC2kn � 1kW 2;1.†t /
kg�1k2

W
1;1

Frame .†t /
kgk PHNFrame.†t /

C tAC2kg ��gkW 2;1.†t /
kg�1k2

W
1;1

Frame .†t /
knk PHN .†t /

C tAC2kn � 1kW 2;1.†t /
kg�1k

W
1;1

Frame .†t /

� kg ��gk
W
2;1

Frame .†t /
kg�1k PHNFrame.†t /

C tAC2kn � 1kW 2;1.†t /
kg�1k2

W
1;1

Frame .†t /
kg ��gk

W
2;1

Frame .†t /
: (5.23)

From Definition 3.16, estimates (4.2a) and (4.12a)–(4.12c), and the bootstrap assump-
tions, we deduce that

RHS (5.23) . t4�16q�2¢�A•¹L.g;k/.t/CH.g;k/.t/ºC t
2�6q�A•

¹L.g;k/.t/CH.g;k/.t/º:

In view of (3.2), we see that the right-hand side of the previous expression is. RHS (5.20)
as desired.

To bound the last sum on the right-hand side of (5.12b), we first consider the case in
which j EI2j D N � 1. Using (4.4), we bound the terms under consideration in the norm
k � kL2.†t / by

. tAC2kg�1k PW 1;1
Frame .†t /

k@nk PHNFrame.†t /
. tAC2�qkg�1k PW 1;1

Frame .†t /
k@nk PHNg .†t /

:

From Definition 3.16, estimate (4.12b), and the bootstrap assumptions, we see that the
right-hand side of the previous expression is

. t1�3q�A•¹L.g;k/.t/CH.g;k/.t/ºH.n/.t/ . t1�3q�A•¹L.g;k/.t/CH.g;k/.t/º;

which, in view of (3.2), is . RHS (5.20) as desired. We now consider the remaining
cases, in which j EI2j � N � 2. Using (4.9), we bound (using that j EI j D N ) the terms under
consideration as follows:X
EI1CEI2DEI

j EI2j�N�2

tAC2k.@ EI1
g�1/@2@ EI2

nkL2.†t /

. tAC2kg�1k PW 2;1
Frame .†t /

knk PHN .†t / C t
AC2
knk PW 2;1.†t /

kg�1k PHNFrame.†t /
: (5.24)
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From Definition 3.16, estimates (4.12b) and (4.12c), and the bootstrap assumptions, we
deduce that

RHS (5.24) . t2�2q�A•L.g;k/.t/C t
4�12q�2¢�A•H.g;k/.t/:

In view of (3.2), we see that the right-hand side of the previous expression is. RHS (5.20)
as desired.

Proof of (5.21). Let EI be a spatial multi-index with j EI j D N � 1. To bound the first
sum on the right-hand side of (5.14), we first consider the case in which j EI3j D N � 1.
Using g-Cauchy–Schwarz and the fact that jg�1jg . 1, we see that the terms under
consideration are bounded in the norm k � kL2.†t / by

. tAC1Cqk@2gk PHN�1g .†t /
:

From the definitions of k � k PHMg .†t /
and k � kL1Frame.†t /

, we deduce (see Remark 3.13) that
the right-hand side of the previous estimate is

. tAC1Cqkg�1k
1=2

L1Frame.†t /
k@gk PHNg .†t /

:

From Definitions 3.14 and 3.16, estimate (4.2a), and the bootstrap assumptions, we see
that the right-hand side of the previous expression is . H.g;k/.t/, which is . RHS (5.21)
as desired. It remains for us to consider the remaining cases, in which j EI3j � N � 2.
Using (4.6) and (4.9), we bound (using that j EI j D N � 1) the terms under consideration
as follows: X

EI1CEI2CEI3DEI

j EI3j�N�2

tAC1Cqk.@ EI1
g�1/.@ EI2

g�1/@2@ EI3
gkL2.†t /

. tAC1Cqkg�1k2
W
1;1

Frame .†t /
kgk PHNFrame.†t /

C tAC1Cqkg�1k
W
1;1

Frame .†t /
kgk PW 2;1

Frame .†t /
kg�1k PHNFrame.†t /

C tAC1Cqkg�1k2
W
1;1

Frame .†t /
kgk PW 2;1

Frame .†t /
: (5.25)

From Definition 3.16, estimates (4.2a), (4.12a), and (4.12b), and the bootstrap assump-
tions, we see that

RHS (5.25) . t1�5q�¢�A•¹L.g;k/.t/CH.g;k/.t/º;

which, in view of (3.2), is . RHS (5.21) as desired.
To bound the second sum on the right-hand side of (5.14), we first consider the

cases in which j EI4j D N � 1 or j EI5j D N � 1. Using g-Cauchy–Schwarz and the fact that
jg�1jg . 1, we see that the terms under consideration are bounded in the norm k � kL2.†t /
by

. tAC1Cqk@gkL1g .†t /k@gk PHN�1g .†t /
:

Applying (4.4) to k@gkL1g .†t / (with l D 0 and m D 3), we deduce that the right-hand
side of the previous expression is

. tAC1�2qkgk PW 1;1
Frame .†t /

k@gk PHN�1g .†t /
:
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From Definition 3.16, estimate (4.12a), and the bootstrap assumptions, we see that the
right-hand side of the previous expression is . t1�6q�¢�A•H.g;k/.t/, which, in view
of (3.2), is . RHS (5.21) as desired. It remains for us to consider the remaining cases,
in which j EI4j; j EI5j � N � 2. Using (4.6) and (4.9), we bound (using that j EI j D N � 1)
the terms under consideration as follows:X

EI1CEI2C���C EI5DEI

j EI4j;j EI5j�N�2

tAC1Cq


.@ EI1g�1/.@ EI2g�1/.@ EI3g�1/.@@ EI4g/@@ EI5g

L2.†t /

. tAC1Cqkg�1k3
W
1;1

Frame .†t /
kg ��gk

W
2;1

Frame .†t /
kgk PHN�1Frame .†t /

C tAC1Cqkg�1k2
W
1;1

Frame .†t /
kg ��gk2

W
2;1

Frame .†t /
kg�1k PHN�1Frame .†t /

C tAC1Cqkg�1k3
W
1;1

Frame .†t /
kg ��gk2

W
2;1

Frame .†t /
: (5.26)

From Definition 3.16, estimates (4.2a), (4.12a), and (4.12b), and the bootstrap assump-
tions, we see that

RHS (5.26) . t2�12q�3¢�A•¹L.g;k/.t/CH.g;k/.t/º;

which, in view of (3.2), is . RHS (5.21) as desired.
To bound the third sum on the right-hand side of (5.14), we first consider the case

j EI4j D N � 1. Using g-Cauchy–Schwarz and the fact that jg�1jg . 1, we see that the
terms under consideration are bounded in the norm k � kL2.†t / by

. tAC1Cqkn � 1kL1.†t /k@
2gk PHN�1g .†t /

:

Considering the definitions of k � k PHMg .†t /
and k � kL1Frame.†t /

, we deduce (see Remark 3.13)
that the right-hand side of the previous expression is

. tAC1Cqkn � 1kL1.†t /kg
�1
k
1=2

L1Frame.†t /
k@gk PHNg .†t /

:

From Definitions 3.14 and 3.16, estimate (4.2a), and the bootstrap assumptions, we see
that the right-hand side of the previous expression is . t2�10q�¢H.g;k/.t/, which, in view
of (3.2), is . RHS (5.21) as desired. It remains for us to consider the case j EI4j � N � 2.
Using (4.6) and (4.9), we bound (using that j EI j D N � 1) the terms under consideration asX
EI1CEI2CEI3CEI4DEI

j EI1j;j EI4j�N�2

tAC1Cqk¹@ EI1
.n � 1/º.@ EI2

g�1/.@ EI3
g�1/@2@ EI4

gkL2.†t /

. tAC1Cqkn � 1kW 1;1.†t /
kg�1k2

W
1;1

Frame .†t /
kgk PHNFrame.†t /

C tAC1Cqkg�1k2
W
1;1

Frame .†t /
kg ��gk

W
3;1

Frame .†t /
knk PHN�1.†t /

C tAC1Cqkn � 1kW 1;1.†t /
kg�1k

W
1;1

Frame .†t /

� kg ��gk
W
3;1

Frame .†t /
kg�1k PHNFrame.†t /

C tAC1Cqkn � 1kW 1;1.†t /
kg�1k2

W
1;1

Frame .†t /
kg ��gk

W
3;1

Frame .†t /
: (5.27)
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From Definition 3.16, estimates (4.2a) and (4.12a)–(4.12c), and the bootstrap assump-
tions, we see that

RHS (5.27) . t3�15q�2¢�A•¹L.g;k/.t/CH.g;k/.t/ºC t
2�6q�A•

¹L.g;k/.t/CH.g;k/.t/º;

which, in view of (3.2), is . RHS (5.21) as desired.
To bound the fourth sum on the right-hand side of (5.14), we first consider the cases

in which j EI5j D N � 1 or j EI6j D N � 1. Using g-Cauchy–Schwarz and the fact that
jg�1jg . 1, we see that the terms under consideration are bounded in the norm k � kL2.†t /
by

. tAC1Cqkn � 1kL1.†t /k@gkL1g .†t /k@gk PHN�1g .†t /
:

Applying (4.4) to k@gkL1g .†t / (with l D 0 and m D 3), we deduce that the right-hand
side of the previous expression is

. tAC1�2qkn � 1kL1.†t /kgk PW 1;1
Frame .†t /

k@gk PHN�1g .†t /
:

From Definitions 3.14 and 3.16, estimates (4.2a) and (4.12a), and the bootstrap assump-
tions, we deduce that the right-hand side of the previous expression is

. t3�16q�2¢�A•H.g;k/.t/;

which, in view of (3.2), is . RHS (5.21) as desired. It remains for us to consider the
remaining cases, in which j EI1j; j EI5j; j EI6j � N � 2. Using (4.6) and (4.9), we bound (using
that j EI j D N � 1) the terms under consideration as follows:X
EI1CEI2C���C EI6DEI

j EI1j;j EI5j;j EI6j�N�2

tAC1Cq


¹@ EI1.n � 1/º.@ EI2g�1/.@ EI3g�1/.@ EI4g�1/.@@ EI5g/@@ EI6g

L2.†t /

. tAC1Cqkn � 1kW 1;1.†t /
kg�1k3

W
1;1

Frame .†t /
kg ��gk

W
2;1

Frame .†t /
kgk PHN�1Frame .†t /

C tAC1Cqkg�1k3
W
1;1

Frame .†t /
kg ��gk2

W
2;1

Frame .†t /
knk PHN�1.†t /

C tAC1Cqkn � 1kW 1;1.†t /
kg�1k2

W
1;1

Frame .†t /

� kg ��gk2
W
2;1

Frame .†t /
kg�1k PHN�1Frame .†t /

C tAC1Cqkn � 1kW 1;1.†t /
kg�1k3

W
1;1

Frame .†t /
kg ��gk2

W
2;1

Frame .†t /
: (5.28)

From Definition 3.16, estimates (4.2a) and (4.12a)–(4.12c), and the bootstrap assump-
tions, we see that

RHS (5.28) . t4�22q�4¢�A•¹L.g;k/.t/CH.g;k/.t/º

C t2�10q�A•¹L.g;k/.t/CH.g;k/.t/º;

which, in view of (3.2), is . RHS (5.21) as desired.
To bound the fifth sum on the right-hand side of (5.14), we first use (4.6), (4.9), and

the fact that j EI j D N � 1 to deduce that the terms under consideration are bounded as
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follows: X
EI1CEI2CEI3CEI4DEI

tAC1Cq


.@ EI1g�1/.@ EI2g�1/.@@ EI3g/.@@ EI4n/

L2.†t /

. tAC1Cqkg�1k2L1Frame.†t /
kgk PW 1;1

Frame .†t /
knk PHN .†t /

C tAC1Cqkg�1k2L1Frame.†t /
knk PW 1;1.†t /

kgk PHNFrame.†t /

C tAC1Cqkg�1kL1Frame.†t /
kgk PW 1;1

Frame .†t /
knk PW 1;1.†t /

kg�1k PHNFrame.†t /

C tAC1Cqkg�1k2L1Frame.†t /
kgk PW 1;1

Frame .†t /
knk PW 1;1.†t /

: (5.29)

From Definition 3.16, estimates (4.2a) and (4.12a)–(4.12c), and the bootstrap assump-
tions, we see that

RHS (5.29) . t1�5q�A•¹L.g;k/.t/CH.g;k/.t/º C t
3�15q�2¢�A•

¹L.g;k/.t/CH.g;k/.t/º;

which, in view of (3.2), is . RHS (5.21) as desired.
To bound the last sum on the right-hand side of (5.14), we first use (4.9) and the fact

that j EI j D N � 1 to deduce that the terms under consideration are bounded as follows:X
EI1CEI2DEI

j EI2j�N�2

ktAC1Cq.@ EI1
g�1/@2@ EI2

nkL2.†t /

. tAC1Cqkg�1k PW 1;1
Frame .†t /

knk PHN .†t /

C tAC1Cqknk PW 2;1.†t /
kg�1k PHN�1Frame .†t /

: (5.30)

From Definition 3.16, estimates (4.12b) and (4.12c), and the bootstrap assumptions, we
see that

RHS (5.30) . t1�q�A•¹L.g;k/.t/CH.g;k/.t/º C t
4�14q�4¢�A•

¹L.g;k/.t/CH.g;k/.t/º;

which, in view of (3.2), is . RHS (5.21) as desired. This completes the proof of (5.21)
and finishes the proof of the lemma.

5.3. Proof of Proposition 5.1

In this subsection, we prove Proposition 5.1. Throughout this proof, we will assume that
A• is sufficiently small (and in particular that A• < ¢); in view of the discussion in Sec-
tion 4.4, we see that at fixed A, this can be achieved by choosing N to be sufficiently
large.

Proof of (5.2). From (2.15b), we deduce that R' .g�1/2@2gC .g�1/3.@g/2. Hence, we
can bound these products by bounding each factor in the norm k � kL1Frame.†t /

with the help
of estimates (4.2a) and (4.12a)–(4.12b) and the bootstrap assumptions, thereby deducing
that

jRj . t�10q�A•¹L.g;k/.t/CH.g;k/.t/º . "t�10q�A•: (5.31)
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From (3.2), both inequalities in (5.31), and equation (2.13b) (multiplied by t2), we deduce
that if A• < ¢ , then

jt2gabrarbn � .n � 1/¹1CO."/ºj . t2�10q�A•¹L.g;k/.t/CH.g;k/.t/º

. t2�10q�¢¹L.g;k/.t/CH.g;k/.t/º: (5.32)

At any point p.Max/ 2 †t at which n � 1 achieves its maximum value, we have that
gabrarbn � 0. From this fact and estimate (5.32), it follows that

.n � 1/jp.Max/ . t2�10q�¢¹L.g;k/.t/CH.g;k/.t/º:

Using similar reasoning, we deduce that at any point p.Min/ 2 †t at which n � 1 achieves
its minimum value, we have the estimate

.n � 1/jp.Min/
& �t2�10q�¢¹L.g;k/.t/CH.g;k/.t/º:

Combining these two estimates, we find that

kn � 1kL1.†t / . t2�10q�¢¹L.g;k/.t/CH.g;k/.t/º;

which, in view of definition (3.15b), yields (5.2).

Proof of (5.4) and (5.5). In view of Definition 3.16, we see that to obtain (5.4) and (5.5),
it suffices to prove the following estimates:� Z

†t

.jtAC1@@ EInj
2
g C jt

A@ EInj
2/ dx

�1=2
� C�kt

AC1@ EIkkL2g.†t / C Ct
¢
¹L.g;k/.t/CH.g;k/.t/º; .j EI j D N/;

(5.33)

� Z
†t

.jtACq@@ EInj
2
g C jt

ACq�1@ EInj
2/ dx

�1=2
� C ¹L.g;k/.t/CH.g;k/.t/º .j EI j D N � 1/:

(5.34)

To prove (5.33), we let EI be any spatial derivative multi-index with j EI j D N . Multi-
plying equation (5.11) by tA@ EIn and integrating by parts over †t , we deduceZ

†t

.jtAC1@@ EInj
2
g C .t

A@ EIn/
2/ dx �

Z
†t

j.t@bg
ab/.tAC1@a@@ EIn/.t

A@ EIn/j dx

C

Z
†t

j
.BorderI EI/NjjtA@ EInj dx

C

Z
†t

j
.JunkI EI/NjjtA@ EInj dx: (5.35)

Next, we use (3.2), (4.2a), (4.12b), the bootstrap assumptions, and g-Cauchy–Schwarz to
deduce that

jt@bg
ab
jjtAC1@a@ EInj . jgac.t@bg

ab/.t@dg
cd /j1=2jtAC1@@ EInjg

. tkgk
1=2

L1Frame.†t /
kg�1k PW 1;1

Frame .†t /
jtAC1@@ EInjg

. "jtAC1@@ EInjg : (5.36)
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From (5.35), (5.36), and Young’s inequality, we deduce that if " is sufficiently small, thenZ
†t

.jtAC1@@ EInj
2
g C jt

A@ EInj
2/ dx

� C"

Z
†t

jtAC1@@ EInj
2
g dx C

1

2

Z
†t

jtA@@ EInj
2 dx

C 4

Z
†t

j
.BorderI EI/Nj2 dx C 4

Z
†t

j
.JunkI EI/Nj2 dx: (5.37)

Using (5.19) and (5.20) to bound the last two integrals on the right-hand side of (5.37),
and soaking (assuming " is sufficiently small) the first two terms on the right-hand side
of (5.37) and the first term on the right-hand side of (5.19) back into the left-hand side
of (5.37), we arrive at (5.33).

Similarly, to prove inequality (5.34), we let EI be any spatial derivative multi-index
with j EI j D N � 1. We multiply equation (5.13) by tACq�1@ EIn, use (5.31), use the bound

j.t@bg
ab/.tACq@a@@ EIn/.t

ACq�1@ EIn/j . "jtACq@@ EInjg jt
ACq�1@ EInj

(which follows from essentially the same reasoning we used to prove (5.36)), and argue
as in the previous paragraph to deduce the following analog of (5.37):Z

†t

.jtACq@@ EInj
2
g C ¹1CO."/ºjtACq�1@ EInj

2/ dx

� C"

Z
†t

jtACq@@ EInj
2
g dx C

1

2

Z
†t

jtACq�1@@ EInj
2 dx C 4

Z
†t

j
. EI/eNj2 dx: (5.38)

Soaking the first two terms on the right-hand side of (5.38) back into the left-hand side
and using (5.21) to bound the last integral on the right-hand side of (5.38), we arrive at
(5.34).

Proof of (5.3). We argue as in the proof of (5.2), but using estimate (5.18) to control the
right-hand side of (5.7). This leads to the bound

k@tnkL1.†t / � Ct
1�10q�¢

¹L.g;k/.t/CH.g;k/.t/C L.n/.t/CH.n/.t/º:

Using Definition 3.16 and estimates (5.2), (5.4), and (5.5), we have that

L.n/.t/CH.n/.t/ � C ¹L.g;k/.t/CH.g;k/.t/º;

which, when combined with the previous estimate, yields the desired bound (5.3).

6. Estimates for the low-order derivatives of g and k

Our main goal in this section is to prove the following proposition, which provides the
integral inequality that we use to control the low norm L.g;k/.t/. The proof of the propo-
sition is located in Section 6.2. In Section 6.1, we derive the equations that we will use in
proving it.
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Proposition 6.1 (Integral inequality for L.g;k/.t/). Recall that L.g;k/.t/ is the low-order
norm from Definition 3.14, and assume that the bootstrap assumptions (3.18) hold. IfN is
sufficiently large in a manner that depends on A,D, q, and ¢ , then there exists a constant
C D CN;A;D;q;¢ > 0 such that if " is sufficiently small (in a manner that depends on N ,
A, D, q, and ¢), then the following estimate holds for t 2 .T.Boot/; 1�:

L.g;k/.t/ � CL.g;k/.1/C C

Z 1

sDt

s¢�1¹L.g;k/.s/CH.g;k/.s/º ds: (6.2)

6.1. The equations

In this subsection, we derive the equations that we use to control g and k at the lowest
derivative levels.

Lemma 6.3 (A rewriting of the equations verified by g and k). Let �g and �k denote the
background Kasner solution variables with corresponding Kasner exponents ¹qiºiD1;:::;D .
Then the following evolution equations hold, where i � j in (6.4a)–(6.4b) and there is no
summation over j in (6.4a)–(6.4b) (note that t�2qj�gij D t2qj .�g�1/ij Ddiag.1; 1; : : : ; 1/):

@t¹t
�2qj gij � t

�2qj�gij º D �2t�2qj ¹gia ��giaº¹kaj ��kaj º
� 2t2qi�2qj ¹kij �

�kij º
� 2t�2qj .n � 1/giak

a
j ; (6.4a)

@t¹t
2qj gij � t2qj .�g�1/ij º D 2t2qj ¹gia � .�g�1/iaº¹kja ��kjaº

C 2t�2qiC2qj ¹k
j
i �

�kjiº
C 2t2qj .n � 1/giakja: (6.4b)

Moreover, the following evolution equation holds (note that t�kij D �diag.q1; : : : ; qD/):

@t¹tk
i
j � t

�kij º D .1 � n/kij � tgia@a@jnC tgia� b
a j @bnC tnRicij : (6.5)

Proof. Throughout this proof, we do not use Einstein summation over j . To derive equa-
tion (6.4a), we first use equation (2.12a) and the fact that t�2qj�gij D ıij (where ıij is the
standard Kronecker delta) to deduce

@t¹t
�2qj gij � t

�2qj�gij º D �2t�2qj giakaj � 2qj t�2qj�1gij
� 2t�2qj .n � 1/giak

a
j :

(6.6)

Since�k D �t�1diag.q1; : : : ; qD/, we can express the first two products on the right-hand
side of (6.6) as follows:

�2t�2qj giak
a
j � 2qj t

�2qj�1gij D �2t
�2qj gia¹k

a
j �

�kaj º:
Next, using that �g D diag.t2q1 ; : : : ; t2qD / and �k D �t�1diag.q1; : : : ; qD/, we express
the right-hand side of the previous expression as follows:

�2t�2qj gia¹k
a
j �

�kaj º D �2t�2qj ¹gia ��giaº¹kaj ��kaj º � 2t2qi�2qj ¹kij ��kij º:
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Combining these calculations, we arrive at (6.4a).
Equation (6.4b) can be derived by applying similar arguments to equation (2.12b), and

we omit the details.
Equation (6.5) follows from multiplying both sides of equation (2.12c) by t and using

t�k D �diag.q1; : : : ; qD/.

6.2. Proof of Proposition 6.1

In this subsection, we prove Proposition 6.1. In this proof, we will assume that A• is
sufficiently small (and in particular that A• < ¢); in view of the discussion in Section 4.4,
we see that at fixed A, this can be achieved by choosing N to be sufficiently large.

First, we note that to obtain (6.2), it suffices to show that the following bounds hold:

kt2qg � t2q�gkL1Frame.†t /
� CL.g;k/.1/

C C

Z 1

sDt

s¢�1¹L.g;k/.s/CH.g;k/.s/º ds; (6.7)

kt2qg�1 � t2q�g�1kL1Frame.†t /
� CL.g;k/.1/

C C

Z 1

sDt

s¢�1¹L.g;k/.s/CH.g;k/.s/º ds; (6.8)

ktk � t�kk
W
2;1

Frame .†t /
� CL.g;k/.1/

C C

Z 1

sDt

s¢�1¹L.g;k/.s/CH.g;k/.s/º ds: (6.9)

For we can then use the symmetry property kab D kba and the fact that .t�ka
b
/.t�kba/ D 1

to derive the identity

jtkjg � 1 D

q
1C 2.t�ka

b
/¹tkba � t

�kbaº C ¹tkab � t�kabº¹tkba � t�kbaº � 1;
which, in conjunction with the bootstrap assumptions (3.18) and estimates (4.2b) and
(6.9), also yields (upon Taylor expanding the square root) the estimate

kjtkjg � 1kL1.†t / � CL.g;k/.1/C

Z 1

sDt

s¢�1¹L.g;k/.s/CH.g;k/.s/º ds: (6.10)

In view of definition (3.15a), from (6.7)–(6.10), we conclude the desired estimate (6.2).
It remains for us to prove (6.7)–(6.9). We first prove (6.7) by analyzing equation

(6.4a). From Definition 3.14, estimates (4.2a), (4.2b), and (5.2), and the bootstrap assump-
tions, we deduce, by bounding each factor on the right-hand side of (6.4a) in the norm
k � kL1Frame.†t /

, that the following estimate holds:

jRHS (6.4a)j � C"t�1�2q�2qj kt2qg � t2q�gkL1Frame.†t /

C Ct�1C2qi�2qj ¹L.g;k/.t/CH.g;k/.t/º

C Ct1�12q�¢�2qj ¹L.g;k/.t/CH.g;k/.t/º: (6.11)
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From (3.2), we deduce that the last two products on the right-hand side of (6.11) are
�Ct¢�1�2q�2qj ¹L.g;k/.t/CH.g;k/.t/º for t 2 .T.Boot/; 1�. Hence, with the help of these
bounds, we can integrate equation (6.4a) from time t to time 1 and use the initial data
bound kg ��gkL1Frame.†1/

� CL.g;k/.1/ to deduce the following estimate for components,
where we do not sum over j on the left-hand side of (6.12):

t�2qj jgij ��gij j � CL.g;k/.1/

C C"

Z 1

sDt

s�1�2q�2qj ks2qg � s2q�gkL1Frame.†s/
ds

C C

Z 1

sDt

s¢�1�2q�2qj ¹L.g;k/.s/CH.g;k/.s/º ds: (6.12)

Multiplying both sides of (6.12) by t2qC2qj and using (3.2), we deduce

jt2qgij � t
2q�gij j � CL.g;k/.1/

C C"t2qC2qj
Z 1

sDt

s�1�2q�2qj ks2qg � s2q�gkL1Frame.†s/
ds

C C

Z 1

sDt

s¢�1¹L.g;k/.s/CH.g;k/.s/º ds: (6.13)

We now define G.t/ WD sups2Œt;1� ks
2qg � s2q�gkL1Frame.†s/

. Next, with the help of (3.2),
we deduce the following estimate for the first integral on the right-hand side of (6.13):

C"t2qC2qj
Z 1

sDt

s�1�2q�2qj ks2qg � s2q�gkL1Frame.†s/
ds

� C"G.t/t2qC2qj
Z 1

sDt

s�1�2q�2qj ds � C"G.t/: (6.14)

From (6.13) and (6.14), we deduce that for .t; x/ 2 .T.Boot/; 1� � TD , we have

jt2qgij � t
2q�gij j � CL.g;k/.1/C C"G.t/

C C

Z 1

sDt

s¢�1¹L.g;k/.s/CH.g;k/.s/º ds: (6.15)

From (6.15), it follows that

G.t/ � CL.g;k/.1/C C"G.t/C C

Z 1

sDt

s¢�1¹L.g;k/.s/CH.g;k/.s/º ds: (6.16)

For " sufficiently small, we can absorb the productC"G.t/ on the right-hand side of (6.16)
back into the left-hand side (at the minor expense of increasing the constants C on the
right-hand side). From these arguments, we conclude the bound

G.t/ � CL.g;k/.1/C C

Z 1

sDt

s¢�1¹L.g;k/.s/CH.g;k/.s/º ds;

which in particular implies the desired bound (6.7).
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Estimate (6.8) can be proved using a similar argument based on the evolution equation
(6.4b), and we omit these details.

To prove (6.9), we note that the right-hand side of (6.5) can be expressed (with the
help of (2.15b)) in the schematic form

.1 � n/k C tg�1@2nC tg�2.@g/@nC tng�2@2g C tng�3.@g/@g:

Hence, commuting (6.5) with up to two spatial derivatives and bounding all of the result-
ing products by bounding each factor in the norm k � kL1Frame.†t /

with the help of Defini-
tion 3.14, Lemma 4.1, Lemma 4.11, (5.2), (5.4), (5.5), and the bootstrap assumptions, and
also using Young’s inequality, we find, in view of (3.2), that if A• is sufficiently small,
then

k@t¹tk � t�kºkW 2;1
Frame .†t /

� Ct1�10q�¢�A•¹L.g;k/.t/CH.g;k/.t/º

C Ct3�16q�¢�A•¹L.g;k/.t/CH.g;k/.t/º

� Ct¢�1¹L.g;k/.t/CH.g;k/.t/º: (6.17)

Integrating (6.17) in time and using the initial data bound kk ��kk
W
2;1

Frame .†1/
� L.g;k/.1/,

we conclude (6.9). We have therefore proved the proposition.

7. Estimates for the top-order derivatives of g and k

Our main goal in this section is to prove the following proposition, which provides the
main integral inequality for the top-order derivatives of g and k. The proof is located in
Section 7.4. In Sections 7.1–7.3, we derive the identities and estimates that we will use
when proving the proposition.

Proposition 7.1 (Integral inequality for the top-order derivatives of g and k). Let EI be a
top-order spatial multi-index, that is, a multi-index with j EI j D N . Assume that the boot-
strap assumptions (3.18) hold. There exists a constant C� > 0 independent of N and A
and a constant C D CN;A;D;q;¢ > 0 such that if N is sufficiently large in a manner that
depends on A, D, q, and ¢ , and if " is sufficiently small (in a manner that depends on N ,
A, D, q, and ¢), then the following estimates hold for t 2 .T.Boot/; 1�:

ktAC1@ EIkk
2

L2g.†t /
C
1

4
ktAC1@@ EIgk

2

L2g.†t /

� CH2
.g;k/.1/ � ¹2A � C�º

Z 1

sDt

s�1
®
ksAC1@ EIkk

2

L2g.†s/
C
1

4
ksAC1@@ EIgk

2

L2g.†s/

¯
ds

C C

Z 1

sDt

s¢�1¹L2.g;k/.s/CH2
.g;k/.s/º ds: (7.2)

7.1. The equations

In this subsection, we derive the equations that we will use when deriving estimates for g
and k at the high derivative levels.
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Lemma 7.3 (The equations verified by the high-order derivatives of the metric and sec-
ond fundamental form). Let EI be a top-order spatial multi-index, that is, a multi-index
with j EI j D N . Then the following commuted momentum constraint equations hold (see
Remark 3.9):

tAC1@a@ EIk
a
i D

.BorderI EI/Mi C
.JunkI EI/Mi ; (7.4a)

tAC1gab@a@ EIk
i
b D

.BorderI EI/fMi
C
.JunkI EI/fMi

; (7.4b)

where (see Section 1.8.7 regarding our use of notation
�
' and ', and see Remarks 2.6

and 3.9)
.BorderI EI/Mi

�
' tAC1g�1.@@ EIg/k; (7.5a)

.JunkI EI/Mi '

X
EI1CEI2CEI3DEI

j EI2j�N�1

tAC1.@ EI1
g�1/.@@ EI2

g/@ EI3
k; (7.5b)

.BorderI EI/fMi �
' tAC1.g�1/2.@@ EIg/k; (7.5c)

.JunkI EI/fMi
'

X
EI1CEI2CEI3CEI4DEI

j EI3j�N�1

tAC1.@ EI1
g�1/.@ EI2

g�1/.@@ EI3
g/@ EI4

k: (7.5d)

Moreover, for any constant P � 0 and for any spatial multi-index EI , the following
commuted evolution equations hold:

@t .t
ACP @e@ EIgij / D

1

t
¹.AC P /ıaj � 2tk

a
j º.t

ACP @e@ EIgia/ � 2t
ACPngia@e@ EIk

a
j

C
.BorderIP I EI/Heij C

.JunkIP I EI/Heij ; (7.6a)

@t .t
ACP @ EIk

i
j / D .AC P � 1/t

ACP�1@ EIk
i
j � t

ACPgia@a@j @ EIn

C
1

2
tACPngicgab

®
@a@c@ EIgbj C @a@j @ EIgbc � @a@b@ EIgcj

� @c@j @ EIgab
¯

C
.BorderIP I EI/Ki

j C
.JunkIP I EI/Ki

j ; (7.6b)

where ıij is the standard Kronecker delta, and
.BorderIP I EI/Heij

�
' tACP .@@ EIn/gk; (7.7a)

.JunkIP I EI/Heij ' t
ACP .n � 1/.@@ EIg/k C

X
EI1CEI2CEI3DEI

j EI1j�j EI j�1

tACP .@@ EI1
n/.@ EI2

g/@ EI3
k

C

X
EI1CEI2CEI3DEI

j EI2j�j EI j�1

tACP .@ EI1
n/.@@ EI2

g/@ EI3
k

C

X
EI1CEI2CEI3DEI

j EI3j�j EI j�1

tACP .@ EI1
n/.@ EI2

g/@@ EI3
k; (7.7b)
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and
.BorderIP I EI/Ki

j

�
' tACP�1.@ EIn/k; (7.8a)

.JunkIP I EI/Ki
j '

X
EI1CEI2DEI

j EI1j�j EI j�1

tACP�1¹@ EI1
.n � 1/º@ EI2

k

C

X
EI1CEI2C���C EI6DEI

tACP .@ EI1
n/.@ EI2

g�1/.@ EI3
g�1/.@ EI4

g�1/

� .@@ EI5
g/@@ EI6

g

C

X
EI1CEI2CEI3CEI4DEI

j EI4j�j EI j�1

tACP .@ EI1
n/.@ EI2

g�1/.@ EI3
g�1/@2@ EI4

g

C

X
EI1CEI2DEI

j EI2j�j EI j�1

tACP .@ EI1
g�1/@2@ EI2

n

C

X
EI1CEI2CEI3CEI4DEI

tACP .@ EI1
g�1/.@ EI2

g�1/.@@ EI3
g/@@ EI4

n: (7.8b)

Proof. To prove (7.4a), we first write equation (2.11b) relative to the transported spa-
tial coordinates in the schematic form @ak

a
i D g

�1.@g/k. Commuting this equation with
tAC1@ EI , we arrive at (7.4a). The proof of (7.4b) is similar, but we start by raising the
index i in equation (2.11b) to deduce gabrakib D 0 and then (schematically) writing this
equation in coordinates as gab@akib D g

�2.@g/k.
To prove (7.6a), we commute equation (2.12a) with @e@ EI and then with tACP and

carry out straightforward computations.
To prove (7.6b), we first use (2.15b) to decompose

Ricij D
1

2
gicgab¹@a@cgbj C @a@jgbc � @a@bgcj � @c@jgabº C Errorij ; (7.9)

where (schematically) Error D g�3.@g/2. We now use (7.9) to decompose the term Ricij
on the right-hand side of (2.12c), commute the evolution equation (2.12c) with @ EI and then
with tACP , and carry out straightforward computations, thereby arriving at (7.6b).

7.2. Energy currents

When deriving top-order energy estimates (see the proof of Proposition 7.1), we will
integrate by parts by applying the divergence theorem on spacetime regions of the form
Œt; 1� � TD with the help of the vectorfields . EI/J featured in the following definition.
Put differently, the vectorfields . EI/J are convenient for bookkeeping during integration
by parts.

Remark 7.10 (Another way to think about the results of this subsection). Roughly speak-
ing, Definition 7.11 and the ensuing Lemma 7.14 are equivalent to setting P D 1 in the
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equations of Lemma 7.3, then multiplying equation (7.6a) by the g-dual of @@ EIg, mul-
tiplying (7.6b) by the g-dual of @ EIk, differentiating by parts, and using the constraints
(7.4a)–(7.4b) to eliminate all terms involving j EI j C 2 derivatives of g, j EI j C 2 deriva-
tives of n, and j EI j C 1 derivatives of k, up to a perfect divergence term (which appears
on the left-hand side of (7.15) as @˛.

EI/J˛). That is, the results of this subsection are just an
intricate differential version of integration by parts that relies on the evolution equations
(7.6a)–(7.6b) and the constraint equations (7.4a)–(7.4b).

Definition 7.11 (Energy current vectorfields). To each top-order spatial multi-index EI
(i.e., j EI j D N ), we associate the energy current . EI/J, which we define to be the vectorfield
with the following components relative to the CMC-transported spatial coordinates:

. EI/J0 WD jtAC1@ EIkj
2
g C

1

4
jtAC1@@ EIgj

2
g ; (7.12a)

. EI/Jj WD 2gab.tAC1@ EIk
j
a/.t

AC1@b@ EIn/C ng
ijgbc.tAC1@ EIk

a
b/.t

AC1@i@ EIgac/

C ngabgcd .tAC1@ EIk
j
c/.t

AC1@d@ EIgab/

� ngabgcd .tAC1@ EIk
j
c/.t

AC1@a@ EIgbd /

� ngabgjc.tAC1@ EIk
d
c/.t

AC1@a@ EIgbd /: (7.12b)

Remark 7.13. The components ¹. EI/J˛º˛D0;:::;D are quadratic forms in .@ EIk; @@ EIg; @@ EIn/
with coefficients that depend on g, g�1, and n.

Lemma 7.14 (Divergence identity verified by . EI/J). Let EI be a top-order spatial multi-
index, that is, a multi-index with j EI j D N . Then for solutions to the commuted equa-
tions of Lemma 7.3 with P D 1 in equations (7.6a)–(7.6b), the spacetime vectorfield . EI/J
from Definition 7.11 verifies the following divergence identity relative to the CMC-trans-
ported spatial coordinates:

@˛
. EI/J˛ D

2A

t
jtAC1@ EIkj

2
g C

AC 1

2t
jtAC1@@ EIgj

2
g C

.BorderI EI/J C .JunkI EI/J ; (7.15)

where

.BorderI EI/J WD 2tAC1gacg
bd .@ EIk

a
b/
.BorderI1I EI/Kc

d

C
1

2
tAC1gadgbegcf .@a@ EIgbc/

.BorderI1I EI/Hdef

C 2tAC1gab.@a@ EIn/
.BorderI EI/Mb

C tAC1ngabgcd .@c@ EIgab/
.BorderI EI/Md

� tAC1ngabgcd .@a@ EIgbc/
.BorderI EI/Md

� tAC1ngab.@a@ EIgbc/
.BorderI EI/fMc

C 2t2AC2ngacg
idkbi .@ EIk

a
b/.@ EIk

c
d /

� 2t2AC2ngaig
bdkic.@ EIk

a
b/.@ EIk

c
d /
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C
1

2
t2AC2ngbegcf gidkai .@a@ EIgbc/.@d@ EIgef /

C t2AC2ngadgiegcf kbe.@a@ EIgbc/.@d@ EIgif /; (7.16a)

.JunkI EI/J WD 2tAC1gacg
bd .@ EIk

a
b/
.JunkI1I EI/Kc

d

C
1

2
tAC1gadgbegcf .@a@ EIgbc/

.JunkI1I EI/Hdef

C 2tAC1gab.@a@ EIn/
.JunkI EI/Mb

C tAC1ngabgcd .@c@ EIgab/
.JunkI EI/Md

� tAC1ngabgcd .@a@ EIgbc/
.JunkI EI/Md

� tAC1ngab.@a@ EIgbc/
.JunkI EI/fMc

C 2t2AC2.@jg
ab/.@ EIk

j
a/.@b@ EIn/

C t2AC2¹@j .ng
ijgbc/º.@ EIk

a
b/.@ EI@igac/

C t2AC2¹@j .ng
abgcd /º.@ EIk

j
c/.@d@ EIgab/

� t2AC2¹@j .ng
abgcd /º.@ EIk

j
c/.@a@ EIgbd /

� t2AC2¹@j .ng
abgjc/º.@ EIk

d
c/.@a@ EIgbd /: (7.16b)

Proof. We view the right-hand sides of equations (7.12a)–(7.12b) as quadratic forms
in .@ EIk; @@ EIg; @@ EIn/ with coefficients that depend on g, g�1, and n. We now consider
the expression @˛. EI/J˛ . On the right-hand side of (7.16b), we place all terms in which
spatial derivatives @j fall on the coefficients. In contrast, when @t falls on g or g�1, we
use (2.12a)–(2.12b) to substitute for @tg and @tg�1 and then place the resulting terms on
the right-hand side of (7.16a) (as the last four products). Next, we consider all of the terms
in the expression @˛. EI/J˛ in which a derivative falls on one of @ EIk, @@ EIg, or @@ EIn. For
these terms, we use equations (7.4a)–(7.4b) and (7.6a)–(7.6b) for algebraic substitution,
where P D 1 (by assumption) in (7.6a)–(7.6b). More precisely, in the expression @˛.

EI/J˛ ,
we use equation (7.6b) to substitute for the factor @t .tAC1@ EIk

c
d
/ in

2gacg
bd .tAC1@ EIk

a
b/@t .t

AC1@ EIk
c
d /;

equation (7.6a) to substitute for the factor @t .tAC1@ EI@d@gef / in

1

2
gadgbegcf .tAC1@ EI@a@gbc/@t .t

AC1@ EI@d@gef /;

equation (7.4a) to substitute for the factor .tAC1@j @ EIk
j
a/ in

2gab.tAC1@j @ EIk
j
a/.t

AC1@b@ EIn/;

the factor .tAC1@j @ EIk
j
c/ in

ngabgcd .tAC1@j @ EIk
j
c/.t

AC1@d@ EIgab/;
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and the factor .tAC1@j @ EIk
j
c/ in

�ngabgcd .tAC1@j @ EIk
j
c/.t

AC1@a@ EIgbd /;

and equation (7.4b) to substitute for the factor gjc.tAC1@j @ EIk
d
c/ in

�ngabgjc.tAC1@j @ EIk
d
c/.t

AC1@a@ EIgbd /:

These algebraic substitutions lead to the elimination of all products that depend on a der-
ivative of .@ EIk; @@ EIg; @@ EIn/, at the expense of introducing products that depend on the
inhomogeneous terms, for example

2gacg
bd .tAC1@ EIk

a
b/
.BorderI1I EI/Kc

d and 2gacg
bd .tAC1@ EIk

a
b/
.JunkI1I EI/Kc

d :

We place the borderline error term products such as

2gacg
bd .tAC1@ EIk

a
b/
.BorderI1I EI/Kc

d

on the right-hand side of (7.16a) and the junk error term products such as

2gacg
bd .tAC1@ EIk

a
b/
.JunkI1I EI/Kc

d

on the right-hand side of (7.16b). Moreover, as the first product on the right-hand side
of (7.15), we place

2A

t
jtAC1@ EIkj

2
g ;

which is generated by the first term on the right-hand side of (7.6b) when we use equation
(7.6b) (with P D 1) to substitute for the factor @t .tAC1@ EIk

c
d
/ in the expression

2gacg
bd .tAC1@ EIk

a
b/@t .t

AC1@ EIk
c
d /:

Finally, as the second product on the right-hand side of (7.15), we place

AC 1

2t
jtAC1@@ EIgj

2
g ;

which is generated by the first term on the right-hand side of (7.6a) when we use equation
(7.6a) to substitute for the factor @t .tAC1@ EI@d@gef / in the expression

1

2
gadgbegcf .tAC1@ EI@a@gbc/@t .t

AC1@ EI@d@gef /:

In total, these steps yield the lemma.

7.3. Control of the error terms

In this subsection, we derive estimates for the error terms that will arise when we derive
energy estimates for solutions to the equations of Lemma 7.1.
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7.3.1. Pointwise estimates for the error terms in the divergence of the energy current.
In this subsubsection, we derive pointwise estimates for the error terms .BorderI EI/J and
.JunkI EI/J that appear in the expression (7.15) for @˛.

EI/J˛ .

Lemma 7.17 (Pointwise estimates for the error terms in the divergence of the energy
current). Let EI be a top-order spatial multi-index, that is, a multi-index with j EI j D N .
Assume that the bootstrap assumptions (3.18) hold. There exist a constant C� > 0 inde-
pendent of N and A and a constant C D CN;A;D;q;¢ > 0 such that if N is sufficiently
large in a manner that depends on A, D, q, and ¢ , and if " is sufficiently small (in a man-
ner that depends onN ,A,D, q, and ¢), then the error terms .BorderI EI/J and .JunkI EI/J from
(7.16a) and (7.16b) verify the following pointwise estimates for t 2 .T.Boot/; 1�:

j
.BorderI EI/J j � C�t

2AC1
j@ EIkj

2
g C C�t

2AC1
j@@ EIgj

2
g C C�t

2AC1
j@@ EInj

2
g

C C�t j
.BorderI1I EI/Kj2g C C�t j

.BorderI1I EI/Hj2g

C C�t j
.BorderI EI/Mj2g C C�t j

.BorderI EI/fMj2g ; (7.18a)

j
.JunkI EI/J j � Ct2AC1C¢ j@ EIkj

2
g C Ct

2AC1C¢
j@@ EIgj

2
g C Ct

2AC1C¢
j@@ EInj

2
g

C Ct1�¢ j.JunkI1I EI/Kj2g C Ct
1�¢
j
.JunkI1I EI/Hj2g

C Ct1�¢ j.JunkI EI/Mj2g C Ct
1�¢
j
.JunkI EI/Mj2g

C Ct1�¢ j
.JunkI EI/fMj2g : (7.18b)

Proof. Throughout this proof, we will assume that A• is sufficiently small (and in partic-
ular that A• < ¢); in view of the discussion in Section 4.4, we see that at fixed A, this can
be achieved by choosing N to be sufficiently large.

Estimate (7.18a) follows in a straightforward fashion from applying the g-Cauchy–
Schwarz inequality and Young’s inequality (in the form jabj � 1

2
.a2 C b2/) to the prod-

ucts on the right-hand side of (7.16a) and using the estimate jgjg D jg�1jg � C� as
well as the pointwise estimates jnj � C� and jkjg � C�t�1, which follow from (3.2),
Definition 3.14, and the bootstrap assumptions.

To prove (7.18b), we first note the estimate kn � 1kL1.†t / � Ct
¢ , which follows

from Definition 3.14, (3.2), and the bootstrap assumptions. Next, we use (4.4) with l D 2
and m D 1 to deduce

k@g�1kL1g .†t / � t
�3q
kg�1k PW 1;1

Frame .†t /
:

Also using (3.2) and (4.12b), we deduce that

k@g�1kL1g .†t / � Ct
�5q�A•

� Ct¢�1:

Using similar reasoning and the bound (4.12c), we deduce that

k@nkL1g .†t / � Ct
2�11q�¢�A•

� Ct¢�1:

Using these three bounds to help control the j � jg norms of the products on the right-hand
side of (7.16b), we can derive inequality (7.18b) using arguments similar to the ones we
used to deduce (7.18a).
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7.3.2. L2 estimates for the error terms in the divergence of the energy current. In this
subsubsection, we bound the error terms from Lemma 7.3 in the norm k � kL2g.†t /.

Lemma 7.19 (L2 control of the error terms in the top-order energy estimates for g and k).
Assume that the bootstrap assumptions (3.18) hold. There exists a constant C� > 0 inde-
pendent of N and A and a constant C D CN;A;D;q;¢ > 0 such that if N is sufficiently
large in a manner that depends on A, D, q, and ¢ , and if " is sufficiently small (in
a manner that depends on N , A, D, q, and ¢), then the following estimates hold for
t 2 .T.Boot/; 1�.

� Borderline top-order error term estimates. For each top-order spatial multi-index
EI (i.e., j EI j D N ), the following estimates hold for the error terms from (7.5a), (7.5c),
(7.7a), and (7.8a), where P D 1 on the right-hand sides of (7.7a) and (7.8a):

k
.BorderI EI/MkL2g.†t / � C�kt

A@@ EIgkL2g.†t /; (7.20a)

k
.BorderI EI/fMkL2g.†t / � C�ktA@@ EIgkL2g.†t /; (7.20b)

k
.BorderI1; EI/HkL2g.†t / � C�kt

A@ EIkkL2g.†t /CCt
¢�1
¹L.g;k/.t/CH.g;k/.t/º; (7.20c)

k
.BorderI1I EI/KkL2g.†t / � C�kt

A@ EIkkL2g.†t /CCt
¢�1
¹L.g;k/.t/CH.g;k/.t/º: (7.20d)

� Non-borderline top-order error term estimates. The following estimates hold for
the error terms from (7.5b), (7.5d), (7.7b), and (7.8b), where P D 1 on the right-hand
sides of (7.7b) and (7.8b):

max
j EI jDN

k
.JunkI EI/MkL2g.†t / � Ct

¢�1
¹L.g;k/.t/CH.g;k/.t/º; (7.21a)

max
j EI jDN

k
.JunkI EI/fMkL2g.†t / � Ct¢�1¹L.g;k/.t/CH.g;k/.t/º; (7.21b)

max
j EI jDN

k
.JunkI1I EI/HkL2g.†t / � Ct

¢�1
¹L.g;k/.t/CH.g;k/.t/º; (7.21c)

max
j EI jDN

k
.JunkI1I EI/KkL2g.†t / � Ct

¢�1
¹L.g;k/.t/CH.g;k/.t/º: (7.21d)

Proof. Throughout this proof, we will assume that A• is sufficiently small (and in partic-
ular that A• < ¢); in view of the discussion in Section 4.4, we see that at fixed A, this can
be achieved by choosing N to be sufficiently large. We also freely use the observations of
Remark 3.13.

The proof of the lemma is lengthy but straightforward. The main task is to control
derivatives of products in k � kL2g.†t /. To help the reader navigate the estimates, we make
the following remarks.
� To control products involving n, we use Proposition 5.1; this allows us to state all of

our estimates in term of norms of g and k.
� The “Borderline” error terms that we have identified throughout the article are the eas-

iest to estimate. The reason is that they are all of the schematic form Lowest � Highest,
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where “Lowest” denotes products of g, g�1, and k, and “Highest” denotes a top-order
term. We bound all of these products in k � kL2g.†t / by first bounding their j � jg norms
by . jLowestjg � jHighestjg , using that jgjg . 1, jg�1jg . 1, jkjg . t�1 (where the
last estimate is an easy consequence of the bootstrap assumptions), and then boundingsZ

†t

jHighestj2g dx

in terms of H.g;k/.t/ by directly appealing to Definition 3.16 if “Highest” is a top-
order derivative of g of k, or by using Proposition 5.1 if “Highest” is a top-order
derivative of n.
� We handle the “Junk” products on a case-by-case basis. To bound them in the norm
k � kL2g.†t /

, we rely on all of the norms from Definitions 3.14 and 3.16, the interpo-
lation results provided by Lemma 4.5, the product estimates provided by Lemma 4.8,
and the Sobolev embedding results provided by Lemma 4.11. We highlight three
crucial things that we have to carefully track:
(i) the number of factors of g and g�1 in the products (these factors can be hit with

derivatives), since our framework allows for the possibility that each of these
factors contributes at least a factor of t�2q to the estimates;

(ii) the norm comparison results of Lemma 4.3, which show that additional factors
of t�2q can be generated in translating from the frame norms j � jFrame to the
geometric norms j � jg ; and

(iii) the precise details of the way that the t -weights appear in Definitions 3.14 and
3.16.

Proof of (7.20a)–(7.20d). Let EI be a spatial multi-index with j EI j D N . We first use Defi-
nition 3.14, the fact that jg�1jg � C�, the bootstrap assumptions, and g-Cauchy–Schwarz
to bound the product on the right-hand side of (7.5a) as follows:

j
.BorderI EI/Mjg � C�t

AC1
kkkL1g .†t /j@@ EIgjg � C�t

A
j@@ EIgjg :

Taking the norm k � kL2.†t / of this inequality, we conclude that

k
.BorderI EI/MkL2g.†t / � C�kt

A@@ EIgkL2g.†t /

as desired. Estimate (7.20b) follows similarly based on equation (7.5c), and we omit the
details. The estimates (7.20c) and (7.20d) follow similarly based on equations (7.7a) and
(7.8a) (with P D 1 by assumption) and the elliptic estimate (5.4), and we omit the details.

Proof of (7.21a)–(7.21b). We prove only (7.21b); estimate (7.21a) can be proved by
applying a similar argument to the products on the right-hand side of (7.5b) and we omit
those details. Let EI be a spatial multi-index with j EI j D N . To obtain the desired bound
for the sum on the right-hand side of (7.5d), we first consider the cases in which j EI1j D N
or j EI2j D N . Using that jg�1jg . 1 and g-Cauchy–Schwarz, we first bound the products
under consideration in the norm k � kL2g.†t / by

. tAC1k@gkL1g .†t /kkkL1g .†t /kg
�1
k PHNg .†t /

:
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Applying (4.4) to k@gkL1g .†t / (with l D 0 and m D 3), we deduce that the right-hand
side of the previous expression is

. tAC1�3qkgk PW 1;1
Frame.†t /

kkkL1g .†t /kg
�1
k PHNg .†t /

:

From Definitions 3.14 and 3.16, estimate (4.12a), and the bootstrap assumptions, we
deduce that the right-hand side of the previous expression is . t�6q�¢�A•H.g;k/.t/,
which, in view of (3.2), is . RHS (7.21b) as desired. We now consider the case in which
j EI3j D N � 1 on the right-hand side of (7.5d). Using that jg�1jg . 1 and g-Cauchy–
Schwarz, we first bound the products under consideration in the norm k � kL2g.†t / by

. tAC1kg�1k PW 1;1
g .†t /

kkkL1g .†t /k@gk PHN�1g .†t /
C tAC1kkk PW 1;1

g .†t /
k@gk PHN�1g .†t /

:

Applying (4.4) to kg�1k PW 1;1
g .†t / (with l D 2 and mD 0) and to kkk PW 1;1

g .†t / (with
l DmD 1), we deduce that the right-hand side of the previous expression is

. tAC1�2qkg�1k PW 1;1
Frame .†t /

kkkL1g .†t /k@gk PHN�1g .†t /

C tAC1�2qkkk PW 1;1
Frame .†t /

k@gk PHN�1g .†t /
:

From Definitions 3.14 and 3.16, estimate (4.12b), and the bootstrap assumptions, we
deduce that the right-hand side of the previous expression is . t�6q�¢�A•H.g;k/.t/,
which, in view of (3.2), is . RHS (7.21b) as desired. We now consider the case in which
j EI4j D N on the right-hand side of (7.5d). Using that jg�1jg . 1 and g-Cauchy–Schwarz,
we first bound the products under consideration in the norm k � kL2g.†t / by

. tAC1k@gkL1g .†t /kkk PHNg .†t /
:

Applying (4.4) to k@gkL1g .†t / (with l D 0 and m D 3), we deduce that the right-hand
side of the previous expression is

. tAC1�3qkgk PW 1;1
Frame .†t /

kkk PHNg .†t /
:

From Definition 3.16, estimate (4.12a), and the bootstrap assumptions, we deduce that the
right-hand side of the previous expression is . t�5q�A•H.g;k/.t/, which, in view of (3.2),
is . RHS (7.21b) as desired. It remains for us to consider the remaining terms on the
right-hand side of (7.5d), in which j EI1j; j EI2j; j EI4j � N � 1 and j EI3j � N � 2. We first use
inequality (4.10) with l D 1 and m D 0 (since .JunkI EI/fMi is a type

�
1
0

�
tensorfield) and

(4.6) to bound (using that j EI j D N ) the terms under consideration as follows:X
EI1CEI2CEI3CEI4DEI

j EI1j;j EI2j;j EI4j�N�1

j EI3j�N�2

tAC1k.@ EI1
g�1/.@ EI2

g�1/.@@ EI3
g/@ EI4

kkL2g.†t /

. tAC1�qkg�1k2
W
2;1

Frame .†t /
kg ��gk

W
2;1

Frame .†t /
kkk PHN�1Frame .†t /

C tAC1�qkg�1k2
W
2;1

Frame .†t /
kkk

W
2;1

Frame .†t /
kgk PHN�1Frame .†t /

C tAC1�qkg�1k
W
2;1

Frame .†t /
kg ��gk

W
2;1

Frame .†t /
kkk

W
2;1

Frame .†t /
kg�1k PHN�1Frame .†t /

C tAC1�qkg�1k2
W
2;1

Frame .†t /
kg ��gk

W
2;1

Frame .†t /
kkk

W
2;1

Frame .†t /
: (7.22)
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From Definitions 3.14 and 3.16, estimates (4.2a), (4.2b), (4.12a), and (4.12b), and the
bootstrap assumptions, we deduce that

RHS (7.22) . t1�10q�3¢�A•¹L.g;k/.t/CH.g;k/.t/º:

In view of inequalities (3.2), we see that the right-hand side of the previous expression is
. RHS (7.21b) as desired.

Proof of (7.21c). We stress that for this estimate, on the right-hand side of (7.7b), we
have P D 1 and j EI j D N .

To bound the first product on the right-hand side of (7.7b), we first use g-Cauchy–
Schwarz to deduce that it is bounded in the norm k � kL2g.†t / by

� tAC1kn � 1kL1.†t /kkkL1g .†t /k@gk PHNg .†t /
:

From Definitions 3.14 and 3.16, (3.2), and the bootstrap assumptions, we see that the
right-hand side of the previous expression is

. t1�10q�¢H.g;k/.t/ . t¢�1H.g;k/.t/

as desired.
To complete the proof of (7.21c), we must bound the three sums on the right-hand side

of (7.7b) in the norm k � kL2g.†t /. To bound the first sum on the right-hand side of (7.7b),
we first consider the products with j EI3j DN . Using that jgjg . 1 and g-Cauchy–Schwarz,
we first bound the products under consideration in the norm k � kL2g.†t / by

. tAC1k@nkL1g .†t /kkk PHNg .†t /
:

Applying (4.4) to k@nkL1g .†t / (with l D 0 and m D 1), we deduce that the right-hand
side of the previous expression is

. tAC1�qknk PW 1;1.†t /
kkk PHNg .†t /

:

From Definition 3.16, estimate (4.12c), and the bootstrap assumptions, we deduce that the
right-hand side of the previous expression is

. t2�11q�¢�A•H.g;k/.t/;

which, in view of (3.2), is . RHS (7.21c) as desired. It remains for us to bound the prod-
ucts in the first sum on the right-hand side of (7.7b) with j EI1j; j EI3j � N � 1. We first use
inequality (4.10) with l D 0 and m D 3 (since .JunkIP I EI/H is a type

�
0
3

�
tensorfield) and

(4.6) to deduce (using that j EI j D N ) that the products under consideration are bounded
as follows: X

EI1CEI2CEI3DEI

j EI1j;j EI3j�N�1

tAC1k.@@ EI1
n/.@ EI2

g/@ EI3
kkL2g.†t / (7.23)

. tAC1�3qkn � 1kW 2;1.†t /
kgk

W
1;1

Frame .†t /
kkk PHN�1Frame .†t /

C tAC1�3qkn � 1kW 2;1.†t /
kkk

W
1;1

Frame .†t /
kgk PHNFrame.†t /

C tAC1�3qkgk
W
1;1

Frame .†t /
kkk

W
1;1

Frame .†t /
knk PHN .†t /

C tAC1�3qkn � 1kW 2;1.†t /
kkk

W
1;1

Frame .†t /
kgk

W
1;1

Frame .†t /
:
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From Definitions 3.14 and 3.16, estimates (4.2a), (4.2b), (4.12a), and (4.12c), the elliptic
estimates (5.2) and (5.4), and the bootstrap assumptions, we deduce that

RHS (7.23) . t3�18q�2¢�A•¹L.g;k/.t/CH.g;k/.t/º

C t2�15q�2¢�A•¹L.g;k/.t/CH.g;k/.t/º

C t�5q�A•¹L.g;k/.t/CH.g;k/.t/º: (7.24)

In view of (3.2), we see that RHS (7.24) . RHS (7.21c) as desired.
To bound the second sum on the right-hand side of (7.7b), we first consider the

products with j EI3j D N . Using g-Cauchy–Schwarz, we first bound the products under
consideration in the norm k � kL2g.†t / by

. tAC1knkL1.†t /k@gkL1g .†t /kkk PHNg .†t /
:

Applying (4.4) to k@gkL1g .†t / (with l D 0 and m D 3), we deduce that the right-hand
side of the previous expression is

. tAC1�3qknkL1.†t /kgk PW 1;1
Frame .†t /

kkk PHNg .†t /
:

From (3.2), Definitions 3.14 and 3.16, estimate (4.12a), and the bootstrap assumptions, we
deduce that the right-hand side of the previous expression is . t�5q�A•H.g;k/.t/, which,
in view of (3.2), is . RHS (7.21c) as desired. It remains for us to consider the remaining
terms in the second sum on the right-hand side of (7.7b), in which j EI2j; j EI3j � N � 1. We
first use (4.10) with l D 0 andm D 3 (since .JunkIP I EI/H is a type

�
0
3

�
tensorfield) and (4.6)

to deduce (using that j EI j D N ) that the terms under consideration are bounded as follows:X
EI1CEI2CEI3DEI

j EI2j;j EI3j�N�1

tAC1k.@ EI1
n/.@@ EI2

g/@ EI3
kkL2g.†t /

. tAC1�3qknkW 1;1.†t /
kg ��gk

W
2;1

Frame .†t /
kkk PHN�1Frame .†t /

C tAC1�3qknkW 1;1.†t /
kkk

W
1;1

Frame .†t /
kgk PHNFrame.†t /

C tAC1�3qkg ��gk
W
2;1

Frame .†t /
kkk

W
1;1

Frame .†t /
knk PHN .†t /

C tAC1�3qknkW 1;1.†t /
kkkL1Frame.†t /

kg ��gk
W
2;1

Frame .†t /
: (7.25)

From (3.2), Definitions 3.14 and 3.16, estimates (4.2b), (4.12a), and (4.12c), and the
bootstrap assumptions, we deduce that

RHS (7.25) . t1�8q�¢�A•¹L.g;k/.t/CH.g;k/.t/º C t
�5q�¢�A•

¹L.g;k/.t/CH.g;k/.t/º:

In view of inequalities (3.2), we see that the right-hand side of the previous expression is
. RHS (7.21c) as desired.

To bound the last sum on the right-hand side of (7.7b), we first consider the prod-
ucts with j EI3j D N � 1. Using that jgjg . 1 and g-Cauchy–Schwarz, we first bound the
products under consideration in the norm k � kL2g.†t / by

. tAC1knk PW 1;1.†t /
k@kk PHN�1g .†t /

C tAC1knkL1.†t /kgk PW 1;1
g .†t /

k@kk PHN�1g .†t /
:
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Using (4.4) (with l D 0 and m D 2) to estimate kgk PW 1;1
g .†t /, and using the definition of

the norms k � k PHM
g .†t / and k � kL2Frame.†t /, we deduce (see Remark 3.13) that the right-hand

side of the previous expression is

. tAC1knk PW 1;1.†t /
kg�1k

1=2

L1Frame.†t /
kkk PHNg .†t /

C tAC1�2qknkL1.†t /kgk PW 1;1
Frame .†t /

kg�1k
1=2

L1Frame.†t /
kkk PHNg .†t /

:

From (3.2), Definitions 3.14 and 3.16, estimates (4.2a), (4.12a) and (4.12c), and the
bootstrap assumptions, we deduce that the right-hand side of the previous expression is

. t2�11q�¢�A•H.g;k/.t/C t
�5q�A•H.g;k/.t/;

which, in view of (3.2), is . RHS (7.21c) as desired. It remains for us to consider the
remaining terms in the last sum on the right-hand side of (7.7b), in which j EI3j � N � 2.
We first use (4.10) with l D 0 and m D 3 (since .JunkIP I EI/H is a type

�
0
3

�
tensorfield) and

(4.6) to deduce (using that j EI j D N ) that the terms under consideration are bounded as
follows: X

EI1CEI2CEI3DEI

j EI3j�N�2

tAC1k.@ EI1
n/.@ EI2

g/@@ EI3
kkL2g.†t /

. tAC1�3qknkW 2;1.†t /
kgk

W
2;1

Frame .†t /
kkk PHN�1Frame .†t /

C tAC1�3qknkW 2;1.†t /
kkk PW 1;1

Frame .†t /
kgk PHNFrame.†t /

C tAC1�3qkgk
W
2;1

Frame .†t /
kkk PW 1;1

Frame .†t /
knk PHN .†t /

C tAC1�3qknkW 2;1.†t /
kkk PW 1;1

Frame .†t /
kgk

W
2;1

Frame .†t /
: (7.26)

From (3.2), Definitions 3.14 and 3.16, estimates (4.2a), (4.12a), and (4.12c), and the
bootstrap assumptions, we deduce that

RHS (7.26) . t1�8q�¢�A•¹L.g;k/.t/CH.g;k/.t/º C t
�5q�¢�A•

¹L.g;k/.t/CH.g;k/.t/º:

In view of inequalities (3.2), we see that the right-hand side of the previous expression is
. RHS (7.21c) as desired.

Proof of (7.21d). We stress that for this estimate, on the right-hand side of (7.8b), we
have P D 1 and j EI j D N .

To bound the first sum on the right-hand side of (7.8b), we first consider the case in
which j EI2j D N . Then the terms under consideration are bounded in the norm k � kL2g.†t /
by

. tAkn � 1kL1.†t /kkk PHNg .†t /
:

From Definitions 3.14 and 3.16 and (3.2), we see that the right-hand side of the previous
expression is

. t1�10q�¢H.g;k/.t/ . t¢�1H.g;k/.t/
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as desired. We now consider the remaining cases, in which j EI1j �N � 1 and j EI2j �N � 1.
First, using (4.10) with l D m D 1 (since .JunkI1I EI/K is a type

�
1
1

�
tensorfield) and (4.6),

we bound (using that j EI j D N ) the products under consideration as follows:X
EI1CEI2DEI

j EI1j;j EI2j�N�1

ktA¹@ EI1
.n � 1/º@ EI2

kkL2g.†t /

. tA�2qkn � 1k PW 1;1.†t /
kkk PHN�1Frame .†t /

C tA�2qkkk PW 1;1
Frame .†t /

knk PHN�1.†t /: (7.27)

From Definitions 3.14 and 3.16, estimate (4.12c), and the bootstrap assumptions, we
deduce that

RHS (7.27) . t2�15q�2¢�A•H.g;k/.t/C t
�3q
¹L.g;k/.t/CH.g;k/.t/º:

In view of inequalities (3.2), we see that the right-hand side of the previous expression is
. RHS (7.21d) as desired.

To bound the second sum on the right-hand side of (7.8b), we first consider the cases
in which j EI5j D N or j EI6j D N . Using that jg�1jg . 1, we deduce that the terms under
consideration are bounded in the norm k � kL2g.†t / by

. tAC1knkL1.†t /k@gkL1g .†t /k@gk PHNg .†t /
:

Using (4.4) (with l D 0 and m D 3) to estimate k@gkL1g .†t /, we see that the right-hand
side of the previous expression is

. tAC1�3qknkL1.†t /kgk PW 1;1
Frame .†t /

k@gk PHNg .†t /
:

From (3.2), Definitions 3.14 and 3.16, estimate (4.12a), and the bootstrap assumptions, we
see that the right-hand side of the previous expression is . t�5q�A•H.g;k/.t/. Using (3.2),
we see that the right-hand side of the previous expression is . RHS (7.21d) as desired. We
now consider the remaining cases, in which j EI5j � N � 1 and j EI6j � N � 1. Using (4.10)
with l D m D 1 (since .JunkI1I EI/K is a type

�
1
1

�
tensorfield) and (4.6), we deduce (using

that j EI j D N ) thatX
EI1CEI2C���C EI6DEI

j EI5j;j EI6j�N�1

tAC1k.@ EI1
n/.@ EI2

g�1/.@ EI3
g�1/.@ EI4

g�1/.@@ EI5
g/@@ EI6

gkL2g.†t /

. tAC1�2qknkW 1;1.†t /
kg�1k3

W
1;1

Frame .†t /
kg ��gk

W
2;1

Frame .†t /
kgk PHNFrame.†t /

C tAC1�2qknkW 1;1.†t /
kg�1k2

W
1;1

Frame .†t /
kg��gk2

W
2;1

Frame .†t /
kg�1k PHNFrame.†t /

C tAC1�2qkg ��gk2
W
2;1

Frame .†t /
kg�1k3

W
1;1

Frame .†t /
knk PHN .†t /

C tAC1�2qknkW 1;1.†t /
kg�1k3

W
1;1

Frame .†t /
kg ��gk2

W
2;1

Frame .†t /
: (7.28)
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From (3.2), Definition 3.16, estimates (4.2a) and (4.12a)–(4.12c), the elliptic estimate
(5.4), and the bootstrap assumptions, we deduce that

RHS (7.28) . t1�12q�¢�A•¹L.g;k/.t/CH.g;k/.t/º:

In view of inequalities (3.2), we see that the right-hand side of the previous expression is
. RHS (7.21d) as desired.

To bound the third sum on the right-hand side of (7.8b), we first consider the case in
which j EI4j D N � 1. Using that jg�1jg . 1 and g-Cauchy–Schwarz, we deduce that the
terms under consideration are bounded in the norm k � kL2g.†t / by

. tAC1knk PW 1;1.†t /
k@2gk PHN�1g .†t /

C tAC1knkL1.†t /k@gkL1g .†t /k@
2gk PHN�1g .†t /

:

Using (4.4) (with l D 0 and m D 3) to estimate k@gkL1g .†t /, and using the definition of
the norms k � kL1Frame.†t /, k � kL1g .†t /, and k � k PHM

g .†t /, we deduce (see Remark 3.13) that
the right-hand side of the previous expression is

. tAC1knk PW 1;1.†t /
kg�1k

1=2

L1Frame.†t /
k@gk PHNg .†t /

C tAC1�3qknkL1.†t /kg
�1
k
1=2

L1Frame.†t /
kgk PW 1;1

Frame .†t /
k@gk PHNg .†t /

:

From (3.2), Definitions 3.14 and 3.16, estimates (4.2a), (4.12a) and (4.12c), and the
bootstrap assumptions, we see that the right-hand side of the previous expression is

. t2�11q�¢�A•H.g;k/.t/C t
�6q�A•H.g;k/.t/:

In view of inequalities (3.2), we see that the right-hand side of the previous expression is
. RHS (7.21d) as desired. We now consider the remaining cases, in which j EI4j � N � 2.
Using (4.10) with l D m D 1 (since .JunkI1I EI/K is a type

�
1
1

�
tensorfield) and (4.6), we

deduce (using that j EI j D N ) thatX
EI1CEI2CEI3CEI4DEI

j EI4j�N�2

tAC1k.@ EI1
n/.@ EI2

g�1/.@ EI3
g�1/@2@ EI4

gkL2g.†t /

. tAC1�2qknkW 2;1.†t /
kg�1k2

W
2;1

Frame .†t /
kgk PHNFrame.†t /

C tAC1�2qknkW 2;1.†t /
kg�1k

W
2;1

Frame .†t /
kgk

W
2;1

Frame .†t /
kg�1k PHNFrame.†t /

C tAC1�2qkg�1k2
W
2;1

Frame .†t /
kgk

W
2;1

Frame .†t /
knk PHN .†t /: (7.29)

From (3.2), Definition 3.16, estimates (4.2a) and (4.12a)–(4.12c), the elliptic estimate
(5.4), and the bootstrap assumptions, we deduce that

RHS (7.29) . t1�8q�¢�A•¹L.g;k/.t/CH.g;k/.t/º:

In view of inequalities (3.2), we see that the right-hand side of the previous expression is
. RHS (7.21d) as desired.

To bound the fourth sum on the right-hand side of (7.8b), we first consider the case in
which j EI2j D N � 1. Using g-Cauchy–Schwarz, we deduce that the terms under consid-
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eration are bounded in the norm k � kL2g.†t / by

. tAC1kg�1k PW 1;1
g .†t /

k@2nk PHN�1g .†t /
:

Using (4.4) (with l D 2 and m D 0) to estimate kg�1k PW 1;1
g .†t /, and using the definition

of the norms k � kL1Frame.†t /, k � kL1g .†t /, and k � k PHM
g .†t /, we deduce (see Remark 3.13)

that the right-hand side of the previous expression is

. tAC1�2qkg�1k PW 1;1
Frame .†t /

kg�1k
1=2

L1Frame.†t /
k@nk PHNg .†t /

:

From (3.2), Definition 3.16, estimates (4.2a) and (4.12b), and the bootstrap assumptions,
we see that the right-hand side of the previous expression is

. t�5q�A•¹L.g;k/.t/CH.g;k/.t/º:

In view of inequalities (3.2), we see that the right-hand side of the previous expression is
. RHS (7.21d) as desired. We now consider the remaining cases, in which j EI2j � N � 2.
Using (4.10) with l D m D 1 (since .JunkI1I EI/K is a type

�
1
1

�
tensorfield) and (4.6), we

deduce (using that j EI j D N ) thatX
EI1CEI2DEI

j EI2j�N�2

tAC1k.@ EI1
g�1/@2@ EI2

nkL2g.†t /

. tAC1�2qknk PW 2;1.†t /
kg�1k PHNFrame.†t /

C tAC1�2qkg�1k PW 2;1
Frame .†t /

knk PHN .†t /: (7.30)

From (3.2), Definition 3.16, estimates (4.2a), (4.12b), and (4.12c), and the bootstrap
assumptions, we deduce that

RHS (7.30) . t3�14q�2¢�A•H.g;k/.t/C t
1�4q�A•

¹L.g;k/.t/CH.g;k/.t/º:

In view of inequalities (3.2), we see that the right-hand side of the previous expression is
. RHS (7.21d) as desired.

To bound the last sum on the right-hand side of (7.8b), we first consider the case
in which j EI3j D N . Using that jg�1jg . 1 and g-Cauchy–Schwarz, we deduce that the
terms under consideration are bounded in the norm k � kL2g.†t / by

. tAC1k@nkL1g .†t /k@gk PHNg .†t /
:

Next, using (4.4) (with l D 0 and m D 1) to estimate k@nkL1g .†t /, we see that the right-
hand side of the previous expression is

. tAC1�qknk PW 1;1.†t /
k@gk PHNg .†t /

:

From Definition 3.16, estimate (4.12c), and the bootstrap assumptions, we see that the
right-hand side of the previous expression is . t2�11q�¢�A•H.g;k/.t/, which, in view
of (3.2), is . RHS (7.21d) as desired. We now consider the case in which j EI4j D N . Using
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that jg�1jg . 1 and g-Cauchy–Schwarz, we deduce that the terms under consideration
are bounded in the norm k � kL2g.†t / by

. tAC1k@gkL1g .†t /k@nk PHNg .†t /
:

Next, using (4.4) (with l D 0 and m D 3) to estimate k@gkL1g .†t /, we see that the right-
hand side of the previous expression is

. tAC1�3qkgk PW 1;1
Frame .†t /

k@nk PHNg .†t /
:

From Definition 3.16 and estimate (4.12a), we see that the right-hand side of the previous
expression is

. t�5q�A•¹L.g;k/.t/CH.g;k/.t/ºH.n/.t/ . t�5q�A•¹L.g;k/.t/CH.g;k/.t/º:

In view of inequalities (3.2), we see that the right-hand side of the previous expression is
. RHS (7.21d) as desired. We now consider the remaining cases, in which j EI3j � N � 1
and j EI4j � N � 1. Using (4.10) with l D m D 1 (since .JunkI1I EI/K is a type

�
1
1

�
tensor-

field) and (4.6), we deduce (using that j EI j D N ) thatX
EI1CEI2CEI3CEI4DEI

j EI3j;j EI4j�N�1

tAC1k.@ EI1
g�1/.@ EI2

g�1/.@@ EI3
g/@@ EI4

nkL2g.†t /

. tAC1�2qkg�1k2
W
1;1

Frame .†t /
kg ��gk

W
2;1

Frame .†t /
knk PHN .†t /

C tAC1�2qknk
W
2;1

Frame .†t /
kg�1k2

W
1;1

Frame .†t /
kgk PHNFrame.†t /

C tAC1�2qknk
W
2;1

Frame .†t /
kg��gk

W
2;1

Frame .†t /
kg�1k

W
1;1

Frame .†t /
kg�1k PHNFrame.†t /

C tAC1�2qknk
W
2;1

Frame .†t /
kg�1k2

W
1;1

Frame .†t /
kg ��gk

W
2;1

Frame .†t /
: (7.31)

From (3.2), Definition 3.16, estimates (4.2a) and (4.12a)–(4.12c), and the bootstrap as-
sumptions, we deduce that

RHS (7.31) . t1�8q�¢�A•¹L.g;k/.t/CH.g;k/.t/º:

In view of inequalities (3.2), we see that the right-hand side of the previous expression is
. RHS (7.21d) as desired. We have therefore proved (7.21d), which completes the proof
of the lemma.

7.4. Proof of Proposition 7.1

In this subsection, we prove Proposition 7.1. Throughout this proof, we will assume that
A• is sufficiently small (and in particular that A• < ¢); in view of the discussion in Sec-
tion 4.4, we see that at fixed A, this can be achieved by choosing N to be sufficiently
large.

Let EI be a spatial multi-index with j EI j D N and let . EI/J be the energy current from
Definition 7.11. Applying the divergence theorem on the region Œt; 1� � TD , and consid-
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ering equation (7.12a), we deduce that for t 2 .T.Boot/; 1�, we haveZ
†t

²
jtAC1@ EIkj

2
g C

1

4
jtAC1@@ EIgj

2
g

³
dx

D

Z
†1

²
j@ EIkj

2
g C

1

4
j@@ EIgj

2
g

³
dx �

Z 1

sDt

Z
†s

@˛
. EI/J˛ dx ds: (7.32)

We now use equation (7.15) to substitute for the last integral on the right-hand side
of (7.32), thereby obtainingZ

†t

²
jtAC1@ EIkj

2
g C

1

4
jtAC1@@ EIgj

2
g

³
dx

D

Z
†1

²
j@ EIkj

2
g C

1

4
j@@ EIgj

2
g

³
dx

�

Z 1

sDt

s�1
Z
†s

²
2AjsAC1@ EIkj

2
g C

AC 1

2
jsAC1@@ EIgj

2
g

³
dx ds

�

Z 1

sDt

Z
†s

.BorderI EI/J dx ds �

Z 1

sDt

Z
†s

.JunkI EI/J dx ds: (7.33)

Next, we use the pointwise estimates (7.18a) and (7.18b) and the elliptic estimate (5.4)
to deduce that the last two integrals on the right-hand side of (7.33) are bounded in
magnitude by

� C�

Z 1

sDt

s�1
²
ksAC1@ EIkk

2

L2g.†s/
C
1

4
ksAC1@@ EIgk

2

L2g.†s/

³
ds

C C�

Z 1

sDt

sk.BorderI EI/Kk2
L2g.†s/

ds C C�

Z 1

sDt

sk.BorderI EI/Hk2
L2g.†s/

ds

C C�

Z 1

sDt

sk.BorderI EI/Mk2
L2g.†s/

ds C C�

Z 1

sDt

sk
.BorderI EI/fMk2

L2g.†s/
ds

C C

Z 1

sDt

s1�¢k.JunkI EI/Kk2
L2g.†s/

ds C C

Z 1

sDt

s1�¢k.JunkI EI/Hk2
L2g.†s/

ds

C C

Z 1

sDt

s1�¢k.JunkI EI/Mk2
L2g.†s/

ds C C

Z 1

sDt

s1�¢k
.JunkI EI/fMk2

L2g.†s/
ds

C C

Z 1

sDt

s¢�1¹L2.g;k/.s/CH2
.g;k/.s/º ds: (7.34)

Next, we use the estimates (7.20a)–(7.21d) to bound the terms on lines two to five of the
right-hand side of (7.34). Also noting that the termZ

†1

²
j@ EIkj

2
g C

1

4
j@@ EIgj

2
g

³
dx

on the right-hand side of (7.33) is � CH2
.g;k/

.1/, we arrive at the desired bound (7.2).
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8. Estimates for the near-top-order derivatives of g and k

Our primary goal in this section is to prove the following proposition, which provides
the main integral inequalities that we will use to control the near-top-order derivatives of
g and k; recall that, as we explained near the end of Section 1.5, for technical reasons,
we need these estimates to close our bootstrap argument. The proof of the proposition is
located in Section 8.3. In Sections 8.1–8.2, we provide the identities and estimates that
we will use when proving the proposition.

Proposition 8.1 (Integral inequalities for the near-top-order derivatives of g and k). We
assume that the bootstrap assumptions (3.18) hold. There exist a constant C� > 0 inde-
pendent of N and A and a constant C D CN;A;D;q;¢ > 0 such that if N is sufficiently
large in a manner that depends on A, D, q, and ¢ , and if " is sufficiently small (in a man-
ner that depends on N , A, D, q, and ¢), then the following integral inequalities hold for
t 2 .T.Boot/; 1�:

ktAC2qC¢gk2
PHNFrame.†t /

� CH2
.g;k/.1/ � 2A

Z 1

sDt

s�1ksAC2qC¢gk2
PHNFrame.†s/

ds

C C

Z 1

sDt

s¢�1¹L2.g;k/.s/CH2
.g;k/.s/º ds; (8.2a)

ktAC2qC¢g�1k2
PHNFrame.†t /

� CH2
.g;k/.1/ � 2A

Z 1

sDt

s�1ksAC2qC¢g�1k2
PHNFrame.†s/

ds

C C

Z 1

sDt

s¢�1¹L2.g;k/.s/CH2
.g;k/.s/º ds; (8.2b)

and

ktACqC¢gk2
PHNg .†t /

� CH2
.g;k/.1/ � 2A

Z 1

sDt

s�1ksACqC¢gk2
PHNg .†s/

ds

C C

Z 1

sDt

s¢�1¹L2.g;k/.s/CH2
.g;k/.s/º ds; (8.3a)

ktACqC¢g�1k2
PHNg .†t /

� CH2
.g;k/.1/ � 2A

Z 1

sDt

s�1ksACqC¢g�1k2
PHNg .†s/

ds

C C

Z 1

sDt

s¢�1¹L2.g;k/.s/CH2
.g;k/.s/º ds; (8.3b)

and

ktAC2qC¢@gk2
PHN�1g .†t /

� CH2
.g;k/.1/

� ¹2A � C�º

Z 1

sDt

s�1ksAC2qC¢@gk2
PHN�1g .†s/

ds

C C

Z 1

sDt

s¢�1¹L2.g;k/.s/CH2
.g;k/.s/º ds; (8.4)
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and

ktAC5qC3¢�1gk2
PHN�1Frame .†t /

� CH2
.g;k/.1/ � ¹2A � C�º

Z 1

sDt

s�1ksAC5qC3¢�1gk2
PHN�1Frame .†s/

ds

C C

Z 1

sDt

s¢�1¹L2.g;k/.s/CH2
.g;k/.s/º ds; (8.5a)

ktAC5qC3¢�1g�1k2
PHN�1Frame .†t /

� CH2
.g;k/.1/ � ¹2A � C�º

Z 1

sDt

s�1ksAC5qC3¢�1g�1k2
PHN�1Frame .†s/

ds

C C

Z 1

sDt

s¢�1¹L2.g;k/.s/CH2
.g;k/.s/º ds; (8.5b)

and

ktAC3qC¢kk2
PHN�1Frame .†t /

� CH2
.g;k/.1/ � ¹2A � C�º

Z 1

sDt

s�1ksAC3qC¢kk2
PHN�1Frame .†s/

ds

C

Z 1

sDt

s¢�1¹L2.g;k/.s/CH2
.g;k/.s/º ds; (8.6a)

and

ktAC3qC¢kk2
PHN�1g .†t /

� CH2
.g;k/.1/ � ¹2A � C�º

Z 1

sDt

s�1ksAC3qC¢kk2
PHN�1g .†s/

ds

C

Z 1

sDt

s¢�1¹L2.g;k/.s/CH2
.g;k/.s/º ds: (8.6b)

8.1. The equations

In this subsection, we derive the evolution equations verified by the near-top-order deriva-
tives of g.

Remark 8.7. Different from the case of g, to prove the desired estimates in Section 8, we
do not need to derive a new evolution equation for the derivatives of k; it will suffice for
us to use equation (7.6b). We note, however, that in Section 8, we choose the constant P
from equation (7.6b) to have a smaller value than it did in Section 7. This corresponds
to the fact that our estimates for the below-top-order derivatives for k are less singular
as t # 0 compared to our top-order estimates.

Lemma 8.8 (The equations). Let EI be a spatial multi-index and let P � 0 be a constant.
Then the following commuted metric evolution equations hold:

@t .t
ACP @ EIgij / D

1

t
¹.AC P /ıaj � 2ntk

a
j º.t

ACP @ EIgia/C
.P I EI/

Gij ; (8.9a)

@t .t
ACP @ EIg

ij / D
1

t
¹.AC P /ıja C 2ntk

j
aº.t

ACP @ EIg
ia/C

.P I EI/eG ij
; (8.9b)
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where
.P I EI/

Gij '

X
EI1CEI2CEI3DEI

j EI2j�j EI j�1

tACP .@ EI1
n/.@ EI2

g/@ EI3
k; (8.10a)

.P I EI/eG ij
'

X
EI1CEI2CEI3DEI

j EI2j�j EI j�1

tACP .@ EI1
n/.@ EI2

g�1/@ EI3
k: (8.10b)

Proof. Equation (8.9a) follows in a straightforward fashion from commuting equation
(2.12a) first with @ EI , and then with tACP . Equation (8.9b) follows from applying the
same procedure to equation (2.12b).

8.2. Control of the error terms in the near-top-order energy estimates

We now bound various L2 norms of the error terms from Lemma 8.8 in terms of the
solution norms.

Lemma 8.11 (L2 control of the error terms in the near-below-top-order energy esti-
mates for the g and k). Assume that the bootstrap assumptions (3.18) hold. If N is
sufficiently large in a manner that depends on A, D, q, and ¢ , then there exists a con-
stant C D CN;A;D;q;¢ > 0 such that if " is sufficiently small (in a manner that depends on
N , A, D, q, and ¢), then the following estimates hold for t 2 .T.Boot/; 1�.

� Error term estimates for the near-top-order derivatives of g. The following esti-
mates hold for the error terms from (8.10a)–(8.10b):

max
j EI jDN

k
.2qC¢I EI/

GkL2Frame.†t /
� Ct¢�1¹L.g;k/.t/CH.g;k/.t/º; (8.12a)

max
j EI jDN

k
.2qC¢I EI/eGkL2Frame.†t /

� Ct¢�1¹L.g;k/.t/CH.g;k/.t/º; (8.12b)

max
j EI jDN

k
.qC¢I EI/

GkL2g.†t / � Ct
¢�1
¹L.g;k/.t/CH.g;k/.t/º; (8.13a)

max
j EI jDN

k
.qC¢I EI/eGkL2g.†t / � Ct¢�1¹L.g;k/.t/CH.g;k/.t/º: (8.13b)

Furthermore, the following estimates hold for the error terms from (8.10a)–(8.10b):

max
j EI jDN�1

k
.AC5qC3¢�1I EI/

GkL2Frame.†t /

� C"tAC5qC3¢�2kgk PHN�1Frame .†t /
C Ct¢�1¹L.g;k/.t/CH.g;k/.t/º; (8.14a)

max
j EI jDN�1

k
.AC5qC3¢�1I EI/eGkL2Frame.†t /

� C"tAC5qC3¢�2kg�1k PHN�1Frame .†t /
C Ct¢�1¹L.g;k/.t/CH.g;k/.t/º: (8.14b)
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In addition, the following estimates hold for the error terms from (7.7a)–(7.7b):

max
j EI jDN�1

k
.BorderI2qC¢I EI/HkL2g.†t / � Ct

¢�1
¹L.g;k/.t/CH.g;k/.t/º; (8.15a)

max
j EI jDN�1

k
.JunkI2qC¢I EI/HkL2g.†t / � Ct

¢�1
¹L.g;k/.t/CH.g;k/.t/º: (8.15b)

Let EI be a spatial multi-index with j EI j D N � 1 and let T be the type
�
0
3

�
†t -tangent

tensorfield with the following components relative to the transported spatial coordi-
nates:

Teij DW �2ngia@e@ EIk
a
j :

Then the following estimate holds:

tAC2qC¢kT kL2g.†t / � Ct
¢�1H.g;k/.t/: (8.16)

� Error term estimates for the just-below-top-order derivatives of k. The following
estimates hold for the error terms from (7.8a)–(7.8b):

max
j EI jDN�1

k
.BorderI3qC¢I EI/KkL2Frame.†t /

� Ct¢�1¹L.g;k/.t/CH.g;k/.t/º; (8.17a)

max
j EI jDN�1

k
.JunkI3qC¢I EI/KkL2Frame.†t /

� Ct¢�1¹L.g;k/.t/CH.g;k/.t/º; (8.17b)

max
j EI jDN�1

k
.BorderI3qC¢I EI/KkL2g.†t / � Ct

¢�1
¹L.g;k/.t/CH.g;k/.t/º; (8.17c)

max
j EI jDN�1

k
.JunkI3qC¢I EI/KkL2g.†t / � Ct

¢�1
¹L.g;k/.t/CH.g;k/.t/º: (8.17d)

Let EI be any spatial multi-index with j EI j D N � 1 and let T be the type
�
1
1

�
†t -tangent

tensorfield with the following components relative to the transported spatial coordi-
nates:

T ij DW �g
ia@a@j @ EIn

C
1

2
ngicgab¹@a@c@ EIgbj C @a@j @ EIgbc � @a@b@ EIgcj � @c@j @ EIgabº:

Then the following estimates hold:

tAC3qC¢kT kL2Frame.†t /
� Ct¢�1H.g;k/.t/; (8.18a)

tAC3qC¢kT kL2g.†t / � Ct
¢�1H.g;k/.t/: (8.18b)

Proof. Throughout this proof, we will assume that A• is sufficiently small (and in partic-
ular that A• < ¢); in view of the discussion in Section 4.4, we see that at fixed A, this can
be achieved by choosing N to be sufficiently large. We also freely use the observations of
Remark 3.13.

Proof of (8.12a)–(8.12b). We first prove (8.12a). We stress that for this estimate, on the
right-hand side of (8.10a), we have P D 2q C ¢ and j EI j D N .
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We first consider the case in which j EI1j D N on the right-hand side of (8.10a). Using
now inequalities (4.4) with l D 0 and m D 2 (since .2qC¢I EI/G is type

�
0
2

�
), the fact that

jgjg . 1, and g-Cauchy–Schwarz, we deduce that the products under consideration are
bounded in the norm k � kL2Frame.†t /

by

. tAC2qC¢kg � kkL1Frame.†t /
knk PHN .†t /

. tAC¢kg � kkL1g .†t /knk PHN .†t /

. tAC¢kkkL1g .†t /knk PHN .†t /:

From Definitions 3.14 and 3.16, the elliptic estimate (5.4), and the bootstrap assumptions,
we deduce that the right-hand side of the previous expression is

. t¢�1¹L.g;k/.t/CH.g;k/.t/º

as desired. We next consider the case in which j EI3j D N on the right-hand side of (8.10a).
Using now inequalities (4.4) with l D 0 and m D 2 (since .2qC¢I EI/G is type

�
0
2

�
), and

g-Cauchy–Schwarz, we deduce that the products under consideration are bounded in the
norm k � kL2Frame.†t /

by
. tAC¢knkL1.†t /kkk PHNg .†t /

:

From inequalities (3.2), Definitions 3.14 and 3.16, and the bootstrap assumptions, we
deduce that the right-hand side of the previous expression is . t¢�1H.g;k/.t/ as desired. It
remains for us to consider the cases in which j EI1j; j EI2j; j EI3j � N �1 on the right-hand side
of (8.10a). We first use (4.6) and (4.9) to bound (using that j EI j D N ) the products under
consideration as follows:X

EI1CEI2CEI3DEI

j EI1j;j EI2j;j EI3j�N�1

tAC2qC¢k.@ EI1
n/.@ EI2

g/@ EI3
kkL2Frame.†t /

. tAC2qC¢knk
W
1;1

Frame .†t /
kkk

W
1;1

Frame .†t /
kgk PHN�1Frame .†t /

C tAC2qC¢knkW 1;1.†t /
kgk

W
1;1

Frame .†t /
kkk PHN�1Frame .†t /

C tAC2qC¢kgk
W
1;1

Frame .†t /
kkk

W
1;1

Frame .†t /
knk PHN�1.†t /

C tAC2qC¢knkW 1;1.†t /
kgk

W
1;1

Frame .†t /
kkk

W
1;1

Frame .†t /
: (8.19)

From (3.2), Definitions 3.14 and 3.16, estimates (4.2a), (4.2b), (4.12a), and (4.12c), the
elliptic estimate (5.5), and the bootstrap assumptions, we deduce that

RHS (8.19) . t�3q�2¢�A•¹L.g;k/.t/CH.g;k/.t/º;

which, in view of inequalities (3.2), is . RHS (8.12a) as desired. We have therefore
proved (8.12a).

Estimate (8.12b) can be proved by applying nearly identical arguments to the right-
hand side of (8.10b) (with P D 2q C ¢ and j EI j D N ), and we omit the details.



On the nature of Hawking’s incompleteness for the Einstein-vacuum equations 243

Proof of (8.13a)–(8.13b). We first prove (8.13a). We stress that for this estimate, on the
right-hand side of (8.10a), we have P D q C ¢ and j EI j D N .

To bound the right-hand side of (8.10a), we first consider the case in which j EI3j D N .
Using that jgjg . 1 and g-Cauchy–Schwarz, we deduce that the products under consid-
eration are bounded in the norm k � kL2g.†t / by

. tACqC¢knkL1.†t /kkk PHNg .†t /
:

Next, from inequalities (3.2), Definitions 3.14 and 3.16, and the bootstrap assumptions,
we deduce that the right-hand side of the previous expression is . tqC¢�1H.g;k/.t/, which
is . RHS (8.13a) as desired. We now consider the case in which j EI1j D N on the right-
hand side of (8.10a). Using that jgjg . 1 and g-Cauchy–Schwarz, we deduce that the
products under consideration are bounded in the norm k � kL2g.†t / by

. tACqC¢kkkL1g .†t /knk PHNg .†t /
:

Using Definition 3.14, the bootstrap assumptions and the elliptic estimate (5.4), we deduce
that the right-hand side of the previous expression is

. tqC¢�1¹L.g;k/.t/CH.g;k/.t/º;

which is . RHS (8.13a) as desired. It remains for us to consider the remaining cases, in
which j EI1j; j EI2j; j EI3j � N � 1 on the right-hand side of (8.10a). We first use (4.4) with
l D 0 and m D 2 (since .qC¢I EI/G is type

�
0
2

�
) to deduce (using that j EI j D N ) that the

products under consideration are bounded as follows:X
EI1CEI2CEI3DEI

j EI1j;j EI2j;j EI3j�N�1

tACqC¢k.@ EI1
n/.@ EI2

g/@ EI3
kkL2g.†t /

.
X

EI1CEI2CEI3DEI

j EI1j;j EI2j;j EI3j�N�1

tA�qC¢k.@ EI1
n/.@ EI2

g/@ EI3
kkL2Frame.†t /

: (8.20)

Since the right-hand side of (8.20) is equal to t�3q times the left-hand side of (8.19), the
arguments surrounding (8.19) imply that

RHS (8.20) . t�6q�2¢�A•¹L.g;k/.t/CH.g;k/.t/º;

which, in view of inequalities (3.2), is . RHS (8.13a) as desired. We have therefore
proved (8.13a).

Estimate (8.13b) can be proved by applying nearly identical arguments to the products
on the right-hand side of (8.10b) (with P D q C ¢ and j EI j D N ), and we omit the details.

Proof of (8.14a)–(8.14b). We first prove (8.14a). We stress that for this estimate, on the
right-hand side of (8.10a), we have

P D AC 5q C 3¢ � 1

and j EI j D N � 1.
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We first use (4.6) and (4.9) to bound the terms on the right-hand side of (8.10a) as
follows:X
EI1CEI2CEI3DEI

j EI2j�N�2

tAC5qC3¢�1k.@ EI1
n/.@ EI2

g/@ EI3
kkL2Frame.†t /

. tAC5qC3¢�1knkW 1;1.†t /
kgkL1Frame.†t /

kkk PHN�1Frame .†t /

C tAC5qC3¢�1kgkL1Frame.†t /
kkk

W
1;1

Frame .†t /
knk PHN�1.†t /

C tAC5qC3¢�1
X

j EI1jCj EI2jD1

k@ EI1
nkL1.†t /k@ EI2

kkL1Frame.†t /
kgk PHN�2Frame .†t /

C tAC5qC3¢�1
X

j EI1jCj EI2jD1

k@ EI1
nkL1.†t /k@ EI2

kkL1Frame.†t /
kgkL1Frame.†t /

: (8.21)

From (3.2), Definitions 3.14 and 3.16, estimates (4.2a), (4.2b), and (4.12c), the elliptic
estimates (5.2) and (5.5), and the bootstrap assumptions, we deduce that the products on
the right-hand side of (8.21), except for the sum on the next-to-last line, are bounded by

. t2¢�1�A•¹L.g;k/.t/CH.g;k/.t/º;

which is . RHS (8.14a) as desired. To handle the remaining sum on the next-to-last line
of the right-hand side of (8.21), we first note the boundX

j EI1jCj EI2jD1

k@ EI1
nkL1.†t /k@ EI1

kkL1Frame.†t /
. "t�1;

which follows from Definitions 3.14 and 3.16, (3.2), estimates (4.2b) and (4.12c), and the
bootstrap assumptions. From this bound and the interpolation estimate (4.6), it follows
that the sum on the next-to-last line of the right-hand side of (8.21) is

. "tAC5qC3¢�2kgk PHN�2Frame .†t /

. "tAC5qC3¢�2kg ��gkL1Frame.†t /
C "tAC5qC3¢�2kgk PHN�1Frame .†t /

:

From Definition 3.14, it follows that since (by assumption) A � 1, the right-hand side of
the previous estimate is

. "t¢�1L.g;k/.t/C "t
AC5qC3¢�2

kgk PHN�1Frame .†t /
;

which is . RHS (8.14a) as desired. We have therefore proved (8.14a).
Estimate (8.14b) can be proved by applying nearly identical arguments to the right-

hand side of (8.10b) (with P D AC 5q C 3¢ � 1 and j EI j D N � 1), and we omit the
details.

Proof of (8.15a). We stress that for this estimate, on the right-hand side of (7.7a), we
have P D 2q C ¢ and j EI j D N � 1.
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Using that jgjg . 1 and g-Cauchy–Schwarz, we deduce that the product on the right-
hand side of (7.7a) is bounded in the norm k � kL2g.†t / by

. tAC2qC¢kkkL1g .†t /k@nk PHN�1g .†t /
:

Using (4.4) (with l D 0 andm D 1) to estimate k@nk PHN�1g .†t /
, we deduce that the right-

hand side of the previous expression is

. tACqC¢kkkL1g .†t /knk PHN .†t /:

From Definition 3.14, the elliptic estimate (5.4) and the bootstrap assumptions, we deduce
that the right-hand side of the previous expression is

. tACqC¢�1knk PHN .†t / . tqC¢�1¹L.g;k/.t/CH.g;k/.t/º;

which is . RHS (8.15a) as desired.

Proof of (8.15b). We stress that for this estimate, on the right-hand side of (7.7b), we
have P D 2q C ¢ and j EI j D N � 1.

To bound the first product on the right-hand side of (7.7b), we first use g-Cauchy–
Schwarz to deduce that it is bounded in the norm k � kL2g.†t / by

� tAC2qC¢kn � 1kL1.†t /kkkL1g .†t /k@gk PHN�1g .†t /
:

From Definitions 3.14 and 3.16 and the bootstrap assumptions, we see that the right-hand
side of the previous expression is

. t1�10q�¢H.g;k/.t/;

which, in view of (3.2), is . RHS (8.15b) as desired.
To bound the first sum on the right-hand side of (7.7b), we first use (4.10) with l D 0

andm D 3 (since .JunkI2qC¢I EI/H is type
�
0
3

�
) and (4.6) to deduce (using that j EI j D N � 1)

that the products under consideration are bounded as follows:X
EI1CEI2CEI3DEI

j EI1j�N�2

tAC2qC¢k.@@ EI1
n/.@ EI2

g/@ EI3
kkL2g.†t /

. tA�qC¢knk PW 1;1.†t /
kgk

W
1;1

Frame .†t /
kkk PHN�1Frame .†t /

C tA�qC¢knk PW 1;1.†t /
kkk

W
1;1

Frame .†t /
kgk PHN�1Frame .†t /

C tA�qC¢kgk
W
1;1

Frame .†t /
kkk

W
1;1

Frame .†t /
knk PHN�1.†t /

C tA�qC¢knk PW 1;1.†t /
kgk

W
1;1

Frame .†t /
kkk

W
1;1

Frame .†t /
: (8.22)

From Definitions 3.14 and 3.16, estimates (4.2a), (4.2b), (4.12a), and (4.12c), the elliptic
estimates (5.2) and (5.5), and the bootstrap assumptions, we see that

RHS (8.22) . t2�16q�3¢�A•¹L.g;k/.t/CH.g;k/.t/º

C t�4qC¢�A•¹L.g;k/.t/CH.g;k/.t/º;

which, in view of (3.2), is . RHS (8.15b) as desired.
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Using essentially the same reasoning, we find that the second and third sums on the
right-hand side of (7.7b) are bounded in the norm k � kL2g.†t / by . (8.22) and thus are
. RHS (8.15b) as well. We have therefore proved (8.15b).

Proof of (8.16). First, using that jgjg . 1 and g-Cauchy–Schwarz, we deduce that

kT kL2g.†t / . tAC2qC¢knkL1.†t /k@kk PHN�1g .†t /
:

Using the definition of the norms k � k PHM
g .†t / and k � kL2Frame.†t /, we deduce (see Remark

3.13) that the right-hand side of the previous expression is

. tAC2qC¢knkL1.†t /kg
�1
k
1=2

L1Frame.†t /
kkk PHNg .†t /

:

From (3.2), Definitions 3.14 and 3.16, estimate (4.2a), and the bootstrap assumptions, we
deduce that the right-hand side of the previous expression is . tqC¢�1H.g;k/.t/, which is
. RHS (8.16) as desired.

Proof of (8.17a) and (8.17c). We stress that for these estimates, on the right-hand side
of (7.8a), we have P D 3q C ¢ and j EI j D N � 1.

We first prove (8.17a). We start by noting that the right-hand side of (7.8a) is bounded
in the norm k � kL2Frame.†t /

by

� CtAC3qC¢�1kkkL1Frame.†t /
knk PHN�1.†t /:

From Definitions 3.14 and 3.16, estimate (4.2b), the elliptic estimate (5.5), and the boot-
strap assumptions, we find that the right-hand side of the previous expression is

. t2qC¢�1¹L.g;k/.t/CH.g;k/.t/º;

which is . RHS (8.17a) as desired.
Estimate (8.17c) can be proved using a nearly identical argument, the key point being

that like kkkL1Frame.†t /
, the term kkkL1g .†t / is bounded by . t�1.

Proof of (8.17b). We stress that for this estimate, on the right-hand side of (7.8b), we
have P D 3q C ¢ and j EI j D N � 1.

To bound the first sum on the right-hand side of (7.8b), we first use (4.6) and (4.9) to
bound (using that j EI j D N � 1) the terms under consideration as follows:X

EI1CEI2DEI

j EI1j�N�2

tAC3qC¢�1k¹@ EI1
.n � 1/º@ EI2

kkL2Frame.†t /

. tAC3qC¢�1kn � 1kL1.†t /kkk PHN�1Frame .†t /

C tAC3qC¢�1kkk PW 1;1
Frame .†t /

knk PHN�1.†t /

C tAC3qC¢�1kn � 1kL1.†t /kkk PW 1;1
Frame .†t /

: (8.23)

From Definitions 3.14 and 3.16 and the bootstrap assumptions, we see that

RHS (8.23) . t1�10q�¢H.g;k/.t/C t
2qC¢�1L.g;k/.t/;

which, in view of (3.2), is . RHS (8.17b) as desired.



On the nature of Hawking’s incompleteness for the Einstein-vacuum equations 247

To bound the second sum on the right-hand side of (7.8b), we first consider the cases in
which j EI5j D N � 1 or j EI6j D N � 1. Using that jg�1jg . 1, using (4.4) with l D m D 1
(since .JunkI3qC¢I EI/K is type

�
1
1

�
), and then again using (4.4) (this time with l D 0 and

m D 3) to estimate the term k@gkL1g .†t /, we deduce that the products under consideration
are bounded in the norm k � kL2Frame.†t /

as follows:

. tACqC¢knkL1.†t /k@gkL1g .†t /k@gk PHN�1g .†t /

. tA�2qC¢knkL1.†t /kgk PW 1;1
Frame .†t /

k@gk PHN�1g .†t /
: (8.24)

From (3.2), Definitions 3.14 and 3.16, estimate (4.12a), and the bootstrap assumptions,
we see that

RHS (8.24) . t�6q�A•H.g;k/.t/;

which, in view of (3.2), is . RHS (8.17b) as desired. It remains for us to consider the
cases in which j EI5j � N � 2 and j EI6j � N � 2. Using (4.6) and (4.9), we bound (using
that j EI j D N � 1) the terms under consideration as follows:X
EI1CEI2C���C EI6DEI

j EI5j;j EI6j�N�2

tAC3qC¢k.@ EI1
n/.@ EI2

g�1/.@ EI3
g�1/.@ EI4

g�1/.@@ EI5
g/@@ EI6

gkL2Frame.†t /

. tAC3qC¢knkW 1;1.†t /
kg�1k3

W
1;1

Frame .†t /
kg ��gk

W
2;1

Frame .†t /
kgk PHN�1Frame .†t /

C tAC3qC¢knkW 1;1.†t /
kg�1k2

W
1;1

Frame .†t /
kg ��gk2

W
2;1

Frame .†t /
kg�1k PHN�1Frame .†t /

C tAC3qC¢kg�1k2
W
1;1

Frame .†t /
kg ��gk2

W
2;1

Frame .†t /
kg�1k

W
1;1

Frame .†t /
knk PHN�1.†t /

C tAC3qC¢knkW 1;1.†t /
kg�1k3

W
1;1

Frame .†t /
kg ��gk2

W
2;1

Frame .†t /
: (8.25)

From (3.2), Definition 3.16, estimates (4.2a) and (4.12a)–(4.12c), and the bootstrap as-
sumptions, we see that

RHS (8.25) . t1�10q�2¢�A•¹L.g;k/.t/CH.g;k/.t/º;

which, in view of (3.2), is . RHS (8.17b) as desired.
To bound the third sum on the right-hand side of (7.8b), we first use (4.6) and (4.9) to

bound (using that j EI j D N � 1) the terms under consideration as follows:X
EI1CEI2CEI3CEI4DEI

j EI4j�N�2

tAC3qC¢k.@ EI1
n/.@ EI2

g�1/.@ EI3
g�1/@2@ EI4

gkL2Frame.†t /

. tAC3qC¢knkW 1;1.†t /
kg�1k2

W
1;1

Frame .†t /
kgk PHNFrame.†t /

C tAC3qC¢kg�1k2
W
1;1

Frame .†t /
kgk PW 2;1

Frame .†t /
knk PHN�1.†t /

C tAC3qC¢knkW 1;1.†t /
kg�1k

W
1;1

Frame .†t /
kgk PW 2;1

Frame .†t /
kg�1k PHNFrame.†t /

C tAC3qC¢knkW 1;1.†t /
kg�1k2

W
1;1

Frame .†t /
kgk PW 2;1

Frame .†t /
: (8.26)
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From (3.2), Definition 3.16, estimates (4.2a) and (4.12a)–(4.12c), and the bootstrap as-
sumptions, we see that

RHS (8.26) . t�3q�A•¹L.g;k/.t/CH.g;k/.t/º C t
1C¢�4q�A•

¹L.g;k/.t/CH.g;k/.t/º;

which, in view of (3.2), is . RHS (8.17b) as desired.
To bound the fourth sum on the right-hand side of (7.8b), we first use (4.6) and (4.9)

to bound (using that j EI j D N � 1) the terms under consideration as follows:X
EI1CEI2DEI

j EI2j�j EI j�1

tAC3qC¢k.@ EI1
g�1/@2@ EI2

nkL2Frame.†t /

. tAC3qC¢knk PW 2;1.†t /
kg�1k PHN�1Frame .†t /

C tAC3qC¢kg�1k PW 1;1
Frame .†t /

knk PHN .†t /: (8.27)

From (3.2), Definition 3.16, estimates (4.2a), (4.12b), and (4.12c), and the bootstrap
assumptions, we see that

RHS (8.27) . t3�12q�3¢�A•H.g;k/.t/C t
qC¢�A•

¹L.g;k/.t/CH.g;k/.t/º;

which, in view of (3.2), is . RHS (8.17b) as desired.
To bound the last sum on the right-hand side of (7.8b), we first use (4.9) to bound

(using that j EI j D N � 1) the terms under consideration as follows:X
EI1CEI2CEI3CEI4DEI

tAC3qC¢k.@ EI1
g�1/.@ EI2

g�1/.@@ EI3
g/@@ EI4

nkL2Frame.†t /

. tAC3qC¢kg�1k2L1Frame.†t /
kgk PW 1;1

Frame .†t /
knk PHN .†t /

C tAC3qC¢knk PW 1;1.†t /
kg�1k2L1Frame.†t /

kgk PHNFrame.†t /

C tAC3qC¢knk PW 1;1.†t /
kg�1kL1Frame.†t /

kgk PW 1;1
Frame .†t /

kg�1k PHN�1Frame .†t /
: (8.28)

From Definition 3.16, estimates (4.2a) and (4.12a)–(4.12c), and the bootstrap assump-
tions, we see that

RHS (8.28) . t¢�3q�A•¹L.g;k/.t/CH.g;k/.t/º

C t2�13q�¢�A•¹L.g;k/.t/CH.g;k/.t/º

C t3�16q�3¢�A•¹L.g;k/.t/CH.g;k/.t/º (8.29)

which, in view of (3.2), is . RHS (8.17b) as desired.

Proof of (8.17d). We stress that for this estimate, on the right-hand side of (7.8b), we
have P D 3q C ¢ and j EI j D N � 1.

We claim that we only have to bound (in the norm k � kL2g.†t /) the second sum on
the right-hand side of (7.8b) in the cases in which j EI5j D N � 1 or j EI6j D N � 1. For by
inspecting the proof of (8.17b) given above, and using (3.2), we see that all remaining
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products on the right-hand side of (7.8b) are bounded in the norm k � kL2Frame.†t /
by

. t2qC¢�1¹L.g;k/.t/CH.g;k/.t/º:

Hence, using (4.4) with l D m D 1 (since .JunkI3qC¢I EI/K is type
�
1
1

�
), we find that these

same products are bounded in the norm k � kL2g.†t / by

. t¢�1¹L.g;k/.t/CH.g;k/.t/º;

which is . RHS (8.17d) as desired.
To handle the remaining cases in which j EI5j D N � 1 or j EI6j D N � 1 in the second

sum on the right-hand side of (7.8b), we first use that jg�1jg . 1 and g-Cauchy–Schwarz
to deduce that the products under consideration are bounded in the norm k � kL2g.†t / by

. tAC3qC¢knkL1.†t /k@gkL1g .†t /k@gk PHN�1g .†t /
:

Using (4.4) (with l D 0 and m D 3) to estimate k@gkL1g .†t /, we deduce that the right-
hand side of the previous expression is

. tAC¢knkL1.†t /kgk PW 1;1
Frame .†t /

k@gk PHN�1g .†t /
:

From (3.2), Definitions 3.14 and 3.16, estimate (4.12a), and the bootstrap assumptions,
we deduce that the right-hand side of the previous expression is

. t�4q�A•¹L.g;k/.t/CH.g;k/.t/º;

which, in view of (3.2), is . RHS (8.17d) as desired.

Proof of (8.18a). First, using (4.4) with l D m D 1 (since T is a type
�
1
1

�
tensorfield), we

deduce that

tAC3qC¢kT kL2Frame.†t /
. tACqC¢kT kL2g.†t /:

Next, using that jg�1jg . 1, g-Cauchy–Schwarz, and the estimate knkL1.†t / . 1 (which
is a simple consequence of (3.2), Definition 3.14, and the bootstrap assumptions), we find
that

tACqC¢kT kL2g.†t / . tACqC¢k@2nk PHN�1g .†t /
C tACqC¢k@2gk PHN�1g .†t /

:

Using the definition of the norms k � k PHM
g .†t / and k � kL1Frame.†t / (see Remark 3.13), we

deduce that the right-hand side of the previous expression is

. tACqC¢kg�1k
1=2

L1Frame.†t /
k@nk PHNg .†t /

C tACqC¢kg�1k
1=2

L1Frame.†t /
k@gk PHNg .†t /

:

From Definitions 3.14 and 3.16, (4.2a), the elliptic estimate (5.4), and the bootstrap
assumptions, we find that the right-hand side of the previous expression is

. t¢�1¹L.g;k/.t/CH.g;k/.t/º;

which is . RHS (8.18a) as desired.
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Proof of (8.18b). The arguments given in the proof of (8.18a) yield that

tAC3qC¢kT kL2g.†t / . tAC3qC¢kg�1k
1=2

L1Frame.†t /
k@nk PHNg .†t /

C tAC3qC¢kg�1k
1=2

L1Frame.†t /
k@gk PHNg .†t /

. t2qC¢�1¹L.g;k/.t/CH.g;k/.t/º;

which is a better bound than we need.

8.3. Proof of Proposition 8.1

In this subsection, we prove Proposition 8.1. Throughout this proof, we will assume that
A• is sufficiently small (and in particular that A• < ¢); in view of the discussion in Sec-
tion 4.4, we see that at fixed A, this can be achieved by choosing N to be sufficiently
large.

To prove (8.2a), we first use the fundamental theorem of calculus and the evolution
equation (8.9a) with P D 2q C ¢ to deduce that for any multi-index EI with j EI j D N , we
have (where we do not use Einstein summation over i; j and we stress that 0 < t � 1)

ktAC2qC¢@ EIgij k
2
L2.†t /

D k@ EIgij k
2
L2.†1/

� 2

Z 1

sDt

Z
†s

s�1¹.AC 2q C ¢/ıaj � 2nsk
a
j º

� .sAC2qC¢@ EIgia/.s
AC2qC¢@ EIgij /dx ds

� 2

Z 1

sDt

Z
†s

.sAC2qC¢@ EIgij /
.2qC¢I EI/

Gij dx ds: (8.30)

From Definition 3.16, Cauchy–Schwarz, Young’s inequality, and estimate (8.12a), we
deduce that the last integral on the right-hand side of (8.30) can be bounded as follows:

2

Z 1

sDt

Z
†s

.sAC2q@ EIgij /
.P I EI/

Gij dx ds �C

Z 1

sDt

s¢�1¹L2.g;k/.s/CH2
.g;k/.s/ºds: (8.31)

Use Definition 3.14, the fact that s�k.s; x/ equals the diagonal tensor �diag.q1; : : : ; qD/,
(3.2), and the bootstrap assumptions to bound the (scalar) component 2nskaj on the right-
hand side of (8.30) as

j2nskaj j � 2qı
a
j C C";

where ıaj is the standard Kronecker delta. It follows that the integral on the second line
of the right-hand side of (8.30) is bounded from above by

� �¹2AC ¢º

Z 1

sDt

Z
†s

s�1.sAC2qC¢@ EIgij /
2dx ds

C C"

Z 1

sDt

s�1ksAC2qC¢gk2
PHNFrame.†t /

ds:
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Combining these estimates, noting that

k@ EIgij k
2
L2.†1/

� H2
.g;k/.1/;

summing the resulting estimates over 1 � i; j � D and over EI with j EI j D N , and taking
" to be sufficiently small, we arrive at (8.2a).

Estimate (8.2b) can be proved using a similar argument based on the evolution equa-
tion (8.9b) with P D 2q C ¢ and j EI j D N and estimate (8.12b), and we omit the details.

Estimate (8.5a) can be proved using a similar argument based on the evolution equa-
tion (8.9a) with P D 5q C 3¢ � 1 and j EI j D N � 1 and estimate (8.14a), and we omit
the details.

Estimate (8.5b) can be proved using a similar argument based on the evolution equa-
tion (8.9b) with P D 5q C 3¢ � 1 and j EI j D N � 1 and estimate (8.14b), and we omit
the details.

Estimate (8.6a) can be proved using a similar argument based on the evolution equa-
tion (7.6b) withP D 3q C ¢ and j EI j D N � 1 and estimates (8.17a), (8.17b), and (8.18a),
and we omit the details.

To prove (8.3a), we let EI be any multi-index with j EI j D N . Using the definition of the
norm j � jg and equation (2.12b) (to substitute for the factors of @tg�1 that appear when
@t falls on the factors of g�1 that are inherent in the definition of j � jg ), we deduce that

@t¹jt
ACqC¢@ EIgj

2
gº D 4ng

ackbd .tACqC¢@ EIgab/.t
ACqC¢@ EIgcd /

C 2gacgbd .tACqC¢@ EIgab/@t .t
ACqC¢@ EIgcd /: (8.32)

Next, using equation (8.9a) withP D qC ¢ to substitute for the factor @t .tAC2qC¢@ EIgcd /
on the right-hand side of (8.32), we obtain

@t¹jt
ACqC¢@ EIgj

2
gº D

2.AC q C ¢/

t
jtACqC¢@ EIgj

2
g

C 2gacgbd .tACqC¢@ EIgab/
.qC¢I EI/

Gcd : (8.33)

Integrating (8.33) over the spacetime slab .t; 1� � TD , using g-Cauchy–Schwarz, and
appealing to Definition 3.16, we obtain the following estimate (where we stress that
t < 1):

ktACqC¢@ EIgk
2

L2g.†t /
� k@ EIgk

2

L2g.†1/

� 2.AC q C ¢/

Z 1

sDt

s�1ksACqC¢@ EIgk
2

L2g.†s/
ds

C 2

Z 1

sDt

Z
†s

H.g;k/.s/k
.qC¢I EI/

GkL2g.†s/ ds: (8.34)

Using (8.13a) to bound the integrand factor k.qC¢I
EI/

GkL2g.†s/ on the right-hand side
of (8.34), using Young’s inequality, noting that

k@ EIgk
2

L2g.†1/
� H2

.g;k/.1/;

and summing the resulting estimates over EI with j EI j D N , we arrive at the desired bound
(8.3a).
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Estimate (8.3b) can be proved using a similar argument based on equation (8.9b) with
P D q C ¢ and j EI j D N , equation (2.12a) (which one uses to substitute for the factors of
@tg that appear when @t falls on the factors of g that are inherent in the definition of j � jg ),
and estimate (8.13b); we omit the details.

Estimate (8.4) can be proved using a similar argument based on the evolution equation
(7.6a) with P D 2q C ¢ , and j EI j D N � 1, equation (2.12b) (to substitute for the factors
of @tg�1 that appear when @t falls on the factors of g�1 that are inherent in the defini-
tion of j � jg ), and estimates (8.15a)–(8.15b) and (8.16). We omit the details, noting only
that the factors of @tg�1 and the factor �2tkaj in the first braces on the right-hand side
of (7.6a) lead to the terms

2nkadgbegcf .tACqC¢@a@ EIgbc/.t
ACqC¢@d@ EIgef /

C 4.n � 1/gadkbegcf .tACqC¢@a@ EIgbc/.t
ACqC¢@d@ EIgef /;

which we pointwise bound in magnitude as follows by using g-Cauchy–Schwarz, the fact
that jg�1jg � C�, (3.2), Definition 3.14, and the bootstrap assumptions:ˇ̌

2nkadgbegcf .tACqC¢@a@ EIgbc/.t
ACqC¢@d@ EIgef /

C 4.n � 1/gadkbegcf .tACqC¢@a@ EIgbc/.t
ACqC¢@d@ EIgef /

ˇ̌
� C�¹knkL1.†t / C kn � 1kL1.†t /ºkkkL1g .†t /jt

ACqC¢@@ EIgj
2
g

� C�t
�1
jtACqC¢@@ EIgj

2
g : (8.35)

We further remark that these factors of C� lead to the C�-dependent products on the
right-hand side of (8.4).

Estimate (8.6b) can be proved using a similar argument based on equation (7.6b) with
P D 3q C ¢ and j EI j D N � 1 (where we use equations (2.12a)–(2.12b) to substitute for
the factors of @tg and @tg�1 that arise when @t falls on the factors of g and g�1 inherent
in the definition of j � jg ), and estimates (8.17c), (8.17d), and (8.18b); we omit the details.

9. The main a priori estimates

In this section, we use the estimates derived in Sections 5–8 to prove the main techni-
cal result of the article: Proposition 9.3, which provides a priori estimates for the solu-
tion norms from Definitions 3.14 and 3.16. The proposition in particular yields a strict
improvement of the bootstrap assumptions.

9.1. Integral inequality for the high norm

We start with the following lemma, in which we derive an integral inequality for the high
norm H.g;k/.t/. The lemma is an analog of Proposition 6.1, in which we derived a similar
but simpler inequality for the low norm L.g;k/.t/.

Lemma 9.1 (Integral inequality for the high norm). Assume that the bootstrap assump-
tions (3.18) hold. There exist a constant C� > 0 independent of N and A and a constant
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C D CN;A;D;q;¢ > 0 such that if N is sufficiently large in a manner that depends on A,
D, q, and ¢ , and if " is sufficiently small (in a manner that depends onN ,A,D, q, and ¢),
then the following integral inequality holds for t 2 .T.Boot/; 1�:

H2
.g;k/.t/ � CH2

.g;k/.1/ � ¹2A � C�º

Z 1

sDt

s�1H2
.g;k/.s/ ds (9.2)

C C

Z 1

sDt

s¢�1¹L2.g;k/.s/CH2
.g;k/.s/º ds:

Proof. Sum estimates (7.2) over all EI with j EI j D N together with estimates (8.2a)–(8.6b).
In view of definition (3.17a), we conclude the estimate (9.2).

9.2. A priori estimates for the solution norms

In the next proposition, we provide the main result of Section 9.

Proposition 9.3 (A priori estimates for the solution norms). Recall that L.g;k/.t/, L.n/.t/,
H.g;k/.t/, and H.n/.t/ are the norms from Definitions 3.14 and 3.16, and assume that the
bootstrap assumptions (3.18), which involve the smallness parameter ", hold. Let V– be the
following norm of the difference between the Kasner initial data and the perturbed initial
data:

V– WD kg ��gkL1Frame.†1/
C kk ��kkL1Frame.†1/

C kgk PHNC1Frame .†1/
C kkk PHNFrame.†1/

: (9.4)

IfA is sufficiently large and ifN is sufficiently large in a manner that depends onA,D, q,
and ¢ , there exists a constantCN;A;D;q;¢ > 1 such that if " is sufficiently small in a manner
that depends on N , A, D, q, and ¢ , then the following estimates hold for t 2 .T.Boot/; 1�:

L.g;k/.t/CH.g;k/.t/C L.n/.t/CH.n/.t/ � CN;A;D;q;¢ V–: (9.5)

In particular, if CN;A;D;q;¢ V– < ", then (9.5) yields a strict improvement of the bootstrap
assumptions.

Proof. We first square inequality (6.2) and use the Cauchy–Schwarz estimate�Z 1

sDt

s¢�1¹L.g;k/.s/CH.g;k/.s/º ds

�2
(9.6)

� C

Z 1

sDt

s¢�1¹L2.g;k/.s/CH2
.g;k/.s/º ds �

Z 1

sDt

s¢�1 ds„ ƒ‚ …
�C

� C

Z 1

sDt

s¢�1¹L2.g;k/.s/CH2
.g;k/.s/º ds

to deduce

L2.g;k/.t/ � CL2.g;k/.1/C C

Z 1

sDt

s¢�1¹L2.g;k/.s/CH2
.g;k/.s/º ds: (9.7)
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We now fix A � max¹C�=2; 1º, where C� > 0 is the universal constant (independent of
N and A) on the right-hand side of (9.2), while the assumption A � 1 was used in other
parts of the paper (for example, the proof of (8.14a)). Given this choice of A, we fix N
large enough such that whenever " is sufficiently small, the estimates of Proposition 6.1
and Lemma 9.1 hold. Note that our choice of A ensures that the factor ¹2A � C�º on the
right-hand side of (9.2) is non-positive; hence the first time integral on the right-hand side
of (9.2) is non-positive and can be discarded. In particular, using (9.7) and Lemma 9.1,
we see that for t 2 .T.Boot/; 1�, the quantity

Q.t/ WD L2.g;k/.t/CH2
.g;k/.t/

verifies

Q.t/ � CQ.1/C C

Z 1

sDt

s¢�1Q.s/ ds:

Because the function s¢�1 is integrable over the interval s 2 .0; 1�, we conclude from
Gronwall’s inequality that

Q.t/ � CQ.1/

for t 2 .T.Boot/; 1�. Moreover, from Definitions 3.14 and 3.16, definition (9.4), standard
Sobolev interpolation (i.e., (4.6)), and Sobolev embedding, we deduce that if N is suf-
ficiently large, then Q.1/ � C V–2. From this bound and the bound Q.t/ � CQ.1/, we
deduce that Q.t/ � C V–2 for t 2 .T.Boot/; 1�. From this bound, (5.2), (5.4), and (5.5), we
conclude, in view of Definitions 3.14 and 3.16, the desired bound (9.5).

10. Estimates tied to curvature-blowup and the length of past-directed causal
geodesics

In this section, we derive the main estimates needed to show curvature-blowup and geo-
desic incompleteness for the solutions under study.

10.1. Curvature estimates

In the following lemma, we derive a pointwise estimate that shows in particular that the
Kretschmann scalar blows up as t # 0.

Lemma 10.1 (Pointwise estimate for the Kretschmann scalar). Under the hypotheses and
conclusions of Proposition 9.3, perhaps enlargingN if necessary, the following pointwise
estimate holds for t 2 .T.Boot/; 1�:

Riem˛ˇ
ı Riem˛ˇ
ı
D 4t�4

´
DX
iD1

.q2i � qi /
2
C

X
1�i<jDD

q2i q
2
j

µ
C t�4O.V–/: (10.2)

Proof. Throughout this proof, we will assume that A• is sufficiently small (and in partic-
ular that A• < ¢); in view of the discussion in Section 4.4, we see that at fixed A, this can
be achieved by choosing N to be sufficiently large.
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First, we observe the following identity, which holds relative to CMC-transported spa-
tial coordinates in view of (2.1) and the curvature properties Riem˛ˇ
ı D�Riemˇ˛
ı D

�Riem˛ˇı
 D Riem
ı˛ˇ :

t4 Riem˛ˇ
ı Riem˛ˇ
ı
D t4 Riemab

cd Riemcd
ab
C 4t4 Riema0

c0 Riemc0
a0

� 4n�2t4jRiem0�j
2
g ; (10.3)

where Riem0� is defined to be the type
�
0
3

�
†t -tangent tensorfield with components

Riem0bcd relative to the transported spatial coordinates. Next, from standard calculations
based in part on the Gauss and Codazzi equations (see, for example, [52, equation (4.14)]
and [52, equation (4.18)]), we find that relative to the CMC-transported spatial coordi-
nates, the components Riem˛ˇ

�� of the (type
�
2
2

�
) Riemann curvature tensor of g can be

decomposed into principal terms and error terms as follows:

Riemab
cd
D kcak

d
b � k

d
ak
c
b C444ab

cd ; (10.4a)

Riema0
c0
D t�1kca C k

c
ek
e
a C444a0

c0; (10.4b)

n�1 Riem0b
cd
D4440b

cd ; (10.4c)

where the error terms are defined by

444ab
cd
WD Riemab

cd ; (10.5a)

444a0
c0
WD �t�1n�1@t .tk

c
a/C t

�1.n�1 � 1/kca

� n�1gec@a@enC n
�1gec� f

a e@f n; (10.5b)

4440b
cd
WD gce@e.k

d
b/ � g

de@e.k
c
b/

C gce� d
e f k

f

b
� gce�

f

e b
kdf � g

de� c
e f k

f

b
C gde�

f

e b
kcf : (10.5c)

In (10.5a), Riemab
cd denotes a component of the (type

�
2
2

�
) Riemann curvature tensor

of g.
We now claim that the following estimates hold, where the �kij are the components of

the Kasner mixed second fundamental form (see (1.8c)):

kt2 Riemab
cd
� .t2�kca�kdb � t2�kda�kcb/kL1.†t / . V–; (10.6)

kt2 Riema0
c0
� .t�kca C t2�kce�kea/kL1.†t / . V–; (10.7)

kn�1t2 Riem0� kL1g .†t / . V–; (10.8)

where we stress that (10.6)–(10.7) are estimates for components of tensorfields and (10.8)
is an estimate for the norm j � jg of the tensorfield Riem0�. Let us momentarily accept
(10.6)–(10.8). Then from (10.3), (10.6)–(10.8), Definition 3.14, and estimate (9.5) (which
in particular implies the component bound tka

b
D t�ka

b
CO.V–/), we deduce that

t4 Riem˛ˇ
ı Riem˛ˇ
ı
D 2t4.�kca�kac/2 C 4t2�kca�kac C 8t3�kca�kad�kdc

C 2t4�kce�kea�kad�kdc CO.V–/: (10.9)

Next, using the fact that in CMC-transported spatial coordinates, t�k is equal to the diag-
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onal tensor �diag.q1; : : : ; qD/, we compute that

t2�kca�kac D DX
iD1

q2i ; (10.10)

t3�kca�kad�kdc D � DX
iD1

q3i ; (10.11)

t4�kce�kea�kad�kdc D DX
iD1

q4i : (10.12)

From (10.9) and (10.10)–(10.12), we arrive at the desired bound (10.2).
It remains for us to prove (10.6)–(10.8). To prove (10.6), we first note the schematic

identity Riemab
cd ' g�2@2gC g�3.@g/2, which follows from (2.15a). Hence, bounding

each factor on the right-hand side of the schematic identity in the norm k � kL1Frame.†t /

with the help of estimates (4.2a), (4.12a)–(4.12b), and (9.5), we deduce the estimate
kRiemab

cdkL1.†t / . V–t�10q�A• . From this estimate, (10.4a), (10.5a), the aforemen-
tioned component estimate tka

b
D t�ka

b
CO.V–/, and (3.2), we conclude (10.6). Estimate

(10.7) can be proved by combining similar arguments based on equation (10.4b) with
the additional bounds (4.12c) and (6.17), which are needed to help control the terms on
the right-hand side of (10.5b); we omit the straightforward details. To prove (10.8), we
first use the fact that jg�1jg . 1 and the g-Cauchy–Schwarz inequality to deduce that the
norm j � jg of the right-hand side of (10.5c) is bounded by . j@kjg C j@gjg jkjg . Next,
using (4.4), we bound the right-hand side of the previous expression as follows:

j@kjg C j@gjg jkjg . t�3qkkk
W
1;1

Frame .†t /
C t�3qkgk

1=2

PW
1;1

Frame .†t /
kkkL1g .†t /: (10.13)

From Definition 3.14 and estimates (4.2b), (4.12a), and (9.5), we deduce, in view of (3.2),
that RHS (10.13) . V–t�1�4q�A• . V–t�2. Considering also equation (10.4c), we see that
we have proved the desired bound (10.8).

10.2. Estimates for the length of past-directed causal geodesic segments

In this subsection, we show that for the solutions under consideration, the length of any
past-directed causal geodesic segment is uniformly bounded from above by a constant.

Lemma 10.14 (Estimates for the length of past-directed causal geodesic segments). Under
the hypotheses and conclusions of Proposition 9.3, perhaps enlarging N and shrinking V–
if necessary, the following holds: any past-directed causal geodesic ��� that emanates from
†1 and is contained in the region .T.Boot/; 1� � TD has an affine length that is bounded
from above by

� A .T.Boot// � A .0/ �
jA 0.1/j

1 � q
; (10.15)

where A .t/ is the affine parameter along ��� viewed as a function of t along ��� (normalized
by A .1/ D 0).
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Proof. Throughout this proof, we will assume that A• is sufficiently small (and in partic-
ular that A• < ¢); in view of the discussion in Section 4.4, we see that at fixed A, this can
be achieved by choosing N to be sufficiently large.

Let ���.A / be a past-directed affinely parametrized causal geodesic verifying the hypo-
theses of the lemma. Note that the component ���0 can be identified with the CMC time
coordinate. In the rest of the proof, we view the affine parameter A as a function of
t D ���0 along ���. We normalize A .t/ by setting A .1/ D 0. We also define

P���
�
WD

d

dA
����; R���

�
WD

d2

dA 2
����;

and A 0 WD d
dt

A . By the chain rule, we have

A 0 D
1

P���
0
; R���

0
D P���

0 d

dt
P���
0
D �.A 0/�3A 00: (10.16)

For use below, we note that since ��� is a causal curve, we have (by the definition of a
causal curve) that g.P���; P���/ � 0. Considering also the expression (2.1) for g, we deduce that
relative to the CMC-transported coordinates, causal curves satisfy

gab P�
a P�b � n2.P���

0
/2: (10.17)

Next, we note that (relative to CMC-transported spatial coordinates), the 0 component
of the geodesic equation is

R���
0
C � 0

˛ ˇ j���
P���
˛
P���
ˇ
D 0;

where � 0
˛ ˇ are Christoffel symbols of g (see (1.26)). Using (2.1) and (2.12a), we compute

that this geodesic equation component can be written in the following more explicit form:

R���
0
C .@t lnn/j��� .P���

0
/2 C 2.@a lnn/j��� P���

a
P���
0
� .n�1gack

c
b/j���
P���
a
P���
b
D 0: (10.18)

Multiplying (10.18) by�.A 0/3 and using the g-Cauchy–Schwarz inequality, (10.16), and
(10.17), we deduce

jA 00j � jn�1kab
P���a
P���
b
.A 0/3j C

�
n�1j@tnj C 2j@njg

�
jA 0j: (10.19)

From Definition 3.14 and estimate (9.5), we see that in CMC-transported spatial coordi-
nates, tk is equal to the diagonal tensor diag � .q1; : : : ; qD/ plus an O.V–/ correction.
Hence, the eigenvalues of tk are all bounded in magnitude by q.Max/ CO.V–/, where
q.Max/ WD maxiD1;:::;D jqi j. Also using (10.16)–(10.17), we see that

jn�1kab
P���a
P���
b
.A 0/3j � ¹q.Max/ CO.V–/ºt�1n�1.A 0/3jP���j2g

� ¹q.Max/ CO.V–/ºt�1jA 0j

C ¹q.Max/ CO.V–/ºt�1jn � 1jjA 0j: (10.20)

Moreover, from Definition 3.14, (3.2), and estimate (9.5), we see that the last product on
the right-hand side of (10.20) obeys the bound

¹q.Max/ CO.V–/ºt�1jn � 1jjA 0j � C V–t�1jA 0j: (10.21)
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Furthermore, also using (4.2a), (4.4), (4.12c), and (5.3), we see that the last term on the
right-hand side of (10.19) is bounded as follows:�

n�1j@tnj C 2j@njg
�
jA 0j � C V–t�1jA 0j: (10.22)

Combining (10.19)–(10.22) and taking into account (3.2), we deduce that if V– is suffi-
ciently small, then the following bound holds:

jA 00j � t�1qjA 0j; t 2 .T.Boot/; 1�: (10.23)

Applying Gronwall’s inequality to (10.23), we deduce that

jA 0.t/j � jA 0.1/jt�q; t 2 .T.Boot/; 1�: (10.24)

Integrating (10.24) from time t to time 1 and using the assumption A .1/ D 0, we find
that

A .t/ �
jA 0.1/j

1 � q
.1 � t1�q/; t 2 .T.Boot/; 1�; (10.25)

from which the desired estimate (10.15) follows.

11. The main stable blowup theorem

We now state and prove our main stable blowup theorem. As we noted in Remark 1.9, it
is possible to derive substantial additional information about the solution, going beyond
that provided by the theorem.

Theorem 11.1 (The main stable blowup theorem). Leteg D �dt ˝ dt C�gabdxa ˝ dxb
be an Einstein-vacuum Kasner solution on .0;1/ � TD , i.e.,�g D diag.t2q1 ; t2q2 ; : : : ; t2qD /;

where
PD
iD1 qi D

PD
iD1 q

2
i D 1, and assume that

max
iD1;:::;D

jqi j <
1

6
: (11.2)

Recall that in Section 2.3, we showed that such Kasner solutions exist when D � 38.
Let �k D �t�1diag.q1; q2; : : : ; qD/ denote the corresponding Kasner (mixed) second fun-
damental form. Let .†1 D TD; Vg; Vk/ be initial data for the Einstein-vacuum equations
verifying the constraints (2.11a)–(2.11b) and the CMC condition Vkaa D �1 (see, however,
Remark 1.4), and let

V– WD k Vg ��gkL1Frame.†1/
C k Vk ��kkL1Frame.†1/

C k Vgk PHNC1Frame .†1/
C k Vkk PHNFrame.†1/

: (11.3)

Assume that

� A > 0 is sufficiently large.

� N > 0 is sufficiently large, where the required largeness depends on A, D, q, and ¢ .
Here we recall that q > 0 and ¢ > 0 are the constants fixed in Section 3.1.

� V– is sufficiently small, where the required smallness depends on N , A, D, q, and ¢ .
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Then the following conclusions hold.

� Existence and norm estimates on .0; 1� � T D . The initial data launch a solution
.g; k; n/ to the Einstein-vacuum equations in CMC-transported spatial coordinates
(that is, the equations of Proposition 2.10, where g D �n2dt ˝ dt C gabdxa ˝ dxb
is the spacetime metric) that exists classically for .t; x/ 2 .0; 1��TD . Moreover, there
exists a constant C D CN;A;D;q;¢ > 1 such that the .N;A; q; ¢/-dependent norms
from Definitions 3.14 and 3.16 verify the following estimate for t 2 .0; 1�:

L.g;k/.t/CH.g;k/.t/C L.n/.t/CH.n/.t/ � C V–: (11.4)

� Description of the “past-half” of the MGHD and curvature-blowup. The space-
time Kretschmann scalar verifies the following estimate for t 2 .0; 1�:

t4 Riem˛ˇ
ı Riem˛ˇ
ı
D 4

´
DX
iD1

.q2i � qi /
2
C

X
1�i<jDD

q2i q
2
j

µ
CO.V–/: (11.5)

In particular, for V– sufficiently small, Riem˛ˇ
ı Riem˛ˇ
ı blows up like

¹C CO.V–/ºt�4

as t # 0, where

C D 4

´
DX
iD1

.q2i � qi /
2
C

X
1�i<jDD

q2i q
2
j

µ
:

Consequently, the “past-half” of the maximal (classical) globally hyperbolic devel-
opment of the data is ..0; 1� � TD; g/, and g cannot be continued as a C 2 Lorentzian
metric to the past of the singular hypersurface †0. That is, the past of †1 in the max-
imal (classical) globally hyperbolic development of the data is foliated by the family
of spacelike hypersurfaces †t , along which the CMC condition kaa D �t

�1 holds.

� Bounded length of past-directed causal geodesics. Let ��� be any past-directed causal
geodesic that emanates from †1, and let A D A .t/ be an affine parameter along ���,
where A is viewed as a function of t along ��� that is normalized by A .1/ D 0. Then ���
crashes into the singular hypersurface †0 in finite affine parameter time

A .0/ �
jA 0.1/j

1 � q
; (11.6)

where A 0.t/ WD d
dt

A .t/.

Proof. We first fix A and N to be large enough so that all of the estimates proved (under
the bootstrap assumptions) in the previous sections hold true. By standard local well-
posedness, if V– is sufficiently small and the constant C 0 is sufficiently large, then there
exists a maximal time T.Max/ 2 Œ0; 1/ such that the solution .g; k; n/ exists classically
for .t; x/ 2 .T.Max/; 1� � TD and such that the bootstrap assumptions (3.18) hold with
T.Boot/ WD T.Max/ and " WD C 0V–. By enlarging the constant C 0 if necessary, we can assume
that C 0 � 2CN;A;D;q;¢ , where CN;A;D;q;¢ > 1 is the constant from inequality (9.5). Read-
ers can consult [4] for the main ideas behind the proof of local well-posedness in a similar
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but distinct gauge for Einstein’s equations, or [51, Theorem 14.1] for a sketch of a proof
of local well-posedness in CMC-transported spatial coordinates. Moreover, in view of
Definitions 3.14 and 3.16, it is a standard result (again, see [4] for the main ideas) that if "
is sufficiently small, then either T.Max/ D 0 or the bootstrap assumptions are saturated on
the time interval .T.Max/; 1�, that is,

sup
t2.T.Max/;1�

¹L.g;k/.t/CH.g;k/.t/C L.n/.t/CH.n/.t/º D C
0
V–:

The latter possibility is ruled out by inequality (9.5). Thus, T.Max/ D 0. In particular, the
solution exists classically for .t; x/ 2 .0; 1� � TD , and estimate (11.4) holds for t 2 .0; 1�.

The remaining aspects of the theorem follow from Lemmas 10.1 and 10.14.

Acknowledgments. We are grateful for the feedback provided by the anonymous referees, which
helped improve the exposition.

References

[1] Ames, E., Beyer, F., Isenberg, J., LeFloch, P. G.: Quasilinear hyperbolic Fuchsian systems and
AVTD behavior in T 2-symmetric vacuum spacetimes. Ann. Henri Poincaré 14, 1445–1523
(2013) Zbl 1272.83009 MR 3085923

[2] Ames, E., Beyer, F., Isenberg, J., LeFloch, P. G.: Quasilinear symmetric hyperbolic Fuchsian
systems in several space dimensions. In: Complex Analysis and Dynamical Systems. Vol. 5,
Contemp. Math. 591, American Mathematical Society, Providence, 25–43 (2013)
Zbl 1320.35193 MR 3155675

[3] Andersson, L.: On the relation between mathematical and numerical relativity. Classical
Quantum Gravity 23, S307–S317 (2006) Zbl 1191.83017 MR 2254276

[4] Andersson, L., Moncrief, V.: Elliptic-hyperbolic systems and the Einstein equations. Ann.
Henri Poincaré 4, 1–34 (2003) Zbl 1028.83005 MR 1967177

[5] Andersson, L., Rendall, A. D.: Quiescent cosmological singularities. Comm. Math. Phys. 218,
479–511 (2001) Zbl 0979.83036 MR 1828850

[6] Anguige, K.: A class of plane symmetric perfect-fluid cosmologies with a Kasner-like
singularity. Classical Quantum Gravity 17, 2117–2128 (2000) Zbl 0967.83041
MR 1766545

[7] Anguige, K., Tod, K. P.: Isotropic cosmological singularities. I. Polytropic perfect fluid
spacetimes. Ann. Physics 276, 257–293 (1999) Zbl 1003.83027 MR 1710663

[8] Barrow, J. D.: Quiescent cosmology. Nature 272, 211–215 (1978)

[9] Belinski, V., Henneaux, M.: The Cosmological Singularity. Cambridge Monogr. Math. Phys.,
Cambridge University, Cambridge (2018) Zbl 1378.83002 MR 3821508

[10] Belinskiı̆, V. A., Khalatnikov, I. M.: Effect of scalar and vector fields on the nature of the
cosmological singularity. Ž. Èksper. Teoret. Fiz. 63, 1121–1134 (1972) MR 0363384

[11] Belinskiı̆, V. A., Lifshitz, E. M., Khalatnikov, I.: Oscillatory approach to the singular point in
relativistic cosmology. Soviet Phys. Uspekhi 13, art. 745 (1971)

[12] Berger, B. K., Garfinkle, D., Isenberg, J., Moncrief, V., Weaver, M.: The singularity in generic
gravitational collapse is spacelike, local and oscillatory. Modern Phys. Lett. A 13, 1565–1573
(1998) MR 1633408

https://zbmath.org/?q=an:1272.83009&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3085923
https://zbmath.org/?q=an:1320.35193&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3155675
https://zbmath.org/?q=an:1191.83017&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2254276
https://zbmath.org/?q=an:1028.83005&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1967177
https://zbmath.org/?q=an:0979.83036&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1828850
https://zbmath.org/?q=an:0967.83041&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1766545
https://zbmath.org/?q=an:1003.83027&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1710663
https://zbmath.org/?q=an:1378.83002&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3821508
https://mathscinet.ams.org/mathscinet-getitem?mr=0363384
https://mathscinet.ams.org/mathscinet-getitem?mr=1633408


On the nature of Hawking’s incompleteness for the Einstein-vacuum equations 261

[13] Beyer, F., LeFloch, P. G.: Second-order hyperbolic Fuchsian systems and applications.
Classical Quantum Gravity 27, art. 245012, 33 pp. (2010) Zbl 1206.83025 MR 2739968

[14] Choquet-Bruhat, Y., Geroch, R.: Global aspects of the Cauchy problem in general relativity.
Comm. Math. Phys. 14, 329–335 (1969) Zbl 0182.59901 MR 250640

[15] Choquet-Bruhat, Y., Isenberg, J., Moncrief, V.: Topologically general U(1) symmetric vacuum
space-times with AVTD behavior. Nuovo Cimento Soc. Ital. Fis. B 119, 625–638 (2004)
MR 2136898

[16] Christodoulou, D.: The formation of black holes and singularities in spherically symmetric
gravitational collapse. Comm. Pure Appl. Math. 44, 339–373 (1991) Zbl 0728.53061
MR 1090436

[17] Christodoulou, D.: The instability of naked singularities in the gravitational collapse of a scalar
field. Ann. of Math. (2) 149, 183–217 (1999) Zbl 1126.83305 MR 1680551
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