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Abstract. We prove a topological extension of Dirac’s theorem suggested by Gowers in 2005:
for any connected, closed surface S, we show that any two-dimensional simplicial complex on n
vertices in which each pair of vertices belongs to at least n3 C o.n/ facets contains a homeomorph
of S spanning all the vertices. This result is asymptotically sharp, and implies in particular that
any 3-uniform hypergraph on n vertices with minimum codegree exceeding n

3 C o.n/ contains
a spanning triangulation of the sphere.

Keywords. Extremal simplicial topology, spanning structures in hypergraphs, Dirac’s theorem,
triangulated surfaces

1. Introduction

In this paper, we extend the classical graph-theoretic result of Dirac [3] on spanning cycles
to the setting of simplicial 2-complexes, or equivalently, the setting of 3-uniform hyper-
graphs (or 3-graphs for short). Dirac’s theorem determines the best-possible minimum
degree condition which guarantees that an n-vertex graph contains a Hamiltonian cycle,
i.e., a cycle spanning the entire vertex set of the graph. A natural generalisation is to treat
a “spanning cycle in a 3-graph” as a triangulation of the 2-sphere spanning the vertex
set, and here we determine asymptotically the best-possible minimum codegree condition
which guarantees the existence of such an object in an n-vertex 3-graph.

Dirac’s theorem is of central importance in graph theory, and a number of different
extensions to 3-graphs have previously been shown; see [14] for a broad overview. All
these results – see [1, 9, 21, 22], for example – treat a “spanning cycle in a 3-graph” as
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a rigid pattern of interlocking edges with respect to some cyclic ordering of the underlying
vertex set, an inherently one-dimensional notion. Here, we shall take a topological point
of view, and consider a two-dimensional extension to 3-graphs.

To motivate our point of view, already implicit in the work of Brown, Erdős and
Sós [24], we start by observing that a Hamiltonian cycle in a graph G is a set of edges
ofG such that the simplicial complex induced by these edges is homeomorphic to S1, the
one-dimensional sphere, where, additionally, the 0-skeleton of this complex is the entire
vertex set of G. By analogy, we define a copy of the sphere in a 3-graph H to be a set
of edges of H such that the simplicial complex induced by these edges is homeomorphic
to S2, the two-dimensional sphere, and we say that a copy of the sphere in a 3-graph H

is spanning or Hamiltonian if the 0-skeleton of the associated simplicial complex is the
entire vertex set of H . The following natural question, in the spirit of Dirac’s theorem,
was raised by Gowers [6].

Problem 1.1. What degree conditions guarantee the existence of a spanning copy of the
sphere in a 3-graph?

Equivalently, Problem 1.1 asks for degree conditions that guarantee the existence of
a homeomorphic copy of S2 containing all the vertices in a simplicial 2-complex. We will,
however, adhere to the language of hypergraphs in what follows, as this is the language in
which most related results have been formulated.

With regards to the origins of Problem 1.1, the question would appear to have first
been raised by Gowers at a seminar given by Kühn [12] on one of the more traditional
notions of a “cycle in a 3-graph” mentioned earlier. However, being a rather natural ques-
tion, it has also been asked independently by other people subsequently (Conlon [2], for
example), so it would perhaps be fair to say that the problem should more or less be con-
sidered folklore at this juncture. While our discussions with experts in the area suggest
that Problem 1.1 has attracted a reasonable amount of attention, with the exception of an
unpublished partial result of Conlon, Ellis and Keevash [2], almost nothing seems to be
known about it.

Before we turn to answering the above question, let us place the problem in a more
general context. While the circle S1 is, up to homeomorphism, the unique connected,
closed 1-manifold, this is no longer the case in two dimensions. Hence, one can ask a more
general question by replacing the sphere with an arbitrary connected, closed 2-manifold
(or surface for short). The following more general question fits into the “higher-dimensio-
nal combinatorics” programme of Linial [16–18], and was also suggested by Gowers [7].

Problem 1.2. Given a surface S, what degree conditions guarantee the existence of
a spanning copy of S in a 3-graph?

Of course, by the classification theorem (see [23, 26], for example), every surface is
homeomorphic to either the sphere S2, a connected sum of finitely many tori, or a connec-
ted sum of finitely many real projective planes. Also, to be clear, a copy of a surface S in
a 3-graph H is, as before, a set of edges of H such that the simplicial complex induced by
these edges is homeomorphic to S, and we say that a copy of S in a 3-graph H is spanning
if the 0-skeleton of the associated simplicial complex is the entire vertex set of H .
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Finally, instead of asking for a spanning copy of a specific surface, one might settle
for a spanning copy of any surface whatsoever. In other words, we could ask the following
weaker question.

Problem 1.3. What degree conditions guarantee the existence of a spanning copy of some
surface in a 3-graph?

In this paper, we shall prove a result that gives an asymptotically sharp solution to
Problems 1.1, 1.2 and 1.3. Recall that the codegree of a pair of vertices in a 3-graph H

is the number of edges of H containing the vertex pair. Writing ı2.H / for the minimum
codegree of a 3-graph H , our main result says the following.

Theorem 1.4. For every surface S and every� > 0, the following holds for all sufficiently
large n 2 N: any 3-graph H on n vertices with ı2.H / � n

3
C �n contains a span-

ning copy of S. Moreover, for each n 2 N, there exists a 3-graph H on n vertices with
ı2.H / D bn

3
c � 1 such that there are at most 2dn

3
e vertices in the 0-skeleton of a copy of

any surface in H .

The second half of Theorem 1.4 follows from the simple construction shown in Fig-
ure 1. It will be helpful to have some notation to discuss this construction: we define
a relation on the edge set of a 3-graph H by saying that two edges of H touch if they
intersect in two vertices, and we call an equivalence class of edges in the transitive
closure of this relation a tight component of H . Observe that the set of edges consti-
tuting a copy of a surface in a 3-graph H must belong to a single tight component of
H since all the surfaces under consideration are without boundary. Now, given n 2 N,
let X , Y and Z be three disjoint sets of vertices, with sizes as equal as possible, such
that jX j C jY j C jZj D n and consider, as in Figure 1, the 3-graph H on the vertex set
X [ Y [Z whose edge set consists of all triples either intersectingX in two vertices and
Y in one, intersecting Y in two vertices and Z in one, or intersecting Z in two vertices
and X in one. It is easy to see that ı2.H / D bn

3
c � 1. Furthermore, it is clear that the

edge set of H consists of three tight components, with each tight component spanning
two of the three vertex classes X , Y and Z. Thus, there are at most 2dn

3
e vertices in the

0-skeleton of a copy of any surface in H .
It is left then to prove the first half of Theorem 1.4. One main obstacle to doing this,

in contrast to Dirac’s theorem, is that, potentially, many of the edges inherently cannot
contribute to a spanning copy of any surface. The construction above shows that for each

X Y Z X

Fig. 1. An extremal construction.
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n 2 N, there exists a 3-graph H with ı2.H / D bn
3
c � 1 which does not contain a span-

ning tight component. As we shall see (in Proposition 3.1), a 3-graph H on n vertices
whose minimum codegree exceeds n

3
contains a spanning tight component. However, it

may additionally have another non-spanning tight component whose edges are of no use
whatsoever when trying to build a spanning copy of any surface. This already presents
a challenge, but the situation is in fact more intricate: indeed, as we shall see (in Conjec-
ture 5.3 and the discussion preceding it), even assuming that H has a unique spanning
tight component does not make the problem at hand significantly easier.

It is perhaps worth mentioning that the construction depicted in Figure 1 is not
uniquely extremal, and indeed, there exist other non-isomorphic families of constructions
that demonstrate that Theorem 1.4 is tight. Given a surface S with Euler characteristic
� 2 Z, and any sufficiently large natural number n 2 N, we construct a 3-graph on n ver-
tices with no spanning copy of S as follows. Let X and Y be two disjoint sets of vertices,
with jX j C jY j D n and jX j the least integer exceeding 1

3
.2n � 2�/, and let H be the

3-graph on X [ Y whose edge set consists of all triples meeting X in an odd number of
vertices. It is clear that

ı2.H / D jY j � 1 D

�
nC 2�

3

�
� 2;

and it is easily verified that this construction is not isomorphic to the one discussed earlier.
Now, suppose for a contradiction that there is a spanning copy of S in H . This copy of
S cannot contain any triple contained entirely in X since these edges all lie in a single
tight component that spans X but not Y . Next, view each edge of H in this copy of S as
a facet of a triangulation of S and count, for each facet, the number of vertices of X on
its boundary. Each facet contains exactly one vertex in X , so this quantity is equal to the
number of facets, which by Euler’s formula, is 2n � 2�. On the other hand, each vertex
in X is on the boundary of at least three facets since S has no boundary, so this quantity
is at least 3jX j. We conclude that 2n � 2� � 3jX j, which is a contradiction.

A few comments about results in the vicinity of Theorem 1.4 are also in order. Ques-
tions in the spirit of Problem 1.1 have previously been asked for graphs: Kühn, Osthus
and Taraz [15] proved a Dirac-type theorem for finding spanning planar triangulations
in graphs; applying Theorem 1.4 to the 3-graph of all the triangles in a graph recovers
their result (a sharper version of which is however obtained in [13]). In the probabilistic
setting, it is natural to ask when a spanning copy of the sphere is likely to appear in the
binomial random 3-graph: Luria and Tessler [19] recently established a sharp threshold
result for this problem. Finally, it has also been brought to our attention that Conlon, Ellis
and Keevash [2] earlier proved (in unpublished work, as previously mentioned) a weaker
statement in the direction of Theorem 1.4, showing that any 3-graph H on n vertices with
ı2.H / � 2n

3
C o.n/ contains a spanning copy of the sphere.

Organisation of the paper. We establish some notation and collect together the various
results required for the proof of our main result in Section 2. We give a short sketch of
the proof of Theorem 1.4 highlighting the main obstacles and how we circumvent them in
Section 3; the proof proper follows in Section 4. Finally, we conclude by discussing some
open problems and directions for further research in Section 5.
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2. Preliminaries

For n 2 N, let Œn� D ¹1; 2; : : : ; nº. For a set X and r 2 N, we write X .r/ for the family
of r-element subsets of X . In this language, an r-graph G is a pair .V;E/ of finite sets
with E � V .r/. Here, we shall only be concerned with 2-graphs and 3-graphs; as usual,
we refer to 2-graphs as graphs.

Let G D .V;E/ be a graph. For a vertex x 2 V.G/, its neighbourhood NG.x/ is the
set of vertices adjacent to x, and its degree dG.x/ is the size of NG.x/. The minimum
degree ı.G/ of G is

ı.G/ D min¹dG.x/ W x 2 V.G/º:
For any two sets of vertices X; Y � V.G/, we write EG.X; Y / for the set of edges with
one endpoint in X and one endpoint in Y .

Let H D .V;E/ be a 3-graph. For a pair of distinct vertices x; y 2 V.H /, we define
their neighbourhoodNH .x; y/ to be the set of vertices z 2 V.H / such that xyz 2 E.H /,
and we define the codegree dH .x; y/ of x and y to be size of NH .x; y/. The minimum
codegree ı2.H / of H is

ı2.H / D min¹dH .x; y/ W x; y 2 V.H / and x ¤ yº:

For any vertex v 2 V.H /, we define the link graph LH .v/ of v to be the graph on
V.H / n ¹vº where two vertices x and y are joined with an edge if v 2 NH .x; y/. Finally,
as mentioned earlier, we define a relation on the edge set of a 3-graph H by saying that
two edges of H touch if they intersect in two vertices, and we call an equivalence class of
edges in the transitive closure of this relation a tight component of H .

We will use the following classical result of Erdős [4] generalising an old result of
Kövari, Sós and Turán [11]. Recall that an r-graph G is degenerate if there exists a col-
ouring of V.G / with r colours such that each edge of G meets each of the r colour
classes.

Theorem 2.1. For each degenerate r-graph G , there exists c > 0 such that every r-graph
H on n vertices with jE.H /j � nr�c contains a copy of G as a subgraph.

In our proofs, we shall require the conclusion of Theorem 2.1 for some specific degen-
erate graphs and 3-graphs that we now define. For k 2 N, we denote a cycle of length k
by Ck ; recall that if k is even, then the k-cycle Ck is degenerate. Next, we define two
degenerate 3-graphs as in Figure 2, namely a 3-graph T9 on the vertex set Œ9� and a 3-graph
P12 on the vertex set Œ12�. It is clear that the simplicial complex induced by T9 is homeo-
morphic to the two-dimensional torus. It may also be verified that the simplicial complex
induced by P12 is homeomorphic to the real projective plane; indeed, it is not hard to see
that P12 is obtained from a simple modification of the standard 6-point triangulation of
the real projective plane.

We will also use Szemerédi’s regularity lemma [25]; to state the lemma, we need some
more notation. Given a graphG, and two disjoint nonempty sets of verticesX; Y � V.G/,
we define the density of the pair .X; Y / by

dG.X; Y / D
jEG.X; Y /j

jX jjY j
;



A. Georgakopoulos, J. Haslegrave, R. Montgomery, B. Narayanan 308

1

2

3

1

4

5

6

4

7

8

9

7

1

2

3

1 1 2 3

3 2 1

4

5

6

7 8

9

10

11

12

T9 P12

Fig. 2. The edge sets of T9 and P12 consist of all the triangles in the respective figures.

and additionally, for " > 0, we say that the pair .X; Y / is "-regular if we have

jdG.A;B/ � dG.X; Y /j � "

for allA � X andB � Y with jAj � "jX j and jBj � "jBj. A partition V0 [V1 [ � � � [Vk
of the vertex set of a graph G is said to be an "-regular partition if
(1) jV0j � "jV.G/j,
(2) jV1j D jV2j D � � � D jVkj, and
(3) all but at most "k2 pairs .Vi ; Vj / with 1 � i < j � k are "-regular.
In this language, the regularity lemma may be phrased as follows.

Theorem 2.2. For every " > 0 and each t 2 N, there exists an integer T such that every
graph G on at least T vertices admits an "-regular partition V0 [ V1 [ � � � [ Vk of its
vertex set with t � k � T .

It will also be convenient to have a few consequences of the regularity lemma. The
following proposition follows from the fact that the degrees of vertices in regular pairs are
typically well-behaved.

Proposition 2.3. For every ˛ > 0, there exists ˇ > 0 such that the following holds for all
n 2N. In each bipartite graphG between vertex classesX and Y with ˛n� jX j; jY j � n
and jE.G/j � ˛n2, there exists a subsetU � X with jU j � ˇn such that for each x 2 U ,
there exists a subset Ux � U of size at least 3

4
jU j with jNG.x/ \NG.y/j � ˇn for each

y 2 Ux .

We shall additionally use the following proposition establishing “supersaturation” for
4-cycles in dense graphs, a special case of the results of Erdős and Simonovits [5].

Proposition 2.4. For every ˛ > 0, there exists ˇ > 0 such that every n-vertex graph G
with jE.G/j � ˛n2 contains at least ˇn4 copies of the 4-cycle C4.
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We shall use the multiplicative Chernoff bound; see [8], for instance.

Proposition 2.5. Let X be a binomial random variable with mean �. Then for any fixed
ı > 0, we have

P .X > .1C ı/�/ <

�
eı

.1C ı/1Cı

��
and

P .X < .1 � ı/�/ <

�
e�ı

.1 � ı/1�ı

��
:

For completeness, we also recall the classification theorem of surfaces; see [23, 26],
for example.

Theorem 2.6. Every surface is homeomorphic to either the sphere S2, a connected sum
of finitely many tori, or a connected sum of finitely many real projective planes.

Finally, we need some notation for dealing with hierarchies of constants in our proofs.
We shall say that a statement holds “for ı � "” if for any fixed " 2 .0; 1�, there exists
ı" 2 .0; 1� such that the statement in question holds for all ı 2 .0; ı"�. Hierarchies with
more constants are defined analogously and are to be read from the right to the left.

To avoid clutter, we shall frequently drop the subscript specifying the graph or 3-graph
in the notation above when the graph or 3-graph in question is clear, abbreviating, for
example,EG.X; Y / byE.X; Y / orLH .v/ byL.v/. Additionally, we systematically omit
floors and ceilings whenever they are not crucial.

3. Overview of our strategy

Let us briefly discuss our approach to establishing Theorem 1.4. To begin with, we discuss
finding spanning copies of the sphere since this captures most of the difficulties involved.
We shall then say a few words about how we find spanning copies of a general surface.

It is not hard to see that a 3-graph H on n vertices with ı2.H / & 3n
4

contains a span-
ning copy of the sphere. This follows from Dirac’s theorem; indeed, fix a pair of vertices
of H , say x and y, and consider a graph G on V.H / n ¹x; yº, where two vertices u
and v are joined if x; y 2 NH .u; v/, i.e., if uvx; uvy 2 E.H /. It is easy to verify that
ı.G/ & n

2
, so it follows from Dirac’s theorem that G contains a Hamiltonian cycle. Of

course, a Hamiltonian cycle in G translates back to a “spanning double pyramid” in H

(see Figure 3), and this is of course a spanning copy of the sphere in H .
While the above argument is not particularly efficient, it does contain the following

useful idea: it is easy to find reasonably large spheres in any dense 3-graph. Indeed, if
we repeat the argument above in a dense 3-graph H , then the auxiliary graph Gx;y that
we construct will be dense for most pairs of vertices x; y 2 V.H /; consequently, Gx;y
will typically contain long cycles, and these translate back into large double pyramids
in H . This idea may be used to show that a 3-graph H on n vertices with ı2.H / & 2n

3

contains a spanning copy of the sphere: in such a graph H , every edge is in a tetrahedron,
and we may use this to build “absorbing structures” in the spirit of Rödl, Ruciński and
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v1 v2 vk v1

x

y

Fig. 3. A double pyramid with apexes x and y.

Szemerédi [21] that may be used to combine a small number of large spheres that almost
span the vertex set into a single sphere spanning the vertex set.

Approaches based on the ideas discussed above however reach a natural barrier at the
threshold of n

2
. Indeed, above this threshold, all the edges of a 3-graph under considera-

tion necessarily belong to a single tight component, but this is no longer true below this
threshold, as shown by the following proposition.

Proposition 3.1. If H is a 3-graph on n vertices with ı2.H / > 1
2
.n � 3/, then all the

edges of H belong to a single tight component. Moreover, for each n 2 N, there exists
a 3-graph H on n vertices with ı2.H / D b1

2
.n � 3/c whose edge set decomposes into

two tight components.

Proof. First, let H be a 3-graph on Œn� with ı2.H / > 1
2
.n � 3/. Let us induce an edge-

colouring of the complete graph on Œn� by setting the colour of an edge e of the com-
plete graph to be the tight component corresponding to all the edges of H contain-
ing e; that this colouring is well-defined follows immediately from the definition of
a tight component. Now, observe that no two edges of the complete graph incident to
the same vertex can be coloured differently; indeed, if xy and xz constitute such a pair
of edges for some x; y; z 2 Œn�, then it is clear that z … NH .x; y/, y … NH .x; z/ and
NH .x; y/\NH .x; z/D¿, which leads to an easy contradiction since ı2.H / > 1

2
.n�3/.

It follows instantly that this induced edge-colouring of the complete graph uses only one
colour since the complete graph is connected (and every edge is coloured). Therefore, all
the edges of H belong to a single tight component, proving the first part of the claim.

Next, given n 2 N, let X and Y be two disjoint sets of bn
2
c and dn

2
e vertices respect-

ively, and let H be the 3-graph on the vertex set X [ Y whose edge set consists of all the
triples meeting Y in an odd number of vertices. It is easy to see that ı2.H / D b1

2
.n � 3/c,

and it is not hard to verify that the edge set of H decomposes into two tight components,
one consisting of all the triples meeting Y in three vertices and the other consisting of
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all the triples meeting Y in one vertex. This construction proves the second part of the
claim.

To get down to the threshold of n
3

, we need to work somewhat harder. As remarked
earlier, it is clear that only those edges from a spanning tight component of a 3-graph H

are of any use in constructing a spanning copy of the sphere in H . An argument similar
to the one used to prove Proposition 3.1 shows that a 3-graph H on n vertices whose
minimum codegree exceeds n

3
contains a spanning tight component. However, to prove

Theorem 1.4, it will be necessary to say something more about the structure of, and the
interaction between, the tight components of a 3-graph H on n vertices with ı2.H / & n

3
.

First, we shall demonstrate that at least one of the spanning tight components of such
a 3-graph has reasonably good “connectibility properties”; this will help us in forming
connected sums of smaller surfaces that we will build over the course of our proof. Next,
we shall show that it is possible to find a small number of spheres that almost span the ver-
tex set, while crucially ensuring that these spheres meet sufficiently many edges with the
good connectibility properties. Finally, we shall use the fact that the 3-graphs T9 and P12,
which respectively represent the torus and the real projective plane, are degenerate to
either add handles or crosscaps as needed.

In order to implement the above ideas, we shall rely on a number of techniques from
extremal and probabilistic combinatorics, including those of absorption, regularity and
supersaturation.

4. Proof of the main result

We shall divide the proof of Theorem 1.4 into stages, each addressing different aspects of
the strategy outlined in the previous section.

Let us point out two notational conventions that we adopt. Given a subgraph G of
a 3-graph H , the subset of the vertex set V.H / spanned by G is denoted by V.G /; in the
case where G consists of a single edge e 2 E.H /, we abuse notation slightly and write
V.e/ for V.G /. To avoid clutter, we will also talk about “spheres in a 3-graph” when,
strictly speaking, we mean “copies of the sphere S2 in a 3-graph”, and similarly for the
torus and the real projective plane.

We shall make use of the following simple averaging lemma at several points.

Lemma 4.1. For any r 2 N and 
 2 .0; 1/, the following holds for all sufficiently large
m 2 N. For any finite set X, and any system X1; : : : ; Xm of subsets of X satisfying

mX
iD1

jXi j � 
mjXj;

we may find a set K � Œm� with jKj D r such thatˇ̌̌̌ \
i2K

Xi

ˇ̌̌̌
�

 r jXj

2
:
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Proof. Choose a random subsetK � Œm� of size r . For each x 2X, x belongs to
T
i2K Xi

with probability
�
f .x/
r

�
=
�
m
r

�
, where f .x/ is the number of indices i 2 Œm� such that x 2Xi .

By Jensen’s inequality, we have

E

�ˇ̌̌̌ \
i2K

Xi

ˇ̌̌̌�
� jXj

 

m

r

! 
m

r

!�1
provided that 
m > r . It is now straightforward to prove that the claim holds for all
sufficiently large m 2 N.

4.1. Double pyramids in dense 3-graphs

Recall that a 3-graph is said to be degenerate or 3-partite if its vertex set may be par-
titioned into three classes in such a way that each edge meets all three classes. The
following lemmas make precise our earlier observation that it is easy to find large spheres
in any dense 3-graph.

Lemma 4.2. Let 1
n
� ı; 1

k
� 1, let H be a 3-graph on n vertices, and let T � V.H /

meet at least ın3 edges of H . Then H contains a double pyramid on 2k C 2 vertices with
apexes in T .

Proof. For each vertex v 2 T , recall that L.v/ denotes the graph on V.H / n ¹vº with
xy 2 E.L.v// whenever vxy 2 E.H /. Applying Lemma 4.1 to these graphs – with
r D 2 and X D V.H /2 – we can find a pair of vertices v;w 2 T such that there are
at least 1

2
ı2n2 edges common to L.v/ and L.w/. By Theorem 2.1 – applied with r D 2 –

we may find a copy of the cycle C2k among these common edges. Such a cycle yields
a double pyramid in H with apexes v and w and 2k C 2 vertices in total.

Lemma 4.3. Let 1
n
� ı; "; �� 1, and let H be a 3-partite 3-graph with vertex classes

A, B and T with jAj D jBj D n and jT j � "n such that for each A0 � A and B 0 � B
with jA0j; jB 0j � "n, there are at least ıjA0jjB 0jjT j edges in H ŒT [ A0 [ B 0�. Then H

contains at most �n disjoint spheres that each have 2 vertices in T and together cover at
least .1 � "/n vertices from each of A and B .

Proof. Fix an integer k such that 1
n
�

1
k
� ı; "; �. Iteratively, remove spheres S from H

with jV.S/ \ Aj D jV.S/ \ Bj � k and jV.S/ \ T j D 2, until it is not possible to find
another sphere with these properties. This removes at most �n disjoint spheres. Suppose
that we are left with A0 � A, B 0 � B and T 0 � T .

We will show that jA0j D jB 0j < "n, completing the proof. Suppose for the sake of
contradiction that jA0j D jB 0j � "n. Note that we have

jT 0j � jT j �
2n

k
�

�
1 �

ı

2

�
jT j;

so there are at least 1
2
ıjA0jjB 0jjT j edges in H ŒT 0 [ A0 [ B 0�. Applying Lemma 4.2 to

H ŒT 0 [ A0 [ B 0�, we may find a double pyramid on 2k C 2 vertices with apexes in T 0.
Since H is 3-partite, the remaining 2k vertices are evenly divided between A0 and B 0,
yielding a contradiction.
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4.2. Colouring and connecting edges

Next, we detail how we will connect spheres together into a larger sphere. In this section,
we work towards showing that the edges in our 3-graph can be (mostly) coloured red
and green so that any disjoint edges of the same colour can be connected together into
a sphere (and, moreover, in many different ways). Thus, two disjoint spheres which share
some colour among their edges can be connected together into a larger sphere.

More precisely, given an integer k 2 N and a 3-graph H on n vertices, we say two
edges e; f 2 E.H / are .˛; k/-connectible if, for some l with 1 � l � k, there are at least
˛nl sets A � V.H / with jAj D l for which there is a sphere in H containing the edges
e and f with vertex set A [ V.e/ [ V.f /. This will be the most convenient definition
to use in proving connectibility properties, however, we shall then only use the following
simple consequence of .˛; k/-connectibility.

Lemma 4.4. If two edges e; f 2 E.H / are .˛; k/-connectible, then for some l with
1 � l � k there are at least ˛n

l
pairwise disjoint sets A � V.H / with jAj D l for which

there is a sphere with vertex set A [ V.e/ [ V.f / in H containing the edges e and f .

Proof. Let l with 1 � l � k be a number witnessing the fact that e; f are .˛; k/-con-
nectible. Choose a maximal collection A1; A2; : : : ; Ar of disjoint sets with the required
properties and note that U D

Sr
iD1Ai comprises rl vertices. By the maximality of our

choice, U intersects every set of vertices of size l which can be used to create a sphere
including e and f . There are at least ˛nl such sets, but at most rlnl�1 sets of size l
meet U , so we must have rl � ˛n, as required.

Next, we demonstrate that almost all touching pairs of edges in a dense 3-graph are
easily connectible.

Lemma 4.5. Let 1
n
� ı � " < 1, and let H be a 3-graph on n vertices. Then all but

at most "n4 touching pairs of edges of H are contained in at least ın2 spheres with six
vertices in H .

Proof. We need to show that if F is any set of "n4 touching edge-pairs of H , then at least
one of these pairs is contained in at least ın2 spheres with six vertices. To this end, fix a set
F of "n4 touching edge-pairs of H . By averaging, there are two vertices x; y 2 V.H /

such that e4f D ¹x; yº for at least "n2 edge-pairs ¹e; f º 2 F , where 4 denotes the
symmetric difference.

Let G D Gx;y be the graph on the vertex set V.H / where we join two vertices u and
v if uvx; uvy 2 E.H /. As

jE.G/j � "n2;

we know from Proposition 2.4 thatG contains ın4 copies of the 4-cycleC4. Consequently,
there is some uv 2 E.G/ such that there are at least ın2 pairs w; z 2 V.H / such that the
set ¹u; v;w; zº induces a copy of C4 in G containing the edge uv. For any such a copy
of C4, note that ¹x; y; u; v; w; zº is the vertex set of a sphere in H containing the touching
edge-pair ¹uvx; uvyº. Thus, we have shown that F contains a pair ¹uvx; uvyº that is
contained in at least ın2 spheres in H with six vertices, proving the claim.
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Our next (rather coarse) lemma develops the connectibility properties of dense
3-graphs further.

Lemma 4.6. Let 1
n
� ˛ � ˇ � "� 1, and let H be a 3-graph on n vertices with

ı2.H / � n
3

. Then all but at most "n3 edges of H can be coloured so that

(1) there are at least 1
2
ˇn3 edges of each colour, and

(2) any two disjoint edges of the same colour are .˛; 33/-connectible.

It is worth remarking that here and in what follows, when we speak of a pair edges of
the same colour being connectible, we mean this in H (and not necessarily in their own
colour class) unless we explicitly say otherwise.

Proof of Lemma 4.6. Take ı; � > 0 so that ˇ � ı � �� " and call a pair of touching
edges good if it can be completed into a sphere using two more vertices in at least ın2

different ways and bad otherwise. Note that by Lemma 4.5, there are at most �n4 bad
pairs in H .

We iteratively colour the edges of H as follows. Suppose that we have a setF �E.H /

of at least "n3 uncoloured edges. Write E and F for the sets of ordered 3-tuples .x; y; z/
such that xyz 2 E.H / and xyz 2 F , respectively. Given a 3-tuple f D .v1; v2; v3/ 2 F,
we define

A.f/ D ¹.x; y; z/ W v2v3x; v3xy; xyz 2 E.H /º;

noting that

jA.f/j �
�
n

3
� 1

��
n

3
� 2

��
n

3
� 3

�
�
n3

54
:

Clearly, there are at least "n
6

9
ordered pairs .f; e/ of 3-tuples with f 2 F and e 2 A.f/ since

every edge of F corresponds to 6 different 3-tuples in F.
For f 2 F, let B.f/ � A.f/ be the set of 3-tuples .x; y; z/ 2 A.f/ such that the pairs

¹v1v2v3; v2v3xº, ¹v2v3x; v3xyº, and ¹v3xy; xyzº of touching edges are all good. Note
that every bad pair ¹w0x0y0; x0y0z0º in H arises as one of the three pairs corresponding to
.v1; v2; v3; x; y; z/ as above for at most 12n2 choices of this 6-tuple. Therefore, there are
at most 12�n6 ordered pairs .f; e/ with f 2 F and e 2 A.f/ n B.f/.

Now, if jB.f/j < �n3 for some f 2 F, then jA.f/ n B.f/j � . 1
54
� �/n3, so our previ-

ous observation implies that there are at most 12�n3=. 1
54
� �/ � 3"n3 different 3-tuples

f 2 F for which jB.f/j < �n3. Hence, there are at least 6"n3 � 3"n3 � 3"n3 different
3-tuples f 2 F for which jB.f/j � �n3, and correspondingly, there is a set F 0 � F of at
least "n

3

2
edges for which at least one of the six 3-tuples corresponding to that edge has

this property.
Next, we create an auxiliary bipartite graph G between F 0 and E.H / with an edge

between f 2 F 0 and e 2 E.H / if some pair ¹f; eº of 3-tuples corresponding to these
edges of H satisfies e 2 B.f/; note that G has at least 1

12
"�n6 edges. We appeal to Pro-

position 2.3 and find a subset F 00 � F 0 of size at least ˇn3, such that for any two edges
f1; f2 2 F

00 there are at least 1
2
ˇn3 edges f3 2 F 00 with the property that the pairs f1; f3

and f2; f3 each have at least ˇn3 common neighbours in G.
Thus, for disjoint edges f1; f2 2 F 00, there are at least 1

4
ˇn3 edges f3 2 F 00 dis-

joint from f1 and f2 so that the pairs f1; f3 and f2; f3 each have at least ˇn3 com-
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mon neighbours in G. For each such f3, note that there are at least 1
4
.ˇn3/2 choices

of e1; e2 2 E.H / which are disjoint from each other and from f1; f2 and f3 and such
that f1e1; e1f3; f3e2; e2f2 2 E.G/. For any such pair e1 and e2, we proceed as follows.
There are at least .ın2/3 �O.n5/ � 1

2
ı3n6 ways to find a sphere S1 joining f1 and e1

using six extra vertices and avoiding the vertices in f3; e2 and f2; to see this, note that
f1 and e1 are joined in G, which means that we may walk from f1 to e1 along three
good touching pairs of edges in H , so gluing three spheres, one sitting each of these
good touching pairs, furnishes us with a candidate for S1, and ignoring candidates that
meet f3; e2 and f2 gives us the required bound. A similar argument for each of the edges
e1f3; f3e2; e2f2 2 E.G/ in turn shows that we can find spheres S2; S3 and S4 containing
the pairs e1f3, f3e2 and e2f2 in turn, each with six vertices in addition to those in the edge
pair, and so that all the additional vertices are distinct and not in any of the edges f1, f2,
f3, e1 and e2. Furthermore, when choosing each sphere we have at least 1

2
ı3n6 choices.

Thus, we can choose such spheres in at least 1
16
ı12n24 �O.n23/ � 1

32
ı12n24 differ-

ent ways so that gluing S1; S2; S3 and S4 together (i.e., taking their symmetric difference)
results in a sphere containing f1 and f2 and 33 extra vertices.

There were at least 1
4
ˇn3 choices of f3 and 1

4
.ˇn3/2 choices of e1 and e2, so thus

in total we can find at least 1
512
ı12ˇ3n33 � ˛n33 spheres containing f1, f2 and 33 extra

vertices. Thus, f1 and f2 are .˛; 33/-connectible. As f1 and f2 were arbitrary disjoint
edges in F 00, we can colour all the edges in F 00 using a new colour.

It is clear that this procedure colours the edges of H as required, thereby proving the
lemma.

The next observation refines the previous lemma, and is the starting point of our char-
acterisation of the connectibility properties of the tight components of a sufficiently dense
3-graph.

Lemma 4.7. Let 1
n
� ˛; 1

k
� "� 1, and H be a 3-graph on n vertices with ı2.H / � n

3
.

Then all but at most "n3 edges of H can be coloured so that any two disjoint edges of
the same colour are .˛; k/-connectible and there are at most "n4 pairs of touching edges
with different colours.

Proof. Take ı; � > 0 so that ˛; 1
k
� ı � �� " and set k0 D 33. By Lemma 4.5, there

are at most 1
2
�2"n4 touching edge-pairs in H which are not contained in at least ın2

spheres with size 6 in H . By Lemma 4.6, we can colour the edges of H so that at most
"n3 edges are uncoloured, there are at least �n3 edges of each colour, and any two disjoint
edges of the same colour are .ı; k0/-connectible. Let l be the number of colours used by
this colouring C0, and note that

l �

 
n

3

!
.�n3/�1 <

1

�
:

We iteratively construct a sequence of colourings .Ci /1�i�m as follows. For each
i � 0, if there are at least �2"n4 touching pairs of edges each using two fixed colours
c1; c2 of Ci , then we define the colouring CiC1 by replacing c1; c2 with a common new
colour (if there is more than one choice for such a pair of colours, we pick any acceptable
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pair). Of course, these recolourings may be performed at most l � 1 times, and we stop
after m < l steps when there are at most 

l

2

!
�2"n4 < "n4

non-monochromatic touching edge-pairs in the colouring Cm.
For 0 � i � m, we prove by induction that any two disjoint edges of the same colour

in Ci are .ı3
i
; 3ik0/-connectible in H . This is certainly true for i D 0, so suppose that we

have established this fact for i , and that e; f 2 E.H / have the same colour in CiC1 but
not in Ci , where they are coloured, say, red and blue respectively. Then there are at least
�2"n4 touching red-blue edge pairs in Ci , and at least 1

2
�2"n4 of these pairs are contained

in at least ın2 spheres with size 6 in H . At least half of the latter pairs .e0; f 0/ satisfy the
additional requirement that V.e/ [ V.f / and V.e0/ [ V.f 0/ are disjoint, since there are
only O.n3/ touching-edge pairs which fail to satisfy it. By the induction hypothesis and
the pigeonhole principle, we observe that for some k1; k2 � 3i�1k0, there are at least

�2"n4

4.3i�1k0/2
> ın4

of the above red-blue pairs of touching edges .e0; f 0/ such that there are
(1) at least ı3

i�1
nk1 ways to complete e and e0 into a sphere S1 using k1 extra vertices,

(2) at least ı3
i�1
nk2 ways to complete f 0 and f into a sphere S2 using k2 extra vertices,

and
(3) at least ın2 ways to complete e0 and f 0 into a sphere S3 using two extra vertices.
Thus, there are at least ı2.1C3

i�1/nk1Ck2C6 < 2ı3
i
nk1Ck2C6 ways to choose a combina-

tion of these objects, namely a pair .e0; f 0/ and three spheres S1, S2 and S3 with the above
properties. Note that for every such choice, the symmetric difference of the edge sets of
S1, S2 and S3 forms a sphere containing e and f and k1C k2C 6� 2 � 3i�1k0C 6< 3ik0
additional vertices, provided the sets of extra vertices used in 1, 2 and 3 above are dis-
joint from each other and from V.e/ [ V.e0/ [ V.f 0/ [ V.f /. As the number of ways to
choose any triple of vertex sets, let alone spheres, with k1; k2 and 2 elements respect-
ively, such that two of the sets intersect or one intersects a given 10-element set, is
O.nk1Ck2C1/, we deduce that there are at least 2ı3

i
nk1Ck2C6 �O.nk1Ck2C5/ spheres

in H including e, f and k1 C k2 C 6 extra vertices, so it follows that e and f are
.ı3

i
; 3ik0/-connectible in H .
It is now clear that our final colouring Cm has the required properties, completing the

proof.

4.3. Colour interaction

We say that a 3-graph H on n vertices is ."; �/-coloured if ı2.H / � .1
3
C �/n and all

but "n3 of its edges are coloured red or green so that
(1) there are at most "n4 pairs of touching red and green edges, and
(2) at least �n

4
vertices are contained in fewer than "n2 red edges.
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The following lemma turns the ."; �/-coloured property into a property of the link
graphs L.v/ we will use in Section 4.6 to construct almost spanning spheres. For an edge-
coloured 3-graph H as above, and v 2 V.H /, we define the green link graph GL.v/ to
be the graph on V.H / n ¹vº where two vertices x and y are joined with an edge if vxy is
a green edge of H .

Lemma 4.8. Let 1
n
� "� �� 1, and let H be an n-vertex ."; �/-coloured 3-graph.

Then, for all but at most �4n vertices v 2 V.H /, the green link graph GL.v/ has at least
.1
3
C

�
2
/n vertices with degree at least .1

3
C

�
2
/n.

Proof. We construct an auxiliary red-green coloured graph G on the vertex set V.H / as
follows. For each pair x; y 2 V.H / such that there are at least .1

3
C

3�
4
/n edges of one

colour in H containing x and y, add the edge xy to G, giving it that colour, where if
this pair satisfies this condition for both colours, we colour xy green. It suffices to show
that all but at most �4n vertices are in at least .1

3
C

�
2
/n green edges of G, since if xy

is a green edge of G then there are at least .1
3
C

3�
4
/ green edges of the form xyz, and

it follows that y has degree at least .1
3
C

3�
4
/ in GL.x/.

If xy is not an edge of G, then the edges of H containing x and y either include at
least �n

8
uncoloured edges or include at least �n

8
edges of each colour. In the latter case,

there are at least 1
64
�2n2 pairs of differently-coloured edges in H which touch along xy;

since there are at most "n4 pairs of differently-coloured touching edges in H , no more
than 64" n

2

�2 non-edges xy can occur for this reason. Similarly, since there are at most "n3

uncoloured edges in H , at most 24"n
2

�
non-edges xy can occur in G for the former

reason. Hence there are at most

88"
n2

�2
< �6n2

non-edges in G.
Since H is ."; �/-coloured, there are at least �n

4
vertices in fewer than "n2 red edges

of H ; let A be a set of �n
4

such vertices. Since each red edge of G extends to more than n
3

red edges of H , each vertex in A is in fewer than 6"n red edges of G, so there are fewer
than 3

2
"�n2 < �6n2 red edges of G meeting A.

Let B be the set of vertices with fewer than �n
8

green edges in G to A. Since for each
such vertex there are at least �n

8
non-edges or red edges with the other end in A, and

there are fewer than 2�6n2 pairs which are non-edges or red edges meeting A, each of
which is counted at most twice, we deduce that jBj < 32�5n. Let B 0 be the set of vertices
with degree less than .1 � �

8
/n in G. Since G has fewer than �6n2 non-edges, we have

jB 0j < 8�5n.
Now, fix a vertex v 2 V.H / n .B [ B 0/, and suppose that v is in fewer than .1

3
C

�
2
/n

green edges in G. Since v 62 B , there are at least �n
8

choices of u 2 A for which uv is
a green edge ofG; by definition, for each choice of u there are at least .1

3
C

3�
4
/n choices

of w for which uvw is a green edge of H . Since v is in fewer than .1
3
C

�
2
/n green edges

in G, and v 62 B 0, it must be the case that vw is a red edge of G for at least �n
8

of these
choices of w, so there are at least 1

64
�2n2 pairs .e; f / where e is a red edge of G, f is

a green edge of H and v 2 e � f .
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However, there are at most 3"n3 < �7n3 pairs .e; f / for which e is a red edge
of G, f is a green edge of H and e � f , since each such pair corresponds to at least
n
3

differently-coloured touching edge pairs in H , of which there are at most "n4. Each
such pair corresponds to at most two choices of v, so there are at most 128�5n vertices
in V.H / n .B [ B 0/ which are in fewer than .1

3
C

�
2
/n green edges of G; it follows that,

in total, at most 168�5n < �4n vertices are in fewer than .1
3
C

�
2
/n green edges of G, as

required.

Crucial for our purposes is the fact that any sufficiently dense 3-graph admits an
."; �/-colouring with strong connectibility properties within each colour class.

Lemma 4.9. Let 1
n
� ˛; 1

k
� "��, and let H be a 3-graph on n vertices with ı2.H /�

.1
3
C �/n. Then it is possible to ."; �/-colour H so that any monochromatic pair of

disjoint edges of H is .˛; k/-connectible.

Proof. Choose � > 0 so that ˛; 1
k
� �� ". By Lemma 4.7, all but at most �n3 edges of

H can be coloured so that any two disjoint edges of the same colour are .˛; k/-connectible
and there are at most �n4 pairs of touching edges with different colours. It only remains
to show then that some two colours account for all but ." � �/n3 of the coloured edges,
and that at least �n

4
vertices appear in fewer than "n2 edges of one of these colours.

To prove this, we shall first show that for all but a few pairs of vertices, there are
a large number of edges of a single colour containing that pair which also meet a large
number of edges of the same colour along each of the other pairs they contain. In order
to consider pairs of vertices in this way, we will find it convenient to define an auxiliary
coloured graph G. We then show that there is only room in H for such large monochro-
matic structures in at most two colours; this is similar to proving that a 3-graph with
minimum codegree exceeding n

3
can have at most two tight components. Finally, we shall

use a double counting argument on the interactions between colours to show that there is
a similar obstacle to nearly all vertices meeting many edges of both colours.

We start by defining an auxiliary graphG on V.H /where we join a pair x; y 2 V.H /

of vertices if there is a unique colour c so that there are at least .1
3
C � � "/n edges with

colour c in H containing x and y; moreover, we assign the colour c to such an edge. If xy
is not an edge of G, then it follows that at least

.ı2.H / � "n/"n >
"n2

3

pairs of differently-coloured touching edges of H have intersection ¹x; yº. Thus, G is
“nearly complete”, missing at most 3�n

2

"
edges.

Claim 4.10. At most "2n2 pairs of vertices are in fewer than .1
3
C � � "/n monochro-

matic triangles of G.

Proof. Since G has at most 3�n2

"
< 1

6
"3n2 non-edges, fewer than 1

6
"3n3 edges of H

contain a non-edge of G. For every coloured edge of H which contains an edge of G
coloured differently, there are at least .1

3
C � � "/n pairs of differently-coloured touching

edges of H , so we conclude that at most 1
6
"3n3 such edges exist. Therefore, all but at
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most 1
3
"3n3 edges of H correspond to monochromatic triangles in G. Consequently, at

most "2n2 pairs of vertices lie in more than "n edges of H which do not correspond
to a monochromatic triangle, so all other pairs of vertices lie in at least .1

3
C � � "/n

monochromatic triangles in G, proving our claim.

Now, let us remove all the edges of G which are in fewer than .1
3
C � � "/n mono-

chromatic triangles of G, resulting in a graph missing at most

3�n2

"
C "2n2 < 2"2n2

edges, and then remove, iteratively, at most 1
2
"n vertices with minimum degree from

this graph to obtain a graph G0 of minimum degree at least .1 � 4"/n. In G0, every
edge is in at least .1

3
C

�
2
/n monochromatic triangles, since any edge of G0 was in at

least .1
3
C � � "/n monochromatic triangles of G, and in passing to G0, edges have been

removed from at most 8"n such triangles and vertices have been removed from at most
1
2
"n of these triangles. Calling a triangle rainbow if its edges have three different colours,

we then have the following claim.

Claim 4.11. There are at most "3n3 rainbow triangles in G0.

Proof. If xyz is a rainbow triangle in G0, say with xy red, yz green and xz blue, then
write Wr for the set of vertices w 2 V.H / such that wxy is a red edge of H , and define
Wg and Wb analogously. We clearly have

jWr j; jWg j; jWbj �

�
1

3
C � � "

�
n;

so we can find �n vertices in more than one set, and hence �n pairs of differently-
coloured touching edges. Each such pair arises from at most two rainbow triangles, so
it follows that there are at most 2�n

3

�
< "3n3 rainbow triangles in G0.

Next, suppose there are at least three colours in G0, say red, green and blue. Each col-
our meets at least .1

3
C

�
2
/n vertices by the definition of G0, and at most "n vertices are

in "2n2 rainbow triangles by Claim 4.11, so we may pick a vertex v incident to edges of
at least two colours, red and green say, which is in fewer than "2n2 rainbow triangles. Let
Vr and Vg be the red and green neighbourhoods of v in G0. Since jVr [ Vg j � .23 C �/n,
at least 3

2
�n > 2"n vertices in Vr [ Vg meet blue edges, and at least one of these vertices

is in fewer than "n rainbow triangles containing v. Pick such a vertex w, and assume
without loss of generality that w 2 Vr . Note that, as vw 2 E.G0/ is red, and thus in at
least .1

3
C

�
2
/n red triangles in G0, w has at least .1

3
C

�
2
/n red neighbours in Vr . Fur-

thermore, asw meets a blue edge, it must be in at least .1
3
C

�
2
/n blue edges, at most "n of

which are with a vertex in Vg (for each such edge gives rise to a rainbow triangle contain-
ing vw). In total, w is in at least .2

3
C � � "/n blue or green edges without a vertex in Vg ,

which contradicts jVg j � .13 C
�
2
/n.

Therefore, G0 only has two colours, say, red and green. Write Br and Bg for the set
of vertices spanned by the red and green edges respectively, and suppose without loss of
generality that jBr j � jBg j.
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Claim 4.12. We have

jBr j �

�
1 �

�

4
� 6"

�
n;

whence jV.G0/ n Br j � .
�
4
C 3"/n.

Proof. Suppose, for the sake of a contradiction, that

jBg j � jBr j �

�
1 �

�

4
� 6"

�
n:

At least .1 � �
2
� 12"/n vertices are in both Br and Bg , and each such vertex is incident

to at least .1
3
C

�
2
/n edges of each colour, and to at least .1 � 4"/n edges in total by the

definition of G0. Consequently, for each such vertex v, there are at least�
1

3
C
�

2

��
2

3
�
�

2
� 4"

�
n2 �

n2

5

pairs x; y 2 V.G0/with vx red and vy green. Each such pair produces a triple which is not
a monochromatic triangle inG0, and no such triple is counted more than twice, so there are
at least n

3

11
, say, distinct triples of this kind. However, G0 has at least .1 � "

2
/.1 � 4"/n

2

2

edges and each edge ofG0 is in at least .1
3
C

�
2
/nmonochromatic triangles, so the number

of triples inducing monochromatic triangles is at least�
1 �

"

2

�
.1 � 4"/

�
1

3
C
�

2

�
n3

3
>
n3

11
:

We therefore find at least
n3

11
C
n3

11
>

 
n

3

!
distinct triples on V.G0/, which is a contradiction.

We now obtain the colouring we seek as follows: we un-colour all the edges of H not
coloured red or green, as well as all the edges of H containing either a non-edge of G0 or
a vertex not in V.G0/. Let us count the number of edges of H that are no longer coloured
after we do this. At most �n3 edges of H were not coloured in the original colouring, at
most 2"2n3 edges of H contain a non-edge ofG0, and at most 1

2
"n3 edges of H contain a

vertex not in V.G0/. Finally, any edge of H containing an edge of G0 not coloured either
red or green contributes at least n

3
pairs of differently-coloured touching edges, so there

are at most 3�n3 such edges. Therefore, the number of edges of H not coloured in our
final colouring is at most

�n3 C 2"2n3 C
"n3

2
C 3�n3 < "n3:

Finally, notice that any red edge in our final colouring of H incident to a vertex in
V.G0/ n Br is in at least n

3
pairs of differently-coloured touching edges, so the number

of such edges is at most 3�n3 < "2n3. It follows from Claim 4.12 that at least 1
4
�n ver-

tices in V.G0/ n Br meet fewer than "n2 red edges, as required. All the other properties
that we need are inherited from the original colouring of H , proving the statement.
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4.4. Green-tinged absorbers

We now build absorbing structures in an ."; �/-coloured 3-graph. These structures will be
crucial in transforming an “almost spanning” copy of a surface into a spanning one.

Fix an ."; �/-coloured 3-graph H . We say a subgraph of H is green-tinged if it has
at least two green edges. Given a subset U of the vertices of H , a green-tinged absorber
for U is a sphere S in H ŒV .H / n U � which contains two green edges e and f so that
for every U 0 � U , there is a sphere in H on the vertex set V.S/ [ U 0 containing both e
and f .

Lemma 4.13. Let 1
n
� "� �� 1, 1

n
� �, and suppose that H is an ."; �/-coloured

3-graph with n vertices. Then for any R � V.H / with jRj � 1
72
�n, there is a collec-

tion of l � �n vertex-disjoint spheres in H ŒV .H / nR�, spanning at most 8jRj vertices
in total, which are respectively green-tinged absorbers for some pairwise disjoint sets
R1; R2; : : : ; Rl � R with R1 [R2 [ � � � [Rl D R.

Proof. Fix an integer k � �
36�

. We shall use a greedy procedure to iteratively find “large”
absorbers for subsets of R of size k until fewer than 1

2
�n vertices of R remain, and

then find “small” absorbers for the remaining vertices one by one. We shall also ensure
that the absorber that we construct for a subset X � R at any particular iteration of
our procedure uses at most 8jX j vertices. Observe that our choice of k ensures that at
most 1

2
�n large absorbers and 1

2
�n small absorbers are built.

Let us now describe a step of our iterative procedure. Write A for the union of the
vertices in the vertex-disjoint absorbers selected so far, and R0 for the remaining vertices
in R for which we have yet to built an absorber; in particular, we initially have A D ¿
and R0 D R. Note that we shall always ensure that jA [Rj < 9jRj � �n

8
.

We first describe how we proceed when jR0j � 1
2
�n. Let B � V.H / be the set of

vertices contained in at most "n2 red edges, so that jBj � 1
4
�n, and choose a set B 0 �

B n .A [ R/ with jB 0j D �n
8

. For each v 2 R0, let Lv be the subgraph of the link-graph
L.v/ induced by the set V.H / n .A [R/. Let L0v � Lv be the subgraph of Lv consisting
of those edges of Lv which are additionally in at least n

3
green edges of H . We shall show

that L0v contains many edges incident with B 0.

k

Fig. 4. The double ladder DLk .
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Since jA [Rj � �n
8

, it follows that Lv has minimum degree .1
3
C 7�

8
/n. Every ver-

tex x 2 B 0 has at least .1
3
C

3�
4
/n edges in Lv to V.H / n .A [R [ B 0/, and by the

definition of B 0, at most 4"n
�

of these edges in Lv are contained in more than 1
4
�n red

edges of H , for otherwise we would get�
4"n

�

��
1

4
�n

�
D "n2

red edges incident with x 2 B 0. A similar calculation shows that at most 12"n
2

�
edges of

Lv are in more than 1
4
�n uncoloured edges of H . Easily, if e is an edge of Lv contained

in at most 1
2
�n edges of H that are either red or uncoloured, then e lies in L0v . From

these facts, we conclude that L0v contains more than one third of all edges between B 0 and
V.H / n .A [R [ B 0/ for each v 2 R0.

For a set U � R0 of size k, write LU D \v2UL0v . Now, by Lemma 4.1 – applied
with X being the set B 0 � .V .H / n .A [R [ B 0// of possible edges of LU , r D k and

 D 1

3
– we may find a set U � R0 of size k such that LU contains more than a 3�k

2

proportion of the pairs in B 0 � .V .H / n .A [R [ B 0//, so

jE.LU /j �
3�k�n2

17
:

Each edge in LU is contained in at least n
3

green edges of H by definition, so averaging
using Lemma 4.1 again – now with X D E.LU /, m D jV.H / n .A [R/j, each set Xi
being the subset ofE.LU / which form green edges with a given vertex in V.H /n.A[R/,
r D k C 1 and 
 D 1

4
– we can find a set T D ¹t1; t2; : : : ; tkC1º of k C 1 vertices disjoint

from U , and a subgraphL0U ofLU with at least 1
136
12�k�n2 edges with the property that

each edge in L0U and each vertex in T together form a green edge of H .
We can now find a copy of the double ladder DLk with k spaces, depicted in Fig-

ure 4, in L0U ; indeed, since DLk is bipartite, Theorem 2.1 guarantees the existence of
such a copy. The green edges consisting of vertices of T and edges of the copy of DLk
contain an absorbing sphere SU for U , shown in Figure 5. Since all the edges of SU
containing tkC1 are green, and are present no matter which vertices are absorbed, SU is
a green-tinged absorber; it has 4.k C 1/ � 8k vertices, as required.

We now turn to dealing with how to proceed when jR0j < 1
2
�n. In this case, we find

absorbing spheres for the vertices in R0 one by one as follows. We pick v 2 R0, construct
the graph L0v as above, and use Lemma 4.1 with X D E.L0v/, r D 2 and 
 D 1

4
, to find

a pair of vertices T D ¹t1; t2º disjoint from A [R and a graph L00v � L
0
v with at least

jE.L0v/j

32
>
n2

800

edges, each of which forms a green edge of H with both t1 and t2. We may find a copy of
DL1 in L00v using Theorem 2.1, and the corresponding green edges of H contain a green-
tinged absorber for ¹vº of order 8, obtained by repeating the construction of Figure 5 with
k D 1.

The iterative procedure described above clearly produces the absorbers we require,
proving the lemma.
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t1 t2 t3 t4

tkC1

tkC1

v w

t1 t2

t3 t4

tkC1

tkC1

Fig. 5. The absorbing sphere SU for U is shown on the left; each triangle in the figure corresponds
to an edge of H , which exists because the underlying double ladder lies in L0

U
. On the right, we

show how SU can absorb two arbitrary vertices v;w 2 U .

By letting the spheres we construct absorb all of R in Lemma 4.13, we immediately
obtain the following corollary.

Corollary 4.14. Let 1
n
� "� �� 1, 1

n
� � and suppose that H is a ."; �/-coloured

3-graph on n vertices. Then for any R � V.H / with jRj � �n
72

, there is a collection of at
most �n vertex-disjoint green-tinged spheres in H which cover R.

4.5. Spheres covering twice as many bad vertices as good vertices

The following lemma will allow us to create spheres that use twice as many vertices from
some specific set of “bad” vertices as from a specific set of “good” vertices. This will
prove useful in Section 4.6 since the connectibility properties of our 3-graphs will impose
constraints of precisely this nature.

Lemma 4.15. Let 1
N
� ˇ; 
; 1

k
and suppose that H is a 3-graph on vertex classes A

and B , where A has at least N vertices and every edge has one vertex in B and two
vertices in A. Suppose that for at least ˇN vertices v 2 B , the link-graph L.v/ has at
least .1

2
C 
/jAj vertices with degree at least .1

2
C 
/jAj. Then there is a sphere S in H

which has 4k vertices in B and 2k C 2 vertices in A.

Proof. Write B 0 for the set of vertices v 2 B for which L.v/ has at least .1
2
C 
/jAj

vertices with degree at least .1
2
C 
/jAj. For each v 2 B 0, let Hv be the 3-graph of edges

which are triangles in L.v/. Choose a vertex v1 with degree at least .1
2
C 
/jAj in L.v/,

and note that at least 2
 jAj of its neighbours must have degree at least .1
2
C 
/jAj in

L.v/ also. Thus, choosing v2 to be such a neighbour, there are at least 2
 jAj triangles
containing v1 and v2. As there were at least 2
.1

2
C 
/jAj2 choices for the pair .v1; v2/,

L.v/ contains at least 1
3

2jAj3 triangles. Hence, Hv has at least 1

3

2jAj3 edges.

By Lemma 4.1 we can now find a set K � B 0 of size 4k for which the 3-graph
HK D

T
v2K Hv has at least 1

12
.2
2/4kjAj3 edges. By Lemma 4.2, applied with T D A
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and ı D 1
12
.2
2/4k2, we can find a double pyramid on exactly 2k C 2 vertices in HK .

This double pyramid has 4k faces, and by putting a vertex from K into each face of
this double pyramid, we get a sphere in H with 4k vertices from B and 2k C 2 vertices
from A.

4.6. Almost spanning green spheres

We now show that we can find a reasonably small set of disjoint spheres which span
all but a small fraction of the vertices of an ."; �/-coloured 3-graph H . The proof uses
Szemerédi’s regularity lemma, and the following lemma will be used to partition the
reduced graph.

Lemma 4.16. Let 1
n
� ", and suppose that G is an n-vertex graph. Then we can find

a partition of V.G/ into sets Z, B , C and D such that

(1) there is a perfect matching in Z,

(2) there is a perfect matching between C and D, and

(3) jE.B [D;Z [ B [D/j � "n2.

Proof. Let M be a matching of maximum size in G, and for a set of vertices X , write
NM .X/ for the neighbourhood ofX inM , i.e., for the set of vertices joined toX by edges
of M . Let B be the set of vertices which are not in M . We will find sequences of disjoint
sets C1; : : : ; Cr andD1; : : : ;Dr as follows: iteratively, for each i � 1, if there are at least
1
2
"n vertices in

V.M/ n
[
j<i

.Ci [Di /

each with at least 1
2
"n neighbours in

B [

�[
j<i

Dj

�
;

then let Ci be the set of those vertices and set Di D NM .Ci /.
Note that the sets C1; C2; : : : ; Cr as constructed above are disjoint, and each such set

has size at least 1
2
"n2; this ensures that r � 2

"
. We may also assume that r � 1, since

if not, we are done by setting Z D V.M/, B D V.G/ nZ and C D D D ¿. Indeed,
then E.B [D;Z [ B [D/ D E.B;Z/ by the maximality of M . Since no iterations of
our procedure were possible, there are at most 1

2
"n vertices in Z with more than 1

2
"n

neighbours in B , contributing at most 1
2
"n2 edges in total, and the remaining vertices

contribute at most 1
2
"n2 edges, giving the required result.

Now, let C D
Sr
iD1 Ci and let D D

Sr
iD1Di D NM .C /, and note that 1 � r � 2

"
.

We shall now deduce some properties of the sets of vertices we have constructed thus far.

Claim 4.17. For any vertex v 2 B [D and any set U � B [ C [D with size at most
1
8
"n such that v … U [NM .U /, there is, for some 0 � s � 1

"
, a path of length 2s from v

into B in GŒ.B [ C [D/ n U � which contains s edges from M .
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Proof. Starting with x0 D v, find the longest sequence of distinct vertices

x0; y0; x1; y1; : : : ; ys�1; xs

in .B [ C [D/ n U such that
(i) for each 0 � i < s, xiyi 2M ,
(ii) for each 0 � i � s, xi 2 .B [ .

S
j�r�i Dj // n .U [NM .U //, and

(iii) for each 0 � i < s, yixiC1 2 E.G/.
Note that such a sequence exists as the one-term sequence x0 satisfies these conditions.
Note also that if xi 2 B for some i , then i D s and the sequence stops at that point since
there are no subsequent choices for yi . In particular, since xr , if it exists, must be in B ,
we have s � r � 1

"
. We claim that xs 2 B , and that this sequence consequently gives us

the desired path.
Suppose for the sake of a contradiction that xs 62 B . Then

xs 2

� [
j�r�s

Dj

�
n .U [NM .U //;

so choosing ys such that xsys 2M , we have

ys 2

� [
j�r�s

Cj

�
n U:

Note that since xiyi 2M for each i < s, we have that ys is distinct from y1; : : : ; ys�1.
We know that ys 2

S
j�r�s Cj , so, by definition, ys has at least 1

2
"n neighbours in

B [ .
S
j�r�.sC1/Dj /. Therefore, since

jU [NM .U / [ ¹x0; y0; x1; y1; : : : ; ys�1; xsºj �
"n

4
C
2

"
<
1

2
"n;

we can find a vertex xsC1 which is a neighbour of ys satisfying

xsC1 2 B [

� [
j�r�.sC1/

Dj

�
n .U [NM .U / [ ¹x0; y0; x1; y1; : : : ; ys�1; xsº/;

contradicting maximality of the sequence, and proving the claim.

Claim 4.18. At most one vertex in each edge ofM has at least three neighbours inB [D.

Proof. Suppose to the contrary that for some edge u0v0 2M , each of u0 and v0 has at
least three neighbours in B [D. Then there exist distinct vertices u1 and v1 in the set
.B [D/ n ¹u0; v0º with u0u1; v0v1 2 E.G/. Note that B [D contains no edges of M
by definition, so we necessarily have u1 ¤ NM .v1/.

Appealing to Claim 4.17, we now find an integer s1 with 0 � s1 � r and a path P1 in
GŒ.B [ C [D/ n ¹u0; v0; v1; NM .v1/º� with length 2s1 from u1 into B which contains
s1 edges in M . Note that NM .V .P1// � V.P1/, since this path contains edges of M
covering all but the last vertex of the path, which is in B and hence not in V.M/.
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Using Claim 4.17 again, we find another integer s2 with 0 � s2 � r and a path P2 in
GŒ.B [ C [D/ n .¹u0; v0º [ V.P1//� with length 2s2 from v1 into B which contains s2
edges in M .

Switching edges into the matching M along P1 and P2 creates a matching in G with
the same number of edges as M which does not contain either u1 or v1. Removing u0v0
from M and adding u0u1 and v0v1 thus creates a matching larger than M in G, which is
a contradiction.

By construction, every vertex in C has at least 1
2
"n neighbours in the set B [D, so

Claim 4.18 implies that C contains no edges ofM . Since C � V.M/, andD D NM .C /,
we have that C \D D ¿ and that M contains a perfect matching between C and D.
Now, let Z D V.M/ n .C [D/ and note that M also contains a perfect matching on Z,
and that Z, B , C and D partition V.G/. It therefore suffices to show that

jE.B [D;Z [ B [D/j � "n2:

To do so, we first make the following simple observation.

Claim 4.19. There are no edges of G within the set B [D.

Proof. Suppose not, so that there is an edge uv 2 E.G/ with u; v 2 B [D. Note that
uv 62M since every edge of M meets Z [ C .

Appealing to Claim 4.17, we first find an integer s1 with 0 � s1 � r and a path P1
in GŒB [ C [D n ¹v;NM .v/º� with length 2s1 from u into B which contains s1 edges
in M . As in the proof of Claim 4.18, we have NM .V .P1// � V.P1/, and consequently
v;NM .v/ 62 NM .P1/

Using Claim 4.17 again, we find another integer s2 with 0 � s2 � r and a path P2 in
GŒB [ C [D n V.P1/� with length 2s2 from v into B which contains s2 edges in M .

Switching edges into the matching M along P1 and P2 creates a matching in G
with the same number of edges as M which does not contain u or v. Adding uv creates
a matching larger than M in G, which is a contradiction.

We know that there are at most 1
2
"n vertices in Z with at least 1

2
"n neighbours in G

in B [D (for otherwise, the iterative process we used above would have continued). We
know by Claim 4.19 that the set B [D induces no edges, so we deduce that

jE.B [D;Z [ B [D/j �

�
1

2
"n

�
jZj C

�
1

2
"n

�
jB [Dj � "n2;

as required.

We are now in a position to prove the “almost covering” lemma that we require.

Lemma 4.20. Let 1
n
� �� "� �� 1, and suppose that H is an ."; �/-coloured

3-graph on n vertices. Then we can find a collection of at most �n vertex-disjoint green
spheres in H which cover at least .1 � �3/n vertices of H .

Proof. Our primary strategy is to set aside a small set T of vertices which will be used as
apexes of double pyramids covering most of the vertices of H ; in fact, we shall find it con-
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venient to divide T into three parts to be used at different stages of the proof. We also set
aside a larger set A of vertices that lie in few red edges; these vertices will be used to cre-
ate additional spheres that cover vertices that are difficult to cover using double pyramids.
Having set aside these sets, we define an auxiliary graph on the remaining vertices whose
edges are those pairs which form green edges of H with a reasonable number of vertices
in T . We then use the regularity lemma to partition this graph. Regularity properties will
then ensure that we may find double pyramids with apexes in T covering almost all of
any given regular pair of reasonable density. Applying Lemma 4.16 to the reduced graph,
we shall find disjoint regular pairs covering all but a few “bad” parts, and the additional
conditions imposed by Lemma 4.16 on these bad parts will allow us to use Lemma 4.15 to
find spheres covering most of the vertices from these bad parts with the help of additional
“good” vertices, typically from A. We make this outline precise below.

Let k and l be integers such that 1
n
�

1
k
� � and 1

k
�

1
l
� ". Here l will be the

number of parts of a regularity partition, and k will correspond to the size of spheres used
in Lemma 4.15.

Pick random disjoint sets T1; T2; T3 � V.H / by including each vertex independently
at random in Ti with probability �3

10
for each i 2 Œ3�, and in none of them with the remain-

ing probability 1 � 3
10
�3. Observe that, by a simple application of Proposition 2.5, the

properties (A1) and (A2) below hold with high probability for such random choices; thus,
we can find sets T1; T2; T3 � V.H / satisfying the following conditions:
(A1) For each i 2 Œ3�, �

3n
20
� jTi j �

�3n
8

.
(A2) For each i 2 Œ3�, every pair of vertices contained in at least "2n green edges of H

is in at least "3n green edges with a third vertex in Ti .
Let A be the set of vertices in V.H / n .T1 [ T2 [ T3/ that are in at most "n2 red

edges. Let G be the graph with vertex set V.H / n .A [ T1 [ T2 [ T3/ where for each
pair of vertices x; y 2 V.G/, we have xy 2 E.G/ if and only if for each i 2 Œ3�, there are
at least "3n green edges in H of the form xyt with t 2 Ti . In particular, by (A2), we have
xy 2 E.G/ for every pair x; y 2 V.G/ contained in at least "2n green edges of H .

By Theorem 2.2, we can find a partition

V.G/ D Y0 [ Y1 [ � � � [ Yl

so that jY0j � "2n
100

, jY1j D jY2j D � � � D jYl j, and all but at most 1
100
"2l2 pairs of these sets

are . 1
100
"2/-regular in G. Let R be the reduced graph on the vertex set ¹Y1; Y2; : : : ; Ylº

with edges corresponding to regular pairs with density at least 1
10
"2 in G. Using Lem-

ma 4.16, we obtain, for somem, a partition of V.R/ into sets Z, B, C D ¹C1; C2; : : : ; Cmº

and D D ¹D1;D2; : : : ;Dmº so that
(1) RŒZ� has a perfect matching,
(2) CiDi 2 E.R/ for each i 2 Œm�, and
(3) jER.B [D ;Z [B [D/j � 1

10
"2l2.

Now, let Z, B , C and D be, respectively, the vertices of G contained in the classes in
Z, B, C and D . Note that the sets T1, T2, T3, A, B , C , D, Z and Y0 partition V.H /. We
begin with some simple properties of these sets.
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Claim 4.21. There are at most "n vertices u 2 B [D for which there are more than "n2

green edges of H containing u and at least one other vertex in Z [ B [D.

Proof. Suppose to the contrary that there are more than "n such vertices. For each such
vertex u, let Xu be the set of vertices v 2 Z [ B [D for which at least 1

2
"n green edges

of H contain u and v. We must have jXuj � 1
2
"n, since otherwise fewer than 1

2
"n2 green

edges contain u and some vertex in Xu, and fewer than 1
2
"n2 contain u but no vertex

in Xu. Every ordered pair of the form .u; v/ with v 2 Xu corresponds to an edge of G,
since there are more than "2n green edges containing ¹u; vº, and u; v 2 Z [ B [D �
V.G/. There are at least

P
ujXuj �

1
2
"2n2 such ordered pairs, yielding

jEG.B [D;Z [ B [D/j �
1

4
"2n2:

Now, G has at most n
2

l2
edges within Yi for each i , at most 1

100
"2n2 edges between irreg-

ular pairs, and at most 1
10
"2n2 edges between pairs of density below 1

10
"2. Thus, all but at

most 1
8
"2n2 edges of G lie between regular pairs corresponding to an edge in R, so we

also have

jEG.B [D;Z [ B [D/j <

�
n

l

�2
jER.B [D ;Z [B [D/j C

"2n2

8

<
"2n2

4
;

contradicting the bound above and establishing the claim.

Claim 4.22. For all but at most 1
64
�3n vertices v 2 B [D, the green link graph GL.v/

has at least .1
3
C

�
4
/n vertices in A [ C with at least .1

3
C

�
4
/n neighbours in A [ C .

Proof. By Claim 4.21 and Lemma 4.8, there is a set U � B [D of size at least

jB [Dj � "n � �4n > jB [Dj �
�3n

64

such that for each v 2 U , the green link graph GL.v/ has the following properties:
(B1) The number of edges of GL.v/ with a vertex in Z [ B [D is at most "n2.
(B2) At least .1

3
C

�
2
/n vertices of GL.v/ have degree at least .1

3
C

�
2
/n.

Fixing v 2 U , we shall show the property in the claim holds for this vertex v, thereby
completing the proof of the claim.

Write Wv for the set of vertices with degree at least .1
3
C �2/n in GL.v/. Let

W1 D Wv \ .Z [ B [D/:

There are at least jW1j.13 C �2/
n
2

edges in GL.v/with a vertex inZ [B [D, so by (B1),
we have jW1j < 6"n < �2n.

Let W2 � A [ C be the set of vertices which, in GL.v/, have more than 1
6
�n neigh-

bours in Z [ B [D. There are at least jW2j16�n edges in GL.v/ with a vertex in the set
Z [ B [D, so by (B1), we again have jW2j < �2n.
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Every vertex inWv n .W1 [W2 [ T1 [ T2 [ T3/ is inA[C and has at least .1
3
C

�
3
/n

neighbours in A [ C [ T1 [ T2 [ T3, and consequently has more than .1
3
C

�
4
/n neigh-

bours in A [ C . Since

jWv n .W1 [W2 [ T1 [ T2 [ T3/j > jWvj � 5�
2n >

�
1

3
C
�

4

�
n;

the required property in the claim holds for v; this completes the proof.

We are now in a position to start constructing the “almost spanning” collection of
spheres that we require. Let S0 be a collection of vertex-disjoint green spheres in the set
H ŒA [ B [ C [D� so that jV.S0/j is maximal, subject to the following conditions:
(C1) Each sphere in S0 has 4k vertices in B [D and 2k C 2 vertices in A [ C .
(C2) jDi \ V.S0/j � jCi \ V.S0/j for each i 2 Œm�.
First, note that S0 consists of at most n

6kC2
� �n

4
spheres, since each sphere in S0 spans

6k C 2 vertices and we chose 1
k
� �. Second, note that if S0 ¤ ¿, then, by (C1), we

have

j.A [ C/ \ V.S0/j

jV.S0/j
D
.2k C 2/jS0j

.6k C 2/jS0j
<
1

3
C
1

k
<
1

3
C
"

3
I (1)

therefore, we have the following:

3j.A [ C/ \ V.S0/j < jV.S0/j C "n: (2)

Second, since A [ C and B [D are disjoint sets in V.H /, we have

j.B [D/ n V.S0/j � n � jV.S0/j � j.A [ C/ n V.S0/j: (3)

We now argue that (2) and (3), along with the maximality of S0, imply the following.

Claim 4.23. We have

j.B [D/ n V.S0/j � j.A [ C/ n V.S0/j C
�3n

16
:

Proof. Assume for the sake of a contradiction that

j.B [D/ n V.S0/j > j.A [ C/ n V.S0/j C
�3n

16
: (4)

We will distinguish between values of i for which (C2) holds with enough extra room that
it cannot be the barrier to adding another sphere to S0 and values of i for which (C2) is
closer to equality. To this end, let X � Œm� be the set of values of i for which

jDi \ V.S0/j > jCi \ V.S0/j � 4k;

or equivalently for which

jDi n V.S0/j < jCi n V.S0/j C 4k;
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and let QD D .
S
i 62X Di / n V.S0/. It follows from (C2) that

j QDj D jD n V.S0/j �
X
i2X

jDi n V.S0/j

> jD n V.S0/j �
X
i2X

.jCi n V.S0/j C 4k/

� jD n V.S0/j � jC n V.S0/j � 4mk

> jD n V.S0/j � jC n V.S0/j � "n: (5)

Finally, let QB D B n V.S0/ and note that by (4) and (5), we have

j QB [ QDj � j.B [D/ n V.S0/j � jC n V.S0/j � "n >
�3n

16
� "n >

�3n

32
:

Thus, by Claim 4.22, there are at least 1
64
�3n vertices x 2 QB [ QD for which there are

at least �
1

3
C
�

4

�
n � j.A [ C/ \ V.S0/j

vertices in .A [ C/ n V.S0/ with at least .1
3
C

�
4
/n � j.A [ C/ \ V.S0/j neighbours in

.A [ C/ n V.S0/ in the green link graph GL.x/. Since j.A [ C/ \ V.S0/j < .
1
3
C

"
3
/n

by (1), we must have j.A [ C/ n V.S0/j >
�n
8

.
By the maximality of S0, there are no green spheres with exactly 4k vertices in

QB [ QD and 2k C 2 vertices in .A [ C/ n V.S0/, since such a sphere would be dis-
joint from all other spheres in S0, and, by the choice of QD, adding it to S0 would not
violate (C2). By Lemma 4.15 applied to the green edges of H meeting two vertices of
.A [ C/ n V.S0/ and one vertex of QB [ QD, with N D �n

8
, ˇ D �2

8
and 
 D �

4
, we have�

1

3
C
�

4

�
n � j.A [ C/ \ V.S0/j �

�
1

2
C
�

4

�
j.A [ C/ n V.S0/j

�
1

2
j.A [ C/ n V.S0/j C

�n

4
I

in a little more detail, with these values of N , ˇ and 
 , there are at least ˇN vertices
in QB [ QD whose link-graphs have at least .1

3
C

�
4
/n � j.A [ C/ \ V.S0/j vertices with

degrees at least .1
3
C

�
4
/n � j.A [ C/ \ V.S0/j, so for Lemma 4.15 to not apply, we

need this common quantity to be at most .1
2
C 
/j.A [ C/ n V.S0/j. We therefore have

the following property:

n � 3j.A [ C/ \ V.S0/j �
3

2
j.A [ C/ n V.S0/j: (6)

Adding (2), (3) and (6) together, and rearranging, we have

j.B [D/ n V.S0/j �
1

2
j.A [ C/ n V.S0/j C "n

� j.A [ C/ n V.S0/j C
�3n

16
;

contradicting (4) and completing the proof of the claim.
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Now, for each i 2 Œm�, let C 0i D Ci n V.S0/ and choose a set D0i � Di n V.S0/ be
a set of size jC 0i j, noting that such a choice is made possible by (C2). LetA0 D A n V.S0/

and

B 0 D .B [D/ n

�� [
i2Œm�

D0i

�
[ V.S0/

�
;

and note that by Claim 4.23, we have

jB 0j D j.B [D/ n V.S0/j �
X
i2Œm�

jD0i j

� j.A [ C/ n V.S0/j �
X
i2Œm�

jC 0i j C
�3n

16

D jA0j C
�3n

16
: (7)

Furthermore, note that the sets

T1; T2; T3; Y0; Z; V .S0/; A
0; B 0; C 01; : : : ; C

0
l ;D

0
1; : : : ;D

0
l (8)

constitute a partition of V.H /.

Claim 4.24. There is a set S1 of at most 1
4
�n vertex-disjoint green spheres in H with

vertices in T1 [Z [ Y0 which cover all but at most 1
4
�3n vertices in T1 [Z [ Y0.

Proof. Set n0 D jY1j D � � � D jYl j and note that we have�
1 �

"2

100

�
n

l
� n0 �

n

l
:

Because RŒZ� has a perfect matching, there exist distinct integers a1; a2; : : : ; ar and
b1; b2; : : : ; br such that

Z D

r[
iD1

.Yai
[ Ybi

/;

where each pair .Yai
; Ybi

/ is . 1
100
"2/-regular with density at least 1

10
"2. In particular, for

any subsetsP � Yai
andQ� Ybi

with jP j; jQj � 1
100
"2n0, there are at least 9

100
"2jP jjQj

pairs p 2 P , q 2 Q for which there are at least "3n vertices t 2 T1 so that pqt is a green
edge of H . Consequently, if T 01 is any set obtained by removing at most "4n vertices
from T1, the induced 3-partite 3-graph of green edges of H betweenP ,Q and T 01 contains
at least "5jP jjQjjT 01j edges.

For each i 2 Œr� in turn, we use Lemma 4.3 to find at most 1
2
�n0 green spheres in

Yai
[ Ybi

[ T 01, each with two vertices in T 01, covering at least .1 � 1
100
"2/n0 vertices in

each of Yai
and Tbi

, where T 01 � T1 is the dynamically-updated set of vertices not yet
used; at each stage, note that we have

jT1 n T
0
1j �

1

2
�n � "4n:
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The iterative procedure above gives us a total of at most 1
4
�jZj � 1

4
�n spheres cov-

ering all but at most 1
100
"2jZj vertices of Z. Since jT1j � 1

8
�3n and jY0j � 1

100
"2n, all

but at most
�3n

8
C
"2n

50
<
�3n

4
vertices in T1 [Z [ Y0 are covered, as required.

Claim 4.25. There is a set S2 of at most 1
4
�n vertex-disjoint green spheres with vertices

in the set T2 [ .
S
i2Œm�.C

0
i [D

0
i // which cover all but at most 1

4
�3n vertices in the set

T2 [ .
S
i2Œm�.C

0
i [D

0
i //.

Proof. As we did in the proof of Claim 4.24, for each i 2 Œm� in turn, we may find at most
1
2
�n0 green spheres covering all but at least .1 � 1

100
"2/n0 vertices in each of C 0i and D0i ,

using only vertices from those sets and vertices from T2 which have not previously been
used. This covers all but at most

�3n

8
C
"2n

100
<
�3n

4

vertices in T2 [ .
S
i2Œm�.C

0
i [D

0
i //, using at most 1

4
�n vertex-disjoint green spheres,

establishing the claim.

Claim 4.26. There is a set S3 of at most 1
4
�n vertex-disjoint green spheres with vertices

in T3 [ A0 [ B 0 which cover all but at most 1
4
�3n vertices in T3 [ A0 [ B 0.

Proof. Choose partitions A0 D A1 [ A2 [ A3 and B 0 D B1 [ B2 such that jA1j D jB1j,
jA2j D jA3j and jB2j � 1

16
�3n, noting that this is made possible by (7).

First we show that we may find at most 1
8
�n vertex-disjoint green spheres in T3 [

A1 [ B1 covering all but at most 1
64
�3n vertices in each of A1 and B1, with each sphere

using two vertices from T3. We may of course assume that jA1j D jB1j � 1
64
�3n as there

is nothing to prove otherwise. Suppose A01 � A1 and B 01 � B1 each have size at least
�4n. By the definition of A, there are at most "n3 red edges of H meeting A01, and since
H is ."; �/-coloured, there are at most "n3 uncoloured edges in H . Hence, at most 6"n2

pairs .a; b/ with a 2 A01 and b 2 B 01 are in at least n
3

non-green edges of H , so at least
jA01jjB

0
1j � 6"n

2 > 1
2
jA01jjB

0
1j pairs are in at least "3n green edges with the third vertex

in T3. By Lemma 4.3, we can find the required spheres.
Similarly, since we have jT3 n T 03j �

1
4
�n < "4n, where T 03 is the set of unused ver-

tices from T3 after almost covering A1 [ B1 as above, we may find at most 1
8
�n vertex-

disjoint green spheres in T 03 [ A2 [ A3 covering all but at most 1
64
�3n vertices in each

of A2 and A3. In total, these spheres cover all but at most

�3n

8
C
�3n

16
C
4�3n

64
D
�3n

4

vertices in T3 [ A0 [ B 0.

Therefore, recalling the partition in (8), it is now clear that S0 [S1 [S2 [S3 is
a set of at most �n vertex-disjoint green spheres covering all but at most �3n vertices
in H , as required.
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4.7. Proof of the main result

We have now gathered all the ingredients we require to complete the proof of our main
result.

Proof of Theorem 1.4. By Theorem 2.6, if the surface S we wish to find a spanning copy
of is not homoeomorphic to S2, then it is homeomorphic either to a connected sum
of g tori or to a connected sum of g projective planes for some integer g � 1; if S is
homeomorphic to S2, then we set g D 0.

Let 1
n
� �� ˛, 1

k
� "� �� 1

g
(with the convention that if g D 0, we replace 1

g

by 1), and suppose that H is a 3-graph on n vertices with ı2.H / � n
3
C �n. We construct

a spanning copy of S in H as follows.

Colour the edges of H . By Lemma 4.9, for 1
n
� ˛; 1

k
� "� �, we can colour some of

the edges of H red and green to get an ."; �/-coloured 3-graph in which any monochro-
matic disjoint pair of edges is .˛; k/-connectible.

Construct reservoirs. Next, we choose two disjoint subsets R1; R2 � V.H / with

jR1j D jR2j D
�n

144

and the following additional properties:
(D1) For any pair .e; f / of disjoint green edges of H , and any subset F � R1 with

jF j � 4�kn, there exists a setA � R1 n F with jAj � k for which there is a sphere
with vertex set V.e/ [ V.f / [ A containing e and f .

(D2) For each pair of vertices x; y 2 V.H /, there are at least .1
3
C �2/jR2j vertices u in

R2 such that uxy 2 E.H /.
(D3) There are at least 1

8
�jR2j vertices inR2 contained in fewer than "n2 red edges each.

To show that such a choice of R1 and R2 is possible, we employ the probabilistic
method: we pick two disjoint subsets R01; R

0
2 � V.H / with jR01j D jR

0
2j D

1
144
�n uni-

formly at random, and show that they satisfy each of the above properties with probability
at least 3

4
.

First, let us verify that R01 satisfies (D1) with probability at least 3
4

. Let e and f
be two arbitrary disjoint green edges. Since both these edges are green, e and f are
.˛; k/-connectible, so by Lemma 4.4, for some l with 1 � l � k, there are r � ˛n

l
pair-

wise disjoint sets A1; A2; : : : ; Ar � V.H / for which there is a sphere with vertex set
V.e/ [ V.f / [ Ai containing e and f . Each of these sets independently has probability
. �
144
/l of being contained in R01, so Proposition 2.5 implies that at least ˛. �

144
/l n
2l

of the
Ai are contained in R01 with probability 1 � o.n�6/. In this case, for any F � R01 with
jF j � 4�kn, since each vertex in F is in at most one of the disjoint sets Ai , at least

˛

�
�

144

�l
n

2l
� jF j > 0

of theAi lie entirely withinR01 n F . Since there areO.n6/ possible pairs .e; f /, it follows
that (D1) holds with high enough probability.
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Next, we prove that R02 satisfies (D2) with probability at least 3
4

. For a given pair
of vertices x; y 2 V.H /, at least .1

3
C �/n vertices form an edge with x and y in H .

Each such vertex independently has probability 1
n
jR02j of being in R02. Consequently,

Proposition 2.5 implies that at least .1
3
C �2/jR02j such vertices end up in R02 with prob-

ability 1 � o.n�2/; it follows from the union bound that (D2) holds with high enough
probability.

Finally, we prove that R02 satisfies (D3) with probability at least 3
4

. By virtue of being
."; �/-coloured, there are at least 1

4
�n vertices in fewer than "n2 red edges in H , and

each such vertex ends up in R02 with probability 1
n
jR02j, so Proposition 2.5 again implies

that at least 1
8
�jR02j such vertices are in R02 with very high probability, proving that (D3)

also holds with high enough probability.
Going forward, we fix these two disjoint sets R1 and R2 with the properties described

above and set R D R1 [R2.

Build absorbers. Appealing to Lemma 4.13, we find a collection S1 of at most �n vertex-
disjoint green-tinged spheres disjoint from R, which can absorb any subset of R and
which have at most 1

9
�n vertices in total; let U be the set of vertices belonging to spheres

in S1.

Find an almost-spanning collection of spheres. Let G D H ŒV .H / n .R [ U/� with col-
ours inherited from H . Note that because jR [ U j � �n

8
, we have jV.G /j � .1 � �

8
/n,

so

ı2.G / �

�
1

3
C 7

�

8

�
n >

�
1

3
C �2

�
jV.G /j:

Additionally, the 3-graph G has at most "n3 < 2"jV.G /j3 uncoloured edges and at most
"n4 < 2"jV.G /j4 pairs of touching red and green edges. Finally, G has at least �n

8
ver-

tices in fewer than "n2 < 2"jV.G /j2 red edges. Consequently, G is .2"; �2/-coloured; in
particular it contains at least 1

100
�n3 green edges. If S is not homeomorphic to S2, then

we employ Theorem 2.1 to obtain a collection G of g green copies of T9 or P12 in G as
appropriate, using at most 12g vertices; if S is homeomorphic to S2, then we set G D ¿.

Easily, the 3-graph G 0 obtained by removing vertices of surfaces in G from G is
.3"; �

3
/-coloured, so by Lemma 4.20, we can find a collection S2 of at most �n vertex-

disjoint green spheres in G 0 which cover all but at most �3n of the vertices of G 0. Let B
be the set of vertices in V.H / n .R [ U/ which are not in any surface in G [S2, and
write W for V.G [S2/.

To summarise, we have now decomposed the vertices of H into sets R D R1 [R2,
U D V.S1/, W D V.G [S2/ and B , as shown in Figure 6.

Mop up uncovered vertices using the reservoir R2. Next, we show that we can mop up
the set B of uncovered vertices with green-tinged spheres using vertices in B [R2 alone.

Claim 4.27. H ŒB [R2�, with colours inherited from H , is .1444 "
�4 ;

�
3
/-coloured.

Proof. Indeed, this 3-graph has m vertices where m D jB [R2j � jR2j, so

�n

144
� m <

�n

144
C
�2n

1442
:
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R1 R2

U

BW

Fig. 6. The situation after finding an almost-spanning collection of spheres; the arrows signify the
ability of the spheres in U to absorb any subset of R.

By (D2), each pair of vertices in B [R2 has codegree at least .1
3
C �2/ �n

144
> .1

3
C

�
3
/m

in H ŒB [R2�. Also, H ŒB [R2� certainly contains at most

"n3 �
1443"m3

�3
<
1444"m3

�4

uncoloured edges, and at most

"n4 �
1444"m4

�4

pairs of differently-coloured touching edges. Finally, condition (D3) ensures that at least
1
8
�jR2j >

�m
12

vertices are in fewer than

"n2 �
1442"m2

�2

red edges.

Consequently, it follows from Corollary 4.14 that there is a collection S3 of at most
�n vertex-disjoint green-tinged spheres in H ŒB [R2� which cover all the vertices in B .

Connect into a single spanning surface using the reservoir R1. Order the surfaces in
S1 [S2 [S3 [G as S1; S2; : : : ; Sl where S1 D ¹S1; S2 : : : ; Sqº; since Si contains
at most �n spheres for each 1 � i � 3, and jGj � g, we have l � 4�n.

Since V.S1/ D U , V.G/ and V.S2/ are disjoint and W D .V .G/ [ V.S2// �

V.H / n .R[U/, and V.S3/�B [R2, whereB D V.H / n .R[U [W /, all the above
surfaces are disjoint both from each other and from R1. By the choice of S1, for each
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sphere Si with 1 � i � q, there are two green edges ei ; fi 2 Si and a set of vertices
Qi � R such that for any set Q0 � Qi , there is a sphere on the vertex set V.Si / [Q0

containing ei and fi , where theQi are pairwise disjoint and
Sq
iD1Qi D R. Every sphere

in S2 [S3 is green-tinged, as is every surface in G , so for each i with q < i � l , we
again choose two different green edges ei ; fi 2 Si .

For each 1 � i � l � 1 in turn, by (D1), we find a sphere OSi containing fi and eiC1
on the vertex set V.fi / [ V.eiC1/ [ Ai , where jAi j � k and Ai � R1 n Fi , where Fi
is a nested sequence of sets given by Fi D

S
j<i Aj ; note that jFi j < ik < lk � 4�nk,

so this is indeed possible. The role of these spheres OSi will be to connect the Si together
into a single surface. This works as follows: if we remove fi and eiC1 from OSi as well as
from Si and SiC1 respectively, then the rest of OSi yields a cylindrical tube that helps us
form the connected sum of Si and SiC1.

However, in addition to gluing the Si together, we still need to take care of some
uncovered vertices in R. Here, we rely on the properties of our absorbers, which allows
us to incorporate them into the Si without affecting our gluing plans. Indeed, writing
F D

S
j<l Aj , let R01 D R1 n F be the set of vertices in R1 not used in any of the con-

necting spheres OSi for 1 � i � l � 1, and letR02 be the set of vertices inR2 not used in any
sphere in S3, i.e., R02 D B [R2 n V.S3/. For each i � q, let Q0i D Qi \ .R

0
1 [R

0
2/,

and let S 0i be a sphere on vertex set V.Si / [Q0i containing ei and fi . For each i > q,
set S 0i D Si .

To finish, we observe that the symmetric difference of the union of the edge-sets of all
the S 0i and all the OSi , or in other words, the edge set 

l[
jD1

S 0j

!
[

 
l�1[
jD1

OSj

!
n ¹e2; e3; : : : ; el ; f1; f2; : : : ; fl�1º

yields a surface homeomorphic to S. The vertex set of this copy of S is

V 0 D V.S1/ [R
0
[ V.S2 [G/ [ V.S3/ [ F:

Finally, since

V.S1/ [R
0
D U [R01 [R

0
2;

V .S2 [G/ D V.H / n .R1 [R2 [ U [ B/;

V .S3/ D B [R2 nR
0
2;

F D R1 nR
0
1;

we see that V 0 D V.H /, so the copy of S that we have found is spanning, proving the
result.

5. Conclusion

In this paper, our main result, Theorem 1.4, asymptotically determines the minimum code-
gree guaranteeing the existence of a spanning copy of the sphere in a 3-graph. Several
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natural questions remain; to begin with, it would be nice to eliminate the error term in our
result, and in this direction, we conjecture the following.

Conjecture 5.1. Every 3-graph H on n > 3 vertices with ı2.H / > n
3

contains a span-
ning copy of the sphere S2.

Just as natural is to ask what happens in “higher dimensions”, or in other words, what
the analogue of our main result for r-graphs ought to be for an arbitrary r 2 N. For any
integer r � 2, the codegree of a set of r � 1 vertices in an r-graph H is the number of
edges of H containing the set in question, and writing ır�1.H / for the minimum codegree
of an r-graph H , we conjecture the following.

Conjecture 5.2. For each r � 2, any r-graph H on n > r vertices with ır�1.H / > n
r

contains a spanning copy of the .r � 1/-dimensional sphere Sr�1.

That such a bound would be asymptotically best-possible is seen by the following
construction generalising the one presented in Figure 1. Given a positive integer n divis-
ible by r , let X1; X2; : : : ; Xr , be r disjoint sets of vertices of size n

r
each, and consider an

r-graph H on the vertex set V D X1 [X2 [ � � � [Xr constructed as follows. For a ver-
tex v 2 V , write i.v/ for the index such that v 2 Xi.v/, and for a set Y of r vertices, let
i.Y / D

P
y2Y i.y/ .mod r/; we then take the edge set of H to consist precisely of those

sets of Y of r vertices for which i.Y / D 1. Note that each “pattern” comprising r choices
among the Xi (with repetitions allowed) gives rise to a distinct tight component in H ,
none of which are spanning because

P
1�i�r i ¤ 1 .mod r/; here, as before, we say that

two edges in an r-graph touch if they meet in r � 1 vertices, and a tight component is,
once again, an equivalence class of the transitive closure of this relation. In particular, this
r-graph H does not contain a spanning copy of any closed manifold.

In this paper, we addressed all two-dimensional surfaces simultaneously in Theo-
rem 1.4. In the same spirit, one can also ask about other higher-dimensional manifolds
than spheres, and in particular, whether there exist manifolds for which the codegree
threshold differs qualitatively from that of the corresponding sphere; however, it is also
perhaps worth remembering that unlike in the two-dimensional setting, not all higher-
dimensional manifolds are triangulable; see [10, 20] for example.

Given that a minimum codegree of n
3

is the threshold at which an n-vertex 3-graph is
guaranteed to both have a spanning tight component and a spanning copy of the sphere,
it is natural to wonder to what extent the main obstacle to finding a spanning copy of the
sphere is the existence of a spanning tight component. In particular, one could ask whether
the global codegree condition in the statement of Theorem 1.4 of ı2.H / � .1

3
C �/n for

an n-vertex 3-graph H can be relaxed if we assume that H has a spanning tight compon-
ent T and, say, that the codegrees of pairs inside T are large. Perhaps surprisingly, this
is not the case! The following 3-graph H on n vertices has minimum codegree almost n

2

in its unique tight component, and no spanning copy of any surface. The vertex set of
H consist of two designated vertices u and v and disjoint sets X and Y of size 1

2
.n � 2/

each, and the edge set of H is obtained by starting with the complete 3-graph on its vertex
set and subsequently removing every edge meeting both X and Y . Assuming H contains
a spanning copy of any surface S, remove any edges containing both u and v from S
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to split it into two tight components; this easily leads to a contradiction by elementary
topological arguments.

The construction above, and its generalisation to r-graphs obtained by replacing the
set ¹u; vº by a set of r � 1 vertices, leads to the following natural conjecture, made par-
ticularly attractive by the fact that it predicts a threshold at the codegree density of 1

2
,

independent of the dimension.

Conjecture 5.3. For each r � 2, if H is an r-graph on n > r vertices comprising a single
tight component such that, for every setZ of r � 1 vertices of H that is contained in some
edge of H , there are at least n

2
edges of H containing Z, then H contains a spanning

copy of the .r � 1/-dimensional sphere Sr�1.

Let us close by remarking that many extremal results about cycles in graphs ought
to have natural generalisations formulated in terms of triangulations of spheres in hyper-
graphs. We shall resist the temptation to list further open problems of this kind here,
although we would certainly be very interested to see more results of this nature. Perhaps
the main message of this paper is that it is possible to do “extremal simplicial topology”
with a flavour similar to extremal graph theory, and that some of the major techniques in
the latter field, like regularity and absorption, can be brought to bear on the former.
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[5] Erdős, P., Simonovits, M.: Supersaturated graphs and hypergraphs. Combinatorica 3, 181–192
(1983) Zbl 0529.05027 MR 726456

https://zbmath.org/?q=an:0413.05041&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=539937
https://zbmath.org/?q=an:0047.17001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=47308
https://zbmath.org/?q=an:0129.39905&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=183654
https://zbmath.org/?q=an:0529.05027&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=726456


Spanning surfaces in 3-graphs 339

[6] Gowers, W. T.: Question posed at the Cambridge Combinatorics Seminar (2005)

[7] Gowers, W. T.: Personal communication

[8] Hagerup, T., Rüb, C.: A guided tour of Chernoff bounds. Inform. Process. Lett. 33, 305–308
(1990) Zbl 0702.60021 MR 1045520

[9] Katona, G. Y., Kierstead, H. A.: Hamiltonian chains in hypergraphs. J. Graph Theory 30,
205–212 (1999) Zbl 0924.05050 MR 1671170

[10] Kirby, R. C., Siebenmann, L. C.: On the triangulation of manifolds and the Hauptvermutung.
Bull. Amer. Math. Soc. 75, 742–749 (1969) Zbl 0189.54701 MR 242166

[11] Kövari, T., Sós, V. T., Turán, P.: On a problem of K. Zarankiewicz. Colloq. Math. 3, 50–57
(1954) Zbl 0055.00704 MR 65617

[12] Kühn, D.: Personal communication

[13] Kühn, D., Osthus, D.: Spanning triangulations in graphs. J. Graph Theory 49, 205–233 (2005)
Zbl 1066.05057 MR 2145509

[14] Kühn, D., Osthus, D.: Hamilton cycles in graphs and hypergraphs: An extremal perspect-
ive. In: Proceedings of the International Congress of Mathematicians – Seoul 2014. Vol. IV,
Kyung Moon Sa, Seoul, 381–406 (2014) Zbl 1373.05100 MR 3727617

[15] Kühn, D., Osthus, D., Taraz, A.: Large planar subgraphs in dense graphs. J. Combin. Theory
Ser. B 95, 263–282 (2005) Zbl 1075.05045 MR 2171366

[16] Linial, N., Luria, Z.: An upper bound on the number of high-dimensional permutations.
Combinatorica 34, 471–486 (2014) Zbl 1340.05007 MR 3259813

[17] Linial, N., Morgenstern, A.: On high-dimensional acyclic tournaments. Discrete Comput.
Geom. 50, 1085–1100 (2013) Zbl 1280.05052 MR 3138147

[18] Linial, N., Peled, Y.: On the phase transition in random simplicial complexes. Ann. of
Math. (2) 184, 745–773 (2016) Zbl 1348.05193 MR 3549622

[19] Luria, Z., Tessler, R. J.: A sharp threshold for spanning 2-spheres in random 2-complexes.
Proc. Lond. Math. Soc. (3) 119, 733–780 (2019) Zbl 1423.05094 MR 3960667

[20] Manolescu, C.: Pin(2)-equivariant Seiberg–Witten Floer homology and the triangulation
conjecture. J. Amer. Math. Soc. 29, 147–176 (2016) Zbl 1343.57015 MR 3402697
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