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Abstract. Let F be a self-similar set on R associated to contractions fj .x/ D rj x C bj , j 2 A,
for some finite A, such that F is not a singleton. We prove that if log ri=log rj is irrational for some
i ¤ j , then F is a set of multiplicity, that is, trigonometric series are not in general unique in the
complement of F . No separation conditions are assumed on F . We establish our result by showing
that every self-similar measure � on F is a Rajchman measure: the Fourier transform b�.�/! 0
as j�j ! 1. The rate ofb�.�/! 0 is also shown to be logarithmic if log ri=log rj is diophantine
for some i ¤ j . The proof is based on quantitative renewal theorems for stopping times of random
walks on R.

Keywords. Fourier analysis, trigonometric series, Fourier series, self-similar sets, random walk
on groups, renewal theory, metric number theory

1. Introduction and the main result

The uniqueness problem in Fourier analysis that goes back to Riemann [42] and Cantor
[10] concerns the following question: Suppose we have two converging trigonometric
series
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2�inx with coefficients an; bn 2 C such that for “many”
x 2 Œ0; 1� they agree: X

n2Z

ane
2�inx

D

X
n2Z

bne
2�inx : (1.1)

Then are the coefficients an D bn for all n 2 Z? For how “many” x 2 Œ0; 1� do we need to
have (1.1) so that an D bn holds for all n 2 Z? If we assume (1.1) holds for all x 2 Œ0; 1�,
then using Toeplitz operators Cantor [10] proved that indeed an D bn for all n 2 Z. How-
ever, it would be interesting to see how small the set of x 2 Œ0; 1� satisfying (1.1) can
be, so that we have an D bn for all n 2 Z. Motivated by this one defines that a subset
F � Œ0; 1� is a set of uniqueness if whenever we have coefficients an; bn 2 C, n 2 Z,
such that (1.1) holds for all x 2 Œ0; 1� n F , then an D bn for all n 2 Z. Here one defines

Jialun Li: Institut für Mathematik, Universität Zürich, 190 Winterthurerstrasse, Zürich,
Switzerland; jialun.li@math.uzh.ch
Tuomas Sahlsten: Department of Mathematics, Alan Turing Building, University of Manchester,
Oxford Road, Manchester M13 9PL, United Kingdom; tuomas.sahlsten@manchester.ac.uk

Mathematics Subject Classification (2020): Primary 42A20; Secondary 42A38, 37C45, 28A80,
60K05

https://creativecommons.org/licenses/by/4.0/
mailto:jialun.li@math.uzh.ch
mailto:tuomas.sahlsten@manchester.ac.uk


J. Li, T. Sahlsten 342

also that if F is not a set of uniqueness, then it is called a set of multiplicity. In particular,
by Cantor’s result this shows that the empty set ¿ is a set of uniqueness and so Œ0; 1� is
a set of multiplicity.

Cantor [10] proved that every closed countable set is a set of uniqueness, and later
Young [56] generalised to every countable set. In the uncountable case, however, even
if assuming F is very small, uniqueness of F may fail: Menshov [39] constructed a set
F of Lebesgue measure 0, which is a set of multiplicity, that is, the uniqueness problem
fails if we only assume (1.1) for all x 2 Œ0; 1� n F . This can be proved using the following
criteria, which goes back to Salem [45] that if a setF supports a Borel probability measure
� such that the Fourier transform

b�.�/ WD Z e�2�i�x d�.x/; � 2 R;

satisfies b�.n/! 0 as jnj ! 1, n 2 Z, then F is a set of multiplicity. Such measures
� are called Rajchman measures in the literature. Hence constructing measures � with
decaying Fourier coefficients provides a way to check whether F is of multiplicity. It
remains an open problem to classify which uncountable sets F are of multiplicity and
which F are of uniqueness and much work has been done in many examples of F on
trying to establish their uniqueness or multiplicity, see for example the work of Kechris
and Louveau [30] on connections to descriptive set theory.

In the series of works Salem [45] proved that the middle third Cantor set C1=3 is a set
of uniqueness. More generally, Salem established that if C� is the middle �-Cantor set
with 0 < � < 1

2
, that is, interval of length 1 � 2� is removed from the center of Œ0; 1�

at every construction stage, then C� is a set of uniqueness when ��1 is a Pisot number.
In the opposite case, if ��1 is not a Pisot number, by constructing a Rajchman measure
on C�, Piatetski-Shapiro [40], Salem and Zygmund [46] established that C� is a set of
multiplicity.

The Cantor set C� is an example of a self-similar set. Recall that a subset F � Œ0; 1�
is self-similar if there exists similitudes fj W Œ0; 1�! Œ0; 1�, that is, fj .x/ D rjx C bj ,
j 2 A, for some finite set A, translations bj 2 R and contractions 0 < rj < 1 such that

F D
[
j2A

fj .F /:

As far as we know nothing is known about the uniqueness or multiplicity of self-similar
sets beyond the case of C� or if adding finitely many more similitudes with the same
contraction ratio � to the definition, which was done by Salem [45]. For example if we
have two different contractions r0 D 1

2
and r1 D 1

3
for the iterated function system, do we

expect F to be of multiplicity or of uniqueness? Due to having same contraction ratio �
the case C� has a convolution structure, which is helpful when connecting to the algebraic
properties of the number �. In the general case, however, we would need to find a way out
of this.

It turns out that the algebraic properties of the additive subgroup � generated by the
log-contraction ratios ¹� log rj W j 2 Aº in R is important in the study of the multiplicity
of a self-similar set F with contraction ratios rj . In particular, if this subgroup � is dense,
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which happens when log rj =log r` is irrational for some j ¤ ` (e.g. rj D 1
2

and r` D 1
3

),
we can establish F is a set of multiplicity.

Theorem 1.1. Let F � Œ0; 1� be a self-similar set associated to contractions

fj .x/ D rjx C bj ; j 2 A;

such that F is not a singleton. If log rj =log r` is irrational for some j ¤ `, then F is a set
of multiplicity.

Notice that by assuming log rj =log r` is irrational we exclude the case of C� as in that
case every ratio of logarithms of the contractions is just 1. It remains an open problem
to study the case when log rj =log r` 2 Q for all j ¤ `. We predict that here typically
F should be a set of uniqueness unless all the contraction ratios are equal, like the
case C�, and then an algebraic number theoretic condition like ��1 being Pisot needs
to be imposed.

In order to prove the multiplicity of a self-similar set F , it is enough by Salem’s
criterion [45] for multiplicity to find a Rajchman measure supported on F . Hence The-
orem 1.1 follows by establishing that all positive dimensional self-similar measures on F
are Rajchman measures. Recall that a probability measure � on R is called self-similar if
there exists a finite collection ¹fj W j 2 Aº of similitudes of R with at least two maps and
weights 0 < pj < 1, j 2 A, with

P
j2A pj D 1 such that � D

P
j2A pjfj�.

Theorem 1.2. Let F � Œ0; 1� be a self-similar set associated to contractions

fj .x/ D rjx C bj ; j 2 A;

such that F is not a singleton. If log rj =log r` is irrational for some j ¤ `, then the
Fourier transform b�.�/! 0 as j�j ! 1 for every self-similar measure � on F .

Theorem 1.2 is closely related to another currently active problem in the community
of fractal geometry, where we would like to understand the Fourier transforms of fractal
measures, see the book [38] by Mattila for an history and overview. In particular, there
are various past and recent works on random fractals by Kahane [26, 27], Shmerkin and
Suomala [49] and other people [19, 20], connections to Diophantine approximation by
Kaufman [28,29], dynamical systems [24,43] and additive combinatorics [4,33]. Analys-
ing the spectrum of fractal measures has been particularly important in finding normal
numbers from the support of fractals [14, 23, 41] and the study of harmonic analysis
defined by fractal measures, see for example applications to the spectrum of convolu-
tion operators defined by fractal measures in the work of Sarnak [47] and later by Sidorov
and Solomyak [50], and more recently applications to quantum resonances in quantum
chaos by Bourgain and Dyatlov [5].

The study of Fourier transforms of self-similar measures in general goes back to the
works of Strichartz [51, 52], where an average decay of Fourier transform b�.�/ of self-
similar measures � was obtained, where proportions of frequencies � 2 R are excluded.
More recently, a large deviation estimate for these average decays was proved in [53]
by Tsujii. However, the methods here cannot be used to obtain a full decay over all
j�j ! 1. Before Theorem 1.2 the only cases of self-similar measures � whereb�.�/! 0
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as j�j ! 1 was known were Bernoulli convolutions �ˇ , ˇ > 1, which are the distribu-
tion of the random sum

P
˙ˇ�k with i.i.d. chosen signs. The case ˇ > 2 was studied by

Piatetski-Shapiro [40], Salem and Zygmund [46], where up to a translation �ˇ are nat-
ural self-similar measures on middle ˇ�1 Cantor set. For Bernoulli convolutions �ˇ with
1 < ˇ < 2 Fourier transforms play an important role. In particular, proving thatb�ˇ .�/ has
sufficiently fast power decay as j�j ! 1 implies that �ˇ is absolutely continuous, which
is a well-known open problem in the field, see for example Shmerkin [48]. It is known by
the results of Erdős [15] and Kahane [25] that the set of 1 < ˇ < 2 such that �ˇ does not
have a power decay has Hausdorff dimension zero. Moreover, if ˇ is not a Pisot number,
then Salem [45] proved b�ˇ .�/! 0 as j�j ! 1, and conversely if ˇ is a Pisot number,
Erdős [15] proved that b�ˇ .�/ 6! 0 as j�j ! 1. In the non-Pisot case the rate of conver-
gence was later shown to be logarithmic for rational number ˇ by Kershner [31], see also
Dai [12] and Bufetov and Solomyak [9], and some power decay for algebraic numbers ˇ
has been obtained by Dai, Feng and Wang [13].

Notice that in Theorem 1.1 and Theorem 1.2 there can be any types of overlaps for
the maps fj and no separation conditions are assumed. Typically in the overlapping case
the analysis of self-similar sets and measures can be notoriously difficult to understand,
say, their Hausdorff dimension has required some deep connections to additive combin-
atorics, see for example the recent works of Hochman [22], Breuillard and Varjú [8] and
Varjú [54]. The reason overlaps do not cause us any issues is the fact that the main con-
tribution to the Fourier decay comes from controlling the distribution of lengths of the
construction intervals, and not their relative positions. Understanding the distribution of
the lengths of the construction intervals then can be reduced as a problem of studying the
renewal theory for stopping times of random variables X1; X2; : : : on R with distribution
� D

P
j2A pj ı� log rj . This strategy to establish Fourier decay is inspired by the case of

the stationary measure for Lie group actions by the first author in [35]. In the self-similar
case we consider, however, the proof is much more straightforward and we can see the
idea governing the Fourier decay more clearly. In our case we will prove a quantitative
version of Kesten’s renewal theorem for stopping time given in [32], see Section 2. The
irrationality of log ri=log rj is key to prove the random walk becomes non-lattice, that is,
not concentrated on an arithmetic progression, which is a key assumption for the renewal
theorem for stopping times we employ.

If we want a rate of convergence in Theorem 1.2 using the strategy we present in this
paper, one needs to go into the rate of convergence for the renewal theorems we use. Here
it is well known that the diophantine properties of the random walk become an essential
property, in particular, how well log ri=log rj is approximated by rationals. In Diophantine
approximation, it is defined that an irrational real number a 2 R is called diophantine if
for some c > 0 and l > 2 we have ˇ̌̌̌

a �
p

q

ˇ̌̌̌
�
c

ql
(1.2)

for all p 2 Z and q 2 N�. This happens for example when a D log 2=log 3 or in gen-
eral for a D logp=log q with p; q coprime, see Baker [1]. Having some diophantine
log ri=log rj in the iterated function system imposes the random walk generated by the
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contractions to quantitatively avoid lattices and then gives quantitative rates for the re-
newal theorem. Under this condition, we can improve Theorem 1.2 in the following way:

Theorem 1.3. Let F � Œ0; 1� be a self-similar set associated to contractions

fj .x/ D rjx C bj ; j 2 A;

such that F is not a singleton. If log ri=log rj is diophantine for some i ¤ j , then for
every self-similar measure � on F , there exists ˇ > 0 such that

jb�.�/j D O� 1

j log j�jjˇ

�
; j�j ! 1:

Remark 1.4. By using a quantitative equidistribution criterion by Davenport, Erdős and
LeVeque [14], a particular consequence of the logarithmic decay for Fourier transform of
a probability measure � on R is that � almost every number is normal in every base. Thus
in the setting of Theorem 1.3 we have for any self-similar measure � on F that � almost
every number x 2 F is normal in every base. This consequence was pointed out in [21]
and we thank Mel Levin for bringing this to our attention.

Removing the irrationality of ratios of log-contractions ratios makes the random walk
X1; X2; : : : on R generated by � D

P
j2A pj ı� log rj a lattice, that is, concentrated on an

arithmetic progression. Then the renewal theorems do not hold anymore in the same form.
In fact, for example in the case of middle 1

3
Cantor measure, the Fourier transform does

not even decay at infinity. However, in the case ˇ is not Pisot, the Bernoulli convolution
�ˇ associated to ˇ provides examples of a measure where the Fourier transform does
decay at infinity, even with polynomial rate for some algebraic ˇ, but the additive ran-
dom walk on R generated by logˇ is a lattice. Hence it would be interesting to develop
the connection to renewal theory further and find a full classification of self-similar sets
F which are of uniqueness and which are of multiplicity. After the completion of this
manuscript, these problems have been addressed by Brémont [7] and Varjú and Yu [55].
Moreover, the polynomial Fourier decay case was recently obtained for most self-similar
measures by Solomyak [44].

In this paper we consider the self-similar case, but if we impose that the maps fj to be
suitably nonlinear, such as the inverse branches of the Gauss map x 7! 1

x
mod 1 and study

the Fourier transforms of self-conformal measures �, then the rates of Fourier decay in
Theorem 1.3 for Fourier decay can be improved to power decay, see for example the works
[5,24,36,43]. Here the non-lattice condition of contractions � log rj is replaced by a non-
concentration condition of the log-derivatives of the iterates � log.fj1 ı � � � ı fjn/

0.x/ as
n!1. These types of conditions appear in the Fourier decay properties of multiplicative
convolutions in the discretised sum-product theory developed by Bourgain [4].

What about the higher-dimensional case? Here the analogue to Theorems 1.2 and 1.3
would be to understand Fourier transforms b� of self-affine measures � on Rd . They are
measures on Rd associated to affine contractions fj D Aj C bj of Rd , j 2 A, for some
finite set A, where bj 2 Rd and Aj 2 GL.d;R/ such that

� D
X
j2A

pjfj�
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for some weights 0 < pj < 1, j 2 A, with
P
j2A pj D 1. In a follow-up paper [37],

we apply a similar strategy as we do in this paper by considering renewal theory for
random walks on the group GL.d;R/ coming from ¹Aj W i 2 Aº to establish a Fourier
decay for self-affine measures. The renewal theory we need has been done recently by
the first author in [36]. Here the non-lattice condition can be replaced by an irreducibil-
ity and proximality assumption of the subgroup � generated by ¹Aj W i 2 Aº as Bárány,
Hochman and Rapaport did recently in their work [2] for the computation of Hausdorff
dimension of self-affine measures on R2. Moreover, due to the better rates for quantitat-
ive renewal theorems for random walks in real split groups [36], that is, when the Zariski
closure of � is R-splitting, we can improve the rates for the Fourier decay of � to power
decay.

Organisation of the paper. The article is organised as follows. In Section 2 we describe
the key method used in the paper and give the quantitative renewal theorems we need
for our results and then prove them in Section 4. Then in Section 3 we give the proof of
Theorem 1.2, which implies Theorem 1.1 on the multiplicity of self-similar sets, and also
in Section 3 we prove the quantitative Theorem 1.3 using the quantitative estimates for
the renewal theorem stated in Section 2.

2. Renewal theorems for stopping time of random walks in R

The main method used to establish Theorems 1.2 and 1.3 is based on renewal theory.
Renewal theory has a long history of research both in probability theory and dynamical
systems, see e.g. [17, 34] and various other works citing them. Here we will need quant-
itative renewal theorems for stopping time of random walks in R, which we will now
describe.

Suppose � is a probability measure on RC WD ¹x 2 R W x > 0º with finite support.
Let

� WD

Z
x d�.x/

be the expectation of �, which is positive by definition. Renewal type results are valid
under more general assumption. For simplicity, we state it under this simple assumption
which is sufficient for the proof of main results in the manuscript. Let X1; X2; : : : be i.i.d.
sequence of random variables in R with probability distribution �. Write for n 2 N the
sum

Sn WD X1 CX2 C � � � CXn:

For a non-negative bounded Borel function g on R, define the renewal operator by

Rg.t/ D

1X
nD0

E.g.Sn � t //; t 2 R:

Because of the non-negativity of g, this sum is well defined. Kesten’s key renewal theorem
[32] considers the limit behaviour of Rg.t/ as t !1. The algebraic properties of the
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support supp� of the distribution � will be crucial in the behaviour of Sn � t as t !1.
If � is non-lattice, that is, supp� generates a dense additive subgroup of R, then the limit
Rg.t/ as t !1 is given by 1

�

R
g.x/ dx, where dx is the Lebesgue measure.

Here we need to study the convergence for randomly stopped processes S1; : : : ; Snt
at a stopping time

nt WD inf¹n 2 N W Sn � tº

and see how the residual process Snt � t behaves as t !1. Kesten’s renewal theorem for
stopping time [32] says that the residue distribution Snt � t will converge to a distribution
absolutely continuous with respect to the Lebesgue measure when t tends to infinity.

Let jsupp�j be the supremum of the absolute value of the elements in the support
of �. Define a local C 1 norm on the interval .�1; jsupp�j C 1/ by

kgkC1 WD sup¹jg.x/j C jg0.x/j W x 2 .�1; jsupp�j C 1/º: (2.1)

We will have the following renewal theorem.

Proposition 2.1. If � is a probability measure on RC with finite support and non-lattice,
then we have for t > jsupp�j C 1 and a C 1 function g on R the following asymptotics as
t !C1:

E.g.Snt � t // D
1

�

Z
RC

g.x/p.x/ dx C otkgkC1 ;

where ot tends to zero as t is going to1. Here p.x/ WD �..x;1// is a piecewise constant
function and vanishes when x passes the support of �.

Proposition 2.1 is equivalent to the classical Kesten’s renewal theorem for stopping
time [32]. Because the unit ball of C 1.Œ0; jsupp�j�/ is precompact in C 0.Œ0; jsupp�j�/,
the uniform speed on C 1 norm is equivalent to the convergence in distribution of Snt � t ,
which is exactly Kesten’s theorem. We thank one of the anonymous referees for pointing
this out to us.

Proposition 2.1 will be used to prove Theorem 1.2 later in Section 3 and the non-lattice
condition for � is obtained using the irrationality of log rj =log r`. However, in the setting
of Theorem 1.3, where we assume log rj =log r` is diophantine, we will need a quantitative
version of Proposition 2.1, where one needs a stronger assumption on the distribution �
called (l-)weakly diophantine, that is, for some l > 0,

lim inf
jbj!1

jbjl j1 �L�.ib/j > 0;

where L� is the Laplace transform of �, defined for z 2 C by the formula

L�.z/ D

Z
e�zx d�.x/:

This condition means heuristically that the random walkX1; : : : ; Xn quantitatively avoids
concentration on lattices and could be considered as a spectral gap condition for the ran-
dom walk. The number l > 0 will be reflected in the rate of the renewal theorem for
stopping time of random walks.
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Proposition 2.2. If � is l-weakly diophantine, then for t > jsupp�j C 1 we have

E.g.Snt � t // D
1

�

Z
RC

g.x/p.x/ dx CO.t�1=.4lC1//kgkC1 :

This polynomial error term is new for the renewal theorem for stopping time. A poly-
nomial error term in the key renewal theorem was obtained by Carlsson in [11] under
the same weakly diophantine hypothesis using Fourier transform. What we do here uses
key renewal theorem to prove renewal theorem for stopping time and we track the error
term carefully such that the error term in renewal theorem for stopping time can be
computed using error term in key renewal theorem. With stronger hypothesis, that is,
lim infjbj!1 j1 �L�.ib/j > 0, Blanchet and Glynn give an exponential error term of
key renewal theorem in [3]. However, this stronger hypothesis is never true for finitely
supported measures �. See [6] for more details and bibliography on the error term of the
key renewal theorem.

In our case of self-similar measures associated to an iterated function system

fj .x/ D rjx C bj

and weights
P
j2A pj D 1, the random walk we will use is given by Xk D � log rjk ,

k 2 N, where jk D j with probability pj . Thus � D
P
j2A pj ı� log rj : In Section 3 we

verify the assumptions of the renewal theorems Proposition 2.1 and Proposition 2.2. We
will explain how they are used to prove the main results on Fourier decay.

3. Proof of the Fourier decay

3.1. Symbolic notations

Let us write A� as the space of all words w with entries in A of finite length. Moreover,
An is the space of all words of length n with entries in A and A1 the infinite length
words. If w D w1w2 : : : wn 2 An, define the composition

fw WD fw1 ı � � � ı fwn :

Then fw is again a similitude with a contraction

rw WD rw1 : : : rwn :

Using this notation the self-similarity of � implies that

� D
X
w2An

pwfw�;

where
pw WD pw1 : : : pwn > 0

as the product of weights pj , j 2 A, according to the entries of the word w. See the book
by Falconer [16] for more details, notations and history on self-similar sets and measures.



Trigonometric series and self-similar sets 349

3.2. Reduction to exponential sums

Given � 2 R and t > 0, the first step is to reduce the Fourier transform of � to double �
integrals over exponential sums determined by a stopping time nt . Recall that we defined
in Section 2 for t > 0 the stopping time

nt WD inf¹n 2 N W Sn � tº;

where Sn D X1 C � � � CXn and Xj are i.i.d. random variables distributed according to

� D
X
j2A

pj ı� log rj :

We can identify the stopping time nt as follows using symbolic notations. For an infinite
word ! D w1w2 : : : 2 A1 write nt .!/ as the smallest n 2 N such that the restriction
w WD w1 : : : wn satisfies � log rw � t , that is, rw � e�t . Thus in particular rw will be
roughly e�t : we have rw 2 Œce�t ; e�t � for some constant c > 0. Then this symbolic defin-
ition nt .!/ agrees with the stopping time nt D inf¹n 2 N W Sn � tº by setting the prob-
ability space .�;F ;P / with � D A1, F is the Borel � -algebra generated by cylinder
sets and P D .

P
j2A pj ıj /

1. With this in mind, write

Wt WD ¹w1 : : : wnt .!/ W ! 2 A1º

and let Pt be the probability distribution on A� associated to the stopping time, that is,

Pt WD
X
w2Wt

pwıw :

Thus the support supp Pt D Wt . Now the distribution of Snt agrees with the distribution
of � log rw , where w follows the distribution of Pt . Then for a continuous function g
on R we obtainX

w2Wt

pwg.� log rw � t / D
Z
g.� log rw � t / dPt .w/ D E.g.Snt � t //: (3.1)

See Figure 1 for an illustration of the words Wt .
The reason to use the stopping time here is that we want to use the equidistribu-

tion phenomenon of the renewal theorem (Proposition 2.1), which combined with high-
oscillation can give decay of exponential sums.

Later we will make t depend on � and let j�j ! 1, but for now we keep everything
fixed.

Lemma 3.1. For every � 2 R and t > 0 we have

jb�.�/j2 �“ X
w2Wt

pwe
�2�i�.fw.x/�fw.y// d�.x/ d�.y/:

Proof. Firstly, by
� D

X
j2A

pjfj�
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Fig. 1. Tree A1 in the case jAj D 2. The finite highlighted black dots define the words in
Wt � A�. They are defined to be the shortest words w 2 A� with contraction rw � e�t .

and the martingale stopping theorem, we see that for any t > 0, we can write

� D
X
w2Wt

pwfw�:

(The proof of this is similar to [35, Proposition 3.5].) Hence we obtain

b�.�/ D X
w2Wt

pw

Z
e�2�i�fw.x/ d�.x/:

Thus by Cauchy–Schwarz, we have

jb�.�/j2 � X
w2Wt

pw

ˇ̌̌̌ Z
e�2�i�fw.x/ d�.x/

ˇ̌̌̌2
:

Opening up we see thatX
w2Wt

pw

ˇ̌̌̌ Z
e�2�i�fw.x/ d�.x/

ˇ̌̌̌2
D

“ X
w2Wt

pwe
�2�i�.fw.x/�fw.y// d�.x/ d�.y/:

The lemma is proved.

Thus to prove Fourier decay, we would need to prove“ X
w2Wt

pwe
�2�i�.fw.x/�fw.y// d�.x/ d�.y/! 0 (3.2)
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as j�j ! 1 for a suitable t D t .�/!1. If we want a rate for the Fourier decay, we need
to control the speed of convergence in (3.2). In order to do this, we first write � as follows:

� D set

using parameters s 2 R and t > 0. Later we will first take jsj large, then take t > 0 large
enough depending on s. Using these parameters, write

ı WD jsj�1=2: (3.3)

Then define the following tube in R2:

Aı WD ¹.x; y/ 2 R2 W jx � yj � ıº:

We will split (3.2) into two cases depending on how close x and y are in terms of the ı > 0
defined above. We will have the following two propositions given in Proposition 3.2 and
Proposition 3.3, which together imply Theorem 1.2. For the quantitative part, we also
need Proposition 3.5 to control the rate in (3.2).

3.3. Controlling nearby points

The first one is on the nearby points x; y 2 R, that is, those with jx � yj � ı, and here is
where we use the fact that F is not a singleton. By [18, Proposition 2.2], due to F is not
a singleton, there exist r0 > 0, ˛ > 0 and C > 0 such that for all 0 < r < r0 and x 2 F
we have

�.B.x; r// � Cr˛: (3.4)
A measure which satisfies this condition is sometimes called Hölder regular. Using the
decay (3.4) of the � measure on balls, we can control the nearby points in the following
lemma:

Proposition 3.2. There existsC > 0 such that for any 0 < ı < r0, where r0 > 0 is chosen
such that condition (3.4) hold for �, and for all � 2 R, we haveˇ̌̌̌ “

Aı

X
w2Wt

pwe
�2�i�.fw.x/�fw.y// d�.x/ d�.y/

ˇ̌̌̌
� Cı˛:

Proof. First of all, for all t > 0 we have thatX
w2Wt

pw D 1:

Thus we can bound using the triangle inequality as follows:ˇ̌̌̌ “
Aı

X
w2Wt

pwe
�2�i�.fw.x/�fw.y// d�.x/ d�.y/

ˇ̌̌̌
� .� � �/.Aı/

since jei� j D 1 for all � 2 R. Using Fubini’s theorem, we see that

.� � �/.Aı/ D

Z
�.B.x; ı// d�.x/;

thus by (3.4) the right-hand side is bounded by a constant multiple of ı˛ .
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3.4. Application of the renewal theorem and high-oscillations

In the case when x; y 2 R are chosen such that jx � yj > ı, we will use the renewal
theory to prove the following convergence:

Proposition 3.3. Suppose that log rj =log r` is irrational for some j ¤ `. If � D set and
ı D jsj�1=2, then

lim
jsj!1

lim
t!1

“
R2nAı

X
w2Wt

pwe
�2�i�.fw.x/�fw.y// d�.x/ d�.y/ D 0:

The proof of Proposition 3.3 follows from the renewal theorem for stopping time of
random walks (Proposition 2.1). The rate in Proposition 3.3 is not quantitative. In the
later section, by adding an extra assumption (log rj =log r` is diophantine) to the renewal
theory, we can apply the quantitative version (Proposition 3.5).

Proof of Proposition 3.3. By the definition of fw we have for all x; y 2 Œ0; 1� andw 2Wt

the difference
fw.x/ � fw.y/ D rw.x � y/:

Therefore we can write

e�2�i�.fw.x/�fw.y// D e�2�i�.x�y/rw :

Recall that we have fixed s 2 R and t > 0 such that � has the form � D set . With this
s 2 R, we can define a smooth function gs W R! C by

gs.r/ WD exp.�2�ise�r /; r 2 R:

Then the local C 1 norm of gs satisfies kgskC1 D O.jsj/, as jsj ! 1, recall (2.1) for the
definition of local C 1 norm. Using gs and (3.1), we can write for any pair x; y 2 R thatX

w2Wt

pwe
�2�i�.fw.x/�fw.y// D E.gs.x�y/.Snt � t //: (3.5)

Due to the irrationality of log rj =log r` for some j ¤ `, the additive subgroup gen-
erated by � log rj , j 2 A, is dense in R. So � is non-lattice and we can apply Propos-
ition 2.1. We apply Proposition 2.1 with the function g D gs.x�y/, which gives us for
� D

R
x d�.x/ that

lim
t!1

E.gs.x�y/.Snt � t // D
1

�

Z
R
gs.x�y/.r/p.r/ dr:

If we now look at the right-hand side, since p.r/ is a piecewise continuous function, or
just integrable, Riemann–Lebesgue lemma implies that for all x; y 2 R2 n Aı we have

lim
jsj!1

Z
R
gs.x�y/.r/p.r/ dr D 0: (3.6)

However, to be able to use the above convergence (3.6), we need uniformity in terms
of x and y in this convergence and to make it more effective using the error term in the
renewal theorem Proposition 2.1.
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Recall that in equation (3.3) we defined ı > 0 depending on s 2 R as ı D jsj�1=2 and
Aı D ¹.x; y/ 2 R2 W jx � yj > ıº. Thus if s 2 R and .x; y/ 2 .supp�/2 n Aı , we have

js.x � y/j 2 Œjsj1=2; C jsj�; (3.7)

where C > 0 is the diameter of supp�.
Therefore, by (3.5) and applying Proposition 2.1

lim
t!1

“
R2nAı

X
w2Wt

pwe
�2�i�.fw.x/�fw.y// d�.x/ d�.y/

D lim
t!1

“
R2nAı

E.gs.x�y/.Snt � t // d�.x/ d�.y/

D

“
R2nAı

Z
R
gs.x�y/.r/p.r/ dr d�.x/ d�.y/;

where we can take the limit because the error term

otkgs.x�y/kC1 � ot sup
s02Œjsj1=2;C jsj�

kgs0kC1

is uniform for .x; y/ 2 .supp�/2 n Aı by (3.7). The proof is complete by (3.6).

Proposition 3.3 together with Proposition 3.2 and Lemma 3.1 completes the proof of
Theorem 1.2 as follows:

Proof of Theorem 1.2. By Proposition 3.2, we have that for all large enough jsj with
ı D jsj�1=2 < r0 and for all t > 0,ˇ̌̌̌ “

Aı

X
w2Wt

pwe
�2�i�.fw.x/�fw.y// d�.x/ d�.y/

ˇ̌̌̌
� C jsj�˛=2;

where � D set , ˛ > 0 and C > 0 is a universal constant. Thus

lim sup
t!1

ˇ̌̌̌ “
Aı

X
w2Wt

pwe
�2�i�.fw.x/�fw.y// d�.x/ d�.y/

ˇ̌̌̌
� C jsj�˛=2:

On the other hand, Proposition 3.3 implies that we have

lim
jsj!1

lim
t!1

ˇ̌̌̌ “
R2nAı

X
w2Wt

pwe
�2�i�.fw.x/�fw.y// d�.x/ d�.y/

ˇ̌̌̌
D 0;

Hence Lemma 3.1 gives

lim
jsj!1

lim sup
t!1

jb�.set /j2 D 0;
which gives the claim.
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3.5. Quantitative rate for Fourier decay

In order to prove a quantitative rate (Theorem 1.3), we need a rate in Proposition 3.3. For
this purpose we will employ Proposition 2.2. So we need to verify weakly diophantine
condition for �, which will follow from the diophantine assumption in Theorem 1.3. From
now on, we use a notation A� B to mean there exists a universal constant C > 0 such
that A � CB , and for A� B that A � CB , respectively.

Lemma 3.4. If there exist rj ; rk for j; k 2 A such that log rj =log rk is diophantine, then
the measure � is weakly diophantine.

Proof. Indeed, we have

j1 �L�.ib/j � jRe.pj .1 � e�ib log rj /C pk.1 � e
�ib log rk //j

� max¹d.b log rj ; 2�Z/2; d.b log rk ; 2�Z/2º

� max
²
d.b1;Z/

2; d

�
b1

log rk
log rj

;Z

�2³
;

with b1 D b log rj =2� . By the definition (1.2) of a diophantine number, we obtain that
for some l > 0,

max
²
d.b1;Z/

2; d

�
b1

log rk
log rj

;Z

�2³
� jb1j

�2l ;

which implies � is weakly diophantine.

Now we can prove the following quantitative version of Proposition 3.3, which implies
Theorem 1.3:

Proposition 3.5. Suppose log rj =log r` is diophantine for some j ¤ `. Then there exists
ˇ > 0 such thatˇ̌̌̌ “

R2nAı

X
w2Wt

pwe
�2�i�.fw.x/�fw.y// d�.x/ d�.y/

ˇ̌̌̌
D O

�
1

j log j�jjˇ=4

�
;

as j�j ! 1, where t D t .�/ satisfies j�j D tˇ=2et .

Proof. Since � is weakly diophantine by Lemma 3.4, we can apply Proposition 2.2 to
obtain for some ˇ > 0 that for � D

R
x d�.x/,ˇ̌̌̌

E.gs.x�y/.Snt � t // �
1

�

Z
R
gs.x�y/.r/p.r/ dr

ˇ̌̌̌
D O

�
js.x � y/j

tˇ

�
:

Because the function p.r/ D
R
x>r

d�.x/, r � 0, is piecewise constant with a finite num-
ber of points of discontinuity, the decay rate in the main term, the oscillation integral, is
given by the oscillation (see [35, Lemma 3.8] for more details)ˇ̌̌̌ Z

R
gs.x�y/.r/p.r/ dr

ˇ̌̌̌
D O

�
1

js.x � y/j

�
:
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Then we take jsj D tˇ=2, which implies

js.x � y/j 2 Œtˇ=4; C tˇ=2� for .x; y/ 2 .supp�/2 n Aı

for C equal to the diameter of the support of �. When j�j D tˇ=2et , we have, after taking
logarithms that the rate is given by O.j log j�jj�ˇ=4/, which gives the claim.

4. Proofs of the renewal theorems

In this section we will prove Propositions 2.1 and 2.2. They follow the similar proofs
for the stationary measure for Lie group actions in [35], but here we will give a full
self-contained proof in order to present the method in the most basic setting. Let us now
give a brief overview of the proofs presented here. First of all, we will give a proof of
key renewal theorem for good functions using Laplace transform in Proposition 4.2, with
a control of error term. Then in order to find the limit of the distribution of the process
Snt � t , we will consider the joint distribution of .XnC1; Sn � t / and prove a renewal
theorem for this joint distribution in Proposition 4.7 using Proposition 4.2. Then we add
the cutoff assumption that Sn � t < 0 and XnC1 C .Sn � t / � 0. In Proposition 4.10 we
prove a renewal theorem for the joint distribution of .XnC1; Sn � t / under this cutoff
assumption. Finally, the reason we are doing this is that the distribution of Snt � t is
exactly the sum over natural numbers of the distribution of the sum XnC1 C .Sn � t /

under the cutoff assumption of .XnC1; Sn � t /.
In the following sections we actually only need that � is supported on RC, non-lattice,

and has an exponential moment: there exists " > 0 such thatZ
e"x d�.x/ <1:

The exponential moment assumption is more general than the finite support hypothesis
of � in Section 2. However, in the proofs of Propositions 2.1 and 2.2 we will impose that
� has a finite support, see Section 4.6 for their proofs. With a bit more effort, Proposi-
tions 2.1 and 2.2 can also be obtained with exponential moment, but we do not investigate
this generality here.

4.1. Laplace transform

The Laplace transform of a probability measure � with finite exponential moment on R
is defined by

L�.z/ D

Z
e�zx d�.x/

for <z > �", where " > 0 is the constant in the definition of exponential moment of �.
Recall the expectation

� D

Z
x d�.x/ > 0:

By the definition of non-lattice and � having exponential moment, we have the following.
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Proposition 4.1. If � is non-lattice, then for any pure imaginary number i� not 0, the
Laplace transform of � is not equal to 1 and

u.z/ WD
1

1 �L�.z/
�
1

�z

is holomorphic on a neighbourhood of the half plane ¹z 2 C W <z � 0º.

4.2. Key renewal theory for good functions

We start to compute the renewal operator. In this subsection we will prove a result for the
renewal operator for “good” functions. Let us first fix some notations. Let f be a Borel
function on R. Let kf k1 WD supx2R jf .x/j be the supremum norm, kf kLp theLp norm
with respect to Lebesgue measure, and Lp.R/ spaces with respect to Lebesgue measure.
Define a Sobolev norm

kf kW 1;1 WD kf k1 C kf
0
k1:

In this subsection, we use the following definition of Fourier transform:

bf .�/ D Z e�ix�f .x/ dx

for functions f W R! R as opposed to the one in the introduction for Borel measures �
on R. For a compact set jKj in R, we denote by jKj the supremum of absolute value of
elements in K, that is,

jKj WD sup¹jxj W x 2 Kº:

Recall that we defined the renewal operator for a non-negative bounded function f on R
by

Rf .t/ D

1X
nD0

E.f .Sn � t // D
1X
nD0

Z
f .x � t / d��n.x/; t 2 R:

Proposition 4.2. Let f be a non-negative bounded continuous function in L1.R/ such
that its Fourier transform satisfies bf 2 W 1;1.R/. Assume that suppbf is in a compact
interval K. Then for all t > 0, we have

Rf .t/ D
1

�

Z 1
�t

f .x/ dx C
1

t
OKkbf kW 1;1 ;

where OK satisfies

OK � jKj sup¹ju.i�/j C j@�u.i�/j W � 2 Kº:

The proof of Proposition 4.2 follows by combining the following two lemmas. Firstly,
we have:

Lemma 4.3. Under the same assumption as in Proposition 4.2, we have

Rf .t/ D
1

�

Z 1
�t

f .x/ dx C
1

2�

Z
e�it�u.�i�/bf .�/ d�:
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Proof. This is a classical computation, but for completeness, we will include a proof here.
Introduce a local notation: for t in R and s � 0, let Bs be the operator defined by

Bsf .t/ D

Z
e�sxf .x C t / d�.x/:

Then, for n 2 N,

Bns .f /.t/ D

Z
e�sxf .x C t / d��n.x/:

When s D 0, we have
Rf .�t / D

X
n�0

Bn0f .t/: (4.1)

Since f � 0 and x > 0 in the support of �, using the monotone convergence theorem,
we have

lim
s!0C

X
n�0

Z
e�sxf .x C t / d��n.x/ D

X
n�0

Z
f .x C t / d��n.x/:

Thus X
n�0

Bn0 .f /.t/ D lim
s!0C

X
n�0

Bns .f /.t/: (4.2)

Using the inverse Fourier transform, we haveX
n�0

Bns .f /.t/ D
X
n�0

Z
e�sx

1

2�

Z
R
ei�.xCt/bf .�/ d� d��n.x/: (4.3)

Since bf .�/ has compact support and jbf .�/j is bounded, we know that kbf kL1 is finite.
For s > 0, by L�.s/ < 1, we haveX

n�0

Z
e�sx

Z
R
jbf .�/j d� d��n.x/ D kbf kL1X

n�0

Z
e�sx d��n.x/

D kbf kL1X
n�0

L�.s/n <1;

which implies that the right-hand side of (4.3) is absolutely convergent. Consequently,
we can use the Fubini theorem to change the order of the integration. By the hypothesisbf .�/ 2 W 1;1.R/, Proposition 4.1 implies that for s > 0,X

n�0

Bns .f /.t/ D
1

2�

Z
R

X
n�0

Z
e.�sCi�/xbf .�/ d��n.x/eit� d�

D
1

2�

Z
R

X
n�0

L�.s � i�/nbf .�/eit� d�
D

1

2�

Z
R
.1 �L�.s � i�//�1bf .�/eit� d�

D
1

2�

Z
R

�
1

�.s � i�/
C u.s � i�/

�bf .�/eit� d�: (4.4)
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Since 1
s�i�
D
R C1
0

e�.s�i�/x dx for s > 0, together with the property bf 2 L1.R/, we
have

1

2�

Z
R

1

�.s � i�/
bf .�/eit� d� D 1

�

Z 1
0

f .x C t /e�sx dx: (4.5)

When s ! 0C, since f is integrable, by monotone convergence theorem, the limit is
1

�

Z 1
t

f .x/ dx:

Since bf .�/ is compactly supported, we have

lim
s!0C

Z
R
u.s � i�/bf .�/eit� d� D Z

R
u.�i�/bf .�/eit� d�: (4.6)

The proof is complete by combining (4.1)–(4.6).

Lemma 4.4. Under the same assumption as in Proposition 4.2, we haveˇ̌̌̌ Z
e�it�u.�i�/bf .�/ d� ˇ̌̌̌ � 1

t
OK

�
kbf k1 C k@�bf k1�;

where OK is from Proposition 4.2.

Proof. Use the fact that bf .�/ is compactly supported and jbf .�/j; j@�bf .�/j <1. Then
applying integration by parts, we haveZ

e�it�u.�i�/bf .�/ d� D 1

it

Z
e�it�@�.u.�i�/bf .�// d�

D
1

it

Z
e�it�

�
@�.u.�i�//bf .�/C u.�i�/@�bf .�/� d�:

Since ju.i�/j, j@�u.i�/j are uniformly bounded on compact regions, the result follows.

4.3. Regularity properties of renewal measures

We want to use convolution to smooth out the target function. There exists a non-negative
even function  such that it is a probability density, and the Fourier transform b is com-
pactly supported on Œ�1; 1�. For example we can take b D � � � , where � is a smooth
even function supported on Œ�1

2
; 1
2
� and  is determined via inverse Fourier transform.

Write

 ı.t/ WD
1

ı2
 

�
t

ı2

�
:

Since  decays faster than any polynomial, there exists C1 > 0 such thatZ ı

�ı

 ı.t/ dt D

Z 1=ı

�1=ı

 .t/ dt > 1 � C1ı:

Then we have the following approximation theorem for the renewal operators of indicator
functions.
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Proposition 4.5. Let ı � 1
3C1

and b � a. If b � a � 2ı, then for t > 0, we have

R.1Œa;b�/.t/ � 3.b � a/
�
1

�
C
C Oı.1C jbj C jaj/

t

�
;

where Oı WD OŒ�ı�2; ı�2� and C D 1C kx 7! x .x/kL1 . Here OŒ�ı�2;ı�2� is from
Proposition 4.2 with K D Œ�ı�2; ı�2�.

Proof. If x is in Œa; b�, then Œx � b; x � a� contains at least one of Œ0; ı� or Œ�ı; 0�. There-
fore

 ı � 1Œa;b�.x/ D
Z b

a

 ı.x � v/ dv �

Z ı

0

 .v/ dv �
1

2
.1 � C1ı/:

Then, by C1ı � 1
3

,
1Œa;b� � 3 ı � 1Œa;b�:

It is sufficient to bound R. ı � 1Œa;b�/.t/. Proposition 4.2 implies that

R. ı � 1Œa;b�/.t/ D
1

�

Z 1
�t

 ı � 1Œa;b�.x/ dx C
Oı

t
kc ıb1Œa;b�kW 1;1 :

The first term is less than
R
 ı � 1Œa;b� D .b � a/. For the second term, we have

kc ıb1Œa;b�kW 1;1 D kc ıb1Œa;b�k1 C k@�.c ıb1Œa;b�/k1
� .1C kx 7! x ı.x/kL1/.k1Œa;b�kL1 C kx 7! x1Œa;b�.x/kL1/
� C .b � a/.1C jaj C jbj/:

Because every step of the random walk X1; X2; : : : is positive, every trajectory can
only stay at most Cs times for s � 1 in the interval Œt; t C s�, with C depending on �.
Recall we use a notation A� B to mean there exists a universal constant C > 0 such
that A � CB .

Lemma 4.6. For all s � 1 and t 2 R, we have

R.1Œ0;s�/.t/� max¹1; sº:

4.4. Residue process

We introduce the residue process, which not only deals with Sn but also takes into account
the next step XnC1. Let f be a non-negative bounded Borel function on R2. For t 2 R,
we define the residue operator by

Ef .t/ WD
X
n�0

“
f .y; x � t / d��n.x/ d�.y/:

For clarity, we will from now on use the notations Rx , Ry and R� to be real lines but
highlighted the coordinate we use. Here the space coordinates are x and y and frequency
(Fourier) coordinates are denoted by �.
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Let
Fxf .y; �/ WD

Z
f .y; x/e�ix� dx

be the Fourier transform of f on Rx . Let F be a function on Ry �R� . Define the infinity
norm by

kF k1 D sup
y;�2R

jF.y; �/j:

Proposition 4.7 (Residue process). Let f be a non-negative bounded continuous function
on R2. Assume that the projection of supp Fx.f / onto R� is contained in a compact
interval K, and kFx.f /k1; k@�Fx.f /k1 are finite. Then, for t > 0, we have

Ef .t/ D
1

�

Z 1
�t

Z
RC

f .y; x/ d�.y/ dx C
1

t
OK

�
kFx.f /k1 C k@�Fx.f /k1

�
;

where OK is from Proposition 4.2.

Proof. For a bounded continuous function f on R2 and x 2 R, we define an operator Q
by

Qf.x/ D

Z
f .y; x/ d�.y/:

Then
Ef .t/ D

X
n�0

Z
Qf.x � t / d��n.x/ D R.Qf /.t/:

We want to use Proposition 4.2, so we need to verify the hypotheses. The function
Qf is bounded since f is bounded and integrable since kFxf k1 is finite. Then

bQf .�/ D
Z
Qf.x/e�ix� dx

D

Z
f .y; x/e�ix� dx d�.y/ D

Z
Fxf .y; �/ d�.y/:

Thus bQf is also compactly supported on R� .

Lemma 4.8 (Change of norm). Under the assumptions of Proposition 4.7, we have

kbQf k1 � kFx.f /k1; k@�bQf k1 � k@�Fxf k1:
Proof. The second inequality follows by the same computation as bQf .

By Proposition 4.2, we have

R.Qf /.t/ D
1

�

Z 1
�t

Qf.x/ dx C
1

t
OK

�
kbQf k1 C k@�bQf k1

�
D
1

�

Z 1
�t

Qf.x/ dx C
1

t
OK

�
kFx.f /k1 C k@�Fx.f /k1

�
:

The proof of Proposition 4.7 is complete.
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4.5. Residue process with cutoff

In this subsection, we restrict the residue process to the sequences .X1; : : : ; Xn; XnC1/
such that Sn < t � Sn CXnC1. For a C 1 function f on Ry �Rx , define an x-coordinate
partial derivative C 1 norm by

kf kC1x WD kf k1 C k@xf k1:

Define a cutoff operator EC from non-negative Borel functions on R2 to functions on R
by

ECf .t/ WD
X
n�0

“
x<t�yCx

f .y; x � t / d�.y/ d��n.x/:

Then we have:

Lemma 4.9. There exists C2 > 0 such that for all t 2 R, we have

EC .1/.t/ D E.1�y�x<0/.t/ � C2:

Proof. By Lemma 4.6, we haveX
n�0

�˝ ��n¹.y; x/ W x � t 2 Œ�y; 0�; y � 0º D

Z
R.1Œ�y;0�/.t/ d�.y/

�

Z
max¹1; yº d�.y/;

which is the claim by the definitions of EC and E.

By Lemma 4.9, this cutoff operator EC is actually well defined for bounded Borel
functions.

Proposition 4.10. Let f be a continuous function on R2 with kf kC1x finite. Assume that
the projection of suppf on Ry is contained in a compact setK. For all 1

3C1
> ı > 0 and

t > jKj C ı, we have

ECf .t/ D

Z
RC

Z 0

�y

f .y; x/ dx d�.y/COK

�
ı C

Oı

t

�
kf kC1x ;

where OK only depends on K and �, and

Oı WD sup¹ju.i�/j C j@�u.i�/j W � 2 Œ�ı�2; ı�2�º:

Remark 4.11. We decompose f into real and imaginary parts, then decompose these
two parts into positive and negative parts. Each part satisfies the hypotheses of Proposi-
tion 4.10, with the support and the Lipschitz norm bounded by the original one. Thus, it
is sufficient to prove this proposition for f non-negative.

The following lemma connects the cutoff operator EC with the residue operator E.

Lemma 4.12. Under the assumptions of Proposition 4.10, let

fo.y; x/ WD 1�y�x<0f .y; x/:

Then ECf .t/ D Efo.t/.
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Using  ı to regularize these functions, we write

fı.y; x/ WD

Z
fo.y; x � x1/ ı.x1/ dx1 D  ı � fo.y; x/:

Lemma 4.13. Under the same hypotheses as in Proposition 4.10, we have

E.fı/.t/ D

Z
RC

Z 0

�y

f .y; x/ dx d�.y/CO

�
ı C

Oı

t
.jKj C jKj2/

�
kf k1:

Proof. We want to verify the conditions in Proposition 4.7 and then use Proposition 4.7.
For the Fourier transform, we have

Fxfı D Fx. ı � fo/ D b ıFxfo:
We need to estimate the infinity norm of Fxfo.y; �/. This function equalsZ

fo.y; x/e
�ix� dx D

Z 0

�y

f .y; x/e�ix� dx:

Lemma 4.14 (Change of norm). Under the same hypotheses as in Proposition 4.10, we
have

kFxfık1 � jKjkf k1; k@�Fxfık1 � jKj
2
kf k1:

Proof. Noting that in the integration jxj � jyj, we get the second inequality by the same
computation.

The projection of the support of Fxfı onto R� is contained in Œ�ı�2; ı�2�. Therefore
by Proposition 4.7, we have

E.fı/.t/ D
1

�

Z 1
�t

Z
RC

fı.y; x/ d�.y/ dx C
Oı

t

�
kf k1.jKj C jKj

2/
�
:

ThenZ 1
�t

fı.y; x/ dx D

Z 1
�t

Z 0

�y

f .y; x1/ ı.x � x1/ dx1 dx

D

Z 0

�y

f .y; x1/

Z 1
�t

 ı.x � x1/ dx dx1

D

Z 0

�y

f .y; x1/ dx1 �

Z 0

�y

f .y; x1/

Z �t�x1
�1

 ı.x/ dx dx1:

Since t � ı � jKj, we have �t � x1 � �t C y � �ı. By
R �ı
�1

 ı � C1ı, this implies
that Z 1

�t

fı.y; x/ dx D

Z 0

�y

fı.y; x/ dx.1CO.ı//:

Using Lemma 4.9, we haveˇ̌̌̌ Z
RC

Z 0

�y

f .y; x/ dx d�.y/

ˇ̌̌̌
� kf k1EC .1/ D O.kf k1/:
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ThereforeZ 1
�t

Z
RC

fı.y; x/ d�.y/ dx D

Z
RC

Z 0

�y

f .y; x/ dx d�.y/CO.ıkf k1/:

The proof of Lemma 4.13 is complete.

Next, we will need a lemma to estimate jfı � foj.

Lemma 4.15. Let ' be a C 1 function with k'0k1 <1 and k'k1 � 1. Let

'o.u/ D 1Œa;b�.u/'.u/;

where b > a. Then we have

j ı �'o.u/ � 'o.u/j �

8̂<̂
:
.k'0k1C2C1/ı; u 2 ŒaC ı; b� ı�;

2; u 2 Œa� ı; aC ı� [ Œb� ı; bC ı�;

 ı � 1Œa;b�.u/; u 2 Œa� ı; bC ı�c :

(4.7)

If b � a � 2ı, then ŒaC ı; b � ı� is empty and we do not have the first one.

Proof. We will prove this inequality in each interval.
� When u is in ŒaC ı; b � ı�, we have

j. ı � 'o � 'o/.u/j D

ˇ̌̌̌ Z
 ı.t/.'o.u � t / � 'o.u// dt

ˇ̌̌̌
�

Z ı

�ı

 ı.t/j'o.u � t / � 'o.u/j dt C 2C1ı:

When jt j � ı, we have u � t 2 Œa; b�. As j'0o.u/j � k'
0k1 for u 2 Œa; b�, this implies

that Z ı

�ı

 ı.t/j'o.u � t / � 'o.u/j dt �

Z ı

�ı

 ı.t/jt jk'
0
k1 dt � ık'

0
k1:

� When u 2 Œa � ı; aC ı� [ Œb � ı; b C ı�, we use the trivial bound

j ı � 'o.u/ � 'o.u/j � 2:

� When u 2 .�1; a � ı� [ Œb C ı;1/, we have 'o.u/ D 0, then

j ı � 'oj � j ı � 1Œa;b�j:

Thus collecting all together, we get inequality (4.7).

Proof of Proposition 4.10. To simplify the notation, we normalize f in such a way that
kf k1 D 1. By Lemma 4.13, we only need to give an estimate of E.jfı � foj/.t/.

Due to fo.y; x/ D 1�y�x<0.x/f .y; x/, by Lemma 4.15 (for clarity, we omit the
variable y in the following computation)

jfı � foj.x/ �

8̂<̂
:
.k@xf k1 C 2C1/ı; x 2 Œ�y C ı;�ı�;

2; x 2 Œ�y � ı;�y C ı� [ Œ�ı; ı�;

 ı � 1Œ�y;0�.x/; x 2 Œ�y � ı; ı�c :
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By the definition of jKj, the first term is less than .j@xf j1 C 2C1/ı1Œ�jKjCı;�ı�. The
third term is equal to

1Œ�1;�y�ı�[Œı;1� ı � 1Œ�y;0�.x/ D 1Œ�1;�y�ı�[Œı;1�.x/
Z 0

�y

 ı.x � x1/ dx1

D 1Œ�1;�y�ı�[Œı;1�.x/
Z xCy

x

 ı.x1/ dx1:

By definition and the above arguments, we have

E.jfı � foj/.t/ D
X
n�0

Z
jfı � foj.y; x � t / d�

�n.x/ d�.y/

�

X
n�0

Z �
.k@xf k1 C 2C1/ı 1Œ�jKj;�ı�.x � t /

C 2 1Œ�y�ı;�yCı�[Œ�ı;ı�.x � t /

C 1Œ�1;�y�ı�[Œı;1�.x � t /
Z xCy�t

x�t

 ı.x1/ dx1

�
d��n.x/ d�.y/:

By Lemma 4.6, the first term is controlled by .k@xf k1 C 2C1/ıjKj. For the second term,
we haveZ

1Œ�y�ı;�yCı�.x � t / d��n.x/ d�.y/ D
Z

1Œ�ı;ı�.x � t / d��.nC1/.x/:

So the second term is less than 4R.1Œ�ı;ı�/.t/. Due to Proposition 4.5, it is controlled
by C ı. 1� C

Oı.1C2ı/
t

/.
For the third term, we need to change the order of integration. Since x � t > ı or

x � t < �y � ı, we have x1 � x � t > ı or x1 � x C y � t � �ı. We first integrate
with respect to x1, and so the third term is less thanZ

Œ�1;�ı�[Œı;1�

 ı.x1/
X
n�0

�˝ ��n¹.y; x/jx C y � x1 C t � xº dx1

D

Z
Œ�1;�ı�[Œı;1�

 ı.x1/EC .1/.x1 C t / dx1:

By Lemma 4.9, the above quantity is less than C2
R
Œ�1;�ı�[Œı;1�

 ı.x1/ dx1 � C1C2ı.
Therefore, we have

E.jfı � foj/.t/ D O

�
ıjKj C

Oı

t

�
kf kC1x ;

which completes the proof of Proposition 4.10.

4.6. Proof of the Renewal theorem for stopping time

Let us finally complete the proofs of Propositions 2.1 and 2.2 using Proposition 4.10. Here
we add the assumption that � is finitely supported.
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Proof of Proposition 2.1. Let % be a smooth cutoff such that %Œ0;jsupp�j� D 1 and becomes
0 outside of Œ�1; jsupp�j C 1�. Take

f .y; x/ D g.y C x/%.y/%.x C y/:

Then f .y; x/ D g.y C x/ when y and x C y are in the interval Œ0; jsupp�j�. By defini-
tion and supp� � RC, we have

E.g.Snt � t // D ECf .t/:

This function f satisfies the conditions in Proposition 4.10, and kf kC1x � 8kgkC1 . The
proof is complete by using Proposition 4.10.

Proof of Proposition 2.2. We need to use the weakly diophantine condition to give an
estimate of the error term in Proposition 4.10. For the supremum of the absolute value
of u.i�/ D 1

1�L�.i�/
�
1
�
1
i�

and its derivative

@�

�
1

1 �L�.i�/
�
1

�

1

i�

�
D
�@�L�.i�/

.1 �L�.i�//2
C
1

�

1

i�2
;

on the interval Œ�ı�2; ı�2�, by the definition of l-weakly diophantine, we obtain that it
is less than Cı�4l . Then, by Proposition 4.10,

Oı � Cı
�4l :

Then take ı D t�1=.4lC1/. The proof is complete.
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