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Abstract. We prove that more than nine percent of the central values L.1=2; �p/ are non-zero,
where p � 1 .mod 8/ ranges over primes and �p is the real primitive Dirichlet character of con-
ductor p. Previously, it was not known whether a positive proportion of these central values are
non-zero. As a by-product, we obtain the order of magnitude of the second moment of L.1=2; �p/,
and conditionally we obtain the order of magnitude of the third moment. Assuming the Generalized
Riemann Hypothesis, we show that our lower bound for the second moment is asymptotically sharp.
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1. Introduction and results

The values of L-functions at special points on the complex plane are of great interest. At
the fixed point of the functional equation, called the central point, the question of non-
vanishing is particularly important. For instance, the well-known Birch and Swinnerton-
Dyer conjecture [44] relates the order of vanishing of certain L-functions at the central
point to the arithmetic of elliptic curves. Katz and Sarnak [23] discuss several examples of
families ofL-functions and describe how the zeros close to sD 1=2 give evidence of some
underlying symmetry group for each of these families. They suggest that understanding
these symmetries may in turn lead to finding a natural spectral interpretation of the zeros
of the L-functions. The analysis of each family they discuss leads to a Density Conjecture
that, if true, would imply that almost allL-functions in the family do not vanish at the cen-
tral point. Iwaniec and Sarnak [20] show that the non-vanishing of L-functions associated
with holomorphic cusp forms is closely related to the Landau–Siegel zero problem. Thus
the question of non-vanishing at the central point is connected to many deep arithmetical
problems.

A considerable amount of research has been done towards answering this question for
families of DirichletL-functions. Chowla conjectured thatL.1=2;�/¤ 0 for � a primitive
quadratic Dirichlet character [8, p. 82, problem 3]. It has since become a sort of folklore
conjecture that L.1=2;�/¤ 0 for all primitive Dirichlet characters �. One family that has
attracted a lot of attention is the family ofL.s;�/with � varying over primitive characters
modulo a fixed conductor. This family is widely believed to have a unitary symmetry type,
as in the philosophy of Katz and Sarnak. Balasubramanian and Murty [4] were the first
to prove that a (small) positive proportion of this family does not vanish at the central
point. They used the celebrated technique of mollified moments, a method that has been
highly useful in other contexts (see, for example, [5, 10, 39]). Iwaniec and Sarnak [19]
developed a simpler, stronger version of the method and improved this proportion to 1=3.
The approach of Iwaniec and Sarnak has since become standard in the study of non-
vanishing of L-functions at the central point. Bui [6] and Khan and Ngo [27] introduced
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new ideas and further improved the lower bound 1=3. The second author [36] has shown
that more than fifty percent of the central values are non-vanishing when one additionally
averages over the conductors. For further interesting research on this and other families
of L-functions, see [7, 11, 24–26, 28–32].

The family of L.s; �/ with � varying over all real primitive characters has also been
extensively studied. This family is of particular significance because it seems to be of
symplectic rather than unitary symmetry. Thus we encounter new phenomena not seen in
the unitary case. For d a fundamental discriminant, set �d .�/ D

�
d
�

�
, the Kronecker sym-

bol. Then �d is a real primitive character with conductor jd j. The hypothetical positivity
of central valuesL.1=2;�d / has implications for the class number of imaginary quadratic
fields [18, p. 514]. Jutila [22] initiated the study of non-vanishing at the central point for
this family and proved thatL.1=2;�d /¤ 0 for infinitely many fundamental discriminants
d . His methods show that� X=logX of the quadratic characters �d with jd j � X have
L.1=2; �d / ¤ 0. Özlük and Snyder [33] examined the low-lying zeros of this family, and
found the first evidence of its symplectic behavior. Assuming the Generalized Riemann
Hypothesis (GRH), they showed that at least 15

16
of the central values L.1=2;�d / are non-

zero [34]. Katz and Sarnak independently obtained the same result in unpublished work
(see [23, 40]).

Soundararajan [40] made a breakthrough when he proved unconditionally that at least
7=8 of the central values L.1=2; �d / with d � 0 (mod 8) are non-zero. The biggest diffi-
culty lies in analyzing the contribution of the “off-diagonal” terms in the evaluation of a
mollified second moment. Soundararajan discovered that there is, in fact, a main contri-
bution arising from these off-diagonal terms. (See Section 3 for more discussion.)

The case of real primitive characters with prime conductor is more difficult still.
Jutila [22] initiated the study of L.1=2; �p/, where p is a prime. His methods show that
� X=.logX/3 of the primes p � X satisfy L.1=2; �p/ ¤ 0. The difficulty in studying
this family is that its moments involve sums over primes, and thus are more compli-
cated to investigate. In fact, Jutila only evaluated the first moment of this family. As far
as the authors are aware, no asymptotic evaluation of the second moment has appeared
in the literature. However, Andrade and Keating [2] asymptotically evaluated the second
moment of an analogous family over function fields. Andrade and the first author [1] have
continued the study of the family of L.1=2; �p/, showing that it is likely governed by a
symplectic law. Conditionally on GRH, they prove that at least 75% of primes p � X
satisfy L.1=2; �p/ ¤ 0.

We prove an unconditional positive proportion result for the central valuesL.1=2;�p/.
In fact, we prove that more than nine percent of these central values are non-zero.

Theorem 1.1. There exists an absolute, effective constant X0 such that if X � X0 thenX
p�X

p�1 .mod8/
L.1=2;�p/¤0

1 � :0964
X
p�X

p�1 .mod8/

1:

The proof of Theorem 1.1 proceeds via the mollification method, which we discuss
briefly in Section 3. Our methods build on those of Jutila [22] and Soundararajan [40].
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As in the work of Soundararajan, the main difficulty lies in evaluating the contribution
of certain off-diagonal terms. The difference now is that we are summing over primes
instead of square-free integers, and so we cannot directly use his approach. A key idea in
the proof of Theorem 1.1 is the use of upper bound sieves to turn intractable sums over
primes into manageable sums over integers. The use of sieves in studying central values
of L-functions has also appeared in some other contexts (see [17], also [37, p. 1035]).

The tools developed for the proof of Theorem 1.1 allow us to obtain the order of
magnitude of the second moment of L.1=2; �p/.

Theorem 1.2. Let c be the positive constant

c WD .144�.2/.1 � 1=
p
2/2/�1 D :0492 : : : :

For large X we have

.c � o.1//
X

4
.logX/3 �

X
p�X

p�1 .mod8/

.logp/L.1=2; �p/2 � .4cC o.1//
X

4
.logX/3:

One would rather have an upper bound in Theorem 1.2 that asymptotically matches
the lower bound, but this seems difficult to prove unconditionally. By adapting a method
of Soundararajan and Young [42] we are able, however, to prove such an asymptotic
formula on GRH.

Theorem 1.3. Let c be as in Theorem 1.2. Assume the Riemann Hypothesis for �.s/ and
for all Dirichlet L-functions L.s; �p/ with p � 1 .mod 8/. ThenX

p�X
p�1 .mod8/

.logp/L.1=2; �p/2 D c
X

4
.logX/3 CO.X.logX/11=4/:

After we completed this paper, Maksym Radziwiłł informed us about work in progress
with Julio Andrade, Roger Heath-Brown, Xiannan Li, and K. Soundararajan in which they
derive an unconditional asymptotic formula for the second moment of L.1=2; �p/. Their
approach similarly introduces sieve weights, and they also observed that this idea could
lead to a non-vanishing result.

Our methods further yield the order of magnitude of the third moment of L.1=2; �p/,
assuming that the central values L.1=2; �n/ are non-negative for certain fundamental
discriminants n. This non-negativity hypothesis follows, of course, from GRH.

Theorem 1.4. Assume that L.1=2; �n/ � 0 for all positive square-free integers n with
n � 1 .mod 8/. Then for large X ,X

p�X
p�1 .mod8/

.logp/L.1=2; �p/3 � X.logX/6:
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Throughout this paper, we work exclusively with p � 1 .mod 8/ for convenience,
but our methods are not specific to this residue class. With some modifications one could
state similar results for other residue classes modulo 8. See the end of Section 3 for more
details.

Our work indicates that Soundararajan’s lower bound [40] for the proportion of non-
vanishing for fundamental discriminants d � 0 .mod 8/ also holds for the case of funda-
mental discriminants d � 1 .mod 8/. Proving this involves re-doing the calculations in
Section 7, but without applying an upper bound sieve. To complete the proof, one would
also need a first moment calculation. We omit the details and instead refer the reader to
[40, Section 4].

It is natural to ask about the limitations of our method, and how much we can increase
the lower bound in Theorem 1.1. If we assume that we can use arbitrarily long molli-
fiers [13], then we obtain a higher percentage of non-vanishing. However, in view of the
parity problem of sieve theory [14], we could not reach a proportion greater than 1=2 via
our method. On the other hand, by a different method [1], the Density Conjecture of Katz
and Sarnak would imply that 100% of the central values L.1=2; �p/ are non-zero.

The outline of the rest of the paper is as follows. In Section 2 we establish some
notation and conventions that hold throughout this work. Section 3 outlines the basic
strategy for the proof of Theorem 1.1. In Sections 4 and 5 we state a number of important
technical results which are used in the proofs of our theorems. The proof of Theorem 1.1 is
spread across Sections 6, 7, and 8. In Section 6 and its subsections we study the mollified
first moment problem. The very long Section 7 and its subsections handle the mollified
second moment. We choose our mollifier and finish the proof of Theorem 1.1 in Section 8.
We prove Theorems 1.2 and 1.3 in Section 9, and we prove Theorem 1.4 in Section 10.

2. Notation and conventions

We define �n.�/ D
�
n
�

�
, the Kronecker symbol, for all non-zero integers n, even if n is

not a fundamental discriminant. Note that this means �n has conductor jnj only when n is
a fundamental discriminant. We write S.Q/ for the set of all real primitive characters �
with conductor � Q. For an integer n, we write n D � or n ¤ � according to whether or
not n is a perfect square.

We let " > 0 denote an arbitrarily small constant whose value may vary from one line
to the next. When " is present, in some fashion, in an inequality or error term, we allow
implied constants to depend on " without necessarily indicating this in the notation. At
times we indicate the dependence of implied constants on other quantities by use of sub-
scripts: for example, Y �A Z. When we write an error term of the form OA..logX/�A/,
we always mean that A is some large but unspecified constant.

Throughout this paper, we denote byˆ.x/ a smooth function, compactly supported on
Œ1=2;1�, which satisfies 0�ˆ.x/� 1 andˆ.x/D 1 for x 2 Œ1=2C 1= logX;1� 1= logX�
and ˆ.j /.x/�j .logX/j for all j � 0. In Sections 9 and 10 we allow for the possibility
of ˆ.x/ being a smooth majorant for the indicator function of Œ1=2; 1� with similar prop-
erties; we leave it to the reader to determine in any given subsection whether a majorant or
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minorant is required. We could state our results for arbitrary smooth functions supported
in Œ1=2; 1�, but we avoid this in an attempt to achieve some simplicity.

We write e.x/ D e2�ix . For g a compactly supported smooth function, we define the
Fourier transform Og.y/ of g by

Og.y/ D

Z
R
g.x/e.�xy/ dx:

At times, however, we find it convenient to use a slightly different normalization of the
Fourier transform (see Lemma 5.2).

We define the Mellin transform g�.s/ of g by

g�.s/ D

Z 1
0

g.x/xs�1 dx:

It is also helpful to define a modified Mellin transform Lg.w/ by

Lg.w/ D

Z 1
0

g.x/xw dx:

Observe that Lg.w/ D g�.1C w/. Lastly, for a complex number s, we define

gs.t/ D g.t/t
s=2: (2.1)

Note that
Ô .0/ D ˆ�.1/ D L̂ .0/ D

1

2
CO

�
1

logX

�
: (2.2)

The letter p always denotes a prime number. We write ' for the Euler phi function, and
dk.n/ for the k-fold divisor function, so that dk.n/ D 1 for k D 1. If a and b are integers
we write Œa; b� for their least common multiple and .a; b/ for their greatest common
divisor. It will always be clear from context whether Œa; b�, say, denotes a least common
multiple or a real interval.

Given coprime integers a and q, we write a .mod q/ for the multiplicative inverse of
a modulo q.

3. Outline of the proof of Theorem 1.1

The proof of Theorem 1.1 proceeds through the mollification method. The method was
introduced by Bohr and Landau [5], but later greatly refined in the hands of Selberg [39].
The idea is to introduce a Dirichlet polynomialM.p/, known as a mollifier, which damp-
ens the occasional wild behavior of the central values L.1=2; �p/. We study the first and
second moments

S1 WD
X

p�1 .mod8/

.logp/ˆ.p=X/L.1=2; �p/M.p/;

S2 WD
X

p�1 .mod8/

.logp/ˆ.p=X/L.1=2; �p/2M.p/2:
(3.1)
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If the mollifier is chosen well then S1 � X and S2 � X . By the Cauchy–Schwarz
inequality we have X

p�1 .mod8/
L.1=2;�p/¤0

.logp/ˆ.p=X/ �
S21
S2
; (3.2)

and this implies that a positive proportion of L.1=2; �p/ are non-zero.
Our mollifier takes the form

M.p/ WD
X
m�M
m odd

bm
p
m
�p.m/; (3.3)

for some coefficients bm we describe shortly. Here we set

M D X� ; � 2 .0; 1=2/ fixed: (3.4)

The larger one can take � , the better proportion of non-vanishing one can achieve.
The coefficients bm are a smoothed version of the Möbius function�.m/. Specifically,

we choose

bm D �.m/H

�
logm
logM

�
; (3.5)

where H.t/ is a smooth function compactly supported in Œ�1; 1� that we choose in Sec-
tion 8. It will be convenient in a number of places that bm is supported on square-free
integers.

We outline our strategy for estimating S1 and S2. We simplify the presentation here
in comparison to the actual proofs. The sum S1 is by far the simpler of the two, so we
start here (see Section 6). Using an approximate functional equation for the central value
L.1=2; �p/ (Lemma 4.2), we write S1 as

S1 �
X
m�M

bm
p
m

X
k�X1=2C"

1
p
k

X
p�1 .mod8/

.logp/ˆ.p=X/�p.mk/:

The main term arises from the “diagonal” terms mk D �. The character values �p.mk/
are then all equal to 1, and we simply use the prime number theorem for arithmetic pro-
gressions modulo 8 to handle the sum over p. The sum over k contributes a logarithmic
factor, but this logarithmic loss is canceled out by a logarithmic gain coming from a
cancellation in the mollifier coefficients. This yields the main term for S1, which is of
size� X (Proposition 6.1).

The “off-diagonal” termsmk¤� contribute only to the error term. After some manip-
ulations the off-diagonal terms are essentially of the form

E WD
X

q�MX1=2C"

q¤�

˛.q/

q1=2

X
p

.logp/ˆ.p=X/�q.p/;
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where ˛.q/ is some function satisfying j˛.q/j �" q
". We assume here for simplicity that

all of the characters �q are primitive characters. We bound the character sum over primes
in E in three different ways, depending on the size of q. These three regimes correspond
to small, medium, and large values of q. Some of the arguments are similar to those of
Jutila [22].

In the regime of small q we appeal to the prime number theorem for arithmetic pro-
gressions with error term. The sum over primes p is small, except in the case where one
of the characters �q� is exceptional, that is, the associated L-function L.s; �q�/ has a
real zero ˇ� very close to s D 1. Siegel’s theorem gives q� � c.B/.logX/B with B > 0

arbitrarily large. This would immediately dispatch any exceptional characters, but unfor-
tunately the constant c.B/ is not effectively computable. To get an effective estimate we
use Page’s theorem, which states that at most one such exceptional character �q� exists.
We then study carefully the contribution of this one exceptional character and show it is
acceptably small.

In regimes of medium and large q, we take advantage of the averaging over q present
in E . We bound E in terms of instances of

E.Q/ WD Q�1=2C"
X

Q=2<q�Q
q¤�

ˇ̌̌X
p

.logp/ˆ.p=X/�q.p/
ˇ̌̌
;

where Q is of moderate size, or is large.
When Q is medium-sized, we use the explicit formula to bound E.Q/ by sums over

zeros of the L-functions L.s; �q/. We then use zero-density estimates.
We are left with the task of bounding E.Q/ when Q is large, which means Q is

larger than Xı for some small, fixed ı > 0. Rather than treating the sum over primes
analytically, as we did when Q was small or medium-sized, we treat the sum over primes
combinatorially. We use Vaughan’s identity to write the character sum over the primes as
a linear combination of linear and bilinear sums. The linear sums are handled easily with
the Pólya–Vinogradov inequality. We bound the bilinear sums by appealing to a large
sieve inequality for real characters due to Heath-Brown (Lemma 4.4).

We now describe our plan of attack for S2 (see Section 7). Recall the definition of S2
in (3.1). As we see from Theorem 1.3, we only barely obtain an asymptotic formula for
the second moment X

p�X
p�1 .mod8/

.logp/L.1=2; �p/2

under the assumption of the Generalized Riemann Hypothesis. Thus, it might seem doubt-
ful that one can say anything useful about S2, since the central valueL.1=2;�p/2 is further
twisted by the square of a Dirichlet polynomial. The key idea is that we do not need an
asymptotic formula for S2, but only an upper bound of the right order of magnitude (with
a good constant). We therefore avail ourselves of sieve methods (see Section 5). By posi-
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tivity we have

S2 � .logX/
X

n�1 .mod8/

�.n/2ˆ.n=X/
�X
d jn

�d

�
L.1=2; �n/

2M.n/2;

where
P
d jn �d is an upper bound sieve supported on coefficients with d � D. Since we

are now working with ordinary integers instead of prime numbers, the analysis for S2
becomes similar to the second moment problem considered in [40, Section 5].

We begin by writing
�.n/2 D NY .n/CRY .n/; (3.6)

where
NY .n/ WD

X
`2jn
`�Y

�.`/; RY .n/ WD
X
`2jn
`>Y

�.`/; (3.7)

and Y is a small power of X . The sumX
n�1 .mod8/

ˆ.n=X/RY .n/
�X
d jn

�d

�
L.1=2; �n/

2M.n/2

is an error term, and is shown to be small in a straightforward fashion by applying moment
estimates for L.1=2; �n/ due to Heath-Brown (Lemma 4.5).

The main task is therefore to asymptotically evaluate the sumX
n�1 .mod8/

ˆ.n=X/NY .n/
�X
d jn

�d

�
L.1=2; �n/

2M.n/2:

We use an approximate functional equation to represent the central values L.1=2; �n/2

and arrive at expressions of the formX
`�Y

�.`/
X
d�D

�d
XX
m1;m2�M

bm1bm2
p
m1m2

1X
�D1

d2.�/
p
�

X
n�1 .mod8/

d jn

`2jn

�
m1m2�

n

�
ˆ

�
n

X

�
!

�
�

n

�
;

where !.x/ is some rapidly decaying smooth function that satisfies !.x/� 1 for small x.
We then make the change of variables n D mŒd; `2�.

We use Poisson summation to transform the resulting sum overm into a sum basically
of the form X

k2Z

�
Œd; `2�k

m1m2�

�
e

�
kŒd; `2�m1m2�

8

�
OF�

�
kX

Œd; `2�m1m2�

�
;

for some smooth function F� . (The quadratic character here is really a kind of quadratic
Gauss sum, but we simplify the situation for the sake of this outline.) The zero frequency
k D 0 gives rise to a main term. Since

�
0
h

�
D 1 or 0 depending on whether h is a square
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(a convention we utilize only in this outline section), the k D 0 contribution represents the
expected “diagonal” contribution from m1m2� D �. There is an additional, off-diagonal,
main term which arises, essentially, from the terms with Œd; `2�k D �. We adapt here the
delicate off-diagonal analysis of [40]. The situation is complicated by the presence of the
additive character e.�/, which is not present in [40]. The additive character necessitates a
division of the integers k into residue classes modulo 8. We then use Fourier expansion
to write the additive character as a linear combination of multiplicative characters. After
many calculations the off-diagonal main term arises as a sum of complex line integrals.
When we combine the various pieces the integrand becomes an even function, exhibiting
a symmetry which none of the pieces separately possessed. This fact proves to be very
convenient in the final steps of the main term analysis.

One intriguing feature of the main term in S2 is a kind of “double mollification”. We
must account for the savings coming from the mollifier M.n/, but must also account for
the savings coming from the sieve weights �d , which act as a sort of mollifier on the
natural numbers. It is crucial that we get savings in both places, and therefore our sieve
process must be very precise. We find that a variation on the ideas of Selberg (see e.g.
[18, Section 6.5]) is sufficient.

At length we arrive at an upper bound S2;U , say, for S2 of size S2;U � X . We make
an optimal choice of the function H.x/ in Section 8 to maximize the ratio S21=S2;U . The
resulting mollifier is not the optimal mollifier, but it gives results that are asymptotically
equivalent to those attained with the optimal mollifier. This yields Theorem 1.1.

To treat other residue classes of p .mod 8/, we make the following changes. First,
we change the definition of �p.�/ to

�
.�1/ap
�

�
, where a D 0 if p � 1 .mod 4/ and a D 1

if p � 3 .mod 4/. Thus �p is still a primitive character of conductor p. Second, we use
a variant of the approximate functional equation (Lemma 4.2) with !j , defined in (4.1),
replaced by

1

2�i

Z
.c/

�
�
s
2
C

1C2a
4

�j
�
�
1C2a
4

�j �
1 �

�p.2/

21=2�s

�j
��sW.s/

ds

s
:

The function W.s/ here is 16.s2 � 1=4/2. Its purpose is to cancel potential poles at s D
1=2 in the analysis.

4. Lemmas

We represent the central values of L-functions by using an approximate functional equa-
tion. We first investigate some properties of the smooth functions which appear in our
approximate functional equations. For j D 1; 2 and c > 0, define

!j .�/ D
1

2�i

Z
.c/

�
�
s
2
C

1
4

�j
�
�
1
4

�j �
1 �

1

21=2�s

�j
��s

ds

s
: (4.1)
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Lemma 4.1. Let j D 1; 2. The function !j .�/ is real-valued and smooth on .0;1/. If
� > 0 we have

!j .�/ D

�
1 �

1
p
2

�j
CO".�

1=2�"/:

For any fixed integer � � 0 and � � 4� C 10, we have

!
.�/
j .�/� .�=2/�C3 exp

�
�
1
4
�2=j

�
�� exp

�
�
1
8
�2=j

�
:

Proof. The proof is similar to [40, Lemma 2.1], but we give details for completeness. The
function !j .s/ is real-valued because the change of variable Im.s/! �Im.s/ shows that
!j is equal to its complex conjugate. Moreover, uniform convergence for � in compact
subintervals of .0;1/ implies that !j is smooth.

To prove the first estimate of the lemma, move the line of integration in the definition
of !j .�/ to c D �1=2 C ". The pole at s D 0 contributes .1 � 1=

p
2/j , and the new

integral is O".�1=2�"/.
Let us turn to the last estimate of the lemma. We may suppose �2=j � 4� C 10. By

differentiation under the integral sign we find

!
.�/
j .�/ D

.�1/�

2�i

Z
.c/

�
�
s
2
C

1
4

�j
�
�
1
4

�j �
1 �

1

21=2�s

�j
s.s C 1/ � � � .s C � � 1/��s��

ds

s
:

Recall that j�.x C iy/j � �.x/ for x > 0 and z�.z/ D �.z C 1/. Thus, for c � 2 we
obtain

j!
.�/
j .�/j � �

�
c

2
C
5

4
C�

�j�
1C

2c
p
2

�j
��c�v

Z
.c/

1

jsj
ˇ̌
s
2
C
1
4
C�

ˇ̌ ��1Y
kD0

jsCkjˇ̌
s
2
C
1
4
Ck

ˇ̌ jdsj
� �

�
c

2
C
5

4
C�

�j�
2j

�

�c�
2

�

��
c�1;

where the implied constants are absolute. By Stirling’s formula this is

�

�
c C 2� C 3

2e

� j
2 .cC2�C3/

�
2j

�

�c�
2

�

��
:

We choose c D 1
2
�2=j � 2� � 3, which is > 2. Thus, the quantity in question is

� .�=2/�C3 exp
�
�
1
4
�2=j

�
;

as desired.

We will find it technically convenient to use an approximate functional equation in
which the variable of summation is restricted to odd integers.
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Lemma 4.2. Let n� 1 .mod 8/ be square-free and satisfy n > 1. Let �n.�/D
�
n
�

�
denote

the real primitive character of conductor n. Then for j D 1; 2 we have

L.1=2; �n/
j
D

2

.1 � 1=
p
2/2j

1X
�D1
� odd

�n.�/dj .�/
p
�

!j

�
�

�
�

n

�j=2�
DW Dj .n/:

Proof. The proof is along standard lines (e.g. [18, Theorem 5.3]), but we give it since our
situation is slightly different.

Let ƒ.z; �n/ D .n=�/z=2�.z=2/L.z; �n/. Since n is positive we have �n.�1/ D 1,
and therefore we have the functional equation (see [9, Proposition 2.2.24], [12, Chapter 9])

ƒ.z; �n/ D ƒ.1 � z; �n/:

Recall also that ƒ.z; �n/ is entire because �n is primitive.
Now consider the sum

I WD
X
� odd

�n.�/dj .�/
p
�

!j

�
�

�
�

n

�j=2�
:

We use the definition of !j and interchange the order of summation and integration. Since
�n.2/ D 1 we have

I D
1

2�i

Z
.c/

�
�
s
2
C

1
4

�j
�
�
1
4

�j �
1 �

1

21=2�s

�j�
1 �

1

21=2Cs

�j�
n

�

�js=2
L

�
1

2
C s; �n

�j
ds

s

D
1

2�i

Z
.c/

�
n
�

��j=4
�
�
1
4

�j �1 � 1

21=2�s

�j�
1 �

1

21=2Cs

�j
ƒ

�
1

2
C s; �n

�j
ds

s
:

We move the line of integration to Re.s/D �c, picking up a contribution from the simple
pole at s D 0:

I D

�
n
�

��j=4
�
�
1
4

�j �1 � 1
p
2

�2j
ƒ

�
1

2
; �n

�j
C

1

2�i

Z
.�c/

�
n
�

��j=4
�
�
1
4

�j �1 � 1

21=2�s

�j�
1 �

1

21=2Cs

�j
ƒ

�
1

2
C s; �n

�j
ds

s
:

In this latter integral we change variables s ! �s and then apply the functional equation
ƒ.1=2 � s; �n/ D ƒ.1=2C s; �n/ to obtain�

n
�

��j=4
�
�
1
4

�j �1 � 1
p
2

�2j
ƒ

�
1

2
; �n

�j
D 2I D 2

X
� odd

�n.�/dj .�/
p
�

!j

�
�

�
�

n

�j=2�
:

We then rearrange to obtain the desired conclusion.
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We frequently encounter exponential sums which are analogous to Gauss sums. Given
an odd integer n we define, for all integers k,

Gk.n/ D

�
1 � i

2
C

�
�1

n

�
1C i

2

� X
a .modn/

�
a

n

�
e

�
ak

n

�
; (4.2)

�k.n/ D
X

a .modn/

�
a

n

�
e

�
ak

n

�
D

�
1C i

2
C

�
�1

n

�
1 � i

2

�
Gk.n/: (4.3)

We require knowledge of Gk.n/ for all odd n.

Lemma 4.3 ([40, Lemma 2.3]). (i) (Multiplicativity) Suppose m and n are coprime
odd integers. Then Gk.mn/ D Gk.m/Gk.n/.

(ii) Suppose p˛ is the largest power of p dividing k. .If k D 0 set ˛ D 1:/ Then for
ˇ � 1:

Gk.p
ˇ / D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

0 if ˇ � ˛ is odd;
'.pˇ / if ˇ � ˛ is even;
�p˛ if ˇ D ˛ C 1 is even;�
kp�˛

p

�
p˛
p
p if ˇ D ˛ C 1 is odd;

0 if ˇ � ˛ C 2:

The following two results are useful for bounding various character sums that arise.
Both results are corollaries of a large sieve inequality for quadratic characters developed
by Heath-Brown [16].

Lemma 4.4 ([40, Lemma 2.4]). Let N and Q be positive integers, and let a1; : : : ; aN be
arbitrary complex numbers. ThenX

�2S.Q/

ˇ̌̌X
n�N

an�.n/
ˇ̌̌2
�" .QN/

".QCN/
X

n1n2D�

jan1an2 j;

for any " > 0. Let M be a positive integer, and for each jmj � M write 4m D m1m
2
2,

where m1 is a fundamental discriminant, and m2 is positive. Suppose the sequence an
satisfies janj � n". ThenX

jmj�M

1

m2

ˇ̌̌̌X
n�N

an

�
m

n

�ˇ̌̌̌2
� .MN/"N.M CN/:

Lemma 4.5 ([40, Lemma 2.5]). Suppose � C i t is a complex number with � � 1=2. ThenX
�2S.Q/

jL.� C i t; �/j4 � Q1C".1C jt j/1C";X
�2S.Q/

jL.� C i t; �/j2 � Q1C".1C jt j/1=2C":
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5. Sieve estimates

Our main sieve will be a variant of the Selberg sieve (see [15, Chapter 7]). To lessen the
volume of calculations, we also use Brun’s pure sieve [15, Chapter 6] as a preliminary
sieve to handle small prime factors. We set

z0 WD exp..logX/1=3/; (5.1)

R WD X# ; # 2 .0; 1=2/ fixed: (5.2)

Given a set A of integers, we write 1A.�/ for its indicator function. For y > 2 we
define

P.y/ D
Y
p�y

p:

Then, for n � X , our basic sieve inequality is

1¹nWn primeº � 1¹nW .n;P.z0//D1º1¹nW .n;P.R/=P.z0//D1º; (5.3)

We write !.n/ for the number of distinct prime factors of n. To bound the first factor
on the right-hand side of (5.3), we use Brun’s upper bound sieve condition (see [15, (6.1)])

1¹nW .n;P.z0//D1º.n/ �
X

bj.n;P.z0//
!.b/�2r0

�.b/; where r0 WD b.logX/1=3c: (5.4)

We use an “analytic” Selberg sieve (e.g. [35]) for the second factor of (5.3). We introduce a
smooth, non-negative functionG.t/ which is supported on the interval Œ�1; 1�. We further
require G.t/ to satisfy jG.t/j � 1; jG.j /.t/j �j .log logX/j�1 for j a positive integer,
and on the interval Œ0; 1� we require G.t/ D 1 � t for t � 1 � .log logX/�1. Then

1¹nW .n;P.R/=P.z0//D1º.n/ �
� X

d jn
.d;P.z0//D1

�.d/G

�
log d
logR

��2

D

XX
j;k�R
Œj;k�jn

.jk;P.z0//D1

�.j /�.k/G

�
log j
logR

�
G

�
log k
logR

�
: (5.5)

We mention also that the properties of G implyZ 1
0

G0.t/2 dt D 1CO

�
1

log logX

�
D 1C o.1/: (5.6)

Note that the fundamental theorem of calculus and Cauchy–Schwarz yield the lower
bound Z 1

0

G0.t/2 dt � 1:
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From (5.3)–(5.5), we arrive at the upper bound sieve condition

1¹nWn primeº.n/ �
X
d jn

�d ; (5.7)

where the coefficients �d are defined by

�d D
X

bjP.z0/
!.b/�2r0

XX
m;n�R
bŒm;n�Dd

.mn;P.z0//D1

�.b/�.m/�.n/G

�
logm
logR

�
G

�
logn
logR

�
: (5.8)

If b jP.z0/ and !.b/ � 2r0, then b � z2r00 � exp.2.logX/2=3/. Hence �d ¤ 0 only for
d � D, where

D D R2 exp.2.logX/2=3/�" R
2X": (5.9)

In our evaluation of sums involving the sieve coefficients (5.8) we use the following
version of the fundamental lemma of sieve theory (see also [15, Section 6.5]).

Lemma 5.1. Let 0 < ı < 1 be a fixed constant, r a positive integer with r � .logX/ı , and
z0 as in (5.1). Suppose that g is a multiplicative function such that jg.p/j � 1 uniformly
for all primes p. ThenX

bjP.z0/
!.b/�r
.b;`/D1

�.b/

b
g.b/ D

Y
p�z0
p − `

�
1 �

g.p/

p

�
CO

�
exp.�r log log r/

�

uniformly for all positive integers `.

Proof. The proof is standard. Complete the sum on the left-hand side by adding to it all the
terms with !.b/ > r . Bound the sum of those terms by taking absolute values, dropping by
positivity the condition .b; `/ D 1. The resulting bound is� exp.�.1C o.1//r log r/�
exp.�r log log r/ (e.g. [18, §6.3]). The completed sum is equal to the Euler product on
the right-hand side.

The basic tool in our application of the Selberg sieve is the following lemma.

Lemma 5.2. Let z0 D exp..log X/1=3/. Let G be as above. Suppose h is a function
such that jh.p/j �" p

�" uniformly for all primes p. Let A > 0 be a fixed real num-
ber. Then there exists a function E0.X/, which depends only on X;G, and # (see (5.2))
with E0.X/! 0 as X !1, such thatXX

m;n�R
.mn;`P.z0//D1

�.m/�.n/

Œm; n�
G

�
logm
logR

�
G

�
logn
logR

� Y
pjmn

.1C h.p//

D
1CE0.X/

logR

Y
p�z0

�
1 �

1

p

��1
CO";A

�
1

.logR/A

�
; (5.10)

uniformly for `� XO.1/.
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Proof. Let � denote the left-hand side of (5.10). If m; n � R and .mn; P.z0// D 1, then
!.mn/� logR, and each prime dividing mn is larger than z0. ThusY

pjmn

.1C h.p// D 1CO"

�
logR
z"0

�
;

and so

� D
XX
m;n�R

.mn;`P.z0//D1

�.m/�.n/

Œm; n�
G

�
logm
logR

�
G

�
logn
logR

�
CO

�
.logR/4

z"0

�
: (5.11)

We may ignore the condition .mn; `/ D 1 in (5.11) becauseXX
m;n�R

.mn;P.z0//D1
.mn;`/>1

1

Œm; n�
�

XX
m;n�R

.mn;P.z0//D1

1

Œm; n�

X
pj`
pjmn

1� .logR/3
X
pj`
p>z0

1

p
�
.log `/.logR/3

z0
:

We next insert the Fourier inversion formula

G.t/ D

Z 1
�1

g.z/e�t.1Ciz/ dz (5.12)

into (5.11), where

g.z/ D
1

2�

Z 1
�1

etG.t/eizt dt: (5.13)

As G.t/ is supported in Œ�1; 1� we may let m and n range over all positive integers in
(5.11). We then interchange the order of summation and integration and write the sum as
an Euler product to deduce that

�D

Z 1
�1

Z 1
�1

g.z1/g.z2/
Y
p>z0

�
1 �

1

p
1C

1Ciz1
logR

�
1

p
1C

1Ciz2
logR

C
1

p
1C

2Ciz1Ciz2
logR

�
dz1 dz2

CO

�
.logR/4

z"0

�
: (5.14)

By integrating (5.13) by parts repeatedly we see

g.z/�A

�
log logX
1C jzj

�A
;

and we have the trivial boundY
p>z0

�
1 �

1

p
1C

1Ciz1
logR

�
1

p
1C

1Ciz2
logR

C
1

p
1C

2Ciz1Ciz2
logR

�
� .logR/O.1/:
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Therefore, we may truncate the double integral in (5.14) to the region jz1j; jz2j �
p

logR,
with an error of sizeOA..logR/�A/. After doing so, we multiply and divide the integrand
by Euler products of zeta-functions to arrive at

� D

“
jzi j�

p
logR

g.z1/g.z2/
�
�
1C 2Ciz1Ciz2

logR

�
�
�
1C 1Ciz1

logR

�
�
�
1C 1Ciz2

logR

�
�

Y
p�z0

1� 1

p
1C

2Ciz1Ciz2
logR�

1� 1

p
1C

1Ciz1
logR

��
1� 1

p
1C

1Ciz2
logR

� Y
p>z0

�
1CO

�
1

p2

��
dz1 dz2CO

�
1

.logR/A

�
:

(5.15)

The product over primes p > z0 in (5.15) is 1C O.1=z0/. To estimate the product over
p � z0, observe that if jsj � .logR/�1=2, thenX

p�z0

1

p � 1
.1 � p�s/�

X
p�z0

jsj logp
p

� jsj log z0 �
.logX/1=3

.logR/1=2
;

which implies thatY
p�z0

�
1 �

1

p1Cs

�
D exp

�X
p�z0

log
�
1C

1

p � 1
.1 � p�s/

�� Y
p�z0

�
1 �

1

p

�
D

�
1CO

�
.logX/1=3

.logR/1=2

�� Y
p�z0

�
1 �

1

p

�
:

We may also expand each zeta-function in (5.15) into its Laurent series. With these
approximations, we deduce from (5.15) that

� D
1

logR

Y
p�z0

�
1 �

1

p

��1 “
jzi j�

p
logR

g.z1/g.z2/
.1C iz1/.1C iz2/

2C iz1 C iz2

� .1CE.X; #; z1; z2// dz1 dz2 CO..logR/�A/;

uniformly for log `� logX . Here E.X;#; z1; z2/ tends to zero as X !1. By the rapid
decay of g.z/, we may extend the range of integration to R2 without affecting our bound
for the error term. By differentiating (5.12) under the integral sign and Fubini’s theorem,
we find “

R2

g.z1/g.z2/
.1C iz1/.1C iz2/

2C iz1 C iz2
dz2 dz1 D

Z 1
0

G0.t/2 dt:

The lemma now follows from this and (5.6).
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Lemma 5.3. Let �d and D be as defined in (5.8) and (5.9), respectively. Suppose that
g is a multiplicative function such that g.p/ D 1CO.p�"/ for all primes p. Then with
E0.X/ as in Lemma 5.2 we haveX
d�D
.d;`/D1

�d

d
g.d/ D

1CE0.X/

logR

Y
p�z0
p − `

�
1 �

g.p/

p

� Y
p�z0

�
1 �

1

p

��1
COA;"

�
1

.logR/A

�
;

uniformly for `� XO.1/.

Proof. The definitions (5.8) and (5.9) of �d and D implyX
d�D
.d;`/D1

�d

d
g.d/

D

X
bjP.z0/
!.b/�2r0
.b;`/D1

XX
m;n�R

.mn;`P.z0//D1

�.b/�.m/�.n/

bŒm; n�
G

�
logm
logR

�
G

�
logn
logR

�
g.bŒm; n�/:

In the sum on the right-hand side, g.bŒm; n�/ D g.b/g.Œm; n�/ because b and mn are
coprime. Thus we may apply Lemma 5.2 and then Lemma 5.1 to arrive at Lemma 5.3.

Lemma 5.4. Let �d ; D; g be as in Lemma 5.3. Suppose that h is a function such that
jh.p/j �" p

�1C" for all primes p. Then with E0.X/ as in Lemma 5.2 we haveX
d�D
.d;`/D1

�d

d
g.d/

X
pjd

h.p/ D �
1CE0.X/

logR

Y
p�z0

�
1 �

1

p

��1

�

X
p�z0
p − `

g.p/h.p/

p

Y
q�z0
q −p`

�
1 �

g.q/

q

�
COA;"

�
1

.logR/A

�
;

uniformly for all integers ` such that log ` � log X . .Here, the index q runs over
primes q./

Proof. The definitions (5.8) and (5.9) of �d and D implyX
d�D
.d;`/D1

�d

d
g.d/

X
pjd

h.p/

D

X
bjP.z0/
!.b/�2r0
.b;`/D1

XX
m;n�R

.mn;`P.z0//D1

�.b/�.m/�.n/

bŒm; n�
G

�
logm
logR

�
G

�
logn
logR

�
g.bŒm; n�/

X
pjbmn

h.p/:
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Since b and mn are coprime, g.bŒm; n�/ D g.b/g.Œm; n�/ andX
pjbmn

h.p/ D
X
pjb

h.p/C
X
pjmn

h.p/:

We may ignore the sum over the p jmn because the conditions .mn; P.z0// D 1 and
mn � R2 imply X

pjmn

h.p/�
X
pjmn

p�1C" �
logR
z1�"0

:

We factor out g.b/ and
P
pjb h.p/ from the sum over m; n and then apply Lemma 5.2 to

deduce thatX
d�D
.d;`/D1

�d

d
g.d/

X
pjd

h.p/ D
1CE0.X/

logR

Y
p�z0

�
1 �

1

p

��1

�

X
bjP.z0/
!.b/�2r0
.b;`/D1

�.b/

b
g.b/

X
pjb

h.p/COA

�
1

.logR/A

�
: (5.16)

To estimate the b-sum, we interchange the order of summation and then relabel b as bp
to write X

bjP.z0/
!.b/�2r0
.b;`/D1

�.b/

b
g.b/

X
pjb

h.p/ D
X
p�z0
p − `

h.p/
X

bjP.z0/
!.b/�2r0
.b;`/D1
pjb

�.b/

b
g.b/

D �

X
p�z0
p − `

g.p/h.p/

p

X
bjP.z0/

!.b/�2r0�1
.b;p`/D1

�.b/

b
g.b/:

Lemma 5.4 now follows from Lemma 5.1 and (5.16).

6. The mollified first moment

Our goal in this section is to asymptotically evaluate S1. Recall from (3.1) that

S1 D
X

p�1 .mod8/

.logp/ˆ
�
p

X

�
L.1=2; �p/M.p/:

Recall the definition of M.p/ from (3.3), and the choice (3.5) we made for the mollifier
coefficients bm. We shall prove the following result.
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Proposition 6.1. Let 0 < � < 1=2 be fixed. If X � X0.�/, then

S1 D
1

2
�
1 � 1p

2

��H.0/ � 1

2�
H 0.0/

�
X

4
CO

�
X

.logX/1�"

�
:

The implied constant in the error term is effectively computable.

Let us begin in earnest, following the outline in Section 3. We apply Lemma 4.2 to
write L.1=2; �p/ as a Dirichlet series. We insert the definition of M.p/ and obtain

S1 D
2�

1 � 1p
2

�2 X
m�M
m odd

bm
p
m

1X
nD1
n odd

1
p
n

X
p�1 .mod8/

.logp/ˆ
�
p

X

�
!1

�
n

r
�

p

��
mn

p

�
:

The main term arises from the terms withmnD �. Let us denote this portion of S1 by S�
1 .

We denote the complementary portion with mn ¤ � by S¤1 . Therefore

S1 D S
�
1 C S

¤

1 ;

where

S�
1 D

2�
1 � 1p

2

�2 X
m�M
m odd

1X
nD1
n odd

mnD�

bm
p
m

1
p
n

X
p�1 .mod8/

.logp/ˆ
�
p

X

�
!1

�
n

r
�

p

��
mn

p

�
;

S
¤

1 D
2�

1 � 1p
2

�2 X
m�M
m odd

1X
nD1
n odd

mn¤�

bm
p
m

1
p
n

X
p�1 .mod8/

.logp/ˆ
�
p

X

�
!1

�
n

r
�

p

��
mn

p

�
:

(6.1)

We treat first the main term S�
1 , and later we will bound the error term S

¤

1 .

6.1. Main term

Recall that bm is supported on square-free integers m. Therefore, mn D � if and only
if n D mk2, where k is a positive integer. We make this change of variables and then
interchange orders of summation to obtain

S�
1 D

2�
1 � 1p

2

�2 X
p�1 .mod8/

.logp/ˆ
�
p

X

� X
m�M

.m;2p/D1

bm

m

1X
kD1

.k;2p/D1

1

k
!1

�
mk2

r
�

p

�
:

By the rapid decay of !1 (Lemma 4.1) we see that the contribution from those k with
.k; p/ > 1 is OA.X�A/, so we may safely ignore this condition. We may also ignore the
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condition .m; p/ D 1, since m � M < p. We insert the definition (4.1) of !1.�/ and
interchange to deduce that for any c > 0 we have

1X
kD1

.k;2/D1

1

k
!1

�
mk2

r
�

p

�

D
1

2�i

Z
.c/

�
�
s
2
C

1
4

�
�
�
1
4

� �
1 �

1

21=2�s

��
1 �

1

21C2s

�
�.1C 2s/

�
p

�

�s=2
m�s

ds

s
:

We move the line of integration to Re s D �1=2C ", leaving a residue at s D 0. The new
integral is O".p�1=4C"m1=2�"/. Using bm � 1, we see that the total contribution of this
error term is� X3=4C"M 1=2. This is O.X1�"/ by (3.4). Writing the residue at s D 0 as
an integral along a small circle around 0, we deduce that

S�
1 D O.X

1�"/C
2�

1 � 1p
2

�2 X
p�1 .mod8/

.logp/ˆ
�
p

X

� X
m�M
.m;2/D1

bm

m

�
1

2�i

I
jsjD 1

2 logX

�
�
s
2
C

1
4

�
�
�
1
4

� �
1 �

1

21=2�s

��
1 �

1

21C2s

�
�.1C 2s/

�
p

�

�s=2
m�s

ds

s
:

(6.1.1)

We next use the definition bm D �.m/H
� logm

logM

�
and the Fourier inversion formula

(compare with (5.12),(5.13))

H.t/ D

Z 1
�1

h.z/e�t.1Ciz/ dz; (6.1.2)

where

h.z/ D
1

2�

Z 1
�1

etH.t/eizt dt; (6.1.3)

to writeX
m�M
.m;2/D1

bm

m
m�s D

Z 1
�1

h.z/

1X
mD1

.m;2/D1

�.m/

m
1CsC 1CizlogM

dz

D

Z 1
�1

h.z/

�
1 �

1

2
1CsC 1CizlogM

��1
�

�
1C s C

1C iz

logM

��1
dz:

Here we have used the fact that bm D 0 for m > M due to the support of H.t/. From
repeated integration by parts we obtain

h.z/�j

1

.1C jzj/j
; (6.1.4)
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and therefore we may truncate this integral to the range jzj �
p

logM . Thus,X
m�M
.m;2/D1

bm

m
m�s D

Z
jzj�
p

logM
h.z/

�
1 �

1

2
1CsC 1CizlogM

��1
�

�
1C s C

1C iz

logM

��1
dz

COA

�
1

.logX/A

�
:

For jsj D 1
2 logX and jzj �

p
logM , we may write

�
1� 1

2
1CsC

1Ciz
logM

��1
�
�
1C sC 1Ciz

logM

��1
as a power series and arrive atX

m�M
.m;2/D1

bm

m
m�s D 2

Z
jzj�
p

logM
h.z/

�
s C

1C iz

logM

�
dz

CO

�
1

.logX/2

Z
jzj�
p

logM
jh.z/j.1C jzj2/ dz

�
D 2

Z
jzj�
p

logM
h.z/

�
s C

1C iz

logM

�
dz CO

�
1

.logX/2

�
:

We may extend the range of integration to the entire real line, with negligible error,
because of (6.1.4). Differentiating (6.1.2) leads to

H 0.t/ D �

Z 1
�1

.1C iz/h.z/e�t.1Ciz/ dz:

This and (6.1.2) thus implyZ 1
�1

h.z/

�
s C

1C iz

logM

�
dz D sH.0/ �

1

logM
H 0.0/;

and hence X
m�M
.m;2/D1

bm

m
m�s D 2sH.0/ �

2

logM
H 0.0/ C O

�
1

.logX/2

�
: (6.1.5)

We insert (6.1.5) into (6.1.1) to obtain

S�
1 D

4�
1 � 1p

2

�2 X
p�1 .mod8/

.logp/ˆ
�
p

X

�
1

2�i

I
jsjD 1

2 logX

�
�
s
2
C

1
4

�
�
�
1
4

� �
1 �

1

21=2�s

�

�

�
1 �

1

21C2s

�
�.1C 2s/

�
p

�

�s=2
.sH.0/ �

1

logM
H 0.0//

ds

s
CO

�
X

logX

�
:
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We evaluate the integral using the formula

Res
sD0

g.s/ D
1

.n � 1/Š

dn�1

dsn�1
sng.s/

ˇ̌̌̌
sD0

(6.1.6)

for a pole of a function g.s/ at s D 0 of order at most n. This yields

S�
1 D

1

1 � 1p
2

X
p�1 .mod8/

.logp/ˆ
�
p

X

��
H.0/ �

logp
2 logM

H 0.0/

�
CO

�
X

logX

�
:

By the support of ˆ we have log p D logX C O.1/. We then use the prime number
theorem in arithmetic progressions and partial summation to obtain

S�
1 D

1

1 � 1p
2

�
H.0/ �

logX
2 logM

H 0.0/

�
X

4
b̂.0/CO� X

logX

�
:

This gives the main term for Proposition 6.1, by (2.2).

6.2. Preparation of the off-diagonal

We turn to bounding S¤1 . In order to complete the proof of Proposition 6.1, we shall prove

S
¤

1 �
X

.logX/1�"
: (6.2.1)

We need to perform some technical massaging before S¤1 is in a suitable form. Recall
from (6.1) that

S
¤

1 D
2�

1 � 1p
2

�2 X
m�M
m odd

1X
nD1
n odd

mn¤�

bm
p
mn

X
p�1 .mod8/

.logp/ˆ
�
p

X

�
!1

�
n

r
�

p

��
mn

p

�
:

We begin by uniquely writing n D rk2, where r is square-free and k is an integer (this
variable k is unrelated to the variable k appearing in the analysis for S�

1 ). The condition
mn ¤ � is equivalent to m ¤ r , since both m and r are square-free. It follows that

S
¤

1 D
2�

1 � 1p
2

�2 X
m�M
m odd

bm
p
m

1X
rD1
r odd
r¤m

1X
kD1
k odd

�.r/2

k
p
r

�

X
p�1 .mod8/

.logp/ˆ
�
p

X

�
!1

�
rk2

r
�

p

��
mrk2

p

�
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We next factor out the greatest common divisor, say g, of m and r . We change variables
m! gm; r ! gr and obtain

S
¤

1 D
2�

1 � 1p
2

�2 X
g odd

�.g/2

g

X
m�M=g
.m;2g/D1

bmg
p
m

1X
rD1

.r;2g/D1
.m;r/D1
mr>1

�.r/2
p
r

1X
kD1
k odd

1

k

�

X
p�1 .mod8/

.logp/ˆ
�
p

X

�
!1

�
grk2

r
�

p

��
mrg2k2

p

�
:

Observe that the support of bgm forces g �M < X1=2, but we prefer not to indicate this
explicitly.

Clearly we have
�
g2k2

p

�
D 1 for p − gk and D 0 otherwise. Since g � M < p, the

condition p − g is automatically satisfied. By Lemma 4.1 we may truncate the sum over
k to k � X1=4C" at the cost of an error O.X�1/, say. We may similarly truncate the sum
over r to r � X1=2C". With k suitably reduced we may drop the condition p −k, and then
we use the rapid decay of !1 again to extend the sum over k to infinity. It follows that

S
¤

1 D
2�

1 � 1p
2

�2 X
g odd

�.g/2

g

X
m�M=g
.m;2g/D1

bmg
p
m

X
r�X1=2C"

.r;2g/D1
.m;r/D1
mr>1

�.r/2
p
r

1X
kD1
k odd

1

k

�

X
p�1 .mod8/

.logp/ˆ
�
p

X

�
!1

�
grk2

r
�

p

��
mr

p

�
CO.X�1/: (6.2.2)

We next detect the congruence condition p� 1 .mod 8/with multiplicative characters
modulo 8 and writeX

p�1 .mod8/

.logp/ˆ
�
p

X

�
!1

�
grk2

r
�

p

��
mr

p

�
D
1

4

X

2¹˙1;˙2º

X
p

.logp/ˆ
�
p

X

�
!1

�
grk2

r
�

p

��

mr

p

�
: (6.2.3)

Since m and r are odd and square-free and .m; r/ D 1, it follows that mr is odd and
square-free. Hence, for each 
 2 ¹1;�1; 2;�2º, the integer 
mr is square-free. Therefore

mr � 1, 2, or 3 (mod 4). If 
mr � 1 (mod 4), then

�

mr
�

�
is a real primitive character

modulo j
mr j, while if 
mr � 2 or 3 (mod 4), then
�
4
mr
�

�
is a real primitive character

modulo j4
mr j (see [9, Theorem 2.2.15]). Moreover, for p odd,�
4
mr

p

�
D

�

mr

p

�
:



Quadratic Dirichlet L-functions of prime conductor 393

Therefore the sum in (6.2.3) is equal to

1

4

X

2¹˙1;˙2º

X
p

.logp/ˆ
�
p

X

�
!1

�
grk2

r
�

p

�
�
mr .p/; (6.2.4)

where

�
mr .�/ D

8̂̂<̂
:̂
�

mr

�

�
if 
mr � 1 (mod 4),�

4
mr

�

�
if 
mr � 2 or 3 (mod 4),

so that �
mr .�/ is a real primitive character for all the relevant 
;m; r . Also, sincemr > 1,
we see that 
mr is never 1, so each �
mr is non-principal.

We insert the definition of!1 into (6.2.4) in order to facilitate a separation of variables.
Recalling (6.2.2) and (6.2.3), we interchange the order of summation and integration to
obtain

S
¤

1 D O.1/C
2�

1 � 1p
2

�2 X
g odd

�.g/2

g

X
m�M=g
.m;2g/D1

bmg
p
m

X
r�X1=2C"

.r;2g/D1
.m;r/D1
mr>1

�.r/2
p
r

1

4

X

2¹˙1;˙2º

1X
kD1
k odd

1

k

�
1

2�i

Z
.c/

�
�
s
2
C
1
4

�
�
�
1
4

� �
1�

1

21=2�s

�
��s=2.grk2/�s

X
p

.logp/ˆ
�
p

X

�
�
mr .p/p

s=2 ds

s
:

We choose cD 1
logX , so that ps=2 is bounded in absolute value. We can put the summation

over k inside of the integral, where it becomes a zeta factor, and we obtain

S
¤

1 D O.1/C
2�

1 � 1p
2

�2 X
g odd

�.g/2

g

X
m�M=g
.m;2g/D1

bmg
p
m

X
r�X1=2C"

.r;2g/D1
.m;r/D1
mr>1

�.r/2
p
r

1

4

X

2¹˙1;˙2º

1

2�i

�

Z
.c/

�
�
s
2
C

1
4

�
�
�
1
4

� �
1 �

1

21=2�s

��
1 �

1

21C2s

�
�.1C 2s/��s=2.gr/�s

�

X
p

.logp/ˆ
�
p

X

�
�
mr .p/p

s=2 ds

s
:

It is more convenient to replace the logp factor with the von Mangoldt functionƒ.n/.
By trivial estimation we haveX

p

.logp/ˆ
�
p

X

�
�
mr .p/p

s=2
D

X
n

ƒ.n/ˆ

�
n

X

�
�
mr .n/n

s=2
CO.X1=2/:
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When we sum the error term over m; g; r and integrate over s, the total contribution
is O.X1�"/, provided " D ".�/ > 0 is sufficiently small. By the rapid decay of the �
function in vertical strips we can truncate the integral to jIm.s/j � .logX/2, at the cost of
a negligible error. We therefore obtain

S
¤

1 D O.X
1�"/C

2�
1 � 1p

2

�2 X
g odd

�.g/2

g

X
m�M=g
.m;2g/D1

bmg
p
m

X
r�X1=2C"

.r;2g/D1
.m;r/D1
mr>1

�.r/2
p
r

1

4

X

2¹˙1;˙2º

�
1

2�i

Z 1
logXCi.logX/2

1
logX �i.logX/2

�
�
s
2
C

1
4

�
�
�
1
4

� �
1 �

1

21=2�s

��
1 �

1

21C2s

�
�.1C 2s/

�

�
X

�

�s=2
.gr/�s

X
n

ƒ.n/ˆs

�
n

X

�
�
mr .n/

ds

s
; (6.2.5)

where we recall (see (2.1)) that ˆs.x/ D ˆ.x/xs=2.
Having arrived at (6.2.5), we are finished with the preparatory technical manipula-

tions. We proceed to show that S¤1 is small. As discussed in Section 3, we apply three
different arguments, depending on the size ofmr . We call these ranges Regimes I, II, and
III, which correspond to small, medium, and large values of mr . In Regime I we have

1 < mr � exp.$
p

logX/;

where $ > 0 is a sufficiently small, fixed constant. Regime II corresponds to

exp.$
p

logX/� mr � X1=10;

and Regime III corresponds to

X1=10 � mr �MX1=2C":

We then write

S
¤

1 D E1 CE2 CO.X
1�"/; (6.2.6)

where E1 contains those terms with mr � exp.$
p

logX/, and E2 contains those terms
with mr � exp.$

p
logX/. We claim the bounds

E1 �
X

.logX/1�"
; E2 � X exp.�c$

p
logX/; (6.2.7)

where c > 0 is some absolute constant. Taking together (6.2.6) and (6.2.7) gives (6.2.1),
and this yields Proposition 6.1. It therefore suffices to show (6.2.7).

We remark that there is some flexibility in choosing the “boundary” between Regime I
and Regime II. If one wishes to use Siegel’s theorem, then one may choose the boundary to
be mr � .logX/B , and then the treatment of Regime I is essentially a simple application
of the Siegel–Walfisz theorem. The error bound one obtains for Regime II would then be
a weaker OA.X=.logX/A/, compared to the stronger bound of (6.2.7).
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6.3. Regime I

We first bound E1, which is precisely the contribution of Regime I. Apart from an unim-
portant factor of 1

4
� 2.1 � 2�1=2/�2, we have

E1 WD
X
g odd

�.g/2

g

X
m�M=g
.m;2g/D1

bmg
p
m

X
r�X1=2C"

.r;2g/D1
.m;r/D1

1<mr�exp.$
p

logX/

�.r/2
p
r

�

X

2¹˙1;˙2º

1

2�i

Z 1
logXCi.logX/2

1
logX �i.logX/2

�
�
s
2
C

1
4

�
�
�
1
4

� �
1 �

1

21=2�s

��
1 �

1

21C2s

�
� �.1C 2s/

�
X

�

�s=2
.gr/�s

X
n

ƒ.n/ˆs

�
n

X

�
�
mr .n/

ds

s
: (6.3.1)

We transform the sum over n with partial summation to obtainX
n

ƒ.n/ˆs

�
n

X

�
�
mr .n/ D �

Z 1
0

1

X
ˆ0s

�
w

X

��X
n�w

ƒ.n/�
mr .n/
�
dw: (6.3.2)

By [12, equation (8) of Chapter 20], we haveX
n�w

ƒ.n/�
mr .n/ D �
wˇ1

ˇ1
CO

�
w exp.�c1

p
logw/

�
; (6.3.3)

where c1>0 is some absolute constant, and the term�wˇ1=ˇ1 only appears ifL.s;�
mr /
has a real zero ˇ1 which satisfies ˇ1 > 1 � c2=log j
mr j for some sufficiently small
constant c2 > 0. (It is important here that mr � exp.$

p
logX/.) All the constants in

(6.3.3), implied or otherwise, are effective.
The contribution from the error term in (6.3.3) is easy to control. Observe thatZ 1

0

1

X

ˇ̌̌̌
ˆ0s

�
w

X

�ˇ̌̌̌
dw D

Z 1
0

jˆ0s.u/j du � jsj C logX; (6.3.4)

uniformly in s with Re.s/ bounded. Taking (6.3.1), (6.3.2) and (6.3.4) together, we see
the error term of (6.3.3) contributes

� X exp..c3$ � c1/
p

logX/ (6.3.5)

to E1, where c3 > 0 is some absolute constant; we have used here the fact that mr �
exp.$

p
logX/. The bound (6.3.5) is more than adequate for (6.2.7) provided we choose

$ > 0 sufficiently small in terms of c1.
Since mr � exp.$

p
logX/, the conductor of the primitive character �
mr is

� exp.$
p

logX/ � exp.2$
p

logX/. We apply Page’s theorem [12, equation (9) of
Chapter 14], which implies that, for some fixed absolute constant c4 > 0, there is at most
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one real primitive character �
mr with modulus � exp.2$
p

logX/ for which the L-
function L.s; �
mr / has a real zero satisfying

ˇ1 > 1 �
c4

2$
p

logX
: (6.3.6)

To estimate the contribution of the possible term �wˇ1=ˇ1, we evaluate the integralZ 1
0

wˇ1

ˇ1

1

X
ˆ0s

�
w

X

�
dw

arising from (6.3.2) and (6.3.3). We make the change of variable w=X 7! u and integrate
by parts to see that this integral equals

Xˇ1
Z 1
0

uˇ1

ˇ1
ˆ0s.u/ du D �X

ˇ1

Z 1
0

ˆs.u/u
ˇ1�1 du D �Xˇ1ˆ�

�
s

2
C ˇ1

�
:

We assume that a real zero satisfying (6.3.6) does exist, for otherwise we already have
the acceptable bound (6.3.5) for E1. Let q� be such that �q� is the exceptional character
with a real zero ˇ1 satisfying (6.3.6). Then we have

E1 D �
1

2�i

Xˇ1p
jq�j

p

�
Z 1

logXCi.logX/2

1
logX �i.logX/2

�
�
s
2
C

1
4

�
�
�
1
4

� �
1 �

1

21=2�s

��
1 �

1

21C2s

�
�

�
X

�

�s=2
�.1C2s/ˆ�

�
s

2
Cˇ1

� XX
1<mr�exp.$

p
logX/

.mr;2/D1
.m;r/D1

mrDq�

�.r/2r�s
X

.g;2mr/D1

�.g/2bgm

g1Cs
ds

s

CO
�
X exp.�c5

p
logX/

�
; (6.3.7)

where c5 > 0 is some absolute constant, 
 2 ¹˙1;˙2º is fixed, and 
� is some bounded
power of two. There is at most one choice of 
 that can give rise to the exceptional
character since mr is odd and positive.

We next write bgm D �.gm/H.
loggm
logM / and apply Fourier inversion as in (6.1.2)–

(6.1.3) to obtainX
.g;2mr/D1

�.g/2bmg

g1Cs

D �.m/

Z 1
�1

1

m
1Ciz
logM

h.z/
Y
pj2mr

�
1 �

1

p
1CsC 1CizlogM

��1
�

�
1C s C

1C iz

logM

��1
dz:

(6.3.8)
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By (6.1.4) we can truncate the integral in (6.3.8) to jzj �
p

logM at the cost of an error
of size OB.d2.mr/.logX/�B/. This error contributes to (6.3.7)

�B

X

.logX/B�O.1/
;

which is acceptable. We therefore have

E1 D �X
ˇ1

p

�p
jq�j

XX
1<mr�exp.$

p
logX/

.mr;2/D1
.m;r/D1

mrDq�

�.m/�.r/2

�
1

2�i

Z 1
logXCi.logX/2

1
logX �i.logX/2

�
�
s
2
C

1
4

�
�
�
1
4

�
�

�
1 �

1

21=2�s

�
r�s

�
1 �

1

21C2s

�
�.1C 2s/

�
X

�

�s=2
ˆ�
�
s

2
C ˇ1

�
�

Z
jzj�
p

logM

1

m
1Ciz
logM

h.z/
Y
pj2mr

�
1 �

1

p
1CsC 1CizlogM

��1
� �

�
1C s C

1C iz

logM

��1
dz

ds

s

COA

�
X

.logX/A

�
: (6.3.9)

We handle the s-integral in (6.3.9) by moving the line of integration to Re.s/D� c6
log logX ,

where c6 > 0 is small enough that

�.1C z/� log jIm.z/j and
1

�.1C z/
� log jIm.z/j (6.3.10)

for Re.z/ � �c6=log jIm.z/j and jIm.z/j � 1 (see, for example, Titchmarsh [43, Theo-
rem 3.5 and (3.11.8)]). We estimate the integral on the line Re.s/ D � c6

log logX with trivial
estimates, along with the bounds (6.3.10) and

jX s=2j D exp
�
�
c6

2

logX
log logX

�
:

By moving the line of integration we pick up a contribution from the pole at s D 0. We
write this residue as an integral around a circle of small radius centered at the origin, and
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thereby deduce

E1 D �X
ˇ1

p

�p
jq�j

XX
1<mr�exp.$

p
logX/

.mr;2/D1
.m;r/D1

mrDq�

�.m/�.r/2
1

2�i

I
jsjD 1

logX

�
�
s
2
C

1
4

�
�
�
1
4

�

�

�
1 �

1

21=2�s

�
r�s

�
1 �

1

21C2s

�
�.1C 2s/

�
X

�

�s=2
ˆ�
�
s

2
C ˇ1

�
�

Z
jzj�
p

logM

1

m
1Ciz
logM

h.z/
Y
pj2mr

�
1 �

1

p
1CsC 1CizlogM

��1
� �

�
1C s C

1C iz

logM

��1
dz

ds

s

COA

�
X

.logX/A

�
: (6.3.11)

We have the bound

ˇ1 < 1 �
c7p

jq�j .log jq�j/2
; (6.3.12)

where c7 > 0 is a fixed absolute constant (see [12, equation (12) of Chapter 14]). If q�

satisfies jq�j � .logX/2�" then by (6.3.12) we derive

Xˇ1 � X exp.�c7.logX/"=3/:

By estimating (6.3.11) trivially we then obtain

E1 �A

X

.logX/A
CX exp.�c7.logX/"=4/;

which is an acceptable bound. We may therefore assume that q� satisfies

jq�j > .logX/2�": (6.3.13)

For jsj D 1=logX we have the bounds

�.1C 2s/� logX; �

�
1C s C

1C iz

logM

��1
�

1C jzj

logX
:

Using these bounds and (6.3.13) we deduce by trivial estimation that

(6.3.11)�
X

jq�j1=2�o.1/
�

X

.logX/1�"
:

This completes the proof of the bound for E1 in (6.2.7).
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6.4. Regime II

It remains to prove the bound for E2 in (6.2.7). From (6.2.5) and (6.2.6) we see that E2
is the contribution from those m and r in Regimes II and III. The estimates in Regimes
II and III are less delicate than those in Regime I, and consequently the arguments are
easier.

Comparing with (6.2.5), we see that we may write E2 as

1

2�i

Z 1
logXCi.logX/2

1
logX �i.logX/2

K.s/
X
g�M
g odd

�.g/2

g1Cs

X
m�M

.m;2g/D1

bmg

m1=2

�

X
r�X1=2C"

.r;2g/D1
.m;r/D1

mr�exp.$
p

logX/

�.r/2

r1=2Cs

X

2¹˙1;˙2º

X
n

ƒ.n/ˆs.n=X/�
mr .n/ ds;

where K.s/ satisfies jK.s/j � .logX/O.1/. We apply the triangle inequality and take a
supremum in s to see that, for some complex number s0 satisfying Re.s0/ D 1= logX ,
jIm.s0/j � .logX/2 we have

E2 � .logX/O.1/
X
g�M
g odd

�.g/2

g

X
m�M

.m;2g/D1

�.m/2

m1=2

�

X
r�X1=2C"

.r;2g/D1
.m;r/D1

mr�exp.$
p

logX/

�.r/2

r1=2

X

2¹˙1;˙2º

ˇ̌̌X
n

ƒ.n/ˆs0.n=X/�
mr .n/
ˇ̌̌
:

Summing over g then contributes an additional factor of logX . We write q D 
mr and
use the divisor bound to control the multiplicity of representations of q. After breaking
the range of q into dyadic segments, we find

E2 � .logX/O.1/
X
QD2j

Q�exp.$
p

logX/
Q�MX1=2C"

E.Q/;

where

E.Q/ WD Q�1=2C"
X

�2S.Q/

ˇ̌̌X
n

ƒ.n/ˆs0.n=X/�.n/
ˇ̌̌
:

To prove (6.2.7) it therefore suffices to show, for some absolute constant c8 > 0, that

E.Q/� X exp.�c8$
p

logX/ (6.4.1)
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for each Q satisfying exp.$
p

logX/�Q�MX1=2C". In this subsection we treat the
Q belonging to Regime II, that is, those which satisfyQ� X1=10. In the next subsection
we treat the Q in Regime III, which satisfy Q� X1=10.

In Regime II we employ zero-density estimates. We begin by writing ˆs0 as the inte-
gral of its Mellin transform, yieldingX

n

ƒ.n/ˆs0.n=X/�.n/ D
1

2�i

Z
.2/

Xwˆ�.w C s0=2/

�
�
L0

L
.w; �/

�
dw:

Observe that from repeated integration by parts we have

jˆ�.� C i t C s0=2/j ��;j .logX/j
�
1C

ˇ̌̌̌
t �

Im.s0/
2

ˇ̌̌̌��j
(6.4.2)

for every non-negative integer j .
We shift the line of integration to Re.w/ D �1=2, leaving residues from all of the

zeros of L.w; �/ in the critical strip. We bound the new integral by applying the estimateˇ̌̌̌
L0

L
.w; �/

ˇ̌̌̌
� log.qjwj/;

valid for Re.w/ D �1=2, and deduce thatX
n

ƒ.n/ˆs0.n=X/�.n/ D �
X

L.�;�/D0
0�ˇ�1

X�ˆ�.�C s0=2/CO

�
.logX/O.1/

X1=2

�
:

We have written here � D ˇC i
 . The error term is, of course, completely acceptable for
(6.4.1) when summed over � 2 S.Q/.

By (6.4.2), the contribution to E.Q/ from those � with j
 j > Q1=2 is � XQ�100;

say, and this gives an acceptable bound. We have therefore obtained

E.Q/� X exp.�$
p

logX/CQ�1=2C"
X

�2S.Q/

X
L.�;�/D0
0�ˇ�1

j
 j�Q1=2

Xˇ : (6.4.3)

In order to bound the right side of (6.4.3), we first need to introduce some notation.
For a primitive Dirichlet character �modulo q, let N.T;�/ denote the number of zeros of
L.s; �/ in the rectangle

0 � ˇ � 1; j
 j � T:

For T � 2, say, we have [12, Chapter 16]

N.T; �/� T log.qT /: (6.4.4)
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For 1=2 � ˛ � 1, define N.˛; T; �/ to be the number of zeros � D ˇ C i
 of L.s; �/ in
the rectangle

˛ � ˇ � 1; j
 j � T;

and define

N.˛;Q; T / D
X
q�Q

X�

�.modq/

N.˛; T; �/:

The summation over � is over primitive characters. We shall employ Jutila’s zero-density
estimate [21, (1.7)]

N.˛;Q; T /� .QT /4.1�˛/C"; (6.4.5)

which holds for ˛ � 4=5.
In (6.4.3), we separate the zeros � according to whether ˇ < 4=5 or ˇ � 4=5. Using

(6.4.4) we deduce

Q�1=2C"
X

�2S.Q/

X
L.�;�/D0
0�ˇ<4=5

j
 j�Q1=2

Xˇ � X4=5Q1C": (6.4.6)

For those zeros with ˇ � 4=5 we write

Xˇ D X4=5 C .logX/
Z ˇ

4=5

X˛ d˛:

We then embed S.Q/ into the set of all primitive characters with conductors�Q. Apply-
ing (6.4.4) and (6.4.5), we obtainX

�2S.Q/

X
L.�;�q/D0
4=5�ˇ�1

j
 j�Q1=2

Xˇ � X4=5Q3=2C"
C .logX/

Z 1

4=5

X˛N.˛;Q;Q1=2/ d˛

� X4=5Q3=2C"
CQ"

Z 1

4=5

X˛Q6.1�˛/d˛:

SinceQ�X1=10, the integrand of this latter integral is maximized when ˛D 1. It follows
that

Q�1=2C"
X

�2S.Q/

X
L.�;�q/D0
4=5�ˇ�1

j
 j�Q1=2

Xˇ � X4=5Q1C"
CXQ�1=2C" � XQ�1=2C": (6.4.7)

Combining (6.4.7), (6.4.6), and (6.4.3) yields

E.Q/� XQ�1=2C" CX exp.�$
p

logX/;

and this suffices for (6.4.1).
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6.5. Regime III

In Regime III we have X1=10 � Q � MX1=2C" D X1=2C�C" (recall (3.4)). Here we
depart from the philosophy of the previous two regimes, in that we do not bound E.Q/

by considerations of zeros of L-functions. Rather, we exploit the combinatorial structure
of the von Mangoldt function and Lemma 4.4.

We observe that in Regime III one may still proceed with zero-density estimates by
appealing to Heath-Brown’s zero-density estimate for L-functions of quadratic characters
[16, Theorem 3]. We present our method for the sake of variety, and because it might
prove useful in other contexts.

Let us move to our treatment of E.Q/ for these largeQ. Given an arithmetic function
f W N ! C and a real number W > 1, let f�W .n/ denote the arithmetic function

f�W .n/ D

´
f .n/; n � W;

0; n > W:

We write f>W .n/ D f .n/ � f�W .n/.
We write ? for Dirichlet convolution. Our starting place is Vaughan’s identity [18,

Proposition 13.4]. Given a parameter V > 1, we have

ƒ.n/ D ƒ�V .n/C .��V ? log/.n/ � .��V ? ƒ�V ? 1/.n/C .�>V ? ƒ>V ? 1/.n/:
(6.5.1)

We apply (6.5.1) for n � X , and we set V WD X
1
3 .1=2��/. This reduces the estimation of

E.Q/ to the estimation of three different sums, say Ei .Q/, for i 2 ¹1; 2; 3º. Observe that
there are four terms on the right side of (6.5.1), butƒ�V .n/ is identically zero for n� X .

We have

E1.Q/ WD Q
�1=2C"

X
�2S.Q/

ˇ̌̌X
n

.��V ? log/.n/ˆs0.n=X/�.n/
ˇ̌̌

� Q�1=2C"
X

�2S.Q/

X
v�V

�.v/2
ˇ̌̌X
m

.logm/ˆs0.mv=X/�.m/
ˇ̌̌
:

Let us temporarily define f .t/ D .log t /ˆs0.tv=X/. Observe that f is supported on real
numbers t � X=v, and that jf 0.t/j � t�1.logX/O.1/. By partial summation we deriveX

m

.logm/ˆs0.mv=X/�.m/ D
Z
t�X=v

f 0.t/
X
m�t

�.m/ dt

� .logX/O.1/
Z
t�X=v

1

t

ˇ̌̌X
m�t

�.m/
ˇ̌̌
dt:

The Pólya–Vinogradov inequality [12, Chapter 23] implies thatˇ̌̌X
m�t

�.m/
ˇ̌̌
� Q1=2 logQ;
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and therefore

E1.Q/� QVX" � X1=2C�C
1
3 .1=2��/C" � X1�"I (6.5.2)

this last inequality holds for " D ".�/ > 0 sufficiently small.
We use the same argument to estimate E2.Q/:

E2.Q/ WD Q
�1=2C"

X
�2S.Q/

ˇ̌̌X
n

.��V ? ƒ�V ? 1/.n/ˆs0.n=X/�.n/
ˇ̌̌

� Q�1=2C"
X

�2S.Q/

X
v�V 2

.�2 ? ƒ/.v/
ˇ̌̌X
m

ˆs0.mv=X/�.m/
ˇ̌̌

� Q�1=2C"
X

�2S.Q/

X
v�V 2

.�2 ? ƒ/.v/Q1=2C"

� Q1C"V 2 � X1=2C�C
2
3 .1=2��/C" � X1�": (6.5.3)

The last sum to estimate is E3.Q/:

E3.Q/ WD Q
�1=2C"

X
�2S.Q/

ˇ̌̌X
n

.�>V ? ƒ>V ? 1/.n/ˆs0.n=X/�.n/
ˇ̌̌

D Q�1=2C"
X

�2S.Q/

ˇ̌̌XX
k;`

˛.k/ˇ.`/ˆs0.k`=X/�.k`/
ˇ̌̌
;

where ˛.k/ D �>V .k/ and ˇ.`/ D .ƒ>V ? 1/.`/. Observe that both ˛.�/ and ˇ.�/ are
supported on integers m satisfying

V � m� XV �1:

We further observe that j˛.k/j � 1 and jˇ.`/j � log.`/. We perform dyadic decomposi-
tions on the ranges of k and `, so that k � K and ` � L, with

V � K � XV �1; V � L� XV �1; KL � X: (6.5.4)

We next separate the variables by Mellin inversion on ˆs0 :

E1.Q/� .logX/O.1/ sup
K;L

Z
.0/

ˇ̌̌̌
ˆ�
�
w C

s0

2

�ˇ̌̌̌
Q�1=2C"

�

X
�2S.Q/

ˇ̌̌XX
k�K
`�L

˛.k/ˇ.`/.k`/�w�.k`/
ˇ̌̌
jdwj:

The integral of jˆ�j has size� .logX/O.1/, so we obtain

E3.Q/� sup
K;L
t2R

Q�1=2C"
X

�2S.Q/

ˇ̌̌XX
k�K
`�L

Q̨ .k/ Q̌.`/�.k`/
ˇ̌̌
;
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where Q̨ .k/ D ˛.k/k�it and Q̌.`/ D ˇ.`/`�it . For notational convenience we suppress
the dependence of Q̨ and Q̌ on t .

By multiplicativity and Cauchy–Schwarz we obtain

E3.Q/� sup
K;L
t2R

Q�1=2C"
� X
�2S.Q/

ˇ̌̌X
k�K

Q̨ .k/�.k/
ˇ̌̌2�1=2� X

�2S.Q/

ˇ̌̌X
`�L

Q̌.`/�.`/
ˇ̌̌2�1=2

:

Applying Lemma 4.4 and recalling (6.5.4) yields

E3.Q/� sup
K;L

X"

Q1=2
..QCK/K/1=2..QC L/L/1=2

� sup
K;L

X"
�
.KL/1=2Q1=2

C
KL

K1=2
C
KL

L1=2
C

KL

Q1=2

�
� X"

�
X3=4C�=2 C

X

V 1=2
C

X

Q1=2

�
� X1�": (6.5.5)

The last inequality follows since V D X
1
3 .1=2��/ and Q� X1=10. Then (6.5.2), (6.5.3),

and (6.5.5) imply
E.Q/� X1�";

and this suffices for (6.4.1).

6.6. Dénouement

We can extract from our proof of Proposition 6.1 the following result on character sums
over primes, which we shall have occasion to use later.

Lemma 6.1. Let X be a large real number, and let ı > 0 be small and fixed. Let s0 be a
complex number with jRe.s0/j � A1=logX and jIm.s0/j � .logX/A2 , for some positive
real numbers A1 and A2. Given any positive real numbers A3; A4, and B , we haveX

q�X1�ı

q odd
q¤�

d2.q/
A3.log q/A4
p
q

ˇ̌̌̌ X
p�1 .mod8/

.logp/ˆs0

�
p

X

��
q

p

�ˇ̌̌̌
�A1;A2;A3;A4;B;ı

X

.logX/B
:

The implied constant is ineffective.

Proof. Follow the proof of (6.2.7), but with a few modifications. Instead of the inequality
(6.3.12) use Siegel’s theorem [12, Chapter 21]

ˇ1 � 1 � c."/=jq
�
j
"
I

the constant c."/ is ineffective if " � 1=2. Therefore, instead of using the lower bound
(6.3.13) we use the lower bound jq�j > .logX/D , whereD is chosen sufficiently large in
terms of B , and " in Siegel’s theorem is chosen sufficiently small in terms of D.



Quadratic Dirichlet L-functions of prime conductor 405

Lemma 6.1 is quite strong since it corresponds, roughly, to square root cancellation on
average in the sums over p. Thus, one would not expect to be able to prove an analogue
of Lemma 6.1 with the upper bound for q replaced by X1C" for any " > 0.

7. The mollified second moment

In this section we derive an upper bound of the correct order of magnitude for the sum S2
defined in (3.1). Our main result for this section is the following (recall (3.4) and (5.2)).

Proposition 7.1. Let ı > 0 be small and fixed, and let �; # satisfy � C 2# < 1=2. If
X � X0.ı; �; #/, then

S2 �
1C ı

2.1 � 1=
p
2/2

I

#

X

4
;

where

I D �2

Z 1

0

H.x/H 0.x/ dx C
1

�

Z 1

0

H.x/H 00.x/ dx C
1

�

Z 1

0

H 0.x/2 dx

�
1

2�2

Z 1

0

H 0.x/H 00.x/dx C
1

24�3

Z 1

0

H 00.x/2 dx:

The proof of Proposition 7.1 follows the ideas outlined in Section 3. First, we note that
logp � logX in (3.1) becauseˆ is supported on Œ1=2; 1�. By positivity we may apply the
upper bound sieve condition (5.7) to write

S2 � .logX/SC;

where SC is defined by

SC D
X

n�1 .mod8/

�.n/2
�X
d jn
d�D

�d

�
ˆ

�
n

X

�
L.1=2; �n/

2M.n/2: (7.1)

Note that d is odd since d jn and n � 1 .mod 8/. Also, �d ¤ 0 only for square-free d by
the definition (5.8), and so �d D �.d/2�d . We use Lemma 4.2 to write L.1=2; �n/2 D
D2.n/, then insert (3.6) into (7.1) to write

SC D SCN C S
C

R ; (7.2)

where
SCN D

X
n�1 .mod8/

NY .n/
�X
d jn
d�D

�.d/2�d

�
ˆ.n=X/D2.n/M.n/

2 (7.3)

and
SCR D

X
n�1 .mod8/

RY .n/
�X
d jn
d�D

�.d/2�d

�
ˆ.n=X/D2.n/M.n/

2:

We first obtain a bound on SCR . The remainder of this section will then be devoted to an
analysis of SCN .



S. Baluyot, K. Pratt 406

7.1. The contribution of SCR
In this subsection we show

SCR � X".X=Y CX1=2M/: (7.1.1)

The arguments here are almost identical to those in [40, Section 3]. Observe thatRY .n/D
0 unless n D `2h with ` > Y and h square-free. If n � 1 .mod 8/ then ` and h are odd
and h � 1 .mod 8/. By the divisor bound we have

jRY .n/j � n";
ˇ̌̌X
d jn
d�D

�.d/2�d

ˇ̌̌
� n";

and therefore

SCR � X"
X

Y<`�
p
X

2− `

X
X=.2`2/<h�X=`2

h�1 .mod8/

�.h/2jM.`2h/2D2.`
2h/j:

There is a mild complication compared to [40] in that it is possible to have h D 1, in
which case the character �h is principal.

We apply Cauchy–Schwarz and obtain

SCR � X"
X

Y<`�
p
X

2− `

� X
X=.2`2/<h�X=`2

h�1 .mod8/

�.h/2jM.`2h/2j2
�1=2

�

� X
X=.2`2/<h�X=`2

h�1 .mod8/

�.h/2jD2.`
2h/j2

�1=2
: (7.1.2)

We have

M.`2h/2 D
X
m�M2

.m;2`/D1

˛.m/
p
m

�
h

m

�

for some coefficients ˛.m/ satisfying j˛.m/j � m". For h D 1 we use the trivial bound
M.`2/4 �M 2X". For h > 1 we use Lemma 4.4 as in [40, p. 460]. We therefore haveX

X=.2`2/<h�X=`2

h�1 .mod8/

�.h/2jM.`2h/2j2 � X".X=`2 CM 2/: (7.1.3)

Now, by the definition (4.1) of !2.�/, and the definition of D2 in Lemma 4.2, for any
c > 1=2,

D2.`
2h/ D

2

.1 � 1=
p
2/4

1

2�i

Z
.c/

�
�
s
2
C

1
4

�2
�
�
1
4

�2 �
1 �

1

21=2�s

�2�
`2h

�

�s
L

�
1

2
C s; �h

�2
E.s; 2`/

ds

s
;
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where

E.s; k/ D
Y
pjk

�
1 �

�h.p/

p1=2Cs

�2
:

If hD 1 thenL.1=2C s;�h/2D �.1=2C s/2. In any case, we move the line of integration
to c D 1=logX , and we do not pick up contributions from any poles. When h > 1 this is
obvious, and when h D 1 the double pole of �.1=2C s/2 is canceled out by the double
zero of .1 � 2�.1=2�s//2. By trivial estimation we then have jD2.`

2/j � X". For h > 1
we apply Cauchy–Schwarz to obtain

jD2.`
2h/j2 � X"

Z
. 1

logX /

j�.s=2C 1=4/j2jL.1=2C s; �h/j
4
jdsj:

Summing over h and using Lemma 4.5, we obtain an analogue of [40, (3.5)],X
X=.2`2/<h�X=`2

h�1 .mod8/

�.h/2jD2.`
2h/j2 � X1C"=`2: (7.1.4)

Combining (7.1.2)–(7.1.4) yields (7.1.1).

7.2. Poisson summation

We begin our evaluation of SCN by inserting into (7.3) the definition (3.3) of the mollifier
M.n/. We then use the definition of D2 (see Lemma 4.2) to write

SCN D
8

.
p
2 � 1/4

X
d�D
d odd

�.d/2�d
XX
m1;m2�M
m1;m2 odd

bm1bm2
p
m1m2

X
n�1 .mod8/

d jn

NY .n/ˆ

�
n

X

�

�

1X
�D1
� odd

d2.�/
p
�
!2

�
��

n

��
n

m1m2�

�
: (7.2.1)

We next apply Poisson summation to evaluate the n-sum. Denote the n-sum in (7.2.1)
by Z, i.e. define

Z D Z.d; �;m1m2IX; Y / D
X

n�1 .mod8/
d jn

NY .n/ˆ

�
n

X

�
!2

�
��

n

��
n

m1m2�

�
: (7.2.2)

We insert the definition (3.7) ofNY .n/ and interchange the order of summation to writeZ
as

Z D
X
˛�Y
˛ odd

�.˛/
X

n�1 .mod8/
Œ˛2;d�jn

F�

�
n

X

��
n

m1m2�

�
; (7.2.3)
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where F�.t/ is defined by

F�.t/ D ˆ.t/!2

�
��

tX

�
: (7.2.4)

If ˛ and d are square-free, then Œ˛2; d � D ˛2d1, where

d1 D d=.d; ˛/: (7.2.5)

We may thus relabel n as ˛2d1m in (7.2.3), and then split the resulting m-sum according
to the congruence class of m .mod m1m2�/. We deduce from (7.2.3) that

ZD
X
˛�Y

.˛;2m1m2�/D1

�.˛/

�
d1

m1m2�

� X
b .modm1m2�/

�
b

m1m2�

� X
m�˛2d1 .mod8/
m�b .modm1m2�/

F�

�
˛2d1m

X

�
:

By the Chinese Remainder Theorem, we may write the congruence conditions on m as a
single condition m � 
 .mod 8m1m2�/ for some integer 
 depending on ˛; d; b. Thus,
we may relabel m as 8jm1m2� C 
 , where j ranges over all integers, and arrive at

Z D
X
˛�Y

.˛;2m1m2�/D1

�.˛/

�
d1

m1m2�

� X
b .modm1m2�/

�
b

m1m2�

�
�

X
j2Z

F�

�
˛2d1.8jm1m2� C 
/

X

�
: (7.2.6)

We apply Poisson summation to the j -sum to writeX
j2Z

F�

�
˛2d1.8jm1m2� C 
/

X

�
D

X

8˛2d1m1m2�

X
k2Z

e

�
k


8m1m2�

�
OF�

�
kX

8˛2d1m1m2�

�
:

We insert this into (7.2.6) and apply the reciprocity relation

e

�
k


8m1m2�

�
D e

�
k8b

m1m2�

�
e

�
k˛2d1m1m2�

8

�
;

where 8 is the inverse of 8modulom1m2� and ˛2d1m1m2� is the inverse of ˛2d1m1m2�
modulo 8. We then evaluate the b-sum using the definition (4.3) of the Gauss sum. The
result is

Z D
X

8m1m2�

X
˛�Y

.˛;2m1m2�/D1

�.˛/

˛2d1

�
2d1

m1m2�

�

�

X
k2Z

e

�
k˛2d1m1m2�

8

�
OF�

�
kX

8˛2d1m1m2�

�
�k.m1m2�/:
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Recalling (7.2.1) and (7.2.2), we arrive at

SCN D
X

.
p
2�1/4

X
d�D
d odd

�.d/2�d
XX
m1;m2�M

.m1m2;2d/D1

bm1bm2
.m1m2/3=2

1X
�D1

.�;2d/D1

d2.�/

�3=2

X
˛�Y

.˛;2m1m2�/D1

�.˛/

˛2d1

�

�
2d1

m1m2�

�X
k2Z

e

�
k˛2d1m1m2�

8

�
OF�

�
kX

8˛2d1m1m2�

�
�k.m1m2�/: (7.2.7)

Note that we may impose the condition .m1m2�;d/D 1 because otherwise
�

2d1
m1m2�

�
D 0.

We write (7.2.7) as
SCN D T0 CB; (7.2.8)

where T0 is the contribution from k D 0 in (7.2.7), while B is the contribution from k ¤ 0

in (7.2.7). We evaluate T0 in the next subsection, and B in later subsections.

7.3. The contribution from k D 0

By (4.3), �0.n/ D '.n/ if n is a perfect square, and �0.n/ D 0 otherwise. Hence the term
T0 in (7.2.7) is

T0 D
X

.
p
2 � 1/4

X
d�D
d odd

�.d/2�d
XX
m1;m2�M

.m1m2;2d/D1

bm1bm2
.m1m2/3=2

1X
�D1

.�;2d/D1
m1m2�D�

d2.�/

�3=2

�

X
˛�Y

.˛;2m1m2�/D1

�.˛/

˛2d1
OF�.0/'.m1m2�/: (7.3.1)

We first extend the sum over ˛ to infinity. Since '.n/ � n, the error introduced in
doing so is

� X
X
d�D

j�d j
XX
m1;m2�M

jbm1bm2 j
p
m1m2

1X
�D1

m1m2�D�

d2.�/
p
�

X
˛>Y

1

˛2d1
j OF�.0/j: (7.3.2)

By Lemma 4.1, OF�.0/� 1 uniformly for all � > 0, and

OF�.0/� exp
�
�
��

8X

�
for � >X1C". Moreover, (5.8) implies that j�d j � d ", while jbmj � 1 by (3.5). It follows
from these bounds that (7.3.2) is

� X1C"
X
d�D

XX
m1;m2�M

1
p
m1m2

X
��X1C"

m1m2�D�

1
p
�

X
˛>Y

1

˛2d1
C exp.�X"/: (7.3.3)
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Since m1m2� is a perfect square, the sum over m1; m2; � in (7.3.3) is� X". Also, the
definition (7.2.5) of d1 implies thatX

˛>Y

1

˛2d1
D
1

d

X
j jd

'.j /
X
˛>Y
j j˛

1

˛2
�

1

d1�"Y
:

Therefore (7.3.3) is O.X1C"=Y /. This bounds the error in extending the sum over ˛ in
(7.3.1) to infinity, and we arrive at

T0 D
X

.
p
2 � 1/4

X
d�D
d odd

�.d/2�d
XX
m1;m2�M

.m1m2;2d/D1

bm1bm2
.m1m2/3=2

1X
�D1

.�;2d/D1
m1m2�D�

d2.�/

�3=2

�

1X
˛D1

.˛;2m1m2�/D1

�.˛/

˛2d1
OF�.0/'.m1m2�/CO

�
X1C"

Y

�
:

Writing the ˛-sum as an Euler product, we deduce that

T0 D
4X

3.
p
2 � 1/4�.2/

X
d�D
d odd

�.d/2�d

d

Y
pjd

�
p

p C 1

� XX
m1;m2�M

.m1m2;2d/D1

bm1bm2
p
m1m2

�

1X
�D1

.�;2d/D1
m1m2�D�

d2.�/
p
�
OF�.0/

Y
pjm1m2�

�
p

p C 1

�
CO

�
X1C"

Y

�
: (7.3.4)

We next evaluate the sum over d . Lemma 5.3 impliesX
d�D

.d;2m1m2�/D1

�.d/2�d

d

Y
pjd

�
p

p C 1

�
D
1CE0.X/

logR

Y
pj2m1m2�
p�z0

�
1C

1

p

� Y
p�z0

�
p2

p2 � 1

�
COA..logR/�A/: (7.3.5)

Recall that E0.X/ tends to 0, and depends only on X;G, and # . Hereafter we just write
o.1/ instead of E0.X/.

We may omit the condition p � z0 by trivial estimation and (5.1). It follows from
(7.3.5) and (7.3.4) that

T0 D
2X

.
p
2 � 1/4

1C o.1/

logR

XX
m1;m2�M
.m1m2;2/D1

bm1bm2
p
m1m2

1X
�D1

.�;2/D1
m1m2�D�

d2.�/
p
�
OF�.0/

COA

�
X

.logR/A

�
CO

�
X1C"

Y

�
: (7.3.6)
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The next task is to carry out the summation over m1;m2; and �. Let ‡0 be defined by

‡0 D
XX
m1;m2�M
.m1m2;2/D1

bm1bm2
p
m1m2

1X
�D1

.�;2/D1
m1m2�D�

d2.�/
p
�
OF�.0/: (7.3.7)

We insert into (7.3.7) the definition (3.5) of bm and the definitions (7.2.4) and (4.1) of
F� and !2, and then apply the Fourier inversion formula (6.1.2). After interchanging the
order of summation, we arrive at

‡0 D
1

2�i

Z
.c/

�
�
s
2
C

1
4

�2
�
�
1
4

�2 �
1 �

1

21=2�s

�2�
X

�

�s
L̂ .s/

Z 1
�1

Z 1
�1

h.z1/h.z2/

�

XXX
.m1m2�;2/D1
m1m2�D�

�.m1/�.m2/d2.�/

.m1m2�/1=2m
1Ciz1
logM
1 m

1Ciz2
logM
2 �s

dz1 dz2
ds

s
; (7.3.8)

where we take c D 1=logX to facilitate later estimations. We may write the sum over
m1; m2; � as an Euler productXXX

.m1m2�;2/D1
m1m2�D�

�.m1/�.m2/d2.�/

.m1m2�/1=2m
1Ciz1
logM
1 m

1Ciz2
logM
2 �s

D

Y
p>2

1X
m1D0

1X
m2D0

1X
�D0

m1Cm2C� even

.�1/m1Cm2.� C 1/

p
m1Cm2C�

2 Cm1

�
1Ciz1
logM

�
Cm2

�
1Ciz2
logM

�
C�s

: (7.3.9)

In the latter sum, the terms with .m1; m2; �/ ¤ .0; 0; 0/, .0; 0; 2/, .0; 1; 1/, .1; 0; 1/, or
.1; 1; 0/ add up to O.p�2C"/ whenever z1; z2; s are complex numbers such that 1Ciz1logM ,
1Ciz2
logM , and s each have real part � �". Hence, for such z1; z2; s, (7.3.9) equalsY
p>2

�
1C

3

p1C2s
�

2

p
1C

1Ciz1
logM Cs

�
2

p
1C

1Ciz2
logM Cs

C
1

p
1C

1Ciz1
logM C

1Ciz2
logM

CO

�
1

p2�"

��
:

Thus (7.3.9) equals

�.1C 2s/3�
�
1C 2Ciz1Ciz2

logM

�
�
�
1C 1Ciz1

logM C s
��2

�
�
1C 1Ciz2

logM C s
��2

�Q
�
1Ciz1
logM ; 1Ciz2logM ; s

�
; (7.3.10)

whereQ.w1;w2; s/ is an Euler product that is uniformly bounded and holomorphic when
each of Re.w1/, Re.w2/, and Re.s/ is � �". From this definition of Q and a calculation,
we see that

Q.0; 0; 0/ D 1; (7.3.11)
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a fact we use shortly. We insert the expression (7.3.10) for the m1;m2; �-sum into (7.3.8)
and arrive at

‡0 D
1

2�i

Z
.c/

�
�
s
2
C

1
4

�2
�
�
1
4

�2 �
1 �

1

21=2�s

�2�
X

�

�s
L̂ .s/�.1C 2s/3

Z 1
�1

Z 1
�1

h.z1/h.z2/

��
�
1C 2Ciz1Ciz2

logM

�
�
�
1C 1Ciz1

logM Cs
��2

�
�
1C 1Ciz2

logM Cs
��2

Q.1Ciz1logM ; 1Ciz2logM ; s/ dz1 dz2
ds

s
:

By (6.1.4) and the rapid decay of the gamma function, we may truncate the integrals to
the region jz1j; jz2j �

p
logM and jIm.s/j � .logX/2, introducing a negligible error.

We then deform the path of integration of the s-integral to the path made up of the line
segmentL1 from 1

logX � i.logX/2 to� c0

log logX � i.logX/2, followed by the line segment

L2 from � c0

log logX � i.logX/2 to � c0

log logX C i.logX/2, and then by the line segment L3
from � c0

log logX C i.logX/2 to 1
logX C i.logX/2, where c0 is a constant chosen so that

(6.3.10) holds on L1; L2, and L3. This leaves a residue from the pole at s D 0. The
contributions of the integrals over L1 and L3 are negligible because of the rapid decay
of the � function, while the contribution of the integral over L2 is negligible because
X s � exp

�
�c0

logX
log logX

�
for s on L2. Hence the main contribution arises from the residue

of the pole at s D 0. Writing this residue as an integral along a circle centered at 0, we
arrive at

‡0 D
1

2�i

I
jsjD 1

logX

�
�
s
2
C

1
4

�2
�
�
1
4

�2 �
1 �

1

21=2�s

�2�
X

�

�s
L̂ .s/�.1C 2s/3

�

“
jzi j�

p
logM

h.z1/h.z2/�
�
1C 2Ciz1Ciz2

logM

�
�
�
1C 1Ciz1

logM C s
��2

�
�
1C 1Ciz2

logM C s
��2

�Q
�
1Ciz1
logM ; 1Ciz2logM ; s

�
dz1 dz2

ds

s
COA

�
1

.logX/A

�
: (7.3.12)

We may expand the zeta-functions and the function Q into Laurent series. The main
contribution arises from the first terms of the Laurent expansions, and so we deduce using
(7.3.11) that

‡0 D
1

16�i

I
jsjD 1

logX

�
�
s
2
C

1
4

�2
�
�
1
4

�2 �
1 �

1

21=2�s

�2�
X

�

�s
L̂ .s/

“
jzi j�

p
logM

h.z1/h.z2/

�

�
logM

2C iz1 C iz2

��
1C iz1

logM
C s

�2�
1C iz2

logM
C s

�2
dz1 dz2

ds

s4
CO

�
1

logX

�
:
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By (6.1.4), we may extend the integrals over z1; z2 to R2, introducing a negligible error.
We then apply the formulaZ 1
�1

Z 1
�1

h.z1/h.z2/
.1C iz1/

j .1C iz2/
k

2C iz1 C iz2
dz1 dz2

D

Z 1
0

Z 1
�1

Z 1
�1

h.z1/h.z2/.1C iz1/
j .1C iz2/

ke�t.1Ciz1/�t.1Ciz2/ dz1 dz2 dt

D .�1/jCk
Z 1
0

H .j /.t/H .k/.t/ dt; (7.3.13)

which follows from repeated differentiation of (6.1.2), to obtain

‡0 D
1

16�i

I
jsjD 1

logX

�
�
s
2
C

1
4

�2
�
�
1
4

�2 �
1 �

1

21=2�s

�2�
X

�

�s
L̂ .s/

²
1

.logM/3

Z 1

0

H 00.t/2 dt

�
4s

.logM/2

Z 1

0

H 0.t/H 00.t/ dt C
2s2

logM

Z 1

0

H.t/H 00.t/ dt C
4s2

logM

Z 1

0

H 0.t/2 dt

� 4s3
Z 1

0

H.t/H 0.t/ dt C s4 logM
Z 1

0

H.t/2 dt

³
ds

s4
CO

�
1

logX

�
:

We evaluate the s-integral as a residue using (6.1.6). The result is

‡0 D
L̂ .0/

8

�
1�

1
p
2

�2²
1

6

�
logX
logM

�3 Z 1

0

H 00.t/2 dt � 2

�
logX
logM

�2 Z 1

0

H 0.t/H 00.t/dt

C 2
logX
logM

Z 1

0

H.t/H 00.t/ dt C 4
logX
logM

Z 1

0

H 0.t/2 dt � 4

Z 1

0

H.t/H 0.t/ dt

³
CO

�
1

logX

�
:

From this, (2.2), (7.3.6), and the definition (7.3.7) of ‡0, we arrive at

T0 D
X

8
�
1 � 1p

2

�2 1C o.1/logR

²
1

24

�
logX
logM

�3 Z 1

0

H 00.t/2 dt

�
1

2

�
logX
logM

�2 Z 1

0

H 0.t/H 00.t/ dt C
logX
2 logM

Z 1

0

H.t/H 00.t/ dt

C
logX
logM

Z 1

0

H 0.t/2 dt �

Z 1

0

H.t/H 0.t/ dt

³
CO

�
X

.logX/2
C
X1C"

Y

�
: (7.3.14)



S. Baluyot, K. Pratt 414

7.4. The contribution from k ¤ 0: splitting into cases

Having estimated the term T0 in (7.2.8), we now begin our analysis of B, which is much
more complicated.

The behavior of the additive character e.k˛2d1m1m2�=8/ in (7.2.7) depends upon the
residue class of k modulo 8. We therefore distinguish the following cases: k odd, k � 2
.mod 4/, k � 4 .mod 8/, k � 0 .mod 8/. We split our analysis of the sum B in (7.2.8)
according to these four cases. For the terms with odd k, we use the identity

e

�
h

8

�
D

p
2

2

�
2

h

�
C

p
2

2

�
�2

h

�
i; h odd;

and treat separately the contributions of each term on the right-hand side. Moreover, for
the terms with odd k or k � 2 .mod 4/, we use the second expression in (4.3) for �k.n/
and treat separately the contributions of the terms

�
1Ci
2

�
Gk.n/ and

�
�1
n

��
1�i
2

�
Gk.n/. We

can treat these two contributions together as one combined sum for the terms with k� 0;4
.mod 8/, because, for those k, the additive character e.k˛2d1m1m2�=8/ is constant and
the conditions k � 0; 4 .mod 8/ are invariant with respect to the substitution k 7! �k.
Hence, in view of these considerations, (7.2.7), and (7.2.8), we write

B D
X

.
p
2 � 1/4

X
d�D
d odd

�.d/2�d
XX
m1;m2�M

.m1m2;2d/D1

bm1bm2
.m1m2/3=2

1X
�D1

.�;2d/D1

d2.�/

�3=2

�

X
˛�Y

.˛;2m1m2�/D1

�.˛/

˛2d1
.Q1 CQ2 CQ3 CQ4 CU1 CU2 C V CW/; (7.4.1)

where

Q1 D
1C i

2

p
2

2

�
2d1

m1m2�

�X
k2Z
k odd

�
2

kd1m1m2�

�
OF�

�
kX

8˛2d1m1m2�

�
Gk.m1m2�/;

(7.4.2)

Q2 D
1 � i

2

p
2

2

�
�2d1

m1m2�

�X
k2Z
k odd

�
2

kd1m1m2�

�
OF�

�
kX

8˛2d1m1m2�

�
Gk.m1m2�/;

(7.4.3)

Q3 D
1C i

2
i

p
2

2

�
2d1

m1m2�

�X
k2Z
k odd

�
�2

kd1m1m2�

�
OF�

�
kX

8˛2d1m1m2�

�
Gk.m1m2�/;

(7.4.4)

Q4 D
1 � i

2
i

p
2

2

�
�2d1

m1m2�

�X
k2Z
k odd

�
�2

kd1m1m2�

�
OF�

�
kX

8˛2d1m1m2�

�
Gk.m1m2�/;

(7.4.5)
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U1 D
1C i

2

�
2d1

m1m2�

� X
k2Z

k�2 .mod4/

e

�
k˛2d1m1m2�

8

�
OF�

�
kX

8˛2d1m1m2�

�
Gk.m1m2�/;

(7.4.6)

U2 D
1 � i

2

�
�2d1

m1m2�

� X
k2Z

k�2 .mod4/

e

�
k˛2d1m1m2�

8

�
OF�

�
kX

8˛2d1m1m2�

�
Gk.m1m2�/;

(7.4.7)

V D

�
2d1

m1m2�

� X
k2Z

k�4 .mod8/

e

�
k˛2d1m1m2�

8

�
OF�

�
kX

8˛2d1m1m2�

�
�k.m1m2�/;

(7.4.8)

W D

�
2d1

m1m2�

� X
k2Z

k�0 .mod8/
k¤0

e

�
k˛2d1m1m2�

8

�
OF�

�
kX

8˛2d1m1m2�

�
�k.m1m2�/:

(7.4.9)

7.5. Evaluation of the sum with Q1

In this subsection, we evaluate the sum

Q�1 WD

1X
�D1

.�;2d/D1

d2.�/

�3=2

X
˛�Y

.˛;2m1m2�/D1

�.˛/

˛2d1
Q1; (7.5.1)

with Q1 defined by (7.4.2). We may cancel the two Jacobi symbols
�

2
m1m2�

�
in (7.4.2),

insert the resulting expression into (7.5.1), and then apply the Mellin inversion formula to
the �-sum to deduce that

Q�1 D
1C i

2

p
2

2

X
˛�Y

.˛;2m1m2/D1

�.˛/

˛2d1

�
d1

m1m2

�X
k2Z
k odd

�
2

kd1

�

�
1

2�i

Z
.c/

Z 1
0

OFt

�
kX

8˛2d1m1m2t

�
tw�1 dt

1X
�D1

.�;2˛d/D1

d2.�/

�3=2Cw

�
d1

�

�
Gk.m1m2�/ dw

(7.5.2)

for any c > 1. The interchange in the order of summation is justified by absolute conver-
gence. The next step is to write the �-sum as an Euler product, as follows.

Lemma 7.1. Let d1 be as defined by (7.2.5). For each non-zero integer k, define k1 and
k2 uniquely by the equation

4kd1 D k1k
2
2 ; (7.5.3)
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where k1 is a fundamental discriminant and k2 is a positive integer. If ` is a positive
integer and Re.s/ > 1, then

1X
�D1

.�;2˛d/D1

d2.�/

�s

�
d1

�

�
Gk.`�/
p
�
D L.s; �k1/

2
Y
p

G0;p.sI k; `; ˛; d/

DW L.s; �k1/
2G0.sI k; `; ˛; d/;

where �k1.�/ D
�
k1
�

�
and

G0;p.sI k; `; ˛; d/ WD

8̂̂̂̂
<̂
ˆ̂̂:
�
1 �

1

ps

�
k1

p

��2
if p j 2˛d;�

1 �
1

ps

�
k1

p

��2 1X
rD0

r C 1

prs

�
d1

pr

�
Gk.p

rCordp.`//

pr=2
if p − 2˛d:

The function G0.sIk; `; ˛; d/ is holomorphic for Re.s/ > 1=2. Moreover, if k3 and k4 are
defined by the equation

k D k3k
2
4 (7.5.4)

with k3 square-free and k4 a positive integer, then

G0.sI k; `; ˛; d/�" .˛d jkj`/
"`1=2.`; k24/

1=2

uniformly for Re.s/ � 1=2C ".

Proof. It follows from the definition of G0;p.sI k; `; ˛; d/ and Lemma 4.3 that

G0;p.sI k; `; ˛; d/ D

�
1 �

1

ps

�
k1

p

��2�
1C

2

ps

�
d1k

p

��
D 1 �

3

p2s
C

2

p3s

�
k1

p

�
for each p − 2˛dk`, since

�
d1k
p

�
D
�
k1
p

�
for odd primes p, by (7.5.3). The rest of the

proof is similar to that of [40, Lemma 5.3].

We also need some analytic properties of the function h.�; w/ defined for Re.w/ > 0
by

h.�; w/ D

Z 1
0

OFt .�=t/t
w�1 dt:

These are embodied in the following lemma. As a bit of notation, for a real number x we
define

sgn.x/ D

´
1; x � 0;

�1; x < 0:
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Lemma 7.2. Let Ft be defined by (7.2.4). If � ¤ 0 is a real number, then

h.�; w/ D j�jw L̂ .w/

Z 1
0

!2

�
j�j�

Xz

�
.cos.2�z/ � isgn.�/ sin.2�z//

dz

zwC1
:

The integral above may be expressed as

1

2�i

Z
.c/

�
�
s
2
C

1
4

�2
�
�
1
4

�2 �
1 �

1

21=2�s

�2 X s

.�j�j/s
.2�/�sCw�.s � w/

�
®
cos.�

2
.s � w// � isgn.�/ sin.�

2
.s � w//

¯ ds
s

(7.5.5)

for any c with max ¹0;Re.w/º< c < Re.w/C 1. If � ¤ 0 is real, then h.�;w/ is an entire
function of w. In the region �1 < Re.w/ � �ı0, where ı0 > 0 is fixed and small,

h.�; w/�ı0 .1C jwj/
�Re.w/�1=2 exp

�
�
1

10

p
j�jp

X.jwj C 1/

�
j�jRe.w/

j L̂ .w/j:

Proof. The proof is similar to that of [40, Lemma 5.2].

By these lemmas and the rapid decay of L̂ .w/ as jIm.w/j!1 in a fixed vertical strip,
we may move the line of integration of the w-integral in (7.5.2) to Re.w/ D �1=2C ".
This leaves a residue from a pole at w D 0 only when �k1 is a principal character, which
holds if and only if k1 D 1. By (7.5.3), k1 D 1 if and only if kd1 is a perfect square. Hence

Q�1 D P1 CR1; (7.5.6)

where P1 is defined by

P1 D Res
wD0

�
1C i

2

�p
2

2

X
˛�Y

.˛;2m1m2/D1

�.˛/

˛2d1

�
d1

m1m2

� X
k2Z
k odd
kd1D�

h

�
kX

8˛2d1m1m2
; w

�

� �.1C w/2G0.1C wI k;m1m2; ˛; d/ (7.5.7)

and R1 is defined by

R1 D

�
1C i

2

�p
2

2

X
˛�Y

.˛;2m1m2/D1

�.˛/

˛2d1

�
d1

m1m2

�X
k2Z
k odd

�
2

kd1

�

�
1

2�i

Z
.�1=2C"/

h

�
kX

8˛2d1m1m2
;w

�
L.1Cw;�k1/

2G0.1CwIk;m1m2; ˛; d/dw:

(7.5.8)

We bound R1 in Subsection 7.6. To estimate P1, observe that d1 is square-free by its
definition (7.2.5) and the fact that d is square-free. This implies that kd1 is a perfect
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square if and only if k equals d1 times a perfect square. Hence, in (7.5.7), we may relabel
k as d1j 2, where j runs through all the odd positive integers. With this and Lemma 7.2,
we deduce from (7.5.7) that

P1 D Res
wD0

�
1C i

2

�p
2

2

X
˛�Y

.˛;2m1m2/D1

�.˛/

˛2d1
�.1C w/2 L̂ .w/Xw

1

2�i

�

Z
.c/

�
�
s
2
C

1
4

�2
�
�
1
4

�2 �
1 �

1

21=2�s

�2
��s�2.s � w/.8˛

2m1m2/
s�w

�

1X
jD1
j odd

j�2sC2w
�

d1

m1m2

�
G0.1C wI d1j

2; m1m2; ˛; d/
ds

s
; (7.5.9)

where �2.u/ is defined by

�2.u/ D .2�/
�u�.u/

�
cos
�
�
2
u
�
� i sin

�
�
2
u
��
; (7.5.10)

and where we take c > 1=2 to guarantee the absolute convergence of the j -sum.
We next write the j -sum in (7.5.9) as an Euler product. First observe that, by Lem-

ma 4.3(ii), if j is a positive integer then�
d1

pˇ

�
Gd1j2.p

ˇ / D Gj2.p
ˇ / (7.5.11)

for all p − 2˛d and ˇ � 1. To see this, suppose p2n is the largest power of p dividing j 2,
so that it is also the largest power of p dividing d1j 2, by (7.2.5). If ˇ � 2n is even, then�
d1
pˇ

�
D 1 and both sides of (7.5.11) equal '.pˇ /. If ˇ D 2nC 1, then the left-hand side

of (7.5.11) equals�
d1

p2nC1

��
d1j

2p�2n

p

�
p2n
p
p

D

�
d1

p2n

��
d1

p

�2�
j 2p�2n

p

�
p2n
p
p D

�
j 2p�2n

p

�
p2n
p
p;

which equals the right-hand side of (7.5.11). In all other possible cases for ˇ, both sides
of (7.5.11) are zero. This proves (7.5.11). From it and the multiplicativity stated in Lem-
ma 4.3(i), we deduce that�

d1

m1m2�

�
Gd1j2.m1m2�/ D Gj2.m1m2�/

for all positive integers � with .�; 2˛d/ D 1. It follows from this and Lemma 7.1 that



Quadratic Dirichlet L-functions of prime conductor 419�
d1

m1m2

�
�.1C w/2G0.1C wI d1j

2; m1m2; ˛; d/

D

1X
�D1

.�;2˛d/D1

d2.�/

�1Cw

Gj2.m1m2�/
p
�

D �.1C w/2G0.1C wI j
2; m1m2; ˛d; 1/ (7.5.12)

for Re.w/ > 0. This and analytic continuation implies�
d1

m1m2

�
G0.1C wI d1j

2; m1m2; ˛; d/ D G0.1C wI j
2; m1m2; ˛d; 1/ (7.5.13)

for Re.w/ > �1=2. Now if f .j; p/ is a function such that f .j; p/ D f .pordp.j /; p/ for
all positive integers j and all primes p, then

1X
jD1

Y
p

f .j; p/ D
Y
p

1X
bD0

f .pb; p/ (7.5.14)

if absolute convergence holds for both sides. This can be proved using a standard argument
(see, for example, [3, Theorem 11.7]) together with the fact that

Q
p>y f .1; p/! 1 as

y !1. From (7.5.13), the Euler product definition of G0 in Lemma 7.1, and (7.5.14)
with f .1; 2/ D 1 and f .2b; 2/ D 0 for b > 0, we arrive at

1X
jD1
j odd

j�2sC2w
�

d1

m1m2

�
G0.1C wI d1j

2; m1m2; ˛; d/

D

1X
jD1
j odd

j�2sC2wG0.1C wI j
2; m1m2; ˛d; 1/

D

�
1 �

1

21Cw

�2Y
p>2

1X
bD0

p2b.w�s/G0;p.1C wIp
2b; m1m2; ˛d; 1/

D

�
1 �

1

4s�w

�Y
p

1X
bD0

p2b.w�s/G0;p.1C wIp
2b; m1m2; ˛d; 1/: (7.5.15)

Since Gk.n/ D G4k.n/ for all odd n, [40, Lemma 5.3] and Lemma 7.1 imply that

G0;p.1C wI j
2; m1m2; ˛d; 1/ D Gp.1C wI j

2; m1m2; ˛d/;

where Gp is defined in [40, Lemma 5.3]. Therefore the latter Euler product in (7.5.15) is
the same one that has been evaluated in [40, p. 471]. From its evaluation and (7.5.15), we
deduce that
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1X
jD1
j odd

j�2sC2w
�

d1

m1m2

�
G0.1C wI d1j

2; m1m2; ˛; d/

D

�
1�

1

4s�w

�
.m1m2/

1�sCw`
s�w�1=2
1 �.2s�2w/�.2sC1/H1.s�w;1CwIm1m2;˛d/;

(7.5.16)

where `1 is the square-free integer defined by the equation

m1m2 D `1`
2
2; �.`1/

2
D 1; `2 2 Z; (7.5.17)

and H1 is defined by an Euler product

H1.s � w; 1C wIm1m2; ˛d/ D
Y
p

H1;p:

The local factors H1;p are

H1;p D8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

�
1� 1

p1Cw

�2�
1� 1

p1C2s

�
if p j 2˛d;�

1� 1

p1Cw

�2
1� 1

p1C2s

�
1C 2

p1Cw
�

2
p1C2s�w

C
1

p1C2s
�

3
p2C2s

C
1

p3C4s

�
if p − 2˛dm1m2;�

1� 1

p1Cw

�2
1� 1

p1C2s

�
1� 1

p2s�2w
C

2
p2s�w

�
2

p1C2s�w
C

1
p1C2s

�
1

p1C4s�2w

�
if p j `1;�

1� 1

p1Cw

�2
1� 1

p1C2s

�
1� 1

p
C

2
p1Cw

�
2

p1C2s�w
C

1
p1C2s

�
1

p2C2s

�
if p jm1m2; p − `1:

(7.5.18)

Inserting (7.5.16) into (7.5.9), we find that

P1 D

�
1C i

2

�p
2

2

X
˛�Y

.˛;2m1m2/D1

�.˛/

˛2d1
I; (7.5.19)

where

I D Res
wD0

�.1Cw/2 L̂ .w/Xw
1

2�i

Z
.c/

�
�
s
2
C
1
4

�2
�
�
1
4

�2 �
1�

1

21=2�s

�2
��s�2.s�w/.8˛

2/s�w

�

�
1�

1

4s�w

�
m1m2`

s�w�1=2
1 �.2s�2w/�.2sC1/H1.s�w; 1CwIm1m2; ˛d/

ds

s
:

(7.5.20)
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The next step is to extend the ˛-sum to infinity and show that the error introduced in
doing so is small. To do this, we need to move the line of integration in (7.5.20) closer to 0
to guarantee the absolute convergence of the ˛-sum. We first evaluate the residue using
(6.1.6) to see that (7.5.20) is the same as

I D
L̂ .0/

2�i

Z
.c/

�
�
s
2
C

1
4

�2
�
�
1
4

�2 �
1 �

1

21=2�s

�2
��s�2.s/.8˛

2/s
�
1 �

1

4s

�
m1m2

� `
s�1=2
1 �.2s/�.2s C 1/H1.s; 1Im1m2; ˛d/

²
2
 C

. L̂ /0.0/

L̂ .0/
C log

�
X

8˛2`1

�
�
� 02
�2
.s/C

log 4
.1 � 4s/

� 2
�0

�
.2s/C

@
@w

H1.s � w; 1C wIm1m2; ˛d/

H1.s � w; 1C wIm1m2; ˛d/

ˇ̌̌̌
wD0

³
ds

s
:

(7.5.21)

Here 
 denotes the Euler–Mascheroni constant. The definition (7.5.18) of the function
H1.s �w;1CwIm1m2; ˛d/ implies that it is holomorphic for Re.s/ > 0 and jRe.w/j<
min ¹1=2; 2Re.s/º, and that it and its first partial derivatives at w D 0 are bounded by
� .˛X/" for Re.s/ � 1=logX . Thus, by the rapid decay of the gamma function, we
may move the line of integration in (7.5.21) to Re.s/ D 1=logX . There is no residue
because the poles of �.2s/ and � 0

�
.2s/ at s D 1=2 are canceled by the zero of the factor

.1� 2s�1=2/2. Using well-known bounds for �.2s/ and �0.2s/ implied by the Phragmén–
Lindelöf principle, we see that the new integral is now bounded by

� m1m2`
�1=2C"
1 ˛"X"

Z
. 1

logX /

ˇ̌
�. s

2
C

1
4
/
ˇ̌2

max ¹j�2.s/j; j� 02.s/jº .1C jsj/
1=2C"

jdsj;

which is� m1m2`
�1=2C"
1 ˛"X" by the rapid decay of the gamma function. Dividing this

bound by ˛2d1 and summing the result over all ˛ > Y , we deduce thatX
˛>Y

.˛;2m1m2/D1

�.˛/2

˛2d1
jIj �

m1m2`
�1=2C"
1 X"

d1�"Y 1�"
(7.5.22)

because, by (7.2.5), if '.j / is the Euler totient function, thenX
˛>Y

1

˛2�"d1
D
1

d

X
j jd

'.j /
X
˛>Y
j j˛

1

˛2�"
�

1

d1�"Y 1�"
:

From (7.5.19), (7.5.22), and (7.5.20) now with c D 1
logX , we arrive at

P1 D Res
wD0

�.1C w/2
�
1C i

2

�p
2

2
Xw

1

2�i

Z
. 1

logX /

�2.s � w/8
s�w

�
1 �

1

4s�w

�
�K.s; wIm1m2; d /

ds

s
CO

�
m1m2`

�1=2C"
1 X"

d1�"Y 1�"

�
; (7.5.23)
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with K.s; wIm1m2; d / defined by

K.s; wIm1m2; d / D L̂ .w/
�
�
s
2
C

1
4

�2
�
�
1=4

�2 �
1 �

1

21=2�s

�2
��sm1m2`

s�w�1=2
1 �.2s � 2w/

� �.2s C 1/

1X
˛D1

.˛;2m1m2/D1

�.˛/

˛2�2sC2wd1
H1.s � w; 1C wIm1m2; ˛d/; (7.5.24)

where, as before, `1 is defined by (7.5.17), d1 is defined by (7.2.5), and H1 is defined as
the product of (7.5.18) over all primes.

It is convenient for later calculations to write P1 in terms of a residue, as in (7.5.23),
rather than in terms of derivatives as in (7.5.21).

7.6. Bounding the contribution of R1

Having handled P1 in (7.5.6), we next turn to R1, defined by (7.5.8). It will be convenient
to denote

R.`; d/ D
1

`

�
1C i

2

�p
2

2

X
˛�Y

.˛;2`/D1

�.˛/

˛2d1

�
d1

`

�X
k2Z
k odd

�
2

kd1

�

�
1

2�i

Z
.�1=2C"/

h

�
kX

8˛2d1`
; w

�
L.1C w;�k1/

2G0.1C wI k; `; ˛; d/ dw; (7.6.1)

so that R1 D m1m2R.m1m2; d /. We will bound jR.`; d/j on average as ` and d each
range over a dyadic interval.

Let ˇ`;d DR.`; d/=jR.`;d/j if R.`;d/¤ 0, and ˇ`;d D 1 otherwise. Then jˇ`;d j D
1 and jR.`; d/j D ˇ`;dR.`; d/. We sum this over all `; d with J � ` < 2J and V � d <
2V , where J; V � 1. We then insert the definition (7.6.1) and bring the d; `-sum inside
the integral to deduce that

2V�1X
dDV
.d;2/D1

2J�1X
`DJ

.`;2d/D1

jR.`; d/j D

2V�1X
dDV
.d;2/D1

2J�1X
`DJ

.`;2d/D1

ˇ`;dR.`; d/

�

X
˛�Y
.˛;2/D1

1

˛2

X
k2Z
k odd

Z
.�1=2C"/

U.˛; k;w/ jdwj; (7.6.2)

where for brevity we denote

U.˛; k;w/

D

2V�1X
dDV
.d;2/D1

1

d1
jL.1Cw;�k1/j

2

ˇ̌̌̌ 2J�1X
`DJ

.`;2˛d/D1

ˇ`;d

`

�
d1

`

�
G0.1CwIk;`;˛;d/h

�
kX

8˛2d1`
;w

�ˇ̌̌̌
:
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We split the k-sum into dyadic blocks K � jkj < 2K, with K � 1, and apply Cauchy’s
inequality to write

X
K�jkj<2K
k odd

U.˛; k;w/�

� 2V�1X
dDV
.d;2/D1

1

d1

X
K�jkj<2K
k odd

k2jL.1C w;�k1/j
4

�1=2

�

� 2V�1X
dDV
.d;2/D1

1

d1

X
K�jkj<2K
k odd

1

k2

ˇ̌̌̌ 2J�1X
`DJ

.`;2˛d/D1

ˇ`;d

`

�
d1

`

�
� G0.1C wI k; `; ˛; d/h

�
kX

8˛2d1`
; w

�ˇ̌̌̌2�1=2
; (7.6.3)

where k2 is defined by (7.5.3). To bound the first factor on the right-hand side of (7.6.3),
we split the k-sum according to the values of k1 and k2 and interchange the order of
summation. Then we use the fact that d1 � d=˛ by (7.2.5) to deduce that

2V�1X
dDV
.d;2/D1

1

d1

X
K�jkj<2K
k odd

k2jL.1C w;�k1/j
4

�
˛

V

X
0<jk1j�KV

jL.1C w;�k1/j
4

X
k2�

q
KV
jk1j

k2

2V�1X
dDV
.d;2/D1

d1jk1k
2
2

1:

We estimate the inner sum using the divisor bound, and find that the above is

� ˛K1C"V "
X

0<jk1j�KV

1

jk1j
jL.1C w;�k1/j

4

� ˛K1C"V ".1C jwj/1C"

by Lemma 4.5. It follows from this and (7.6.3) that

X
K�jkj<2K
k odd

U.˛; k;w/�
�
˛K1C"V ".1C jwj/1C"

�1=2� 2V�1X
dDV
.d;2/D1

1

d1

X
K�jkj<2K
k odd

1

k2

�

ˇ̌̌̌ 2J�1X
`DJ

.`;2˛d/D1

ˇ`;d

`

�
d1

`

�
G0.1C wI k; `; ˛; d/h

�
kX

8˛2d1`
; w

�ˇ̌̌̌2�1=2
: (7.6.4)

The next task is to bound the second factor on the right-hand side. To this end we prove
the following two lemmas.
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Lemma 7.3. Let ˛ � Y , d , K, and J be positive integers, and suppose w is a complex
number with real part �1=2C ". Then for any complex numbers 
` with j
`j � 1,

X
K�jkj<2K
k odd

1

k2

ˇ̌̌̌ 2J�1X
`DJ

.`;2˛d/D1


`

`
G0.1C wI k; `; ˛; d/h

�
kX

8˛2d1`
; w

�ˇ̌̌̌2
is bounded by

�" j L̂ .w/j
2 d1˛

2C"J 2C"K"d "

X1�"
exp

�
�
1

20

p
K

˛
p
d1J.1C jwj/

�
:

and also by

�" ..1C jwj/˛dJKX/
"
j L̂ .w/j2

˛2d1.JK C J
2/

KX
:

Lemma 7.4. Let ı` � `" be any sequence of complex numbers and let Re.w/ D �1=2
C ". ThenX

K�jkj<2K

1

k2

ˇ̌̌̌ 2J�1X
`DJ

.`;2˛d/D1

ı`
p
`

G0.1C wI k; `; ˛; d/

ˇ̌̌̌2
�" .˛dJK/

"J.J CK/:

Proof of Lemma 7.3 assuming Lemma 7.4. To prove the first bound, we use the triangle
inequality and apply the bounds for G0 from Lemma 7.1 and h.�; w/ from Lemma 7.2 to
deduce that the sum in question is

� j L̂ .w/j2
d1˛

2C"J "K"d "

X1�"
exp

�
�
1

20

p
K

˛
p
d1J.1C jwj/

�
�

X
K�jkj<2K
k odd

1

jkjk2

� 2J�1X
`DJ

.`;2˛d/D1

.`; k24/
1=2
�2
:

We then estimate the k-sum by splitting it according to the values of k3 and k4 and using

.`; k24/ � k
2
4 and 1=k2 � 1=k4;

which follows from (7.5.3) and (7.5.4). This leads to the first bound of the lemma.
To prove the second bound, we apply Lemma 7.2 and write the integral (7.5.5) as

1

2�i

Z
.c/

g.s; wI sgn.�//
�
X

�j�j

�s
ds
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with c D ". We then bring the `-sum inside the integral and use the triangle inequality to
deduce thatˇ̌̌̌ 2J�1X

`DJ
.`;2˛d/D1


`

`
G0.1C wI k; `; ˛; d/h

�
kX

8˛2d1`
; w

�ˇ̌̌̌
� j L̂ .w/j

�
˛1C"d

1=2C"
1

jkj1=2�"X1=2�"

�
�

Z
."/

ˇ̌̌̌
ˇg.s; wI sgn.k//

2J�1X
`DJ

.`;2˛d/D1


`

`1Cw�s
G0.1C wI k; `; ˛; d/

ˇ̌̌̌
ˇ jdsj:

Thus, since g.s;wI sgn.k//�" .1C jwj/
" exp.�.�=2� "/jIm.s/j/ by Stirling’s formula,

it follows from Cauchy’s inequality thatˇ̌̌̌ 2J�1X
`DJ

.`;2˛d/D1


`

`
G0.1CwIk;`;˛;d/h

�
kX

8˛2d1`
;w

�ˇ̌̌̌2
� .1Cjwj/"j L̂ .w/j2

�
˛2C"d1C"1

jkj1�"X1�"

�

�

Z
."/

exp.�.�=2 � "/jIm.s/j/
ˇ̌̌̌ 2J�1X

`DJ
.`;2˛d/D1


`

`1Cw�s
G0.1C wI k; `; ˛; d/

ˇ̌̌̌2
jdsj:

The second bound of the lemma follows from this and Lemma 7.4.

Proof of Lemma 7.4. For any integer k D ˙
Q
i; ai�1

p
ai
i , let a.k/ and b.k/ be defined

by
a.k/ D

Y
i

p
aiC1
i and b.k/ D

Y
aiD1

pi
Y
ai�2

p
ai�1
i : (7.6.5)

From the definition of G0 in Lemma 7.1, we see for .`;2˛d/D 1 that G0.1CwIk;`;˛;d/

D 0 unless ` can be written as gm with g j a.k/ and m square-free and relatively prime
to k. With this expression for `, it follows from Lemma 4.3 that if .`; 2˛d/ D 1 then

G0.1C wI k; `; ˛; d/ D
p
m

�
k

m

�Y
pjm

�
1C

2

p1Cw

�
k1

p

���1
G0.1C wI k; g; ˛; d/:

(7.6.6)
From this and Cauchy’s inequality, we arrive at

X
K�jkj<2K

1

k2

ˇ̌̌̌ 2J�1X
`DJ

.`;2˛d/D1

ı`
p
`

G0.1C wI k; `; ˛; d/

ˇ̌̌̌2
�" K

"
X

K�jkj<2K

1

k2

X
gja.k/
g<2J

.‰1.k; g/C‰2.k; g//; (7.6.7)
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where

‰1.k; g/

D

ˇ̌̌̌ X
J=g�m<2J=g
.m;2˛d/D1
3−m

�.m/2ıgm
p
g

G0.1C wI k; g; ˛; d/

�
k

m

�Y
pjm

�
1C

2

p1Cw

�
k1

p

���1 ˇ̌̌̌2

and ‰2.k; g/ is the same, but with the condition 3 jm instead of 3−m. We first bound the
contribution of ‰1. We factor out g�1=2G0.1C wI k; g; ˛; d/ and apply the bound from
Lemma 7.1 to deduce that

‰1.k; g/�" .˛dK/
"g1C"

ˇ̌̌̌ X
J=g�m<2J=g
.m;6˛d/D1

�.m/2ıgm

�
k

m

�Y
pjm

�
1C

2

p1Cw

�
k1

p

���1 ˇ̌̌̌2
:

(7.6.8)
In the sum, if

�
k
m

�
¤ 0, thenY

pjm

�
1C

2

p1Cw

�
k1

p

���1
D

Y
pjm

�
1 �

4

p2C2w

��1Y
pjm

�
1 �

2

p1Cw

�
k1

p

��
D

Y
pjm

�
1 �

4

p2C2w

��1X
j jm

�.j /d2.j /

j 1Cw

�
k1

j

�
:

We insert this into (7.6.8), interchange the order of summation, and apply Cauchy’s
inequality to see that

‰1.k; g/�" .˛dK/
"g1C"

X
j<2J=g

ˇ̌̌̌ X
J=g�m<2J=g
.m;6˛d/D1

j jm

�.m/2ıgm

�
k

m

�Y
pjm

�
1 �

4

p2C2w

��1 ˇ̌̌̌2
:

We next relabelm as jm, factor out �.j /2
�
k
j

�Q
pjj

�
1� 4

p2C2w

��1 from them-sum, and
observe that Y

pjj

�
1 �

4

p2C2w

��1
�" j

"

because Re.w/ � �1=2C " and p > 3 for all p jm. The result is

‰1.k; g/

�" .˛dJK/
"g1C"

X
j<2J=g

ˇ̌̌̌ X
J=gj�m<2J=gj
.m;6˛dj /D1

�.m/2ıgjm

�
k

m

�Y
pjm

�
1 �

4

p2C2w

��1 ˇ̌̌̌2
:

(7.6.9)



Quadratic Dirichlet L-functions of prime conductor 427

Now, by (7.6.5), g j a.k/ implies b.g/ j k. Thus we may interchange the order of summa-
tion to writeX

K�jkj<2K

1

k2

X
gja.k/
g<2J

‰1.k; g/ �
X
g<2J

X
K�jkj<2K
b.g/jk

1

k2
‰1.k; g/

D

X
g<2J

X
K=b.g/�jf j<2K=b.g/

1

k2
‰1.f b.g/; g/;

where we have relabeled k in the last sum as f b.g/, so that, by (7.5.3), k2 > 0 satisfies
4f b.g/d1 D k1k

2
2 , with k1 a fundamental discriminant. From this and (7.6.9), we arrive

at X
K�jkj<2K

1

k2

X
gja.k/
g<2J

‰1.k; g/�" .˛dJK/
"
X
g<2J

g
X

K=b.g/�jf j<2K=b.g/

1

k2

�

X
j<2J=g

ˇ̌̌̌ X
J=.gj /�m<2J=.gj /

.m;6˛dj /D1

�.m/2ıgjm

�
f b.g/

m

�Y
pjm

�
1 �

4

p2C2w

��1 ˇ̌̌̌2
: (7.6.10)

If 4f D f1f
2
2 , with f1 a fundamental discriminant and f2 a positive integer, then the

equation 4f b.g/d1 D k1k22 implies that f2j2k2, and thus k�12 � f �12 . This and (7.6.10)
implyX
K�jkj<2K

1

k2

X
gja.k/
g<2J

‰1.k; g/

�" .˛dJK/
"
X
g<2J

g
X

j<2J=g

X
K=b.g/�jf j<2K=b.g/

1

f2

ˇ̌̌̌ X
J=.gj /�m<2J=.gj /

.m;6˛dj /D1

am

�
f

m

�ˇ̌̌̌2
;

where

am D �.m/
2ıgjm

�
b.g/

m

�Y
pjm

�
1 �

4

p2C2w

��1
:

It follows from this and Lemma 4.4 thatX
K�jkj<2K

1

k2

X
gja.k/
g<2J

‰1.k; g/�" .˛dJK/
"
X
g<2J

g
X

j<2J=g

2J

gj

�
2K

b.g/
C
2J

gj

�

�" .˛dJK/
"J.K C J /

X
g<2J

1

b.g/

X
j<2J=g

1

j

�" .˛dJK/
"J.K C J /
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since
P
g<2J b.g/

�1 � .logJ /2. This proves the desired bound for the sum of ‰1.k; g/
in (7.6.7). To bound the sum of ‰2.k; g/, we argue in the same way, but instead of (7.6.6)
we use

G0.1C wI k; `; ˛; d/ D
p
m

�
k

m

�Y
pjm
p>3

�
1C

2

p1Cw

�
k1

p

���1
G �0 .1C wI k; g; ˛; d/;

where

G �0 .1C wI k; g; ˛; d/ D

�
1 �

1

31Cw

�
k1

3

��2 Y
p¤3

G0;p.1C wI k; g; ˛; d/;

with G0;p as defined in Lemma 7.1.

We now estimate the contribution of R1. From the first bound of Lemma 7.3, we see
that the sum of the right-hand side of (7.6.4) over allK D 2j > ˛2VJ.1C jwj/.logX/4 is
negligible. On the other hand, ifK � ˛2VJ.1C jwj/.logX/4 then it follows from (7.6.4)
and the second bound in Lemma 7.3 thatX

K�jkj<2K
k odd

U.˛; k;w/�" .1C jwj/
1=2C"

j L̂ .w/j.˛JKVX/"
�
˛3V.JK C J 2/

X

�1=2
�" .1C jwj/

1C"
j L̂ .w/j.˛JKVX/"

˛5=2VJ

X1=2
:

We sum this over allK D 2j , j a non-negative integer, withK � ˛2VJ.1C jwj/.logX/4,
and then multiply the resulting sum by ˛�2. We then integrate over all w with Re.w/ D
�1=2C " and sum over all integers ˛ � Y to deduce from (7.6.2) that

2V�1X
dDV
.d;2/D1

2J�1X
`DJ

.`;2d/D1

jR.`; d/j �
V 1C"J 1C"Y 3=2C"

X1=2�"
: (7.6.11)

Recall from (7.5.8) and (7.6.1) that R1 D m1m2R.m1m2; d /. Since �d � d " by (5.8)
and bm � 1 by (3.5), it thus follows from (7.6.11) thatX

d�D
d odd

�.d/2�d
XX
m1;m2�M

.m1m2;2d/D1

bm1bm2
.m1m2/3=2

jR1j �
D1C"M 1C"Y 3=2C"

X1=2�"
: (7.6.12)
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7.7. Conditions for the parameters

From (7.5.1), (7.5.6), (7.5.23), and (7.6.12), we see that the total contribution of the sum
with Q1 to B in (7.4.1) is

X

.
p
2 � 1/4

X
d�D
d odd

�.d/2�d
XX
m1;m2�M

.m1m2;2d/D1

bm1bm2
.m1m2/3=2

1X
�D1

.�;2d/D1

d2.�/

�3=2

X
˛�Y

.˛;2m1m2�/D1

�.˛/

˛2d1
Q1

D
1C i

2

p
2X

2.
p
2 � 1/4

X
d�D
d odd

�.d/2�d
XX
m1;m2�M

.m1m2;2d/D1

bm1bm2
.m1m2/3=2

Res
wD0

�.1C w/2
Xw

2�i

�

Z
. 1

logX /

�2.s � w/8
s�w

�
1 �

1

4s�w

�
K.s; wIm1m2; d /

ds

s

CO

�
X1C"D"M "

Y 1�"
CX1=2C"D1C"M 1C"Y 3=2C"

�
: (7.7.1)

Recall the definition (3.4) of M . Also, recall the definitions (5.9) and (5.2) of D and R,
respectively. So that the error terms in (7.7.1) are O.X1�"/, we assume the parameters �
and # satisfy � C 2# < 1=2; and we take the parameter Y in (3.6) to be Y D Xı with
ı D ı.�; #/ sufficiently small.

7.8. Evaluating the sums of the other terms with k ¤ 0

The procedure for evaluating the sum with Q2 in (7.4.1) is largely similar to the above
process for Q1, with only a few differences. The main difference arises from the negative
sign in the character

�
�2d1
m1m2�

�
in (7.4.3). This causes the residues in the versions of (7.5.6)

and (7.5.7) for Q2 to have each �kd1 equal to a perfect square instead of kd1 D �. This
means sgn.k/ D �1. Hence, because of the factor sgn.�/ in (7.5.5), the version of (7.5.9)
for Q2 has the function

.2�/�u�.u/
�
cos
�
�
2
u
�
C i sin

�
�
2
u
�
/

in place of the function �2.u/ defined by (7.5.10). These lead to a version of (7.7.1) for
Q2 that we may combine with (7.7.1) using the identity

1C i

2
.cosu � i sinu/C

1 � i

2
.cosuC i sinu/ D cosuC sinu: (7.8.1)

The result is

X

.
p
2�1/4

X
d�D
d odd

�.d/2�d
XX
m1;m2�M

.m1m2;2d/D1

bm1bm2
.m1m2/3=2

1X
�D1

.�;2d/D1

d2.�/

�3=2

X
˛�Y

.˛;2m1m2�/D1

�.˛/

˛2d1
.Q1CQ2/
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D

p
2X

2.
p
2 � 1/4

X
d�D
d odd

�.d/2�d
XX
m1;m2�M

.m1m2;2d/D1

bm1bm2
.m1m2/3=2

Res
wD0

�.1C w/2
Xw

2�i

�

Z
. 1

logX /

�1.s � w/8
s�w

�
1 �

1

4s�w

�
K.s; wIm1m2; d /

ds

s
CO.X1�"/; (7.8.2)

where
�1.u/ D .2�/

�u�.u/
�
cos
�
�
2
u
�
C sin

�
�
2
u
��

(7.8.3)

and the bound O.X1�"/ for the error term is guaranteed by the conditions in Subsec-
tion 7.7.

The evaluation of the sums in (7.4.1) with Q3 and Q4 defined by (7.4.4) and (7.4.5)
is similar. The version of (7.5.7) for Q3 has an extra �1 factor because the Kronecker
symbol

�
�2
kd1

�
equals �1 when �kd1 is an odd perfect square. The resulting expression

for the sums in (7.4.1) with Q3 and Q4 is exactly the same as the right-hand side of
(7.8.2). Therefore

X

.
p
2�1/4

X
d�D
d odd

�.d/2�d
XX
m1;m2�M

.m1m2;2d/D1

bm1bm2
.m1m2/3=2

1X
�D1

.�;2d/D1

d2.�/

�3=2

X
˛�Y

.˛;2m1m2�/D1

�.˛/

˛2d1

4X
jD1

Qj

D

p
2X

.
p
2�1/4

X
d�D
d odd

�.d/2�d
XX
m1;m2�M

.m1m2;2d/D1

bm1bm2
.m1m2/3=2

Res
wD0

�.1Cw/2
Xw

2�i

Z
. 1

logX /

�1.s�w/

� 8s�w
�
1 �

1

4s�w

�
K.s; wIm1m2; d /

ds

s
CO.X1�"/: (7.8.4)

To estimate the sum with U1 in (7.4.1), we first relabel k in (7.4.6) as 2k, now with k
odd, to write

U1 D
1C i

2

�
2d1

m1m2�

�X
k2Z
k odd

e

�
k˛2d1m1m2�

4

�
OF�

�
kX

4˛2d1m1m2�

�
G2k.m1m2�/:

(7.8.5)

From the definition (4.2) of Gk.n/, we see that G2k.n/ D
�
2
n

�
Gk.n/ for all odd n. Also,

the orthogonality of Dirichlet characters modulo 4 implies that e
�
h
4

�
D i

�
�1
h

�
for odd h.

It follows from these and (7.8.5) that

U1 D i
1C i

2

�
�d1

m1m2�

�X
k2Z
k odd

�
�1

kd1

�
OF�

�
kX

4˛2d1m1m2�

�
Gk.m1m2�/:

We then proceed as we did for Q1. We treat the sum with U2, defined by (7.4.7), in
a similar way. We combine the resulting expressions using the identity (7.8.1), and we
arrive at
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X

.
p
2�1/4

X
d�D
d odd

�.d/2�d
XX
m1;m2�M

.m1m2;2d/D1

bm1bm2
.m1m2/3=2

1X
�D1

.�;2d/D1

d2.�/

�3=2

X
˛�Y

.˛;2m1m2�/D1

�.˛/

˛2d1
.U1CU2/

D
X

.
p
2�1/4

X
d�D
d odd

�.d/2�d
XX
m1;m2�M

.m1m2;2d/D1

bm1bm2
.m1m2/3=2

Res
wD0

�.1Cw/2
Xw

2�i

Z
. 1

logX /

�1.s�w/

� 4s�w
�
1 �

1

4s�w

�
K.s; wIm1m2; d /

ds

s
CO.X1�"/: (7.8.6)

Next, to evaluate the sum with V in (7.4.1), we relabel k in (7.4.8) as 4k, now with k
odd, to see that

V D �

�
2d1

m1m2�

�X
k2Z
k odd

OF�

�
kX

2˛2d1m1m2�

�
�k.m1m2�/

since e.h=2/ D �1 for odd h and �4k.n/ D �k.n/ for odd n by (4.3). Into this we insert
the second expression for �k.n/ in (4.3). Since

�
�1
n

�
Gk.n/ D G�k.n/ by (4.2), we may

split our sum expression for V into two, one with Gk.n/ and the other with G�k.n/. We
relabel k as �k in the latter and combine the result with the former to arrive at

V D �

�
2d1

m1m2�

�X
k2Z
k odd

QF�

�
kX

2˛2d1m1m2�

�
Gk.m1m2�/; (7.8.7)

where QF .�/ is defined by

QF .�/ D
1C i

2
OF .�/C

1 � i

2
OF .��/ D

Z 1
�1

.cos.2��x/C sin.2��x//F.x/ dx:

We then proceed as we did for Q1, using [40, Lemma 5.2] instead of Lemma 7.2. We
arrive at versions of (7.5.6), (7.5.7), and (7.5.8) which show that the residue at w D 0

equals zero because 2kd1 ¤ � when kd1 is odd. This leads to

X

.
p
2 � 1/4

X
d�D
d odd

�.d/2�d
XX
m1;m2�M

.m1m2;2d/D1

bm1bm2
.m1m2/3=2

1X
�D1

.�;2d/D1

d2.�/

�3=2

X
˛�Y

.˛;2m1m2�/D1

�.˛/

˛2d1
V

D O.X1�"/ (7.8.8)

under the conditions in Subsection 7.7.
Lastly, to estimate the sum with W in (7.4.1), we relabel k in (7.4.9) as 8k to write

W D

�
d1

m1m2�

�X
k2Z
k¤0

OF�

�
kX

˛2d1m1m2�

�
�k.m1m2�/
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using the fact that e.h/ D 1 for any integer h and �8k.n/ D
�
2
n

�
�k.n/ for odd n by (4.3).

Into this we insert the second expression for �k.n/ in (4.3), apply
�
�1
n

�
Gk.n/ D G�k.n/,

and recombine the k and �k terms as we did for V in (7.8.7) to deduce that

W D

�
d1

m1m2�

�X
k2Z
k¤0

QF�

�
kX

˛2d1m1m2�

�
Gk.m1m2�/:

We then proceed as we did for Q1, using [40, Lemma 5.2] instead of Lemma 7.2. Since
we are now summing over all non-zero integers k and not just the odd ones, instead of
(7.5.15) and (7.5.16) we use

1X
jD1

j�2sC2wG0.1C wI j
2; m1m2; ˛d; 1/

D

Y
p

1X
bD0

p2b.w�s/G0;p.1C wIp
2b; m1m2; ˛d; 1/

D .m1m2/
1�sCw`

s�w�1=2
1 �.2s � 2w/�.2s C 1/H1.s � w; 1C wIm1m2; ˛d/:

We arrive at

X

.
p
2 � 1/4

X
d�D
d odd

�.d/2�d
XX
m1;m2�M

.m1m2;2d/D1

bm1bm2
.m1m2/3=2

1X
�D1

.�;2d/D1

d2.�/

�3=2

X
˛�Y

.˛;2m1m2�/D1

�.˛/

˛2d1
W

D
X

.
p
2 � 1/4

X
d�D
d odd

�.d/2�d
XX
m1;m2�M

.m1m2;2d/D1

bm1bm2
.m1m2/3=2

� Res
wD0

�.1C w/2
Xw

2�i

Z
. 1

logX /

�1.s � w/K.s; wIm1m2; d /
ds

s
CO.X1�"/: (7.8.9)

7.9. Putting together the estimates

From (7.4.1), (7.8.4), (7.8.6), (7.8.8), and (7.8.9), we deduce that

B D
X

.
p
2 � 1/4

X
d�D
d odd

�.d/2�d
XX
m1;m2�M

.m1m2;2d/D1

bm1bm2
.m1m2/3=2

Res
wD0

�.1C w/2
Xw

2�i

�

Z
. 1

logX /

�1.s � w/
�
8s�w

p
2C 4s�w � 2s�w

p
2
�
K.s; wIm1m2; d /

ds

s
CO.X1�"/;

where we recall that �1 is defined in (7.8.3) and K is defined in (7.5.24). We next evaluate
the residue at w D 0. Note that, for fixed s, the integrand has a pole of order at most 2 at
w D 0. We use (6.1.6) with n D 2 to write
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BD
X

.
p
2�1/4

X
d�D
d odd

�.d/2�d
XX
m1;m2�M

.m1m2;2d/D1

bm1bm2
.m1m2/3=2

1

2�i

Z
. 1

logX /

�1.s/.8
s
p
2C4s�2s

p
2/

�K.s; 0Im1m2; d /

²
2
 C logX �

� 01
�1
.s/ � .log 2/

3 � 8s
p
2C 2 � 4s � 2s

p
2

8s
p
2C 4s � 2s

p
2

C

@
@w

K.s; wIm1m2; d /

K.s; wIm1m2; d /

ˇ̌̌̌
wD0

³
ds

s
CO.X1�"/: (7.9.1)

To simplify this, we evaluate the expressions involving K by using Euler products, as
follows. By (7.2.5), the definition (7.5.18) of H1, and the general formula (7.5.14), we
may write the ˛-sum in the definition (7.5.24) of K as

1X
˛D1

.˛;2m1m2/D1

�.˛/

˛2�2sC2wd1
H1.s � w; 1C wIm1m2; ˛d/ D

1

d

Y
pj2m1m2

H1;p

�

Y
pjd

�
1�

1

p1Cw

�2�
1�

1

p1C2s

��
1�

1

p1�2sC2w

� Y
p −2m1m2d

�
1� 1

p1Cw

�2
1� 1

p1C2s

�
1C

2

p1Cw

�
2

p1C2s�w
C

1

p1C2s
�

3

p2C2s
C

1

p3C4s
�

1

p2�2sC2w
C

2

p3C2w
�

1

p4C2sC2w

�
:

(7.9.2)

We insert this into (7.5.24), put w D 0, and use the identity�
8s
p
2C 4s � 2s

p
2
��
1 �

1

21=2�s

��
1 �

1

21C2s

�
D 4s

�
1 �

1

21=2Cs

��
5

2
� 4s � 4�s

�
to deduce that

�1.s/.8
s
p
2C 4s � 2s

p
2/K.s; 0Im1m2; d /

D
L̂ .0/

4

�
�
s
2
C
1
4

�2
�
�
1
4

�2 �
4

�

�s
�1.s/�.2s/�.2sC1/

�
1�

1

21=2Cs

��
1�

1

21=2�s

��
5

2
�4s�4�s

�
�
'.dm1m2/

2

d3m1m2
p
`1

X
abD`1

�
a

b

�s Y
pjm1m2
p − `1

�
1C

1

p

�Y
pjd

�
1 �

1

p1C2s

��
1 �

1

p1�2s

�

�

Y
p −2m1m2d

²�
1 �

1

p

�2�
1C

2

p
C

1

p3
�

1

p2�2s
�

1

p2C2s

�³
; (7.9.3)

where `1 is defined by (7.5.17). Furthermore, we insert (7.9.2) into (7.5.24), take the
logarithmic derivative with respect to w at w D 0, and use the identities
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� .log 2/
3 � 8s
p
2C 2 � 4s � 2s

p
2

8s
p
2C 4s � 2s

p
2
C

2 log 2
21C2s � 1

D �3 log 2C
log 2

.
p
2C 2s/.

p
2C 2�s/

and

�

X
p

2 logp
p1C2s � 1

D 2
�0

�
.2s C 1/; Re.s/ > 0;

to arrive at

�
� 01
�1
.s/ � .log 2/

3 � 8s
p
2C 2 � 4s � 2s

p
2

8s
p
2C 4s � 2s

p
2
C

@
@w

K.s; wIm1m2; d /

K.s; wIm1m2; d /

ˇ̌̌̌
ˇ
wD0

D
. L̂ /0.0/

L̂ .0/
� log.2`1/ �

� 01
�1
.s/ � 2

�0

�
.2s/C 2

�0

�
.2s C 1/C

log 2

.
p
2C 2s/.

p
2C 2�s/

C

X
pjd

�
2 logp
p � 1

C
2 logp

p1C2s � 1
C

2 logp
p1�2s � 1

�
C

X
pjm1m2

2 logp
p � 1

�

X
pjm1m2
p − `1

2 logp
p C 1

C

X
p −2m1m2d

�
2 logp
p � 1

�

�
2 logp
p

� 1C 2
p2
�

1
p
.p2s C p�2s/

1C 2
p
C

1
p3
�

1
p2
.p2s C p�2s/

�
:

(7.9.4)

Now the definition (7.8.3) of �1.u/, the Legendre duplication formula, the functional
equation of �.s/, and the identity �.z/�.1 � z/ D � csc.�z/ imply that the functions

�
�
s
2
C

1
4

�2
�2
�
1
4

� �
4

�

�s
�1.s/�.2s/�.2s C 1/

and

�
� 01
�1
.s/ � 2

�0

�
.2s/C 2

�0

�
.2s C 1/

are even functions of s. Hence (7.9.3) and (7.9.4) are even functions of s. It follows that
the integrand in (7.9.1) is an odd function of s. We move the line of integration in (7.9.1)
to Re.s/ D �1=logX , leaving a residue at s D 0. In the new integral, we make a change
of variables s 7! �s to see that, since its integrand is odd, it equals the negative of the
original integral in (7.9.1). Therefore twice the original integral equals the residue at sD 0.
We write this residue as an integral along the circle jsj D 1=logX , taken in the positive
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direction, and arrive at

B D
X

2.
p
2�1/4

�

X
d�D
d odd

�.d/2�d
XX
m1;m2�M

.m1m2;2d/D1

bm1bm2
.m1m2/3=2

1

2�i

I
jsjD 1

logX

�1.s/.8
s
p
2C4s�2s

p
2/

�K.s; 0Im1m2; d /

²
2
 C logX �

� 01
�1
.s/ � .log 2/

3 � 8s
p
2C 2 � 4s � 2s

p
2

8s
p
2C 4s � 2s

p
2

C

@
@w

K.s; wIm1m2; d /

K.s; wIm1m2; d /

ˇ̌̌̌
wD0

³
ds

s
CO.X1�"/: (7.9.5)

The next step is to carry out the summation over d . From (7.9.3) and (7.9.4), we see
that we need to evaluate the sums †1 and †2 defined by

†1 WD
X
d�D

.d;2m1m2/D1

�.d/2�d
'.d/2

d3

Y
pjd

�
1 �

1

p1C2s

��
1 �

1

p1�2s

�

�

Y
p −2m1m2d

²�
1 �

1

p

�2�
1C

2

p
C

1

p3
�

1

p2�2s
�

1

p2C2s

�³
(7.9.6)

and

†2 WD
X
d�D

.d;2m1m2/D1

�.d/2�d
'.d/2

d3

Y
pjd

�
1 �

1

p1C2s

��
1 �

1

p1�2s

�

�

Y
p −2m1m2d

²�
1 �

1

p

�2�
1C

2

p
C

1

p3
�

1

p2�2s
�

1

p2C2s

�³X
pjd

J.p; s/; (7.9.7)

where

J.p; s/ D
2 logp

p1C2s � 1
C

2 logp
p1�2s � 1

C

�
2 logp
p

� 1C 2
p2
�

1
p
.p2s C p�2s/

1C 2
p
C

1
p3
�

1
p2
.p2s C p�2s/

(7.9.8)

and jsj D 1=logX . We only estimate†1 since†2 may be treated in the same way, except
using Lemma 5.4 instead of Lemma 5.3. We rearrange the factors in (7.9.6) to write
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†1 D
Y

p −2m1m2

²�
1 �

1

p

�2�
1C

2

p
C

1

p3
�

1

p2�2s
�

1

p2C2s

�³ X
d�D

.d;2m1m2/D1

�.d/2�d

d

�

Y
pjd

�
1 �

1

p1C2s

��
1 �

1

p1�2s

��
1C

2

p
C

1

p3
�

1

p2�2s
�

1

p2C2s

��1
: (7.9.9)

Now recall the definition (5.1) of z0 and the definition (5.8) of �d . Factoring out the
product over primes p > z0, we see thatY
p −2m1m2

²�
1 �

1

p

�2�
1C

2

p
C

1

p3
�

1

p2�2s
�

1

p2C2s

�³
D

�
1CO

�
1

z0

�� Y
p −2m1m2
p�z0

²�
1 �

1

p

�2�
1C

2

p
C

1

p3
�

1

p2�2s
�

1

p2C2s

�³
:

From this, (7.9.9), Lemma 5.3, and some simplification, we deduce that

†1 D

�
1CO

�
1

z0

��
1C o.1/

logR

Y
p −2m1m2
p�z0

�
1 �

1

p2

� Y
pj2m1m2
p�z0

�
1 �

1

p

��1
COA

�
1

.logR/A

�
: (7.9.10)

The condition p � z0 may be omitted because
Q
p>z0

�
1CO

�
1
p2

��
D 1CO

�
1
z0

�
and

Y
pj2m1m2
p>z0

�
1 �

1

p

��1
D

�
1CO

�
1

z0

��O.logX/

D 1CO

�
logX
z0

�
:

The contributions of the error terms O
�
1
z0

�
and O

� logX
z0

�
are negligible. From these and

(7.9.10), we arrive at

†1 D
2m1m2

'.m1m2/

Y
p −2m1m2

�
1 �

1

p2

�
1C o.1/

logR
COA

�
1

.logR/A

�
: (7.9.11)

In a similar way, but using Lemma 5.4 instead of Lemma 5.3, we deduce from (7.9.7) that

†2 D �
2m1m2

'.m1m2/

Y
p −2m1m2

�
1 �

1

p2

�
1C o.1/

logR

�

X
p −2m1m2

J.p; s/

p C 1

�
1 �

1

p1C2s

��
1 �

1

p1�2s

�
COA

�
1

.logR/A

�
: (7.9.12)

We now combine the above pieces to get a new expression for B. Take the expression
for B in (7.9.5) and substitute in (7.9.3) and (7.9.4). Next bring the sum over d inside to



Quadratic Dirichlet L-functions of prime conductor 437

see that we have †1 as in (7.9.6) and †2 as in (7.9.7). Then insert (7.9.11) for †1 and
(7.9.12) for †2. It now follows that

B D
X L̂ .0/

3�.2/.
p
2 � 1/4

1C o.1/

logR
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m1;m2�M
.m1m2;2/D1

bm1bm2
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Y
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p
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�

�
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I
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logX

X
abD`1

�
a

b
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�
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2
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1
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�
1
4

�2 �
4

�
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1 �

1
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�
�

�
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1
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�²
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�
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C 2
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�
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�1
.s/ � 2

�0

�
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C2
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�
.2sC1/C

log 2

.
p
2C2s/.

p
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C

X
p¤2

�1.p; s/C
X
pj`1

�2.p; s/C
X

pjm1m2
p − `1

�3.p; s/

³
ds

s

COA

�
X

.logR/A

�
; (7.9.13)

where

�1.p; s/ D
2 logp
p � 1

�

�
2 logp
p

� 1C 2
p2
�

1
p
.p2s C p�2s/

1C 2
p
C

1
p3
�

1
p2
.p2s C p�2s/

�
J.p; s/

p C 1

�
1 �

1

p1C2s

��
1 �

1

p1�2s

�
;

�2.p; s/ D
2 logp
p � 1

� �1.p; s/; (7.9.14)

�3.p; s/ D
2 logp
p � 1

�
2 logp
p C 1

� �1.p; s/;

with J.p; s/ defined by (7.9.8).
Next, we carry out the summation over m1; m2. Define

‡1 WD
XX
m1;m2�M
.m1m2;2/D1

bm1bm2
p
m1m2`1

Y
pj`1

�
p

p C 1

� X
abD`1

�
a

b

�s
; (7.9.15)

‡2 WD �
XX
m1;m2�M
.m1m2;2/D1

bm1bm2
p
m1m2`1

Y
pj`1

�
p

p C 1

� X
abD`1

�
a

b

�s
log `1; (7.9.16)

‡3 WD
XX
m1;m2�M
.m1m2;2/D1

bm1bm2
p
m1m2`1

Y
pj`1

�
p

p C 1

� X
abD`1

�
a

b

�sX
pj`1

�2.p; s/; (7.9.17)

‡4 WD
XX
m1;m2�M
.m1m2;2/D1

bm1bm2
p
m1m2`1

Y
pj`1

�
p

p C 1

� X
abD`1

�
a

b

�s X
pjm1m2
p − `1

�3.p; s/; (7.9.18)
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so that (7.9.13) can be written as

B D
X L̂ .0/

3�.2/.
p
2 � 1/4

1C o.1/

logR
1

2�i

I
jsjD 1

logX

�1.s/
�
�
s
2
C

1
4

�2
�
�
1
4

�2 �
4

�

�s
�.2s/�.2s C 1/

�

�
1 �

1

21=2Cs

��
1 �

1

21=2�s

��
5

2
� 4s � 4�s

�²
‡1

�
log
�
X

2

�
C 2
 C

. L̂ /0.0/

L̂ .0/

�
� 01
�1
.s/ � 2

�0

�
.2s/C 2

�0

�
.2s C 1/C

log 2

.
p
2C 2s/.

p
2C 2�s/

C

X
p¤2

�1.p; s/

�
C ‡2 C ‡3 C ‡4

³
ds

s
COA

�
X

.logR/A

�
: (7.9.19)

We need to estimate the sums ‡i for jsj D 1=logX .
To estimate ‡1, observe that if m1 and m2 are square-free then (7.5.17) implies

`1 D
m1m2

.m1; m2/2
; (7.9.20)X

abD`1

�
a

b

�s
D

Y
pj`1

.ps C p�s/: (7.9.21)

From these, the definition (3.5) of bm, and the Fourier inversion formula (6.1.2), we
deduce from (7.9.15) that

‡1 D

Z 1
�1

Z 1
�1

h.z1/h.z2/
XX

.m1m2;2/D1

�.m1/�.m2/.m1; m2/

m
1C

1Ciz1
logM

1 m
1C

1Ciz2
logM

2

�

Y
pjm1m2

p − .m1;m2/

.ps C p�s/

�
p

p C 1

�
dz1 dz2:

Thus, writing the sum as an Euler product, we see that

‡1 D

Z 1
�1

Z 1
�1

h.z1/h.z2/
Y
p>2

�
1 �

1

p
1C

1Ciz1
logM

.ps C p�s/

�
p

p C 1

�
�

1

p
1C

1Ciz2
logM

.ps C p�s/

�
p

p C 1

�
C

1

p
1C

2Ciz1Ciz2
logM

�
dz1 dz2:

We write this as

‡1 D

Z 1
�1

Z 1
�1

h.z1/h.z2/�
�
1C 2Ciz1Ciz2

logM

�
W
�
s; z1; z2;

1
logM

�
dz1 dz2

�
�
1C 1Ciz1

logM C s
�
�
�
1C 1Ciz1

logM � s
�
�
�
1C 1Ciz2

logM C s
�
�
�
1C 1Ciz2

logM � s
� ;

(7.9.22)
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where W.s; z1; z2; 1=logM/ is an Euler product that is bounded and holomorphic for
jsj � " and complex z1; z2 with

jIm.z1/j; jIm.z2/j � " logM:

Note that this definition of W implies

W.0; 0; 0; 0/ D 8
Y
p>2

�
1 �

4

p C 1
C
1

p

��
1 �

1

p

��3
D 6�.2/; (7.9.23)

a fact we use shortly. By (6.1.4), we may truncate the integrals in (7.9.22) to the range
jz1j; jz2j �

p
logM , introducing a negligible error. On this range of z1 and z2, the

function W and the zeta-functions in (7.9.22) may be written as Laurent series. The con-
tributions of the terms other than the first terms of these Laurent expansions are smaller
than that of the first terms of the expansion by a factor of logX . The first term of the
Laurent expansion of W is given by (7.9.23). We thus arrive at

‡1 D 6�.2/

“
jzi j�

p
logM

h.z1/h.z2/

�
logM

2C iz1 C iz2

��
1C iz1

logM
� s

��
1C iz1

logM
C s

�

�

�
1C iz2

logM
C s

��
1C iz2

logM
� s

�
dz1 dz2 CO

�
1

.logX/4

�
:

By (6.1.4), we may extend the range of integration to R2, introducing a negligible error.
We then apply (7.3.13) to deduce that

‡1 D 6�.2/

�
1

.logM/3

Z 1

0

H 00.t/2 dt �
2s2

logM

Z 1

0

H.t/H 00.t/ dt

C s4.logM/

Z 1

0

H.t/2 dt

�
CO

�
1

.logX/4

�
: (7.9.24)

Having evaluated ‡1, we next estimate ‡2. Using the residue theorem, we write

� log `1 D
1

2�i

I
jyjD 1

2 logX

`
�y
1

dy

y2
:

From this, (7.9.16), (7.9.20), (7.9.21), the definition (3.5) of bm, and the Fourier inversion
formula (6.1.2), it follows that

‡2 D
1

2�i

I
jyjD 1

2 logX

Z 1
�1

Z 1
�1

h.z1/h.z2/
XX

.m1m2;2/D1

�.m1/�.m2/.m1; m2/
1C2y

m
1C

1Ciz1
logM Cy

1 m
1C

1Ciz2
logM Cy

2

�

Y
pjm1m2

p − .m1;m2/

.ps C p�s/

�
p

p C 1

�
dz1 dz2

dy

y2
:
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We express the sum as an Euler product to see that

‡2 D
1

2�i

I
jyjD 1

2 logX

Z 1
�1

Z 1
�1

h.z1/h.z2/
Y
p>2

�
1�

1

p
1C

1Ciz1
logM Cy

.ps C p�s/

�
p

p C 1

�
�

1

p
1C

1Ciz2
logM Cy

.ps C p�s/

�
p

p C 1

�
C

1

p
1C

2Ciz1Ciz2
logM

�
dz1 dz2

dy

y2
:

Write this as

‡2 D
1

2�i

I
jyjD 1

2 logX

Z 1
�1

Z 1
�1

h.z1/h.z2/�
�
1C 2Ciz1Ciz2

logM

�
V
�
s; z1; z2;

1
logM ; y

�
� �

�
1C 1Ciz1

logM C y C s
��1

�
�
1C 1Ciz1

logM C y � s
��1

� �
�
1C 1Ciz2

logM C y C s
��1

�
�
1C 1Ciz2

logM C y � s
��1

dz1 dz2
dy

y2
;

where V.s; z1; z2; 1=logM; y/ is an Euler product that is bounded and holomorphic for
jsj; jyj � " and complex z1; z2 with jIm.z1/j; jIm.z2/j � " logM . This definition of V
implies that V.0; 0; 0; 0; 0/ D 6�.2/. As in our treatment of ‡1, we use (6.1.4) to trun-
cate the integrals. Then we write V and the zeta-functions as Laurent series. The main
contribution arises from the first terms of the Laurent expansions, and we arrive at

‡2 D
6�.2/

2�i

I
jyjD 1

2 logX

“
jzi j�

p
logM

h.z1/h.z2/

�
logM

2C iz1 C iz2

��
1C iz1

logM
C y � s

�

�

�
1Ciz1

logM
CyCs

��
1Ciz2

logM
CyCs

��
1Ciz2

logM
Cy�s

�
dz1 dz2

dy

y2
CO

�
1

.logX/3

�
:

We carry out the integration over y by applying the formula (6.1.6) with nD 2 and deduce
that

‡2 D 6�.2/

“
jzi j�

p
logM

h.z1/h.z2/

�
logM

2C iz1 C iz2

�

�

²�
1C iz1

logM
C s

��
.1C iz2/

2

.logM/2
� s2

�
C

�
1C iz1

logM
� s

��
.1C iz2/

2

.logM/2
� s2

�
C

�
1C iz2

logM
C s

��
.1C iz1/

2

.logM/2
� s2

�
C

�
1C iz2

logM
� s

��
.1C iz1/

2

.logM/2
� s2

�³
dz1 dz2

CO

�
1

.logX/3

�
:

We extend the integral and apply (7.3.13). After simplifying, we arrive at

‡2D 6�.2/

�
�

4

.logM/2

Z 1

0

H 0.t/H 00.t/dtC4s2
Z 1

0

H.t/H 0.t/dt

�
CO

�
1

.logX/3

�
:

(7.9.25)
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We next estimate‡3 defined by (7.9.17). We interchange the order of summation over
m1; m2 and over p. From (7.9.20), we see for a prime q and square-free m1 and m2 that
q j `1 if and only if q divides exactly one of m1 or m2. If q divides m2 and not m1, then
we may relabel m1 as m2 and vice versa. Hence

‡3 D 2
X

2<q�M

�2.q; s/
XX
m1;m2�M
.m1m2;2/D1
qjm1; q −m2

bm1bm2
p
m1m2`1

Y
pj`1

�
p

p C 1

� X
abD`1

�
a

b

�s
:

From this, the definition (3.5) of bm, (7.9.20), and (7.9.21), it follows that

‡3 D 2
X

2<q�M

�2.q; s/
XX
m1;m2�M
.m1m2;2/D1
qjm1; q −m2

�.m1/�.m2/

Œm1; m2�

Y
pjm1m2

p − .m1;m2/

�
p

p C 1

�
.ps C p�s/

� H

�
logm1
logM

�
H

�
logm2
logM

�
:

We relabel m1 as qm1 to write this as

‡3 D �2
X

2<q�M

�2.q; s/

q C 1
.qs C q�s/

X
m1�

M
q

X
m2�M

.m1m2;2q/D1

�.m1/�.m2/

Œm1; m2�

�

Y
pjm1m2

p − .m1;m2/

�
p

p C 1

�
.ps C p�s/H

�
log qm1
logM

�
H

�
logm2
logM

�
:

We insert the Fourier inversion formula (6.1.2), interchange the order of summation, and
then write the m1; m2-sum as an Euler product to deduce that

‡3 D �2

Z 1
�1

Z 1
�1

X
2<q�M

�2.q; s/.q
s C q�s/

.q C 1/q
1Ciz1
logM

h.z1/h.z2/

�

Y
p −2q

�
1 �

1

p
1C

1Ciz1
logM

.ps C p�s/

�
p

p C 1

�
�

1

p
1C

1Ciz2
logM

.ps C p�s/

�
p

p C 1

�
C

1

p
1C

2Ciz1Ciz2
logM

�
dz1 dz2:

We may express the Euler product in terms of zeta-functions to write

‡3 D �2

Z 1
�1

Z 1
�1

X
2<q�M

�2.q; s/.q
s C q�s/

.q C 1/q
1Ciz1
logM

h.z1/h.z2/�
�
1C 2Ciz1Ciz2

logM

�
� �

�
1C 1Ciz1

logM C s
��1

�
�
1C 1Ciz1

logM � s
��1

�
�
1C 1Ciz2

logM C s
��1

�
�
1C 1Ciz2

logM � s
��1

� Uq
�
s; z1; z2;

1
logM

�
dz1 dz2; (7.9.26)
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whereUq.s; z1; z2; 1=logM/ is an Euler product that is uniformly bounded for 2< q �M
prime, jsj � ", and real z1; z2. Using (6.1.4), we may truncate the integrals to the range
jz1j; jz2j �

p
logM and introduce only a negligible error. In this range, and for jsj D

1=logX , the quotient of zeta-functions in (7.9.26) is� .1C jz1j
2/.1C jz2j

2/.logX/�3.
Moreover, (7.9.14) implies �2.q; s/� q�1C" for 2 < q �M and jsj D 1=logX . It thus
follows that

‡3 � 1=.logX/3: (7.9.27)

A similar argument applies to ‡4 defined by (7.9.18), except we use the fact that, for
a prime q, qjm1m2 and q − `1 both hold if and only if q divides both m1 and m2, by
(7.9.20). This leads to

‡4 � 1=.logX/3: (7.9.28)

It now follows from (7.9.19), (7.9.24), (7.9.25), (7.9.27), and (7.9.28) that

B D
2X L̂ .0/

.
p
2 � 1/4

1C o.1/

logR
1

2�i

I
jsjD 1

logX

�1.s/
�
�
s
2
C

1
4

�2
�
�
1
4

�2 �
4

�

�s
�.2s/�.2s C 1/

�

�
1 �

1

21=2Cs

��
1 �

1

21=2�s

��
5

2
� 4s � 4�s

�²�
log
�
X

2

�
C 2
 C

. L̂ /0.0/

L̂ .0/

�
� 01
�1
.s/ � 2

�0

�
.2s/C 2

�0

�
.2s C 1/C

log 2

.
p
2C 2s/.

p
2C 2�s/

C

X
p¤2

�1.p; s/

�
�

�
1

.logM/3

Z 1

0

H 00.t/2 dt �
2s2

logM

Z 1

0

H.t/H 00.t/ dt C s4.logM/

Z 1

0

H.t/2 dt

�
�

4

.logM/2

Z 1

0

H 0.t/H 00.t/ dt C 4s2
Z 1

0

H.t/H 0.t/ dt

³
ds

s
CO

�
X

.logX/2

�
:

Evaluating the s-integral as a residue, we deduce that

B D
X L̂ .0/

4
�
1 � 1p

2

�2 1C o.1/logR

²
logX
2 logM

Z 1

0

H.t/H 00.t/ dt �

Z 1

0

H.t/H 0.t/ dt

³
CO.X.logX/�2/:

From this, (2.2), (7.3.14), (7.2.8), (7.2), and (7.1.1), it now follows that

SC D
X

8
�
1 � 1p

2

�2 1C o.1/logR

²
1

24

�
logX
logM

�3 Z 1

0

H 00.t/2 dt

�
1

2

�
logX
logM

�2 Z 1

0

H 0.t/H 00.t/ dtC
logX
logM

Z 1

0

H.t/H 00.t/ dtC
logX
logM

Z 1

0

H 0.t/2 dt

�2

Z 1

0

H.t/H 0.t/ dt

³
CO

�
X

.logX/2
C
X1C"

Y
CX1=2C"M

�
:

The error terms are acceptable by the choices in Subsection 7.7, and this yields Proposi-
tion 7.1.
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8. Choosing the mollifier: finishing the proof of Theorem 1.1

In this section we complete the proof of Theorem 1.1 by making an optimal choice for
the smooth function H.x/ (see (3.3),(3.5)).

By (3.2) and Propositions 6.1 and 7.1, one derives the inequality

X
p�1 .mod8/
L.1=2;�p/¤0

.logp/ˆ.p=X/ �
X

.1C ı0/8
� #

�
H.0/ � 1

2�
H 0.0/

�2
I

(8.1)

for � C 2# < 1=2 and X � X0.ı0; �; #/, where ı0 > 0 is sufficiently small and fixed. We
also have the upper boundX

p�1 .mod8/
L.1=2;�p/¤0

.logp/ˆ.p=X/ � .logX/
X

X=2<p�X
p�1 .mod8/
L.1=2;�p/¤0

1:

The right side of (8.1) is an increasing function of # , and so # should be as large as
possible. The hypotheses of Proposition 7.1 allow # D 1

2
.1=2 � �/ � ", and thereforeX

X=2<p�X
p�1 .mod8/
L.1=2;�p/¤0

1 �
X

.1C 2ı0/8 logX
� %; (8.2)

where

% WD
1

2

�
1

2
� �

��
H.0/ � 1

2�
H 0.0/

�2
I

:

We seek a choice of H.x/ that maximizes %.
As H.x/ is a smooth function supported in Œ�1; 1�, we have H.1/ D H 0.1/ D 0. For

notational simplicity we set H.0/ D A;�H 0.0/ D B . SinceZ 1

0

H.x/H 0.x/ dx D �
1

2
A2;Z 1

0

H.x/H 00.x/ dx D AB �

Z 1

0

H 0.x/2 dx;Z 1

0

H 0.x/H 00.x/ dx D �
1

2
B2;

we have, by the definition of I in Proposition 7.1,

I D

�
AC

1

2�
B

�2
C

1

24�3

Z 1

0

H 00.x/2 dx:
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We choose H.x/ such that on Œ0; 1� it is a smooth approximation to the optimal function
H�.x/ that minimizes the integral Z 1

0

H 00� .x/
2 dx (8.3)

among allH1 2 C3.Œ0; 1�/ satisfying the boundary conditionsH1.0/D A, �H 01.0/D B ,
H1.1/ D H

0
1.1/ D 0. We may choose H.x/ such that

.1C ı0/

Z 1

0

H 00� .x/
2 dx �

Z 1

0

H 00.x/2 dx:

By the Euler–Lagrange equation, we find that an H�.x/ which minimizes (8.3) must
satisfy

H .4/
� .x/ D 0:

Thus, H�.x/ is a polynomial of degree at most three. Recalling the boundary conditions,
we find

H�.x/ D .2A � B/x
3
C .2B � 3A/x2 � Bx C A:

By direct computation we obtainZ 1

0

H 00� .x/
2 dx D 3A2 C .2B � 3A/2;

and therefore

% �
1 �O.ı0/

2

�
1

2
� �

��
1C

3A2 C .2B � 3A/2

24�3
�
AC 1

2�
B
�2 ��1:

It is now a straightforward, but tedious, calculus exercise to find that

A D
B.4� C 3/

6.� C 1/

is an optimal choice. Thus

% �
1 �O.ı0/

2

�
1

2
� �

�
2�.3C 6� C 4�2/

.1C 2�/3
: (8.4)

With this choice of A we have

H�.x/ D
2B�

6.� C 1/
.1 � x/2

�
2C

3

2�
C x

�
:
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Since % is invariant under multiplication of H by scalars, we arrive at the convenient
expression

H�.x/ D .1 � x/
2

�
2C

3

2�
C x

�
: (8.5)

If we set x D logm
logM in (8.5), we find that the mollifier coefficients bm satisfy

bm � �.m/
.log.M=m//2

.logM/2
log.X3=2M 2m/

logM
:

One might wish to compare this with the description of �.`/ in [40, p. 449].
Define

�.�/ WD
1

2

�
1

2
� �

�
2�.3C 6� C 4�2/

.1C 2�/3
D
1

2

�
1

2
� �

��
1 �

1

.1C 2�/3

�
:

By (8.2) and (8.4), we obtainX
X=2<p�X
p�1 .mod8/
L.1=2;�p/¤0

1 �
X

.1CO.ı0//8 logX
� �.�/: (8.6)

The maximum of �.�/ on .0; 1=2/ occurs at the unique positive root �0 of the polynomial
16�4 C 32�3 C 24�2 C 12� � 3: By numerical calculation we find

�0 D 0:17409 : : :

and

�.�0/ D 0:09645 : : : : (8.7)

We then choose � D �0. SinceX
X=2<p�X
p�1 .mod8/

1 D .1C o.1//
X

8 logX
;

we deduce Theorem 1.1 from (8.6) and (8.7) upon summing over dyadic intervals.

9. The second moment of L.1=2; �p/

In this section we prove Theorems 1.2 and 1.3. We first consider separately the upper and
lower bounds for Theorem 1.2.
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9.1. The upper bound in Theorem 1.2

We define

M2 WD

X
p�1 .mod8/

.logp/ˆ.p=X/L.1=2; �p/2: (9.1.1)

In this subsection we prove

M2 � .4cC o.1//
X

8
.logX/3: (9.1.2)

The upper bound of Theorem 1.2 then follows from (9.1.2) upon summation over dyadic
intervals.

The proof of (9.1.2) follows the lines of the proof of Proposition 7.1, takingM.p/D 1.
We employ positivity to replace logp by logX and then introduce an upper bound sieve.
After applying the approximate functional equation, we split �.n/2 D NY .n/C RY .n/,
and employ the bound (7.1.1).

We follow the argument of Section 7 up to (7.2.8), obtaining

SCN D T0 CB:

Since we have no mollifier here, we find that (7.3.6) in this case is

T0 D
2X

.
p
2 � 1/4

1C o.1/

logR

1X
�D1

.�;2/D1
�D�

d2.�/
p
�
OF�.0/COA

�
X

.logR/A

�
CO

�
X1C"

Y

�
:

We insert into this the definitions (7.2.4) and (4.1) of F� and !2, interchange the order of
summation, and then write the sum over � as an Euler product. The result is

T0 D
2X

.
p
2�1/4

1Co.1/

logR
1

2�i

Z
.c/

�
�
s
2
C
1
4

�2
�
�
1
4

�2 �
1�

1

21=2�s

�2�
X

�

�s
L̂ .s/

�
1�

1

21C2s

�3
� �.1C 2s/3

�
1 �

1

22C4s

��1
�.2C 4s/�1

ds

s
COA

�
X

.logR/A

�
CO

�
X1C"

Y

�
:

As before, we truncate the integral to the range jIm.s/j � .logX/2, and then deform the
path of integration to the path made up of the line segments L1; L2; L3 defined above
(7.3.12) to see that the main contribution arises from the residue of the integrand at s D 0.
We evaluate the residue using (6.1.6) and arrive at

T0 D

�
144�.2/

�
1 �

1
p
2

�2��1
X L̂ .0/

4

1C o.1/

logR
.logX/3 CO

�
X logX C

X1C"

Y

�
:

Recalling (2.2) and the definition of c, we deduce that

T0 � .cC "/
X

8

.logX/3

logR
CO

�
X logX C

X1C"

Y

�
: (9.1.3)
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Moreover, we see from (7.9.13) that if M D 1 and b1 D 1, then

B � X
logX
logR

� X (9.1.4)

since we may deform the path of integration in (7.9.13) to a circle jsj D ". The condition
� C 2# < 1=2 in Subsection 7.7 with � D 0 allows us to take # D 1=4� " in (9.1.3). We
then set Y D Xı , for some small, fixed ı > 0. We see that the upper bound (9.1.2) then
follows from (9.1.3) and (9.1.4) after letting " go to zero sufficiently slowly.

9.2. The lower bound in Theorem 1.2

Recall the definition (9.1.1) of M2. Our goal is to prove the following result.

Proposition 9.1. As X !1, we have

M2 �
1

2
.c � o.1//

X

4
.logX/3;

where c is the positive constant defined in Theorem 1.2.

The lower bound for Theorem 1.2 easily follows from Proposition 9.1 by summing
over dyadic intervals.

The main idea in the proof of Proposition 9.1 is a standard one. For any Dirichlet
polynomial A.p/, the Cauchy–Schwarz inequality implies

M2 �
.
P
p�1 .mod8/.logp/ˆ.p=X/L.1=2; �p/A.p//2P

p�1 .mod8/.logp/ˆ.p=X/A.p/2
: (9.2.1)

Clearly, we should choose A.p/ to be an approximation to L.1=2; �p/. Our choice is
inspired by the approximate functional equation in Lemma 4.2. For a positive real num-
ber ˛, we define

A˛.p/ WD
2�

1 � 1p
2

�2 X
n odd

�p.n/
p
n
!1

�
n

r
�

p˛

�
: (9.2.2)

With "0 > 0 small and fixed, we then choose A.p/ in (9.2.1) to be

A.p/ WD A1�"0.p/: (9.2.3)

Observe that taking ˛ D 1 in (9.2.2) yields

A1.p/ D L.1=2; �p/: (9.2.4)

Proposition 9.2. Let "0 > 0 be small. Let ˛1 � ˛2 be real numbers with ˛1; ˛2 2

¹1 � "0; 1º, and .˛1; ˛2/ ¤ .1; 1/. Then

M˛1;˛2 WD

X
p�1 .mod8/

.logp/ˆ.p=X/A˛1.p/A˛2.p/ D
1

2
.cCO."0//

X

4
.logX/3:
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Proof of Proposition 9.1 assuming Proposition 9.2. By (9.2.1), (9.2.3), and (9.2.4), we
have

M2 �
M 2
1�"0;1

M1�"0;1�"0

:

We apply Proposition 9.2 to obtain

M2 �
1

2
.cCO."0//

X

4
.logX/3:

Proposition 9.1 follows upon letting "0D "0.X/ go to zero sufficiently slowly asX!1.

We devote the rest of this subsection to the proof of Proposition 9.2.

Proof of Proposition 9.2. By definition,

M˛1;˛2 D
4�

1 � 1p
2

�4
�

X
p�1 .mod8/

.logp/ˆ
�
p

X

�XX
m;n odd

�p.mn/
p
mn

!1

�
m

r
�

p˛1

�
!1

�
n

r
�

p˛2

�
:

Let M¤ denote the contribution to M˛1;˛2 from mn ¤ �. An application of Lemma 6.1
shows that M¤ � X , say. We note that for bounding M¤ it is crucial that ˛1 D 1 � "0.

We therefore have

M˛1;˛2 D
4�

1 � 1p
2

�4
�

X
p�1 .mod8/

.logp/ˆ
�
p

X

� XX
.mn;2p/D1
mnD�

1
p
mn

!1

�
m

r
�

p˛1

�
!1

�
n

r
�

p˛2

�
CO.X/:

We use Lemma 4.1 to remove the condition .mn; p/ D 1 at the cost of a negligible error.
We then open !1 using its definition as an integral, and interchange the order of summa-
tion and integration. After some simplification, we arrive at

M˛1;˛2 D
4�

1 � 1p
2

�4 1

.2�i/2

Z
.c1/

Z
.c2/

K.s1; s2/

�
X˛1

�

�s1=2�X˛2
�

�s2=2
�.1C 2s1/

��.1C2s2/�.1Cs1Cs2/

� X
p�1 .mod8/

.logp/ˆ
�
p

X

��
p

X

�˛1s1C˛2s2
2

�
ds1 ds2

s1s2
CO.X/;



Quadratic Dirichlet L-functions of prime conductor 449

where c` D Re.s`/ is a positive real number, and

K.s1; s2/ D �.2C 2s1 C 2s2/
�1

�
1C

1

21Cs1Cs2

��1
�

2Y
`D1

�
�
s`
2
C

1
4

�
�
�
1
4

� �
1 �

1

21=2�s`

��
1 �

1

21C2s`

�
:

For the moment we choose c1 D c2 D 1=logX . By the rapid decay ofK.s1; s2/ in vertical
strips, we may truncate to jIm.s`/j � .logX/2 at the cost of a negligible error. With this
condition in place, we use the prime number theorem in arithmetic progressions to deduce
that the sum over p is

X

4

Z 1
0

ˆ.x/x
˛1s1C˛2s2

2 dx CO
�
X exp.�c

p
logX/

�
:

The error term clearly makes an acceptable contribution to M˛1;˛2 . We then remove the
condition on Im.s`/ by the same means we installed it and obtain

M˛1;˛2 D
4�

1 � 1p
2

�4 X4
Z 1
0

ˆ.x/
1

.2�i/2

Z
.c1/

Z
.c2/

K.s1; s2/

�
.xX/˛1

�

�s1=2
�

�
.xX/˛2

�

�s2=2
�.1C 2s1/�.1C 2s2/�.1C s2 C s2/

ds1 ds2

s1s2
dx CO.X/:

We wish to separate the variables s1 and s2. As c` > 0, we may expand �.1C s1C s2/
as an absolutely convergent Dirichlet series. Interchanging the order of summation and
integration, we obtain

M˛1;˛2 D
4�

1 � 1p
2

�4 X4
Z 1
0

ˆ.x/

1X
nD1

1

n

1

.2�i/2

Z
.c1/

Z
.c2/

K.s1; s2/

�
.xX/˛1

�n2

�s1=2
�

�
.xX/˛2

�n2

�s2=2
�.1C 2s1/�.1C 2s2/

ds1 ds2

s1s2
dx CO.X/:

To truncate the summation over n, first we move the lines of integration to the right to
c1 D c2 D 1. By trivial estimation we deduce that the contribution from n� X .˛1C˛2/=4

isO.X/. For n in the range X˛1=2� n� X .˛1C˛2/=4, we move Re.s2/ to c2 D 1=logX
and estimate trivially, getting an error term of O.X.logX/2/. If n � X˛1=2, we then
move c1 to 1=logX as well, obtaining

M˛1;˛2 D
4�

1 � 1p
2

�4 X4
Z 1
0

ˆ.x/
X

n�
p
.xX/˛1=�

1

n

1

.2�i/2

Z
. 1

logX /

Z
. 1

logX /

K.s1; s2/

�

�
.xX/˛1

�n2

�s1=2� .xX/˛2
�n2

�s2=2
�.1C 2s1/�.1C 2s2/

ds1 ds2

s1s2
dx CO.X.logX/2/:
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The variables s1 and s2 are almost separated, except they are entangled inside ofK.s1; s2/.
We move the lines of integration to Re.s1/D Re.s2/D�ı for some small, fixed ı > 0. In
doing so we pick up contributions from the poles at s1; s2 D 0. The contribution from the
integrals on Re.s`/ D �ı is trivially bounded by O.X logX/. We write the contributions
from the poles at s` D 0 as contour integrals around small circles, thereby obtaining

M˛1;˛2 D
4�

1 � 1p
2

�4 X4
Z 1
0

ˆ.x/
X

n�
p
.xX/˛1=�

1

n

1

.2�i/2

I I
js`jD.logX/�1

K.s1; s2/

�

�
.xX/˛1

�n2

�s1=2� .xX/˛2
�n2

�s2=2
�.1C 2s1/�.1C 2s2/

ds1 ds2

s1s2
dx CO.X.logX/2/:

Since js`j D .logX/�1, we have

K.s1; s2/ D K.0; 0/CO

�
1

logX

�
D

1

6�.2/

�
1 �

1
p
2

�2
CO

�
1

logX

�
;

and therefore

M˛1;˛2 D
2

3�.2/.1 � 1p
2
/2

X

4

Z 1
0

ˆ.x/
X

n�
p
.xX/˛1=�

1

n

1

.2�i/2

�

I I
js`jD.logX/�1

�
.xX/˛1

�n2

�s1=2� .xX/˛2
�n2

�s2=2
�.1C 2s1/�.1C 2s2/

ds1 ds2

s1s2
dx

CO.X.logX/2/:

Expanding in Laurent and power series yields

1

2�i

I
js`jD.logX/�1

�
.xX/˛`

�n2

�s`=2
�.1C 2s`/

ds`

s`
D
1

2
log
�
1

n

r
.xX/˛`

�

�
CO.1/;

and hence

M˛1;˛2 D
1

6�.2/
�
1 � 1p

2

�2 X4
Z 1
0

ˆ.x/

�

X
n�
p
.xX/˛1=�

1

n
log
�
1

n

r
.xX/˛1

�

�
log
�
1

n

r
.xX/˛2

�

�
CO.X.logX/2/:

Partial summation yieldsX
n�
p
.xX/˛1=�

1

n
log
�
1

n

r
.xX/˛1

�

�
log
�
1

n

r
.xX/˛2

�

�
D
1CO."0/

24
.logX/3;

and using (2.2) we arrive at M˛1;˛2 D
1
2
.cCO."0//

X
4
.logX/3.
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9.3. Proof of Theorem 1.3

We turn now to the proof of Theorem 1.3. Throughout this subsection we set � WD
100 log logX=logX . Recalling the definition (9.2.2) of A˛.p/, we then have

L.1=2; �p/ D A1��.p/C B.p/;

say. Thus

M2 D

X
p�1 .mod8/

.logp/ˆ.p=X/
®
A1��.p/

2
CO.jA1��.p/B.p/j C jB.p/j

2/
¯
:

(9.3.1)

We shall prove, on GRH, thatX
p�1 .mod8/

.logp/ˆ.p=X/A1��.p/2 D c
X

8
.logX/3 CO.X.logX/2C"/; (9.3.2)X

p�1 .mod8/

.logp/ˆ.p=X/jB.p/j2 � X.logX/5=2: (9.3.3)

Theorem 1.3 then follows from (9.3.1), (9.3.2), and (9.3.3) after applying Cauchy–
Schwarz and summing over dyadic ranges.

We may easily prove (9.3.2), since the treatment is substantially similar to the proof
of Proposition 9.2. By the definition (9.2.2) of A1��.p/, the left-hand side of (9.3.2) is

4�
1 � 1p

2

�4 X
p�1 .mod8/

.logp/ˆ.p=X/
XX
m;n odd

�p.mn/
p
mn

!1

�
m

r
�

p1��

�
!1

�
n

r
�

p1��

�
:

We argue as in Proposition 9.2 and find that the contribution from mn D � is

c
X

8
.logX/3 CO.X.logX/2C"/:

The following standard result (see [12, Chapter 20]) implies that the contribution to (9.3.2)
from mn ¤ � is O.X=logX/, say.

Lemma 9.1. Let � be a non-principal Dirichlet character modulo q. Let �� be the prim-
itive character inducing �, and assume that GRH holds for L.s;��/. If q � XM for some
fixed positive constant M , thenX

p�X

�.p/.logp/�M X1=2.logX/2:

The proof of (9.3.3) is more subtle. Here the method of proof is that of Soundararajan
and Young [42]. As the arguments are very similar, our exposition will be sparse, and we
refer the reader to [42] for more details. We perform some initial manipulations, and then
we state the main proposition that will yield (9.3.3).
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By the definition of B.p/, Lemma 4.2, and the definition (4.1) of !1, we have

B.p/ D
1

2�i

Z
.c/

g.s/L.1=2C s; �p/
ps=2 � p.1��/s=2

s
ds; (9.3.4)

where c > 0 and

g.s/ D
2�

1 � 1p
2

�2 �� s2 C 1
4

�
�
�
1
4

� �
1 �

1

21=2�s

��
1 �

1

21=2Cs

�
��s=2:

The function .ps=2 � p.1��/s=2/=s is entire, so we may move the line of integration in
(9.3.4) to Re.s/D 0. On the line Re.s/D 0 we have the bound j.ps=2 � p.1��/s=2/=sj �
log logX , and hence the left side of (9.3.3) is

� .logX/1C"
Z

R

Z
R
jg.it1/g.i t2/j

X
p�X

p�1 .mod8/

jL.1=2Ci t1; �p/L.1=2Ci t2; �p/j dt1 dt2:

(9.3.5)

To state the proposition we need, we first establish some notation, following [42, Sec-
tion 6]. Given x � 10, say, and a complex number z, we define

L.z; x/ D

8̂<̂
:

log log x; jzj � .log x/�1;
� log jzj; .log x/�1 � jzj � 1;
0; jzj � 1:

For complex numbers z1 and z2 we define

M.z1; z2; x/ D
1
2
.L.z1; x/CL.z2; x//;

V.z1; z2; x/ D
1
2

®
L.2z1; x/CL.2z2; x/CL.2Re.z1/; x/CL.2Re.z2/; x/

C 2L.z1 C z2; x/C 2L.z1 C z2; x/
¯
:

It is helpful to know that for the values of z1 and z2 we consider, we have log logX �
V.z1; z2; X/ � 4 log logX .

The following result, an analogue of [42, Theorem 6.1], is the key input we need.

Proposition 9.3. LetX be large, and let z1 and z2 be complex numbers with 0�Re.zi /�
1=logX and jzi j �X . Assume the Riemann Hypothesis for the Riemann zeta function �.s/
and for all Dirichlet L-functions L.s; �p/ with p � 1 .mod 8/. Then for any real r > 0
and any " > 0 we haveX

p�X
p�1 .mod8/

jL.1=2C z1; �p/L.1=2C z2; �p/j
r

�r;"

X

.logX/1�"
exp

�
rM.z1; z2; X/C

r2

2
V.z1; z2; X/

�
:
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Proof of (9.3.3) assuming Proposition 9.3. Recall (9.3.5). If t1 or t2 satisfies jti j > X we
use Cauchy–Schwarz, Lemma 4.5, and the rapid decay of g to get a negligible error.

We may therefore assume that jti j � X . We then consider, for a parameter 0 < ˛ < 1
at our disposal, two cases: (1) both t1 and t2 satisfy jti j � .logX/�˛ , or (2) at least one of
t1; t2 satisfies jti j � .logX/�˛ . In case (1) we use the trivial bounds

M.i t1; i t2; X/ � log logX; V.i t1; i t2; X/ � 4 log logX;

while in case (2) we use the bounds

M.i t1; i t2; X/ �
1C ˛

2
log logX; V.i t1; i t2; X/ �

7C ˛

2
log logX CO.1/:

Since jg.it/j � .1C t2/�1 we find by Proposition 9.3 that the quantity in (9.3.5) is

� X.logX/"
�
.logX/3�2˛ C .logX/9=4C3˛=4

�
D X.logX/27=11C" � X.logX/5=2

upon choosing ˛ D 3=11.

To prove Proposition 9.3 we establish estimates for how often the quantity
jL.1=2 C z1; �p/L.1=2 C z2; �p/j can be large. The following is very similar to [42,
Proposition 6.2].

Proposition 9.4. Assume the hypotheses of Proposition 9.3. Let N .V I z1; z2; X/ denote
the number of primes p � X , p � 1 .mod 8/, such that

log jL.1=2C z1; �p/L.1=2C z2; �p/j � V CM.z1; z2; X/:

In the range 3 � V � 4rV.z1; z2; X/ we have

N .V I z1; z2; X/�
X

.logX/1�or .1/
exp

�
�

V 2

2V.z1; z2; X/

�
;

and for larger V we have

N .V I z1; z2; X/�
X

.logX/1�or .1/
exp.�2rV /:

Proof of Proposition 9.3. We haveX
p�X

p�1 .mod8/

jL.1=2C z1; �p/L.1=2C z2; �p/j
r

D r

Z 1
�1

exp.rV C rM.z1; z2; X//N .V I z1; z2; X/ dV:

Then use Proposition 9.4.

We use the following lemma to determine how frequently a Dirichlet polynomial can
be large. We write log2X for log logX .
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Lemma 9.2. LetX and y be real numbers and k a natural number with yk �X
1
2�

1
log2 X .

For any complex numbers a.q/ we haveX
p�X

p�1 .mod8/

ˇ̌̌̌ X
2<q�y

a.q/�p.q/

q1=2

ˇ̌̌̌2k
�

X log2X
logX

.2k/Š

2kkŠ

�X
q�y

ja.q/j2

q

�k
;

where the summation variable q runs through the primes. The implied constant is abso-
lute.

Proof. This result is similar to [42, Lemma 6.3], so we give only a sketch. Since we are
assuming GRH we could use Lemma 9.1, but we get an unconditional result that is almost
as good by appealing to sieve theory.

Since p � 1 .mod 8/, we have �p.q/ D �q.p/, by the quadratic reciprocity law.
Observe that �q is a primitive character with conductor� 4q. We then introduce an upper
bound sieve with weights �d supported on d � D D X1=log2X . (For example, we may
take the weights �d in (5.8) with R � X1=log2X ). With the upper bound sieve in place,
we drop the congruence condition modulo 8 and the condition that p is a prime. Opening
the square and using the Pólya–Vinogradov inequality, we see that the sum in question is
then

�

X
n�X

�X
d jn

�d

�ˇ̌̌̌ X
2<q�y

a.q/�q.n/

q1=2

ˇ̌̌̌2k
�

X
qi�y

q1���q2kD�

ja.q1/ � � � a.q2k/j
p
q1 � � � q2k

X
n�X

�X
d jn

�d

�
CD log.y2k/

X
q1;:::;q2k�y

ja.q1/ � � � a.q2k/j:

For the first term we obtainX
qi�y

q1���q2kD�

ja.q1/ � � � a.q2k/j
p
q1 � � � q2k

X
n�X

�X
d jn

�d

�
�

X

logD

X
qi�y

q1���q2kD�

ja.q1/ � � � a.q2k/j
p
q1 � � � q2k

�
X log2X

logX
.2kŠ/

2kkŠ

�X
q�y

ja.q/j2

q

�k
;

where the sieved sum on n contributes the factor X
logD D

X
logX log2 X (this follows, for

example, from Lemma 5.3), and the last inequality follows as in [42, Lemma 6.3]. For the
second term we use Cauchy–Schwarz and the assumption yk � X1=2�1=log2X to obtain

D log.y2k/
X

q1;:::;q2k�y

ja.q1/ � � � a.q2k/j � X
k logX
D

�X
q�y

ja.q/j2

q

�k
:
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Proof of Proposition 9.4. Assume GRH for L.s; �p/. A modification of the proof of the
Proposition in [41] then yields, for 2 � x � X ,

log jL.1=2C z1; �p/L.1=2C z2; �p/j

� Re
�X
q`�x

�p.q
`/

`q`.1=2C1=logx/
.q�`z1 C q�`z2/

log.x=q`/
log x

�
C 2

logX
log x

CO

�
1

log x

�
;

where the sum here is a double sum over primes q and positive integers `. The terms with
` � 3 contributeO.1/. For `D 2 we use the Riemann hypothesis for �.s/ (see [42, (6.4)])
and obtain

1

2

X
q�
p
x

1

q1C2=logx
.q�2z1 C q�2z2/

log.x=q2/
log x

DM.z1; z2; x/CO.log log logX/:

Since M.z1; z2; x/ �M.z1; z2; X/, we obtain

log jL.1=2C z1; �p/L.1=2C z2; �p/j � Re
X
2<q�x

�p.q/

q1=2C1= logx
.q�z1 C q�z2/

log.x=q/
log x

CM.z1; z2; X/C 2
logX
log x

CO.log log logX/: (9.3.6)

Now recall that we wish to bound the number N .V I z1; z2; X/. By taking x D logX
in (9.3.6) and estimating trivially, we see that we may assume V � 3 logX

log logX , for otherwise
N .V I z1; z2; X/ D 0. We may also assume that V 2 � V.z1; z2; X/, since otherwise the
conclusion of Proposition 9.4 would follow immediately from the prime number theorem.
We put V D V.z1; z2; X/, and define

T D

8̂<̂
:
1
2

log log logX; V � V ;
V
2V

log log logX; V < V � 1
16

V log log logX;
8; V > 1

16
V log log logX:

We take x D XT=V in (9.3.6), and define z D x1=log logX . We then obtain

log jL.1=2C z1; �p/L.1=2C z2; �p/j � S1 C S2 CM.z1; z2; X/C 3V=T ; (9.3.7)

where S1 is the sum over q truncated to q � z, and S2 is the remainder of the sum. Observe
that if log jL.1=2C z1; �p/L.1=2C z2; �p/j � V CM.z1; z2; X/, then (9.3.7) implies
that either

S2 � V=T or S1 � V.1 � 6=T / DW V1:

Therefore N .V I z1; z2; X/ � N1 CN2, where N2 is the number of primes p � X with
p � 1 .mod 8/ such that S2 � V=T , and N1 is the number of p � X with p � 1 .mod 8/
such that S1 � V1: Hence, to bound N .V I z1; z2; X/, it suffices to bound N2 and N1.
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To bound N2, we take k D b.1=2� 1=log4X/V=T c � 1 in Lemma 9.2 and apply the
usual Chebyshev-type maneuver

#¹p � X;p � 1 .mod 8/ W S2 � V=T º �
X
p�X

p�1.mod8/

jS2j
2k

.V=T /2k

to deduce that (see also [42, p. 1115])

N2 �
X log2X

logX
exp

�
�
V

4T
logV

�
:

By a similar argument via Lemma 9.2, this time using the fact that Re.q�z1 C q�z2/D
1
2
.q�z1 C q�z1 C q�z2 C q�z2/, we see for any k � .1=2 � 1=log2X/.V log logX/=T

that

N1 �
X log2X

logX

�
2k.V.z1; z2; X/CO.log log logX//

eV 21

�k
(see also [42, p. 1115]). For V � .log logX/2 we take k D bV 21 =.2V/c, and for V >

.log logX/2 we take k D b10V c. We arrive at

N1 �
X log2X

logX
exp

�
�
V 21
2V

�
1CO

�
log log logX

log logX

���
C
X log2X

logX
exp.�V logV /:

10. Proof of Theorem 1.4

The proof of Theorem 1.4 breaks naturally into two parts: the lower bound and the upper
bound. The argument for the lower bound is very similar to that in [38], and we therefore
give only a sketch. The argument for the upper bound is similar to that in Section 7. In
either case, we crucially use the assumption that the central values are non-negative.

10.1. The lower bound

Let d1=2.n/ be the multiplicative function with Dirichlet convolution .d1=2 ? d1=2/.n/
D 1. For a prime p � 1 .mod 4/ and large X define

R.p/ WD
X

n�X1=500

d1=2.n/�p.n/
p
n

:

By Hölder’s inequality and the assumption L.1=2; �p/ � 0 we haveX
p�1 .mod8/

.logp/ˆ.p=X/L.1=2; �p/3 � T 31 =T
2
2 ;
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where

T1 WD
X

p�1 .mod8/

.logp/ˆ.p=X/L.1=2; �p/R.p/4;

T2 WD
X

p�1 .mod8/

.logp/ˆ.p=X/R.p/6:

In T2 we open up R.p/6, and obtain a sum over n1; : : : ; n6, and p. The terms with
n1 � � � n6 D � yield a main term of size� X.logX/6, and the terms with n1 � � � n6 ¤ �
are shown to be an error term by using Lemma 6.1.

For T1, we write L.1=2; �p/ using Lemma 4.2. After opening R.p/4, we have a sum
over n1; : : : ; n4; m, and p, where m is the variable of summation in the approximate
functional equation. The main termmn1 � � �n4 D � is of size� X.logX/6, and the error
term mn1 � � �n4 ¤ � is small by Lemma 6.1. This gives the lower bound.

10.2. The upper bound

Assuming that L.1=2; �n/ � 0 for all square-free n � 1 .mod 8/, we can use an upper
bound sieve and positivity to write

M3 WD

X
p�1 .mod8/

.logp/ˆ.p=X/L.1=2; �p/3

� .logX/
X

n�1 .mod8/

�.n/2
�X
d jn
d�D

�d

�
ˆ.n=X/L.1=2; �n/

3:

The coefficients �d of the sieve are given, as before, by (5.8). We take R to be a suffi-
ciently small power of X .

We use the approximate functional equation

L.1=2; �n/
3
D

16

.
p
2 � 1/6

1X
�D1
� odd

d3.�/
�
�
n

�
p
�

!3

�
�

�
�

n

�3=2�
;

where !3.�/ is defined by taking j D 3 in (4.1). After using the approximate functional
equation to represent L.1=2; �n/3, we write �.n/2 D NY .n/CRY .n/. The contribution
from RY .n/ is bounded using arguments similar to those in Subsection 7.1. For NY .n/
we use Poisson summation as before. Up to negligible error, we therefore have the upper
bound

M3 � .logX/
16

.
p
2 � 1/6

X
d�D
d odd

�d

1X
�D1

.�;2d/D1

d3.�/
p
�

X
˛�Y

.˛;2�/D1

�.˛/

�

�
2Œ˛2; d �

�

�
X

Œ˛2; d �8�

X
k2Z

e

�
kŒ˛2; d ��

8

�
OF�

�
kX

Œ˛2; d �8�

�
�k.�/;
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where

F�.t/ D ˆ.t/!3

�
�

�
�

tX

�3=2�
:

We treat separately the contributions from k D 0 and k ¤ 0. The calculations are some-
what easier in that ultimately we seek only upper bounds, not asymptotic formulas.

The contribution from k D 0 is treated as in Subsection 7.3, and is

� X
logX
logR

.logX/6 � X.logX/6:

For k ¤ 0 the presence of the additive character necessitates a splitting of k into
residue classes modulo 8. When necessary, we write the additive character as a linear
combination of multiplicative characters. We use the second expression in (4.3) for �k.n/
and treat separately the contributions of the terms

�
1Ci
2

�
Gk.n/ and

�
�1
n

��
1�i
2

�
Gk.n/. We

then follow the method of Section 7 to deduce that the contribution from k ¤ 0 is

� X
logX
logR

.logX/6 � X.logX/6:

One difference that arises is in proving analogues of Lemma 7.2. Here we have
L̂ .w C s=2/ inside of an integral, instead of just L̂ .w/ outside of an integral. It is helpful
to use the bound

L̂ .y/�j

�
logX
jyj

�j
:

Another difference is that we have a factor ofX s=2 in the integrals, whereas this factor
disappeared for the k ¤ 0 terms in Section 7. We therefore do not need to concern our-
selves with any symmetry properties of the integrand (cf. the symmetry argument yielding
(7.9.5)).
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