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Abstract. We prove that more than nine percent of the central values L(1/2, yp) are non-zero,
where p = 1 (mod 8) ranges over primes and yp is the real primitive Dirichlet character of con-
ductor p. Previously, it was not known whether a positive proportion of these central values are
non-zero. As a by-product, we obtain the order of magnitude of the second moment of L(1/2, yp),
and conditionally we obtain the order of magnitude of the third moment. Assuming the Generalized
Riemann Hypothesis, we show that our lower bound for the second moment is asymptotically sharp.
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1. Introduction and results

The values of L-functions at special points on the complex plane are of great interest. At
the fixed point of the functional equation, called the central point, the question of non-
vanishing is particularly important. For instance, the well-known Birch and Swinnerton-
Dyer conjecture [44] relates the order of vanishing of certain L-functions at the central
point to the arithmetic of elliptic curves. Katz and Sarnak [23] discuss several examples of
families of L-functions and describe how the zeros close to s = 1/2 give evidence of some
underlying symmetry group for each of these families. They suggest that understanding
these symmetries may in turn lead to finding a natural spectral interpretation of the zeros
of the L-functions. The analysis of each family they discuss leads to a Density Conjecture
that, if true, would imply that almost all L-functions in the family do not vanish at the cen-
tral point. Iwaniec and Sarnak [20] show that the non-vanishing of L-functions associated
with holomorphic cusp forms is closely related to the Landau—Siegel zero problem. Thus
the question of non-vanishing at the central point is connected to many deep arithmetical
problems.

A considerable amount of research has been done towards answering this question for
families of Dirichlet L-functions. Chowla conjectured that L(1/2, y) # 0 for y a primitive
quadratic Dirichlet character [8, p. 82, problem 3]. It has since become a sort of folklore
conjecture that L(1/2, y) # 0 for all primitive Dirichlet characters y. One family that has
attracted a lot of attention is the family of L(s, y) with y varying over primitive characters
modulo a fixed conductor. This family is widely believed to have a unitary symmetry type,
as in the philosophy of Katz and Sarnak. Balasubramanian and Murty [4] were the first
to prove that a (small) positive proportion of this family does not vanish at the central
point. They used the celebrated technique of mollified moments, a method that has been
highly useful in other contexts (see, for example, [5, 10, 39]). Iwaniec and Sarnak [19]
developed a simpler, stronger version of the method and improved this proportion to 1/3.
The approach of Iwaniec and Sarnak has since become standard in the study of non-
vanishing of L-functions at the central point. Bui [6] and Khan and Ngo [27] introduced
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new ideas and further improved the lower bound 1/3. The second author [36] has shown
that more than fifty percent of the central values are non-vanishing when one additionally
averages over the conductors. For further interesting research on this and other families
of L-functions, see [7,11,24-26,28-32].

The family of L(s, y) with y varying over all real primitive characters has also been
extensively studied. This family is of particular significance because it seems to be of
symplectic rather than unitary symmetry. Thus we encounter new phenomena not seen in
the unitary case. For d a fundamental discriminant, set y4(-) = (i) the Kronecker sym-
bol. Then y is a real primitive character with conductor |d |. The hypothetical positivity
of central values L(1/2, y4) has implications for the class number of imaginary quadratic
fields [18, p. 514]. Jutila [22] initiated the study of non-vanishing at the central point for
this family and proved that L(1/2, x4) # 0 for infinitely many fundamental discriminants
d. His methods show that 3> X /log X of the quadratic characters y; with |d| < X have
L(1/2, y4) # 0. Ozliik and Snyder [33] examined the low-lying zeros of this family, and
found the first evidence of its symplectic behavior. Assuming the Generalized Riemann
Hypothesis (GRH), they showed that at least % of the central values L(1/2, y4) are non-
zero [34]. Katz and Sarnak independently obtained the same result in unpublished work
(see [23,40]).

Soundararajan [40] made a breakthrough when he proved unconditionally that at least
7/8 of the central values L(1/2, x4) with d = 0 (mod 8) are non-zero. The biggest diffi-
culty lies in analyzing the contribution of the “off-diagonal” terms in the evaluation of a
mollified second moment. Soundararajan discovered that there is, in fact, a main contri-
bution arising from these off-diagonal terms. (See Section 3 for more discussion.)

The case of real primitive characters with prime conductor is more difficult still.
Jutila [22] initiated the study of L(1/2, x,), where p is a prime. His methods show that
> X/(log X)3 of the primes p < X satisfy L(1/2, yp) # 0. The difficulty in studying
this family is that its moments involve sums over primes, and thus are more compli-
cated to investigate. In fact, Jutila only evaluated the first moment of this family. As far
as the authors are aware, no asymptotic evaluation of the second moment has appeared
in the literature. However, Andrade and Keating [2] asymptotically evaluated the second
moment of an analogous family over function fields. Andrade and the first author [1] have
continued the study of the family of L(1/2, ), showing that it is likely governed by a
symplectic law. Conditionally on GRH, they prove that at least 75% of primes p < X
satisfy L(1/2, yp) # 0.

We prove an unconditional positive proportion result for the central values L(1/2, xp).
In fact, we prove that more than nine percent of these central values are non-zero.

Theorem 1.1. There exists an absolute, effective constant X¢ such that if X > X then

dYooo1=.0964 YL

p=X =X
p=1 (mod 8) p=1 (mod8)
L(1/2,xp)#0
The proof of Theorem 1.1 proceeds via the mollification method, which we discuss
briefly in Section 3. Our methods build on those of Jutila [22] and Soundararajan [40].
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As in the work of Soundararajan, the main difficulty lies in evaluating the contribution
of certain off-diagonal terms. The difference now is that we are summing over primes
instead of square-free integers, and so we cannot directly use his approach. A key idea in
the proof of Theorem 1.1 is the use of upper bound sieves to turn intractable sums over
primes into manageable sums over integers. The use of sieves in studying central values
of L-functions has also appeared in some other contexts (see [17], also [37, p. 1035]).

The tools developed for the proof of Theorem 1.1 allow us to obtain the order of
magnitude of the second moment of L(1/2, yxp).

Theorem 1.2. Let ¢ be the positive constant
= (144221 — 1/¥/2)*) 7' = .0492. ..

For large X we have

(c—o()Fog Xy < Y (ogp)L(1/2.7,)? < (4e +0(1) 5 (log X"
p=X
p=1(mod8)

One would rather have an upper bound in Theorem 1.2 that asymptotically matches
the lower bound, but this seems difficult to prove unconditionally. By adapting a method
of Soundararajan and Young [42] we are able, however, to prove such an asymptotic
formula on GRH.

Theorem 1.3. Let ¢ be as in Theorem 1.2. Assume the Riemann Hypothesis for {(s) and
for all Dirichlet L-functions L(s, xp) with p = 1 (mod 8). Then

X
> (og p)L(1/2.1,)? = ¢S (log X)* + O(X(log X)'/%).
p=X
p=1(mod 8)

After we completed this paper, Maksym Radziwilt informed us about work in progress
with Julio Andrade, Roger Heath-Brown, Xiannan Li, and K. Soundararajan in which they
derive an unconditional asymptotic formula for the second moment of L(1/2, yp). Their
approach similarly introduces sieve weights, and they also observed that this idea could
lead to a non-vanishing result.

Our methods further yield the order of magnitude of the third moment of L(1/2, y,),
assuming that the central values L(1/2, y,) are non-negative for certain fundamental
discriminants n. This non-negativity hypothesis follows, of course, from GRH.

Theorem 1.4. Assume that L(1/2, y,) > 0 for all positive square-free integers n with
n =1 (mod 8). Then for large X,

> (logp)L(1/2. xp)* = X(log X)°.
<X
p=1 (mod8)
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Throughout this paper, we work exclusively with p = 1 (mod 8) for convenience,
but our methods are not specific to this residue class. With some modifications one could
state similar results for other residue classes modulo 8. See the end of Section 3 for more
details.

Our work indicates that Soundararajan’s lower bound [40] for the proportion of non-
vanishing for fundamental discriminants d = 0 (mod 8) also holds for the case of funda-
mental discriminants d = 1 (mod 8). Proving this involves re-doing the calculations in
Section 7, but without applying an upper bound sieve. To complete the proof, one would
also need a first moment calculation. We omit the details and instead refer the reader to
[40, Section 4].

It is natural to ask about the limitations of our method, and how much we can increase
the lower bound in Theorem 1.1. If we assume that we can use arbitrarily long molli-
fiers [13], then we obtain a higher percentage of non-vanishing. However, in view of the
parity problem of sieve theory [14], we could not reach a proportion greater than 1/2 via
our method. On the other hand, by a different method [1], the Density Conjecture of Katz
and Sarnak would imply that 100% of the central values L(1/2, y,) are non-zero.

The outline of the rest of the paper is as follows. In Section 2 we establish some
notation and conventions that hold throughout this work. Section 3 outlines the basic
strategy for the proof of Theorem 1.1. In Sections 4 and 5 we state a number of important
technical results which are used in the proofs of our theorems. The proof of Theorem 1.1 is
spread across Sections 6, 7, and 8. In Section 6 and its subsections we study the mollified
first moment problem. The very long Section 7 and its subsections handle the mollified
second moment. We choose our mollifier and finish the proof of Theorem 1.1 in Section 8.
We prove Theorems 1.2 and 1.3 in Section 9, and we prove Theorem 1.4 in Section 10.

2. Notation and conventions

We define y,(-) = (ﬂ) the Kronecker symbol, for all non-zero integers n, even if n is
not a fundamental discriminant. Note that this means y, has conductor |7| only when 7 is
a fundamental discriminant. We write S(Q) for the set of all real primitive characters y
with conductor < Q. For an integer n, we write n = O or n # O according to whether or
not #n is a perfect square.

We let ¢ > 0 denote an arbitrarily small constant whose value may vary from one line
to the next. When ¢ is present, in some fashion, in an inequality or error term, we allow
implied constants to depend on ¢ without necessarily indicating this in the notation. At
times we indicate the dependence of implied constants on other quantities by use of sub-
scripts: for example, Y <4 Z. When we write an error term of the form O4((log X)™4),
we always mean that A is some large but unspecified constant.

Throughout this paper, we denote by ®(x) a smooth function, compactly supported on
[1/2,1], which satisfies 0 < ®(x) <1 and ®(x) =1forx e[1/2+1/log X,1 —1/log X]
and ®U) (x) <, (log X)/ forall j > 0. In Sections 9 and 10 we allow for the possibility
of ®(x) being a smooth majorant for the indicator function of [1/2, 1] with similar prop-
erties; we leave it to the reader to determine in any given subsection whether a majorant or
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minorant is required. We could state our results for arbitrary smooth functions supported
in [1/2, 1], but we avoid this in an attempt to achieve some simplicity.

We write e(x) = e?™*. For g a compactly supported smooth function, we define the
Fourier transform g(y) of g by

&) = /R g(x)e(—xy) dx.
At times, however, we find it convenient to use a slightly different normalization of the

Fourier transform (see Lemma 5.2).
We define the Mellin transform g (s) of g by

o0
gf(s) = / g(x)x*Ldx.
0
It is also helpful to define a modified Mellin transform g(w) by
(o)
g = [ g ax.
0

Observe that g(w) = gT(1 + w). Lastly, for a complex number s, we define

gs(t) = g2, 2.1)
Note that

. . 1 1
®(0) = dT(1) = d(0) = 5+ 0(1ogx)' (2.2)

The letter p always denotes a prime number. We write ¢ for the Euler phi function, and
dy (n) for the k-fold divisor function, so that di(n) = 1 for k = 1. If a and b are integers
we write [a, D] for their least common multiple and (a, b) for their greatest common
divisor. It will always be clear from context whether [a, b], say, denotes a least common
multiple or a real interval.

Given coprime integers a and ¢, we write @ (mod q) for the multiplicative inverse of
a modulo gq.

3. Outline of the proof of Theorem 1.1

The proof of Theorem 1.1 proceeds through the mollification method. The method was
introduced by Bohr and Landau [5], but later greatly refined in the hands of Selberg [39].
The idea is to introduce a Dirichlet polynomial M(p), known as a mollifier, which damp-
ens the occasional wild behavior of the central values L(1/2, y,). We study the first and
second moments

Si:i= ) (log p)®(p/X)L(1/2, 1,)M(p),
p=1(mod8) 3.1)
Sai= Y (logp)®(p/X)L(1/2, 1,)*M(p)>.

p=1 (mod 8)
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If the mollifier is chosen well then S; > X and S, <« X. By the Cauchy—Schwarz
inequality we have

S2
Y. (logp)®(p/X)= L, (3.2)
p=1(mod 8) 2
L(1/2.xp)#0

and this implies that a positive proportion of L(1/2, y,) are non-zero.
Our mollifier takes the form

bm
M(p) := ——= Ap(m), (3.3)

for some coefficients b,, we describe shortly. Here we set
M=X°% 6e(0,1/2) fixed. (3.4)

The larger one can take 6, the better proportion of non-vanishing one can achieve.
The coefficients by, are a smoothed version of the Mbius function (). Specifically,

we choose
logm
by = H , 3.5
=t (1255 65)

where H(t) is a smooth function compactly supported in [—1, 1] that we choose in Sec-
tion 8. It will be convenient in a number of places that by, is supported on square-free
integers.

We outline our strategy for estimating S and S,. We simplify the presentation here
in comparison to the actual proofs. The sum §; is by far the simpler of the two, so we
start here (see Section 6). Using an approximate functional equation for the central value
L(1/2, xp) (Lemma 4.2), we write S; as

b
six Y 2 Y ﬁ S (log p)O(p/X) (k).

m<M k<X1/2+e p=1(mod 8)

The main term arises from the “diagonal” terms mk = O. The character values y,(mk)
are then all equal to 1, and we simply use the prime number theorem for arithmetic pro-
gressions modulo 8 to handle the sum over p. The sum over k contributes a logarithmic
factor, but this logarithmic loss is canceled out by a logarithmic gain coming from a
cancellation in the mollifier coefficients. This yields the main term for S;, which is of
size < X (Proposition 6.1).

The “off-diagonal” terms mk # 0O contribute only to the error term. After some manip-
ulations the off-diagonal terms are essentially of the form

g= Y 29S tog oo/ X)14(p).
qf%ill:‘/Zﬂq p
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where «(q) is some function satisfying |o(q)| <, ¢°. We assume here for simplicity that
all of the characters y, are primitive characters. We bound the character sum over primes
in & in three different ways, depending on the size of ¢. These three regimes correspond
to small, medium, and large values of g. Some of the arguments are similar to those of
Jutila [22].

In the regime of small g we appeal to the prime number theorem for arithmetic pro-
gressions with error term. The sum over primes p is small, except in the case where one
of the characters y,« is exceptional, that is, the associated L-function L(s, x4+) has a
real zero fB« very close to s = 1. Siegel’s theorem gives ¢* > c¢(B)(log X)B with B > 0
arbitrarily large. This would immediately dispatch any exceptional characters, but unfor-
tunately the constant c(B) is not effectively computable. To get an effective estimate we
use Page’s theorem, which states that at most one such exceptional character y,« exists.
We then study carefully the contribution of this one exceptional character and show it is
acceptably small.

In regimes of medium and large ¢, we take advantage of the averaging over ¢ present
in &. We bound & in terms of instances of

£(0) =071 3" |3 (log P/ X)te(p)|
0/2<q=<Q P
q#0
where Q is of moderate size, or is large.

When Q is medium-sized, we use the explicit formula to bound & (Q) by sums over
zeros of the L-functions L(s, y4). We then use zero-density estimates.

We are left with the task of bounding &(Q) when Q is large, which means Q is
larger than X% for some small, fixed § > 0. Rather than treating the sum over primes
analytically, as we did when Q was small or medium-sized, we treat the sum over primes
combinatorially. We use Vaughan’s identity to write the character sum over the primes as
a linear combination of linear and bilinear sums. The linear sums are handled easily with
the Pdlya—Vinogradov inequality. We bound the bilinear sums by appealing to a large
sieve inequality for real characters due to Heath-Brown (Lemma 4.4).

We now describe our plan of attack for S, (see Section 7). Recall the definition of S,
in (3.1). As we see from Theorem 1.3, we only barely obtain an asymptotic formula for
the second moment

> (logp)L(1/2. xp)*
pP=X
p=1 (mod 8)

under the assumption of the Generalized Riemann Hypothesis. Thus, it might seem doubt-
ful that one can say anything useful about Sy, since the central value L(1/2, x,)? is further
twisted by the square of a Dirichlet polynomial. The key idea is that we do not need an
asymptotic formula for S, but only an upper bound of the right order of magnitude (with
a good constant). We therefore avail ourselves of sieve methods (see Section 5). By posi-
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tivity we have

S2=(ogX) Y. w0/ X)(Y ha)L(1/2 xn)* M),

n=1 (mod 8) dln

where > din A4 is an upper bound sieve supported on coefficients with d < D. Since we
are now working with ordinary integers instead of prime numbers, the analysis for S;
becomes similar to the second moment problem considered in [40, Section 5].

We begin by writing

p(n)*> = Ny (n) + Ry (n), (3.6)
where
Ny() =) pu). Ry@):=) . 37
o e

and Y is a small power of X. The sum

> @0/ X) Ry (0)(Y] Aa ) L(1/2 1) M(n)?

n=1 (mod 8) dln

is an error term, and is shown to be small in a straightforward fashion by applying moment
estimates for L(1/2, y,) due to Heath-Brown (Lemma 4.5).
The main task is therefore to asymptotically evaluate the sum

> @0/ XNy ()(Y Aa)L(1/2 ) M),

n=1 (mod 8) dln

We use an approximate functional equation to represent the central values L(1/2, x,)?
and arrive at expressions of the form

by bm oodz(v) mimov n v
Sou) Yoha LY S @D 5 (Mol 2 2),
T D e N2 SV =1 mods) n X "
n
2|n

where w(x) is some rapidly decaying smooth function that satisfies w(x) & 1 for small x.
We then make the change of variables n = m[d, {?].
We use Poisson summation to transform the resulting sum over m into a sum basically

of the form
Z [d, %)k kl[d, 2lmymyv P kX
e | ———|.
o \mimav 8 [d, £2]mimav

for some smooth function F,. (The quadratic character here is really a kind of quadratic

Gauss sum, but we simplify the situation for the sake of this outline.) The zero frequency

k = 0 gives rise to a main term. Since (%) = 1 or 0 depending on whether /4 is a square



S. Baluyot, K. Pratt 378

(a convention we utilize only in this outline section), the k = 0 contribution represents the
expected “diagonal” contribution from mm,v = O. There is an additional, off-diagonal,
main term which arises, essentially, from the terms with [d, £2]k = 0. We adapt here the
delicate off-diagonal analysis of [40]. The situation is complicated by the presence of the
additive character e(-), which is not present in [40]. The additive character necessitates a
division of the integers k into residue classes modulo 8. We then use Fourier expansion
to write the additive character as a linear combination of multiplicative characters. After
many calculations the off-diagonal main term arises as a sum of complex line integrals.
When we combine the various pieces the integrand becomes an even function, exhibiting
a symmetry which none of the pieces separately possessed. This fact proves to be very
convenient in the final steps of the main term analysis.

One intriguing feature of the main term in S, is a kind of “double mollification”. We
must account for the savings coming from the mollifier M (n), but must also account for
the savings coming from the sieve weights Ay, which act as a sort of mollifier on the
natural numbers. It is crucial that we get savings in both places, and therefore our sieve
process must be very precise. We find that a variation on the ideas of Selberg (see e.g.
[18, Section 6.5]) is sufficient.

At length we arrive at an upper bound S» y, say, for S of size S y < X. We make
an optimal choice of the function H(x) in Section 8 to maximize the ratio 7/, v. The
resulting mollifier is not the optimal mollifier, but it gives results that are asymptotically
equivalent to those attained with the optimal mollifier. This yields Theorem 1.1.

To treat other residue classes of p (mod 8), we make the following changes. First,
we change the definition of x,(:) to (m), wherea =0if p =1 (mod 4) anda =1
if p =3 (mod 4). Thus y,, is still a primitive character of conductor p. Second, we use
a variant of the approximate functional equation (Lemma 4.2) with w;, defined in (4.1),

replaced by
1+2a)/ j
1 F(% + 4 a) 1 _ XP(2) jE_SW(S) ﬁ

270 J(e) r(%)f 21/2=s s

The function W(s) here is 16(s? — 1/4)2. Its purpose is to cancel potential poles at s =
1/2 in the analysis.

4. Lemmas

We represent the central values of L-functions by using an approximate functional equa-
tion. We first investigate some properties of the smooth functions which appear in our
approximate functional equations. For j = 1,2 and ¢ > 0, define

1 T+ 1\ ds
® =5 [ o (1= 5 ) @




Quadratic Dirichlet L-functions of prime conductor 379

Lemma 4.1. Let j = 1,2. The function w;(§) is real-valued and smooth on (0, co). If
& > 0 we have

J
0 §) = (1 - %) 0.6,

For any fixed integer v > 0 and £ > 4v + 10, we have

0 (€) < (£/2)" P exp(=182) <y exp(—4£).

Proof. The proof is similar to [40, Lemma 2.1], but we give details for completeness. The
function wj (s) is real-valued because the change of variable Im(s) — —Im(s) shows that
wj is equal to its complex conjugate. Moreover, uniform convergence for £ in compact
subintervals of (0, oo) implies that w; is smooth.

To prove the first estimate of the lemma, move the line of integration in the definition
of w;j(§) to ¢ = —1/2 + . The pole at s = 0 contributes (1 — 1/+/2)7, and the new
integral is O, (£1/27¢).

Let us turn to the last estimate of the lemma. We may suppose £2// > 4y + 10. By
differentiation under the integral sign we find

) _ (_1)1} F(% + %)l ( _ 1 )j _ —s5—V ﬂ

Recall that |[T'(x + iy)| < T'(x) for x > 0 and zI'(z) = I'(z + 1). Thus, for ¢ > 2 we
obtain

3 J 2¢\/ o s+k
PIIGIRS I‘( 42 +v) (1+—) g ”/ Is k| ds|
2 4 V2 (0) |s||2 +V|k 0’2 +k|
5V (27\(2\ _,
r - -] c
<r(in) (5) ()
where the implied constants are absolute. By Stirling’s formula this is
c4 v 43 L(e+2043) 1hj\C ro\ Y
() ()6
We choose ¢ = %Sz/j — 2v — 3, which is > 2. Thus, the quantity in question is

< (§/2)"3 exp(—18%7),

as desired. [

We will find it technically convenient to use an approximate functional equation in
which the variable of summation is restricted to odd integers.
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Lemma 4.2. Letn = 1 (mod 8) be square-free and satisfyn > 1. Let y,(-) = (ﬂ) denote
the real primitive character of conductor n. Then for j = 1,2 we have

- 2 > xn()d;(v) _ 7 \/? A
L(1/2, xn)’ = YN ; ol (v(;) ) =: D;(n).
v odd

Proof. The proof is along standard lines (e.g. [18, Theorem 5.3]), but we give it since our
situation is slightly different.

Let A(z, xn) = (n/7)?/2T(z/2)L(z, y»). Since n is positive we have y,(—1) = 1,
and therefore we have the functional equation (see [9, Proposition 2.2.24], [ 12, Chapter 9])

Az, xn) = A1 —z, xp).

Recall also that A(z, y,) is entire because y, is primitive.
Now consider the sum

) /2
-G (3))

v odd

We use the definition of w; and interchange the order of summation and integration. Since
xn(2) = 1 we have

2w © F(}T)j 21/2—s 21/2+s T ) s An B

—j/a . . .
1 2y~ 1y 1y (1 Jd

= — (”) ki (1— l/2—s) (l—m) A(—+S,Xn) _S
2mi Je) 1“(%) 2 2 2 s

We move the line of integration to Re(s) = —c, picking up a contribution from the simple
pole at s = 0:

- B () G

—j/4 . . .
1 ()™~ 1)/ 1\ (1 7 ds
+% o [‘(%)J‘ 1_21/2—s 1_—21/2+s A §+S’Xn o
In this latter integral we change variables s — —s and then apply the functional equation
A(1/2—=s, xn) = A(1/2 + 5, xp) to obtain

@7 N (LY s 0 ()
Ty () G == R =T (F) )

4

We then rearrange to obtain the desired conclusion. ]
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We frequently encounter exponential sums which are analogous to Gauss sums. Given
an odd integer n we define, for all integers k,

- (G TG e

a (modn)

wm= Y (;—:)e(%) _ (“2” +(;)1;i)ck<n>. 43)

a (modn)

We require knowledge of G (n) for all odd n.

Lemma 4.3 ([40, Lemma 2.3]). (i) (Multiplicativity) Suppose m and n are coprime
odd integers. Then Gy (mn) = Gg(m)Gy(n).

(ii) Suppose p“ is the largest power of p dividing k. (If k = 0 set « = 00.) Then for
B =>1:

0 if B <aisodd,
o(p?) if B <aiseven,

Gk(Pﬁ) =q-p* if B=o+ 1iseven,
(%)p“ﬁ if B=a+ 1isodd,
0 ifB>=a+2.

The following two results are useful for bounding various character sums that arise.
Both results are corollaries of a large sieve inequality for quadratic characters developed
by Heath-Brown [16].

Lemma 4.4 ([40, Lemma 2.4]). Let N and Q be positive integers, and let ay, . ..,an be
arbitrary complex numbers. Then

Y | ano| < @V QN Y Jananl.

X€S(Q) n<N niny=0

for any ¢ > 0. Let M be a positive integer, and for each |m| < M write 4m = mlm%,
where m1 is a fundamental discriminant, and m, is positive. Suppose the sequence a,
satisfies |a,| < n®. Then

1
|m|§M 2

2
z:%(%)’<(MNYNMI+N)
n<N

Lemma 4.5 ([40, Lemma 2.5]). Suppose o + it is a complex number with o > 1/2. Then

Z |L(o + il‘,)()|4 < QH_E(] + |[|)1+£’
x€S(Q)

D Lo +it )P < QM+ [e]) /2T
xeS(Q)
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5. Sieve estimates

Our main sieve will be a variant of the Selberg sieve (see [15, Chapter 7]). To lessen the
volume of calculations, we also use Brun’s pure sieve [15, Chapter 6] as a preliminary
sieve to handle small prime factors. We set

zg := exp((log X)1/3), (5.1)
R:=X"? € (0,1/2) fixed. (5.2)

Given a set 4 of integers, we write 1,4(-) for its indicator function. For y > 2 we
define

Py =]]»r
D=y

Then, for n < X, our basic sieve inequality is

Lin: 5 prime) =< Lin: (0, Pzo))=1}1{n: (0, P(R)/ P(20)) =1} (5.3)

We write w(n) for the number of distinct prime factors of n. To bound the first factor
on the right-hand side of (5.3), we use Brun’s upper bound sieve condition (see [15, (6.1)])

Ln:npGop=13 () < D p(b), where ro:=[(logX)'*|.  (5.4)
bl(n,P(20))
w(b)<2ro
We use an “analytic” Selberg sieve (e.g. [35]) for the second factor of (5.3). We introduce a
smooth, non-negative function G(¢) which is supported on the interval [—1, 1]. We further
require G () to satisfy |G(1)| < 1,|GY)(¢)| <, (loglog X)/~! for j a positive integer,
and on the interval [0, 1] we require G(t) = 1 —¢ fort < 1 — (loglog X)~!. Then

logd 2
l{n:(n,P<R)/P(zo))=1}(")5( > “(d)G(logR))

dln
(d,P(z0))=1

. log j logk
%; u(x)u(k)G(@)G(@). 5:5)

[/.kIn
(jk,P(z0))=1

We mention also that the properties of G imply

/OOG/(Z)ZdtzH—O(
0

Note that the fundamental theorem of calculus and Cauchy—Schwarz yield the lower
bound

/ G'(t)*dt > 1.
0
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From (5.3)—(5.5), we arrive at the upper bound sieve condition
Linen prime} (1) < D Aa, (5.7)
din
where the coefficients A, are defined by

ogm logn
= Y T wtwenos(=2R)o(E5) 6

b|P(zp) m,n<R
w(b)<2rg b[m,n]=d
(mn,P(z0))=1
If b | P(zo) and w(b) < 2rg, then b < Zgro < exp(2(log X)?/3). Hence A4 # 0 only for
d < D, where

D = R?exp(2(log X)*/?) «, R*X°. (5.9)

In our evaluation of sums involving the sieve coefficients (5.8) we use the following
version of the fundamental lemma of sieve theory (see also [15, Section 6.5]).

Lemma 5.1. Let 0 < § < 1 be a fixed constant, r a positive integer with r < (log X)®, and
zg as in (5.1). Suppose that g is a multiplicative function such that |g(p)| < 1 uniformly
for all primes p. Then

Z ,u(b) gb) = l_[( g(;)) + O(exp( rloglogr))

b|P(z0) P=z0
wb)<r pte
(b,0)=1

uniformly for all positive integers {.

Proof. The proof is standard. Complete the sum on the left-hand side by adding to it all the
terms with w(b) > r. Bound the sum of those terms by taking absolute values, dropping by
positivity the condition (b, £) = 1. The resulting bound is < exp(—(1 + o(1))r logr) <
exp(—r loglogr) (e.g. [18, §6.3]). The completed sum is equal to the Euler product on
the right-hand side. ]

The basic tool in our application of the Selberg sieve is the following lemma.

Lemma 5.2. Let zo = exp((log X)'/3). Let G be as above. Suppose h is a function
such that |h(p)| K¢ p~¢ uniformly for all primes p. Let A > 0 be a fixed real num-
ber. Then there exists a function Eo(X), which depends only on X, G, and ¥ (see (5.2))
with Eq(X) — 0 as X — oo, such that

p(m)pu(n) _ (logm logn
ZZ [m,n] G(logR)G(lo R) H(l—i—h(p))

m,n<R
_ 1+ Eo(X) -1 1
S J1(73) oul(Gme) e

(mn,LP(z0))=1
P=zZ0o

uniformly for £ < X9,
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Proof. Let § denote the left-hand side of (5.10). If m,n < R and (mn, P(zp)) = 1, then
w(mn) K log R, and each prime dividing mn is larger than zg. Thus

T[] +h(p) =1+ 0. (logR),
0

plmn
and so
p(m)u(n) (IOgM) (IOgn) ((IOg R)“)
s= >3 G G +0 . (511
oy [m, n] log R log R z§
(mnLP(zp))=1
We may ignore the condition (mn,£) = 1in (5.11) because
1 log £)(log R)3
ZZ ZZ Zl<<(10gR)3Z_<<M'
m,n<R m,n<R n, ple p %o
(mn, P(zo)) 1 (mn, P(zo)) 1 p\mn p>zo
(mn,£)>1
We next insert the Fourier inversion formula
o0
G(1) = / g(z)e™10+i2) g (5.12)
—00
into (5.11), where
1 © :
g(z) = —/ e'G(t)e'?" dt. (5.13)
21 J oo

As G(t) is supported in [—1, 1] we may let m and n range over all positive integers in
(5.11). We then interchange the order of summation and integration and write the sum as
an Euler product to deduce that

1 1
S = / / 8(z1)g(z2) 1_[ ( EEEN - 1+izy + MR ETE N ) dzydz;
p

P>z p logR p1+ log R log R

4
+ o(aogf) ) (5.14)

2y

By integrating (5.13) by parts repeatedly we see

loglogX)A
)<Ly | ————
2(2) < ( o
and we have the trivial bound
! 1 1 o@
1_[ (1_ L T T + 1+2+,21+,-22) < (log R)OW,
p>z0 p log R p log R p log R
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Therefore, we may truncate the double integral in (5.14) to the region |z1], |z2| < «/log R,
with an error of size O4((log R)~*). After doing so, we multiply and divide the integrand
by Euler products of zeta-functions to arrive at

2+iz1+izn

é‘( log R )
S = g(z1)g(22) —
L
1— 1

l+2+i21 +izp

<1 (1_1)1 - ><;g_k 1 >H(1+0(%))dzldzz+o(m).

P=Zz0 T+iz; R p>zo
p

log R log R

(5.15)

The product over primes p > zg in (5.15) is 1 + O(1/zp). To estimate the product over
p < zo, observe that if |s| < (log R)~'/2, then

1 s |s|log p (log X)l/3
Z Tl(l—p ) K Z —— K |s]logzo K W,
P=Z20 P=Z0
which implies that

10 e) - Zomlr+ - 11 (-)

P=20 P=zo P=20
log X)1/3 1
_ (1 + 0(—(°g )1/2)) I1 (1 ——).
(log R) p<z0 p

We may also expand each zeta-function in (5.15) into its Laurent series. With these
approximations, we deduce from (5.15) that

1 1\! (1 +iz1)(1 +iz2)
S = 1 _—
1ongI<ZIO( p) // 88—
- |zj|<+log R

x (14 E(X,9,z21,22))dz1 dzo + O((log R)™4),

uniformly for log £ < log X. Here E(X, ¥, z1, z2) tends to zero as X — oo. By the rapid
decay of g(z), we may extend the range of integration to R? without affecting our bound
for the error term. By differentiating (5.12) under the integral sign and Fubini’s theorem,

we find
// g(er)g(ey VA 12 4o /0 Z 6wz,
]R2

2+i21 +i22

The lemma now follows from this and (5.6). ]
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Lemma 5.3. Let Ay and D be as defined in (5.8) and (5.9), respectively. Suppose that
g is a multiplicative function such that g(p) = 1 + O(p~¢) for all primes p. Then with
Eo(X) as in Lemma 5.2 we have

1+E X 1! 1
> e -5 -2 I0-5) +on(Gme)
d<D P<2o p p<zo P 0og
d,H)=1 ptl

uniformly for £ < X9,

Proof. The definitions (5.8) and (5.9) of A; and D imply

w(b)p(m)m(n) log m log 1
blgz:w %; bim. n] G(logR)G(logR)g(b[m’n])'

w(b)<2rg (mn,LP(zp))=1
b,)=1

In the sum on the right-hand side, g(b[m, n]) = g(b)g([m, n]) because b and mn are
coprime. Thus we may apply Lemma 5.2 and then Lemma 5.1 to arrive at Lemma 5.3. m

Lemma 5.4. Let Ay, D, g be as in Lemma 5.3. Suppose that h is a function such that
|h(p)| e p~'T¢ for all primes p. Then with Eo(X) as in Lemma 5.2 we have

A 1+ Eo(X) -1
> Hed) L) =~ H( )

(ddt;)D pld P=Zo
D=1
g(p)h(p) ( g(q)) ( 1 )
E + Oy,
P=Z0 p 111<_Z[0 ’ (1 R)A
pte qtpt

uniformly for all integers £ such that log{ < log X. (Here, the index q runs over
primes q.)

Proof. The definitions (5.8) and (5.9) of Ay and D imply

A
> “reld) Y h(p)

d<D pld
d,)=1

pb)p(m)pu(n)  (logm logn
bPZ(zo) ;KXR: blm,n] G(logR)G(logR)g(b[m’n])plbzmnh(p)'

w(b)<2rg (mn,LP(zp))=1
(b,0)=1
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Since b and mn are coprime, g(b[m,n]) = g(b)g([m,n]) and

D h(p) =) _h(p)+ Y hip).

plbmn plb plmn

We may ignore the sum over the p | mn because the conditions (mn, P(zp)) = 1 and

mn < R? imply
log R
Yo hp) < Y T < e

plmn plmn
We factor out g(b) and Zp\ p» h(p) from the sum over m, n and then apply Lemma 5.2 to
deduce that
Aa 14 Eo(X) !
D 8@ h(p) = [T(
d lo R
d<D pld P=<zo
d,f)=1
wu(b) 1
x Y gb) Y h(p) + Oa| ——— (5.16)
b (log R)
b|P(z0) plb
w(b)<2rg
(b,0)=1

To estimate the b-sum, we interchange the order of summation and then relabel b as bp
to write

> O = e Y M

b| P(zo) plb P=Z0 b|P(z0)
w(b)<2rg pte w(b)<2rg
(b.6)=1 (b,0)=1
plb
g(p)h(p) n(b)
-y D 5 D,
DP=Z0 p b|P(z0)
pit w(b)<2ro—1
(b,p)=1
Lemma 5.4 now follows from Lemma 5.1 and (5.16). [ ]

6. The mollified first moment

Our goal in this section is to asymptotically evaluate S;. Recall from (3.1) that
)4
Si= Y (log p)cb(})L(l/z, X M(p).
p=1(mod 8)

Recall the definition of M(p) from (3.3), and the choice (3.5) we made for the mollifier
coefficients b,,. We shall prove the following result.
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Proposition 6.1. Let 0 < 6 < 1/2 be fixed. If X > Xo(0), then
Slz;(H(O) ! H(O))X—FO(L_).
2(1 - 75) 20 (log X)!1=*
The implied constant in the error term is effectively computable.

Let us begin in earnest, following the outline in Section 3. We apply Lemma 4.2 to
write L(1/2, xp) as a Dirichlet series. We insert the definition of M (p) and obtain

.- (£l 5)(2)
1 (—%2%%,5«/_”20:“\/_1] 1%;0(18) AR YA

The main term arises from the terms with mn = O. Let us denote this portion of S; by S ID.
We denote the complementary portion with mn # O by S fé . Therefore

Sy =SP4+ S7,
where
O 2 N\ b 1 D T\ [ mn
ST =—222—— Z (logp)®| = Jor(n,/— ]| — |,
(1 - \/LE) m<M n=1 m \/ﬁpzl (mod 8) X p p
m odd 1 odd
mn=0
+ 2 > b 1 p 7T\ [ mn
Slzﬁzz—m—n Z (logp)CD}a)ln —{—).
(1 - 75) r’rrllfoélg I’Z?dld p=1(mod 8) p p
mn##0 (6.1)

We treat first the main term ST, and later we will bound the error term S fé .

6.1. Main term

Recall that by, is supported on square-free integers m. Therefore, mn = O if and only
if n = mk?, where k is a positive integer. We make this change of variables and then
interchange orders of summation to obtain

2 p b o~ 1 T
Y — log p)®| = — —wi | mk? | =).
eI (I ACE
=1 (mo =
v2iop (m,2p)=1 (k.2p)=1
By the rapid decay of w; (Lemma 4.1) we see that the contribution from those k with
(k, p) > 1is O4(X~4), so we may safely ignore this condition. We may also ignore the
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condition (m, p) = 1, since m < M < p. We insert the definition (4.1) of w;(§) and
interchange to deduce that for any ¢ > 0 we have

£ )

=1
2)=1
1 r+1) 1 1 p\/? . ds
= | 22 d(1-__ J1-——)ca+29)(Z iy
= r() (1= 3 ) (1= greas Jo +29(3) o=

We move the line of integration to Res = —1/2 + ¢, leaving a residue at s = 0. The new
integral is O,(p~"/4+¢m1/2=#) Using b,, < 1, we see that the total contribution of this
error term is << X 3/4+teM1/2 This is O(X %) by (3.4). Writing the residue at s = 0 as
an integral along a small circle around 0, we deduce that

— 2 p b
SP=0(X""%+ Y Z (logp)CID(Y) Z Em
(1 - 75) p=1(mod 8) (m%]ul
m,2)=
g ()t (2)
X —— 1- 11— L+25)[ =) m™ —.
i Jisi=pity  T(3) 21/27s 7 )6 = s

(6.1.1)

logm

We next use the definition b,, = u(m)H (
(compare with (5.12),(5.13))

) and the Fourier inversion formula

o0
O = [ h@e 49 6.12)
—00
where
1 e )
h(z) = —/ e H(t)e'" dt, (6.1.3)
27 J o
to write
p(m)
/ A) Z 1+s+]10+;‘j dz
m<M m=1 g
(m,2)=1 (m 2)=1

oo 1 -1 1 . —1
0 Hl+s +100 log M

Here we have used the fact that b,, = 0 for m > M due to the support of H(¢). From
repeated integration by parts we obtain

1
h(z) < (1+—|Z|)J" (6.1.4)
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and therefore we may truncate this integral to the range |z| < /log M. Thus,

b 1 - 1 !
Z _mm_s :[ h(Z)(l_—IW) §(1+S+ +IZ) dZ
m |z|</logM 21+S+logM 1 gM

(m,5)=1
+ 0 !
N ogx)4 )

_ 1 . 1 -1 14iz\~1
For |s| = 53, and |z| < /Tog M, we may write (1- —21+5+110§f ) C(1+s+ logM)

1
h(z)(s + 1 Jgr;)dz

as a power series and arrive at

b
> =2 f
m<M m |z|</logM

(m,2)=1

1
ol ———— h 1 2y g )
+ ((logx)z /mg e P a:

1+iz 1
e o)
|z|</log M ( ) IOgM (lOg X)Z

We may extend the range of integration to the entire real line, with negligible error,
because of (6.1.4). Differentiating (6.1.2) leads to

H'(t) = _/ (1 +iz)h(z)e " 0T gz,

This and (6.1.2) thus imply

o 14+iz 1
—sH(O)— ——H'
/_oo h) (s + log M ) dz = sH() log M ©),

and hence

I 2, 1
> —m ™ = 25H (0) —lOgMH(O) + 0(—(1ogX)2)' (6.1.5)

We insert (6.1.5) into (6.1.1) to obtain

SID:(I— 7z “"g”)‘l’(g)ﬁ?S lr(r%(?)(“z“lz-s)

p=1(mod 8) S|=2msx

%
s/2
p 1 , ds X
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We evaluate the integral using the formula
n—1

1
(n—1)! dsn—1

s"g(s) (6.1.6)

Resg(s) =
s=0

s=0
for a pole of a function g(s) at s = 0 of order at most n. This yields

] X
Slﬂzl_% > (logp)cb(§)(H(0) ‘(’)ip H(O)) (_1ogx)'

/2 p=1(mod8)

By the support of ® we have log p = log X + O(1). We then use the prime number
theorem in arithmetic progressions and partial summation to obtain

o_ 1 B g X X
Sl—l_ﬁ( 0~ et 1 0) 80 + 0 ),

This gives the main term for Proposition 6.1, by (2.2).

6.2. Preparation of the off-diagonal

We turn to bounding S 1# . In order to complete the proof of Proposition 6.1, we shall prove

X
R 6.2.1
P < (log X)1—= ( )

We need to perform some technical massaging before S fé is in a suitable form. Recall
from (6.1) that

ot e M )

m<M n=1 p=1(mod8)
m odd » odd
mn##0

We begin by uniquely writing n = rk?, where r is square-free and k is an integer (this
variable k is unrelated to the variable k appearing in the analysis for S ID). The condition
mn # O 1is equivalent to m # r, since both m and r are square-free. It follows that

P )

p=1 (mod 8)
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We next factor out the greatest common divisor, say g, of m and r. We change variables
m — gm,r — gr and obtain

# 1(g)* . M(r)2 ¢
RO DI B3 :
7 dd M r=1 k=
«/5 go (ﬁ,szg)/gl ((rmz‘f))ll kold
mr>1
2k2
X Z (logp)é(p)wl(grkzl )(mrg )
_ X b4 b4
p=1(mod 8)

Observe that the support of bg,, forces g < M < X 1/2 but we prefer not to indicate this
explicitly.

Clearly we have (%) =1 for p } gk and = 0 otherwise. Since g < M < p, the
condition p } g is automatically satisfied. By Lemma 4.1 we may truncate the sum over
k to k < X'/4¢ at the cost of an error O(X 1), say. We may similarly truncate the sum
over r tor < X/2%¢ With k suitably reduced we may drop the condition p } k, and then
we use the rapid decay of w; again to extend the sum over k to infinity. It follows that

(8)? bm ("’ <
Sl;é Zﬂg Z Omg Z M\;; ZE

( ﬁ g odd 8

m=<M/g r<Xx1/2+e k=1
(m,2g)=1 (r2g)=1 k odd
(m,r)=1
mr>1

p 5 [\ [mr 1
X (log p)CID(—)a) (grk \/i) (—) +O0(X7"). (622
p:l%’n:od& X 1 p p

We next detect the congruence condition p = 1 (mod 8) with multiplicative characters
modulo 8 and write

£ w2l ()

p=1(mod8)
! V4 2 ymr
=7 log p)® k?. | . (623
476{§i2}§( &) (X)wl(gr P)( p ) ¢ )

Since m and r are odd and square-free and (m, r) = 1, it follows that mr is odd and
square-free. Hence, for each y € {1, —1,2,—2}, the integer ymr is square-free. Therefore

ymr = 1,2, 0r 3 (mod 4). If ymr = 1 (mod 4), then (¥7) is a real primitive character
4ymr

modulo |ymr|, while if ymr = 2 or 3 (mod 4), then ( ) is a real primitive character
modulo |[4ymr| (see [9, Theorem 2.2.15]). Moreover, for p odd,

()= ()
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Therefore the sum in (6.2.3) is equal to
1 P
7 2. 2.(oe p)¢(x) (grkz,/ p)Xymr(p) (6.2.4)
ye{£l1,£2} P

where

(”mr) if ymr = 1 (mod 4),

Xymr () = (4ymr

) if ymr = 2 or 3 (mod 4),

so that ., (-) is a real primitive character for all the relevant y,m, r. Also, since mr > 1,
we see that ymr is never 1, so each y,,, is non-principal.

We insert the definition of w; into (6.2.4) in order to facilitate a separation of variables.
Recalling (6.2.2) and (6.2.3), we interchange the order of summation and integration to
obtain

4 1(g)? bmg p(r)*1 — 1
51_0(1)+( D Jr X i 2 2k

g
ﬁ g odd (msM)/g r<Xx1/2te Vé{il,ﬂ}]lcc=dld
m,2g)=1 (r2g)=1 o
(m,r)=1
mr>1

1 r(s+1) 1\ s p 52 45
i Lo r2(§)4 (1—21/2_S)71 /2(grk?) Z(logp)q)(X)Xymr(P)p /2 — P
p

We choose ¢ = @, so that p* /2 is bounded in absolute value. We can put the summation

over k inside of the integral, where it becomes a zeta factor, and we obtain

M(g) w(r)?1 1
51#:0(1”( 122 > ﬁ ) NG > o

_ﬁ g odd (m<M)/g r<Xx1/2+e ye{+1,+2}
m.2g)=1 (r2g)=1
(m,r)=1
mr>1

L(s+3) 1 1 B By
: f(c) 13(%)4 (l - 21/2—5)(1 - W)m +25)m " 2(gr)
d
X Z(log p)@(%)xymr(p)ps/z _S
P

It is more convenient to replace the log p factor with the von Mangoldt function A (n).
By trivial estimation we have

> (log p)d>(§)xymr<p)p”2 = ZA(n)«b(%)xymr(n)ns/z +0(X'?).
y4 n
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When we sum the error term over m, g, r and integrate over s, the total contribution
is O(X'7%), provided ¢ = &(6) > 0 is sufficiently small. By the rapid decay of the T’
function in vertical strips we can truncate the integral to |Im(s)| < (log X)?, at the cost of
a negligible error. We therefore obtain

- 2 n(g)? b p(r)> 1
ST=00x" )+ ——— T X i X
(1 - 75) g odd g m<M/g r<X1/2+e ye{+1,+£2}
(m,2g)=1 (r2g)=1

(m,r)=1
mr>1

1 ; 2

1 ey Tillog X) (s + 1 1 1

" 2 (2 - 4)(1— 1/2—)(1_1—H)§(1+2S)
2mi long —i(log X)2 I (Z) 2 S PARES

x\*? s n ds
X (;) (gr) XH:A(n)q)S(Y)Xer(n) T, (6.2.5)

where we recall (see (2.1)) that ®y(x) = ®(x)x*/2.
Having arrived at (6.2.5), we are finished with the preparatory technical manipula-

tions. We proceed to show that Sf’é is small. As discussed in Section 3, we apply three
different arguments, depending on the size of mr. We call these ranges Regimes I, II, and
III, which correspond to small, medium, and large values of mr. In Regime I we have

1 <mr K exp(w+/log X),

where @ > 0 is a sufficiently small, fixed constant. Regime II corresponds to
exp(w\/@) Lmr K Xl/lo,

and Regime III corresponds to

X0 o r « MXV2HE,
We then write

S¥ = Ey 4+ Ey + 0(X'79), (6.2.6)
where E contains those terms with mr < exp(w +/log X), and E5 contains those terms
with mr > exp(w +/Iog X). We claim the bounds

E K E; € X exp(—cw+/log X), (6.2.7)

(log X)!—¢~
where ¢ > 0 is some absolute constant. Taking together (6.2.6) and (6.2.7) gives (6.2.1),
and this yields Proposition 6.1. It therefore suffices to show (6.2.7).

We remark that there is some flexibility in choosing the “boundary” between Regime I
and Regime II. If one wishes to use Siegel’s theorem, then one may choose the boundary to
be mr < (log X)&, and then the treatment of Regime I is essentially a simple application
of the Siegel-Walfisz theorem. The error bound one obtains for Regime II would then be
a weaker O4(X/(log X)?4), compared to the stronger bound of (6.2.7).
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6.3. Regime |

We first bound E, which is precisely the contribution of Regime I. Apart from an unim-
portant factor of 1 - 2(1 —271/2)72 we have

2 2
Ey = Z w(g) Z b% Z Hf/r;)

g odd g m<M/g

r<X1/2+E
(m,2g)=1 (r2g)=1
(m,r)=1
1<mr<<exp(w\/logj)
logX +l(l°gX)2 + l 1 1
X _/ . (FZ - 4)(1—21/2_3)(1——21+2s)
ye{£1,+£2} e x —i(log X) (Z)

x;(1+2s)( ) (gr)SZA(n)CD( )Xym,(n) . (63.1)

We transform the sum over n with partial summation to obtain

ZA(n)cb( Vet == [ 20 (5) (X A0tme ) . 632

n<w

By [12, equation (8) of Chapter 20], we have

B
Z A(R) Yymr(n) = LA O (w exp(—cy y/log w)), (6.3.3)

a0 b

where ¢; > 0 is some absolute constant, and the term —w#! /8 only appears if L (s, Xymr)
has a real zero B; which satisfies §1 > 1 — ¢p/log|ymr| for some sufficiently small
constant ¢, > 0. (It is important here that mr < exp(w +/log X).) All the constants in
(6.3.3), implied or otherwise, are effective.

The contribution from the error term in (6.3.3) is easy to control. Observe that

A
0 X
uniformly in s with Re(s) bounded. Taking (6.3.1), (6.3.2) and (6.3.4) together, we see
the error term of (6.3.3) contributes

<L Xexp((czw — c1)+/log X) (6.3.5)

to E1, where c3 > 0 is some absolute constant; we have used here the fact that mr <
exp(@ +/log X). The bound (6.3.5) is more than adequate for (6.2.7) provided we choose
w > 0 sufficiently small in terms of ¢;.

Since mr < exp(w +/log X), the conductor of the primitive character x,m, is
L exp(w/Tog X) < exp(Qw +/Tog X). We apply Page’s theorem [12, equation (9) of
Chapter 14], which implies that, for some fixed absolute constant ¢4 > 0, there is at most

CIJ’(X)‘ dw =[ |®,(u)|du < |s| + log X, (6.3.4)
0
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one real primitive character yy,,, with modulus < exp(2w +/log X') for which the L-
function L(s, yym,) has a real zero satisfying

fr1>1-— (6.3.6)

C4
2w /log X’

To estimate the contribution of the possible term —wh1 /By, we evaluate the integral

Cwh 1w
o B X \X

arising from (6.3.2) and (6.3.3). We make the change of variable w/X + u and integrate
by parts to see that this integral equals

Bi 00
xb [T gy () du = —XP / O, u)uPr = du = —x P @T( + B4 )
o B 0
We assume that a real zero satisfying (6.3.6) does exist, for otherwise we already have
the acceptable bound (6.3.5) for E;. Let ¢* be such that y,« is the exceptional character
with a real zero B satisfying (6.3.6). Then we have

oL XP o pmx NI D 1 Y
YT omi VY (i  p1/2—s T pl+2s
T \/lg*| iy —i(log X)? ()

log X

s/2 b
(2) s (San) XX wepr y MG D

1<mr <exp(w /log X) (g,2mr)=1 g
(mr,2)=1
(m,r)=1
ymr=q*

+ O(X exp(—cs/log X)),  (6.3.7)

where ¢5 > 0 is some absolute constant, y € {£1, +2} is fixed, and y* is some bounded
power of two. There is at most one choice of y that can give rise to the exceptional
character since mr is odd and positive.

We next write bg, = p(gm)H (ll"fg—gﬂ,’[") and apply Fourier inversion as in (6.1.2)—

(6.1.3) to obtain

Z M(g) bmg
ST
(g,2mr)=1 g ’
-1 1+iz\ !
= /J,(m)/ h(z) ( —lz) é’(l + s+ ) dz.
. ml |21_r[nr 1+s+]{,g+M log M

(6.3.8)
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By (6.1.4) we can truncate the integral in (6.3.8) to |z| < /log M at the cost of an error
of size Op(d,(mr)(log X)~8). This error contributes to (6.3.7)
X

KB T— T 5
B (log X)B—0(D)

which is acceptable. We therefore have

y*
Ey=-XP e 3% pumur)?
|q | 1<mr<exp(w +/log X)
(mr,2)=1
(m,r)=1
ymr—q*

X)? 1
L L [T+ )
2wi S demigoex2 T(3)

(i) (e o

1+iz h(Z) 1_[ ( p1+ +l+lz)

X /
\z|<4/log mlno p|2mr log M

-1
x ¢ L+iz dzﬂ
log M S

X 6.3.9
- "((1 X)A) 639

N

We handle the s-integral in (6.3.9) by moving the line of integration to Re(s) = —]ngﬁ,
where ¢g > 0 is small enough that
1
{(1+z) < log|Im(z)] and ——— < log|Im(z)| (6.3.10)

t(1+z2)

for Re(z) > —cg/log |Im(z)| and [Im(z)| > 1 (see, for example, Titchmarsh [43, Theo-
rem 3.5 and (3.11.8)]). We estimate the integral on the line Re(s) = — with trivial
estimates, along with the bounds (6.3.10) and

log X
|XS/2| = exp _f 087 .
2 loglog X

c6
loglog X

By moving the line of integration we pick up a contribution from the pole at s = 0. We
write this residue as an integral around a circle of small radius centered at the origin, and
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thereby deduce

vr* L+ 1)
R~ TED 3 DR T S
|q | 1<mr <Lexp(w /log X) Is|= g x

(mr,2)=1
(m,r)=1
ymr=q*

S e O CS)

x —nt) [T (1 )
/Z|<,/log mlo—g"_M 1_[ p1+s+110—g‘rM

pl2mr
x ¢ L4iz)™ dz ﬁ
logM s

X 6.3.11
" A((l X)A) (@310

‘We have the bound

B1<1-— (6.3.12)

C7
Vig*| oglg*)?’
where ¢7 > 0 is a fixed absolute constant (see [12, equation (12) of Chapter 14]). If ¢*
satisfies |g*| < (log X)?™¢ then by (6.3.12) we derive

XPr « X exp(—c7(log X)¢/?).

By estimating (6.3.11) trivially we then obtain

Ey <4 + X exp(—c7(log X)*/%),

X
(log X)4
which is an acceptable bound. We may therefore assume that ¢* satisfies
lg*| > (log X)>~¢. (6.3.13)

For |s| = 1/log X we have the bounds

1+iz\! 14|z
(1 +2s) < log X, §(1+ + ) <<J

log M logX
Using these bounds and (6.3.13) we deduce by trivial estimation that

X X
lq*[1/2~ o) < (]ng)l—e

63.11) <

This completes the proof of the bound for E; in (6.2.7).
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6.4. Regime Il

It remains to prove the bound for E, in (6.2.7). From (6.2.5) and (6.2.6) we see that E,
is the contribution from those m and r in Regimes II and III. The estimates in Regimes
IT and IIT are less delicate than those in Regime I, and consequently the arguments are
easier.

Comparing with (6.2.5), we see that we may write £, as

1. 5
L —logX+l(logX) XGs) Z M(g)Z Z bmg
] . 1+ 1/2
27 _1og1X_l(10gX)2 oyt giTs mM ml/
g odd (m,2g)=1
p(r)?
D SR S S MY
r<x1/2+e ye{£l,+£2} n
(r,2g)=1
(m,r)=1
mr>exp(w /log X)

where K (s) satisfies |K(s)| < (log X)), We apply the triangle inequality and take a
supremum in s to see that, for some complex number s¢ satisfying Re(sg) = 1/log X,
[Im(s0)| < (log X)? we have

2 m 2
g m
g=<M m<M
g odd (m,2g)=1
Y S S A0/ X))
172 50 Xymr .
r<x1/2+e ye{£1,42} n
(r,2g)=1
(m,r)=1
mr>exp(w +/log X)

Summing over g then contributes an additional factor of log X. We write ¢ = ymr and
use the divisor bound to control the multiplicity of representations of g. After breaking
the range of ¢ into dyadic segments, we find

E; < (log X)O(l) Z €(0),
0=2/
O >exp(w +/log X)
o«Mx1/2+e
where
§(0) 1= 0712 3 | Ay (1) X) 1)
X€S(Q) n

To prove (6.2.7) it therefore suffices to show, for some absolute constant cg > 0, that

&(Q) K X exp(—cgw +/log X) (6.4.1)
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for each Q satisfying exp(w /Iog X) < Q <« M X '/2*¢ 1In this subsection we treat the
O belonging to Regime II, that is, those which satisfy Q <« X1/10_ In the next subsection
we treat the Q in Regime III, which satisfy Q > X 1/10,

In Regime II we employ zero-density estimates. We begin by writing &y as the inte-
gral of its Mellin transform, yielding

D) B0/ X) 1) = 3 L, Y0+ 50/ (< )aw.

Observe that from repeated integration by parts we have

_ Im(so)

_ -
1T (0 + it + 50/2)| Ko,j (log X) (1 + |r ) (6.4.2)

for every non-negative integer j .
We shift the line of integration to Re(w) = —1/2, leaving residues from all of the
zeros of L(w, y) in the critical strip. We bound the new integral by applying the estimate

L/
0| < ol

valid for Re(w) = —1/2, and deduce that

(log X )0(”)

SAG @/ X0z == T X701 (p-+50/2) + 0 ET:

L(p,)=0
0=<B=<1
We have written here p = 8 + iy. The error term is, of course, completely acceptable for
(6.4.1) when summed over y € S(Q).
By (6.4.2), the contribution to &(Q) from those p with |y| > Q2 is « XQ 100,
say, and this gives an acceptable bound. We have therefore obtained

8(Q) < X exp(—w logX) + Q7/2%¢ Y~ 3" xF. (6.4.3)
X€S(Q) L(p,x)=0
0<B<1
lyl<Q!/2

In order to bound the right side of (6.4.3), we first need to introduce some notation.
For a primitive Dirichlet character y modulo g, let N(7, y) denote the number of zeros of
L(s, x) in the rectangle

0<Bg=<1, |yI=T
For T > 2, say, we have [12, Chapter 16]

N(T, y) < Tlog(gqT). (6.4.4)
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For 1/2 <« < 1, define N(«, T, ) to be the number of zeros p = 8 + iy of L(s, y) in
the rectangle

a<p=<1, ly| < T,
and define
*
N@. 0.T)= Y > N(@.T.y.
g=@Q x(modq)

The summation over y is over primitive characters. We shall employ Jutila’s zero-density
estimate [21, (1.7)]

N(e, Q.T) < (QT)*1=0+e, (6.4.5)

which holds for o > 4/5.
In (6.4.3), we separate the zeros p according to whether 8 < 4/5 or 8 > 4/5. Using
(6.4.4) we deduce

o lte N N xP g xiite, (6.4.6)
X€S(Q) L(p,x)=0
0<p<4/5
lyl<Q!/2

For those zeros with 8 > 4/5 we write

B
XP = X454+ (logX) | X%da.
4/5
We then embed S(Q) into the set of all primitive characters with conductors < Q. Apply-
ing (6.4.4) and (6.4.5), we obtain

1
oy xfk X4/5Q3/2+8+(10gX)/ X*N(e. 0.0"?)da
4/5

X€S(Q) L(p,xq)=0
4/5<B=<1

lyl<Q'/2 !

< X4/SQ3/2+8 + Qs XaQG(lf(x)da'
4/5

Since Q <« X'/1°_the integrand of this latter integral is maximized when o = 1. It follows
that

o~/ Z Z XP « x*Polte 4 xp 712 « xQ Ve (6.4.7)

x€S(Q) L(p,xq)=0
4/5=B=<1
lyl<Q!/?

Combining (6.4.7), (6.4.6), and (6.4.3) yields

€(Q) € XQ7V2+¢ 4 X exp(—w /log X),
and this suffices for (6.4.1).
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6.5. Regime III

In Regime III we have X /10 « O « MX1/2te = x1/240+¢ (recall (3.4)). Here we
depart from the philosophy of the previous two regimes, in that we do not bound & (Q)
by considerations of zeros of L-functions. Rather, we exploit the combinatorial structure
of the von Mangoldt function and Lemma 4.4.

We observe that in Regime III one may still proceed with zero-density estimates by
appealing to Heath-Brown’s zero-density estimate for L-functions of quadratic characters
[16, Theorem 3]. We present our method for the sake of variety, and because it might
prove useful in other contexts.

Let us move to our treatment of &(Q) for these large Q. Given an arithmetic function
f N — C and a real number W > 1, let f<w (n) denote the arithmetic function

fm), n=W,

n) =
f<w(n) {07 -
We write fow (1) = f(n) — few (n).

We write * for Dirichlet convolution. Our starting place is Vaughan’s identity [18,
Proposition 13.4]. Given a parameter V' > 1, we have

A(n) = A<y (n) + (u<y xlog)(n) — (u<v * A<y * 1)(n) + (usy * Asy * 1)(n).
6.5.1)

We apply (6.5.1) forn < X, and we set V := X 3(1/2-9)_This reduces the estimation of

&(Q) to the estimation of three different sums, say &;(Q), fori € {1,2, 3}. Observe that

there are four terms on the right side of (6.5.1), but A <y (n) is identically zero forn < X.
We have

61(0) = 072 37 |3 (uay # log)(n) Py (n/ X) ()|

XES(Q) n
€O T 3 @[S ogm o/ Xz
xeS(@)vsV "

Let us temporarily define f(z) = (logt?)®,,(tv/X). Observe that f is supported on real
numbers ¢ =< X /v, and that | f'(z)| < 1~ (log X)°(". By partial summation we derive

> (ogm) s, (mv/X)x(m) = / / F@ " xmyde

< (log X)°W / 3 )((m)‘ dt.

1
t=<X/v ! m<t

The Pélya—Vinogradov inequality [12, Chapter 23] implies that

> xm)| < 0'10g 0,

m<t
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and therefore
81(0) € QVX® « XV/2+0+501/2-00te o x1-e, (6.5.2)

this last inequality holds for ¢ = ¢(60) > 0 sufficiently small.
We use the same argument to estimate &,(Q):

62(0):= 072 3 3 ey x Ay () (1) X) 2(0)

XES(Q) n
<07 3N *A)(v)(Zwmv/X)x(m))

x€S(Q) v=v?

< Q—1/2+8 Z Z (MZ *A)(U)QI/Z-I—S

XES(Q) v<V2

< QY2 « X 1/2+0+30/2-0)+e o yl-e (6.5.3)

The last sum to estimate is &3(Q):

€2(0) 1= 07V 37 3 (uay + Asy % D)@y (1/X) 1)

xXes(@) n

=072 3 [N akp)e

x€S(Q) kit

where a(k) = u-y (k) and B(€) = (Asy * 1)(£). Observe that both a(-) and B(-) are
supported on integers m satisfying

V&<m<XVh

We further observe that |« (k)| < 1 and |B(€)| < log({). We perform dyadic decomposi-
tions on the ranges of k and £, so that k < K and £ =< L, with

V<KXV, VL«XV!, KLxX. (6.5.4)

We next separate the variables by Mellin inversion on ®g,:

of (w + %0)‘ o-1/2+e

x 3 [ e ®D™ 1(ko)| Idw)

S k<K
X€S(Q) k=K

£1(0) < (log X)°O sup [
K,L J(0)

The integral of |®T| has size < (log X)°™ so we obtain

83(0) < sup 0 1/2+e
(oK XES@) k=K
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where @(k) = a(k)k™" and 3 () = B(£)£~"*. For notational convenience we suppress
the dependence of & and 8 on ¢.
By multiplicativity and Cauchy—Schwarz we obtain

&(0) < sup 0711 30 (Z&(k)x(k)(z)l/z( 3 \Zﬁ(e)x(z)‘z)l/z_
f(e’ﬂ]i X€S(Q) k<K XES(Q) <L

Applying Lemma 4.4 and recalling (6.5.4) yields

&

£5(0) < sup ——((0 + K)K)V2((Q + L)L)1/2
kL Q'?

< sup XE((KL)I/ZQI/Z +
K,L

KL KL KL
K1/2 + L1/2 + 01/2
X

& 3/4+6/2
< XX +tm t o
|4 0

) < X'e (6.5.5)

The last inequality follows since V = X 3(1/2=6) and 0 > X1/19, Then (6.5.2), (6.5.3),
and (6.5.5) imply
E(Q) < X',

and this suffices for (6.4.1).

6.6. Dénouement

We can extract from our proof of Proposition 6.1 the following result on character sums
over primes, which we shall have occasion to use later.

Lemma 6.1. Let X be a large real number, and let § > 0 be small and fixed. Let so be a
complex number with |Re(so)| < A1/log X and |Im(so)| < (log X)42, for some positive
real numbers Ay and A,. Given any positive real numbers Az, A4, and B, we have

d A3z Ag
)3 2(q)*3 (logq) ) (1ogp)<1>s(,(§) (%)‘

g<Xx1-% ﬂ p=1(mod8)
q;cg X
q
< .
A1,42,43,44,B,8 (log X)B

The implied constant is ineffective.

Proof. Follow the proof of (6.2.7), but with a few modifications. Instead of the inequality
(6.3.12) use Siegel’s theorem [12, Chapter 21]

B1 = 1—c(e)/lg™|%;

the constant c¢(¢) is ineffective if ¢ < 1/2. Therefore, instead of using the lower bound
(6.3.13) we use the lower bound |¢*| > (log X)?, where D is chosen sufficiently large in
terms of B, and ¢ in Siegel’s theorem is chosen sufficiently small in terms of D. ]
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Lemma 6.1 is quite strong since it corresponds, roughly, to square root cancellation on
average in the sums over p. Thus, one would not expect to be able to prove an analogue
of Lemma 6.1 with the upper bound for g replaced by X !¢ for any & > 0.

7. The mollified second moment

In this section we derive an upper bound of the correct order of magnitude for the sum S,
defined in (3.1). Our main result for this section is the following (recall (3.4) and (5.2)).

Proposition 7.1. Let § > 0 be small and fixed, and let 0,9 satisfy 0 + 20 < 1/2. If
X > Xo(6,60,0), then
146
S —
2(1 —1/4/2)2

X
2 Z,

R
D
where

1 1 1
3 =—2/0 H(x)H’(x)dx+$/0 H(x)H”(x)dx+é/(; H'(x)?dx

1 ! / " 1 ! " 2
_ﬁ/o H' (x)H (x)dx+W/0 H"(x)"dx.

The proof of Proposition 7.1 follows the ideas outlined in Section 3. First, we note that
log p <log X in (3.1) because @ is supported on [1/2, 1]. By positivity we may apply the
upper bound sieve condition (5.7) to write

S < (log X)S™,
where SV is defined by

st= X we?(X a)e(§ )Lz armer.
n=1 (mod 8) dln
d<D

Note that d is odd since d |n and n = 1 (mod 8). Also, A4 # 0 only for square-free d by
the definition (5.8), and so Ay = u(d)?A4. We use Lemma 4.2 to write L(1/2, x,)? =
D, (n), then insert (3.6) into (7.1) to write

ST =584 +SE, (7.2)
where
Si= 2 Ny X m@Pra) e/ X) Do) M(n)? (7.3)
n=1 (mod 8) dln
d<D
and
St= > Rem( X #(d)P2a) @1/ X)Da(m)M(n)?.
n=1 (mod 8) dln
d<D

We first obtain a bound on S;{. The remainder of this section will then be devoted to an
analysis of SIJVF.
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7.1. The contribution of S;
In this subsection we show
ST < X(X/Y + XV2M). (7.1.1)

The arguments here are almost identical to those in [40, Section 3]. Observe that Ry (n) =
0 unless n = {2h with £ > Y and h square-free. If » = 1 (mod 8) then £ and / are odd
and & = 1 (mod 8). By the divisor bound we have

Ry <0’ |3 wdyra| < n,

dln
d<D
and therefore
Sgp<xe > > ()2 | ME2h)2 Dy (£2h)|.
Y<e<fX/(252)<h<X/z2
e h=1 (mod 8)

There is a mild complication compared to [40] in that it is possible to have & = 1, in
which case the character yj, is principal.
We apply Cauchy—Schwarz and obtain

S;— < X¢ Z ( Z M(h)2|M(€2h)2|2)1/2

Y<t<vX X/@)<h<X/?
244 h=1 (mod 8)

x ( 3 u(h)zlﬂ)z(ﬁzh)|2)l/2. (7.12)

X/(02)<h<X /02
h=1 (mod 8)

‘We have

M(£2h)2 — Z O{(m) ( )

m<M?
(m,20)=1

for some coefficients o(m) satisfying |« (m)| <« m®. For h = 1 we use the trivial bound
M(?)* < M?X¢. For h > 1 we use Lemma 4.4 as in [40, p. 460]. We therefore have
> w2 ME*h)?)* < X5(X /02 + M?). (7.1.3)

X/(202)<h<X /02
h=1 (mod 8)

Now, by the definition (4.1) of w2 (§), and the definition of £, in Lemma 4.2, for any
c>1/2,

D (£2h) =

) 1 (s + 1 2 1 2 Zzh K} 1 2 d
T o et () (F) (g en) e
(- 1/¥D*2mi Joy (1) 2127 )\ w 2 s
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where

2
6.0 =TT(1- 252 )
plk P

If h = 1then L(1/2+ s, x4)?> = £(1/2 + 5)%. In any case, we move the line of integration
to ¢ = 1/log X, and we do not pick up contributions from any poles. When z > 1 this is
obvious, and when 4 = 1 the double pole of £(1/2 + 5)? is canceled out by the double
zero of (1 —27(/25))2 By trivial estimation we then have |D,(¢?)| <« X¢. For h > 1
we apply Cauchy—Schwarz to obtain

1D ()P < X° / ID(s/2 + /HPIL(/2 + s, xa)|* [ds].
X
Summing over & and using Lemma 4.5, we obtain an analogue of [40, (3.5)],

> w(h)?| D2 (2h)|)? < X1He /62, (7.1.4)

X/(20%)<h<X/0?
h=1 (mod 8)

Combining (7.1.2)—(7.1.4) yields (7.1.1).

7.2. Poisson summation

We begin our evaluation of S]‘\',' by inserting into (7.3) the definition (3.3) of the mollifier
M (n). We then use the definition of £, (see Lemma 4.2) to write

+ _ 8 2 bm, bm, (2)
oV = (V2-1)4 Z ) Aa ZZ /mim; Z Nrm® X

d<D my,my<M n=1 (mod 8)
d odd my,m> odd dln
o0
d>(v VI n
X E ()w2 — . (7.2,
SV n mimav
v=1
v odd

We next apply Poisson summation to evaluate the n-sum. Denote the n-sum in (7.2.1)
by Z, i.e. define

Z=Z@dv.mm:X.Y)= Y Nﬂn)@(%)wz(%)(ml:m). (12.2)

n=1 (mod 8)
din

We insert the definition (3.7) of Ny (n) and interchange the order of summation to write Z

as
z=>n@ Y Fv(%) (ml';zv), (7.2.3)

a<Y n=1 (mod 8)
o odd [a2’d]|n
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where F),(¢) is defined by

v
F,(t) = ®(¢ — . 7.2.4
0 = o017 ) (.24

If & and d are square-free, then [az, d] = a?dy, where
dy=d/d,a). (7.2.5)

We may thus relabel n as a?d;m in (7.2.3), and then split the resulting m-sum according
to the congruence class of m (mod mm,v). We deduce from (7.2.3) that

z= Y u(oe)(miizv) > (mlfnzv) 2 Fv(azf(lm)'

a<Y b (modmmov) m=a2d; (mod8)
(@.2mymav)=1 m=b (modm1mav)

By the Chinese Remainder Theorem, we may write the congruence conditions on m as a
single condition m = y (mod 8mm,v) for some integer y depending on «, d, b. Thus,
we may relabel m as §jmm,v + y, where j ranges over all integers, and arrive at

dq b
‘= Z M(a)(mlmzv) Z (mlmZV)

a<Y b (modmmayv)

(a,2mmpv)=1 2 (8 )
o imimov +
XZF,,( 1% ; 20Ty ) (7.2.6)

JEZ

We apply Poisson summation to the j-sum to write

a?dy(8jmymav + y)
DR

4 X
JEZ
X k A kX
=S e[ VA ).
8012dlm1mzvkeZ 8mimayv 8a2dimimayv

We insert this into (7.2.6) and apply the reciprocity relation

ky k8h ka2dimimyv
el——— ) =e e ,
8mimayv mimov 8

where 8 is the inverse of 8 modulo m1m,v and w2dymmyv is the inverse of a2dymmav
modulo 8. We then evaluate the b-sum using the definition (4.3) of the Gauss sum. The
result is

X 2d
z=_—2* _ ¥ plo) (2dy
8mimav a2dy \ mimav
a<Y
(a,2mmpv)=1

ka2dimimav\ A kX
— || .
x%e( 8 ) v(8a2d1m1mzv)tk(mlmzv)
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Recalling (7.2.1) and (7.2.2), we arrive at

bmlbmz — d (v) p(e)
S = (vV2- 1)4ZM( ha 22 (mymy)3/2 2 # 2 a’d;

d<D my,mr<M v=1 a<Y
d odd (m1m>,2d)=1 (v,2d)=1 (e,2m mav)=1

2d ka?d A kX
X ! Z e e L UL A F, T (mymyv).  (7.2.7)
mymyv 8 8aZ2dimimov
keZ

Note that we may impose the condition (m1m2v,d) = 1 because otherwise (mzi‘zv) =0.
We write (7.2.7) as

Sy =7+ B, (7.2.8)

where 7y is the contribution from k = 0 in (7.2.7), while 8 is the contribution from k # 0
in (7.2.7). We evaluate Ty in the next subsection, and B in later subsections.

7.3. The contribution from k = 0

By (4.3), 19(n) = ¢(n) if n is a perfect square, and 7¢(n) = 0 otherwise. Hence the term
Join (7.2.7) is

b, b > da(v)
2
Jo = Z n(d)*Aq ZZ - ms2 2 Z 3/2
1)4 d<D mi,my<M (mlmZ) / v=1 v /
d odd (mima,2d)=1 ng‘;r%zzl);lm
x Y “( )F O)p(mimav).  (13.1)
a<Y

(¢,2mympv)=1

We first extend the sum over « to infinity. Since ¢(n) < n, the error introduced in
doing so is

b bm,| = d
<X Il Y | m1m2| > 2(”) Z |FU(0)| (1.32)

d<D mi,my<M v=1
mymov=0

By Lemma 4.1, F, (0) < 1 uniformly for all v > 0, and

F, 0) <« exp(—%)

for v > X 1*¢ Moreover, (5.8) implies that |14 | < d¢, while |b,,| < 1 by (3.5). It follows
from these bounds that (7.3.2) is

& 1 1 &
< X+ Z ZZ — Z ﬁ;az—dl+ew(_x ). (13.3)

d<Dmimy<M v<Xxl+e
mimov=0
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Since m1msv is a perfect square, the sum over my, m,, v in (7.3.3) is < X?. Also, the
definition (7.2.5) of d; implies that

Zaz_l dZ‘/’(J)Z d1 —7"

a>Y a>Y

Therefore (7.3.3) is O(X!*¢/Y). This bounds the error in extending the sum over « in
(7.3.1) to infinity, and we arrive at

. Cbmbm, o da(v)
o= (x/_ n* 2 e 2.2 (mim2)3/2 2 #

d<D my,my<M v=1
d odd (m1m2,2d)=1 v,2d)=1
mimov=0
(e e)
M(Ol) x'ite
F 0 0 .
<X L Opmma) + 055
(ot,2m1m2v)—1
Writing the «-sum as an Euler product, we deduce that
4X ﬂ(d) Aa ( ) b, bm,
7o = 2. I 2.0 i
3(V2-1)%Q) 5 sa\P L) e fmimy
d odd (mimy,2d)=1
o0
d2(v) A p Xi+e
F, (0 o 0 . 7.3.4
> 5 ho I1 (555)+ol= (73.4)
v=1 plmymav
(v,2d)=1

mimpv=1

We next evaluate the sum over d. Lemma 5.3 implies

sG-S ()G

d<D pld pl2mimov p P=zo pe= 1
d,2mimov)=1 P=zo
+ 04((log R)™™). (7.3.5)

Recall that Ey(X) tends to 0, and depends only on X, G, and . Hereafter we just write
o(1) instead of E¢(X).

We may omit the condition p < zg by trivial estimation and (5.1). It follows from
(7.3.5) and (7.3.4) that

- 2X 1+0(1) bmlbmz — dZ(V)
0T Ao 1)¢ logR m;n;lm ; «/’F(O)

(mimy,2)=1 v,2)=1
mimov=0

X X1+€
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The next task is to carry out the summation over my,m,, and v. Let T be defined by

TO = Z Z bmlbmz i dZ(V) ﬁv (0) (737)
my,my<M ¥ nyma v=1 \/;
(mym2,2)=1 »,2)=1
mymov=0

We insert into (7.3.7) the definition (3.5) of b,, and the definitions (7.2.4) and (4.1) of
F, and w,, and then apply the Fourier inversion formula (6.1.2). After interchanging the
order of summation, we arrive at

_ 1 F(%—i—%)z 1 2/%\5. 0o poo
To= 27 © F(%)Z (1_ 21/2—s) (;) ®(s) [m [wh(zl)h(zz)

p(my)p(mz)d2(v) ds
x Z Z Z Ttiz;  1+iz, dzidz ¥ (7.3.8)
it () om < 5 s

where we take ¢ = 1/log X to facilitate later estimations. We may write the sum over
my,my, v as an Euler product

YOy M)

— 1/2 log M log M
(mimav2)=1 (mymav)2m ™ m,

mimoav=
SRR (=mtm(y 4 1)
21030303 L 039
my+mo+v 1+izq 1+izo
p>2m=0m>=0v=0 p 2 +’"1( Tog M )+m2( Tog M )+”S
mi+ma—+v even

US

In the latter sum, the terms with (my,m>,v) # (0,0,0), (0,0,2), (0,1,1), (1,0, 1), or
(1,1,0) add up to O(p~2%#) whenever zy, z, s are complex numbers such that 11221

logM >
}:;;;, and s each have real part > —¢. Hence, for such zy, z5, 5, (7.3.9) equals
[ (1 + > 2 2 + ! + 0( ! ))
1+2s 1+iz - 1+iz 1+izq |, 1+iz 2— ’
o2 pltas o e P L o it p°

Thus (7.3.9) equals

. . ; -2 i -2
C(1+29)°0(1+ ZHEGEER)E (L + 5 +5) ¢ (1 + 557 + )

x Q (1t =g s),  (13.10)

where Q (w1, w3, s) is an Euler product that is uniformly bounded and holomorphic when
each of Re(w;), Re(w,), and Re(s) is > —e. From this definition of Q and a calculation,
we see that

0(0,0,0) =1, (7.3.11)
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a fact we use shortly. We insert the expression (7.3.10) for the my, m,, v-sum into (7.3.8)
and arrive at

L[ T(5+3) V(XN L [% [
“omido () (1= ) () weas2 [ [ eonca

o : 2 i 1t ds
(1 B (14 ) (1 B ) O KR ) v

By (6.1.4) and the rapid decay of the gamma function, we may truncate the integrals to
the region |z1|, |z2] < 4/Tog M and |Im(s)| < (log X)?, introducing a negligible error.
We then deform the path of integration of the s-integral to the path made up of the line
segment L from @ —i(log X)? to — —i(log X)?, followed by the line segment

log log X

L, from — —i(log X)? to — oz logX + i(log X)?, and then by the line segment L3

from —m + i(log X)? , where ¢’ is a constant chosen so that
(6.3.10) holds on Lj, L,, and L3. This leaves a residue from the pole at s = 0. The
contributions of the integrals over L; and L3 are negligible because of the rapid decay
of the I' function, while the contribution of the integral over L, is negligible because
X’ K exp( ¢’ %) for s on L,. Hence the main contribution arises from the residue
of the pole at s = 0. Writing this residue as an integral along a circle centered at 0, we

arrive at

1 rs+1)? 1\ X\
Yo = — 24 11— iy ) 1+ 2s)3
0= =l F(l)z ( 21/2—s) (n) (s)¢(1 + 2s)

<[ neonean( - R R ) e+ )

|z |< log M

1
(log X)4

ds
X O (Tt Togat 5) d71dz2 — +0A( ) (7.3.12)

We may expand the zeta-functions and the function Q into Laurent series. The main
contribution arises from the first terms of the Laurent expansions, and so we deduce using
(7.3.11) that

_ 1 rg+4%)’ I
To= 167i 9|§S=1og]x F( )2 (1_ 21/2—s) ( ) CD(S) // h(z1)h(z2)

\Z; |=vlogM

log M 1+i e d 1
X f)g - tiz + s tiz + s d21 dzz_s+0 .
2+iz1+iz log M log M 54 log X

Bl—
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By (6.1.4), we may extend the integrals over zi, z, to R?, introducing a negligible error.
We then apply the formula

o 0o (1 4iz)/ (1 +izp)*
/_oo /_Oo h(Z])]’l(Zz) 2+ iZl +i22 le de

=/ / / h(z)h(z2)(1 4 iz1) (1 + izp)Ke " AFZ0=10+i22) g0 g7, 4y
0 —00 J —00
o0
=(—1)f+k/ HD O H® ) dt, (7.3.13)
0

which follows from repeated differentiation of (6.1.2), to obtain

_ 1 ri3+3)° L \Z/X\ o
To= 16mi %S: 1 F(l)z (1_21/2—s) (;) (D(S){(l gM)3/ H"(t)"dt

logX 4

" 4

dt

(10g (log M)? Jo

ds 1
—4s3/ H(l)H’(t)dt—i—s“logM/ H(t)zdt}—4+ 0( )
0 0 S log X

We evaluate the s-integral as a residue using (6.1.6). The result is

v 2 3 2
PG Lo () e

log fH(t)H”(t)dt+4—/ H'(1)?dt — /H(t)H (t)dt}

1
0 )
* (logX)

From this, (2.2), (7.3.6), and the definition (7.3.7) of Y, we arrive at

— 1+0“){l(1"gx)3/1H”(z)zd;
- 2
8(1 — \/LE) logR (24 \logM 0

L(logX \? [, ogX ' p

_E(logM) / H' (t)H (t)dt+ / H@)H"(t)dt
log X ) X Xxi+e
10gM/ H'(t)*dt — / Ht)H' (t)dt}+0((logX)2+ 7 ) (7.3.14)
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7.4. The contribution from k # 0: splitting into cases

Having estimated the term 7y in (7.2.8), we now begin our analysis of 8, which is much
more complicated.

The behavior of the additive character e(ka2dymm,v/8) in (7.2.7) depends upon the
residue class of kK modulo 8. We therefore distinguish the following cases: k odd, k = 2
(mod 4), k = 4 (mod 8), k = 0 (mod 8). We split our analysis of the sum B in (7.2.8)
according to these four cases. For the terms with odd k, we use the identity

()-20) - 3. o

and treat separately the contributions of each term on the right-hand side. Moreover, for
the terms with odd k or k = 2 (mod 4), we use the second expression in (4.3) for tz (1)
and treat separately the contributions of the terms (142£) Gy (n) and (=2)(15%) G (n). We
can treat these two contributions together as one combined sum for the terms with k = 0,4
(mod 8), because, for those k, the additive character e(ka?dim1m,v/8) is constant and
the conditions k& = 0, 4 (mod 8) are invariant with respect to the substitution k — —k.
Hence, in view of these considerations, (7.2.7), and (7.2.8), we write

bmlbmz - d>(v)
1)4 Z'u“(d)zkd ZZ (m1m2)3/2 Z #

d<D my,mr<M v=1
d odd (m1m2,2d)=1 v,2d)=1
p(@)
X , 7.4.1
2 e (74.1)
a<Y

(e,2m mav)=1

where
Q, = - 2 G |
1 > 2 (mlmzv)lg(kdlmlmzv) (80{2d1m1m2v) k(mymav)
k odd
(7.4.2)
Q, = - 2 G |
: 2 2 (mlmZU)lg(kdlmlmZU) (8052d1m1m2v) k(mimav)
k odd
(7.4.3)
140 V2 ( 2dy ) . £X
Q5 =  —— F G 7
3 2 l 2 (mlmzv)lg(kdlmlmﬂ)) ( O(Zdlmlmzv) K(mimav)
k odd
(7.4.4)
I—i \/z —Zdl -2 “ kX
Q4 = | —— F G ’
' 2 l 2 (mlmzv)lg(kdlmlmﬂ)) (8a2d1m1m2v) k(mlmzv)
k odd

(7.4.5)
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1+1 2d; ka?2dimimav\ A kX
u F G )
! 2 (mlmzv) Z e( 8 ) (8a2d1m1m2v) K(mimzv)

keZ
k=2 (mod4)
(7.4.6)
1—i ([ —2d ka?d N kX
U, = ! ( ! ) Z e( ad 1mlmzv)F ( 5 )Gk(mlmzv),
2 mimoy < 8 a?dimimov
k=2 (mod 4)
(7.4.7)
2d1 kOlzdlmll’VZz\) A kX
v = _— F 3
(mlmzv) Ig e( 8 8a2dimimayv T (m1mav)
k=4 (mod 8)
(7.4.8)
2d ka2d A kX
W= ( ! ) Z e( ¢ 1m1m2v)F ( 5 )tk(mlmzv).
mimoV = 8 8a2dimimyv
k=0 (mod 8)
k#0 (7.4.9)
7.5. Evaluation of the sum with Q4
In this subsection, we evaluate the sum
o da(v) p(@)
* . __
Q= ) —n > d, @, (7.5.1)
V= a<Y
v,2d)=1 (a,2mimov)=1
with @, defined by (7.4.2). We may cancel the two Jacobi symbols ( U) in (7.4.2),

insert the resulting expression into (7.5.1), and then apply the Mellin i 1nver510n formula to
the v-sum to deduce that

N 8 V) () ( d 2
@1 B 2 7 Z 0[2d1 (mlmz) Z(k_dl)
keZ

a<Y
(a,2mimo)=1 k odd
2 da(v)
w—l
2]_” /(;)/ (Sazdlmlmzt) dt ; 3/2+w( )Gk(mlmzv)dw
(v,20d)=1 (7.5.2)

for any ¢ > 1. The interchange in the order of summation is justified by absolute conver-
gence. The next step is to write the v-sum as an Euler product, as follows.

Lemma 7.1. Let d; be as defined by (7.2.5). For each non-zero integer k, define k1 and
ko uniquely by the equation
4kd; = kik3, (7.5.3)
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where ki is a fundamental discriminant and ko is a positive integer. If £ is a positive
integer and Re(s) > 1, then

00 dz(\)) dl Gk((\)) _ 5 '
VX:; Vs (7) NG = L(s, xx,) Uﬁo,p(s,k,ﬁ,a,d)

(v,2ad)=1

=: L(s, Yk,)*%0(s; k. L, a,d),

where yi, (-) = (lﬂ) and

2
(I—LS(IE)) if p|2ad,
p p

1 7k 2 1/d G r+ordp (£)
(Lu_(i))22’+ (L) “2”2 ) if pt2ed.

rP\p/)) = o \p"

Go,p(s;k, b, d):=

The function §y(s;k, L, o, d) is holomorphic for Re(s) > 1/2. Moreover, if k3 and k4 are
defined by the equation
k = ksk2 (7.5.4)

with k3 square-free and k4 a positive integer, then
Go(sik, Lo, d) < (ad|k|0) 020, k3)/?
uniformly for Re(s) > 1/2 + ¢.

Proof. 1t follows from the definition of §y ,(s; k, £, o, d) and Lemma 4.3 that

1 2 2
Go,p(s:k,L,a,d) = (1 _ _s(ﬁ)) (1 . _X(@))
p\p p p
3 2 (ky
AV
for each p } 2adk{, since (dlk) _ (kl)

> > for odd primes p, by (7.5.3). The rest of the
proof is similar to that of [40, Lemma 5.3]. [

We also need some analytic properties of the function i (&, w) defined for Re(w) > 0
by

h(E,w) = /0 Fo(e/ne dr.

These are embodied in the following lemma. As a bit of notation, for a real number x we
define

1, x>0,

sgn(x) = {

-1, x<O.
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Lemma 7.2. Let F; be defined by (7.2.4). If & # 0 is a real number, then

h(€E,w) = |§|wCD(w)/ cuz('E| )(cos(2nz)—zsgn(§) sin(2x z)) i+1

The integral above may be expressed as

L F(%"_%)z( _ 1 )2 X
21/2=s7 (w|E)s

—s+w _
i Jeoy T()? Gmy s —w) .
x {cos(Z (s —w)) — isgn(§) sin(Z (s — w))} TS (7.5.5)

for any ¢ with max {0,Re(w)} < ¢ <Re(w) + 1. If & # 0 is real, then h(§, w) is an entire
Sfunction of w. In the region —1 < Re(w) < —8y, where 8¢ > 0 is fixed and small,

h(E.w) <5 (1+ [w]) Re=1/2 exp(__ H

10 X(wl+1)

Proof. The proof is similar to that of [40, Lemma 5.2]. ]

)|&|Re<w>|i><w)|.

By these lemmas and the rapid decay of <i>(w) as [Im(w)| — oo in a fixed vertical strip,
we may move the line of integration of the w-integral in (7.5.2) to Re(w) = —1/2 + ¢.
This leaves a residue from a pole at w = 0 only when y, is a principal character, which
holds if and only if k; = 1. By (7.5.3), k1 = 1 if and only if kd; is a perfect square. Hence

(QT =P+ Ry, (7.5.6)

where J; is defined by

14 2 d kX
O R R R (R I (R Sy
w=0 <Y acdyp \mipmyp keZ 8a 1mimyp
(a,2mymz)=1 k odd
kdy=0

x L(1+w)*Go(1 + wik,mima,a,d)  (7.5.7)
and R is defined by

{1+ V2 w(e) ( di 2
R = ( 2 )7 o; a?d, (mlmz) ;(k_dl)

(@,2m1m2)=1 k odd

1 kX
X —— h(z—,w)L(1+w,)(kl)2§0(l+w;k,m1m2,a,d)dw.
27 J—1/24¢) \8a?dymymy

(7.5.8)

We bound R; in Subsection 7.6. To estimate J;, observe that d; is square-free by its
definition (7.2.5) and the fact that d is square-free. This implies that kd; is a perfect
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square if and only if k equals d; times a perfect square. Hence, in (7.5.7), we may relabel
k as dy j2, where j runs through all the odd positive integers. With this and Lemma 7.2,
we deduce from (7.5.7) that

5’1=Res(1+i)£ 3 M(a)§(1+w)2<i>(w)X“’%

v 2
w=0 2 2 ot a?d;

(o,2mmz)=1

r(&+ 1) 1 \?
x/ (G +3) (l ) 75T (s — w) (8o mymy)s ™Y
()

2 T 51/2—
r(3) 2
o0
d d
x Zj_““w( ! );90(1 fwidyj2omimy.a.d) =, (15.9)
= miimsyp N
Jj odd
where I'; (1) is defined by
Ta(u) = (27) 7T (u)(cos(Zu) — i sin(ZFu)), (7.5.10)

and where we take ¢ > 1/2 to guarantee the absolute convergence of the j-sum.
We next write the j-sum in (7.5.9) as an Euler product. First observe that, by Lem-
ma 4.3(ii), if j is a positive integer then

d
(p—;)Gdljz(pﬁ) = G;2(pP) (7.5.11)

for all p 4 2ad and B > 1. To see this, suppose p>" is the largest power of p dividing j2,
so that it is also the largest power of p dividing d, j2, by (7.2.5). If B < 2n is even, then
(z—}j) = 1 and both sides of (7.5.11) equal ¢(p#). If B = 2n + 1, then the left-hand side
of (7.5.11) equals

dy dyj2p—2"
(o ) (25— )

d )(d1)2(12p—2") 2n (jzp—z") 2
= — )\ )" Vr= PP,
(pz” b4 b4 VP b4

which equals the right-hand side of (7.5.11). In all other possible cases for 8, both sides
of (7.5.11) are zero. This proves (7.5.11). From it and the multiplicativity stated in Lem-
ma 4.3(i), we deduce that

dq
(mlmzv)Gdljz(mlmzv) = sz(mlmzv)

for all positive integers v with (v, 2ad) = 1. It follows from this and Lemma 7.1 that
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d
( ! )g(l+w)2§0(1+w;d1j2,m1m2,a,d)
miimsyp

2 dy(v) Gj2(mymayv)
= 2 v?+w ’ ﬁz

(v,2vo¢=dl)=1
=1+ w)?G (1 +w; j2 mmy,ad, 1) (7.5.12)

for Re(w) > 0. This and analytic continuation implies

d
( ! )50(1+w;d1j2,m1mz,a,d)=§o(1+w;j2,m1m2,ad,1) (7.5.13)
myms

for Re(w) > —1/2. Now if f(j, p) is a function such that f(j, p) = f(p°®% ), p) for
all positive integers j and all primes p, then

oo

Y116 =112 1" p) (7.5.14)

j=1rp P b=0

if absolute convergence holds for both sides. This can be proved using a standard argument
(see, for example, [3, Theorem 11.7]) together with the fact that Hp>y f,p)—1as
y — oo. From (7.5.13), the Euler product definition of §, in Lemma 7.1, and (7.5.14)
with £(1,2) = 1 and f(2°,2) = 0 for b > 0, we arrive at

o

d

Do (—1)‘«90(1 +widyj2 myma, o, d)
- mimyp
]j'odd

o0

= > TG+ wi j2 mymy.,ad, 1)
j=1
Jj odd

1 Vg _
B (1 B 21+w) [1D. P2 ™%, (1 + w: p** . mymy.d. 1)

p>2b=0
( 1
=(1-
45—w

o0
) ]—[ Z PG, (1 4+ w; p?2,mymy,ad, 1), (7.5.15)
Since G (n) = Gag (n) for all odd n, [40, Lemma 5.3] and Lemma 7.1 imply that

P b=0

Go,p(1 + w;jz,mlmz,(xd, )=%6,(1+ w;jz,mlmz,(xd),

where §, is defined in [40, Lemma 5.3]. Therefore the latter Euler product in (7.5.15) is
the same one that has been evaluated in [40, p. 471]. From its evaluation and (7.5.15), we
deduce that
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> d
DB (—‘)ﬁo(l +widyj? mimy, e, d)
=1 mymy

Jj odd

1 —w—
=(1—4S_w)(m1m2)ls+wﬁi W2 (09— 2w)E (25 + 1) Hy (s—w, 1 +wimyma,ad),

(7.5.16)
where £, is the square-free integer defined by the equation
mimy = 6135, M(E])z =1, 62 €7, (7517)
and # is defined by an Euler product
Hi(s —w, 1+ wimymy,ad) = [ [ I,
b4
The local factors #; , are
Hi,p =
2 .
(l—plﬁ) (1—#) if p|2ad,
( I )2 2 2 1 3 1
1_1;11+2¢ (1+ piFw ~ piF2—w + pIT2s — p2F2s +p3+4s) if p ¥ 2admm,
(=)’ i
w 1 2 2 1 :
l—lﬁ (l_pzs—2w + p2s—w - p1+2s—w + pl+2s _p1+4s—2w) if P | 61 5
(1- % )2 1 2 2 1 1
l_iﬁ(l_;*‘pww T pFmw +pl+25 _p2+2_\') if plmima, ptey.
(7.5.18)
Inserting (7.5.16) into (7.5.9), we find that
14+i\ V2 w(a)
P = ~y= d, 7.5.19
! ( 2 ) 2 2 a2d, ( )
a<Y
(a,2mimy)=1
where
J R 1 2&)( XU) 1 / F(%+%)2 1 1 2 —SF ( )(8 2)s—w
TR RO o ey T ) TR

1 L d
x(1—4s_w)m1m2€i v 1/2§'(2s—2w)§‘(2s~|—1)3(1(s—w,1~|—w;n’11mz,01d)?S.
(7.5.20)
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The next step is to extend the a-sum to infinity and show that the error introduced in
doing so is small. To do this, we need to move the line of integration in (7.5.20) closer to 0
to guarantee the absolute convergence of the «-sum. We first evaluate the residue using
(6.1.6) to see that (7.5.20) is the same as

) [ T(5+1) 12 1
Jd = ( .) & g) (1 Ry ) n_st(s)(Saz)s(l - —S)mlmz
2mi Jie) 1"(%) 2 s 4

720 28)8 (25 + 1) 34 (s, l,mlmz,ad){%’ + & )(é?) +10g(8a}§f1)

} ds
w=0 s .

(7.5.21)

I log 4 ' g0 1+ w; Lad
——2()+ ot H¥ gy 4 2et0 S w1t wimim,. ad)
1-49 ¢ Jé’l(s—w,l+w;m1rnz,ad)

Here y denotes the Euler—Mascheroni constant. The definition (7.5.18) of the function
H1(s —w, 1 + w;mim,, ad) implies that it is holomorphic for Re(s) > 0 and |Re(w)| <
min {1/2, 2Re(s)}, and that it and its first partial derivatives at w = 0 are bounded by
< (axX)® for Re(s) > 1/log X. Thus, by the rapid decay of the gamma function, we
may move the line of integration in (7.5.21) to Re(s) = 1/log X. There is no residue
because the poles of £(2s) and & (2s) at s = 1/2 are canceled by the zero of the factor

(1 —25"1Y2)2 Using well-known bounds for ¢(2s) and ¢’(2s) implied by the Phragmén—
Lindelof principle, we see that the new integral is now bounded by

<mumal Pl xe [ PG+ DI max (L)L T3] (1 15D 2 Idsl,

log X

which is <« mlmzﬁl_l/HsaEXa by the rapid decay of the gamma function. Dividing this
bound by @?d; and summing the result over all > Y, we deduce that

—1/2+4¢ ye

w(e)? mymaty
Z aldl |J| < dl—eyl—¢

(7.5.22)

a>Y
(¢,2mymp)=1

because, by (7.2.5), if ¢(j) is the Euler totient function, then
1

ZT Z‘/’(])Z o2—¢ < l—eyl—¢’
a2d, d d—ey

a>Y oz>Y
Jle

From (7.5.19), (7.5.22), and (7.5.20) now with ¢ = @, we arrive at

1+i\~2 1 1
=R 1 2 —Zxw_— To(s —w)8 (1 -
Reg ¢ +w) ( 2 ) 2" 2mi ), 2(s —w)8 ( 4S—W)

log X

—-1/2
mlmzﬁl [2+e

d
X JC(s,w;mﬂnz,d)?s + O(W

), (7.5.23)
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with K (s, w; mym,, d) defined by

ey 1Y
K(s,w;mimy,d) = dD(w) 2 42 (1— 5 ) n_smlmzﬁi_w_l/zé'(Zs—2w)
T (1/4) 21/2s
x
xt@s+1) Y L@ —w d 4 wimm.ad).  (1524)

w2—2s5+2w dl
a=1
(@,2mymz)=1

where, as before, ¢; is defined by (7.5.17), d; is defined by (7.2.5), and J#; is defined as
the product of (7.5.18) over all primes.

It is convenient for later calculations to write #; in terms of a residue, as in (7.5.23),
rather than in terms of derivatives as in (7.5.21).

7.6. Bounding the contribution of R

Having handled #; in (7.5.6), we next turn to R, defined by (7.5.8). It will be convenient
to denote

yz(z,d)=%(l+l) Z 52(33( ),{%(kidl)

(o, 26) 1 k odd

1 kX 5 _
X ot ( 1/2+€)h(8a2d1€’w)L(1 +w, xi,) % +wik, Lo, d)dw, (7.6.1)
so that Ry = mymyR(mmy, d). We will bound |R (£, d)| on average as £ and d each
range over a dyadic interval.

Let Ba =R, d)/|R{,d)|if R(£.d) # 0, and B¢ 4 = 1 otherwise. Then |B¢ 4| =
land |[R(£,d)| = BraR(L,d). We sum thisoverall £,d with J/ <{ <2Jand V <d <
2V, where J, V > 1. We then insert the definition (7.6.1) and bring the d, £-sum inside
the integral to deduce that

2V—1 2J—1 2V—1 2J—1
YooY IREDI= Y Y BraR(t.d)
d=V  {=J d=V  t=J
d,2)=1,2d)=1 d,2)=1(, 2d)—1
< Z Z / Ul k,w) |dw|,  (7.6.2)
a<Y kez ¢ (1/2+e)

(@2)=1  kodd
where for brevity we denote
U(a, k,w)

2V -1

2J—

1 Bua kX

— —|IL(+w, 2 5o(1 k. l,a,d)h| ——. .
PO RIS ) L5 )smrvusk o g w)‘

@d.2)=1 @ rad=1

N‘
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We split the k-sum into dyadic blocks K < |k| < 2K, with K > 1, and apply Cauchy’s
inequality to write

2V— 1/2
3 U(a,k,w)<<( Z di Y kell(+w, Xk1)|4)

K<|k|<2K d=V K<|k|<2K
k odd d,2)=1 k odd
2J-1
1 Bua (di
(2 7 ol f bt (2
=Ii Ks\k\<2K “ d) .
d,2)=1 k odd ( a X 2 1/2
ol +w: k.l d)h| —=—, (163
o1+ wik e o)) a6

where k» is defined by (7.5.3). To bound the first factor on the right-hand side of (7.6.3),
we split the k-sum according to the values of k1 and k, and interchange the order of
summation. Then we use the fact that d; > d/a by (7.2.5) to deduce that

2V -1 1
> @ > kL 4w, )l
dah S —
SV Z |L(1+w7Xk1)|4 Z k2 Z 1.
0<|k|KKV kr |k1\ (¢§1,2=)I;1
dilk k2

We estimate the inner sum using the divisor bound, and find that the above is

<ek'feve o ﬁ|L(1+w iy
o<ty K1

« O{K1+€V€(l + |w|)1+£

by Lemma 4.5. It follows from this and (7.6.3) that

2V—
Y Ul kow) < (@K' Ve + [w])' ) ‘/2( Z 3 1

K<|k|<2K d=v 1 k<k|<2K ka
k odd (d,2)=1 k odd
2J—-1 2\ 1/2
Bed (di kX
Go(1 k4 o, dh| ——, . 7.6.4
Z ¢\ 7 )Pl rwik b d)h| gaag.w (7.64)

, 2ad) 1

The next task is to bound the second factor on the right-hand side. To this end we prove
the following two lemmas.
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Lemma 7.3. Leta <Y, d, K, and J be positive integers, and suppose w is a complex
number with real part —1/2 + e. Then for any complex numbers y; with |y,| < 1,

2J-1

Ye kX
Yego(1 + wik, €, d)h [ —
Ll 2 phltwklaed (Sazdlz w)
K<l|k|<2K {=J
k odd (¢,2ad)=1

is bounded by

1 2

Z_

< |D(w)[?

d1a2+sJ2+ests . ( 1 \/E )
xpl ——= ——— ).
Xt-e 20 a\/dyJ(1 + |w])

and also by

|2a2d1(JK +J?)

Lo (1 + |w)adIJK X)?|D(w) o

Lemma 7.4. Let §; < £f be any sequence of complex numbers and let Re(w) = —1/2
+ &. Then

>
K<|k|<2K ka

2

2J-1 5
- < (@dJKYJ(J + K).

— 5 (1 +w;k,l,a,d
g ﬁO( )

“£,2ad)=1

Proof of Lemma 7.3 assuming Lemma 7.4. To prove the first bound, we use the triangle
inequality and apply the bounds for Gy from Lemma 7.1 and A (&, w) from Lemma 7.2 to
deduce that the sum in question is

. d 2+8J8K8d€ 1 /K
< dwPPE = (—— —)
X 20 a\/diJ (1 + [wl)
2J-1
241/2
> DO )
K<|k|<2K
k odd (l2ad) 1

We then estimate the k-sum by splitting it according to the values of k3 and k4 and using
(C.k3) <ki and 1/kz <1/ks.

which follows from (7.5.3) and (7.5.4). This leads to the first bound of the lemma.
To prove the second bound, we apply Lemma 7.2 and write the integral (7.5.5) as

LI [ sgn@»( )fﬂ)

271 J(e)
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with ¢ = . We then bring the £-sum inside the integral and use the triangle inequality to
deduce that

2J-1 1+¢ 71/2+¢
Ve ) kX v a T,
z—Z; 790(1 + w,k,ﬁ,a,d)h(m,w)‘ < |¢(W|(W
(2ad)=1 2J—1
Ve
x/@ gs.wisgn(k)) Y m§0(1+w;k,€,a,d)'|ds|.
(Csad)=1

Thus, since g (s, w;sgn(k)) <. (1 + |w|)® exp(—(7r/2 — &)|Im(s)|) by Stirling’s formula,
it follows from Cauchy’s inequality that

2J-1
Ve kX
—%(1 ko, d)h| ——,
4—2; g o rwik.boe.d) (&ﬂdle w)
,2ad)=1

2

052+8d11+8
|k|1—5X1—£

<+ |w|)8|é>(w)|2(

2J—-1
X/()exp(—(n/2—8)|lm(s)|)‘ 3 ell’%%(l twik, la d)
& Z_

,2ad)=1

2
\ds|.

The second bound of the lemma follows from this and Lemma 7.4. |

Proof of Lemma 7.4. For any integer k = + Hi,ale pi', let a(k) and b(k) be defined
by
alk) = l_[p:-z"—H and b(k) = 1_[ Di 1_[ pfi_l. (7.6.5)
i a;=1 a;>2
From the definition of &, in Lemma 7.1, we see for (£,2ad) = 1 that §(1 + w; k, €, ., d)

= 0 unless £ can be written as gm with g | a(k) and m square-free and relatively prime
to k. With this expression for £, it follows from Lemma 4.3 that if (¢, 2ad) = 1 then

k 2 (kr\\™'
Go(1 +wik. £, 0.d) = «/m(—) ]‘[(1 + m(—l)) Go(1 +wik.g..d).
m p p
plm
(7.6.6)
From this and Cauchy’s inequality, we arrive at

>
K<|k|<2K ka

2J—1 5@ 2
— S (1 +w:;k, L, ad
; 7i o( )

(. 2ad)=1 1
< K = > (Wik.g) + Wak.g)). (167

K<lkl<2K "2 gla(k)
g<2J




S. Baluyot, K. Pratt 426

where
vy (k, g)
25 k 2 k T
Z M(m)—gmgo(1+w;k,g,a,d) m 1_[ b+ 0
NG " S
J/g<m<2J/g o
(n 22d)=1
3tm

and W, (k, g) is the same, but with the condition 3 | m instead of 3 } m. We first bound the
contribution of W;. We factor out g~'/26y(1 4+ w: k, g, @, d) and apply the bound from
Lemma 7.1 to deduce that

k 2 (ki \\ P
Vi(k.8) <. (adK)*g™* Z pm)*Sgm (E) l_[(l T e (_1))
J/g=m<2J/g plm P P
(m,6ad)=1
(7.6.8)

In the sum, if (%) #£ 0, then

(5 (5) 10 55) T0-55%(5)

plm Pl plm
()da())
(- ) S ()

We insert this into (7.6.8), interchange the order of summation, and apply Cauchy’s
inequality to see that

2

Wy (k. g) e (@dK)*g' e Y
j<2J/g

£ (N )

J/g<=m<2J/g plm
(m,6ad)=1
Jlm

We next relabel m as jm, factor out /L(j)z(l;‘.) ]_[p‘j (1 - #)_1 from the m-sum, and

observe that
4 -1
l_[(l o p2+2w) e J°

plj

because Re(w) > —1/2 + ¢ and p > 3 for all p | m. The result is

Wy (k,g)
2

(- 5)

plm

L (@dJK)Eg'te Z
j<2J/g

k
S g (Z)
J/gj<m<2J/gj
(m,6adj)=1

(7.6.9)
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Now, by (7.6.5), g | a(k) implies b(g) | k. Thus we may interchange the order of summa-
tion to write

3 Z Uik Y Y. kiz%(k,g)

K<|k|<2K 2 glak) g<2J K<|k|<2K
g<2J b(g)lk

1
=y > Vi (fb(2). ).
§<2J K/b(g)<|f|<2K/b(g) >

where we have relabeled k in the last sum as fh(g), so that, by (7.5.3), k, > 0 satisfies
4fb(g)d,; = klkg, with k; a fundamental discriminant. From this and (7.6.9), we arrive
at

3 kl D Wik g) e (@dIK)* > g > x

K<lkl<2K "2 gla(k) e Kb <2k b <
g<2J
3 3 1b(g) 4\
<2778 1/(gj)<m=21/(g)) pim 4
(m,6adj)=1

If 4f = f1f2, with fi a fundamental discriminant and f> a positive integer, then the
equation 4/b(g)d; = k1k3 implies that f>|2k,, and thus k; ! < f,~1. This and (7.6.10)
imply

> oY wik

Ks\k\<2K gla(k)
g<2J

Lo (@dJK)F Y g Y > %

> o)

g<2J j<2J/g K/b(g)=<|fI<2K/b(g) J/(gj)=sm<2J/(gj)
(m,6adj)=1
where .
b(g) 4\
— 2¢ . -
am = M(m) Sglm(T l_[ 1 P2+2w .

plm

It follows from this and Lemma 4.4 that

> Z Wy (k.8) K¢ (@dJK)* > g Y 2/ (b(g) ZJ)

K§|k|<2K gla(k) g<2J ]<2]/g
g<2J

Lo (@dJKJ(K + J) Z ( ) > l

g<2J ]<2J/g
&z (@dJK)EJ(K + J)
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since Zg<21 b(g)~! « (log J)2. This proves the desired bound for the sum of ¥ (k, g)
in (7.6.7). To bound the sum of W, (k, g), we argue in the same way, but instead of (7.6.6)
we use

k 2 (ki \\"'_,
ﬁo(l—kw,k,(i,a,d):ﬂ(a)H(l+m(;)) ‘50(1+w;k,g,a,d),

where

1 (ki\)
G5+ wik.g.a.d) = (1_W(?l)) []%0.,(1 +wik.g.a.d)

P#3

with &y, as defined in Lemma 7.1. [

‘We now estimate the contribution of R ;. From the ﬁrst.bound of Lemma 7.3, we see
that the sum of the right-hand side of (7.6.4) over all K =2/ > o2 VJ(1 + |w|)(log X )* is
negligible. On the other hand, if K < a?VJ(1 + |w|)(log X )* then it follows from (7.6.4)

and the second bound in Lemma 7.3 that
. 3Y(JK + J2)\ /2
Y Ulekw) < (1+ |w|)1/2+8|<b(w)|(aJKVX)E(%)
K<|k|<2K
k odd S/ZVJ

x1/2 -

< (14 |w|)1+g|<l>(w)|(aJKVX)8

We sum this over all K =2/, j a non-negative integer, with K < a?VJ(1 + |w|)(log X )*,
and then multiply the resulting sum by 2. We then integrate over all w with Re(w) =
—1/2 4 ¢ and sum over all integers @ < Y to deduce from (7.6.2) that

2V—-1  2J-1 ylte jltey3/2+e
Z Z IR D) € ——77— (7.6.11)
(d,2)=1 (l,2d)=1

Recall from (7.5.8) and (7.6.1) that R; = mymyR(mym,, d). Since Ay K d® by (5.8)
and by, < 1by (3.5), it thus follows from (7.6.11) that

bmlbmz Dltepgl+ey3/2+e
Dor@a 3y CESSS IR <~ (612

d<D mi,my<M
d odd (mym3z,2d)=1
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7.7. Conditions for the parameters

From (7.5.1), (7.5.6), (7.5.23), and (7.6.12), we see that the total contribution of the sum
with @ to B in (7.4.1) is

bmlbf'lz o~ d (v) p(a)
1)4 Z'“( )?Aq ZZ (m1m2)3/2 Zl v23/2 Z a2d, A

d<D my,my<M = a<Y
d odd (mym>,2d)=1 (v,2d)=1 (a,2mimov)=1
14+ 5 bm] bm, 2 XY
- Sty XX Ll et

4
2 2(\/_ 1) d<D mi,my<M
d odd (mym2,2d)=1

x/(l Fz(s—w)Ss_w(l—

d
)JC(S, w;mima,d) @
S

W) 45—w
X1+8D8Me
O(T +X1/2+8D1+8M1+8Y3/2+8). (771)

Recall the definition (3.4) of M. Also, recall the definitions (5.9) and (5.2) of D and R,
respectively. So that the error terms in (7.7.1) are O(X ™), we assume the parameters 0
and ¥ satisfy 0 + 29 < 1/2, and we take the parameter Y in (3.6) to be ¥ = X% with
8 = 6(0,9) sufficiently small.

7.8. Evaluating the sums of the other terms with k # 0

The procedure for evaluating the sum with @, in (7.4.1) is largely similar to the above
process for @1, with only a few differences. The main difference arises from the negative
sign in the character ( 2d21 ) in (7.4.3). This causes the residues in the versions of (7.5.6)
and (7.5.7) for @, to have each —kd; equal to a perfect square instead of kd; = 0. This
means sgn(k) = —1. Hence, because of the factor sgn(§) in (7.5.5), the version of (7.5.9)

for @, has the function

(27) 7T (u)(cos(Zu) + i sin(Zu))

in place of the function ' (1) defined by (7.5.10). These lead to a version of (7.7.1) for
@, that we may combine with (7.7.1) using the identity

i .
(cosu —isinu) +

1—i
7 (cosu + i sinu) = cosu + sinu. (7.8.1)
The result is

X bmlbmz = d (v) (Ot)
V2—1)* Z“(d)zkd ZZ (m1m2)3/2 Z v23/2 Z

d<D mi,my<M a<Y
d odd (m1m>,2d)=1 v, 2d) 1 (a,2m1mov)=1
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YIUTUETED 3) BERL L Ty S pE

3/2
2(f 1)4 d<D my,my<M (mll’ﬂz) /
d odd (mim>,2d)=1
d
x/ (s —w)8 ¥ (1 - — )K(s,w;mlmz,d) g ox'®), (182
(ﬁ) 45—w s
where

T'1(u) = 27) 7T (u)(cos(Fu) + sin(Zu)) (7.8.3)

and the bound O(X!™¢) for the error term is guaranteed by the conditions in Subsec-
tion 7.7.

The evaluation of the sums in (7.4.1) with @3 and @4 defined by (7.4.4) and (7.4.5)
is similar. The version of (7.5.7) for @3 has an extra —1 factor because the Kronecker
symbol (%) equals —1 when —kd; is an odd perfect square. The resulting expression
for the sums in (7.4.1) with @3 and @4 is exactly the same as the right-hand side of
(7.8.2). Therefore

X 2 bmlbmz > dZ(V) /L(()l) : .
(«/5—1)4 ZM( ) Aa ZZ (m1m2)3/2 ; 3z Z azdl;aj

d<D my,my<M a<Y

d odd (m1m>,2d)=1 v.2d)=1 (@,2m mov)=1
42 wdPra Y b’"‘b’”;/st;(Hw)zX / T (s—w)
(f 1) d<D mi,my<M (m1m2) l (lng]X)
d odd (mymz,2d)=1

1 d
x 857w (1 - — )J{(s, w;mymsy,d) 4 +O0(X'™%). (184
45w N

To estimate the sum with U in (7.4.1), we first relabel k in (7.4.6) as 2k, now with k&
odd, to write

1+ 2d ka2d A kX
U; = +1 ( 1 )Ze( o 1M1M2V)Fv( . )sz(mlmzv).
2 mymav ) e~ 4 4o2dimimov

k odd (7.8.5)

From the definition (4.2) of Gy (n), we see that Gk (n) = (2)Gy(n) for all odd n. Also,

the orthogonality of Dirichlet characters modulo 4 implies that e(2) = i (51) for odd /.
It follows from these and (7.8.5) that

141 —dy -1\ - kX
Ur =i Ve (— e .
1=1 2 (mlmzv) %(kdl) (40!2d1m1m2v) x(mymav)

k odd

We then proceed as we did for @;. We treat the sum with U,, defined by (7.4.7), in
a similar way. We combine the resulting expressions using the identity (7.8.1), and we
arrive at
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X biibmy, = d2(v) (a)
WZM(CZ)ZM ZZ (7'71’172)3/2 X_: V23/2 Z o?

d<D my,my<M a<Y
d odd (mimy,2d)=1 (v, Zd) 1 (a, 2m1m2v)—l
X 2 ml m2 2
= don@d?ra Y 3a Resc(l4w)>>— | Ti(s—w)
(ﬁ_1)4 d<D my,my<M (mym2) (mama)’2 i log]X)
d odd (mim3,2d)=1

1 d
x 457 (1 = )J{(s, w;mimsa,d) 4 +0(X'%). (7.8.6)
S—w s

Next, to evaluate the sum with V in (7.4.1), we relabel k in (7.4.8) as 4k, now with k

odd, to see that
2d . kX
V=— ! E F,| ———— |t (mimyv)
Mmimav 202dymymov
keZ

k odd

since e(h/2) = —1 for odd & and 4% (n) = 1% (n) for odd n by (4.3). Into this we insert
the second expression for 7z (7) in (4.3). Since (_TI)Gk (n) = G_r(n) by (4.2), we may
split our sum expression for V into two, one with G (n) and the other with G_z (n). We
relabel k as —k in the latter and combine the result with the former to arrive at

2d 8 kX
V= ) N A 55— | Grlmimay), (7.8.7)
MMV 202dymimov
Koa
O

where F (£) is defined by
1 + i

F) = F§)

= /00 (cos(2méx) + sin(2méx)) F(x) dx.

We then proceed as we did for @1, using [40, Lemma 5.2] instead of Lemma 7.2. We
arrive at versions of (7.5.6), (7.5.7), and (7.5.8) which show that the residue at w = 0
equals zero because 2kd; # O when kd; is odd. This leads to

Cbmbm, o~ da(v) w@) .,
(V2- 1)4ZM( ha 22 (mim2)3/2 2 \;T 2 2d1

d<D my,my<M v=1 a<Y
d odd (mim>,2d)=1 v,2d)=1 (@,2mimov)=1

=0X'"®%) (78.8)

under the conditions in Subsection 7.7.
Lastly, to estimate the sum with ‘W in (7.4.1), we relabel k in (7.4.9) as 8k to write

d A kX
W= ~ )Y A ) mimav)
mimyv a?dymymav
keZ

k#0
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using the fact that e(h) = 1 for any integer / and g (n) = (2)rk (n) for odd n by (4.3).

Into this we insert the second expression for tx (7) in (4.3), apply ( )Gk (n) = G_x(n),
and recombine the k and —k terms as we did for V in (7.8.7) to deduce that

d - kX
W () S A e
mmav ) = a?dimimyv

k#0

We then proceed as we did for @1, using [40, Lemma 5.2] instead of Lemma 7.2. Since
we are now summing over all non-zero integers k and not just the odd ones, instead of
(7.5.15) and (7.5.16) we use

o0
Zj_ZH'zwﬁo(l +w; j2, mma,ad, 1)
ji=1

o0
=12 P60, (1 + w; p* . mim;,ad, 1)

= (mlmz)l_ﬁwﬁi_w_l/z{@s —2w)t2s + DFH1(s —w, 1 + w;myms, ad).

We arrive at

Cbmbm, o~ da(V) p(@)
1)4 Z,u(d)z/ld ZZ (myma)3/2 Z 1,23_/\}2 Z 231

d<D my,.my<M v=1 a<Y
d odd (m1m2 2d)=1 (v,2d)=1 (a,2m1mov)=1
_bmbm,
PINLCO YD D) D e 75
(\/_ 1)4 d<D my,mr<M (mlmz)
d odd (m1m2,2d)—1

xw d
X Re?)g'(l + w)ZT/ 1 (s —w)K(s,w;mimsy,d) 4 +0(X'%. (789
w= i s

(logX)

7.9. Putting together the estimates
From (7.4.1), (7.8.4), (7.8.6), (7.8.8), and (7.8.9), we deduce that

buybuy xw
1)4 2w D) )72 Ry b+ w)* T —

d<D mi,my<M
d odd (mim2,2d)=1
d
x Ty(s — w) (8570 V2 + 4570 — 2570 V/2) K (5. wimyma. d) — + O(X'7),
X s
where we recall that I'y is defined in (7.8.3) and X is defined in (7.5.24). We next evaluate

the residue at w = 0. Note that, for fixed s, the integrand has a pole of order at most 2 at
w = 0. We use (6.1.6) with n = 2 to write
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ZM’( )zld ZZ bm1bm2 1 /;1) FI(S)(gsﬁ+4s_23ﬁ)

4 3/2
(f 1) o mioma=M (mymy) 27
d odd (mim>,2d)=1

3.85V242-45-252
8sf+4s_2sﬁ

}ﬁ +O0(X™%. (79.1)
w=0 s

F/
X K(S,O;mlmz,d){Z)/ +log X — F—l(s) — (log2)
1

N 2K (s.wimima, d)
K(s,w;mimy,d)

To simplify this, we evaluate the expressions involving J by using Euler products, as
follows. By (7.2.5), the definition (7.5.18) of #;, and the general formula (7.5.14), we
may write the o-sum in the definition (7.5.24) of X as

00
(@) 1
Z mﬂ’l(s—w,l+w;mlm2,ad)=g l—[ Hi,p

a=1 2mim
(a,2mimy)=1 plamymz

2 1 1 (1——i)’ 2
p w
Xl_[( 1+w) (1_p1+2s)(1_p1—2s+2w) l_[ 1— 1}rz (1+pl+w
p S

pld pi2mymod
2 1 3 1 1 2 1
- pltas—w + pltas - p2tas + p3tas - p2-2s+2w + p3taw - pAtastaw
(7.9.2)

We insert this into (7.5.24), put w = 0, and use the identity

1 1 1 5
s N s N N N
(8 V2445 -2 ‘/_2)(1_21/24)(1_21+2S) 4(1_—21/ 2+s)(_2_4 -4 )

to deduce that

T1(s)(8 V2 + 45 — 25V2) K (5, 0:mimz, d)

0 T(s+1 2 s
- @%(—;42)(%) Fl(S)§(2s)§(2s+1)(1—21/12+s)(1—21/12_3)(2—4&4S)

@(dmimy)? a\’ 1 1 1
) d3m1mzdﬂa;1(5) 1_[ (1 * ;) H(l B P1+2s)(1 - Pl_zs)

P|W3'1[m2 old
b1ty
§ H {(1 - ;) (1 * P + P pras m)} (7.9.3)

pt2mimad

where £ is defined by (7.5.17). Furthermore, we insert (7.9.2) into (7.5.24), take the
logarithmic derivative with respect to w at w = 0, and use the identities
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3.8V242-45-252  2log2

— (log2
(log2) Y IR + o
3log?2 + log2
= — og
(V24 29)(V2+279)
and )1 ¢
ogp
—Z m = 2?(25' + 1), RC(S) > 0,
P
to arrive at

3.8242-45-252 n %J{(s,w;mlmz,d)
852 + 45 — 252 K(s,w;mymsy,d)

1’1/
—F—i(S) — (log2)

w=0
(®)'(0) I / ’ log 2
= — —log(2¢1) — =—(s) —2=(2s) +2=2s+ 1) +
2(0) Iy ¢ ¢ (V2 +25) (V2 +279)
2log p 2log p 2log p 2log p 2log p
pld plmima

plmymz
pth

2 1,2 -2
N Z (210gp_(210gp) I+ 5 =507 +p77) )

— 241 1y -2 ’
pt2mimad p—1 p 1+p+p3 pz(PS+P %)

(7.9.4)

Now the definition (7.8.3) of I';(u), the Legendre duplication formula, the functional
equation of £ (s), and the identity I'(z)['(1 — z) = & csc(rz) imply that the functions

F(i —+ 1)2 4 K
132—(5(;) C1(s)¢(2s)¢(2s + 1)

and

F/ ! !
1
——(5)—2=2s)+2=2s+1)
I'y ¢ g
are even functions of s. Hence (7.9.3) and (7.9.4) are even functions of s. It follows that
the integrand in (7.9.1) is an odd function of s. We move the line of integration in (7.9.1)
to Re(s) = —1/log X, leaving a residue at s = 0. In the new integral, we make a change
of variables s > —s to see that, since its integrand is odd, it equals the negative of the
original integral in (7.9.1). Therefore twice the original integral equals the residue at s = 0.
We write this residue as an integral along the circle |s| = 1/log X, taken in the positive
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direction, and arrive at

_ X
V2D
bmybmy 1
XD wdPha Yoy S ()8 V2+4° ~2°V2)
d=<D =M (m1m2)3/2 2mi Is|= e
d odd (mimy,2d)=1

3-854242-45-252
gsf+4s_2sﬁ

} ds +0(X'%). (7.95)
w=0 s

F/
X JC(s,O;mlmz,d){Zy + log X — F—l(s) — (log2)
1

%K(S, w;mlmz,d)
K(s,w;mima,d)

The next step is to carry out the summation over d. From (7.9.3) and (7.9.4), we see
that we need to evaluate the sums ¥; and ¥, defined by

o(d)? 1 1
d— 3 - 1+2s R
d<D d P P

Si= Y @)

< pld
d,2mimy)=1
1)\? 2 1 1 1
x H {(1__) (1+_+_3_ 2-2s 2+23)} (7.9.6)
pt2mymad p P P P P
and
¢(d)? 1 1
Sai= Y @ [(1- 5 )1 - ==
d )4 14
d<D pld
(d,2m]m2)=l
1)\? 2 1 1
< ] {(1 - —) (1 tot T s 2+2s)} > Jp.s), (797
pi2mymord p p P P pld
where
2log p 2log p 2log p I+ 5= - (1725 +p7?)
J(pss): 1+2S_1 1725_1 1 4 - 28 —2s
P )4 )4 +2 + (p + p~*%)

(7.9.8)

and |s| = 1/log X . We only estimate X, since ¥, may be treated in the same way, except
using Lemma 5.4 instead of Lemma 5.3. We rearrange the factors in (7.9.6) to write
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1\? 2 1 1 1 u(d)?Arg
T = 1-—) (1 B 8ol e
1 1 {( p) ( IR p””)} ED d

pt2mym;

(d,2mimp)=1
1 2 1 1 1 \!
Xl_[( 1+2s)(1_ 1—2s)(1+ +__2—2s_m) . (7.9.9)
pld p p P> p

Now recall the definition (5.1) of zo and the definition (5.8) of A,4. Factoring out the
product over primes p > zg, we see that

1\* 2 1 1 1
[ I B R I T =T

pt2mimy
1 1\2 2 1 1 1
— +2s5
20/ ) 4 amims P p pp P
DP=Zg

From this, (7.9.9), Lemma 5.3, and some simplification, we deduce that

= (eo()) e T 0-5) T (=5)

t2mim; plzmim;
P=<z0 P=<z0

1
+ A((l R)A) (7.9.10)

The condition p < zo may be omitted because [, (1 + 0(#)) =1+ 0(%) and

TR e )

pl2mymy
DP>20

The contributions of the error terms O( ) and 0(
(7.9.10), we arrive at

_ 2m1m2 _i 1+0(1) 1
= @(mymy) H (1 pz)—logR + 04 ((1 R)A) (7.9.11)

X) are negligible. From these and

pt2mimy
In a similar way, but using Lemma 5.4 instead of Lemma 5.3, we deduce from (7.9.7) that

= 2mimy 1—[ 1 1\1+4o(1)
> log R

2
(p(mlmZ)PJmelmz P

J(p.s) 1 1 1
Z p+1 (1 B p1+2s)(1 - p1—2s) + OA((log—R)A)' (7.9.12)

pt2mym;

We now combine the above pieces to get a new expression for 8. Take the expression
for B in (7.9.5) and substitute in (7.9.3) and (7.9.4). Next bring the sum over d inside to
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see that we have X as in (7.9.6) and X, as in (7.9.7). Then insert (7.9.11) for ¥; and
(7.9.12) for X5. It now follows that

B X ®(0) 1+ 0(1) by bm, ( )
322)(v2—1)* logR m;nng vmlmzfl l_[ p+1
(mim2,2)=1

s (s + 1)? s
x ﬁ L (;—l) Fl(s)—(2 +);‘) (%) £(25)¢(2s + 1)(1 _—21/12+S)

1
ISI=fe X ab=t, I(3

1 S 4y X (@)’ T ¢
X(l‘zlm)(i_4 ){k’g(zﬁ )”H do 0T

' log2 }d
2—2s+1 ) ) ) -
270 )+(ﬁ+2s)(ﬁ+2_s)+;m(p S)+§772(17 SHW%ZMP Dl

)2 E4

X 7.9.13
* A((I R)A)’ (7919

where
(p.5) 2log p (210gp) 1+pl—l(P2s+P %)
mip,s) = -
—1 )4 1+%+#_F(p2s+p—2s)
J(p.s) 1 1
Cp+1 1_p1+2s l_pl—zs ’
log p
n2(p,s) = _gl —m(p,s), (7.9.14)
2logp 2logp
n(p.s) = —————F— —mi(p,s),
p—1 p+1

with J(p, s) defined by (7.9.8).
Next, we carry out the summation over m1, m,. Define

LY e T1(G4) X (5) 9.15)

my,my<M ab={,
(mym3,2)=1
e T(5) X (5)
> =) logt,, (7.9.16)
myma<M mlmzﬁl p+ 7 b
(mym2,2)=1

> ma(p.s). (7.9.17)

> \/71—[( ) Z6)

my,my<M ) Pl
(mym3,2)=1
bmlbmz l—[( P ) Z (a)s
2> N 13(p.s).  (7.9.18)
my,ma<M mimaty p+1 ab={, b plmims

(mym2,2)=1 Pty
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so that (7.9.13) can be written as

XP0) 1+o() 1 M(i)s
T 3@ (V2—1)* logR 2mi ¢sl_ T1(s) r? \x ¢(@2s)¢(2s + 1)

1 1 5 s s X (®)'(0)
(1) )G ) 2

RPN ' log2 )
() 2§(2s)+2§(2s+1)+(ﬁ+2s)(ﬁ+2_s)+1§2m(p,ﬂ

+ T2+ T3+ T, ds —+0 X
2 3 4 A TogR)A )

(7.9.19)

We need to estimate the sums Y; for |s| = 1/log X.
To estimate Y, observe that if m; and m, are square-free then (7.5.17) implies

mimsa

6 = (7.9.20)

(my1,ma)?’
> (%) =[] +r™. (7.9.21)
ab={, plt

From these, the definition (3.5) of b,,, and the Fourier inversion formula (6.1.2), we
deduce from (7.9.15) that

_ / / heh(z) 33 AR Cn o)

1+ 1+
(mym2,2)=1 m log M m2 log M

S —S p
——— |dz1dz,.
X l_[ P +p )(p—i-l) z1dzy

plmymz
pt(my,mz)

Thus, writing the sum as an Euler product, we see that

—/ / h(zl)h(Zz)]_[( HII:;,A? = +pS>( il)

p>2 )/
1 _ p 1
gtz (P +p S)( + 1) * 1+2+f21+f22) 421 dzp.
p log M p log M

We write this as

't = / / h(z1)h(z2)¢(1 + “@—Aj”z)W(s,Zl,Zz, k,g;M) dzydz;
oo é' 1 —+

B o1+ i )21+ HEg +5)201 + g )
(7.9.22)
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where W(s, z1, 22, 1/log M) is an Euler product that is bounded and holomorphic for
|s| < e and complex z1, z, with

[Im(z1)], |[Im(z2)| < elog M.

Note that this definition of W implies

4 1 1\
W(0,0,0,0) = 8 l——— 4+ = )(1=-= = 6¢(2), 7.9.23
¢ ) }:[2( p+1 p)( p) ¢@ ( )

a fact we use shortly. By (6.1.4), we may truncate the integrals in (7.9.22) to the range
|z1], |z2] < +/Tog M, introducing a negligible error. On this range of z; and z,, the
function W and the zeta-functions in (7.9.22) may be written as Laurent series. The con-
tributions of the terms other than the first terms of these Laurent expansions are smaller
than that of the first terms of the expansion by a factor of log X. The first term of the
Laurent expansion of W is given by (7.9.23). We thus arrive at

log M 14+iz; 1+izg
T =62 h h —
! (@ [/ (z1) (22)(2+i21 + izz)( log M s)( log M +s)
|zi |<+/log M

14+iz, 14+iz, 1
—s)dz1d
(anr ) o =) 2182+ 0 )

By (6.1.4), we may extend the range of integration to R?, introducing a negligible error.
We then apply (7.3.13) to deduce that

4

/ H'(t)*dt —

T = 6&(2)( o

1
4 2
log M H(t)" dt 0] 7.9.24
+ 5*(log )/0 @) )+ ((l X)4) ( )
Having evaluated Y, we next estimate 5. Using the residue theorem, we write
1 d
—logl; = — o7 )2}
27[1 |y|=2](»ng y

From this, (7.9.16), (7.9.20), (7.9.21), the definition (3.5) of b,,, and the Fourier inversion
formula (6.1.2), it follows that

)1+2y

1 ( )( )(my,
te g [ e Sy s

= +y 1+
[yI= 210gX (mim2,2)=1 IogM m, log M

s o=\ P dy
——— )dz1dzy; —=.
X l_[ (r+p )(p—i-l) zZ1dz3 )2

plmyma
pt(my,mz)

+y
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We express the sum as an Euler product to see that

_ 1 p
-i$ [ ] h(zl)h(Zz)]_[( W(” o )(ﬁ)

2o, gX p>2 p
1 P _ p ) 1 ) dy
e + p* + S dzydz, —=.
l+11:;;12 +y (p p )(p +1 1+2+11,02g11‘-11—122 1 2 y2
p p
Write this as
1 . .
To= o ) / / h(z0)h(22)¢ (1 + ZHEFE2)V (s, 21, 22, 5570 9)
T 2log X gX -

XU+ y+9) 1+ 2 +y—9)7
_ d
x (1 + };’f} +y+s) (14 };;’;; +y—5) ldzldzzy—y,

where V(s, z1, 22, 1/log M, y) is an Euler product that is bounded and holomorphic for
Is], |y| < e and complex zy, zo with [Im(z;)[, [Im(z;)| < elog M. This definition of V'
implies that (0, 0,0, 0,0) = 6£(2). As in our treatment of Y, we use (6.1.4) to trun-
cate the integrals. Then we write V' and the zeta-functions as Laurent series. The main
contribution arises from the first terms of the Laurent expansions, and we arrive at

6L(2 log M 14+iz
G // h(zl)h(zz)( e )( 1+y—s)
2mi y|_2]0gx 24iz1+izy log M
|zi|<s/log M
1+i21 1+i22 1+iz 2 dy 1
—s)dz1dzy; =+ 0| ——— ).
X(logM +y+s)(10gM+y+S)(logM ) 14233 O Gog X3

We carry out the integration over y by applying the formula (6.1.6) with n = 2 and deduce
that

loe M
T, = 6£2) // h(zl)h<22>(2+fi—+izz)
|z |</logM

y 1+iz N (1+4iz)? N 1+iz; (1+iz)?*
s —= -5 -5 -
log M (log M )? log M (log M)?
1+i22 (1+i21)2 2 1+i22 (1+i21)2 2
+ ( log M + S)( (log M )2 ) log M y (log M )? S dz1dz

1
+O(aogw)'

We extend the integral and apply (7.3.13). After simplifying, we arrive at

T2=6§(2)( M)2/ H'(t)H" (1) dt + 45> / H(t)H’ (t)dt)-l—O(( IX)3)
(7.9.25)
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We next estimate Y3 defined by (7.9.17). We interchange the order of summation over
my,my and over p. From (7.9.20), we see for a prime ¢ and square-free m and m, that
q | 1 if and only if ¢ divides exactly one of m or m,. If g divides m, and not m1, then
we may relabel m; as m, and vice versa. Hence

b, bm i a\’
n=2 Y mes Y A [](5) 3 (7).
2<q<M ey Vmmaty P+l ab={; b
(mym2,2)=1
qlmy, q t mo

From this, the definition (3.5) of b,,, (7.9.20), and (7.9.21), it follows that

Ty=2 Y migs Y AULR) ( 2 )(p )

mi,m 1
2<qg=<M my,my<M [ 1272 plmima P+
(mym2,2)=1 pt(my,m2)
qlmy, g f mo

! !
x H OB M1 H g M2 .
log M log M
We relabel m as gm; to write this as

) Z 7]2(61 S)( S 4q7%) Z Z pu(my)pu(msz)

2<q<M mi<M  ma=M [m.m]
7 (mima,29)=1
_ loggm, log m»
X l_[ ( )(p +p S)H( )H( )
Dl p+1 log M log M
J((ml,mz)

We insert the Fourier inversion formula (6.1.2), interchange the order of summation, and
then write the m;, m»-sum as an Euler product to deduce that

(q.9)(¢° +q°)
- _2/ / P T h(z)h(z2)

Po<g<M (9 + l)q log M

X +p*
1_[( 1+11:;;} (P’ +p )(p~|—1)

pt2q P
1 s _ D ) 1 )
- (p+p* + | dz, dz,.
P et (P )(p +1 p1+72+§f;$’22 v

We may express the Euler product in terms of zeta-functions to write

_ _2/ / 12(4.5)(q* :gl_s)h(zl)h(ZZ)Z(l 4 2z

o 2<q<M (g + 1)q =M
G+ 5 ) (1 B =) T+ R ) T (1 R )
x Uy (s, Z1,Z2, bg;M) dzidzy, (7.9.26)




S. Baluyot, K. Pratt 442

where Uy (s, 21,22, 1/log M) is an Euler product that is uniformly bounded for2 < g < M
prime, |s| < &, and real zy, z5. Using (6.1.4), we may truncate the integrals to the range
|z1], |z2] < +/Tog M and introduce only a negligible error. In this range, and for |s| =
1/log X, the quotient of zeta-functions in (7.9.26) is < (1 + |z1|*)(1 + |z2]?)(log X) 3.
Moreover, (7.9.14) implies n2(q,s) < ¢~ '7¢ for2 < ¢ < M and |s| = 1/log X. It thus
follows that

Ts; <« 1/(log X)3. (7.9.27)
A similar argument applies to Y4 defined by (7.9.18), except we use the fact that, for
a prime ¢, g|mimy, and ¢ t £; both hold if and only if ¢ divides both m; and m,, by
(7.9.20). This leads to

T4 < 1/(log X)3. (7.9.28)
It now follows from (7.9.19), (7.9.24), (7.9.25), (7.9.27), and (7.9.28) that
_2X$O) 1+o() 1 T(3+3)°(4)
= o1 gk i 5’|Ss|=k,;x M) =25 B (ﬂ) £25)5(2s + 1)

1 1 5 454 X (©)'(0)
X (] o 21/2+s)(1 o 21/2—s)(5 —4 —4 ){(loé’(z) +2y + <i>(0)

I ' ' log2 )
- = 2=-(2 2=-(2 1 ,
[ TR e )+(ﬁ+zs)<fz+z—s>+,§2m(p K

1
((10gM)3 / H"(t)* di - *(log M) /0 H(t)zdt)

/ H'()H"(t) dt + 45> / H@)H' (t)dt}d ((logLX)Z)'

"

(log (log M)?

Evaluating the s-integral as a residue, we deduce that
X®0) 1+0(1) { log X

41— %)2 logR |2logM
+ 0(X(log X)72).

From this, (2.2), (7.3.14), (7.2.8), (7.2), and (7.1.1), it now follows that

1 1
f HMH'(t)dt —/ H(t)H’(t)dt}
0 0

X 1+0(1){ 1 (1ogX)3 L
St = — H"(1)?d
8(1—%)2 logR |24 \logM /0 ()" dt
‘%(:ggg;) / H OO dr+ 5 / HOH () dr+ o gX [ H' (1) dr

! ’ X X1+ 1/2+e
—2/0 H(z)H(t)a’t}+O((1 X)2+ % +X M).

The error terms are acceptable by the choices in Subsection 7.7, and this yields Proposi-
tion 7.1.
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8. Choosing the mollifier: finishing the proof of Theorem 1.1

In this section we complete the proof of Theorem 1.1 by making an optimal choice for
the smooth function H(x) (see (3.3),(3.5)).
By (3.2) and Propositions 6.1 and 7.1, one derives the inequality

L 2
S toene(pn = X pUHOZEHO) g,
p=1 (mod 8) ( + 0) S

L(1/2,xp)#0

for 0 + 29 < 1/2and X > X¢(09, 6, ), where §o > 0 is sufficiently small and fixed. We
also have the upper bound

Y (ogp)®(p/X) < (ogX) Y L
p=1(mod8) X/2<p<X
L(1/2,xp)#0 p=1(mod8)
L(1/2,xp)#0
The right side of (8.1) is an increasing function of @, and so ¥ should be as large as
possible. The hypotheses of Proposition 7.1 allow § = %(1 /2 — 60) — ¢, and therefore

X
ooz (8.2)
X/reneX (1 4+ 2680)8log X
p=1(mod 8)

L(1/2,xp)#0

where
2

2\2 3

NITESAILIUES L)

We seek a choice of H(x) that maximizes o.
As H(x) is a smooth function supported in [—1, 1], we have H(1) = H'(1) = 0. For
notational simplicity we set H(0) = A, —H’(0) = B. Since

1
/ H(x)H'(x)dx = L
o 2
1 1
/ H(x)H"(x)dx = AB —f H'(x)*dx,
0 0
1
/ H'(x)H"(x)dx = —132,
o 2

we have, by the definition of 3 in Proposition 7.1,

| B 5
s:(A—i——B) —}—2493/0 H"(x)*dx.
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We choose H(x) such that on [0, 1] it is a smooth approximation to the optimal function
H,.(x) that minimizes the integral

1
f H!(x)*dx (8.3)
0

among all H; € €3([0, 1]) satisfying the boundary conditions H(0) = A, —H;(0) = B,
H;(1) = H{(1) = 0. We may choose H(x) such that

1 1
(1+ 80)/ H!(x)?>dx > / H"(x)*dx.
0 0

By the Euler—Lagrange equation, we find that an H.(x) which minimizes (8.3) must
satisfy

H®(x) = 0.

Thus, H«(x) is a polynomial of degree at most three. Recalling the boundary conditions,
we find

H.(x) = 24 — B)x> + (2B — 34)x*> — Bx + A.

By direct computation we obtain

1
/ H!(x)?>dx =34 + (2B — 34)?,
0

1— 1 A% + (2B —34)2\ !
0> 0(50)(__9)(1+3 +( 3)2) .
2 2 2403(A + 54 B)

It is now a straightforward, but tedious, calculus exercise to find that

_ B(46 +3)
IICESY

and therefore

is an optimal choice. Thus

_1=0G0) (1 )20 +60 +46%)
€= 2 (1 +20)3

(8.4)

With this choice of 4 we have

Bo
Hi(x) = 60+ 1)

1 —x)2(2+ % +x).



Quadratic Dirichlet L-functions of prime conductor 445

Since o is invariant under multiplication of H by scalars, we arrive at the convenient
expression

3
H.(x) = (1 —x)2(2+ % +x). (8.5)
If weset x = lloogg—;'; in (8.5), we find that the mollifier coefficients by, satisfy

(log(M/m))* log(X3/2M?m)
(log M)? log M '

bm = ju(m)

One might wish to compare this with the description of A(£) in [40, p. 449].
Define

L1 \2003+60+46%)  1[1 1
p(e)'_i(i_e) (1+26)3 _5(5_9)(1_(1+29)3)'

By (8.2) and (8.4), we obtain

X
Z 1 > - p(). 8.6)
X/2<p<X (14 0(80))8log X
p=1(mod8)

L(1/2,xp)#0

The maximum of p(6) on (0, 1/2) occurs at the unique positive root 6y of the polynomial
160* + 3263 + 2462 + 126 — 3. By numerical calculation we find

6o = 0.174009. ..
and
p(6p) = 0.09645 ... . 8.7

We then choose 6 = 6. Since

X
Yo I=(+4o()——.
8log X
X/2<p<X
p=1(mod 8)

we deduce Theorem 1.1 from (8.6) and (8.7) upon summing over dyadic intervals.

9. The second moment of L(1/2, xp)

In this section we prove Theorems 1.2 and 1.3. We first consider separately the upper and
lower bounds for Theorem 1.2.
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9.1. The upper bound in Theorem 1.2
We define
o 2
My:= Y (log p)®(p/X)L(1/2. xp)*. ©.1.1)
p=1(mod 8)

In this subsection we prove
X
M = (4c + o(1)) T (log X)°. 9.1.2)

The upper bound of Theorem 1.2 then follows from (9.1.2) upon summation over dyadic
intervals.

The proof of (9.1.2) follows the lines of the proof of Proposition 7.1, taking M (p) = 1.
We employ positivity to replace log p by log X and then introduce an upper bound sieve.
After applying the approximate functional equation, we split ;(n)? = Ny (n) + Ry (n),
and employ the bound (7.1.1).

We follow the argument of Section 7 up to (7.2.8), obtaining

Sy =T+ 8.
Since we have no mollifier here, we find that (7.3.6) in this case is

- _ 2X 14+ o0(1) d(v) X ylte
e X oo <o)

(v 2) 1
v=0

We insert into this the definitions (7.2.4) and (4.1) of F,, and w,, interchange the order of
summation, and then write the sum over v as an Euler product. The result is

2

To = X 1+0(1)L/ FG+Ha) (1 ngé(s) LY
° (V2-1)*% logR 2mi Ji F(%)z 21/2=s T 21+2s

1 \! . d X Xlte
x§(1+2s)3(1—m) £ + 4s) 1TS+0 ((1 R)A)+O(T)'

As before, we truncate the integral to the range [Im(s)| < (log X)?, and then deform the
path of integration to the path made up of the line segments L;, L,, L3 defined above
(7.3.12) to see that the main contribution arises from the residue of the integrand at s = 0.
We evaluate the residue using (6.1.6) and arrive at

1\ ' X®0) 1+0(1) x1+e
=(144c0)(1 - — ——Z(logX)*+ O XlogX )

(1mee(1-75) ) 5 S e + o+ 55
Recalling (2.2) and the definition of ¢, we deduce that

X (log X)3
To < (c + )_&
log R

X1+s
+O(X10gX+ % ) (9.1.3)
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Moreover, we see from (7.9.13) thatif M = 1 and b; = 1, then

log X
B X282 o x 9.1.4)
log R

since we may deform the path of integration in (7.9.13) to a circle |s| = . The condition
6 4+ 29 < 1/2 in Subsection 7.7 with 8 = 0 allows us to take ¥} = 1/4 —gin (9.1.3). We
then set Y = X, for some small, fixed § > 0. We see that the upper bound (9.1.2) then
follows from (9.1.3) and (9.1.4) after letting € go to zero sufficiently slowly.

9.2. The lower bound in Theorem 1.2
Recall the definition (9.1.1) of M,. Our goal is to prove the following result.

Proposition 9.1. As X — oo, we have
1 X
My > E(C - 0(1))1(10g X)3,

where c is the positive constant defined in Theorem 1.2.

The lower bound for Theorem 1.2 easily follows from Proposition 9.1 by summing
over dyadic intervals.

The main idea in the proof of Proposition 9.1 is a standard one. For any Dirichlet
polynomial A(p), the Cauchy—Schwarz inequality implies

Mo > (X p=1 (moasy(10g PYP(p/ X)L(1/2, xp) A(p))?
22

=1 (moasy(10g P)@(p/X) A(p)?
Clearly, we should choose A(p) to be an approximation to L(1/2, y,). Our choice is

inspired by the approximate functional equation in Lemma 4.2. For a positive real num-
ber o, we define

(9.2.1)

2 xp () ( b
Ag(p) = ). 922
(») = %)2 nEOdd 7\ e 9.2.2)

With gy > 0 small and fixed, we then choose A(p) in (9.2.1) to be

A(p) := A1—¢,(p). (9.2.3)
Observe that taking o« = 1 in (9.2.2) yields
Ar(p) = L(1/2, xp). (9.2.4)

Proposition 9.2. Let ¢9 > 0 be small. Let a1 < oy be real numbers with oy, oy €
{1 — &g, 1}, and (a1, a2) # (1,1). Then

1 X
Mayay = 3 (0g P)®(p/X) A, (p) Ay (p) = 5 (c + O(e0)) - (log X)°.
p=1 (mod 8)
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Proof of Proposition 9.1 assuming Proposition 9.2. By (9.2.1), (9.2.3), and (9.2.4), we
have

2
Ml —&0,1

M, >

1—¢&9,1—¢o

We apply Proposition 9.2 to obtain
1 X
M = 5 (c + O(eo)) 7 (log X)3.

Proposition 9.1 follows upon letting g9 = £ (X)) go to zero sufficiently slowly as X — oo.
(]

We devote the rest of this subsection to the proof of Proposition 9.2.

Proof of Proposition 9.2. By definition,

M _ 4
Q.o — T 4
(1-2)
mn b4 b4
B ()RS 2
p=1 (mod 8) m,n odd

Let M denote the contribution to My, o, from mn # O. An application of Lemma 6.1
shows that M. < X, say. We note that for bounding M~ itis crucial that ¢y = 1 — &o.
We therefore have

4
V2
b b
X tn(E) EF e )l
p=1(mod 8) (mn, 2p)D 1
mn=
+ 0(X).

We use Lemma 4.1 to remove the condition (mn, p) = 1 at the cost of a negligible error.
We then open w; using its definition as an integral, and interchange the order of summa-
tion and integration. After some simplification, we arrive at

4 1 XOL] s1/2 XOLQ 52/2
My, 0 = 4 ~ K(Slysz)( ) ( ) (14 2sy)
(1= 25)" CT* Jeen Jee n U

aq Y1+¢12V2

vzt Y weno(§)(£) )20,

X 518
'p=1 (mod 8) 1°2
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where ¢y = Re(sy) is a positive real number, and

21+s1+s2

2 74 i 1 1
H F T ol/2—s, Coolt2s )

For the moment we choose ¢; = ¢, = 1/log X . By the rapid decay of K(sy,s») in vertical
strips, we may truncate to [Im(s¢)| < (log X)? at the cost of a negligible error. With this
condition in place, we use the prime number theorem in arithmetic progressions to deduce
that the sum over p is

)( oo o181 +ans
Z/ d(x)x 7z dx + O(X exp(—c y/log X)).
0

The error term clearly makes an acceptable contribution to My, ,. We then remove the
condition on Im(sy) by the same means we installed it and obtain

M, 4 X /00 d(x) ! K( )
= — X)——— S1, S
e (1 — —})4 4 Jo (2mi)? (c1) J(c2) e
2

o 52/2
x (%) £+ 25)E(1 + 252)E(1 + 55 + 5) 251952
2

-1
K(s1.52) = £2 + 251 + 25)~" (1 T %)

(xX)* 51/2
)

dx + O(X).

We wish to separate the variables 51 and s,. As ¢y > 0, we may expand {(1 + 57 + 52)
as an absolutely convergent Dirichlet series. Interchanging the order of summation and
integration, we obtain

4 X [ 11 (xX)or\*1/?
Mooy =——=| ®x)) - —— K(s1.
e (1—%)4 4/0 (x)n_ln (2mi)? /(cl) (c2) (51 SZ)( wn? )
5 =

(xX)*2
x ( wn?

52/2
)2z 420 S vk o)
To truncate the summation over #n, first we move the lines of integration to the right to
¢1 = ¢z = 1. By trivial estimation we deduce that the contribution from n > X (01 +a2)/4
is O(X). For n in the range X*1/2 « n « X @ +%2)/4 we move Re(sz) to ¢, = 1/log X
and estimate trivially, getting an error term of O(X(log X)2). If n <« X*!/2, we then
move c; to 1/log X as well, obtaining

4 X [°
Mo =i ), 00 L K
( _75) 0 n</GX Jx (oex)  (oax)

oy \ 51/2 o\ 52/2
>(((x)() ) ((xX) ) {(1+2s1)§'(1+2sz)dslds2

mn? mn?

dx + O(X(log X)?).
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The variables s; and s are almost separated, except they are entangled inside of K (s, 52).
We move the lines of integration to Re(s;) = Re(s;) = —6 for some small, fixed § > 0. In
doing so we pick up contributions from the poles at s1, s, = 0. The contribution from the
integrals on Re(sy) = —§ is trivially bounded by O (X log X'). We write the contributions
from the poles at s, = 0 as contour integrals around small circles, thereby obtaining

4 X [ 1
Moo =T yia fy 9 L T Flons)
V2 n=4/(xX)*1/x Is¢|=(log X)~!

3} 51/2 an 52/2
x((xx) ) ((XX) ) £+ 251)e(1 + 255) 1

- 2 2 dx + O(X(log X)?).
b4 7

Since |s¢| = (log X)~!, we have

1 1 1)? 1
K(s1.52) = K(0,0) + 0(@) = @(1 - E) + 0(10gX)’

and therefore

2 X [ 1 1
Moo= T M X Gy

n<i/(xX)%1 /7
X)) s1/2 X)*2 52/2 ds, d
B (S0 () st
2
Is¢l=(og X)~1

+ 0(X(log X)?).

Expanding in Laurent and power series yields

1 x X)) se/? ds; 1 1 [(xX)x
o (( )2) z(1+2se>—f=—log(— ) )+0(1>,
Tl Jispl=(og X)—1 mn S¢ 2 n T

and hence
1 X ©
Mal,az — 5 )
X Z l log(l \/ (xX)= ) log(l v/ (xx)az) + O(X(log X)?).
n n T n b4
n<y/(xX)*1/m

Partial summation yields

1 1 [(xX)x 1 [(xX)* 1+ O(egp)
S ey ey ) = e

n<i/(xX)¥1 /7
and using (2.2) we arrive at My, o, = %(c + 0(80))§(log X)3. |
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9.3. Proof of Theorem 1.3

We turn now to the proof of Theorem 1.3. Throughout this subsection we set 1 :=
1001oglog X /log X . Recalling the definition (9.2.2) of A(p), we then have

L(1/2, xp) = A1—y(p) + B(p),

say. Thus

My= Y (logp)®(p/X){A1-4(p)* + O( A1y (p)B(p)| + [B(p)[»)} .
p=1(mod 8)

9.3.1)
We shall prove, on GRH, that

X
Y. oz p)®(p/X)A1y(p)* = e (log X)* + O(X(log X)***),  (93.2)
p=1 (mod 8)

Y. (ogp)®(p/X)|B(p)I> < X(log X)*>. 93.3)
p=1 (mod 8)

Theorem 1.3 then follows from (9.3.1), (9.3.2), and (9.3.3) after applying Cauchy—
Schwarz and summing over dyadic ranges.

We may easily prove (9.3.2), since the treatment is substantially similar to the proof
of Proposition 9.2. By the definition (9.2.2) of 41—, (p), the left-hand side of (9.3.2) is

4 Ap(mn) b3 b3
o, 2, G0 S (55 Jo 575 )

NZ) m,n odd

We argue as in Proposition 9.2 and find that the contribution from mn = O is

X
c§(log X)? + 0(X(log X)>T¢).

The following standard result (see [12, Chapter 20]) implies that the contribution to (9.3.2)
from mn # Ois O(X/log X), say.

Lemma 9.1. Let y be a non-principal Dirichlet character modulo q. Let x* be the prim-
itive character inducing x, and assume that GRH holds for L(s, y*). If g < X™ for some
fixed positive constant M, then

> x(p)(log p) < X'/*(log X)*.
p=X

The proof of (9.3.3) is more subtle. Here the method of proof is that of Soundararajan
and Young [42]. As the arguments are very similar, our exposition will be sparse, and we
refer the reader to [42] for more details. We perform some initial manipulations, and then
we state the main proposition that will yield (9.3.3).
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By the definition of B(p), Lemma 4.2, and the definition (4.1) of w;, we have

s/2 _ p(l—n)S/Z

1
B(p) = 2—[ g(s)L(1/2 +s,)(,,)p ds, (9.3.4)
Tl (c)

N

where ¢ > 0 and

2 T(E+13) 1 1 .

s/2 _

The function (p p(=ms/2) /¢ is entire, so we may move the line of integration in
(9.3.4) to Re(s) = 0. On the line Re(s) = 0 we have the bound |(p*/2 — p(1="5/2) /5| «
loglog X, and hence the left side of (9.3.3) is

<oz )™ [ [ lgingtml Y 1LA/2+in )L 24t ) diy dis,
R JR p<X
p=1(mod8)

(9.3.5)

To state the proposition we need, we first establish some notation, following [42, Sec-
tion 6]. Given x > 10, say, and a complex number z, we define

loglogx, |z| < (logx)~!,
£(z,x) =1 —log|z|, (logx)~! <|z| <1,
0, lz| > 1.

For complex numbers z; and z, we define

M(z1,22,x) = %(éﬁ(zl,x) + £(z2, x)),
V(z1,22.x) = H{&(221,x) + £(222.x) + £(2Re(z1), x) + L(2Re(22), x)
+2&(z1 + 22.X) + 2&£(z1 + 22, %) .

It is helpful to know that for the values of z; and z, we consider, we have loglog X <
V(z1,22,X) <4loglog X.
The following result, an analogue of [42, Theorem 6.1], is the key input we need.

Proposition 9.3. Let X be large, and let z1 and z be complex numbers with 0 <Re(z;) <
1/log X and |z;| < X. Assume the Riemann Hypothesis for the Riemann zeta function {(s)
and for all Dirichlet L-functions L(s, xp) with p = 1 (mod 8). Then for any real r > 0
and any ¢ > 0 we have

Do L2+ 20 1p) LA 2+ 22, 1)

=X
p=1 (mod 8)

X r?
Lre W exp(rM(zl,zz,X) + ?'V(zl,zz, X))
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Proof of (9.3.3) assuming Proposition 9.3. Recall (9.3.5). If ; or 1, satisfies |t;| > X we
use Cauchy—Schwarz, Lemma 4.5, and the rapid decay of g to get a negligible error.

We may therefore assume that |¢;| < X. We then consider, for a parameter 0 < @ < 1
at our disposal, two cases: (1) both #1 and 7, satisfy |#;| < (log X)™%, or (2) at least one of
11, tp satisfies |#;| > (log X)~*. In case (1) we use the trivial bounds

M(ity,ity, X) <loglog X, V(it;,itz,X) < 4loglog X,
while in case (2) we use the bounds

1+« T+ o

M(ill,ilz,X)f IOgIOgX, 'V(ill,ilz,X)f

loglog X + O(1).

Since |g(it)| < (1 4 t2)~! we find by Proposition 9.3 that the quantity in (9.3.5) is
< X(log X)*((log X)*>72* + (log X)*/43%/%) = X(log X)*"/11*¢ < X(log X)*/?
upon choosing o = 3/11. m

To prove Proposition 9.3 we establish estimates for how often the quantity
[L(1/2 + z1, xp)L(1/2 + z2, xp)| can be large. The following is very similar to [42,
Proposition 6.2].

Proposition 9.4. Assume the hypotheses of Proposition 9.3. Let N (V'; z1, z2, X) denote
the number of primes p < X, p = 1 (mod 8), such that

log |L(1/2 4 z1, xp)L(1/2 + z2, xp)| = V + M(z1, 22, X).

Inthe range 3 <V < 4rV(zy, z2, X) we have

NV X) < X ve
121,29, — exp| —— |,
=2 (log X)1—or® “P\ 72V (2, 2, X)

and for larger V we have

NWViz1,22,X) € exp(=2rV).

X
(log X)1=or(D
Proof of Proposition 9.3. We have

> L2+ 21 ) LA/2 + 22, 1)
p=<X

p=1 (mod 8) 0
= r/ exp(rV + rM(zy, 22, X))N(V;z1,22, X) dV.

—00

Then use Proposition 9.4. ]

We use the following lemma to determine how frequently a Dirichlet polynomial can
be large. We write log, X for loglog X .
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11
Lemma 9.2. Let X and y be real numbers and k a natural number with y*¥ < X 27 ®02X
For any complex numbers a(q) we have

2. | X

p=X 2<q=<y
p=1 (mod 8)

§  Klom X (20! (5 |a(q>|2
logX 2kk!

1/2
q q<y

where the summation variable q runs through the primes. The implied constant is abso-
lute.

Proof. This result is similar to [42, Lemma 6.3], so we give only a sketch. Since we are
assuming GRH we could use Lemma 9.1, but we get an unconditional result that is almost
as good by appealing to sieve theory.

Since p = 1 (mod 8), we have y,(q) = xq(p), by the quadratic reciprocity law.
Observe that y, is a primitive character with conductor < 4q. We then introduce an upper
bound sieve with weights A4 supported on d < D = X!/°22X_(For example, we may
take the weights A4 in (5.8) with R ~ X '/1°22X) With the upper bound sieve in place,
we drop the congruence condition modulo 8 and the condition that p is a prime. Opening
the square and using the Pélya—Vinogradov inequality, we see that the sum in question is

< > (X )

n<X din

< Z |a(‘j/1)70212k)| Z(ZA )

q;i<y q n<X din
q1-q2x=0

+Dlog(y*) > la(gqy)---alga)l-

q1,--42k =Y

a(q)xq(n) |
> i

2<q=<y

For the first term we obtain

la(q1) -+~ a(qar)| X la(g1) - --a(qgak)|
> Ml g () Xy )]

ai<y vk X Vg ai<y q1-q2k
q1+q2k=0 q1-+q2k=0
Xlog, X (2k! a(q)]?\*
<« J:5) (k ) Z| (@] ,
logX 2kk!

where the sieved sum on n contributes the factor log% = % log, X (this follows, for
example, from Lemma 5.3), and the last inequality follows as in [42, Lemma 6.3]. For the
second term we use Cauchy—Schwarz and the assumption y* < X 1/2=1/l22X ¢4 obtain

k 2\ k
Dlog(y*™) 37 la(g) +algu)l < X ](,;gX(Z “o )

192k =Y q=y q
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Proof of Proposition 9.4. Assume GRH for L(s, xp). A modification of the proof of the
Proposition in [41] then yields, for2 < x < X,

log |[L(1/2 + z1, xp)L(1/2 4 z2, xp)]

¢ ¢
xr(q°) “tzy |~z l0g(x/q") log X 1
= RC(Z g 517241 1o ) (@ +q77) log x +210gx + 0 ogx )’

ql<x

where the sum here is a double sum over primes ¢ and positive integers £. The terms with
£ > 3 contribute O(1). For £ = 2 we use the Riemann hypothesis for £ (s) (see [42, (6.4)])
and obtain

! L e o lou(x/g?)
D) Z q1+2/10gx(q 1 tyq 222)W = M(z1,22,x) + O(logloglog X).
q4=vx

Since M(z1, 22, x) < M(z1, 22, X), we obtain

xwl@) —z log(x/q)
log [L(1/2 + z1, xp)L(1/2 4 z2, xp)| < Re Z ql/Zi—l/logx(q 14 g Zz)m

2<q=<x

log X
Mz, 22, X) + 21°g— + O(logloglog X).  (9.3.6)
0g x

Now recall that we wish to bound the number N (V'; z1, z2, X). By taking x = log X
in (9.3.6) and estimating trivially, we see that we may assume V' < 13;1)5;; , for otherwise
N(V;z1,2z2, X) = 0. We may also assume that V2 > V(z1, z2, X), since otherwise the
conclusion of Proposition 9.4 would follow immediately from the prime number theorem.
We put V = V(zq, 22, X), and define

llogloglogX, V<V,
T = %logloglogX, "V<V§1—16V10gloglogX,
8, V> %'VlogloglogX.
We take x = XT/V in (9.3.6), and define z = x!/1°21°¢X We then obtain

log |[L(1/2 + z1, xp)L(1/2 4 z2, xp)| < S1 + S2 + M(z1,22, X) +3V/T, (9.3.7)

where S is the sum over ¢ truncated to ¢ < z, and S5 is the remainder of the sum. Observe
that if log |L(1/2 + z1, xp)L(1/2 + z2, xp)| = V + M(z1, 22, X), then (9.3.7) implies
that either

S;>V/T or S =V(1—-6/T)=:V.

Therefore N (V; z1, 22, X) < N1 + Ny, where N is the number of primes p < X with
p =1 (mod 8) such that S, > V/T, and N is the number of p < X with p = 1 (mod 8)
such that S; > V;. Hence, to bound N (V'; z1, z5, X), it suffices to bound N, and N;.
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To bound N, we take k = [(1/2 —1/log, X)V/T | — 1 in Lemma 9.2 and apply the
usual Chebyshev-type maneuver

S2k
Hp<X.p=1(mods):S>V/Ty< Y 2

2k
x W/
p=1(mod 8)
to deduce that (see also [42, p. 1115])
X log, X Vv
N _— ——logV .
2 K Tog X exp( AT og )

By a similar argument via Lemma 9.2, this time using the fact thatRe(¢™*! +¢7°2) =
%(q_z‘ + g7 + g 72 4+ g7 72), we see forany k < (1/2 —1/log, X)(V loglog X)/T
that

Ny < X log, X (2k('V(21,22, X) + O(logloglog X)))k

log X %

(see also [42, p. 1115]). For V < (loglog X)? we take k = [V2/(2V)], and for V >
(loglog X)? we take k = |10V |. We arrive at

X log, X Vi logloglog X X log, X
N _— — |1+ 0| ———— _— —VlogV).
1< log X exp( 2V + loglog X + log X exp( ogV)

10. Proof of Theorem 1.4

The proof of Theorem 1.4 breaks naturally into two parts: the lower bound and the upper
bound. The argument for the lower bound is very similar to that in [38], and we therefore
give only a sketch. The argument for the upper bound is similar to that in Section 7. In
either case, we crucially use the assumption that the central values are non-negative.

10.1. The lower bound

Let dj/2(n) be the multiplicative function with Dirichlet convolution (dy/2 * dy/2)(n)
= 1. For a prime p = 1 (mod 4) and large X define

Z dl/z(”))(p(").

R(p) = NG

n<X1/500

By Hoélder’s inequality and the assumption L(1/2, x,) > 0 we have

> (og p)®(p/X)L(1/2. xp)* = T7/ T3,
p=1(mod 8)
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where
Ti:= Y (logp)®(p/X)L(1/2. xp)R(p)*,
p=1(mod8)
T,:= Y. (logp)®(p/X)R(p)°.
p=1(mod8)
In T, we open up R(p)®, and obtain a sum over ny, ..., ne, and p. The terms with

ni---ne = Oyield a main term of size < X(log X)®, and the terms with n -+ - ng # O
are shown to be an error term by using Lemma 6.1.

For Ty, we write L(1/2, xp) using Lemma 4.2. After opening R(p)*, we have a sum
over ny,...,ns4,m, and p, where m is the variable of summation in the approximate
functional equation. The main term mn, - --n4 = O is of size > X(log X)®, and the error
term mny ---ng4 7 0Ois small by Lemma 6.1. This gives the lower bound.

10.2. The upper bound

Assuming that L(1/2, y,) > 0 for all square-free n = 1 (mod 8), we can use an upper
bound sieve and positivity to write

Ms:i= )" (log p)®(p/X)L(1/2, 1)’
p=1(mod8)

<(ogX) Y pm*( D Aa) @0/ X)L(/2 ).
n=1 (mod 8) din
d<D

The coefficients A4 of the sieve are given, as before, by (5.8). We take R to be a suffi-
ciently small power of X.
We use the approximate functional equation

. ds(v),% AN

v odd

where w3 (§) is defined by taking j = 3 in (4.1). After using the approximate functional
equation to represent L(1/2, y,)3, we write j(n)?> = Ny (n) + Ry (n). The contribution
from Ry (n) is bounded using arguments similar to those in Subsection 7.1. For Ny (n)
we use Poisson summation as before. Up to negligible error, we therefore have the upper
bound

> d
M3§(10gX) 1)62 Z 3(1)) Z ple)

d<D a<Y
d odd (v, 2d) 1 (a,2v)=1

2e?.d]y X ko2 dlv\ » (kX
* ( v )[az,d]8\1 ]26( 8 )Fv([az,d]g‘;)n‘(‘))’
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7 \3/2
o =oum(o(Z) ")

We treat separately the contributions from k = 0 and k # 0. The calculations are some-
what easier in that ultimately we seek only upper bounds, not asymptotic formulas.

The contribution from k = 0 is treated as in Subsection 7.3, and is
log X
log R

where

<X (log X)® « X(log X)S.

For k # 0 the presence of the additive character necessitates a splitting of k into
residue classes modulo 8. When necessary, we write the additive character as a linear
combination of multiplicative characters. We use the second expression in (4.3) for tz (n)
and treat separately the contributions of the terms (42) Gy (n) and (=2)(15%) G (n). We
then follow the method of Section 7 to deduce that the contribution from & # 0 is

log

0
<X
log

X
& log X)® « X(log X)°.

_ One difference that arises is in proving analogues of Lemma 7.2. Here we have
®(w + s/2) inside of an integral, instead of just ®(w) outside of an integral. It is helpful

to use the bound
v log X /
o) <<"( ] ) ‘

Another difference is that we have a factor of X*/2 in the integrals, whereas this factor
disappeared for the k # O terms in Section 7. We therefore do not need to concern our-
selves with any symmetry properties of the integrand (cf. the symmetry argument yielding
(7.9.5)).
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