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Abstract. We develop an approach that allows one to construct semiorthogonal decompositions of
derived categories of surfaces with cyclic quotient singularities whose components are equivalent
to derived categories of local finite-dimensional algebras.

We first explain how to induce a semiorthogonal decomposition of a surface X with rational
singularities from a semiorthogonal decomposition of its resolution. In the case when X has cyclic
quotient singularities, we introduce the condition of adherence for the components of the semiortho-
gonal decomposition of the resolution that allows one to identify the components of the induced
decomposition ofX with derived categories of local finite-dimensional algebras. Further, we present
an obstruction in the Brauer group of X to the existence of such a semiorthogonal decomposition,
and show that in the presence of the obstruction a suitable modification of the adherence condition
gives a semiorthogonal decomposition of the twisted derived category of X .

We illustrate the theory by exhibiting a semiorthogonal decomposition for the untwisted or twis-
ted derived category of any normal projective toric surface depending on whether its Weil divisor
class group is torsion-free or not. For weighted projective planes we compute the generators of the
components explicitly and relate our results to the results of Kawamata based on iterated extensions
of reflexive sheaves of rank 1.
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1. Introduction

1.1. Overview

In this paper we study bounded derived categories of coherent sheaves on singular sur-
faces with rational singularities over an algebraically closed field k of characteristic zero.
We are primarily interested in rational surfaces X but for most of the arguments it is
sufficient to assume that

pg.X/ D q.X/ D 0: (1.1)

Our aim is constructing semiorthogonal decompositions of the form

Db.X/ D hDb.K1-mod/; : : : ;Db.Kn-mod/i; (1.2)

where Ki are (possibly noncommutative) local finite-dimensional algebras. We con-
sider (1.2) as a generalization for singular varieties of the notion of a full exceptional
collection.

An instructive example is given by the nodal quadric X D P .1; 1; 2/, where a semior-
thogonal decomposition can be constructed using [24]: X admits an exceptional pair of
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line bundles whose orthogonal is equivalent to the derived category of the even part of a
degenerate Clifford algebra which is Morita-equivalent to kŒz�=z2; thus we have a decom-
position

Db.P .1; 1; 2// D hDb.k/;Db.k/;Db.kŒz�=z2/i:

So, here K1 D K2 D k and K3 D kŒz�=z2.
A new feature that we want to emphasize is the appearance of the Brauer group Br.X/

as an obstruction to the existence of a decomposition (1.2). We give a complete answer
for existence of such decompositions in the case of normal projective toric surfaces,
that is, for a projective toric surface X we construct the decomposition (1.2) as soon
as Br.X/ D 0 and describe the algebras Ki in terms of singular points of X explicitly,
following [18].

Our approach to construct (1.2) is based on descending semiorthogonal decomposi-
tions from a resolution zX of X . Before going into details, we mention that some results
in this direction were obtained earlier by Kawamata [19]. He used a completely different
approach based on the study of deformations of so-called simple collections of reflex-
ive sheaves. In particular, he obtained decompositions of the above type for P .1; 1; n/
and P .1; 2; 3/ (see Examples 5.12 and 5.13). On the other hand, in [27] a semiorthogonal
decomposition of the same type was constructed for any normal sextic del Pezzo surface
(there are six isomorphism classes of such, four of them, including P .1; 2; 3/, are toric,
and two are non-toric).

1.2. Descent and adherence

Now let us explain our approach and results in more detail. Let X be a normal projective
surface with rational singularities over an algebraically closed field k of characteristic
zero and let

� W zX ! X

be a resolution of X . Note that under this assumption the exceptional locus of � is a
disjoint union of trees of smooth rational curves whose intersection matrix is negative
definite. The first result of this paper is a “descent procedure” that allows one to con-
struct a semiorthogonal decomposition of X from a semiorthogonal decomposition of zX
satisfying a certain compatibility condition.

To be more precise, we say (Definition 2.7) that a semiorthogonal decomposition

Db. zX/ D h zA1; : : : ; zAni (1.3)

is compatible with � if for every component E of the exceptional divisor of � (so that E
is a smooth rational curve) the sheaf OE .�1/ is contained in one of the components
of the decomposition, i.e., OE .�1/ 2 zAi for some i . Under this assumption we show
(Theorem 2.12) that the categories Ai WD ��. zAi / give a semiorthogonal decomposition

Db.X/ D hA1; : : : ;Ani: (1.4)
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Furthermore, in some cases (for instance, when X is Gorenstein) we prove that the cat-
egories A

perf
i D Ai \Dperf.X/ give a semiorthogonal decomposition

Dperf.X/ D hA
perf
1 ; : : : ;Aperf

n i

of the category of perfect complexes on X .
The next question we address is an explicit description of each component Ai of the

induced semiorthogonal decomposition of Db.X/, which we provide under some addi-
tional hypotheses. Let X be a normal projective surface satisfying (1.1) with only cyclic
quotient singularities and let � W zX ! X be its minimal resolution. Let x1; : : : ; xn 2 X
be a collection of points such that Sing.X/ � ¹x1; : : : ; xnº. Let Ei;1; : : : ; Ei;mi be the
irreducible divisorial components of ��1.xi /; this is a (possibly empty) chain of smooth
rational curves.

Our main hypothesis is that Db. zX/ has a semiorthogonal decomposition (1.3) in
which each component zAi is adherent to the chain of curves ¹Ei;pº

mi
pD1 (see Defini-

tion 3.6 for a slightly generalized version of this condition), i.e., morally, the compon-
ent zAi is the smallest admissible subcategory in Db. zX/ that contains all OEi;p .�1/

for 1 � p � mi . Explicitly this means that zAi is generated by all OEi;p .�1/ and an
additional line bundle Li;0 that has prescribed intersections with Ei;p (depending on
di;p D �E

2
i;p), which guarantees admissibility of zAi . In fact, the category zAi can also be

generated by an exceptional collection of line bundles Li;p , 0 � p � mi , where for p � 1
we define Li;p D Li;p�1.Ei;p/. Note that any line bundle on zX is exceptional by (1.1)
and rationality of singularities of X .

A result of Hille and Ploog (Theorem 3.9) implies that under these assumptions
the category zAi is equivalent to the derived category of modules over a certain finite-
dimensional algebra ƒi of finite global dimension. The algebra ƒi has exactly mi C 1
simple objects Si;p , 0 � p � mi , which under the above equivalence correspond to the
line bundle Li;0 and the sheaves OEi;p .�1/, 1 � p � mi , respectively. Denoting by Pi;p
the corresponding indecomposable projectiveƒi -modules, we define a finite-dimensional
algebra

Ki WD Endƒi .Pi;0/:

These algebras, studied by Kalck and Karmazyn [18], are finite-dimensional local non-
commutative monomial algebras (see Lemma 3.13 for an explicit description) that only
depend on the type of the cyclic quotient singularity .X; xi /. Our second main result
(Theorem 3.16) is that under the above assumptions we have an equivalence

Ai Š Db.Ki -mod/

of the component Ai of the induced semiorthogonal decomposition (1.4) of Db.X/

with the derived category of finite-dimensional modules over the algebra Ki . In fact,
Db.ƒi -mod/ is a categorical resolution of singularities of Db.Ki -mod/ in the sense
of [28], and moreover we expect that the algebra ƒi can be recovered from Ki via the
Auslander construction.
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Combining the above results we show (Corollary 3.18) that if X is a normal project-
ive surface satisfying (1.1) with cyclic quotient singularities, � W zX ! X is its minimal
resolution, and there is a semiorthogonal decomposition (1.3) in which every component
is adherent to a connected component of the exceptional divisor of � , then the induced
semiorthogonal decomposition (1.4) of Db.X/ has the form

Db.X/ D hDb.K1-mod/; : : : ;Db.Kn-mod/i; (1.5)

where allKi are Kalck–Karmazyn algebras. Furthermore, if an additional crepancy condi-
tion is satisfied, e.g., ifX is Gorenstein, we check that (1.5) also induces a semiorthogonal
decomposition of the category of perfect complexes

Dperf.X/ D hDperf.K1-mod/; : : : ;Dperf.Kn-mod/i: (1.6)

1.3. Brauer obstruction

The next important observation we make is that the Brauer group Br.X/ provides an
obstruction to existence of such decompositions. Indeed, if we have (1.5), it is easy to
see (Lemma 4.1) that the Grothendieck group G0.X/ of the category Db.X/ is torsion-
free. On the other hand, assuming that the surface X is rational, it is easy to show that
G0.X/torsDCl.X/tors, where Cl.X/ is the class group of Weil divisors, and that this group
is trivial if and only if Br.X/ D 0. To be more precise, there is a natural isomorphism

Br.X/ Š Ext1.Cl.X/;Z/ Š Ext1.G0.X/;Z/

(Proposition 4.4), and so the Brauer group Br.X/ of the surfaceX provides an obstruction
to the existence of (1.5). One of the simplest examples of a surface X with Br.X/ ¤ 0 is
the toric cubic surface

X D P2=�3 Š ¹z
3
0 � z1z2z3 D 0º � P3 (1.7)

that has three A2-singularities, Cl.X/ Š Z ˚ Z=3, and Br.X/ Š Z=3. Consequently,
its minimal resolution does not admit a semiorthogonal decomposition with components
adherent to the components of the exceptional divisor, and Db.X/ does not have (1.5).

More generally, one can see that for an arbitrary projective toric surfaceX , the Brauer
group Br.X/ is a finite cyclic group of order r , where r is the greatest common divisor of
the orders ri of the toric points on X (see Lemma 5.1 and Remark 5.2), so that vanishing
of Br.X/ is equivalent to the orders r1; : : : ; rn being coprime. In particular any weighted
projective plane P .w1; w2; w3/ has vanishing Brauer group.

In Section 5 we show that the Brauer group provides the only obstruction to the exist-
ence of (1.5) in the toric case. Specifically, we construct decompositions (1.5) for any
projective toric surface X satisfying Br.X/ D 0. These results can be considered as a
generalization to singular projective toric surfaces of a standard method of constructing
exceptional collections on smooth projective toric surfaces by iterative twisting of a line
bundle by the sequence of boundary divisors [14].
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For instance, for the weighted projective plane P .1; 2; 3/ we obtain the semiortho-
gonal decomposition

Db.P .1; 2; 3// D
˝
Db.k/;Db

�kŒz�
z2

�
;Db

�kŒz�
z3

�˛
:

Since P .1; 2; 3/ is Gorenstein we also obtain a similar semiorthogonal decomposition
of Dperf.P .1; 2; 3//. For a non-Gorenstein example, let us consider P .2; 3; 11/, where we
obtain

Db.P .2; 3; 11// D
D
Db

�kŒz�
z2

�
;Db

� kŒz1;z2�
.z2
1
;z1z2;z

2
2
/

�
;Db

� khz1;z2i
.z4
1
;z1z2;z

2
2
z2
1
;z3
2
/

�E
:

This time it does not induce a semiorthogonal decomposition of Dperf.P .2; 3; 11//.

1.4. Twisted adherence and twisted derived categories

As we already observed, for surfaces X with Br.X/ ¤ 0 there is no semiorthogonal
decomposition (1.5) with local finite-dimensional algebras Ki . However, there are two
things we can say.

First of all, in the toric case, resolving any of the singular points of X will produce
a toric surface with trivial Brauer group, so that its structure can be analyzed with our
methods.

At the deeper level, the same Brauer group that obstructs the existence of (1.5) can be
incorporated into the problem providing a generalization to the results described above.
Namely for every ˇ 2 Br.X/ we can ask about semiorthogonal decompositions for the
twisted derived category Db.X;ˇ/. To analyze these we consider semiorthogonal decom-
positions of Db. zX/ with components that are adherent to the components of the excep-
tional divisor up to a line bundle twist (individual for each component). We call such
decompositions twisted adherent, show that they correspond to some explicit elements in
the Brauer group Br.X/, and prove that they induce semiorthogonal decompositions of
the twisted derived category of X :

Db.X; ˇ/ D hDb.K1-mod/; : : : ;Db.Kn-mod/i (1.8)

(see Theorem 4.19), whereKi are finite-dimensional algebras constructed from singularit-
ies ofX in the same way as in the untwisted case. As usual, under the additional crepancy
assumption there is a decomposition for Dperf.X; ˇ/ analogous to (1.6). We also obtain
a description of the Grothendieck group G0.X; ˇ/ of Db.X; ˇ/ (Proposition 4.15), and
check in Proposition 4.17 that

Ext1.G0.X; ˇ/;Z/ Š Br.X/=hˇi;

so the existence of (1.8) implies that ˇ is a generator of Br.X/.
For example, for the cubic surface X defined by (1.7) we obtain

Db.X; ˇ/ D
˝
Db

�kŒz�
z3

�
;Db

�kŒz�
z3

�
;Db

�kŒz�
z3

�˛
;
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where ˇ is a generator of the Brauer group Br.X/ŠZ=3, and this decomposition induces
one for Dperf.X; ˇ/ (again, since X is Gorenstein).

Let us point out that we do not have an answer to the following question: is it true that
decomposition (1.8) exists for any generator ˇ 2 Br.X/? In Lemma 5.16 we explicitly
present the set of all generators ˇ of the Brauer group Br.X/ of a toric surface for which
we obtain a decomposition (1.8) using twisted adherent exceptional collections on zX . In
particular, we check that in the Gorenstein case our construction produces just one ˇ, up
to sign.

1.5. Generators

Finally, we discuss the relation of our approach to the one developed by Kawamata [19].
We show that our construction in many cases also produces some natural reflexive sheaves
on X and their versal noncommutative thickenings (in the terminology of Kawamata).
We generalize Kawamata’s results to all toric surfaces with torsion-free class group (see
Proposition 6.8) and illustrate the result in the case on an arbitrary weighted projective
plane (Example 6.11).

Structure of the paper. In Section 2 we explain how to induce a semiorthogonal decom-
position for a surface with rational singularities from a compatible semiorthogonal decom-
position of its resolution. The main result of this section is Theorem 2.12.

In Section 3 we introduce the notion of (twisted) adherence, define the algebras of
Hille–Ploog and Kalck–Karmazyn, and under the adherence assumption identify in The-
orem 3.16 and Corollary 3.18 the components of the induced decomposition of Db.X/.

In Section 4 we discuss the Brauer group of a rational surface X , construct the Brauer
class ˇ corresponding to a twisted adherent semiorthogonal decomposition of its resolu-
tion zX , and describe in Theorem 4.19 the induced semiorthogonal decomposition of the
twisted derived category Db.X; ˇ/.

In Section 5 we apply our constructions in the case of toric surfaces. The main results
of this section are Theorem 5.9 and Corollary 5.10.

In Section 6 we discuss the relation of our results to the approach of Kawamata, in par-
ticular we investigate under which conditions generators of the components Ai �Db.X/

of (1.4) constructed above are reflexive or locally free sheaves on X . Moreover, we expli-
citly describe the reflexive generators of the components of the semiorthogonal decom-
position for any weighted projective plane P .w1; w2; w3/.

Notation and conventions. We work over an algebraically closed field k of characteristic
zero. All varieties and categories are assumed to be k-linear. All surfaces are assumed to
be irreducible.

For a k-scheme X we denote by Db.X/ the bounded derived category of coherent
sheaves on X and by Dperf.X/ the category of perfect complexes on X , i.e., the full
subcategory of Db.X/ consisting of objects that are locally quasi-isomorphic to finite
complexes of locally free sheaves of finite rank.
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Similarly, for a k-algebra R we denote by R-mod the category of finitely generated
right R-modules, by Db.R-mod/ its bounded derived category, and by Dperf.R-mod/ the
category of bounded complexes of finitely generated projective R-modules.

We denote by ��t and ��t the canonical truncation functors at degree t . For a set ¹Fiº
of objects of a triangulated category T we denote by h¹Fiºi the minimal triangulated
subcategory of T containing all Fi , and by h¹Fiºi˚ the minimal triangulated subcategory
of T closed under all direct sums that exist in T and containing all Fi . For a subcategory
A � T we denote by A? and ?A its right and left orthogonals:

A? D ¹F 2 T j Ext�.A; F / D 0º; ?A D ¹F 2 T j Ext�.F;A/ D 0º:

For a morphism f we denote by f� the derived pushforward functor, and by f � the
derived pullback. Similarly,˝ is used for the derived tensor product. If we need underived
functors, we use R0f� and L0f � respectively.

For an abelian group A we denote by Ators its torsion part.

2. Inducing a semiorthogonal decomposition from a resolution

The main goal of this section is to set up a framework in which a semiorthogonal decom-
position of the bounded derived category of a singular surface X can be constructed from
a semiorthogonal decomposition of the bounded derived category of its resolution. For
this we use the approach developed in [27], with a suitable modification. The main differ-
ence between the situation of [27] and ours is that here X is not necessarily Gorenstein,
and the resolution is not necessarily crepant; therefore we have to modify some arguments
of [27] that used these assumptions.

2.1. Resolutions of rational surface singularities

LetX be a normal surface, and let � W zX!X be its resolution of singularities. We assume
that X has rational singularities, i.e. we have an isomorphism ��O zX ' OX . In this case
every irreducible component of the exceptional divisor of � is a smooth rational curve,
and every connected component is a tree of rational curves with transverse intersections;
see e.g. [4, Lemma 1.3].

Below we discuss what such a resolution does on the level of derived categories.
Most conveniently this is expressed at the level of bounded above categories of coherent
sheaves, D�. zX/ and D�.X/. This could also be done at the level of the unbounded
derived category, but we prefer to work with D�.

The derived pushforward and pullback provide an adjoint pair of functors

�� W D
�. zX/! D�.X/ and �� W D�.X/! D�. zX/;

and since X has rational singularities, by the projection formula we have

�� ı �
�
Š idD�.X/ : (2.1)
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Consequently, we have a semiorthogonal decomposition

D�. zX/ D hKer��; ��.D�.X//i: (2.2)

Using [3, Lemma 3.1] and [1, Theorem 7.13] one can describe the category Ker �� as
follows.

Lemma 2.1 ([27, Lemma 2.3]). Let X be a normal surface with rational singularities
and let � W zX ! X be its resolution. An object F 2 D�. zX/ is in Ker �� if and only
if every cohomology sheaf H i .F / is an iterated extension of the sheaves OE .�1/ for
irreducible exceptional divisors E of � .

However, we are mostly interested in the bounded derived category and the category
of perfect complexes, which are not preserved by the adjoint pair of functors .��; ��/;
in fact �� only preserves the category of perfect complexes, while �� only preserves the
bounded derived category. At the level of these categories we have no semiorthogonal
decomposition analogous to (2.2), but using small dimension effects we can deduce many
results for them.

Lemma 2.2 ([27, Lemma 2.4]). Let X be a normal surface with rational singularities
and let � W zX ! X be its resolution. If G is concentrated in degrees � k, then

��.�
�k�2��G / D 0 and G Š ��.�

�k�1��.G //:

The above implies that �� is essentially surjective on bounded derived categories.

Corollary 2.3 ([27, Corollary 2.5]). Under the assumptions of Lemma 2.2, for any
object G 2 Db.X/ there exists F 2 Db. zX/ such that G Š ��.F /.

Lemma 2.5 below is very useful, in particular we will often use the (1))(3)
and (2))(3) implications to descend vector bundles from zX to X . In the proof we need
the following standard result in commutative algebra [2, X.3, Proposition 4].

Lemma 2.4. Let .A;m/ be a noetherian local ring and k D A=m. If M 2 D�.A/ is a
bounded above complex of finitely generated A-modules, then M is a perfect complex if
and only if ExttA.M;k/ D 0 for jt j � 0.

Proof. Let F � be the minimal free resolution of M , i.e., a bounded above complex of
finitely generated free A-modules quasiisomorphic to M such that all its differentials are
zero modulo m (such a resolution can be constructed by a standard procedure: see [6,
§1.3] for the case whenM is a module). Then the complex HomA.F �;k/ has zero differ-
entials so that we have

ExttA.M;k/ ' .F
�t
˝A k/_:

Since F �t is free, we have F �t ˝A kD 0 if and only if F �t D 0, hence ExttA.M;k/D 0
for jt j � 0 if and only if F � is bounded, and since F �t are finitely generated and free
this holds if and only if M is perfect.

Below F jE stands for the derived pullback of F along the embedding E ,! zX .
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Lemma 2.5. Let X be a normal surface with rational singularities and let � W zX ! X

be its resolution. Let F 2 Db. zX/. The following properties are equivalent:

(1) for any irreducible exceptional divisor E of � one has F jE 2 hOE i;

(2) for any irreducible exceptional divisor E of � one has Ext�.F jE ;OE .�1// D 0;

(3) there exists G 2 Dperf.X/ such that F Š ��G ;

(4) ��F 2 Dperf.X/ and F Š ��.��F /.

If additionally F is a pure sheaf, or a locally free sheaf, then so is ��F .

Proof. We prove (1))(2))(3))(4))(1).
(1))(2) This implication is trivial, since E ' P1 and Ext�

P1
.O;O.�1// D 0.

(2))(3) It follows from (2.2) and Lemma 2.1 that F belongs to the image of the
functor �� W D�.X/! D�. zX/, that is, F Š ��G for some G 2 D�.X/. Let x 2 X be
a point and let Qx 2 zX be a point over x. Then ��O Qx Š Ox , hence by adjunction

Ext�.G ;Ox/ Š Ext�.G ; ��O Qx/ Š Ext�.��G ;O Qx/ Š Ext�.F ;O Qx/;

which is finite-dimensional by smoothness of zX . By Lemma 2.4, G is perfect in a neigh-
borhood of x. Since this holds for each point of X , we conclude that G is perfect.

(3))(4) This is clear since if F Š ��G then

��F Š ���
�G Š G :

(4))(1) Let G D ��F . Then F Š ��G by assumption. It follows that the restriction
F jE Š ��.G /jE is isomorphic to p�E .G jx/ where pE W E ! Spec.k/ is the structure
morphism and x D �.E/ 2 X . We have p�E .D

b.k// D hOE i and the result follows.
Now assume that F 2 Db. zX/ is an object for which all the equivalent conditions

hold. Let Qx 2 zX and x D �. Qx/. For every t 2 Z by adjunction and property (4) we have

Hom.��F ;Ox Œt �/ D Hom.��F ; ��O Qx Œt �/ Š Hom.����F ;O Qx Œt �/ Š Hom.F ;O Qx Œt �/:

If F is a pure sheaf, then the Hom-space on the right-hand side is zero for all Qx 2 zX and
t < 0. Therefore, the left side is zero for all x 2 X (since � is surjective) and t < 0, hence
the complex ��F is concentrated in nonpositive degrees. But since �� is left exact, it is a
pure sheaf.

If F is locally free, then the Hom-space on the right-hand side is also zero for
all Qx 2 zX and t > 0. Therefore, the left side is zero for all x 2 X and t > 0 as well,
hence ��F is locally free by [2, X.3, Proposition 4].

We will also use the following corollary.

Corollary 2.6. Let zX!X be a resolution of a normal surface with rational singularities.
If G 2 D�.X/ and ��G 2 Db. zX/, then G 2 Dperf.X/.

Proof. Set F D ��G . By (2.2) and Lemma 2.1 the property (2) of Lemma 2.5 is satisfied
for F . Therefore, by property (4) the object ��F Š ����G Š G is perfect.

Later we will state an analog of Lemma 2.5 for categorical resolutions of finite-
dimensional algebras (see Lemma 3.11) and twisted derived categories (see Lemma 4.14).
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2.2. Compatibility with contraction

Let X be an irreducible normal surface with rational singularities. Let � W zX ! X be its
resolution of singularities. Let D be the exceptional locus of � . Recall that each irredu-
cible component of D is a smooth rational curve.

Definition 2.7. A semiorthogonal decomposition Db. zX/ D h zA1; : : : ; zAni is compatible
with the contraction � if for each irreducible component E of D one has

OE .�1/ 2 zAi

for one of the components zAi of the decomposition.

Note that for an irreducible component E of D the component zAi to which OE .�1/

belongs is uniquely determined. Let

Di WD
[
¹E j OE .�1/ 2 zAiº (2.3)

be the union of those irreducible components E � D for which OE .�1/ belongs to zAi .
We will need the following simple observation.

Lemma 2.8. Let Db. zX/ D h zA1; : : : ; zAni be a semiorthogonal decomposition. If E
and E 0 are components of D such that

OE .�1/ 2 zAi and OE 0.�1/ 2 zAi 0 with i ¤ i 0;

thenE \E 0 D¿ and so OE .�1/ and OE 0.�1/ are completely orthogonal. In particular,

Di \Di 0 D ¿ for i ¤ i 0.

Proof. Let i 0 > i . Then Ext�.OE 0.�1/; OE .�1// D 0 by semiorthogonality of zAi

and zAi 0 . Since E and E 0 are irreducible curves on a smooth surface zX , an easy computa-
tion shows that in fact E \E 0 D ¿. But then Ext�.OE .�1/;OE 0.�1// D 0 as well.

Thus, a semiorthogonal decomposition compatible with � induces a decomposition

D D D1 t � � � tDn (2.4)

of the exceptional divisor D of � into n pairwise disjoint components, where n is the
number of components in the semiorthogonal decomposition (some Di may be empty).

Recall that a morphism � W zX ! X is crepant if the canonical line bundle O zX .K zX / is
isomorphic to a pullback from X , i.e., by Lemma 2.5 if K zX � E D 0 for each irreducible
component E of the exceptional divisor D of � . This condition can be reformulated in
many ways.

Lemma 2.9. Let .X; x/ be an isolated rational surface singularity and let � W zX ! X be
its resolution. The morphism � is crepant if and only if .X; x/ is Gorenstein and � is its
minimal resolution. Furthermore, in this case K zX D �

�.KX /.
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Proof. Assume that � is crepant. By Lemma 2.5 we have O zX .K zX / Š ��L for a line
bundle L on X . Furthermore, if D is the exceptional locus of � , we have

O.KXnx/ D O.K zXnD/ Š �
�Lj zXnD D LjXnx ;

hence O.KX / ' L and KX is a Cartier divisor, so x is Gorenstein. It also follows
that K zX D �

�.KX /. Furthermore, if � is not minimal, there exists a .�1/-component E
ofD. Then by adjunction formulaK zX �E D �1, hence � is not crepant. This proves one
direction.

For the other direction just note that if x is Gorenstein then the singularity .X; x/ is
Du Val by [21, Corollary 5.24 and Theorem 4.20]; in particular it has a crepant resolu-
tion (see [21, Definition 4.24]). Since a crepant resolution is minimal and the minimal
resolution is unique, we conclude that � is crepant.

Definition 2.10. Assume that a decomposition (2.4) of the exceptional divisor of a bira-
tional morphism � is given. We will say that � is crepant along Di if K zX � E D 0 for
each irreducible component E of Di .

According to Lemma 2.9, when X is a surface with rational singularities, its minimal
resolution � is crepant along a connected component D0 of the exceptional divisor D
of X if and only if the point x D �.D0/ 2 X is Gorenstein.

In the next lemma we apply Serre duality on zX to rotate the components of the semi-
orthogonal decomposition; for that we need to assume that X is projective.

Lemma 2.11. LetX be a normal projective surface and let � W zX !X be a resolution of
singularities. Assume that Db. zX/ D h zA1; : : : ; zAni is a semiorthogonal decomposition.
For each 1 � k � n we have semiorthogonal decompositions

Db. zX/ D h zAkC1.K zX /; : : : ;
zAn.K zX /;

zA1; : : : ; zAki;

Db. zX/ D h zAk ; : : : ; zAn; zA1.�K zX /; : : : ;
zAk�1.�K zX /i:

(2.5)

Assume further that the original decomposition is compatible with � , and let (2.4) be the
induced decomposition of its exceptional divisor.

If � is crepant alongDj for all j > k then the first decomposition in (2.5) is compat-
ible with � , and if � is crepant alongDj for all j < k then so is the second. In both cases
the induced decomposition (2.4) of the exceptional divisor is obtained from the original
one by an appropriate cyclic permutation of indices.

Proof. The fact that (2.5) are semiorthogonal decompositions follows easily from Serre
duality. To prove compatibility with � of the first of them, let E be an irreducible com-
ponent of the exceptional divisor of � and assume that OE .�1/ 2 zAj . If j � k there is
nothing to check. If j � k C 1, we twist the containment by K zX , and since K zX � E D 0
(by crepancy of � alongDj ), we conclude that OE .�1/ 2 zAj .K zX /. Compatibility of the
second semiorthogonal decomposition is proved analogously.
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Recall that a functor ˆ W T1 ! T2 between triangulated categories endowed with
t-structures has finite cohomological amplitude if there is a pair of integers a� � aC
such that for any k� � kC one has

ˆ
�
T
Œk�;kC�

1

�
� T

Œk�Ca�;kCCaC�

2 ;

where T
Œk�;kC�

1 denotes the subcategory of T1 consisting of objects whose cohomology
with respect to the t-structure is supported in degrees between k� and kC, and similarly
for T

Œk�Ca�;kCCaC�

2 . Finiteness of cohomological amplitude is a useful finiteness condi-
tion (see, e.g., [26]).

Recall that a triangulated subcategory A � T is called left (resp. right) admissible if
the embedding functor of A has a left (resp. right) adjoint functor, or equivalently there
is a semiorthogonal decomposition T D hA;?Ai (resp. T D hA?;Ai). If A is both left
and right admissible it is called admissible.

The main result of this section is the next theorem.

Theorem 2.12. Let X be a normal projective surface with rational singularities and let
� W zX ! X be its resolution. Assume that zX admits a semiorthogonal decomposition

Db. zX/ D h zA1; : : : ; zAni (2.6)

compatible with � and let (2.4) be the induced decomposition of the exceptional divisor.

(i) There is a unique semiorthogonal decomposition

Db.X/ D hA1; : : : ;Ani (2.7)

with ��. zAi / D Ai . The projection functors of (2.7) have finite cohomological am-
plitude. Moreover, the functor �� W zAi ! Ai induces an equivalence of Ai with the
Verdier quotient,

Ai '
zAi=hOE .�1/iE�Di ;

where E runs over the set of irreducible components of Di .

(ii) If � is crepant along Dj for j > i then Ai is right admissible in Db.X/, and if �
is crepant along Dj for j < i then Ai is left admissible in Db.X/. In particular, if
� is crepant, then all Ai are admissible in Db.X/.

(iii) Setting A
perf
i WD Ai \Dperf.X/ we have

��.A
perf
i / � h zAi ; zAiC1 \ Ker��; : : : ; zAn \ Ker��i: (2.8)

(iv) If � is crepant along Dj for j > i , we have

��.A
perf
i / � zAi ;

Furthermore, if � is crepant along Dj for all j � 2, there is a semiorthogonal
decomposition of the category of perfect complexes

Dperf.X/ D hA
perf
1 ; : : : ;Aperf

n i: (2.9)

Finally, if � is crepant, then all components A
perf
i of (2.9) are admissible.
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Remark 2.13. In fact, a semiorthogonal decomposition of the category Db.X/ for a
projective scheme X always induces some semiorthogonal decomposition of Dperf.X/

(see Theorem A.1). However, we are mostly interested in the case when the intersections
of the components of Db.X/ with Dperf.X/ form a semiorthogonal decomposition; this
is why we state a criterion for this.

The proof of Theorem 2.12 takes up Sections 2.3 and 2.4. This proof is rather tech-
nical, and the reader not interested in technicalities can easily bypass it and go directly
to Section 3. Before we give the proof, let us illustrate the theorem in an example, at the
same time motivating results in the further sections.

Example 2.14. LetX be a projective surface satisfying (1.1) with a single cyclic quotient
singularity of type 1

d
.1; 1/ (see Section 3.1 for a discussion of cyclic quotient singularit-

ies), and let � W zX ! X be its minimal resolution, so that � contracts a smooth rational
curveE � zX with self-intersection�d . Assume that there exists a line bundle L2 Pic. zX/
such that L � E D d � 1 (this holds if and only if E is primitive in Pic. zX/). Under these
assumptions .L;L.E// is an exceptional pair on zX . Then we have a semiorthogonal
decomposition

Db. zX/ D h zA1; zA2i; where zA1 D hL;L.E/i and zA2 D
? zA1:

It is easy to see that OE .�1/ is isomorphic to the cone of a morphism L! L.E/, hence
it belongs to zA1, so that the semiorthogonal decomposition is compatible with � . In this
case Theorem 2.12 gives a semiorthogonal decomposition

Db.X/ D hA1;A2i

where A1 D ��. zA1/ D h��.L/i D h��.L.E//i (however, ��.L/ is not exceptional)
and A2 D ��. zA2/. Furthermore there is an induced decomposition for Dperf.X/.

In Section 3 we show that the above category zA1 is the simplest example of a category
adherent to E and explain how to describe the constructed category A1 explicitly. In
Section 6 we study under which conditions ��.L/ is a reflexive sheaf on X .

In Section 4 we show that primitivity of E, i.e., the existence of a line bundle L as
above, is in general controlled by the Brauer group Br.X/ of the surface X (this follows
from Remark 4.5). See also [35, Example 5 in Chapter 4] for an example of a projective
rational surface with a single 1

4
.1; 1/-point and the exceptional curve E of the minimal

resolution divisible by 2 (in this case Br.X/ Š Z=2). Note also that if d is square-free, E
is always primitive.

2.3. Decomposition of the bounded above category

We keep the assumptions and notation from the previous subsection. Moreover, we
assume that X is projective and fix a semiorthogonal decomposition (2.6) compatible
with � . Recall the decomposition (2.4) of the exceptional divisor D of � with com-
ponents Di defined by (2.3). For each Di we denote by Ei;1; : : : ; Ei;mi its irreducible
components, so that

Di D Ei;1 [ � � � [Ei;mi : (2.10)
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Recall that by definition of Di we have

OEi;p .�1/ 2
zAi for each 1 � p � mi : (2.11)

Note that a combination of (2.4) and (2.10) shows that any irreducible component of the
exceptional divisor of � is equal to one of Ei;p .

Since zX is smooth and projective, every component zAi of Db. zX/ is admissible,
hence (2.6) is a strong semiorthogonal decomposition in the sense of [26, Definition 2.6].
Therefore, by [26, Proposition 4.3] it extends to a semiorthogonal decomposition of the
bounded from above derived category

D�. zX/ D h zA�1 ; : : : ;
zA�n i; (2.12)

where zAi �
zA�i , zA�i is closed under arbitrary direct sums that exist in D�. zX/, and one

has zAi D
zA�i \Db. zX/. We define a sequence of subcategories A�i � D�.X/ by

A�i D ��.
zA�i /: (2.13)

In Proposition 2.17 below we will show that these subcategories are triangulated and form
a semiorthogonal decomposition of D�.X/. Then in Proposition 2.19 we will check that
this decomposition induces a decomposition of Db.X/.

We start with a lemma that describes the intersections of the categories zA�i with the
kernel category of the pushforward functor ��.

Lemma 2.15. (i) For each 1 � k � n we have

zA�k \ Ker�� D hOEk;1.�1/; : : : ;OEk;mk .�1/i
˚; (2.14)

where h�i˚ denotes the minimal triangulated subcategory closed under arbitrary
direct sums that exist in D�. zX/.

(ii) For any F 2 Ker�� � D�. zX/ there is a canonical direct sum decomposition

F D

nM
iD1

Fi ; where Fi 2 zA
�
i \ Ker��:

(iii) We have the semiorthogonality

Ext�. zA�i ; zA
�
j \ Ker��/ D 0 (2.15)

if either i < j and � is crepant along Dj , or i > j .

Proof. Let F 2 Ker�� �D�. zX/. By Lemma 2.1 every cohomology sheaf H t .F / is an
iterated extension of sheaves OEi;p .�1/, where 1 � i � n and 1 � p � mi . In particular,

Supp.F / �
[
Ei;p D D D D1 t � � � tDn:
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We denote by Fi the summand of F supported on Di . Then F D
L

Fi , and the
summands are completely orthogonal. Moreover, the summand Fi is an iterated exten-
sion of shifts of sheaves OEi;p .�1/, where 1 � p � mi , so in view of (2.11) we
have Fi 2 zA

�
i \ Ker��. This proves (ii).

Since �� commutes with infinite direct sums, we have

hOEi;p .�1/i
˚
1�p�mi

� zA�k \ Ker.��/:

Conversely, if F 2 zA�i \ Ker �� then in the direct sum decomposition of part (ii)
all summands of F distinct from Fi vanish (because of semiorthogonality of (2.12)).
Thus F D Fi and from the above argument we conclude that F is an iterated extension
of sheaves OEi;p .�1/, where 1 � p � mi , hence belongs to hOEi;p .�1/i

˚
1�p�mi

. This
proves (i).

Finally, let us prove (iii). If i > j , semiorthogonality of zA�i and zA�j \ Ker �� fol-
lows from semiorthogonality of (2.12). So, let i < j , F 2 zA�i , and F 0 2 zA�j \ Ker��.
Using (2.14) for k D j and crepancy of � along Dj , we deduce

F 0 Š F 0.K zX / 2
zA�j .K zX /:

Therefore the required vanishing Ext�.F ;F 0/D 0 follows from semiorthogonality of the
decomposition of D�. zX/ obtained from the first line in (2.5) with k D i by an application
of [26, Proposition 4.3].

Denote by Q̨ i W D�. zX/ ! D�. zX/ the projection functors of the decomposi-
tion (2.12); so the essential image of each Q̨ i is zA�i � D�. zX/.

Remark 2.16. By [26, Proposition 4.3 and Lemma 3.1] the projection functors of (2.6)
are given by the restrictions of Q̨ i to Db. zX/. In particular, the functors Q̨ i preserve
boundedness.

Proposition 2.17. (i) The subcategories A�i � D�.X/ defined by (2.13) are triangu-
lated and form a semiorthogonal decomposition

D�.X/ D hA�1 ; : : : ;A
�
n i

with projection functors given by

˛i WD �� ı Q̨ i ı �
�: (2.16)

In particular, ˛i jA�
i
Š idA�

i
.

(ii) For each 1 � i � n we have

��.A�i / � h
zA�i ;
zA�iC1 \ Ker��; : : : ; zA�n \ Ker��i: (2.17)

(iii) If � is crepant along Dj for all j > i , a stronger property holds:

��.A�i / �
zA�i :
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Proof. Let us prove (2.17). First, take any object F 2 zA�i and define F 0 from the standard
triangle

��.��F /! F ! F 0:

Then by (2.1) we have F 0 2 Ker��. By Lemma 2.15(ii) we have F 0 D
L

F 0j with

F 0j 2
zA�j \ Ker��:

If j < i we have Ext�.F ; F 0j / D 0 by (2.15). On the other hand, by adjunction we
have Ext�.��.��F /;F 0j / D 0 since F 0j 2 Ker��. Combining these vanishings with the
above triangle we deduce Hom.F 0;F 0j /D 0 for j < i . Therefore, F 0j D 0 for j < i since
it is a direct summand of F 0.

This proves that F 0 2 h zA�i \Ker��; zA�iC1 \Ker��; : : : ; zA�n \Ker��i, and from the
triangle we conclude that ��.��F / 2 h zA�i ; zA

�
iC1 \Ker��; : : : ; zA�n \Ker��i. Since A�i

is formed by the pushforwards ��F for F 2 zA�i , this proves (2.17) and part (ii).
Further, if � is crepant along Dj for j > i , then Ext�.F ; F 0j / D 0 for all j ¤ i

by (2.15), hence the above argument shows that F 0j D 0 for all j ¤ i . Thus, in this case

we have F 0 D F 0i 2
zA�i \Ker��, hence also ��.��F / 2 zA�i , and arguing as above we

conclude that ��.A�i / � zA
�
i . This proves part (iii).

To prove (i) we take G 2 A�i . It follows from (2.17) that there is a distinguished
triangle

G 0 ! ��G ! Q̨ i .�
�G /

with G 0 2 h zA�iC1 \ Ker��; : : : ; zA�n \ Ker��i � Ker��. Applying �� to the triangle we
obtain

G Š ��.�
�G / Š ��. Q̨ i .�

�G // D ˛i .G /:

Thus, the functor (2.16) is isomorphic to the identity functor when restricted to A�i . Since
the functor ˛i is triangulated and is the identity on A�i , and by (2.13) the image of ˛i is
contained in A�i , it follows that the subcategory A�i � D�.X/ is triangulated as well.

Next, note that for F 2 A�i and G 2 zA�j with i > j we have

Hom.F ; ��G / D Hom.��F ;G / D 0

by (2.17). Since A�j is formed by the pushforwards ��G for G 2 zA�j , this proves that the
subcategories A�i and A�j are semiorthogonal for i > j .

Finally, take any F 2 D�.X/. Then zF D ��F 2 D�. zX/, so we can decompose it
with respect to (2.12). This means that there is a chain of maps

0 D zFn ! � � � ! zF2 ! zF1 ! zF0 D zF ;

whose cones are Q̨ i . zF / 2 zA�i . Pushing this forward to X , we obtain a chain of maps

0 D ��. zFn/! � � � ! ��. zF2/! ��. zF1/! ��. zF0/ D ��. zF / Š F ;

whose cones are ��. Q̨ i . zF //Š ��. Q̨ i .��F //D ˛i .F / 2A�i . This proves the semiortho-
gonal decomposition and shows that its projection functors are given by ˛i .



J. Karmazyn, A. Kuznetsov, E. Shinder 18

Corollary 2.18. The functor Q̨ i ı �� W A�i ! zA�i is fully faithful and is left adjoint to the
functor �� W zA�i ! A�i . Moreover, we have a semiorthogonal decomposition

zA�i D h
zA�i \ Ker��; Q̨ i .��.A�i /i (2.18)

and in particular

Q̨ i .�
�.A�i // D

?
hOEi;1.�1/; : : : ;OEi;mi

.�1/i � zA�i : (2.19)

Proof. The adjunction follows from the adjunction between the pullback �� and the push-
forward ��, and between the embedding zA�i ,! h zA

�
i ;
zA�iC1; : : : ;

zA�n i and the projection
functor Q̨ i W h zA�i ; zA

�
iC1; : : : ;

zA�n i !
zA�i . Full faithfulness follows from the adjunction

and the isomorphism �� ı Q̨ i ı �
� Š id j zA�

i
on zA�i proved in Proposition 2.17(i). This

proves (2.18), and (2.19) follows from (2.18) and (2.14).

Note that if � is crepant along Dj for j > i , we have Q̨ i ı �� Š �� on A�i by
Proposition 2.17(iii).

2.4. Decomposition of the bounded category

Now we show that the semiorthogonal decomposition of D�.X/ constructed in Proposi-
tion 2.17 induces a semiorthogonal decomposition of Db.X/.

Proposition 2.19. (i) The subcategories

Ai WD A�i \Db.X/

provide a semiorthogonal decomposition (2.7) with the projection functors ˛i given
by (2.16).

(ii) The functors ˛i preserve boundedness and have finite cohomological amplitude.

(iii) Ai D ��. zAi / and �� induces an equivalence of triangulated categories

Ai '
zAi

ı
. zAi \ Ker��/;

where the right hand side is a Verdier quotient.

Proof. For (i) it is enough to check that the projection functors ˛i preserve bounded-
ness. Take any object F 2 D Œk�;kC�.X/. Then ��.F / 2 D.�1;kC�. zX/. By (2.1) we
have ��.��.F // Š F , hence Lemma 2.2 shows that ��k��2.��.F // 2 Ker ��. Con-
sider the triangle

Q̨ i .�
�k��2.��.F ///! Q̨ i .�

�.F //! Q̨ i .�
�k��1.��.F ///

obtained by applying the projection functor Q̨ i to the canonical truncation triangle. By
Lemma 2.15(ii) the functor Q̨ i preserves Ker ��, hence the first term of the triangle is
in Ker��. Applying the pushforward and using (2.16) we obtain an isomorphism

˛i .F / D ��. Q̨ i .�
�.F /// Š ��. Q̨ i .�

�k��1.��.F ///: (2.20)
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It remains to note that ��k��1.��.F // 2 D Œk��1;kC�. zX/, hence the object on the right-
hand side of (2.20) is bounded, since both Q̨ i (see Remark 2.16) and �� preserve bounded-
ness. This completes the proof of (i).

Moreover, if the cohomological amplitude of Q̨ i is .a�; aC/ (it is finite since zX is
smooth [25, Proposition 2.5]), then from (2.20) and from cohomological amplitude of ��
being .0; 1/, we deduce

˛i .F / Š ��. Q̨ i .�
�k��1.��.F /// 2 D Œk�Ca��1;kCCaCC1�.X/:

In particular, ˛i has finite cohomological amplitude. This proves (ii).
Let us prove (iii). By (2.13) we have ��. zAi / � A�i , and so ��. zAi / � Ai since ��

preserves boundedness. To check that this inclusion is an equality, take any F 2 Ai .
By Corollary 2.3 there exists zF 2 Db. zX/ such that F Š ��. zF /. Let G be the cone of
the natural morphism ��F ! zF . Then G 2 Ker ��. Moreover, by Lemma 2.15(ii) we
have Q̨ i .G / 2 Ker ��, hence applying the functor �� ı Q̨ i to the distinguished triangle
��F ! zF ! G , we deduce an isomorphism F Š ˛i .F / Š ��. Q̨ i . zF //, and it remains
to note that Q̨ i . zF / 2 zAi .

Finally, as we have already shown that �� W zAi ! Ai is essentially surjective, it
remains to show that the induced functor �� W zAi

ı
. zAi \ Ker ��/ ! Ai is fully faith-

ful; to show this we use the argument from [33, Lemma 2.31] which goes as follows.
From the commutative diagram

zA�i
ı
. zA�i \ Ker��/

' // A�i

zAi

ı
. zAi \ Ker��/

OO

// Ai

?�

OO

(the top arrow is an equivalence by Corollary 2.18) we deduce that the bottom horizontal
functor is fully faithful if and only if the left vertical functor is fully faithful. To show
that the latter is the case, we use the Verdier criterion [36, Theorem 2.4.2]: it suffices to
show that every morphism G ! G 0 in zA�i with G 2 zA�i \ Ker�� and G 0 2 zAi factors
through an object from zAi \ Ker��. It is easily seen that for such an object we can take
˛i .�

��NG / for N large enough.

Now we can prove the theorem.

Proof of Theorem 2.12. Part (i) follows from Proposition 2.19.
(ii) Let 1 � i � n and assume that � is crepant along Dj for j > i . By Lemma 2.11

besides the semiorthogonal decomposition (2.6) also the first of the semiorthogonal
decompositions (2.5) for k D i is compatible with � . Hence, as we proved in part (i)
of the theorem, it gives rise to a semiorthogonal decomposition

Db.X/ D h��. zAiC1.K zX //; : : : ; ��.
zAn.K zX //; ��.

zA1/; : : : ; ��. zAi /i;
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of Db.X/. The category Ai D ��. zAi / is its rightmost component, hence is right admiss-
ible in Db.X/.

Similarly, assuming that � is crepant along Dj for j < i and using the second of
the semiorthogonal decompositions (2.5) for k D i , we deduce that Ai is left admissible.
Thus, if � is crepant for all j ¤ i then Ai is an admissible subcategory in Db.X/, and if
� is crepant then all Ai are admissible.

(iii) Follows from Proposition 2.17(ii).
(iv) The inclusion ��.Aperf

i / � zAi under the appropriate crepancy assumptions fol-
lows from Proposition 2.17(iii).

Assume now that � is crepant along all Dj for j � 2. Let F 2 Dperf.X/ and
let F1; : : : ;Fn 2 Db.X/ be its components with respect to the semiorthogonal decom-
position (2.7). By Proposition 2.17 we have ��Fi � zA�i , hence ��Fi are the components
of ��F with respect to the semiorthogonal decomposition (2.12). But ��F 2 Db. zX/,
hence by Remark 2.16 we conclude that ��Fi 2Db. zX/, and Corollary 2.6 finally shows
that Fi 2 Dperf.X/. This proves that the projection functors ˛i of (2.7) preserve perfect-
ness, hence we obtain (2.9).

Finally, if � is crepant, then rotating the decomposition left or right as in the proof
of (ii) we show that each A

perf
i � Dperf.X/ is left and right admissible.

Note that for each i the category zAi provides (via the functors �� and Q̨ i ı ��) a
categorical resolution for the category Ai in the sense of [28].

3. Components of the induced semiorthogonal decomposition

In this section we will provide a description of the components of the semiorthogonal
decomposition Db.X/D hA1; : : : ;Ani constructed in Theorem 2.12 under an additional
assumption on the components of the decomposition Db. zX/ D h zA1; : : : ; zAni we started
with. If this assumption holds for a component zAi , then we will show that zAi is equi-
valent to the bounded derived category Db.ƒi -mod/ of finitely generated right modules
for a noncommutative algebra ƒi and the corresponding component Ai can be realized
as Db.Ki -mod/ for a finite-dimensional algebra Ki , which we describe explicitly.

The additional assumptions we impose will require the exceptional divisorDi associ-
ated with the component zAi by (2.3) to be a chain of rational curves, and this restricts us
to the situation where the singularity obtained by the contraction ofDi is a cyclic quotient
singularity (see Proposition 3.1).

3.1. Cyclic quotient singularities

An isolated singularity .X; x/ is a cyclic quotient singularity if it is étale-locally iso-
morphic to the quotient An=�r , where �r is the group of roots of unity of order r that
acts on An linearly and freely away from the origin. The latter condition means that the
action is given by a collection .a1; : : : ; an/ of characters

ai 2 Hom.�r ;Gm/ Š Z=r
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such that each ai is invertible in Z=r . Thus we can think of the ai as integers such that
0 < ai < r and gcd.ai ; r/ D 1. Moreover, the ai are only well-defined up to the action of
Aut.�r / Š .Z=r/

�, so we can assume that a1 D 1. The singularity corresponding to the
�r -action with weights .1; a2; : : : ; an/ will be denoted by

1
r
.1; a2; : : : ; an/:

In this paper we stick to the case of dimension 2. Accordingly, any cyclic quotient
singularity of a surface is isomorphic to one of the singularities

1
r
.1; a/; 0 < a < r; gcd.a; r/ D 1:

The following well-known result is crucial for us.

Proposition 3.1 (see e.g. [4, Satz 2.10 and 2.11]). Let .X; x/ be a rational singularity
of a surface and let � W zX ! X be its minimal resolution. The following properties are
equivalent:

(1) .X; x/ is a cyclic quotient singularity;

(2) the irreducible components Ei of the exceptional divisor of � are smooth rational
curves forming a chain, i.e., after a possible reordering each Ei intersects EiC1
transversely at a single point and Ei \Ej D ¿ for ji � j j � 2.

If .X; x/ is a cyclic quotient singularity of a surface and � W zX ! X is its minimal
resolution, the self-intersections of the components Ei (ordered as in Proposition 3.1(2))
of the exceptional divisor of � are encoded in a Hirzebruch–Jung continued fraction.

For a collection of positive integers d1; : : : ; dm � 2 we denote

Œd1; : : : ; dm� WD d1 �
1

d2 �
1

d3�:::

: (3.1)

This is a rational number greater than 1. Conversely, every rational number greater than 1
can be written as a Hirzebruch–Jung continued fraction Œd1; : : : ; dm� with di � 2 in a
unique way.

Proposition 3.2 (see e.g. [4, Satz 2.11]). Assume that .X; x/ is a cyclic quotient singu-
larity of type 1

r
.1; a/ and let

r=a D Œd1; : : : ; dm� (3.2)

be the Hirzebruch–Jung continued fraction representation for r=a. Then the intersection
matrix of (ordered in a chain) irreducible components of the exceptional divisor of a
minimal resolution � W zX ! X of .X; x/ is the tridiagonal matrix

tridiag.d1; : : : ; dm/ WD

266664
�d1 1 0 : : : 0

1 �d2 1 : : : 0

: : :

0 : : : 1 �dm�1 1

0 : : : 0 1 �dm

377775 : (3.3)
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Conversely, the type of the singularity can be recovered from the intersection matrix.
Denote by

tridet.d1; : : : ; dm/ WD .�1/
m det.tridiag.d1; : : : ; dm//; (3.4)

the determinant of a tridiagonal matrix (continuant) with the sign. Note that the assump-
tion di � 2 implies that tridet.d1; : : : ; dm/ > 0.

Lemma 3.3. For any i � j we have

Œdi ; : : : ; dj � D
tridet.di ; : : : ; dj /

tridet.diC1; : : : ; dj /
;

where the numerator and denominator on the right side are coprime. In particular,
if gcd.r; a/ D 1 and r=a D Œd1; : : : ; dm� then

r D tridet.d1; : : : ; dm/ and a D tridet.d2; : : : ; dm/: (3.5)

Proof. This can be proved by an elementary induction on j � i .

Remark 3.4. Inverting the order of the chain of exceptional curves leads to the continued
fraction

r=a0 D Œdm; : : : ; d1�;

where 0 < a0 < r satisfies a � a0 � 1mod n. Note that 1
r
.1; a/ and 1

r
.1; a0/ are isomorphic

singularities.

3.2. Adherent components

Assume we are in the setup of Theorem 2.12, fix some component zAi of (2.6), and
assume that the corresponding divisor Di � zX defined by the condition (2.3) is a chain
Ei;1; : : : ; Ei;mi of rational curves. Recall that this means that OEi;p .�1/ 2

zAi , and Ei;p
are the only exceptional curves with this property. Note that the category generated by the
sheaves OEi;p .�1/, 1 � p � mi , is not admissible in Db. zX/. The assumption we want
to make is that zAi is, in a sense, the smallest possible admissible subcategory of Db. zX/

containing all OEi;p .�1/.
For convenience we slightly generalize this setup: we fix a sequence bi;p , 1� p �mi ,

of integers, and instead of considering line bundles OEi;p .�1/, replace them by the twis-
ted collection ¹OEi;p .�1C bi;p/º1�p�mi . We denote

di;p WD �E
2
i;p; (3.6)

so that the intersection matrix of Ei;p is the tridiagonal matrix tridiag.di;1; : : : ; di;mi / as
in (3.3). We set x WD�.Di /�X . A combination of Proposition 3.2 and Lemma 3.3 shows
that .X; x/ is a cyclic quotient singularity of type 1

ri
.1; ai /, where

ri D tridet.di;1; : : : ; di;mi / and ai D tridet.di;2; : : : ; di;mi /:

The main definition of this section will be given in terms of the following lemma.
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Lemma 3.5. Let zX be a smooth projective surface such that

H �. zX;O zX / Š k: (3.7)

LetD D
Sm
pD1Ep be a chain of smooth rational curves on zX with E2p D �dp � �2 and

let zA � Db. zX/ be a triangulated subcategory. The following conditions are equivalent:

(1) There exist a line bundle L0 on zX and integers b1; : : : ; bm such that

zA is generated by the sheaves L0;OE1.�1C b1/; : : : ;OEm.�1C bm/; (3.8)

and

L0 �Ep D

´
d1 C b1 � 1 if p D 1;
dp C bp � 2 if 2 � p � m:

(3.9)

(2) The category zA is generated by an exceptional collection of line bundles

zA D hL0;L1; : : : ;Lmi; (3.10)

where for all 1 � p � m we have

Lp WD L0.E1 C � � � CEp/: (3.11)

Proof. Assume (2). The standard exact sequence

0! O zX .�Ep/! O zX ! OEp ! 0

after tensoring by Lp gives

0! Lp�1 ! Lp ! OEp .�1C bp/! 0; (3.12)

where bp is defined by
bp D Lp �Ep C 1: (3.13)

This shows that the subcategory (3.10) is at the same time generated by the line bundle L0

and the sheaves OEp .�1C bp/. Furthermore,

L0 �E1 D L1 �E1 �E
2
1 D �1C b1 C d1;

and for each 2 � p � m,

L0 �Ep D Lp �Ep �Ep�1 �Ep �E
2
p D �1C bp � 1C dp:

This proves (1).
Conversely, assume (1) and define sequence of line bundles by (3.11). A compu-

tation similar to the above shows that Lp � Ep D �1 C bp , hence we have an exact
sequence (3.12) for each 1 � p � m. This proves that zA is generated by the sequence Lp
with 0 � p � m. Finally, the sequence of line bundles is exceptional by [16, Lemma 2.1],
hence (2) holds.
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Definition 3.6. Let zX be a smooth projective surface such that (3.7) holds. We will say
that a triangulated subcategory zA�Db. zX/ is twisted adherent to a chainD D

Sm
pD1Ep

of smooth rational curves if any of the equivalent conditions of Lemma 3.5 hold.
The sequence .b1; : : : ; bm/ is called the twist of an adherent category. When we do

not want to specify the twist we will just say that zA is adherent toD, and when all bp are
zero, we will say that zA is untwisted adherent to D.

In [16] Hille and Ploog suggest thinking of an adherent category zA as a “categorical
neighborhood” of the sheaves OEp .�1C bp/.

Example 3.7. Let us illustrate the concept of untwisted adherence for the singularit-
ies 1

r
.1; 1/ and 1

r
.1; r � 1/:

� in the 1
r
.1; 1/ case the exceptional divisor is a single .�r/-curve E, and the adherence

condition for the line bundle L0 from Lemma 3.5 is L0 �EDr � 1 (cf. Example 2.14);
� in the 1

r
.1; r � 1/ case the exceptional divisor is a chain of .�2/-curvesE1; : : : ;Er�1,

and the adherence condition is L0 �E1 D 1, L0 �E2 D � � � D L0 �Er�1 D 0.

Actually, for the main results of this section (see Subsection 3.4) we use only untwis-
ted adherence. However, the twisted version will become important in Section 4, so in this
subsection we work in the more general case of twisted adherence.

Remark 3.8. We want to consider the case of empty D as a special case of the above
situation: explicitly, a category adherent to the empty divisor is just a category generated
by a single line bundle L0 with no conditions imposed.

Below we provide a reformulation of a result of Hille and Ploog that is crucial for us;
it allows one to relate adherent exceptional collections to finite-dimensional noncommut-
ative algebras.

When ƒ is a noncommutative algebra we write ƒ-mod for the abelian category of
finitely generated right ƒ-modules. Recall that a finite-dimensional algebra ƒ is called
basic if ƒ=R Š k � � � � � k, where R is the Jacobson radical of ƒ. Assume the copies
of the field k on the right hand side of the above equality are indexed by the integers
0; 1; : : : ; m. The corresponding idempotents Ne0; Ne1; : : : ; Nem in ƒ=R lift to unique idem-
potents e0; e1; : : : ; em in ƒ. Then for each 0 � p � m,

Sp D Nep.ƒ=R/

is a simple (one-dimensional) ƒ-module, and every finite-dimensional ƒ-module has a
filtration with factors Sp; in particular every simpleƒ-module is isomorphic to one of Sp .
Similarly, for each 0 � q � m,

Pq D eqƒ

is a projective ƒ-module and we have

Ext�.Pq; Sp/ D Speq D Nep.ƒ=R/ Neq D

´
k if p D q;
0 if p ¤ q:

(3.14)
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In particular, all Pq are indecomposable, pairwise non-isomorphic, and every projective
ƒ-module is a sum of Pq .

Theorem 3.9 ([16, Theorem 2.5]). Let zX be a smooth projective surface satisfying (3.7),
letDi DEi;1 [ � � � [Ei;mi � zX be a chain of rational curves of lengthmi withE2i;p ��2
for each 1 � p � mi , and assume that a subcategory zAi � Db. zX/ is adherent to Di .
Then:

(i) The subcategory zAi � Db. zX/ is admissible.

(ii) There is a sequence Pi;p , 0 � p � mi of vector bundles on zX such that

ƒi WD End zX .Pi;0 ˚Pi;1 ˚ � � � ˚Pi;mi / (3.15)

is a finite-dimensional basic algebra of finite global dimension and

Qi W D
b.ƒi -mod/ '! zAi ; M 7!M ˝ƒi

� miM
pD0

Pi;p

�
; (3.16)

is an equivalence of categories.

(iii) The algebra ƒi is quasi-hereditary with mi C 1 simple modules Si;p and indecom-
posable projective modules Pi;p , 0 � p � mi , and

Qi .Pi;p/ Š Pi;p; 0 � p � mi ;

Qi .Si;0/ Š Li;0;

Qi .Si;p/ Š OEi;p .�1C bi;p/; 1 � p � mi ;

(3.17)

where .bi;p/ is the twist of zAi .

Proof. By Lemma 3.5 the category zAi is generated by an exceptional collection
formed by Li;0 and Li;p D Li;0.Ei;1 C � � � C Ei;p/, 1 � p � mi , for an appropri-
ate line bundle Li;0, hence is admissible. Furthermore, the sequence of line bundles
Li;p is obtained from the sequence in [16, Theorem 2.5] by a line bundle twist,
and so all the properties (i)–(iii) for the category zAi have been established in [16].
Namely, the vector bundle Pi;p is constructed as the iterated universal extension of Li;p

by Li;pC1; : : : ;Li;mi , and the functor

RHom
� miM
pD0

Pi;p;�
�
W zAi

'
! Db.ƒi -mod/ (3.18)

is shown to be an equivalence of categories. The functor Qi is its left adjoint, hence defines
the inverse equivalence. Furthermore, in the proof of [16, Proposition 1.3] it is shown that
the sheaves Pi;p correspond to the indecomposable projective modules Pi;p and the fact
that the sheaves Li;0 and OEi;p .�1C bi;p/ correspond to simple modules Si;0 and Si;p
was explained just before [16, Theorem 2.5] (see also [16, proof of Corollary 1.9]).

The algebra ƒi is basic because it is isomorphic to the endomorphism algebra of the
sum of its indecomposable projective modules Pi;p .
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Remark 3.10. Note that the pair of functors defined by (3.16) and (3.18) extend
to an adjoint pair of functors between the bounded above categories D�.ƒi -mod/
and zA�i (defined by (2.12)) and a standard argument shows that they induce an equi-
valence D�.ƒi -mod/ Š zA�i .

In what follows we call ƒi the Hille–Ploog algebra. In case of a category adherent to
the empty divisor as in Remark 3.8, we have ƒi Š k.

3.3. Hille–Ploog algebras as resolutions of singularities

Following [18, Definition 4.6], from the algebra ƒi we construct the algebra

Ki WD End zX .Pi;0/ Š Endƒi .Pi;0/: (3.19)

We call Ki the Kalck–Karmazyn algebra. Every Ki is a local finite-dimensional algebra
with explicit generators and relations (see Lemma 3.13 for its explicit description).

The projective ƒi -module Pi;0 is a Ki -ƒi -bimodule, hence defines a pair of functors

�i� W D
�.ƒi -mod/! D�.Ki -mod/; M 7! RHomƒi .Pi;0;M/;

��i W D
�.Ki -mod/! D�.ƒi -mod/; N 7! N ˝Ki Pi;0;

(3.20)

(where the tensor product is derived). In case of a category adherent to the empty divisor
as in Remark 3.8, we have Ki Š ƒi Š k and the functors ��i and �i� are equivalences.

In general, we suggest thinking about the pair of functors .��i ; �i�/ as making ƒi into
a noncommutative, or rather categorical, resolution of Ki ; see [28] for a discussion of
this concept. We expect that the algebra ƒi is the Auslander resolution of the algebra Ki
as defined in [28, §5]. Below we show that the pair of functors .��i ; �i�/ satisfies the
same properties as the resolution .��; ��/ of a rational surface singularities does (see
Section 2.1).

First of all, by (3.20) the functor ��i is the left adjoint of �i� and preserves perfectness,
while �i� preserves boundedness:

��i .D
perf.Ki -mod// � Dperf.ƒi -mod/; �i�.D

b.ƒi -mod// � Db.Ki -mod/:

Moreover, on the bounded above categories these functors satisfy

�i� ı �
�
i Š idI (3.21)

in particular, ��i is fully faithful. It follows immediately from (3.14) and the defini-
tion (3.20) of �i� that the kernel of �i� is spanned by the simple modules (except Si;0),
hence

Ker �i� D hSi;1; : : : ; Si;mi˚ � D�.ƒi -mod/;

Im ��i D
?
hSi;1; : : : ; Si;mi � D�.ƒi -mod/;

(3.22)

where h�i˚ denotes the minimal triangulated subcategory closed under arbitrary direct
sums that exist in D�.ƒi -mod/.
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The following lemma is an analog of Lemma 2.5 and can be proved by a similar (in
fact, even simpler) argument.

Lemma 3.11. Let M 2 Db.ƒi -mod/. The following properties are equivalent:

(1) M 2 hPi;0i;
(2) Ext�.M; Si;p/ D 0 for any 1 � p � mi ;

(3) there exists N 2 Dperf.Ki -mod/ such that M Š ��i N ;

(4) �i�M 2 Dperf.Ki -mod/ and M Š ��i .�i�M/.

Finally, we will need the following simple consequence of the above facts.

Lemma 3.12. The restriction of the functor �i� to the bounded derived category is essen-
tially surjective, i.e.,

�i�.D
b.ƒi -mod// D Db.Ki -mod/:

Moreover,
�i�.Si;0/ Š k; �i�.Pi;0/ Š Ki : (3.23)

Proof. As before, for a 2 Z let ��a denote the canonical truncation of a complex in
degree a. The functor �i� is exact with respect to the standard t-structures, because the
module Pi;0 is projective over ƒi , hence

�i�.�
�a.M// Š ��a.�i�.M//

for any M 2 D�.ƒi -mod/ and any a 2 Z.
If N 2 Db.Ki -mod/ then ��a.N / D N for a� 0 and if we set

M D ��a.��i .N //

then
�i�.M/ D �i�.�

�a.��i .N /// Š �
�a.�i�.�

�
i .N // Š �

�a.N / D N:

It remains to note that M 2 Db.ƒi -mod/ since ��i is right exact.
The first isomorphism in (3.23) follows from (3.14) and RHomƒi .Pi;0;Pi;0/DKi by

definition of Ki .

For completeness we also include a brief explicit description of the algebras Ki using
the intersection data of the corresponding chainDi of rational curvesEi;1; : : : ;Ei;mi (and
for details we refer to [18]). We look at one such algebra, and to ease notation we drop the
i subscripts. Recall that the intersection data of the chain is encoded in the Hirzebruch–
Jung continued fraction (3.2), where E2p D �dp , and there is also an associated “dual”
Hirzebruch–Jung fraction (see [34, Section 3] or [18, Section 6])

r

r � a
D Œc1; : : : ; cl �

determining the integers l , c1; : : : ; cl . This data can be used to give a presentation of the
algebra K D K.r; a/.
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Lemma 3.13 ([18, Corollary 6.27, Proposition 6.28]). The Kalck–Karmazyn algebra
K D K.r; a/ associated to the cyclic surface singularity 1

r
.1; a/ is a local, monomial

algebra, dimk.K.r; a// D r , and

K.r; a/ Š
khz1; : : : ; zli* z

cj
j D 0 for all j

zj zk D 0 for all j < k�
z
cj�1

j

��
z
cj�1�2

j�1

�
: : :
�
z
ckC1�2

kC1

��
z
ck�1

k

�
D 0 for all j > k

+ ;

where khz1; : : : ; zli is the free associative algebra on generators z1; : : : ; zl and the para-
meters l � 1 and the cj � 2 are defined by the dual Hirzebruch–Jung continued fraction
expansion r=.r � a/ D Œc1; : : : ; cl �.

Example 3.14. The Hirzebruch–Jung continued fractions

r

r � 1
D Œ2; : : : ; 2�„ ƒ‚ …

r�1

;
r

1
D Œr�

are dual.
(1) The intersection data Œ2; : : : ; 2� corresponds to the 1

r
.1; r � 1/ singularity, the dual

continued fraction is Œr�, and the corresponding Kalck–Karmazyn algebra is

K.r; r � 1/ Š kŒz�=zr :

(2) The intersection data Œr� corresponds to the 1
r
.1; 1/ singularity, the dual continued

fraction is Œ2; : : : ; 2� and the algebra is

K.r; 1/ Š kŒz1; : : : ; zr�1�=.z1; : : : ; zr�1/
2:

In all other cases the algebra K.r; a/ is not commutative. One example is the following:
(3) The intersection data 7=5D Œ2; 2; 3� corresponds to the 1

7
.1; 5/ singularity; it has dual

fraction 7=.7 � 5/ D Œ4; 2�, and the algebra is

K.7; 5/ Š
khz1; z2i

hz41 ; z
2
2 ; z1z2; z2z

3
1i
:

Remark 3.15. As can be seen from its presentation, the algebra K.r; a/ depends on
the directional ordering of the chain of divisors E1; : : : ; Em determining the intersec-
tion data r=a D Œd1; : : : ; dm� and the dual fraction r=.r � a/ D Œc1; : : : ; cl �. Swapping
the direction of the chain yields the fraction r=a0 D Œdm; : : : ; d1� and the dual frac-
tion r=.r � a0/ D Œcl ; : : : ; c1� where aa0 � 1 mod r , and it is explicit from the algebra
presentation that K.r; a/ Š K.r; a0/opp. Note that the corresponding cyclic quotient sin-
gularities 1

r
.1; a/ and 1

r
.1; a0/ are isomorphic; at the same time the vector spaces duality

induces an equivalence of abelian categories

K.r; a0/-mod Š K.r; a0/opp-mod Š K.r; a/-mod:
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3.4. Kalck–Karmazyn algebras and the components Ai

Assuming that a component zAi �Db. zX/ of a semiorthogonal decomposition (2.6) com-
patible with � is untwisted adherent to a chain of rational curves Di , we describe the
corresponding subcategory Ai �Db.X/. Recall that the functors Qi from (3.16) are well-
defined on the category D�.ƒi -mod/ (see Remark 3.10).

Theorem 3.16. Let X be a normal projective surface satisfying (3.7) with rational sin-
gularities and let � W zX ! X be its minimal resolution. Let (2.6) be a semiorthogonal
decomposition compatible with � and let (2.4) be the corresponding decomposition of
the exceptional divisor D of � . Assume that one of its components Di � zX is a chain of
rational curves and the corresponding subcategory zAi � Db. zX/ is untwisted adherent
to Di . Let ƒi , Ki , Qi , ��i , and �i� be the corresponding algebras and functors defined
by (3.15), (3.19), (3.16), and (3.20). Then the functor

i WD �� ı Qi ı �
�
i W D

�.Ki -mod/! D�.X/: (3.24)

is fully faithful, preserves boundedness, and induces an equivalence

i W D
b.Ki -mod/ '! Ai WD ��. zAi / � Db.X/

onto the component Ai of the induced semiorthogonal decomposition of Db.X/.

Note that in case of empty Di (see Remark 3.8), so that zAi is generated by an excep-
tional line bundle Li;0, the theorem just says that Ai is generated by an exceptional object
��.Li;0/.

Proof. We keep the notation introduced in the proof of Theorem 2.12. In particular, we
denote by Q̨ i the projection functor to zA�i . Consider the diagrams

D�.ƒi -mod/
Qi //

�i�

��

D�. zX/

��

��
D�.Ki -mod/

i // D�.X/

and

D�.ƒi -mod/
Qi // D�. zX/

D�.Ki -mod/
i //

��
i

OO

D�.X/

Q̨iı�
�

OO
(3.25)

We will show that both of them are commutative.
By definition i ı �i� D �� ı Qi ı ��i ı �i�, so for commutativity of the first diagram

it is enough to check that for any object M 2 D�.ƒi -mod/ the cone M 0 of the canon-
ical morphism ��i .�i�M/ ! M is killed by the functor �� ı Qi . Indeed, by (3.21) we
have �i�.M 0/ D 0, hence by (3.22) we have M 0 2 hSi;1; : : : ; Si;mi i

˚, hence by (3.17)
we have Qi .M 0/ 2 hOEi;1.�1/; : : : ; OEi;mi

.�1/i˚, and hence by (2.14) we finally
have ��. Qi .M 0// D 0.

For commutativity of the second diagram note that by (3.22) the image of ��i is the
left orthogonal ?hSi;1; : : : ; Si;mi i � D�.ƒi -mod/. Therefore, from (3.17) and full faith-
fulness of Qi we deduce that the image of Qi ı ��i is contained in the left orthogonal
?hOEi;1.�1/; : : : ;OEi;mi

.�1/i � zA�i , which by (2.19) is equal to Q̨ i .��.A�i //. Since
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�� ı Q̨ i ı �
� Š id on A�i by Proposition 2.17(i), we conclude that Q̨ i ı �� ı �� Š id on

Q̨ i .�
�.A�i //, hence

Qi ı �
�
i Š Q̨ i ı �

�
ı �� ı Qi ı �

�
i Š Q̨ i ı �

�
ı i ;

so the second diagram commutes.
Now let us show that the functor i is fully faithful. Indeed, by commutativity of

the second diagram in (3.25), this follows from full faithfulness of ��i (see (3.21)), Qi
(Theorem 3.9), and Q̨ i ı �� (Corollary 2.18).

Next, let us check that i preserves boundedness. Indeed, take anyN 2Db.Ki -mod/.
By Lemma 3.12 there exists M 2 Db.ƒi -mod/ such that N Š �i�.M/. Then by com-
mutativity of the first diagram in (3.25) we have i .N / Š i .�i�.M// Š ��. Qi .M//.
But Qi .M/ is bounded by Theorem 3.9, hence so is ��. Qi .M// Š i .N /.

It remains to show that i .Db.Ki -mod// D Ai . For this we restrict the first commut-
ative diagram to the bounded derived categories, and note that Qi is essentially surjective
onto zAi by Theorem 3.9, and �� restricted to zAi is essentially surjective onto Ai by
Theorem 2.12.

With this new technique we now develop Example 2.14 in a special case.

Example 3.17. Let X D P .1; 1; d/ be a weighted projective plane and let

� W zX D Fd ! P .1; 1; d/ D X

be its minimal resolution by the Hirzebruch surface Fd D PP1.O ˚ O.d//. The sum-
mands of O ˚ O.d/ provide two disjoint divisors E;C � Fd with self-intersections �d
and d respectively (so that E is the exceptional divisor of �). Let also H be the pullback
of the point class from P1. Using the projective bundle formula and Lemma 2.11 (note
thatKFd D�E �C � 2H ) we can write the following full exceptional collection on Fd :

Db.Fd / D hO.�H �E/;O.�H/;O;O.C /i:

We use this collection to describe the derived category of P .1; 1; d/. We let

zA1 D hO.�H �E/;O.�H/i; zA2 D hOi; zA3 D hO.C /iI

then the semiorthogonal decomposition

Db.Fd / D h zA1; zA2; zA3i

is compatible with � and untwisted adherent to the componentsD1 D E,D2 DD3 D ¿
of the exceptional divisor of � . Using Theorem 3.16 we deduce that

Db.P .1; 1; d// D hA1;A2;A3i

with A1 ' Db.K.d; 1/-mod/ and A2 ' A3 ' Db.k/. Explicitly, A2 and A3 are gen-
erated by the exceptional line bundles O and O.d/ on P .1; 1; d/, and A1 is generated
by R D ��.O.�H � E// ' ��.O.�H// Š O.�1/, a reflexive sheaf of rank 1 (this
agrees up to a line bundle twist with the decomposition described in Example 6.12).
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When we have a semiorthogonal decomposition of Db. zX/ into adherent compon-
ents, a twist by a line bundle keeps the adherence property but changes the adherence
twists. It is a natural question whether in this way all components may be made untwisted,
and hence compatible with the contraction, thus providing a finite-dimensional algebra
description for all of the Ai . This question is addressed in Section 4, and now we sum-
marize the results of Theorems 2.12 and 3.16 in the case when such untwisting is possible.

Corollary 3.18. LetX be a normal projective surface satisfying (3.7) with cyclic quotient
singularities and let � W zX ! X be its minimal resolution of singularities. Let

Db. zX/ D h zA1; : : : ; zAni

be a semiorthogonal decomposition compatible with � such that every component zAi is
untwisted adherent to a chain of rational curves Di where D D

F
Di is the exceptional

locus of � . Let Ki and i be the corresponding algebras and functors defined by (3.19)
and (3.24). Then the functors i induce a semiorthogonal decomposition

Db.X/ D hDb.K1-mod/; : : : ;Db.Kn-mod/i: (3.26)

Let Ai D ��. zAi / D i .D
b.Ki -mod// and A

perf
i D Ai \Dperf.X/. For each 1 � i � n,

if � is crepant along Dj for j > i then i also induces an equivalence

Dperf.Ki -mod/ '! A
perf
i :

In particular, if � is crepant alongDj for j � 2, there is a semiorthogonal decomposition

Dperf.X/ D hDperf.K1-mod/; : : : ;Dperf.Kn-mod/i: (3.27)

Note that we allow some components Di to be empty: see Remark 3.8 and
Example 3.17.

Proof of Corollary 3.18. The semiorthogonal decomposition (3.26) follows from a com-
bination of Theorem 2.12 together with Theorem 3.16 applied separately for each com-
ponent Ai .

Now assume that � is crepant alongDj for j > i . For anyN 2Db.Ki -mod/we have
a chain of equivalences

N 2 Dperf.Ki -mod/ () ��i N 2 Db.ƒi -mod/ (by Lemma 3.11)

() Qi .�
�
i N/ 2 Db. zX/ (by Theorem 3.9)

() ��.iN/ 2 Db. zX/ (by (3.25) and Proposition 2.17)

() iN 2 Dperf.X/ (by Corollary 2.6).

To be more precise, in the second line we use the fact that the functor Qi and its adjoint
provide an equivalence between D�.ƒi -mod/ and zA�i (see Remark 3.10), restricting to
an equivalence between Db.ƒi -mod/ and zAi . Similarly, in the third line we use the fact
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that ��.iN/ � zA�i by Proposition 2.17(iii), hence

��.iN/ Š Q̨ i .�
�.iN// Š Qi .�

�
i N/

by commutativity of (3.25), and in the fourth line we use that iN 2 Db.X/ by The-
orem 3.16.

Since i is an equivalence of Db.Ki -mod/ and Ai , we conclude that it also induces
an equivalence of Dperf.Ki -mod/ and A

perf
i . Thus, (2.9) gives (3.27).

Remark 3.19. Assume that � W zX ! X is a minimal resolution of a normal projective
surface X satisfying (3.7) with cyclic quotient singularities, and that D D tniD1Di is the
decomposition of its exceptional divisor such that Di D Ei;1 [ � � � [ Ei;mi is a chain
of smooth rational curves with self-intersections E2i;p D �di;p . To apply Corollary 3.18
and get the required semiorthogonal decomposition of Db.X/ we need to construct a
semiorthogonal decomposition of Db. zX/ with components zAi adherent to Di . For this
we need to find a sequence ¹Li;0º

n
iD1 of line bundles on zX with prescribed intersections

with Ei;p such that the concatenation of the exceptional collections Li;0;Li;1; : : : ;Li;mi ,
where

Li;p D Li;0.Ei;1 C � � � CEi;p/

is a full exceptional collection on zX . These conditions (in a slightly generalized form to
include twisted adherence) can be spelled out as
(1) Ext�.Li;0;Lj;0/ D 0 for i > j ;

(2) Li;0 �Ej;p D

8̂<̂
:
dj;p C bj;p � 2 if i < j ;
dj;p C bj;p � 2C ıp;1 if i D j ;
bj;p if i > j I

(3) the collection ¹¹Li;pº
mi
pD0º

n
iD1 of line bundles is full.

As we will see in Corollary 4.10 below, the second condition can always be fulfilled if the
class group Cl.X/ is torsion-free. Moreover, the collection of line bundles Li;0 satisfying
this condition is unique up to a twist of each Li;0 by a line bundle pulled back from X .
The hard question is to choose these twists so as to satisfy the first and the last conditions
above. In Section 5 (see Proposition 5.6) we will explain how to do this when X is a toric
surface.

4. Brauer group of singular rational surfaces

In this section we show that for a projective normal rational surface with rational singu-
larities the torsion subgroup of G0.X/ D K0.Db.X// is dual to the Brauer group Br.X/
and we give an explicit identification of elements of the Brauer group in terms of vector
bundles on the resolution zX of X . We also explain that semiorthogonal decompositions
of Db. zX/ with components twisted adherent to connected components of the excep-
tional divisor give rise to semiorthogonal decompositions of twisted derived categor-
ies Db.X; ˇ/ for ˇ 2 Br.X/ depending on the twist .bi;p/.
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4.1. Grothendieck groups

Let T be a triangulated category. The Grothendieck group K0.T / is defined as the quo-
tient of the free abelian group on isomorphism classes of objects by the subgroup gener-
ated by the relations ŒF2� D ŒF1�C ŒF3� for all distinguished triangles

F1 ! F2 ! F3

in T . Note that these relations imply that ŒF ˚ F 0� D ŒF �C ŒF 0� and ŒF Œ1��D�ŒF � for
all objects F , F 0 2 T .

For a k-scheme X we write

G0.X/ D K0.Db.X//; K0.X/ D K0.Dperf.X//:

When X is smooth we have Db.X/ D Dperf.X/ and G0.X/ D K0.X/.
The Grothendieck group is additive with respect to semiorthogonal decompositions:

if T D hA1; : : : ;Ani, then

K0.T / D K0.A1/˚ � � � ˚ K0.An/:

This implies a very simple necessary condition for the existence of (3.26).

Lemma 4.1. If a k-scheme X admits a semiorthogonal decomposition

Db.X/ D hDb.K1-mod/; : : : ;Db.Kn-mod/i

into derived categories of finitely generated modules over local finite-dimensional al-
gebras, then G0.X/ Š Zn. In particular, G0.X/ is torsion-free.

Proof. Since the Grothendieck group is additive for semiorthogonal decompositions, and
the Grothendieck group of finitely generated modules over a finite-dimensional local
algebra is isomorphic to Z (via the dimension function), the lemma follows.

Below we relate torsion in G0.X/ to more basic invariants of X , namely the class
group Cl.X/ of Weil divisors. Recall that there is a natural group homomorphism

c1 W K0.X/! Pic.X/;

and if X is normal, then we can also define the homomorphism c1 W G0.X/! Cl.X/ as
a composition

G0.X/!G0.X n Sing.X//DK0.X n Sing.X//
c1
�! Pic.X n Sing.X//DCl.X/ (4.1)

where Sing.X/ � X is the singular locus of X and the first map is induced by restriction.
For a coherent sheaf F we denote by �.F / its Euler characteristic; for a complete

variety it gives homomorphisms � W G0.X/! Z and � W K0.X/! Z.
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Lemma 4.2. Let X be a quasi-projective rational normal surface. If X is complete, then
we have an isomorphism

.rk; c1; �/ W G0.X/
Š
! Z˚ Cl.X/˚ Z; (4.2)

and if X is not complete, then we have an isomorphism

.rk; c1/ W G0.X/
Š
! Z˚ Cl.X/: (4.3)

If X is a smooth projective surface, we call the right side of (4.2) the Mukai lattice
of X . In Subsection 4.5 we introduce the Mukai pairing on this lattice.

Proof of Lemma 4.2. Let us first assume that X is complete. We compare G0.X/ to the
Chow groups CHi .X/ of i -dimensional cycles on X (see [13]). We have CH2.X/ D Z,
CH1.X/ D Cl.X/ by definition, and since X is rationally connected, CH0.X/ D Z.

Consider the morphism (4.2). Both its source and target come with a three-step filtra-
tion (the filtration F �G0.X/ by the codimension of support on G0.X/ and the filtration
induced by the direct sum decomposition on the target). The map is compatible with these
filtrations (since rank vanishes on objects supported in codimension 1, and c1 vanishes on
objects supported in codimension 2). Therefore, we obtain maps between the factors

G0.X/=F 1G0.X/
rk
�! Z;

F 1G0.X/=F 2G0.X/
c1
�! Cl.X/;

F 2G0.X/
�
�! Z:

On the other hand, we have maps in the opposite direction defined by

Z
ŒOX �
���! G0.X/=F 1G0.X/;

Cl.X/
D 7!ŒOD �
������! F 1G0.X/=F 2G0.X/;

Z
ŒOx �
���! F 2G0.X/

(in the middle row the map takes the class of an effective Weil divisor D to the class of
its structure sheaf; this map when taken modulo F 2G0.X/ respects linear equivalence of
Weil divisors). The second collection of maps is surjective [13, Example 15.1.5]. On the
other hand, it is evident that rk.OX / D 1, c1.OD/ D D and �.Ox/ D 1, hence it is also
injective. Therefore, the maps on the factors of the filtration are isomorphisms. It follows
that the original map (4.2) is also an isomorphism.

Assume now thatX is not complete, and letX �X be the closure ofX in a projective
embedding. LetZDX nX be the closed complement ofX inX . We have the localization
sequence of Chow groups [13, Proposition 1.8]

CH0.Z/! CH0.X/! CH0.X/! 0
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and since X is a rational projective surface we know that CH0.X/D Z, generated by any
rational point. As Z is nonempty, the first map in the exact sequence is surjective and we
have CH0.X/ D 0.

Thus we have CH2.X/D Z, CH1.X/D Cl.X/, CH0.X/D 0 and the same argument
as we used to show (4.2) proves (4.3).

Remark 4.3. Using [22, Corollary 1.5] one can also prove an analogue of this result
for K0.X/ under the additional assumption that X has rational singularities: if X is a
quasi-projective rational surface with rational singularities, then if X is complete, there is
an isomorphism

.rk; c1; �/ W K0.X/
Š
! Z˚ Pic.X/˚ Z;

and if X is not complete, then

.rk; c1/ W K0.X/
Š
! Z˚ Pic.X/:

4.2. Torsion in rational surfaces

In this subsection we interpret the condition that G0.X/ is torsion-free in terms of the
Brauer group of X .

Recall that the Brauer group Br.X/ of a schemeX is the group of Morita-equivalence
classes of Azumaya algebras on X with the operation of tensor product [30]. The Brauer
group Br.X/ is closely related to the cohomological Brauer group of X ,

Br0.X/ WD H 2
ét.X;Gm/I

in fact Br.X/ is isomorphic to the subgroup of torsion elements in Br0.X/:

Br.X/ D Br0.X/torsI

see [17, Cor. 9] in the surface case and [8] for the general situation. In particular, if Br0.X/
is a finite group, there is no difference between the Brauer group and the cohomological
Brauer group: Br.X/ D Br0.X/.

Proposition 4.4. Let X be a normal projective rational surface with rational singularit-
ies. Then we have the isomorphisms

G0.X/tors ' Cl.X/tors

and
Br0.X/ D Br.X/ ' Ext1.Cl.X/;Z/ ' Ext1.G0.X/;Z/:

Furthermore, Pic.X/ is free of finite rank and the intersection pairing gives an isomor-
phism

Pic.X/ ' Cl.X/_:
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Proof. The isomorphism (4.2) implies that

Cl.X/tors ' G0.X/tors:

Let � W zX ! X be a resolution of singularities. Denote by

Cl. zX=X/ WD Ker.Cl. zX/
��
�! Cl.X// (4.4)

the kernel of the pushforward map. Since the surface zX is smooth, Cl. zX=X/ is the sub-
group of Cl. zX/ D Pic. zX/. If E1; : : : ; Em are the exceptional curves of � , then

Cl. zX=X/ D
mM
iD1

ZŒEi �: (4.5)

We consider Cl. zX=X/ as a sublattice of Cl. zX/ with respect to the intersection pairing.
We also consider the dual abelian group Cl. zX=X/_ and denote by ıEi the delta-function
corresponding to the generator Ei of Cl. zX=X/, so that ıEi .Ej / D ıij .

By [5, Proposition 1] we have an exact sequence

0! Pic.X/
��

��! Pic. zX/
IP
�! Cl. zX=X/_ ! Br0.X/

��

��! Br0. zX/ D 0; (4.6)

where IP is the intersection pairing morphism, which takes a line bundle QL on zX to the
linear function on Cl. zX=X/ defined by

f QL WD IP. zL/ D
mX
iD1

. QL �Ei /ıEi : (4.7)

On the other hand, by (4.4) we have the exact sequence

0! Cl. zX=X/! Pic. zX/
��
�! Cl.X/! 0: (4.8)

Its first two terms are free abelian groups (the first is free by (4.5), and the second is free
since zX is a smooth rational surface). Dualizing (4.8) we obtain an exact sequence

0! Cl.X/_ ! Pic. zX/_ ! Cl. zX=X/_ ! Ext1.Cl.X/;Z/! 0: (4.9)

The intersection pairing defines a linear map IP W Pic. zX/ ! Pic. zX/_, which is an
isomorphism, since the surface is rational and smooth. Moreover, its composition with
the map Pic. zX/_ ! Cl. zX=X/_ in (4.9) coincides with the map IP in (4.6). Thus, the
exact sequence (4.9) can be identified with the sequence (4.6), and in particular we obtain
isomorphisms

Cl.X/_ ' Pic.X/ and Ext1.Cl.X/;Z/ ' Br0.X/;

the first of which is induced by the intersection pairing. In particular, the group Pic.X/
is free of finite rank, and Br0.X/ is a finite abelian group. Thus, by [17, Cor. 9] we have
Br.X/ D Br0.X/ Š Ext1.Cl.X/;Z/.
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Remark 4.5. The exact sequence (4.6) gives an isomorphism

Br.X/ ' Coker.Pic. zX/
IP
�! Cl. zX=X/_/:

In Proposition 4.9 below we construct this isomorphism explicitly.

The following corollary is an immediate consequence of Proposition 4.4.

Corollary 4.6. If X is a normal projective rational surface with rational singularities
then the following conditions are equivalent:

(1) Br.X/ D 0;

(2) Cl.X/tors D 0;

(3) G0.X/tors D 0.

Based on this observation, we suggest the following.

Definition 4.7. Let X be a normal projective rational surface with rational singularities.
We call X torsion-free if any of the equivalent conditions of Corollary 4.6 holds.

Of course, every smooth projective rational surface is torsion-free. See [5] for a clas-
sification of del Pezzo surfaces with du Val singularities that are not torsion-free. In
Section 5 (see Lemma 5.1) we will explain which toric surfaces are torsion-free.

Summarizing the above discussion, we obtain the following criterion.

Corollary 4.8. Let X be a normal projective rational surface with cyclic quotient singu-
larities and let � W zX ! X be its minimal resolution of singularities. If Db. zX/ admits
a semiorthogonal decomposition with components untwisted adherent to the connected
components of the exceptional divisor D of � , then X is torsion-free.

Proof. Assume that Db. zX/ has such a decomposition. By Corollary 3.18 we have a
semiorthogonal decomposition (3.26) for Db.X/, hence by Lemma 4.1 the Grothendieck
group G0.X/ is torsion-free. Therefore, X is torsion-free.

4.3. Explicit identification of the Brauer group

In this section we construct the isomorphism of Remark 4.5 explicitly. Let X be a normal
projective rational surface with rational singularities and let � W zX ! X be its resolution
of singularities. As in the proof of Proposition 4.4, we consider the lattice (4.5) and denote
by ıEi the basis of the dual group Cl. zX=X/_.

Let R be an Azumaya algebra on the surface X of rank r2 for some r > 0. Then its
pullback zR WD ��R to the resolution zX of X is also an Azumaya algebra. But zX is a
smooth rational surface, so Br. zX/ D 0, hence zR is Morita-trivial. This means that there
exists a vector bundle zV on zX such that

zR Š End. zV/ Š zV ˝ zV_: (4.10)

In this case we say that zV splits or trivializes the Azumaya algebra zR. Note that such a
bundle zV has rank r and is defined up to a line bundle twist.
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For each irreducible exceptional divisor Ei of the resolution � consider the restric-
tion zV jEi . Since zRjEi Š .�

�R/jEi is a trivial bundle andEi Š P1, it follows from (4.10)
that

zV jEi Š OEi .bEi /
˚r

for some bEi 2 Z. Consider the linear function

fR WD

X
bEi ıEi 2 Cl. zX=X/_: (4.11)

Denote by NfR the image of fR in the group Coker.Pic. zX/
IP
�! Cl. zX=X/_/.

Proposition 4.9. The map

Br.X/! Coker.Pic. zX/
IP
�! Cl. zX=X/_/; ŒR� 7! NfR; (4.12)

is well defined, and is an isomorphism of groups.

Proof. First, note that if we replace the vector bundle zV in (4.10) by a line bundle
twist zV ˝ zL, then the function fR will change by the function f zL D IP. zL/ defined

by (4.7), hence its image NfR in Coker.Pic. zX/
IP
�! Cl. zX=X/_/ will not change.

Next, let us replace R by a Morita equivalent Azumaya algebra R0 and let P be
the bimodule providing a Morita-equivalence. Then ��P provides a Morita equivalence
between the Morita-trivial Azumaya algebras ��R Š End. zV/ and ��R0 Š End. zV 0/,
hence

��P Š zV ˝ zL˝ . zV 0/_

for a line bundle zL. Replacing zV by zV ˝ zL, we may assume there is no zL factor.
If zV jEi DOEi .bEi /

˚r and zV 0jEi DOEi .b
0
Ei
/˚r
0

, from triviality of ��P onEi it follows
that bEi D b

0
Ei

, hence fR D fR0 . This proves that the map (4.12) is well defined.

Similarly, if R ŠR1 ˝R2 and the bundles zV1 and zV2 trivialize the Azumaya algeb-
ras ��R1 and ��R2, then the bundle zV D zV1 ˝ zV2 trivializes ��R, and

zV jEi Š
zV1jEi ˝

zV2jEi Š OEi .b
1
Ei
/˚r1 ˝OEi .b

2
Ei
/˚r2 Š OEi .b

1
Ei
C b2Ei /

˚r1r2 ;

which shows that fR D fR1 C fR2 , hence the map (4.12) is linear.
Since both Br.X/ and Coker.Pic. zX/ ! Cl. zX=X/_/ are finite groups of the same

order (by Remark 4.5), to show that the map (4.12) is an isomorphism it is enough to
check its injectivity. So, assume that R is an Azumaya algebra on X such that NfR D 0.
This means that the algebra ��R can be trivialized by a vector bundle zV on zX that
restricts trivially to each exceptional divisor Ei of � . By Lemma 2.5 we conclude that

zV Š ��V

for a vector bundle V on X . Therefore,

��R Š End. zV/ Š End.��V/ Š �� End.V/;

and since �� is fully faithful, we conclude that R Š End.V/. Clearly, this is an isomor-
phism of algebras, hence R is Morita-trivial.
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The following simple consequence of this result will be very useful later.

Corollary 4.10. LetX be a normal projective rational surface with rational singularities,
let � W zX ! X be its resolution, and let f D

P
bEi ıEi 2 Cl. zX=X/_.

(1) There is an integer r > 0 and a rank r vector bundle zV on zX such that for all i ,

zV jEi Š OEi .bEi /
˚r :

(2) If X is torsion-free, there is a line bundle zL such that for all i ,

zLjEi Š OEi .bEi /I

such a line bundle is unique up to a twist by the pullback of a line bundle on X .

Proof. Let R be the Azumaya algebra corresponding to the image of the function f in
the group Br.X/ D Coker.Pic.X/! Cl. zX=X/_/. Then fR differs from f by f zL for a
line bundle zL on zX , hence we can take zV to be an appropriate vector bundle trivializing
the algebra ��R.

If X is torsion-free the map IP W Pic. zX/! Cl. zX=X/_ is surjective by (4.6), which
means the existence of zL as required. Moreover, Ker.IP/ D ��.Pic.X//, again by (4.6),
which gives the uniqueness of zL.

The proof of Proposition 4.9 shows that the map

B W Cl. zX=X/_ ! Br.X/; f D
X

bEi ıEi 7! R D �� End. zV/; (4.13)

where zV is a vector bundle from Corollary 4.10(1), is a well-defined surjective homo-
morphism whose kernel is the image IP.Pic. zX// of Pic. zX/ under the intersection pairing
map. We call B the Brauer class map.

4.4. Resolutions of twisted derived categories

Given an Azumaya algebra R on a scheme X we denote by Coh.X;R/ the abelian
category of sheaves of right R-modules on X which are coherent as OX -modules. By
definition, the category Coh.X;R/ up to equivalence depends only on the Brauer class ˇ
of R. Accordingly, we will usually denote this category by Coh.X; ˇ/.

For any class ˇ 2 Br.X/, if R is an Azumaya algebra on X representing it we denote

Db.X; ˇ/ D Db.X;R/; Dperf.X; ˇ/ D Dperf.X;R/; D�.X; ˇ/ D D�.X;R/

the corresponding bounded, perfect (note that any sheaf of R-modules which is locally
free over OX is automatically locally projective over R (see [23, Lemma 10.4]), hence a
complex of R-modules is perfect if and only if it is perfect as a complex of OX -modules),
and bounded above twisted derived categories respectively.

Now let X be a normal projective rational surface with rational singularities and
let � W zX ! X be its minimal resolution. As in Section 4.3, we denote by zV a vector
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bundle on zX trivializing the Azumaya algebra zR D ��R. Note that zV is a left zR-module
and zV_ is a right zR-module.

We consider the following pair of functors defined as compositions:

��
zV
W D�.X;R/! D�. zX; zR/ ' D�. zX/; G 7! .��G /˝ zR

zV ;

�
zV
� W D

�. zX/ ' D�. zX; zR/! D�.X;R/; F 7! ��.F ˝O zX
zV_/:

(4.14)

As before, we consider the pair of functors .��
zV
; �
zV
� / as a categorical resolution of the

twisted derived category of X by the derived category of zX . Below we check that it has
similar properties to the resolution .��; ��/ of the untwisted derived category.

Lemma 4.11. The pullback functor ��
zV

is left adjoint to the pushforward functor � zV� .
Furthermore, the pullback ��

zV
preserves the category of perfect complexes and the push-

forward � zV� preserves the bounded category. Finally,

�
zV
� ı �

�
zV
Š idD�.X;R/ :

In particular, the pullback functor ��
zV

is fully faithful.

Proof. The adjunction is standard (note that F ˝O zX
zV_ Š RHom. zV ;F /). The second

statement is evident from the definition of the functors. For the last one, note that

�
zV
� .�

�
zV
.G // Š ��..�

�G /˝ zR
zV ˝O zX

zV_/ Š ��..�
�G /˝ zR

zR/ Š ��.�
�G / Š G ;

and we are done.

Let E1; : : : ; Em denote the irreducible components of the exceptional divisor of � .
We use the notation from Section 4.3.

Lemma 4.12. Assume that we have zV jEi Š OEi .bEi /
˚r , so that fR D

P
bEi ıEi . An

object F 2 D�. zX/ is contained in Ker� zV� if and only if every cohomology sheaf H t .F /

is an iterated extension of sheaves OEi .�1C bEi /.

Proof. It follows immediately from Lemma 2.1 that an object F is contained in Ker� zV� if
and only if every cohomology sheaf of H t .F / is. So from now on we will assume that F

is a pure sheaf in Ker� zV� and we must show that F 2 hOEi .�1C bEi /i.
Using again Lemma 2.1 we see that F ˝ zV_ 2 hOEi .�1/i. Let F ˝ zV_! OE .�1/

be an epimorphism, where E is one of the Ei . By adjunction we obtain a nonzero morph-
ism F ! zV ˝OE .�1/. Let F 0 be its cone. Using the defining triangle of F 0,

F ! zV ˝OE .�1/! F 0;

it is easy to see that � zV� .F
0/D 0, hence from the observation at the beginning of the proof

we conclude that H t .F 0/ 2 Ker� zV� for each t .
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Now let G be the image of the (nonzero) morphism of sheaves F ! zV ˝ OE .�1/.
Note that G is a nonzero subsheaf in zV ˝ OE .�1/, hence G is supported scheme-theor-
etically on the smooth rational curve E. Furthermore, we have an exact sequence

0! H�1.F 0/! F ! G ! 0; (4.15)

which implies that G 2 Ker � zV� . It follows that G ˝ zV_ Š OE .�1/
˚s for some s > 0,

hence
G Š OE .�1C bE /

˚s=r :

On the other hand, the sum of the lengths of H�1.F 0/ at generic points of Ei is less than
that for F (since s > 0), hence by induction we have

H�1.F 0/ 2 hOEi .�1C bEi /i:

Now the statement follows from (4.15).

Lemma 4.13. For any G 2 Db.X;R/ there exists F 2 Db. zX/ such that G Š �
zV
� .F /.

Proof. Analogous to the proof of Corollary 2.3.

Lemma 4.14. Let F 2 Db. zX/. The following properties are equivalent:

(1) F jEi 2 hOEi .bEi /i for each i ;

(2) Ext�.F jEi ;OEi .�1C bEi // D 0 for each i ;

(3) there exists G 2 Dperf.X;R/ such that F Š ��
zV
G ;

(4) � zV� F 2 Dperf.X;R/ and F Š ��
zV
.�
zV
� F /.

If additionally F is a pure sheaf, or a locally free sheaf, then so is � zV� F .

Proof. Analogous to the proof of Lemma 2.5.

4.5. Grothendieck groups of twisted derived categories

Let X be a normal projective rational surface with rational singularities. Let ˇ 2 Br.X/
be a Brauer class. We denote by G0.X; ˇ/ D K0.Db.X; ˇ// the Grothendieck group of
twisted coherent sheaves on X . By Proposition 4.9 there is an element

f D

mX
iD1

bEi ıEi 2 Cl. zX=X/_

such that ˇ D B.f /, where B is the Brauer class map defined in (4.13).
To study G0.X; ˇ/ we consider the following subgroup of G0. zX/:

G0. zX=X; ˇ/ D hŒOE1.�1C bE1/�; : : : ; ŒOEm.�1C bEm/�i � G0. zX/ (4.16)
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(see Proposition 4.15 below for a conceptual interpretation of this subgroup). Under the
isomorphism .rk; c1; �/ W G0. zX/ ' Z˚ Cl. zX/˚ Z of Lemma 4.2, this subgroup can be
written as

G0. zX=X; ˇ/ ' h.0; ŒE1�; bE1/; : : : ; .0; ŒEm�; bEm/i � Z˚ Cl. zX/˚ Z:

When all bEi are zero, so that ˇ D 0, we have G0. zX=X; ˇ/ D Cl. zX=X/ � G0.X/.
Also note a slight abuse of notation: strictly speaking G0. zX=X; ˇ/ � G0. zX/ depends
not only on ˇ but also on the choice of f 2 Cl. zX=X/_ representing ˇ. Note however that
G0. zX=X; ˇ/ � G0. zX/ is well-defined up to multiplication by the class of a line bundle
on zX .

Proposition 4.15. We have an exact sequence of abelian groups

0! G0. zX=X; ˇ/! G0. zX/
�
zV
�
��! G0.X; ˇ/! 0: (4.17)

In particular, G0.X; ˇ/ is a finitely generated abelian group.

Remark 4.16. If all bEi are zero, then ˇ D 0 and (4.17) follows from (4.8) and Lem-
ma 4.2 as G0. zX=X; 0/ corresponds to 0˚ Cl. zX=X/˚ 0 � Z˚ Pic. zX/˚ Z ' G0. zX/.

Proof. The morphism �
zV
� W G0. zX/ ! G0.X; ˇ/ is surjective by Lemma 4.13 and the

subgroup G0. zX=X;ˇ/ is contained in its kernel by Lemma 4.12, so it remains to identify
the kernel of � zV� with the image of the first arrow in (4.17). Let E1; : : : ; Em be the
components of the exceptional divisor of � . Consider the open subscheme

U WD X n

m[
iD1

�.Ei / D zX n

m[
iD1

Ei

and the natural embeddings u W U ! X and Qu W U ! zX , so that � ı QuD u. The Azumaya
algebra RU WD u�R Š Qu���R Š Qu� zR is Morita trivial, and trivialized by the vector
bundle zVU WD Qu� zV , so we have a functor

u�
zV
W Db.X;R/! Db.U /; G 7! .u�G /˝RU

zVU ;

such that u�
zV
ı �
zV
� Š Qu

� W Db. zX/!Db.U /. Therefore, we have a commutative diagram

G0. zX/
�
zV
� //

Qu� $$

G0.X; ˇ/

u�
zVyy

G0.U /

giving an exact sequence

0! Ker� zV� ! Ker Qu�
�
zV
�
��! Keru�

zV
:
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On the other hand, using the isomorphisms (4.2), (4.3) of Lemma 4.2 we have

Ker Qu� D 0˚ Cl. zX=X/˚ ZŒO Qx � � Z˚ Cl. zX/˚ Z D G0. zX/;

where Qx is a point on zX . So, it remains to note that this subgroup is freely generated by
the elements ŒOEi .�1C bEi /� and by ŒO Qx �, and that � zV� .ŒO Qx �/ is a non-torsion element
of G0.X; ˇ/ (for the last fact just note that the composition

G0. zX/
�
zV
�
��! G0.X; ˇ/ D G0.X;R/

Forget
���! G0.X/

�
�! Z

(where Forget is the linear map induced by the functor forgetting the structure of
R-module) takes ŒO Qx � to �.��.O Qx ˝ zV_// D rk. zV/).

In the next proposition we relate the torsion part of G0.X; ˇ/ to the Brauer group
of X , providing a generalization of Proposition 4.4 to the twisted case. We use more or
less the same proof as that of Proposition 4.4, but instead of Cl.X/ and Pic.X/ we use
G0.X/ and K0.X/ respectively. Recall the direct sum decomposition

.rk; c1; �/ W K0. zX/ D G0. zX/ ' Z˚ Pic. zX/˚ Z

described in Lemma 4.2, and consider on it the Mukai pairing defined by

MP..r;D; s/; .r 0;D0; s0// WD rs0 C r 0s �D �D0: (4.18)

Note that it is unimodular; in particular it gives an identification K0. zX/_ Š K0. zX/. Note
also that for elements �1 D .0;D1; s1/ and �2 D .0;D2; s2/ of G0. zX=X; ˇ/ we have

MP.�1; �2/ D �D1 �D2 D � IP.c1.�1/; c1.�2//; (4.19)

so the two pairings agree up to sign. In particular, the map

c1 W G0. zX=X; ˇ/! Cl. zX=X/

is an isomorphism of lattices up to sign.

Proposition 4.17. We have a natural isomorphism

Ext1.G0.X; ˇ/;Z/ ' Br.X/=hˇi:

In particular G0.X; ˇ/ is torsion-free if and only if ˇ is a generator of Br.X/.

Proof. Using (4.17) as a free resolution for G0.X; ˇ/, we obtain

G0. zX/_ ! G0. zX=X; ˇ/_ ! Ext1.G0.X; ˇ/;Z/! 0:

Using the Mukai pairing to identify G0. zX/_ D K0. zX/_ with K0. zX/, we rewrite this as

K0. zX/
MP
��! G0. zX=X; ˇ/_ ! Ext1.G0.X; ˇ/;Z/! 0;
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where the first map takes ŒF � D .r;D; s/ toX
MP.ŒF �; ŒOEi .�1C bEi /�/ıEi D

X
.r � bEi �D �Ei /ıEi

D r
X

bEi ıEi � IP.D/: (4.20)

Here ıEi 2 G0. zX=X; ˇ/_ is defined as the dual basis for the basis ŒOEi .�1 C bi /�
of G0. zX=X; ˇ/. Note that we have an isomorphism

G0. zX=X; ˇ/_ Š Cl. zX=X/_

that identifies their bases ıEi . Thus, to compute the cokernel of MP, we should take suc-
cessively the quotients of Cl. zX=X/_ by the images of the three summands of

K0. zX/ D Z˚ Pic. zX/˚ Z:

It follows from (4.20) that the third summand is mapped to zero. Furthermore, the map
on the second summand agrees up to sign with the map IP, hence by Remark 4.5 the
quotient is isomorphic to Br.X/ via the Brauer class map B defined in (4.13). Finally,
comparing (4.13) with (4.20) we see that the composition B ıMP takes the generator 1 of
the first summand of K0. zX/ to B.

P
bEi ıEi / D ˇ. Therefore, the cokernel is isomorphic

to Br.X/=hˇi.

Remark 4.18. Propositions 4.15 and 4.17 show how to compute G0.X; ˇ/ using the
sublattice G0. zX=X; ˇ/ � G0. zX/ D K0. zX/. This sublattice can also be used to compute
the group K0.X;ˇ/D K0.Dperf.X;ˇ//. Indeed, one can show that there is a natural exact
sequence

0! K0.X; ˇ/
��
zV
��! K0. zX/

MP
��! G0. zX=X; ˇ/_ ! Br.X/=hˇi ! 0:

Injectivity of ��
V

is nontrivial; it can be established as in [33, Theorem 2.19].

4.6. Semiorthogonal decompositions of twisted derived categories

Assume that X is a normal projective rational surface with cyclic quotient singularities,
and let � W zX ! X be its minimal resolution with exceptional divisor

D D

nG
iD1

Di D

nG
iD1

mi[
pD1

Ei;p;

so thatDi D
Smi
pD1Ei;p for each i is a chain (possibly empty) of smooth rational curves.

The next result is a twisted analogue of Corollary 3.18.

Theorem 4.19. Let X be a normal projective rational surface with cyclic quotient singu-
larities and let � W zX ! X be its minimal resolution. Let

Db. zX/ D h zA1; : : : ; zAni
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be a semiorthogonal decomposition such that every component zAi is .bi;p/-twisted adher-
ent to a chain of rational curves Di where D D

F
Di is the exceptional locus of � . Let

zV be a vector bundle on zX such that

zV jEi;p Š OEi;p .bi;p/
˚r

for some positive integer r and all i and p .see Corollary 4.10(1)/. Let

ˇ D B
�X

bi;pıEi;p

�
2 Br.X/

be the corresponding Brauer class. Let Ki be the Kalck–Karmazyn algebras associated
with the components Di of D .see (3.19)/. Define


zV
i WD �

zV
� ı Qi ı �

�
i W D

�.Ki -mod/! D�.X; ˇ/:

Then the functors  zVi are fully faithful, preserve boundedness, and induce a semiortho-
gonal decomposition

Db.X; ˇ/ D hDb.K1-mod/; : : : ;Db.Kn-mod/i: (4.21)

If � is crepant along Dj for j > i then  zVi also induces a fully faithful functor

Dperf.Ki -mod/! Dperf.X; ˇ/;

and if � is crepant along Dj for j � 2 there is a semiorthogonal decomposition

Dperf.X; ˇ/ D hDperf.K1-mod/; : : : ;Dperf.Kn-mod/i: (4.22)

Proof. The proof repeats the proof of Corollary 3.18 in the twisted setting.

Corollary 4.20. If Db. zX/ has a semiorthogonal decomposition each of whose compon-
ents is .bi;p/-twisted adherent to a connected component Di of � , the corresponding
Brauer class ˇ D B.

P
bi;pıEi;p / 2 Br.X/ is a generator of Br.X/.

Proof. If such a semiorthogonal decomposition exists, then using (4.21) and arguing as
in Lemma 4.1 we see that G0.X; ˇ/ is torsion-free. Then Proposition 4.17 proves that ˇ
generates Br.X/.

Remark 4.21. Let Db. zX/D h zA1; : : : ; zAni be a semiorthogonal decomposition which is
adherent to the exceptional divisor D D

F
Di with a twist .bi;p/. Let zL be a line bundle

on zX . Then Db. zX/D h zA1˝
zL; : : : ; zAn˝

zLi is a semiorthogonal decomposition which
is adherent to the exceptional divisorD D

F
Di with a twist .bi;p C zL �Ei;p/. Note that

B
�X

.bi;p C zL �Ei;p/ıEi;p

�
D B

�X
bi;pıEi;p C IP. zL/

�
D B

�X
bi;pıEi;p

�
;

so the Brauer class corresponding to the new decomposition coincides with the original
Brauer class ˇ. If zV is a vector bundle as in Corollary 4.10 and R is an Azumaya algebra
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on X such that ��R Š End. zV/ then we also have ��R Š End. zV ˝ zL/, hence we have
a commutative diagram

zAi
�˝ zL //

�
zV
�

$$

zAi ˝
zL

�
zV˝ zL
�

yy
Db.X;R/

which shows that with these choices we obtain the same semiorthogonal decomposition
of Db.X; ˇ/ D Db.X;R/ in the end. On the other hand, if L is a line bundle on X , we
can replace the functor � zV� by � zV˝�

�L
� . Then we have a commutative diagram

zAi

�
zV
�

$$

�
zV˝��L
�

zz
Db.X;R/

�˝L // Db.X;R/

which shows that a different choice of the resolution functor results in a twist of the
resulting semiorthogonal decomposition of Db.X;R/.

5. Application to toric surfaces

In this section we apply the results of previous sections to projective toric surfaces. We
refer to [7, 12] for general information about toric varieties. When reading this section it
is instructive to keep Example 3.17 in mind.

5.1. Notation

A toric surface is an irreducible normal surface X endowed with an action of a two-
dimensional torus TŠG2

m with a free T-orbit. In particular, every toric surface is rational.
We only consider toric surfaces which are projective. Note that for each resolution zX of
such a surface the condition (3.7) is satisfied.

We denote by M Š Z2 the lattice of characters of T, and by N WD M_ Š Z2 its dual
lattice. A projective toric surface X is determined by a complete fan † in N ˝ R. We
denote the primitive generators of the rays (one-dimensional cones) in the fan by

v1; : : : ; vn 2 N: (5.1)

We assume that vi are indexed in counterclockwise order on the plane N˝ R. We also
set

vnC1 D v1:

The rays of † correspond to irreducible torus-invariant divisors Ci � X . Since X is pro-
jective, each Ci is isomorphic to P1.
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Similarly, two-dimensional cones in the fan † correspond to T-invariant points on X .
We denote by xi 2 X the T-invariant point corresponding to the cone .vi ; viC1/ of the
fan, so that

xi D Ci \ CiC1; (5.2)

and let Ui be the toric chart containing xi . Since the vector vi is primitive, we can choose
a basis in N such that vi D .1; 0/. Then we can write viC1 D .ri � ai ; ri /, where

ri D det.vi ; viC1/ (5.3)

is positive and ai 2 Z. Moreover, changing the second basis vector in N and taking into
account the primitivity of viC1, we can assume that

0 < ai < ri and gcd.ri ; ai / D 1:

Then the dual cone to R�0 � vi CR�0 � viC1 �N˝R is isomorphic to the cone generated
by .1; 0/, .ai ; ri / in the dual space M˝ R, and one has Ui Š A2=�ri , where �ri acts
on A2 with weights .1; ai /, so that xi is a cyclic quotient singularity of type 1

ri
.1; ai /.

In particular X has cyclic quotient singularities. We call ri the order of the T-invariant
point xi .

Note that if we change the orientation of N ˝ R, that is, if we replace the counter-
clockwise ordering of the vectors vi by the clockwise ordering, the construction above
will describe the singular point xi as of type 1

ri
.1; a0i / where a0i is the inverse of ai mod-

ulo ri (cf. Remark 3.15).

5.2. The Brauer group of toric surfaces

As explained in Section 4.2, the Brauer group of a smooth projective toric surface is zero;
the following lemma describes the Brauer group of a singular toric surface in terms of
its singularities. See [9, 10] for more general statements about the Brauer group of a toric
variety.

Denote by � the canonical map

� W Zn ! N

that takes the i -th basis vector of Zn to the corresponding vector vi 2 N.

Lemma 5.1 ([9, Corollary 2.9(c)]). Let N† WD Im.�/ � N be the sublattice generated by
all ray generators vi of the fan † of a projective toric surface X . Then

Br.X/ Š N=N†:

Moreover, Br.X/ is a cyclic group of order gcd.r1; : : : ; rn/, the greatest common divisor
of the orders ri of the T-invariant points ofX . In particular, ifX has a smooth T-invariant
point then X is torsion-free.

Furthermore, Pic.X/ Š Ker.�/ and Cl.X/ Š Coker.�T W M! Zn/.
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Remark 5.2. One can also show that for every 1 � i � n,

gcd.r1; : : : ; rn/ D gcd.r1; : : : ;bri ; : : : ; rn/:
Example 5.3. Let w1; w2; w3 � 1 be pairwise coprime. Then the weighted projective
plane P .w1; w2; w3/ has three torus-invariant points of types 1

w1
.w2; w3/, 1

w2
.w3; w1/,

and 1
w3
.w1;w2/ of ordersw1, w2, andw3 respectively, in particular it is torsion-free. One

interesting special case is P .1; 2; 3/ which is given by the fan

v1 D .1; 1/; v2 D .�2; 1/; v3 D .1;�1/:

It has one A1 and one A2 singularity, Pic.X/ D Cl.X/ D Z, Br.X/ D 0.

Example 5.4. Let X D .P1 � P1/
ı

�2, where �2 acts diagonally and the action on each
factor is given by Œx W y� 7! Œ�x W y�. Then X is a projective toric surface with the fan
given by

v1 D .1; 1/; v2 D .�1; 1/; v3 D .�1;�1/; v4 D .1;�1/:

It has four A1 singularities and Pic.X/ D Z2, Br.X/ D Z=2, Cl.X/ D Z2 ˚ Z=2. In
particular, X is not torsion-free.

Example 5.5. Let X D P2
ı

�3, where �3 acts on P2 with three different weights. Then
X is a projective toric surface with the fan given by

v1 D .1; 1/; v2 D .�2; 1/; v3 D .1;�2/:

It has three A2 singularities and Pic.X/ D Z, Br.X/ D Z=3, Cl.X/ D Z˚ Z=3. In par-
ticular, X is not torsion-free.

The fans of the above toric surfaces are presented below.

P .1; 2; 3/ .P1 � P1/
ı

�2 P2
ı

�3

v1v2

v3

v1v2

v3 v4

v1v2

v3

5.3. Minimal resolution

Let X be a toric surface and let � W zX ! X be the minimal resolution of singularities
of X . Then zX is also a toric surface, with an action of the same torus T. The fan Q† of zX
is a refinement of †.
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To be more precise, Q† is obtained from † as follows: for each two-dimensional
cone .vi ; viC1/ of † consider the convex hull of all nonzero integral points of the cone
generated by vi and viC1, i.e.,

Pi;iC1 WD Conv
�
.R�0vi CR�0viC1/ \ .N n ¹0º/

�
;

where the sum on the right side is the Minkowski sum of two rays (see [7, 8.4] or [12,
Exercise (a), p. 46]). Consider all integral points on the boundary of Pi;iC1 that do not lie
on two infinite ray segments R�1vi and R�1viC1. Let

vi;1; : : : ; vi;mi

be these points in counterclockwise order. Also set

vi;0 D vi :

Then vi;p , 1 � i � n, 0 � p � mi , are all generators of rays in the fan Q†. Note that
if det.vi ; viC1/ D 1, i.e., if xi is a smooth point of X , we have mi D 0.

The fans of the resolutions of the toric surfaces in Examples 5.3–5.5 are presented
below.

P .1; 2; 3/ .P1 � P1/
ı

�2 X D P2
ı

�3

v1;0v1;1v1;2
v2;0

v3;0

v3;1

v1;0v1;1
v2;0

v2;1

v3;0 v3;1 v4;0

v4;1

v1;0v1;1v1;2
v2;0

v2;1

v2;2

v3;0

v3;1

v3;2

The exceptional divisor of the resolution � is the union

D D

nG
iD1

mi[
pD1

Ei;p

of the irreducible toric divisors Ei;p corresponding to the rays vi;p of Q† that are not in †,
i.e., with 1 � p � mi . Its connected components are

Di D

mi[
pD1

Ei;p

(so that if the point xi on X is smooth then Di is empty). As usual we denote by

di;p WD �E
2
i;p

the self-intersections of the exceptional divisors. Furthermore, we denote by Ei;0 the irre-
ducible toric divisors on zX corresponding to the rays vi;0 (they are the strict transforms
of the toric divisors Ci on X ).



J. Karmazyn, A. Kuznetsov, E. Shinder 50

5.4. Adherent exceptional collections

There is a standard way [14] to construct a full exceptional collection of line bundles on a
smooth toric surface. One should choose a ray in the fan and a direction (counterclockwise
or clockwise) and starting with any line bundle add at each step the divisor corresponding
to the next ray in the fan.

In the case of the minimal resolution zX of a toric surface X , to make this collection
(twisted) adherent to the connected components Di of the exceptional divisor D, one can
start for example from O zX .E1;0/, add E1;1 at the first step, and go in counterclockwise
direction.

This procedure gives the collection Li;p , 1 � i � n, 0 � p � mi , defined by

Li;0 D O zX

� i�1X
jD1

mjX
qD0

Ej;q CEi;0

�
; (5.4)

Li;p D Li;0.Ei;1 C � � � CEi;p/: (5.5)

Then we have the equality

Li;0 �Ek;p D ıi;kıp;1 C ık;nıp;mn if 1 � i � k � n: (5.6)

Indeed, if i � k and 1 � p � mk the only summands on the right hand side of (5.4) that
have nontrivial intersection with the curve Ek;p are the last summand Ei;0 (if i D k

and p D 1) and, since the curves form a cycle, the first summand E1;0 (if k D n

and p D mn). This allows us to deduce the following.

Proposition 5.6. The collection of line bundles Li;p , 1 � i � n, 0 � p � mi , defined
by (5.4) and (5.5) is a full exceptional collection consisting of n blocks and its i -th block

zAi D hLi;0;Li;1; : : : ;Li;mi i

is adherent to the connected component Di of the exceptional divisor D with the twist

bi;p D

´
2 � di;p; .i; p/ ¤ .n;mn/;

3 � dn;mn ; .i; p/ D .n;mn/:
(5.7)

In particular, if mn D 0, i.e., if there are no exceptional curves between En;0 and E1;0,
the formula (5.7) simplifies to bi;p D 2 � di;p for all 1 � i � n; 1 � p � mi .

Proof. The collection is full and exceptional by [14, Theorem 5.1], and adherence follows
from (5.5) by definition. Comparing (3.9) with (5.6) for k D i we get

di;p C bi;p � 2C ıp;1 D ıp;1 C ıi;nıp;mn :

which gives the formula (5.7) for the twist.
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Remark 5.7. One can use the same method to construct a full exceptional collection of
line bundles with n blocks adherent to components Di of the exceptional locus D of
the minimal resolution for any normal projective rational surface X with cyclic quotient
singularities, if the chains Di can be included into a cycle of smooth rational curves
summing to �K zX .

We consider the element

f WD
X
i;p

bi;pıEi;p 2 Cl. zX=X/_

corresponding to the twist (5.7). By the adjunction formula, K zX �Ei;p D di;p � 2, hence
f C IP.K zX / D ıEn;mn . This means that the Brauer class corresponding to the function
f under the Brauer class map (4.13) is equal to

B
�X

bi;pıEi;p

�
D B.ıEn;mn / 2 Br.X/: (5.8)

In particular, if mn D 0 (i.e., if Dn D ¿) then B.f / D 0.

Remark 5.8. More generally, if X is torsion-free, then B.f / D 0 (because Br.X/ D 0),
and we are able to explicitly untwist the exceptional collection of Proposition 5.6 as fol-
lows. Let M be a line bundle on zX such that for all 1 � i � n, 1 � p � mi ,

M �Ei;p D

´
0; .i; p/ ¤ .n;mn/;

�1; .i; p/ D .n;mn/:
(5.9)

Such a line bundle exists by Corollary 4.10(2). Note that as usual, if xn is smooth then the
second case in (5.9) does not occur and we can take M D O zX . Now using (5.7) it follows
that if Li;p are defined by (5.4) and (5.5), the full exceptional collection

¹Mi;p D Li;p ˝M.K zX /ºi;p (5.10)

consists of n blocks untwisted adherent to D1; : : : ; Dn respectively. Note also that it
follows easily from (5.6) and (5.9) that

Mi;0 �Ek;p D ıi;kıp;1 C dk;p � 2 (5.11)

for all i � k and 1 � p � mk .

The next theorem summarizes our results on semiorthogonal decompositions for sin-
gular surfaces in the toric case. We use the notation and conventions introduced above.

Theorem 5.9. Let X be a projective toric surface with T-invariant points x1; : : : ; xn,
and let � W zX ! X be its minimal resolution with the exceptional divisor D D

Fn
iD1Di ,

where �.Di / D xi . Let Ki be the Kalck–Karmazyn algebra corresponding to the chain
of rational curves Di . Let

ˇ D B.ıEn;mn / 2 Br.X/
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be the corresponding Brauer class. Then there is a semiorthogonal decomposition

Db.X; ˇ/ D hDb.K1-mod/; : : : ;Db.Kn-mod/i:

Moreover, if the T-invariant points xj for j � 2 are Gorenstein, this decomposition
induces a semiorthogonal decomposition

Dperf.X; ˇ/ D hDperf.K1-mod/; : : : ;Dperf.Kn-mod/i:

Proof. This is a special case of Theorem 4.19 in the toric situation.

When X is torsion-free so that Br.X/ D 0, we get the following:

Corollary 5.10. If X is a projective torsion-free toric surface, there is a semiorthogonal
decomposition

Db.X/ D hDb.K1-mod/; : : : ;Db.Kn-mod/i:
If the T-invariant points xj for j � 2 are Gorenstein, this decomposition induces a semi-
orthogonal decomposition

Dperf.X/ D hDperf.K1-mod/; : : : ;Dperf.Kn-mod/i:

Remark 5.11. If X is not torsion-free, the Brauer class ˇ is always nontrivial by Corol-
lary 4.20.

Recall that weighted projective planes are torsion-free (Example 5.3).

Example 5.12 (cf. Example 3.17). If X is the weighted projective plane P .1; 1; d/, we
obtain a semiorthogonal decomposition

Db.X/ D hDb.kŒz1; : : : ; zd�1�=.z1; : : : ; zd�1/
2/;Db.k/;Db.k/i

and a similar decomposition for the category Dperf.X/. Recall that the isomorphism
Kd;1 ' kŒz1; : : : ; zd�1�=.z1; : : : ; zd�1/

2 has been explained in Example 3.14(2). Note
that we have placed the non-Gorenstein singular point of X in the first position to achieve
the decomposition of Dperf.X/.

Example 5.13. If X is the weighted projective plane P .1; 2; 3/ (see Example 5.3), we
obtain a semiorthogonal decomposition

Db.X/ D hDb.k/;Db.kŒz�=z2/;Db.kŒz�=z3/i

and again a similar decomposition for Dperf.X/.

Example 5.14. If X is the surface of Example 5.4, we obtain

Db.X; ˇ/ D hDb.kŒz�=z2/;Db.kŒz�=z2/;Db.kŒz�=z2/;Db.kŒz�=z2/i;

where ˇ is the nontrivial element of Br.X/ D Z=2, and a similar decomposition for
Dperf.X/.

Example 5.15. If X is the surface of Example 5.5, we obtain

Db.X; ˇ/ D hDb.kŒz�=z3/;Db.kŒz�=z3/;Db.kŒz�=z3/i;

where ˇ is a nontrivial element of Br.X/ D Z=3, and again a similar decomposition
for Dperf.X/.
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5.5. Special Brauer classes

The exceptional collection of Proposition 5.6, as well as the Brauer class ˇ on X and
the semiorthogonal decomposition of Db.X;ˇ/ of Theorem 5.9 depend on some choices.
First, they depend on the choice of a cyclic order of rays of the fan ofX (this is equivalent
to a choice of orientation of the plane N˝ R). Second, they depend on the choice of the
linear order x1; : : : ; xn of torus-invariant points on X compatible with the chosen cyclic
order. Changing these choices we obtain a semiorthogonal decomposition of a differently
twisted category with the same components up to reordering. The next lemma explains
how twist changes.

We denote by ˇi the Brauer class corresponding to the choice of the point xi as the
last point, so that the linear ordering of the torus-invariant points is

xiC1; : : : ; xn�1; xn; x1; : : : ; xi�1; xi�2; xi ;

and by ˇ0i the Brauer class corresponding to the same choice of the last point with the
opposite cyclic order, so that the linear ordering is

xi�1; xi�2; : : : ; x1; xn; xn�1; : : : ; xiC1; xi :

Lemma 5.16. If for each 1 � i � n the point xi is a cyclic quotient singularity of
type 1

ri
.1; ai / then the following relations are satisfied by the classes ˇ1; : : : ; ˇn,

and ˇ01; : : : ; ˇ
0
n 2 Br.X/: for every 1 � i � n we have

ˇi D aiˇ
0
i ; ˇiC1 D �aiC1ˇi :

In particular, if X is Gorenstein then ˇi D ˇ1, and ˇ0i D �ˇ1 for all 1 � i � n.

Proof. By (5.8) we have

ˇi D B.ıEi;mi /; ˇ0i D B.ıEi;1/:

Using standard recursions for determinants of tridiagonal matrices it is easy to check that

IP
� miX
pD2

tridet.di;2; : : : ; di;p�1/Ei;p
�
D ıEi;1 � tridet.di;2; : : : ; di;mi /ıEi;mi :

Using (3.5) and B ı IP D 0, we conclude that ˇi D aiˇ0i . Similarly

IP.EiC1;0/ D ıEi;mi C ıEiC1;1 ;

hence ˇ0iC1 D �ˇi . Finally, if X is Gorenstein then ai D ri � 1, and since Br.X/ is
a cyclic group of order gcd.r1; : : : ; rn/ by Lemma 5.1 and Remark 5.2, so that ri acts
trivially on Br.X/, we see that ˇi D ˇ1, ˇ0i D �ˇ1 for all 1 � i � n.

In the Gorenstein case we thus obtain a bunch of semiorthogonal decompositions
of Db.X; ˇ1/ and Db.X;�ˇ1/. Using Remark 4.21 one can show that all these decom-
positions of Db.X; ˇ1/ are the same up to line bundle twist, and all decompositions
of Db.X;�ˇ1/ are obtained from the above decompositions by dualization.



J. Karmazyn, A. Kuznetsov, E. Shinder 54

6. Reflexive sheaves

An alternative approach to construct a semiorthogonal decomposition of Db.X/was sug-
gested by Kawamata [19]. Starting with an object F 2Coh.X/, takeG0DF and consider
a sequence Gi of iterated nontrivial extensions,

0! F ! Gi ! Gi�1 ! 0

in Coh.X/. If the sequence terminates with some maximal element zG D Gm, i.e.,

Ext1X . zG;F / D 0;

then zG is said to be a maximal iterated extension of F . When such an object exists it is
unique [19, Corollary 3.4], and can be interpreted as the versal noncommutative deforma-
tion of F over EndX . zG/ [19, Corollary 4.11]. Furthermore, Kawamata proves that, under
appropriate conditions the sheaf zG generates an admissible subcategory of Db.X/, and
in some examples (for the weighted projective planes P .1; 1; n/ and P .1; 2; 3/, see [19,
Examples 5.5, 5.7, 5.8]) he constructs a semiorthogonal decomposition into derived cat-
egories of finite-dimensional algebras. In this section we explain the relation between our
approach and that of Kawamata.

6.1. Criteria of reflexivity and purity

LetX be a normal surface. Recall that by definition a reflexive sheaf is a coherent sheaf F

on X satisfying
.F _/_ ' F

via the natural morphism (here the duality is underived); an equivalent definition is that

F ' R0u�FU

where uW U !X is the embedding of an open subset with zero-dimensional complement,
and FU is a locally free sheaf on U . Furthermore, recall that the set of isomorphism
classes of reflexive sheaves on X is a group with respect to the operation

.F1;F2/ 7! ..F1 ˝ F2/
_/_

(the tensor product and duality are underived), and this group is isomorphic to the class
group Cl.X/ via the first Chern class map (4.1). If D is a Weil divisor on X we write
O.D/ for the reflexive sheaf with the first Chern class D; equivalently O.D/ may be
defined as R0u�O.D \ U/, where U is the nonsingular locus of X as above.

We will be interested in coherent sheaves on X obtained by pushing forward line
bundles from a resolution zX , and we will rely on the following criterion for reflexivity.
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Lemma 6.1. Let .X; x/ be a cyclic quotient surface singularity and let � W zX ! X

be its minimal resolution with the chain E1; : : : ; Em of exceptional divisors with self-
intersections E2i D �di . Set D D

P
Ej . If a line bundle L on zX satisfies

L.D/ �Ej � 0 for all 1 � j � m, and
mX
jD1

L.D/ �Ej < 0; (6.1)

then R0��.L/ is a reflexive sheaf of rank 1 on X .

Proof. Let
U D X n ¹xº D zX nD:

Let u W U ! X and Qu W U ! zX be the embeddings and set LU WD Qu
�L. Since Qu is an

affine morphism, we have

Qu�.LU / D R
0
Qu�.LU / Š lim

�!
L.tD/;

where on the right hand side the colimit is taken with respect to the sequence of the natural
embeddings L! L.D/! L.2D/! � � � . Therefore, there is an exact sequence

0! L! Qu�.LU /! lim
�!

L.tD/

L
! 0:

Pushing it forward to X we obtain an exact sequence

0! R0��.L/! R0��. Qu�.LU //! lim
�!

R0��

�
L.tD/

L

�
(6.2)

(the pushforward functor commutes with the colimit since � is quasicompact).
Let us show that the last term in (6.2) is zero. We prove that R0��

�
L.tD/

L

�
D 0 for all

t � 0 by induction. The short exact sequence

0!
L..t � 1/D/

L
!

L.tD/

L
! L.tD/jD ! 0

shows that it is enough to check that H 0.D;L.tD/jD/ D 0 for all t � 1. Since D is a
chain of curves Ej , it is enough to check that all the degrees L.tD/ � Ej are nonpositive
and their sum is negative. For t D 1 this is ensured by (6.1). For t > 1 the same follows
from (6.1) combined with the inequalities

D �Ej D 2 � ıj1 � ıjm � dj � 0;

which hold true since dj � 2 for all j by minimality of the resolution.
Now we conclude from (6.2) that R0��.L/ Š R0��. Qu�.LU // Š R

0u�.LU /. Since
X is a normal surface, it follows that R0��.L/ is reflexive.
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Corollary 6.2. In the notation of Lemma 6.1, if the multidegree vector .L � Ej /mjD1 is
equal to one of the vectors

.d1 � 2; d2 � 2; : : : ; dm�1 � 2; dm � 2/;

.d1 � 2; d2 � 2; : : : ; dm�1 � 2; dm � 1/;

.d1 � 1; d2 � 2; : : : ; dm�1 � 2; dm � 2/;

then the derived pushforward ��L is a reflexive sheaf of rank 1 on X .

Proof. Let us write lj D L � Ej . It is easy to see that the condition (6.1) is equivalent to
the following condition: if m > 1 the degrees lj satisfy

l1 � d1 � 1; lj � dj � 2 .2 � j � m � 1/; lm � dm � 1

and requiring that one of these inequalities is strict; and if m D 1 then l1 < d1. This
condition holds by assumption and Lemma 6.1 implies that R0��L is a reflexive sheaf.

To show that higher direct images vanish we note that for every 1 � j � m we
have K zX �Ej D dj � 2 so that by assumption on the degrees lj we deduce that L.�K zX /

is �-nef. By the Kawamata–Viehweg vanishing [20, Theorem 1-2-3], we have the required
vanishing Rp��L D 0 for all p > 0.

Example 6.3. For the 1
2
.1; 1/ singularity X D Spec.kŒx2; xy; y2�/ let E be the single

exceptional curve on the minimal resolution zX , so that d D 2. Let L be a line bundle
on zX , and let l be the degree of L restricted to E. By Corollary 6.2, for l D 0 and l D 1,
��L is a reflexive sheaf of rank 1. In fact one can see that the same is true for l D �1.

However, for l � 2, ��L is a pure sheaf which is not reflexive, while for l � �2,
R1��L is a nonzero torsion sheaf so that ��L is not a sheaf.

Remark 6.4. In the case of a Gorenstein cyclic quotient singularity of type 1
m
.1;m � 1/

with m > 1 the exceptional divisor of the minimal resolution is a chain E1; : : : ; Em�1
and we have dj D 2 for all 1 � j � m � 1. The condition of Corollary 6.2 is that L

restricts trivially to all exceptional curves except possibly either E1 or Em where it may
have degree 1.

Remark 6.5. Other criteria for reflexivity can be found in the literature, e.g. [37, §A1,
Theorem, part (b)], [11, Lemma 2.1].

6.2. Extension of reflexive rank 1 sheaves

Now we relate the components of the semiorthogonal decomposition (3.26) to the subcat-
egories defined by Kawamata [19]. So, we assume that X is a normal projective rational
surface with cyclic quotient singularities and � W zX !X is its minimal resolution. LetDi
be a connected component of the exceptional divisor D of � and let xi D �.Di / 2 X be
a quotient cyclic singularity of type 1

ri
.1; ai /. Assume that the subcategory zAi �Db. zX/

is untwisted adherent to Di , let Li;0 be the corresponding line bundle on zX so that (3.8)
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holds and let i W Db.Ki -mod/! Db.X/ be the functor of Theorem 3.16. We define a
complex of sheaves

Ri WD i .k/ 2 Db.X/; (6.3)

the image of the simple Ki -module k under the functor i , and

Mi WD i .Ki / 2 Db.X/; (6.4)

the image of the freeKi -moduleKi under the same functor. SinceKi is an iterated exten-
sion of k, Mi is an iterated extension of Ri . Here, given F;G 2 Db.X/ by an extension
ofG by F we mean a cone of any morphismGŒ�1�! F , so that if F andG are coherent
sheaves extensions are precisely those in the sense of abelian categories. In particular,
if Ri 2 Db.X/ is a pure sheaf, then so is Mi . Denote by hRi i and hMi i the minimal
triangulated subcategories of Db.X/ containing Ri and Mi respectively.

Proposition 6.6. There is a semiorthogonal decomposition

Db.X/ D
˝
hR1i; : : : ; hRni

˛
with hRi i ' Db.Ki -mod/, and if x2; : : : ; xn 2 X are Gorenstein then there is a semi-
orthogonal decomposition

Dperf.X/ D
˝
hM1i; : : : ; hMni

˛
with hMi i ' Dperf.Ki -mod/.

Proof. Consider the semiorthogonal decomposition of Corollary 3.18. We have

Ai ' i .D
b.Ki -mod// D i .hki/ ' hRi i;

so that the first decomposition of the proposition follows from (3.26). For the second
decomposition we use (3.27) together with the fact that Dperf.Ki -mod/ is generated byKi
so that the essential image of Dperf.Ki -mod/ in Db.X/ is hMi i.

As i is fully faithful it is immediate to see that the objects Ri and Mi satisfy

Ext�X .Mi ; Ri / D k; Ext�X .Mi ;Mi / Š Ki ; (6.5)

where the vector spaces on the right-hand side are concentrated in degree 0. In this sense
decompositions of Proposition 6.6 provide an analog of a full exceptional collection for
the singular surface X . In particular if Di D ¿, then Ri DMi is actually an exceptional
object.

As we already noticed, Mi is an iterated extension of Ri . As Ext1X .Mi ; Ri / D 0 this
extension is maximal; in the language of [19, Definition 5.1], Mi is said to be relative
exceptional. We are going to investigate under which conditions Ri (resp. Mi ) are reflex-
ive (resp. locally free) sheaves on X .

Recall the locally free sheaves Pi;0 2 zAi defined in Theorem 3.9.
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Proposition 6.7. (i) For any 1 � i � n we have natural isomorphisms of complexes

Ri Š ��.Li;0/; Mi Š ��.Pi;0/:

(ii) Each Ri is a locally free sheaf of rank 1 at X n ¹xi ; : : : ; xnº and a reflexive sheaf of
rank 1 at xi . Each Mi is a locally free sheaf of rank ri at X n ¹xiC1; : : : ; xnº.

(iii) If singular points xiC1; : : : ; xn are Gorenstein, then Ri is locally free of rank 1
on X n ¹xiº and reflexive of rank 1 at xi , and Mi is a locally free sheaf on X .

(iv) If Ri is a reflexive sheaf on X , then Mi is the unique maximal iterated extension of
Ri in the sense of Kawamata [19].

Proof. (i) We rely on (3.17), (3.23) and the first diagram in (3.25) to compute

Ri D i .k/ Š i .�i�.Si;0// Š ��. Qi .Si;0// Š ��.Li;0/;

Mi D i .Ki / Š i .�i�.Pi;0// Š ��. Qi .Pi;0// Š ��.Pi;0/:

(ii) and (iii) We start by noticing that since � induces an isomorphism on the nonsin-
gular locus of X , both Ri and Mi are locally free sheaves on X n ¹x1; : : : ; xnº.

Let us now check that Ri is reflexive of rank 1 in the neighbourhood of xi . Set

zVi WD zX n
[
j¤i

Dj and Vi WD �. zVi /;

so that Vi is an open neighborhood of xi and the restriction of � to zVi (which we still
denote by �) is a resolution of the singularity .Vi ; xi /.

It follows from (3.9) where all bi;p are zero that the condition of Corollary 6.2 for
the morphism � W zVi ! Vi is satisfied so that Ri is a reflexive sheaf of rank 1 on the
neighborhood Vi of xi .

To show that Ri (resp. Mi ) is locally free at xj for some j , by Lemma 2.5 we
need to check that Ext�.Li;0;OEj;p .�1// D 0 (resp. Ext�.Pi;0;OEj;p .�1// D 0) for all
1 � p � mj . For j < i , or for j > i under the Gorenstein condition, the Ext-groups are
vanishing by (2.15).

Finally, for j D i we have, for every 1 � p � mi ,

Ext�.Pi;0;OEi;p .�1// D Ext�. Qi .Pi;0/; Qi .Si;p// D Ext�ƒi .Pi;0; Si;p/ D 0

by (3.14) and the correspondence between projective and simple Ki -modules, so that Mi

is locally free at xi .
Each Mi has rank ri since by Lemma 3.13 we have dimk.Ki / D ri so that Mi has a

filtration with subquotients being ri copies of Ri , and Ri has rank 1.
(iv) We know thatMi is an iterated extension ofRi and (6.5) shows that it is maximal.

The uniqueness follows (see [19, Corollary 3.4]).

We note that if a point xi is nonsingular, then Ki D k and Mi D Ri .
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6.3. Toric case

Assume now that X is a torsion-free toric surface and let � W zX ! X be the minimal
resolution. Let M be a line bundle on zX satisfying conditions (5.9) and set

C WD ��.c1.M// 2 Cl.X/:

We note since M is well-defined up to twist by a line bundle from ��.Pic.X//, the class
C is well-defined up to adding a Cartier divisor class on X .

The full exceptional collection (5.10) provides a semiorthogonal decomposition of the
category Db. zX/ untwisted adherent to the components Di of the exceptional locus D
of � . Recall the objects Ri and Mi of Db.X/ associated in (6.3) and (6.4) to this semi-
orthogonal decomposition.

Proposition 6.8. Let X be a torsion-free projective toric surface with torus-invariant
points x1; : : : ; xn, and with torus-invariant divisors C1; : : : ; Cn with the ordering fixed by
the condition (5.2).

(i) For any 1 � i � n the object Ri is a reflexive sheaf of rank 1 on X , explicitly

Ri ' O.KX C C C C1 C � � � C Ci /: (6.6)

Moreover, for every j < i the sheaf Ri is locally free at the torus-invariant point xj .
If x2; : : : ; xn are Gorenstein, then each Ri is locally free at X n ¹xiº.

(ii) For any 1 � i � n the objectMi is a reflexive sheaf on X and is locally free at all xj
with j � i . If x2; : : : ; xn are Gorenstein, then each Mi is locally free on X .

(iii) Each Mi is the unique maximal iterated extension of Ri .

Proof. Using Proposition 6.7 we only have to check that Ri is a reflexive sheaf of rank 1
at xiC1; : : : ;xn and to prove (6.6). Recall that by Proposition 6.7(i) we haveRi D ��Mi;0.
To prove reflexivity we rely on the criterion of Corollary 6.2. By (5.11) we have

Mi;0 �Ek;p D dk;p � 2

for i < k � n, and Corollary 6.2 applies to show that Ri D ��.Mi;0/ is reflexive at xk .
To get the expression (6.6) for Ri , note that a reflexive sheaf is determined by its first

Chern class and that the functor �� commutes with c1 by (4.1), hence

c1.Ri / D c1.��.Mi;0// D ��.c1.Mi;0// D ��.c1.Li;0 ˝M.K zX ///:

Taking into account (5.10) and (5.4), the equalities ��.K zX / D KX , ��.Ei;p/ D 0 for
p � 1 and ��.Ei;0/ D Ci , and the definition of C , we deduce (6.7).

We now explain how one can compute C , and hence the reflexive sheaves (6.6) in
some important special cases.
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Proposition 6.9. Let X be a projective toric surface with T-invariant points x1; : : : ; xn
of orders r1; : : : ; rn and T-invariant divisors C1; : : : ; Cn with convention (5.2). Assume
that gcd.rn; r1/ D 1. Let s be an integer such that

s � 0 mod r1 and s � �1 mod rn:

Then C D sC1 is a Weil divisor class on X corresponding to a line bundle M on zX
satisfying (5.9). In particular, reflexive sheaves defined by (6.6) generate (3.26).

Proof. Let us check that M can be chosen in the form

M Š O zX .Fn C sE1;0 C F1/;

where Fn is a linear combination of En;p , 1 � p � mn, and F1 is a linear combination
of E1;p , 1 � p � m1. Indeed, any divisor of the form Fn C sE1;0 C F1 has trivial inter-
section with Ei;p for all 2 � i � n � 1 and 1 � p � mi . Furthermore, for any Fn we
have

Fn �E1;p D 0 and sE1;0 �E1;p D sı1p;

and since the determinant of the intersection matrix tridiag.d1;1; : : : ; d1;m1/ of E1;q is
equal to r1 by (3.5) and r1 divides s, it follows that there exists (a unique) F1 such that
F1 �E1;p D �sıp;1. Similarly, for any F1 we have

F1 �En;p D 0 and sE1;0 �En;p D sıp;mn D .s C 1/ıp;mn � ıp;mn ;

and since the determinant rn of the intersection matrix tridiag.dn;1; : : : ; dn;mn/ of En;q
divides s C 1 there exists (a unique) Fn such that Fn �En;p D �.s C 1/ıp;mn .

With the choices of F1 and Fn made as above, we have (5.9). It remains to note
that ��.F1/ D ��.Fn/ D 0, hence C D ��.c1.M// D ��.sE1;0/ D sC1.

It is curious that the quality of the collections Ri and Mi of objects in Db.X/ may
depend on the choice of indexing of torus-invariant points. For instance, if only one of
these points is non-Gorenstein, then it makes sense to choose indexing such that it is
the point x1 (like we did in Example 5.12). With this choice all the sheaves Mi become
locally free.

The reflexive sheaves Ri have an especially simple form when one of the T-invariant
points of X is smooth and we choose an ordering to make this point the last point.

Corollary 6.10. Let X be a projective toric surface with T-invariant points x1; : : : ; xn
and T-invariant divisors C1; : : : ; Cn. Assume that xn is smooth. Then we have the follow-
ing semiorthogonal decomposition of Db.X/:

Db.X/ D
˝
hOX .KX C C1/i; : : : ; hOX .KX C C1 C � � � C Cn/i

˛
: (6.7)

Note that since KX D �
Pn
iD1 Ci , the last reflexive sheaf in the semiorthogonal

decomposition (6.7) is trivial.
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Proof of Corollary 6.10. Since xn is smooth, so that rn D 1, we can take s D 0 in Pro-
position 6.9 and then obtain C D 0. We plug this into the semiorthogonal decomposition
given by Proposition 6.8, and (6.7) follows.

The following two examples generalize [19, Examples 5.7, 5.8] and refine the predic-
tion of Kawamata [19, end of Section 5].

Example 6.11. Let us construct three reflexive sheaves which provide a semiorthogonal
decomposition of P .w1; w2; w3/ for any pairwise coprime positive integers wi . Using
Lemma 5.1 it is easy to compute that Cl.X/ Š Z, and if O.1/ is the ample generator
of Cl.X/, then Pic.X/ŠZ and is generated by O.w1w2w3/. We order the torus-invariant
points in such a way that xi has order wi . Then

O.C1/ Š O.w2/; O.C2/ Š O.w3/; O.C3/ Š O.w1/:

Let s be an integer such that

s � 0 mod w1 and s � �1 mod w3:

Then by Proposition 6.9 we have

R1 D O.sw2 � w1 � w3/; R2 D O.sw2 � w1/; R3 D O.sw2/:

Note that permuting w1; w2; w3 we get various semiorthogonal decompositions of the
same category Db.P .w1; w2; w3//.

Example 6.12. As a special case of the previous example, letX WD P .1;a;b/ for coprime
integers a; b > 0. If we order the singular points so that x1 has type 1

b
.1; a/, x2 has

type 1
a
.1; b/, and x3 is smooth, then

O.C1/ Š O.a/; O.C2/ Š O.1/; O.C3/ Š O.b/;

and by Corollary 6.10 we have

R1 D O.�b � 1/; R2 D O.�b/; R3 D O:

By Proposition 6.8 we have reflexive sheaves M1; M2; M3 constructed as maximal iter-
ated extensions of the rank 1 reflexive sheaves R1; R2; R3 on X .

Furthermore,M1 has rank b, EndX .M1/ŠKb;a,M2 has rank a, EndX .M2/ŠKa;b0 ,
where b0 � b�1 mod a; andM3 DR3 DO, EndX .M3/Š k, and by Proposition 6.6 there
is a semiorthogonal decomposition

Db.P .1; a; b// D
˝
hR1i; hR2i; hR3i

˛
D hDb.Kb;a/;D

b.Ka;b0/;D
b.k/i:

In this case M3 D R3 and M2 are locally free while M1 is locally free at x1 and x3, but
is locally free at x2 if and only if b � �1 mod a and otherwise is only reflexive.
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Appendix A. Semiorthogonal decomposition of perfect complexes

The next result was explained to us by Sasha Efimov.

Theorem A.1. If X is a projective scheme over k and A � Db.X/ is right admissible
then Aperf D A \Dperf.X/ is left admissible in Dperf.X/.

The proof of this result takes the rest of this section and uses the machinery of DG-
categories. We refer to [28, Section 3] and references therein for all prerequisites.

Let Ddg be an essentially small DG-category. Recall that a left DG-module over Ddg
is a DG-functor M W Ddg ! D.k/ to the DG-category of complexes of k-vector spaces.
We will say that a DG-module is finite-dimensional, resp. acyclic, if for every F 2 Ddg
the complexM.F / is perfect, i.e., has total cohomology finite-dimensional, resp. acyclic.

We denote by Ddg-mod, Ddg-mod fd, and Ddg-mod acycl the DG-categories of left DG-
modules, left finite-dimensional DG-modules, and left acyclic DG-modules over Ddg,
respectively. Furthermore, we denote by

D.Ddg/ D ŒDdg-mod=Ddg-mod acycl�; D fd.Ddg/ D ŒDdg-mod fd=Ddg-mod acycl�

the homotopy categories of the corresponding Drinfeld quotients, i.e., the derived cat-
egory of Ddg and the finite-dimensional derived category of Ddg respectively. We note
that D.Ddg/ is triangulated and D fd.Ddg/ is a full triangulated subcategory in D.Ddg/.

We say that a full subcategory Adg of a DG-category Ddg is right (resp. left) admiss-
ible if its homotopy category ŒAdg� � ŒDdg� is right (resp. left) admissible, i.e. admits a
right (resp. left) adjoint functor.

The proof of the theorem is based on the following observation.

Proposition A.2. Let Ddg be an essentially small DG-category. If Adg � Ddg is right
admissible then D.Adg/ � D.Ddg/ and D fd.Adg/ � D fd.Ddg/ are right admissible.

Proof. Let ˛ W Adg ! Ddg be the embedding functor, and let Res˛ W D.Ddg/! D.Adg/

and Ind˛ W D.Adg/! D.Ddg/ be the restriction of scalars and induction functors:

Res˛.M/.F / DM.˛.F //; Ind˛.N / D �Ddg ˝
L
Adg

N;

where in the second formula the diagonal Ddg-bimodule �Ddg is considered as a right
Adg-module by restriction of scalars. Note that Res˛ is the right adjoint of Ind˛ and full
faithfulness of ˛ implies that of Ind˛ [28, Proposition 3.9]. Therefore

Res˛ ı Ind˛ Š idD.Adg/; (A.1)

and in particular D.Adg/ is right admissible in D.Ddg/.
Now assume that M is a finite-dimensional Ddg-module. Then Res˛.M/ is a finite-

dimensional Adg-module by definition.
Let us also show that Ind˛.N / is finite-dimensional for any finite-dimensional Adg-

module N . Let A?dg � Ddg be the full DG-subcategory formed by objects with classes
in the right orthogonal ŒAdg�

? � ŒDdg� of ŒAdg� � ŒDdg�. Since Adg is right admissible,
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every object of Ddg is an extension of an object from Adg and an object from A?dg. So, to
show that Ind˛.N / is finite-dimensional it is enough to check that its values on the objects
of Adg and of A?dg are finite-dimensional. In other words, if ˛0 W A?dg!Ddg is the embed-
ding of A?dg, it is enough to check that Res˛.Ind˛.N // and Res˛0.Ind˛.N // are both
finite-dimensional. The first follows immediately from (A.1). For the second just note
that the composition Res˛0 ı Ind˛ is given by the derived tensor product with the A?dg-
Adg-bimodule that is equal to the restriction of the diagonal bimodule �Ddg . However,
this restriction is quasiisomorphic to zero (by semiorthogonality of Adg and A?dg),
hence Res˛0 ı Ind˛ D 0, and finite-dimensionality of Ind˛.N / follows.

From these observations we see that the restriction and induction functors preserve
the categories of finite-dimensional DG-modules, and since they form an adjoint pair
and (A.1) holds, we conclude that D fd.Adg/ is right admissible in D fd.Ddg/.

Next we show that the category of left finite-dimensional DG-modules over Ddg in
some cases can be identified with a certain subcategory of Ddg. We write D

op
dg for the

opposite DG-category of Ddg. For any DG-category Ddg there is a natural Yoneda functor

h W ŒDop
dg �! D.Ddg/; F 7! hF .�/ WD HomDdg.F ;�/;

that takes an object F to the corresponding representable left DG-module hF . Note that
the Yoneda functor is fully faithful, due to the DG-version of the Yoneda Lemma.

We denote by D fd
dg �Ddg the full DG-subcategory formed by all homologically finite-

dimensional objects of Ddg. By definition this is just the preimage of the category of left
finite-dimensional DG-modules over Ddg under the Yoneda functor, i.e.,

D fd
dg WD ¹F 2 Ddg j hF 2 D fd.Ddg/º:

Recall that the minimal subcategory of D.Ddg/ containing all representable DG-
modules and closed under shifts, cones and homotopy direct summands is called the
category of perfect DG-modules (and its objects are called perfect DG-modules over Ddg).
We will say that a DG-category Ddg is perfectly pretriangulated if the Yoneda functor
induces an equivalence between ŒDop

dg � and the category of perfect DG-modules over Ddg.
Recall that a DG-category Ddg is smooth if the diagonal DG-bimodule �Ddg is perfect.

Lemma A.3. If Ddg is a smooth perfectly pretriangulated DG-category then the Yoneda
functor induces an equivalence Œ.D fd

dg/
op� Š D fd.Ddg/ of triangulated categories.

Proof. As already mentioned, the Yoneda functor h is fully faithful. Moreover, by defin-
ition it takes Œ.D fd

dg/
op� to D fd.Ddg/. So, it only remains to show that its restriction to

Œ.D fd
dg/

op� is homotopically essentially surjective onto D fd.Ddg/. LetM be a finite-dimen-
sional left DG-module over Ddg. Since �Ddg is perfect, we conclude that

M Š �Ddg ˝
L
Ddg

M

is a perfect DG-module over Ddg. Furthermore, since Ddg is perfectly pretriangulated, we
haveM Š hF for some F 2Ddg. Since the DG-moduleM is finite-dimensional, we see
that F 2 D fd

dg.
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In combination with Proposition A.2, this gives the following.

Corollary A.4. Let Adg � Ddg be a right admissible DG-subcategory in a smooth per-
fectly pretriangulated DG-category Ddg. Then Afd

dg � D fd
dg is left admissible.

Proof. Note that Adg is also smooth and perfectly pretriangulated. Therefore, from Pro-
position A.2 and Lemma A.3 we deduce that .Afd

dg/
op ' D fd.Adg/ is right admissible

in .D fd
dg/

op, hence Afd
dg is left admissible in D fd

dg.

Finally, we observe in geometric situations that the categories Afd
dg and D fd

dg are closely
related to the category of perfect complexes. In the next lemma we consider Db.X/ as
a DG-category (via any appropriate DG-enhancement) and Dperf.X/ as its DG-subcat-
egory. To emphasize this we will write Db

dg.X/ and D
perf
dg .X/ for these DG-categories.

Lemma A.5. Let X be a projective scheme over k. For the DG-category Ddg D Db
dg.X/

we have
D fd

dg D D
perf
dg .X/:

Moreover, if Adg � Db
dg.X/ is right admissible then

Afd
dg D A

perf
dg :

Proof. Since X is projective, the category D fd
dg coincides with the subcategory of homo-

logically bounded objects in Ddg as defined in [32, Definition 1.6]. Therefore, the first
part is just [32, Proposition 1.11] and the second part follows from this by [32, Proposi-
tion 1.10].

Proof of Theorem A.1. The category Ddg D Db
dg.X/ is smooth (even when X is singu-

lar, see [29]) and perfectly pretriangulated. Let Adg � Ddg be the full DG-subcategory
formed by objects with classes in A � ŒDdg� D Db.X/. By Corollary A.4 the subcat-
egory Afd

dg � D fd
dg is left admissible. By Lemma A.5 this gives the required result.

Remark A.6. One can also prove Theorem A.1 replacing the machinery of DG-categor-
ies by the technique of [31]. The crucial result here is [31, Theorem 0.2] identifying the
category Dperf.X/op with the category of triangulated functors Db.X/!Db.k/ for any
proper scheme X over k.
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