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Abstract. We construct a sequence of closed hyperbolic surfaces that are local maxima for the
systole function in their respective moduli spaces. Their systole is arbitrarily large and the number
of examples grows rapidly with the genus. More precisely, for every n > 3 there is some positive
number L, (growing roughly linearly in 7) such that the number of local maxima of the systole
function in genus g with systole equal to L, grows super-exponentially in g along an arithmetic
sequence of step size n. Many of these surfaces have no orientation-preserving isometries other than
the identity and are the first examples of local maxima with this property.
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1. Introduction

The systole of a hyperbolic surface is the length of any of its shortest closed geodesics. For
any g > 2, this defines a continuous function sys : 7, — R on the Teichmiiller space of
closed hyperbolic surfaces of genus g which is invariant under the action of the mapping
class group, hence descends to a continuous function on the moduli space M.

By Mumford’s compactness criterion [42], the thick part {x € Mg | sys(x) > &} of
moduli space is compact for any ¢ > 0. Therefore, the systole function attains a global
maximum on each moduli space. The precise value of the maximum is unknown in ge-
neral; the best bounds known to date are

4 i sup MXYSO) | ¥ € Me) (1.1)
3 g—>00 log g
where the upper bound is a standard area argument, while the lower bound comes from a
construction of Buser and Sarnak [13, p. 45].
For closed orientable surfaces, the only known global maximizer of the systole is the
Bolza curve in genus 2, as determined by Jenni [36]. More maximizers are known if we
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allow punctures [1, 50] (principal congruence covers of the modular curve are maximi-
zers) or surfaces that have non-empty boundary or that are non-orientable [27]. To attack
the problem in general, Schmutz Schaller initiated a systematic study of the systole func-
tion and its local maxima in [49], where he found necessary and sufficient conditions for
a surface to be a local maximizer and constructed several examples. The criterion in ques-
tion is analogous to a theorem of Voronoi on the Hermite invariant of Euclidean lattices.
Bavard cast both of these results into a more general framework [4,5]. Further progress on
the systole of hyperbolic surfaces and its singularities was made by Akrout, Casamayou-
Boucau, Gendulphe, and others [2, 14, 15, 26]. We refer the reader to [52] and [43] for
surveys on the systole of hyperbolic surfaces and related topics.

The goal of this paper is to show that the number of local maxima of the systole
function grows super-exponentially with the genus. The local maximizers we construct
have arbitrarily large systole and many of them have no orientation-preserving isome-
tries besides the identity. Prior to this work, there was only one infinite sequence of local
maximizers known among closed surfaces, with systole bounded above by 5.634 [49].
A finite number of additional examples were discovered in [15,29,32,51]. All the previ-
ously known examples of local or global maxima have large isometry groups: the quotient
of any of these surfaces by its group of isometries is a hyperbolic polygon with a small
number of sides. Schmutz Schaller anticipated the existence of local maximizers with no
symmetries [49, p. 565] but he was not able to find any [51, p. 437]. The reason why
so few examples of local maxima were known before is that proving that a surface is
extremal is quite delicate. Having a large isometry group simplifies the problem consid-
erably. For instance, if the quotient of a surface by its group of isometries is a triangle,
then one of the two conditions to be a local maximum (namely, eutaxy) comes for free
[5, Corollary 1.3]. We do not manage to get rid of all the symmetries in our construction
as each of our surfaces admits an orientation-reversing involution, but we obtain many
examples with isometry group of size 2. Our main result can be summarized as follows
(see Theorem 6.5 for a more precise version):

Theorem 1.1. For every n > 3, there exists some Ly > 0 such that the number of local
maxima of the systole function in Mg without any non-trivial orientation-preserving isom-
etry and systole equal to L, grows super-exponentially along an arithmetic sequence of
genera g.

We also obtain some local maxima with more symmetries: the Bolza curve fits nat-
urally in the sequence (corresponding to L) and we get one or two local maxima with
non-trivial automorphism group at height L, ~~ 5.909 in every genus g > 13. The value
L, (defined implicitly in Lemma 2.5 and explicitly in Remark 2.18) that the systole
function takes at the other local maxima tends to infinity roughly linearly with n (see
Lemma 6.1). For n > 3, we do not get local maxima in every genus because 2(g — 1) has
to be divisible by 7, and has to be sufficiently large compared with n (see Theorem 6.5).
Thus, for example, we miss all the genera that are equal to a prime number plus 1.
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Motivation

Akrout [2] proved that sys is a topological Morse function on Jg, following partial results
by Schmutz Schaller [53]. This implies that in theory, one could compute topological
invariants of M, by finding the Morse singularities of sys and their indices. For example,
the orbifold Euler characteristic of M is given by the formula

B ( l)md(x)
1(Mg) = Z |Aut(x)]|

where € is a set of representatives of the critical points of sys in T, under the action of
the mapping class group, ind(x) is the Morse index of sys at x, and Aut(x) is the group
of automorphisms of x [2,53].

One could further try to compute—or say something about—the rational homology
groups of M, using the systole function. In this direction, Bestvina expressed in [6] the
hope that the systole function should be “simplest possible” in the sense that the number of
critical points of index j for the function —sys : Mg — (—00, 0) should not depend on g
once the latter is large enough. This would give an alternative proof that the jth rational
homology group of M, becomes independent of g once the latter is large enough [34].
Theorem 1.1 shows that Bestvina’s expectation is spectacularly false for j = 0. And this
is probably just the tip of the iceberg—there are likely many more local maxima than the
particular ones constructed here.

Luckily, better approaches to study the topology of moduli space are known: the
orbifold Euler characteristic of Mg was computed by Harer and Zagier [35], its virtual
cohomological dimension by Harer [33], and its rational homology in the stable range by
Madsen and Weiss [40].

Another reason to study local maxima of the systole function is that the global maxi-
mum is among them. One could hope to increase the lower bound in (1.1) by stumbling
upon local maxima that are near the top of moduli space. Unfortunately, the height of our
local maxima grows at most like log log g rather than log g. Perhaps one could reduce
their genus by using a similar trick to the one in [44], although we have not explored this
yet.

A general goal we have is to understand the shape of moduli space from the point of
view of the systole function. For example, Mirzakhani asked whether moduli space has
“long fingers”. We may define the finger associated with a local maximum x to be the
component F of the superlevel set {y € M, | sys(y) > L} containing x, where L is the
smallest positive number such that F does not contain any other critical points than x.
The length of the finger F is then sys(x) — L. In other words, how large can the total
variation of the systole function be between a local maximum and the nearest critical
point? We do not know the answer, but the examples from Theorem 1.1 provide a place
to start. Other works studying the shape of moduli space in relation to the systole include
[3,16,19,21,23,24,39,41,46].



M. Fortier Bourque, K. Rafi 626

Proof outline

As explained in [49] and [4], showing that a surface x is a local maximum of the systole
function consists of three steps:

(1) finding the set § of systoles of x;

(2) showing that x is perfect, i.e., the differential of the vector of lengths of the curves
in §—a function on Teichmiiller space—is injective at x;

(3) proving that x is eutactic, i.e., under every non-trivial infinitesimal deformation of x,
at least one of the curves in § shrinks, meaning that its length has strictly negative
derivative in that direction.

The idea of our construction is to glue surfaces from basic blocks that we call rings
according to the combinatorics of a graph. If the graph has sufficiently large girth, then the
systoles are constrained in pairs of transverse rings (Theorem 2.16). The rings themselves
have a large number of symmetries which we use to identify the systoles (Proposition 2.3).
The idea of modelling surfaces on graphs is of course not new. It goes back to at least [11]
where Buser constructed surfaces with arbitrarily large systole by gluing pairs of pants
along cubic graphs. See also [3, 10, 16-18,25,44—46] for other applications of this idea.

The main tool we need for step (2) is the famous cosine formula of Wolpert and
Kerckhoff for the variation of length along twist deformations [38, 54]. We then use the
Gershgorin circle theorem to prove that the differential of lengths has full rank, after
estimating its entries with respect to a particular basis. The question of which finite sets
F of curves are such that their lengths define a global embedding of Teichmiiller space
into ]Ri is closely related and classical [30,31,48], [22, p. 287].

The proof of step (3) is easier, but still novel. Whereas Schmutz Schaller relied heavily
on symmetries to prove this step in [49] and [51], we manage with only partial symme-
tries. That is, all we need is that our surfaces are covered by copies of a well-understood
chunk, which is itself a union of rings. The rings we use to assemble the surfaces need to
be carefully chosen for this part to work; we went through a few iterations before finding
the right candidate.

We then show that any orientation-preserving isometry between the resulting surfaces
is induced by a graph isomorphism (Theorem 5.3). Since the number of graphs with
large girth and trivial automorphism group grows super-exponentially (see Section 6),
we obtain the desired lower bound for the number of local maxima of the systole function
without non-trivial orientation-preserving isometries. The fact that our surfaces all admit
an orientation-reversing involution is due to the symmetry of the rings and how we glue
them. In principle, similar techniques applied with different building blocks might yield
totally asymmetric local maxima, but we have not found a suitable building block yet.

Organization

The paper is organized as follows. Section 2 is devoted to the construction of the surfaces
and finding their systoles. Steps (2) and (3) of the above program are carried out in Sec-
tions 3 and 4 respectively. In Section 5, we show that any orientation-preserving isometry
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between our surfaces is induced by a graph isomorphism. Finally, in Section 6 we put
together estimates on the number of asymmetric graphs of large girth, thereby completing
the proof of Theorem 1.1.

2. The construction

In this section, we construct a highly symmetric surface R(n,t) of genus 1 with 2n bound-
ary components of length 47 each, for any » > 1 and any ¢ > 0. We then fix a specific
value of ¢ for each n and build closed surfaces from pieces isometric to R(n, t,).

2.1. Trigonometry

We first gather some trigonometric formulas here for use throughout the paper. See e.g.
[12, p. 454] for reference.

Right triangles

a ¢ cosh ¢ = cosha cosh b 2.1
o cos B = coshb sina (2.2)

Fig. 1. A right triangle.
Right-angled pentagons
ﬁ C
cosh ¢ = sinha sinh b (2.3)
cosh ¢ = cotha coth 8 2.4)
b

Fig. 2. A right-angled pentagon.

2.2. The cross

We start with a right-angled pentagon P = P(t) with two non-adjacent sides of length
t > 0. Let o be the side between those of length 7 and let u be the length of each of the
other two sides. We have

cosho (t) = coth? t = sinh? u(z) (2.5)

by (2.3) and (2.4). Reflect P across the two sides of length u and the vertex opposite to o
to obtain a right-angled octagon O = O(t) with side lengths alternating between 2¢ and
0. Double O across the sides of length o to form a four-holed sphere C = C(¢) that we
call a cross. Each of the four boundary geodesics of C has length 4¢. We refer to them



M. Fortier Bourque, K. Rafi 628

top
e
t
P left right

P u
t

U bottom
(a) The pentagon (b) The octagon (c) The cross

Fig. 3. The cross C is made with two octagons, each assembled from four pentagons

as the left, right, top and bottom boundaries of C following Figure 3. Similarly, the cross
has a front and a back. The four segments of length o between the front and the back of C
are called its seams.

We note in passing that C is an orbifold cover of a quadrilateral Q = Q(t) with three
right angles, one angle equal to /4, one side of length ¢ and one side of length o /2
obtained by cutting P along the median between o and the opposite vertex. The closed
surfaces we construct in the end are also orbifold covers of Q, although not regular covers
in general.

2.3. The ring

Letn > 1 be an integer. We take a string of n crosses C1, ..., C, where the right boundary
of C; is glued to the left boundary of C; 4 without twist for j =1,...,n — 1. Finally, the
left boundary of C; is glued to the right boundary of C, with a half-twist (see Figure 4).
The resulting surface R = R(n, t) is called a ring. It is a surface of genus 1 with 2n
boundary components.

Fig. 4. The ring R is a string of n crosses with its ends glued by a half-twist.

There is an alternative description of the ring which is useful for drawing pictures so
that no part of the ring is hidden. Take a strip of 21 octagons Oy, ..., O, with the right
side of each glued to the left side of the next and the right side of O,, glued to the left
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side of Oy, forming a topological annulus A = A(n, t). Then the top left and top right
sides of O; are glued to the bottom left and bottom right sides of O, ; respectively for
j =1,...,2n in order to form R, where indices are taken modulo 27 (see Figure 5).

000000

Fig. 5. The ring R is also a strip of 2n octagons with its left and right sides glued and the segments
labelled o identified in pairs in the pattern shown.

In other words, the sides of the annulus A labelled o are glued in pairs by a glide
reflection that reflects across the core geodesic e of A (the horizontal axis of symmetry
in Figure 5) and translates halfway around e. The union of the octagons O; and O, j is
equal to the cross C; from the previous description.

2.4. Geodesics in the ring

Following Schmutz Schaller, we will often use the same symbol for the name of a curve
and its length. The closed geodesics separating adjacent crosses in the ring are called
[ -curves. More precisely, for each j from 1 to n, we let f; be the left boundary of C;.
Each f-curve has length 4z. The geodesic that runs along the horizontal axis of symmetry
of all the crosses is called e; it has length 4n - u or

e = 4n arcsinh(coth ¢). (2.6)

The next geodesics of interest are called a-curves and b-curves. For each j from 1
to 2n, let a; be the geodesic joining the bottom of the left side of O; and the top of the
left side of O, ; (these two points are identified in R) and is otherwise disjoint from
the seams and the octagons Oy, Optj+1,--., Optj4+@n—1), Where indices are taken
modulo 2n (see Figure 6). Similarly, we let b; = pr, (a;) where ps, : R — R is the
reflection across the geodesic f;. By symmetry, all the a-curves and b-curves have the
same length which we denote by a.

Fig. 6. The geodesic e (in green), the a-curves (in red), and the b-curves (in blue).
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Observe that i(aj,e) = i(b;,e) = i(aj,bj) = 1 for every j and that the curves a;,
b; and e bound two triangles with the same interior angles. These two triangles are there-
fore congruent, so that their side lengths are a; /2, b; /2 and e/2. In particular, they are
isosceles since £(a;) = £(bj). The altitude of each triangle has length ¢ and bisects the
base, which yields the formula

cosh(a/2) = cosh(t) cosh(e/4) 2.7
by equation (2.1) for right triangles. One such pair of triangles is illustrated in Figure 17.

Remark 2.1. Surfaces of genus 1 with m boundary components are studied extensively
in [48] where it is shown that the lengths of the boundary geodesics and the a-, b- and
e-curves in such a surface define an injective function on Teichmiiller space. Actually, the
length of any boundary geodesic can be recovered from the remaining ones. This detailed
analysis is pursued in [49, Section 4] where these rings serve as building blocks for con-
structing maximal surfaces. We combine rings differently, resulting in a more flexible
construction.

2.5. Symmetries of the ring

There is an orientation-reversing isometric involution pgeams : R — R that has the union
of the seams of all crosses in R as its set of fixed points. The map pseams €xchanges the
front and back octagons in each cross C; C R. It acts as a glide reflection along e by half
its length.

Another obvious isometry is the reflection p, : R — R across the geodesic e. This
isometry permutes the top and bottom of each cross.

For each j € {1,...,n}, there is a reflection py; across the geodesic f;.

Another useful isometry 7 : R — R simply shifts each O; to O; 41, where indices are
taken modulo 2n. That is, 7 is a hyperbolic translation along e to the right by distance
e/(2n) = 2u.

Lastly, for each j € {1, ..., n} the composition v; := 7 o py, is the reflection of R
across the vertical axis of symmetry of C;.

2.6. Systoles in the ring

Recall that the systole of a hyperbolic surface is the length of any of its shortest closed
geodesics, also called systoles. In contrast to some authors, we allow boundary geodesics
to be systoles.

The following well-known criterion is very useful for finding systoles (it is just men-
tioned in passing in [49] and [51]). Note that the analogous statement and proof is false
for surfaces with punctures. See [20, Theorem 1.3] for the correct replacement.

Lemma 2.2. If two closed geodesics o and B on a compact hyperbolic surface with
geodesic boundary intersect at least twice transversely, then there exists a closed
geodesic y of length strictly less than (£(a) + £(B))/2. In particular, two distinct sys-
toles can intersect at most once.
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Proof. Let p and g be two intersection points of « and . Construct a curve § by taking
the shorter subarc of @ between p and ¢ and similarly for 8. Since geodesic bigons are
non-contractible, § is homotopic to a closed geodesic y that is strictly shorter. ]

We will apply the contrapositive of the last sentence in Lemma 2.2 repeatedly: if two
systoles intersect at least twice, then they coincide. We use this fact in combination with
the various symmetries of the ring to determine its systoles. We proceed by elimination,
arguing that any geodesic—save for a few exceptions—intersects some of its translates at
least twice transversely, hence cannot be a systole in view of the above.

Proposition 2.3. Letn > 1 and t > 0. Assume that a(t) < 4t and a(t) < e(t). Then the
systoles in R(n,t) are exactly the a-curves and the b-curves.

Proof. Let y be a systole of R. We claim that y intersects the seams, e, and each f-curve
at most once. Otherwise, y and its image y* by one of the reflections pseams, Pe» OF Pf;
intersect at least twice. In that case y = y* by Lemma 2.2. We rule out the possibility that
y coincides with pseams (), pe(¥), or pr; () one by one below, thereby proving the claim.

Suppose that pgeams(y) = y and that y is disjoint from e. Then either y is a boundary
component of R in which case £(y) = 4¢ > a and y is not a systole, or else y intersects its
shift () twice transversely, contradicting Lemma 2.2. We conclude that y intersects e,
and it does so at least twice by pseams-symmetry. Therefore p.(y) and y intersect at least
twice as well so that they coincide. Then either y = e or y L e. In the first case £(y) > a
by hypothesis so that y is not a systole. In the second case y has to be equal to some
f-curve, so that £(y) = 4t > a. We conclude that y intersects the seams at most once.
Actually, y intersects the seams exactly once. Indeed, the complement of the seams is a
topological annulus whose only simple closed geodesic is e, which is not a systole. Thus
y cannot be disjoint from the seams.

Now suppose that y intersects e at least twice so that p.(y) = y. Since p, does not
fix any point on the seams, the number of intersection points between y and the seams is
even, which contradicts the previous paragraph. Therefore, y intersects e at most once.
In fact, y cannot be disjoint from e. This is because the seams disconnect R \ e, yet y
intersects them only once. This shows that y intersects e exactly once.

Lastly, suppose that y intersects some f; at least twice so that py, (y) = y. Since y
cannot be equal to f;, it is orthogonal to it. Moreover, y must intersect the seams and e
at one of the places where f; does, for otherwise there would be a second intersection
point by py, -symmetry. The only closed curve that is orthogonal to f; at one of these four
points is e, which is too long. Hence y intersects each f-curve at most once.

Now that the claim is proved, it is not hard to show that y is either an a-curve or a b-
curve. If we cut R along the seams, we get an annulus A. The curve y gets cut into an arc
o in A joining a pair of points that get identified by the gluing pattern. The arc @ must join
a point on the bottom boundary of A to a point on the top boundary since it intersects e.
Moreover, w cannot wrap around A more than once, for otherwise it would intersect some
[ -curve twice. Thus @ wraps exactly halfway around A (remember, the seams are glued
via a glide reflection along e by distance e/2). It follows that y is homotopic to—hence
equal to—one of the a-curves or b-curves. ]
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2.7. Transverse rings

Since the crosses used to build the ring R have diagonal symmetry, we can make two
rings overlap along a shared cross. We call this configuration a pair of transverse rings.
We can think of one ring as being horizontal and the other vertical, as in Figure 7. The
e-curves in the two rings intersect twice, bisecting each other perpendicularly. There are
four different ways to apply the surgery procedure from the proof of Lemma 2.2 to this
pair of curves, yielding four geodesics shorter than e that we call c-curves. One of them
is depicted in Figure 7.

€horizontal

Fig. 7. One of the four c-curves in a pair of transverse rings, obtained by surgery on the e-curves.

The four c-curves have equal length since they are related by symmetries. Further-
more, there is a right-angled pentagon with two adjacent sides of length e/4 and the
opposite side of length ¢ /2 (see Figure 7). Equation (2.3) gives the formula

cosh(c/2) = sinh?(e/4) (2.8)

for the length of any c-curve.

When n = 1 the pair of transverse rings is reduced to a single cross and there are
actually only two c-curves because some surgeries on the e-curves coincide. In this case,
each c-curve is equal to the union of two opposite seams and equation (2.8) is really the
same as (2.5). We will analyze this case more carefully in the next subsection.

The next step is to fix the parameter ¢ in such a way that the curves a, b and ¢ all have
the same length. A first useful observation is that ¢ is a decreasing function of 7.

Lemma 2.4. For every n > 1, the functions e(t) and c(t) are decreasing in t.
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Proof. Recall that e(t) = 4n arcsinh(coth(¢)). Since coth is decreasing and arcsinh is
increasing, e is decreasing. Therefore ¢(t) = 2 arccosh(sinh?(e(¢)/4)) is decreasing as
well, being the composition of a decreasing function with an increasing one. ]

We use this to prove the existence and uniqueness of a parameter #, such that the
curves a, b and c in the pair of transverse rings all have the same length.

Lemma 2.5. For every n > 1, there exists a unique t, > 0 such that a(t,) = c(t,).

Proof. We have

cosh(a(t)/2)
cosh(e(t)/4) cosh(z)

and
cosh(c()/2) _ sinh®(e(r)/4)

cosh(e(t)/4) ~ cosh(e(r)/4)
by (2.7) and (2.8). Therefore, the equation a(¢) = c(t) is equivalent to

= tanh(e(¢)/4) sinh(e(r)/4)

cosh(z) = tanh(e(t)/4) sinh(e(t)/4). (2.9)

The left-hand side of (2.9) is an increasing function of ¢ which diverges as ¢ — oo. The
right-hand side is decreasing in ¢ since it is the product of two positive decreasing func-
tions. Moreover, it diverges as ¢ — 0 since e(¢) does. The existence and uniqueness of ¢,
follows. ]

From now on, we will only work with the rings R(n, t,) with #, as in Lemma 2.5.
In order to determine the systoles in that ring, we need to check that the hypotheses of
Proposition 2.3 are satisfied, but this is only true when n > 2. The case n = 1 is treated
separately in the next subsection.

Lemma 2.6. We have a(t,) < 4t, and a(t,) < e(t,) for everyn > 2,

Proof. The inequality a(t,) = c(t,) < e(t,) follows from the fact that ¢ is obtained by
surgery on two e-curves, or can be deduced from (2.8).

To show that a(t,) < 4t, we consider the time s;,, > 0 such that a(s, ) = 4s, and prove
that c(s,) > 4s,. This implies that s,, < t,, since ¢ is decreasing whereas a(t) diverges as
t — oo. The inequality a(t,) < 4t, then follows from the fact that

cosh(a(r)/2) _ cosh(z)
cosh(2t)  cosh(2t)

-cosh(e(t)/4)

is decreasing, being the product of two positive decreasing functions. Figure 8 illustrates
this phenomenon for n = 3.
Hence let 5, > 0 be the unique parameter such that a(s, ) = 4s,. Then

cosh(s,) cosh(e(s,)/4) = cosh(a(s,)/2) = cosh(2s,) = 2cosh?(s,) — 1

and
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14}

12

10

1 15 2 25 3 35 2
t
Fig. 8. A plot of the functions a(?), ¢(¢) and 4t forn = 3.

cosh(c(s,)/2) = sinh?(e(s,)/4) = cosh?(e(s,)/4) — 1
. 2cosh?(sp) — 12 !
N ( cosh(sy) ) S
Let x = cosh?(s,) so that cosh(2s,) = 2x — 1 and

(2x — 1)?
X

cosh(c(sy)/2) = -1

The inequality we want to prove is cosh(c(s,)/2) > cosh(2s,), which is equivalent to
(2x — 1)2 > 2x2 or x > 1 + 1/+/2 after simplification. Therefore, it suffices to show that

Sp > arccosh(\ll + 1/\/5) ~ 0.764.

Butatz = 1 we get

cosh(a(1)/2)  cosh(l) __cosh(1) i
cosh2- 1)~ cosh@- 1) -cosh(e(1)/4) = cosh(2) - cosh(n arcsinh(coth(1)))
o osh(D) | h(2-1.086) > cosh(1) > 1.

~ cosh(2) .

which implies that s, > 1 and finishes the proof. ]
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We conclude that the systoles in the ring R(n, #,) are the a-curves and the b-curves.

Corollary 2.7. Foreveryn > 2, the systoles in R(n,ty,) are the a-curves and the b-curves.
Proof. This follows from Lemma 2.6 and Proposition 2.3. ]

We observed earlier that ¢ is a decreasing function of ¢. The function a is not mono-
tone but we can show it is increasing at ¢, . These two facts will play a key role in Section 4.

Lemma 2.8. We have a'(t,) > 0 for everyn > 2.
Proof. From cosh(a(t)/2) = cosh(t) cosh(e(t)/4) we compute
sinh(a(t)/2) a’(t)/2 = sinh(¢) cosh(e(¢)/4) + cosh(¢) sinh(e(t)/4) €' (t) /4
> sinh(e(t)/4)[sinh(z) + cosh(z) e'(¢)/4].
Thus it suffices to show that —e’(t,)/4 < tanh(z,). Since e(t)/4 = n arcsinh(coth ) we

get
n

n
sinh?(7)y/coth?(¢) + 1 = sinh?(¢) v/2

so that the required inequality becomes n < +/2 tanh(t,) sinh?(t,).
We know that #,, > 1 from the proof of Lemma 2.6. Furthermore, one can show that

—e'(1)/4 =

V2 tanh(x) sinh?(x) > 0.963 - cosh(x)

for every x > 1. Indeed, sinh>(x)/ cosh?(x) is increasing and the inequality can be verified
numerically at x = 1. Recall that cosh(t,) = tanh(e(t,)/4) sinh(e(t,)/4) by definition
of t,,. We thus obtain

V2 tanh(z, ) sinh?(z,,) > 0.963 - cosh(t,)
= 0.963 - tanh(e(t,)/4) sinh(e(t,)/4)
> 0.963 - tanh(nA) sinh(nd) > n

for every n > 2, where A = arcsinh(1). The last inequality holds because the function
tanh(Ax) sinh(Ax)/x is increasing in x and larger than 1/0.963 at x = 2. This implies the
desired result. ]

In addition to knowing the systoles in the ring, we also need an estimate on the lengths
of arcs that enter and exit the ring from a given cross. Since the arcs going vertically across
any cross C; C R are fairly short, we need to exclude them.

Lemma 2.9. Let n > 2. Any non-trivial arc in R(n, t,) from one boundary component
to itself is longer than a(t,)/2. Any geodesic arc that joins the top and bottom of a cross
C; C R(n, ty) but is not contained in C; is longer than a(t,)/2.

Proof. Let y be a shortest non-trivial arc from one boundary B of R(n,t,) to itself. In
particular, y is geodesic and orthogonal to the boundary.
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If y intersects some f; twice, then we can reflect a subarc @ C y from f; to itself
across f; to obtain a non-trivial closed curve of length 2¢(w) in R(n, t,). By Corollary 2.7
we find that 2£(y) > 24(w) > a(ty).

If y intersects the seams, then we can perform a surgery on y and pPgeams(y) to obtain
a strictly shorter essential arc from B to itself, unless Y = pgeams(y). One way to see this
is to double the ring R(n, t,) across its boundary and apply Lemma 2.2 to the doubled
arcs. Thus distinct non-trivial arcs of minimal length from B to itself are disjoint. But if
Y = pseams (), then y intersects some f'-curve at least twice, hence is longer than a(z,)/2
by the previous paragraph. The only exception is if y is contained in a single cross C;. But
in that case, if we double C; across B we obtain a pair of crosses and a closed geodesic of
length 2£(y) in it. This pair embeds isometrically in R(n,t,), showing that 2£(y) > a(t,).
The inequality is strict because no systole in R(n,t,) is symmetric about any f-curve.

We can therefore assume that y is disjoint from the seams and intersects each f-curve
at most once. Up to the symmetries of R(n, t,,), this leaves two possibilities for y depend-
ing on whether it intersects e or not.

Recall that the complement of the seams in R(#,t,) is an annulus A. Hence there is a
well-defined orthogonal projection A — e. If y does not intersect e, then it intersects all
the f-curves, and its orthogonal projection onto e is longer than

2n—1
2n

See Figure 9. Since the orthogonal projection does not increase distances, we find that
Ly) > altn)/2.

SOOI NN
N NN

Fig. 9. If y does not intersect e, then its projection onto e covers most of e.

e(ty) > %e(tn) > %a(tn).

If y intersects e, then y and p.(y) intersect. One of the two possible surgeries on
¥ U pe(y) yields a pair of arcs o and S8, each joining the top and bottom boundaries of
some cross C; in R(n, t,), neither of which can be homotoped into C; (see Figure 10).
This gives £(y) > £(a) = £(B), so it suffices to show that {(«) > a(z,)/2. We have
reduced the first part of the statement of the lemma to the second part.

Let 7 be an arc of minimal length in R(n, ;) that joins the top and bottom boundaries
of some cross C; and cannot be homotoped into C;. By the same argument as above, we
may assume that t intersects each f-curve at most once and is disjoint from the seams. If
7 intersects e, then it wraps most of the way around the annulus A so that its orthogonal
projection onto e is longer than e(t,)/2 > a(t,)/2 as above. Otherwise, 7 is equal to the
arc o from the previous paragraph or one of its images by the group (oseams, e, V; ) Where
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D

Fig. 10. If y intersects e there is a surgery on y U pe(y) producing a pair of arcs « and B joining
two opposite boundaries of a cross.

R )

Fig. 11. The right-angled pentagon allowing us to compute the length of the shortest arc in
Lemma 2.9.

v; is the reflection swapping the left and right sides of C;. In any case, there is a right-
angled pentagon with two adjacent sides of lengths e¢/4 and e/(4n), and the opposite side
of length 7/2 (see Figure 11). Equations (2.3) and (2.6) give

cosh(t/2) = sinh(e/4) sinh(e/(4n)) = sinh(e/4) coth(?)
> sinh(e/4).
Squaring yields

cosh(t) + 1

2 = cosh?(t/2) > sinh?(e/4) = cosh(c/2),

hence
cosh(t) > 2cosh(c/2) — 1 > cosh(c/2).

This shows that £(t) > ¢(#,)/2 = a(t,)/2, which concludes the proof. |

2.8. The Bolza curve

When n = 1, the pair of transverse rings is a closed surface of genus 2 obtained by gluing
the opposite sides of the cross C(¢;) with half-twists. We now show that this surface—
denoted X (1)—is the Bolza curve, which is the surface of genus 2 with the largest systole
and the largest automorphism group [36]. In fact, it is the only local maximum of the
systole in genus 2 [49].

Proposition 2.10. X (1) is the Bolza curve.
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Proof. Let s be the side length of a regular hyperbolic triangle with interior angles 7 /4.
Eight such triangles fit together at a point to form a regular right-angled octagon O. Glue
two such octagons together to form a cross isometric to C(s/2), then glue opposite ends
of C(s/2) with half-twists. The a- and b-curves in the resulting closed surface are main
diagonals of O, hence have length 2. Similarly, each c-curve is equal to the union of two
opposite sides of the octagon, hence has length 2. This shows that a(s/2) =2s = c(s/2)
so that t; = s/2. In particular, the f-curves in (1) have the same length as the curves
of type a, b and c.

Fig. 12. 3 (1) is the Bolza surface.

Now cut the front octagon of X (1) into eight equilateral triangles and attach them to
the corresponding sides of the back octagon. The result is a regular octagon with interior
angles /4. The sides of the latter are identified in opposite pairs to form X (1) (see
Figure 12). This is a standard representation of the Bolza curve [37, Section 3]. [

Remark 2.11. The above proof shows that a(z;) = c(t;) = 4¢,. After some elementary
algebraic manipulations,' one arrives at the exact formula #; = arccosh(1 + ﬁ) /2.

It is interesting to note that in genus 3, there are at least three local maxima, and the
most symmetric surface, the Klein quartic, is not the global maximum [49].

2.9. The tree of rings

For n > 1, let T'(n) be the n-regular tree. We build a hyperbolic surface X () called the
tree of rings by replacing each vertex v € T(n) with a copy R, of the ring R(n, t,) such
that two rings R, and R, are transverse if and only if the vertices v and w are adjacent
in T'(n). In other words, each edge of T'(n) is replaced by a cross C(t,) and the crosses
are glued in such a way that those corresponding to the n edges adjacent to any vertex in
T (n) form a ring isometric to R(n, t).

'We have cosh(2f1) = cosh(c(t1)/2) = sinh?(e(t1)/4) = coth?(¢;) by definition, which
implies that (2 cosh?(¢1) — 1)(cosh?(t1) — 1) = cosh?(#; ). This is a quadratic equation in cosh?(¢1)
whose only solution larger than 1 is given by cosh?(f;) = 1 + 1/+/2. Thus cosh(2t;) =
2cosh?(f1) — 1 =14 +/2.
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T(n) —

Fig. 13. The tree of rings forn = 1,2, 3.

The resulting surface X (1) is closed of genus 2, 3(2) has two ends accumulated
by genus, and ¥ (n) has a Cantor set of ends accumulated by genus when n > 3 (see
Figure 13).

We now determine the systoles in X (), starting with X (1) as a warm-up.

Proposition 2.12. The systoles in (1) are the a- and b-curves in the horizontal and
vertical rings, the two c-curves and the two f -curves. The total number of systoles is 12
and their length is 2 arccosh(1 + v/2) ~ 3.057.

Proof. The e-curves are longer than the c-curves by construction, hence longer than the
a- and b-curves. The proof of Proposition 2.3 applies almost verbatim to show that the
shortest curves disjoint from the horizontal (resp. vertical) f-curve are the a- and b-curves
in the horizontal (resp. vertical) ring together with the vertical (resp. horizontal) f-curve.
The only difference is that the f-curves were ruled out in Proposition 2.3 for being too
long by hypothesis.

Let y C X(1) be a systole that intersects both f-curves. Consider the two diagonal
axes of symmetry of the cross C(#1). These curves divide (1) into a union of two con-
gruent annuli with piecewise geodesic boundary, each containing one of the f-curves
as its core geodesic. By hypothesis y traverses each annulus at least once. It is easy to
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see that the shortest arc across either annulus has length ¢ /2. Therefore £(y) > ¢, with
equality if and only if y is a concatenation of two seams, i.e., a c-curve.

Since the a-, b-, c- and f-curves all have the same length equal to 2 arccosh(1 + +/2)
(see Remark 2.11), they are the systoles. [

Proposition 2.13. For every n > 2, the systoles in the tree of rings X (n) are the a- and
b-curves contained in rings, together with the c-curves contained in pairs of transverse
rings.

Proof. Let y be a systole of X (n). We define the shadow of y in T (n) as follows. First we
cut y along the f-curves into subarcs y1, .. ., ¥k labelled in cyclic order along y. For each
subarc y; that joins two boundaries of a cross C which are not opposite of each other (i.e.,
each subarc that “turns” from one ring to another), its shadow s(y;) is the edge in 7 (1)
corresponding to the pair of transverse rings that intersect along C. The shadow s(y;) of
each subarc y; that does not turn is defined to be the vertex v € T'(n) corresponding to
the ring R, containing y; in its interior. The shadow s(y) is defined as the concatenation
of the shadows s(y1), ..., s(yx). This forms a loop in T ().

The shadow s(y) is not well-defined if y is disjoint from the f-curves or is equal to
one of them. But in that case y is contained in a ring so that it is either an a-curve or a
b-curve by Corollary 2.7.

Being a loop in a tree, s(y) has at least two places where it backtracks, that is, an
edge which it traverses twice in a row in opposite directions. By definition of the shadow,
a backtrack corresponds to an arc entering and leaving a ring through the same cross,
turning at the beginning and at the end. By Lemma 2.9, such an arc is longer than a(z,)/2.
In particular, if s(y) has two backtracks happening along two distinct edges, then y has
two disjoint subarcs longer that a(z,)/2 each, so that it is not a systole.

This leaves the possibility that s(y) is just a loop formed by traversing one edge {v, w}
of T'(n) twice in opposite directions. In that case, y is contained in a pair of transverse
rings R, U Ry, and turns exactly twice in the cross C = Ry N Ry,.

We can write y as the concatenation of two arcs y, and y,, where y, = y N R, and
Yw =¥ \ Y». This means that y,, contains both turns of y. In particular, y, is not contained
in C so that £(y,) > a(t,)/2 by Lemma 2.9.

Suppose that the two endpoints of y, belong to the same boundary component of C.
Then y,,—which is contained in R,—can be reflected across that f-curve to form a
non-trivial closed curve in Ry,. That curve is longer than a(z,) by Corollary 2.7, hence
£(yw) > a(tn)/2. This gives £(y) = £(yy) + £(yw) > a(tn).

By exchanging the roles of R, and R,,, the previous argument shows that the two
turning subarcs of y have endpoints in all four boundary components of C. This implies
that y intersects one of the two diagonal axes of symmetry of C—call it d —twice. But the
reflection of C in the curve d extends to a global isometry p; of ¥ (n). By Lemma 2.2, we
have pgz(y) = y. If y also intersects the seams, then it intersects them twice by symmetry
across d. In that case, y is invariant under pge,ms as well. But then the two turning subarcs
of y in C are mirror images across the seams, hence have endpoints in only two boundary
components of C. That contradicts the first sentence of this paragraph.
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We know that pg(y) = y and that y is disjoint from the seams. Consider the subarc
a C y contained in R, with two endpoints on d and let 8 = py (@) so that y = « U B.
If « intersects any f-curve twice, then (o) > a(t,)/2 by an argument above so that
L(y) =L(a) +£(B) = 24(a) > a(t,). Thus « intersects each f-curve at most once. This
determines the homotopy class of o up to moving the endpoints along d since the com-
plement of the seams in R,, is an annulus. That is, « wraps once around R,, intersecting
each f-curve once along the way, while staying disjoint from the seams. We conclude
that y is homotopic to a c-curve, hence equal to one of them. ]

2.10. Signed graphs

Letn > 3. In order to get a closed surface, we glue copies of the cross C(t,) along a finite
n-regular graph I' instead of the tree 7'(n). In order to determine the gluings precisely, we
need a bit more structure on I', namely,

e acyclic ordering of the edges adjacent to any vertex;

e asign (e, e) € {+, —} attributed to any two consecutive edges e;, e, around a
vertex, subject to the condition that the product of the signs around any vertex is
negative.

We call a graph equipped with this additional structure a signed graph. Note that a choice
of cyclic ordering around each vertex is known as an (oriented) ribbon structure. However,
we will now define when two signed graphs are isomorphic, and such isomorphisms need
not preserve the ribbon structure.

Given a vertex x in a signed graph I', we define the vertex flip around x to be the
operation that reverses the cyclic ordering around x and changes the signs between each
edge e containing x and its two immediate neighbors in the cycling ordering around the
vertex e \ x (see Figure 14). Clearly, any two vertex flips commute. We say that two
signed graphs are isomorphic if one can be obtained from the other by a set of vertex
flips.

Fig. 14. A vertex flip on a signed graph.
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2.11. Gluing crosses according to a signed graph

Letn > 3 and let I" be a connected, n-regular, signed graph. We construct a surface X (I")
modelled on I as follows. To each edge e in I corresponds a cross C, isometric to C(%,).
The edge e = {u, v} has two neighboring edges (which coincide when n = 2) around each
of u and v. We glue

e the predecessor of e around u to the left of C,;

e the successor of e around u to the right of C,;

e the predecessor of e around v to the bottom of C,;
e the successor of e around v to the top of C,.

Each of these gluings is done so as to make the seams match. This still leaves two pos-
sibilities for each gluing: either with a half-twist or not. This is determined using the
signs between consecutive edges: the “+” signs mean no twist and the “—" signs call for
half-twists.

Note that for a string of crosses, the half-twists do not affect the isometry type. How-
ever, when we close up the string to form a loop, they do. For example, with an even
number of half-twists the seams separate, but with an odd number of half-twists they do
not. In fact, one can show that a chain of n crosses isometric to C(¢,) glued end to end is
isometric to the ring R(n, t,) if and only if the number of half-twists is odd. This is why
we require the product of the signs around each vertex in I" to be negative.

We also remark that rotating each cross by angle = around one of its diagonals
exchanges left and bottom as well as right and top. Thus changing the order between
u and v above merely switches the horizontal and vertical axes but not the gluings them-
selves. Each ring can be seen as either horizontal or vertical interchangeably; this notion
need not be globally defined.

The surface X(T') is defined as

x(r) = (L) )/~

ecE

where E is the set of edges of I" and the equivalence ~ identifies boundary points of
different crosses as described above.

The sign structure of I' induces a cyclic ordering of the crosses in each ring. For
any ring R in X(I"), there are exactly n other rings transverse to it. When two of these
transverse rings pass through adjacent crosses of R, let us say that they are parallel.
Whether the cyclic orderings in parallel rings passing through adjacent crosses C,, and
C., agree or not is indicated by the sign e(ey, €3).

If we reverse the cyclic ordering of the crosses in R, then the comparison between
parallel rings transverse to R is unaffected. However, for every ring parallel to R, there
is a change of sign: if orders agreed before, they do not anymore and vice versa. In other
words, if I'y and I', are isomorphic signed graphs, then there is an orientation-preserving
isometry between X(I'1) and X(I'2).
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As an example, if T is the n-regular tree 7' (n) equipped with an arbitrary sign struc-
ture, then X(I") is isomorphic to the tree of rings X (n). This is because any two sign
structures on T'(n) are isomorphic, a fact left as an exercise” to the reader.

2.12. The ribbon graph induced by a signed graph

There is a useful combinatorial object T that comes between the signed graph I' and the
surface X(I") which makes the correspondence more transparent. This object is a (non-
orientable) 4-regular ribbon graph, and is obtained from I" as follows:

e toeach edge e = {u, v} of ' corresponds a vertex ¢ in T;
e each vertex in T is 4-valent, and its adjacent edges are given a cyclic order;

e the vertices in T that correspond to the predecessor and successor of e around u in "
share edges with ¢, and these edges are to be opposite in the cyclic order;

e similarly for the vertices corresponding to the two immediate neighbors of e in the
cyclic order around v;

e the ribbon edge between two vertices in Tis given a half-twist if the sign between the
corresponding edges of I is negative, and no twist otherwise.

In this way, the n edges adjacent to any vertex in I' become a cycle of length n in r
which is homeomorphic to a Mobius band, because there are an odd number of half:twists.
Adjacent vertices in I correspond to Mobius bands that intersect transversely in I'.

To go from TtoX ("), simply inflate each 4-valent vertex to a cross C(#,). Associate
the edges around the vertex to the four boundary components of C(t,) so that the cyclic
order goes: left, bottom, right, top. Then glue crosses with or without half-twist according
to whether the edges of T have a half-twist or not.

From the surface X(I"), we can go back to I" by collapsing the front and back of each
cross (i.e., taking the quotient of X(I") by the reflection across the seams) then taking the
graph dual to the decomposition of the resulting surface into octagons. Note that in this
way, the seams of X (I") correspond to the boundary components of T.

2.13. Then = 2 case

A 2-regular signed graph I" does not appear to carry enough information to prescribe how
to glue crosses together. For instance, there is only one cyclic ordering on two elements,
whereas there are two distinct directions of travel along a ring made with two crosses.
For n = 2, we start directly with a graph G playing the role of T instead. That is, let G
be a finite, connected, 4-regular, ribbon graph such that any path in G which does not turn
(i.e., goes to the opposite edge in the cyclic order at each vertex) is closed of length 2, and
has a neighborhood homeomorphic to a Mobius band. Given such a graph G, we obtain

Hint: First show that any sign pattern (with negative product) around a vertex v can be changed
into any other (with negative product) by doing some vertex flips around the neighbors of v. Fur-
thermore, this can be done even if one neighbor of v is required to be left intact.
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a surface X(G) by replacing each vertex of G with a cross C(f») and gluing them in the
prescribed way as in the previous subsection. The resulting surface X (G) is such that each
of its crosses belongs to two rings isometric to R(2,13).

We claim that there are two isomorphism classes of such graphs G with V' vertices if
V' > 2 is a multiple of 3, and only one isomorphism class otherwise.

Pick any Mobius band B of length two in G and cut G along the two edges of B. The
resulting object H has two vertices that have two opposite half-edges not connected to
anything. Pick either of these vertices, start on one side of it, and start walking along an
uncut edge. At the next encountered vertex, turn left, and so on, until you reach a dead
end. In this way, the path traced is a boundary component of H which passes through
each vertex only once.

We can draw the ribbon graph H in the plane as a tubular neighborhood of a regular
V-gon with its sides extended a little bit, one side cut open, and the ends of each uncut
side glued via a half-twist (see Figure 15). The left-turning path traced above corresponds
to the inner boundary component of this cut V' -gon.

Fig. 15. A representation of the ribbon graph H with six and seven vertices. The ends of each long
segment are glued with a half-twist. This leaves four half-edges that need to be paired up.

The graph G is obtained from H by pairing up the two free half-edges of the first
vertex with the two free half-edges of the last vertex, and giving one pair a half-twist.
There are two ways to pair them, and two choices for which pair gets a half-twist, for a
total of four choices (see Figure 16). However, some of these choices yield isomorphic
objects. To see this, color the four boundary components of H gray, red, green and blue.
In the planar representation, H has 2V + 2 ends and 2V + 2 gaps between these ends,
one of which is on the inside. Each outer gap is connected (via half-twists at the ends of
extended sides) to the third next gap. This is why the residue of IV modulo 3 is relevant.

To fix ideas, color the inner gap gray and the first outer gap, as well as those that it is
connected to, in red. Similarly, color the other two boundary components green and blue.
The last outer gap gets colored red if and only if 2V (hence V') is a multiple of 3. Assume
this is the case. Then at each of the first and last vertices there is one free half-edge with
one side gray and one side red, and one free half-edge with one side green and one side
blue.
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Fig. 16. The four admissible pairings with six and seven vertices. The crosses indicate a half-twist
whereas the dots indicate a lack thereof. Sides with the same color belong to the same boundary
component.

As indicated earlier, there are four ways to close up H:

e If we glue gray to gray and red to red, then green gets glued to green and blue to blue.
The resulting ribbon graph G has four boundary components of length V' each.

o If we glue gray to red, then green gets glued to blue. The resulting ribbon graph G has
two boundary components of length 21" each.

e If we glue gray to blue, then red gets glued to green. The resulting ribbon graph G has
two boundary components of length 21" each.

e If we glue gray to green, then red gets glued to blue. The resulting ribbon graph G has
two boundary components of length 2V each.

The four possibilities are depicted on the first row of Figure 16 for V' = 6. One can check
that the last three ribbon graphs are all isomorphic via cut-and-paste, so we indeed get
two distinct isomorphism classes.

Suppose that V' is not a multiple of 3. Then if two colors are on two sides of the same
free half-edge of the first vertex in H, they are on different free half-edges of the last
vertex and vice versa. In this case, it is not possible to glue each color to itself, nor is it
possible to connect the colors in two pairs. Whichever of the four admissible gluings we
pick, one color closes up while the three other colors connect together (see the second row
of Figure 16 for V' = 7). That is, any ribbon graph G as above with IV # 0 mod 3 vertices
has one boundary component of length V' and one boundary component of length 3V.
This implies that we can represent G as a tubular neighborhood of a regular V' -gon in
the plane with sides extended and all half-twists on the outside (as in the first column of
Figure 16). In other words, there is only one isomorphism class.
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Remark 2.14. In the following, we will not distinguish between the case n = 2 and
n > 3. That is, we will abuse notation and speak of the surface X(I") for a 2-regular
signed graph T. In those instances, one should take X (I") to be any of the surfaces X(G)
for graphs G as above with the same number of vertices as I'.

2.14. Systoles

We will show that the systoles of the surface X(I") defined above are the a-, b- and c-
curves, provided that I" has sufficiently large girth. The girth of a graph is defined as the
length of its shortest non-trivial loop. The problem with graphs with small girth is that the
seams of the crosses in X(I") can close up to form short geodesics. The following lemma
shows that the seams are indeed the main thing to worry about.

Lemma 2.15. Let t > 0. The shortest non-trivial arcs in the cross C(t) (defined in Sec-
tion 2.2) with endpoints in the boundary are the seams.

Proof. The only potential candidates for shortest arcs are the seams or the other axes
of symmetry of C(¢). Indeed, any arc that intersects one of the loci of reflection can be
shortened by surgery with its reflection unless it coincides with the latter. Moreover, these
loci cut the cross into topological disks. Since each seam is homotopic to a surgery on one
horizontal and one vertical axis, the seams are the shortest arcs. [

Recall that the length of the seams in C(¢) is o (t) = arccosh(coth? ). We will also
refer to the number #,, defined by Lemma 2.5 as well as a(t,), where

a(t) = 2 arccosh(cosh(t) cosh(n arcsinh(coth?)))

according to equations (2.7) and (2.6). We will estimate these quantities in Section 6.1.
We can now prove the main result of this section.

Theorem 2.16. Letn > 2 and let T be a connected, n-regular, signed graph of girth larger
than a(t,) /o (t,). Then the systoles in the surface X(I") are the a-, b- and c-curves, which
have length a(t,). If T is finite, then the genus g of X(I') is equal to E + 1 where E is
the number of edges in I and there are 12g — 12 systoles in X (I").

Remark 2.17. The girth of a tree is infinite by convention, hence Theorem 2.16 general-
izes Proposition 2.13.

Proof of Theorem 2.16. Let y be a systole of X(I'). We define the shadow s(y) in the
graph I' in the same way as in the proof of Proposition 2.13. If s(y) is non-contractible
in ', then it traverses more than a(t,)/o(t,) edges by hypothesis. This means that y
traverses as many crosses, hence is longer than

(a(tn)/o(tn)) - o(tn) = a(ty)

by Lemma 2.15, contradiction. It follows that s(y) is a contractible loop, so that it lifts
to the universal cover of I', the n-regular tree T'(n). The tree of rings X (n) similarly
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covers X(I") and y lifts to X (n). By Proposition 2.13, any lift ¥ is one of the curves of
type a, b or ¢ in a ring or a pair of transverse rings of X(n). Since the covering map
3 (n) — X(I') is injective on each ring and each pair of transverse rings, y itself is an a-,
b- or c-curve.

Let g be the genus of X(I'). There are 4n curves of type a or b per ring, n crosses per
ring, and two rings per cross, hence eight such curves per cross. Since each cross has Euler
characteristic —2, there are g — 1 crosses in X(I"), hence 8¢ — 8 curves of type @ or b in
total. Since each cross is central to exactly one pair of transverse rings and there are four
c-curves per pair, the number of c-curves is equal to 4g — 4. Thus, the total number of
systoles is 12g — 12. By construction, the number of crosses is equal to the number E of
edges in I" so that g = E + 1. Note that the number V of vertices in I" satisfies nV =2F
since T is regular of degree n, so an alternative formulationis g = 1 + nV/2. ]

Remark 2.18. The number L, in Theorem 1.1 from the introduction is defined as a(t,).

As we will see in Subsection 6.1, the quantity a(z,) /o (t,) grows exponentially with .
Therefore the girth of '—and hence the genus of X(I")—has to be very large for the
above result to hold. The first order of business, however, is to show that the surfaces
obtained are local maxima of the systole function. This is proved in the next two sections.

3. The lengths of the systoles determine the surface locally

In this section, we show that the systoles in X (I") can detect any infinitesimal movement,
that is, the derivative of their length is injective on the tangent space to Teichmiiller space.

3.1. Twist deformations

Given a simple closed geodesic f in a hyperbolic surface X, we denote by 74 the infinites-
imal Fenchel-Nielsen twist deformation along 8. More precisely,

d

Tﬁ:% Xt

t=0

where X; is the surface obtained by cutting X along 8, twisting distance ¢ to the left, then
regluing. Given any closed geodesic o C X, the cosine formula says that

0Ly
E = Z cos Zp (o, B) (3.1

peanp

where Z, (e, B) is the counter-clockwise angle from « to 8 at the point p [38,54].

For every n > 1, the systoles in the ring R(n, t,) include the curves aq, ..., d>, and
b1, ..., by, by Propositions 2.3 and 2.12. We want to compute the effect of twisting
around any of these curves on the length of any of them. To this end, let M be the 4n x 4n
matrix whose (i, j )th entry is the derivative of the length of the ith curve in the set S =
{ai,....azn,b1,...,by,} withrespect to the twist deformation along the (2n + j )th curve
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(modulo 4n) in S. Recall that the a-curves are pairwise disjoint, as are the b-curves, and
that each a; intersects each b; exactly once (see Figure 6). The cosine formula (3.1) thus
gives
cos L(a;, bj) ifi,je{l,...,2n},
M;; = § cosZ(b;,aj) ifi,je{2n+1,...,4n},
0 otherwise.

In other words, M is block diagonal of the form

A 0
YA

In particular, M is invertible if and only if A is. In the following two subsections we will
show that A (and hence M) is indeed invertible.

Proposition 3.1. For any n > 1, the matrix M of derivatives of lengths of a- and b-
curves in the ring R(n, t,,) with respect to the twist deformations around these curves has
Sfull rank.

An immediate consequence is that the twist deformations around the a- and b-curves
form a basis of the tangent space to the Teichmiiller space of the ring.

Corollary 3.2. The twist deformations around the a- and b-curves in the ring R(n,ty)
form a basis of the tangent space to the Teichmiiller space of R(n, t,) with fixed boundary
lengths for any n > 1.

Proof. The ring R is a surface of genus 1 with 2n boundary components. As such, it
admits a pants decomposition with 2n interior curves. The Fenchel-Nielsen coordinates
for these interior curves parametrize the Teichmiiller space with fixed boundary lengths.
Hence the latter has dimension 4n, as does its tangent space at the point R. By Proposi-
tion 3.1, the twist deformations about the a- and b-curves in R are linearly independent.
Since there are 4n such curves, these tangent vectors form a basis of the tangent space. =

In order to prove that the matrix A of cosines of angles has full rank, we need to
estimate these angles. It turns out that each column in A has one entry close to 1 and the
other entries fairly close to —1. The intuition for this is that since the a- and b-curves
are each a union of two hypothenuses of right triangles with very long sides, they fellow
travel the f-curves and the e-curve in the notation from Section 2.4. From this pattern,
we will deduce that 0 is not an eigenvalue of A.

3.2. Angle estimate

Let 8 = 6(n) be the angle from e to any of the curves a; in the ring R(n, t,). Then the
angle from any b; to e is also equal to 8. Also let ¢; be the counter-clockwise angle
from a; to b;. Recall that there are 2n curves a; that are images of one another by the
shift n : R(n,t,) — R(n,t,) which translates by distance e/(2n) along the curve e. In
particular, the curves a; intersect e at regularly spaced intervals of length e/(2n) each.
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Therefore the curves by, e and a; together bound an isosceles triangle whose base has
length |n + 1 — j| - e/(2n), whose angles at the base are equal to 8 and whose third angle
is equal to ¢; (see Figure 17). This holds for every j € {1,...,2n} exceptfor j =n + 1,
where we get a triple intersection between by, e and a; 4.

Fig. 17. The isosceles triangles bounded by the curves by, e and a; in the ring R(n, t,) forn = 3.

By dropping the altitude in each isosceles triangle and applying (2.2) we obtain

cos¢—] = sin 6 cosh| (n + 1 —j)i .
2 4n
The double angle formula for cosine yields
cos¢p; = 2sin” @ coshz((n +1- j)4i) —1. (3.2)
n

Observe that the formula holds for j = n 4 1 as well since ¢, 41 + 20 = 7 so that
cos P41 = cos(m — 28) = —cos(20)
= 2sin% 60 — 1.
We will show that the first angle ¢, is very small whereas the following angles ¢; are
close to 7. We first need an elementary inequality involving sums of hyperbolic cosines.
Lemma 3.3. Forany n > 1 and any x > arccosh(+/2) we have

n—1
2 Z cosh?(kx) < cosh?(nx).
k=0
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Proof. We proceed by induction on n. For n = 1, the inequality reduces to 2 < cosh?(x),
which is true by hypothesis. Now suppose that

n—1
2 Z cosh?(kx) < cosh?(nx)
k=0

for some n > 1. Then

2 Z cosh?(kx) < 3cosh?(nx), (3.3)
k=0

which we want to show is less than cosh?((n + 1)x).
The addition formula for hyperbolic cosine gives

cosh((n + 1)x) = cosh(nx) cosh(x) + sinh(nx) sinh(x)
> /2 cosh(nx) + sinh(nx) = {+/2 + tanh(nx)} cosh(nx)
> {«/5 + tanh(arcsinh(1))} cosh(nx) = (V2 + 1/\/5) cosh(nx)

> +/3 cosh(nx)

where we have used the fact that nx > x > arccosh(+/2) = arcsinh(1). Putting this back
in (3.3) gives

n
2 Z cosh?(kx) < 3cosh?(nx) < cosh?((n + 1)x).
k=0
By induction, the inequality holds for any n > 1. ]

We can now show that the first angle ¢, is much closer to 0 than any of the other
angles, which are all close to 7. The precise statement is expressed in terms of the cosines
of the angles.

Lemma 3.4. For any n > 1, the angles ¢; from a; to by satisfy

2n
Z(COS¢]‘ 4+ 1) <cos¢y + 1.
j=2

Proof. By (3.2) this inequality is equivalent to

2n
Zcoshz((n +1- j)%) < cosh?(e/4). (3.4)

ji=2
Each summand on the left appears twice except for j = n + 1 so that

2n n—1
2 .\ € 2 e
E cosh ((n—i—l—j)a) <2,§C0Sh (kﬂ)

Jj=2
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Recall that e = 4n arcsinh(coth(#,)) > 4n arcsinh(1) and hence
4i > arcsinh(1) = arccosh(+/2).
n

We can therefore apply Lemma 3.3 with x = ¢/(4n) to obtain the desired inequality

2n n—1
2 . e 2 e
E cosh ((n +1 _])E) <2 E cosh (ka)
j=2 k=0

< cosh®(e/4). L]

Corollary 3.5. For any n > 1, the angles ¢; from a; to by satisfy

2n
Z cos¢; # 0.

j=1
Proof. First assume that n > 2. The above statement is equivalent to

2n

(cosp; + 1) # 2n.
j=1

By the previous lemma we have Z?il(cos ¢; +1) <2(cos¢; +1) <4 <2n.
If n = 1, then a; meets b; at right angle since both of them intersect the f-curve with
angle 7 /4. Furthermore, ¢ = 37 /4 (see Figure 12). Therefore

cos ¢y + cos g = —/2/2 £ 0. L]

3.3. The Gershgorin circle theorem

If the diagonal entries of a matrix dominate the rest, then the matrix is invertible. More
generally, one can deduce information about the location of the eigenvalues from the size
of the entries [28].

Theorem 3.6 (Gershgorin). Let U be an n x n matrix with entries u; ;. Then the eigen-
values of U are contained in the union of the closed disks with centers u;,j and radii
> i) i ;| Inparticular, if |uj,;| > 3. ; lui ;| for every j, then U is invertible.

The last sentence of the theorem is quite transparent: if x € R” is non-zero and x; is
its largest entry in absolute value, then x times the jth column of U is non-zero by the
triangle inequality.

We apply this criterion to the matrix A + J where A is the matrix of cosines of angles
from the a-curves to the b-curves in the ring R(n,t,) and J is the 2n x 2n matrix whose
entries are all equal to 1.

Lemma 3.7. The matrix A + J is invertible for any n > 1.
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Proof. Note that the entries of A 4+ J are positive so we do not need to take absolute
values. Lemma 3.4 shows that the first entry of the first column of A + J is larger than
the sum of the other entries in that column. By symmetry of the ring, the entries of A
satisfy A;+1,7+1 = A;,; where the indices are taken modulo 27, and similarly for A + J.
The Gershgorin circle theorem thus implies that A + J is invertible. ]

It is easy to deduce that A itself is invertible.

Lemma 3.8. The matrix A of cosines of angles from the a-curves to the b-curves in the
ring R(n,t,) is invertible for any n > 1.

Proof. Let V be the orthogonal complement of the vector u = (1,..., 1)T in R?". Since
the restriction of J to V is equal to zero, A and A + J act the same way on V. Moreover,
A and A + J both send the span of u onto itself since they have constant non-zero row
sums. The row sums are all the same because the rows are cyclic permutations of one
another. The row sums of A 4+ J are non-zero because its entries are positive and the
row sums of A are non-zero by Corollary 3.5. Since A + J is surjective by the previous
lemma, we obtain

R = (A + J)(R*") = (A + J)(V + spanu) = A(V + spanu) = A(R>").
We conclude that A itself is surjective, hence invertible. [

This implies that the full matrix M of cosines of angles between all systoles in the
ring R(n,t,) is invertible.

Proof of Proposition 3.1. We have det(M) = det(A)? # 0 by the previous lemma. |

3.4. From rings to closed surfaces

Let X = X(T") be a closed surface obtained by gluing crosses C(¢,) along a connected,
finite, n-regular, signed graph I" of sufficiently large girth as in Theorem 2.16, so that
its systoles are the a-, b- and c-curves (and f-curves if n = 1). We now prove that the
lengths of these curves determine the surface at the infinitesimal level (perfection).

Theorem 3.9 (Perfection). Let n > 1 and let X = X(I") where T is a finite, connected,
n-regular, signed graph of girth larger than a(t,) /o (t,). The map T(X) — Ri sending Y
to the vector of lengths (£, (Y))yes where S is the set of systoles in X has injective
derivative at the point X .

Proof. We need to show that the differentials {d{,},es span the cotangent space
Ty T (X) over R. Wolpert’s twist-length duality [55, Theorem 2.10] states that

it = (L)
a1y

for any simple closed geodesic y, where the dual is taken with respect to the Weil—
Petersson metric. Therefore, the length differentials {d{, }, s span the cotangent space



Local maxima of the systole function 653

Ty T (X) if and only if the twist deformations {d/07y}yes span the tangent space
Tx T (X).

By Proposition 2.12 (for n = 1) and Theorem 2.16 (for n > 2), the set .S of systoles
includes the a- and b-curves. We will show that the twist deformations about the a- and
b-curves generate the tangent space. To see this, observe that there exists a pants decom-
position & of X consisting entirely of curves that are each in the interior of some ring
R C X. For instance, one can take J to be the set of all f-curves in X (the curves that
cut X into crosses) together with one curve in each cross that separates it into two pairs of
pants—call these d -curves. Each d-curve is in the interior of both rings that it intersects,
while each f-curve is in the interior of a unique ring.

The lengths and twists around the curves in the pants decomposition & define
Fenchel-Nielsen coordinates 7 (X) — (R4 x R)? once a convention is chosen for what
zero twist means. For any curve o € J, let R C X be a ring that contains « in its interior.
By Corollary 3.2, the twist deformations about the a- and b-curves in R generate the tan-
gent space to the Teichmiiller space of R with fixed boundary lengths. In particular, the
two tangent vectors corresponding to changing the length or twist parameter of « at unit
speed while keeping all the other Fenchel-Nielsen coordinates fixed are in the span of the
twist deformations around the a- and b-curves in X. Since the Fenchel-Nielsen length
and twist parameters define a smooth coordinate system for 7 (X ), we are done. ]

Remark 3.10. The proof actually shows that the derivative of the vector of lengths of all
the a-curves and b-curves is injective at X(I"). The c-curves are not needed for this; they
only play a role in the next section.

Remark 3.11. In [48], Schmutz Schaller describes a collection of 6g — 5 curves such that
their lengths define a topological embedding of Teichmiiller space into ]Rig . See also
[30,31]. If g is the genus of X(I"), then there are 8g — 8 curves of type a or b in X(I).
We do not know if their lengths define a global embedding of Teichmiiller space, but
Theorem 3.9 in conjunction with the inverse function theorem implies that they define an
embedding in a neighborhood of X(I").

4. The systole decreases under all deformations

Let X = X(I") where I is a signed graph satisfying the hypotheses of Theorem 3.9. Now
that we know that the systoles in X can detect any infinitesimal movement, it remains to
show that at least one of them shrinks under any infinitesimal deformation (eutaxy). Even
though we have proved that the twist deformations around the a-curves and b-curves in X
generate the tangent space Tx 7 (X), it will be convenient to use a different basis to show
this.

To define this other basis, we first explain how it acts on individual crosses. Let C
be a cross with four boundary lengths equal to 41, as in Section 2.2. For each boundary
component 8 C C and s > 0, we define the deformed cross C S’S to be the four-holed sphere
with B-boundary of length 4(z,, + s), the three other boundaries of length #,,, and with the
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same symmetries fixing f that C has, that is, a Z, x Z, group generated by a front-to-
back reflection and a left-and-right or top-to-bottom reflection depending on whether 8 is
medial or lateral respectively.

For example, if B is the left boundary component of C, then C, sﬁ is obtained by taking
aright-angled hexagon with left side ¢, + s, top side of length 2¢, and right side of length
t,, then reflecting this hexagon across its bottom side to obtain a right-angled octagon,
then doubling this octagon across the four sides with unspecified lengths (see Figure 18).

2t,, 2t 4t,,
i
“
- t, ® T
= * 2, At,,
= <
2t,, 4t,,

Fig. 18. The length deformation of the cross about its left boundary.

Now if B C X is any f-curve and s > 0, then we define X f to be the same as X but
with the two crosses C and D adjacent to 8 replaced with Cs'3 and Df . These are glued
together and with the other crosses in the most obvious way, without twisting. Finally, we

let P
- < B
P~ ds $=0 X
and call this the symmetric length deformation about B.

The motivation behind this construction is that the only canonical way to change the
length of a curve on a surface is to flow along its gradient with respect to the Weil—
Petersson metric. However, this gradient deformation is non-local in nature and its effect
on the lengths of other curves (especially disjoint ones) is complicated to compute,
although an explicit formula analogous to the cosine formula (3.1) exists [47, equa-
tion (7)].

The advantage of our symmetric length deformations is that the sum

A=Y M
Be{ f-curves}

corresponds to expanding all the boundaries of all the crosses in X at the same rate without
twisting and while preserving the symmetries of all the crosses. In other words, the effect
of A is the same as increasing the parameter ¢ at unit speed in the definition of the ring
R(n,t,). In particular, for any a- or b-curve « and for any c-curve y in X we have

My at,
B_A =a (Zn) >0 and 8_A =c (tn) <0 (41)

according to Lemma 2.8 and Lemma 2.4 respectively.
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To complete our basis for the tangent space Ty 7 (X) we also include the twist defor-
mations around the f-curves as well as two more twist deformations 74 and 7j per cross.
In the cross C, we pick the curve d to be one of the two diagonal axes of symmetry and
h to be the curve depicted in Figure 19.

i

Fig. 19. The curve d (in red) and the curve A (in blue) in the cross C.

Observe that d and & intersect twice. Moreover, the oriented angles from d to 4 at
the two intersection points are equal to each other since the rotation of angle 7 about the
centers of the front and back of the cross leaves each curve invariant, preserves orientation,
and exchanges the two intersection points. Finally, the angle of intersection ¥ = Z(d, h)
is different from 7 /2 since the intersections occur at the midpoints of two opposite seams,
and the seams are orthogonal to d at those points.

Let L, R, T, B be the left, right, top and bottom boundaries of the cross respectively.
The matrix of partial derivatives of the lengths of {L, R, T, B, d, h} with respect to the
deformations {Az,ARr, A7, AB, Th, T4} of the cross C has the form

AL AR )&T /\B T T4
dép /1 0 0 0 0 0
der | O 1 0 0 0 0
dér | 0 0 1 0 0 0
dlg | 0 0 0 1 0 0
dlg | § 1] 1] 8§ 2cosy 0
dly \ ¢ e e & 0 —2cos

for some &, ¢ € R. It is lower triangular with non-zero diagonal entries, hence invertible.
In particular, the deformations {Ar, Ar, A1, AB, 13, 74} form a basis of the tangent space
to the Teichmiiller space of C with variable boundary lengths.

Lemma 4.1. The symmetric length deformations {Ag}ge{ f-curvesy t0gether with the twist
deformations {‘Cﬁ }/3 €{ f-curves} and {Td(C) > ‘Ch(C)}C €{crosses} Jorm a basis of TXT(X)

Proof. Tt suffices to prove that these deformations span the tangent space since they are
equal in number to its dimension. By the paragraph preceding the statement of this lemma,
these deformations generate all the deformations of any cross in X. In particular, they
generate the Fenchel-Nielsen length and twist deformations with respect to the pants
decomposition of X by f-curves and d-curves. |
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We can now prove that the systole function decreases under all non-trivial deforma-
tions of X, hence that X is a local maximum of sys.

Theorem 4.2 (Eutaxy). Let n > 1 and let X = X(I") where T is a finite, connected,
n-regular, signed graph of girth larger than a(t,) /o (t,). Then for every non-zero tangent
vector v € Tx T (X), there is at least one systole a of X such that d€,(v) < 0. That is, X
is a local maximum of the systole function.

Proof. First assume that n > 2. Let S be the set of systoles of X and suppose that
v € Tx T (X) is such that d €, (v) > 0 for every o € S. We will show that v = 0.
By the previous lemma, we can write

U=ZK,3-/\,3+ZMy-ty

BeF yeD

for some kg, i1, € R where F is the set of f-curves and D is the set of all f-, d- and
h-curves in X .
For every o € S we have

0<dly() =Y kp-dla(p)+ Y 1ty dla(ry).
BeF yeD

Summing over any subset Q C S we obtain

0= ) dla) =) kg Y dla(Ap)+ Yy Y dla(ty).

acQ BeF  ae€Q yeD «eQ

Let A be the set a- and b-curves in X and let C be the set of c-curves in X . The first
observation is that if Q is equal to either A or C, then } .o d{a(7y) = O for every
y € D. Indeed, for every systole @ € Q intersecting y, there is some systole a* € Q
intersecting y with the supplementary angle. To see this, observe that in the tree of rings
3 (n) there is an orientation-reversing isometry which sends (any lift of) y to itself and
permutes the (lifts of) a- and b-curves, as well as the (lifts of) c-curves separately. For
instance, if y is an f- or d-curve then the reflection of X (n) across the seams works,
and if y is an h-curve then the left-to-right reflection of the cross containing y extends to
an isometry of X (n). These reflections exchange a- and b-curves and preserve the set of
c-curves. Hence the statement about angles coming in supplementary pairs holds in the
tree of rings X (n). Since X (n) covers X and every systole in X is the image of a systole
in ¥ (n), the statement holds in X as well. The cosine formula (3.1) thus implies that the
total length variation of the curves in Q is nil in the direction of ;. Thus

dodle)=Y kg Y dla(Ap) and D dla(v)=Y kg dla(rp). (4.2)
a€A BeF a€A aeC BeF aeC

The second observation is that the term

> dla(rp)
aeQ
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is independent of B € F when Q is equal to either 4 or C. Indeed, the deformation Ag
only affects the lengths of systoles in pairs of transverse rings containing one of the two
crosses adjacent to 8. The geometry of the subsurface ¥ C X containing all these pairs
of transverse rings does not depend on f. This is because Y is the union of the crosses
corresponding to the edges of a subgraph H C T, namely, the 2-neighborhood of a pair
of consecutive edges in the cyclic order around a vertex (corresponding to the crosses
meeting along B). Since I' is assumed to have girth larger than a(z,)/0(t,), and that
number is bigger than 6 (see Table 1), H is a tree isometric to the 2-neighborhood of any
pair of consecutive edges in I' (or in the n-regular tree). The resulting subsurface Y and
the total effect of the deformation Ag on the length of its a- and b-curves or its c-curves
is therefore independent of .
The third and last observation is that

Z(Z dﬁa(/\ﬁ)) = Z(Z dﬁa(kﬂ)) =Y dta(A) =) d'(ta) > 0

BeF a€A a€Ad BeF a€A acA

by (4.1), where A = } 4. Ag. We deduce that ), c 4 d€a(Ag) > O for any g € F by
the second observation. Similarly,

3 (Z dea(/xﬁ)) - Z(Z dza(xﬂ)) =Y dta(n) =Y i) <0
BeF aeC aeC BeF aeC aeC

sothat ) ", dlou(Ag) < Oforany B € F.
For any fixed y € F we have both

0< Z dlg(v) = (Z Kﬂ)(z dﬂa(ly))

acA BeF aeAd
and
0= Y dta) = (3 xp) (2 dlary)
aeC BeF aeC

from (4.2) and the second observation. By the third observation, the sum in the rightmost
parentheses is first positive then negative. We conclude that } gy kg = 0 so that

D dla(v) =0= " dly(v).

a€A aeC

Since each summand was assumed to be non-negative, they are all zero. By Theorem 3.9,
this implies that v = 0.

If n = 1, the same argument works with A replaced by F. The point is that the
f-curves are systoles in this case and their length increases under the deformation A.

It is easy to see that the first part of the theorem implies that X is a local maximum
of the systole function. For any unit vector v € Tx 7 (X), the above implies that there is a
curve @ € S and an &, > 0 such that

sys(expy (tv)) < La(expy (1v)) < £o(X) = sys(X)
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for every t € (0, &), where expy (¢v) is the point at distance ¢ from X along the Weil—
Petersson geodesic in the direction of v. Since the length functions ({4 )4es are conti-
nuously differentiable, &, can be chosen locally uniformly with respect to v. As the unit
sphere in Ty 7 (X) is compact, there is an ¢ > 0 which works for all v. Hence there is a
neighborhood U of X in 7 (X) such that sys(Y) < sys(X) for every Y € U with equality
only if ¥ = X. The same holds in moduli space. ]

5. Isometries are induced by graph isomorphisms

In this section, we show that distinct signed graphs I" give rise to distinct oriented hyper-
bolic surfaces X(I"). As a byproduct, we deduce that if the underlying graph has no
non-trivial automorphism, then the resulting surface has a trivial group of orientation-
preserving isometries.

We first need to distinguish between the different kinds of systoles in X(T").

Lemma 5.1. Let n > 2 and let T be an n-regular signed graph such that the systoles in
X(T") are the a-, b- and c-curves. Then the a- and b-curves in X(I") intersect a different
number of systoles than the c-curves.

Proof. Let us count the number of systoles that intersect a given c-curve y. In the pair of
transverse rings R; U R, containing y, there is a central cross at the intersection of the
two rings and 2(n — 1) non-central crosses. For each of the latter kind, y intersects only
one side (front or back) of the cross, separating two opposite sides of that octagon. Thus
for each non-central cross C, in the ring through C distinct from R; and R», exactly half
of the a- and b-curves intersect y. This is because each a- and b-curve intersects only one
side of each cross, connecting two opposite sides of that octagon. These curves contribute
2(n — 1) - 2n intersections.

As for the systoles in R; or R,, again half of them intersect y. To see this, observe
that any a- or b-curve is homotopic to a union of two geodesic segments: one that travels
halfway along an e-curve and one that travels halfway along an f-curve. The e-curves
are disjoint from y while each f-curve in R; intersects y once. Thus each f-curve in R;
contributes one a-curve and one b-curve intersecting y. This yields a total of 2n + 2n
= 4n curves of type a or b in Ry U R, that intersect y.

How many c-curves intersect y? We can first homotope any c-curve (including y) to
a union of two segments of e-curves. Each non-central cross in Ry U R, is associated
with four c-curves, half of which intersect y. Indeed, when they are represented along the
e-curves, any such c-curve ¢ shares a segment / with y. At the extremities of /, the two
curves y and ¢ can turn toward either the same or different sides of 7. In the first case we
can homotope them to intersect only once while in the second we can homotope them to
be disjoint. Thus there are 2 - 2(n — 1) curves of type ¢ that intersect y coming from the
2(n — 1) non-central crosses in R; U R5.

Lastly, for each cross C contained in a ring that intersects R; U R; such that C is not
itself contained in R; U R;, we get two c-curves intersecting y. There are 2(n — 1)2 such
crosses, accounting for 4(n — 1)? intersections.
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Any other systole is disjoint from y, being disjoint from R; U R,. The total number
of systoles intersecting y is thus

4n(n—1)+4n+4(n —1)+4(n — 1) = 8n® —4n.

We now count the number of systoles that intersect a given a- or b-curve «. In the
ring R where « lives, there are 2n systoles that intersect « apart from itself.

Since « intersects each cross of R in only one side (front or back) and separates two
opposite sides of that octagon, it intersects exactly half of the a- and b-curves in each ring
transverse to R. There are n such rings, each contributing 27 intersections with c.

These are all the a- and b-curves that « intersects. Now for the c-curves. By the above,
o intersects half of the c-curves that intersect R. There are n crosses per ring transverse
to R, and n such rings, each contributing two c-curves that intersect o, for a total of 2n2.

The number of systoles intersecting « is equal to

2n +2n? +2n% = 4n% + 2n
which is distinct from 872 — 4n for any n > 2 (the two real solutions are 0 and 3/2). =

The next step is to pick out pairs of a- and b-curves that are symmetric about the
seams, meaning that they are permuted by the reflection pgeams. In the notation of Subsec-
tion 2.3, these are pairs a; and b; for some j € {1,...,2n}. See Figure 6.

Lemma5.2. Letn > 2 and let " be an n-regular signed graph. Then a pair of intersecting
a- and b-curves in X(I') maximizes the number of intersections with other a- and b-
curves if and only if it is symmetric about the seams.

Proof. Consider a pair & U 8 of a- and b-curves such that 8 = pgeams (). What is special
about this pair is that for each cross it intersects, it intersects both of its sides (front and
back). Let R be the ring containing o U 8. All the 4n systoles in R intersect o U .
Furthermore, all the 4n systoles in each of the n rings transverse to R intersect the pair
a U B. The total number of intersections is 4n? + 4n.

Now suppose that o and 8 are a- and b-curves contained in a common ring R but are
not symmetric about the seams. Then there is some cross C C R such that ¢ U f intersects
only one side of C. Hence in the ring transverse to R through C, only 2n systoles intersect
a U B, for a total of at most 4n2 4 2n curves of type a or b.

Finally, suppose that o and § are not contained in a common ring. Let R; U R, be
the pair of transverse rings containing them. In each ring transverse to R;, there are 2n
systoles that intersect « U 8 apart from « and . Thus the number of a- and b-curves
intersecting o U B is 2n - n - 2 + 2 = 4n? 4 2, which is less than 4n2 + 4n. n

We now have the required tools to prove that the map I > X (T") is injective. We
refer the reader back to Subsection 2.10 for the definition of signed graphs and their
isomorphisms, and to Subsection 2.11 for the description of the map I' — X(I).

Theorem 5.3. Let n > 3 and let 'y and Ty be n-regular signed graphs of girth larger
than a(t,)/o(t,). Any orientation-preserving isometry X(I'1) — X(I'z) is induced by a
unique isomorphism of signed graphs I'y — T'5.
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Proof. Let ¢ : X(I'1) — X(I';) be an orientation-preserving isometry. Then ¥ sends
systoles of X(I'1) to systoles of X(I';). By Lemma 5.1, it sends the set of a- and b-curves
on X(I'7) to the set of a- and b-curves on X(I';). Furthermore, each pair of a- and b-
curves in X(I";) that are symmetric about the seams is sent to a such a pair in X(I';) by
Lemma 5.2.

The two angle bisectors of a symmetric pair of a- and b-curves at the intersection are
along an f-curve and the seams. We may assume that the girth of I'; and T, is larger
than 2 (see Subsection 6.1) so that the f-curves are distinguished from the seams. We
conclude that v sends f-curves to f-curves and seams to seams. In particular, it respects
the decomposition of X(I"1) and X(I";) into crosses.

Let E(I';) be the set of edges of I';. Since there is a bijection between the crosses
in X(I';) and the edges in I';, the isometry v induces a bijection ¢ : E(I'1) — E(I'2).
Since ¥ maps adjacent crosses to adjacent crosses, the induced map ¢ either preserves
or reverses the cyclic order around each vertex. After applying a set of vertex flips to I',
(which does not affect X(I'2)), we may assume that ¢ preserves cyclic orders. If two
parallel rings in X (I';) have matching (resp. opposite) orderings, it is clear that ¥ sends
them to parallel rings with matching (resp. opposite) orderings. That is, the sign between
any two consecutive edges p and ¢ in I'y is the same as the sign between ¢ (p) and ¢ (q)
in I';. In other words, I'; = I'; up to isomorphism. [

Remark 5.4. This statement is false for n = 1 for the simple reason that there is no dis-
tinction between the f-curves and the seams (the c-curves). The analogous statement for
n = 2 is true (and the proof essentially identical) provided that we replace the signed
graphs by the 4-regular ribbon graphs satisfying the conditions of Subsection 2.13. By
the argument in that subsection, there are two isomorphism classes of such graphs when-
ever the number V' of vertices is a multiple of 3, and one isomorphism class otherwise.
Therefore, we get two distinct corresponding points in M, if g = V + 1 is congruent
to 1 mod 3, and only one otherwise.

Corollary 5.5. Let n > 3 and let T be an n-regular signed graph of girth larger than
a(ty)/o(ty). If T has a trivial automorphism group, then X(I") has a trivial group of
orientation-preserving isometries.

On the other hand, each surface X(I") has at least one orientation-reversing isometry,
namely the reflection across the seams.

6. Counting the number of examples in each genus

6.1. Length estimates

In this subsection, we quantify how large the girth of the signed graph I' needs to be
in terms of n for the hypothesis of Theorem 2.16 to be satisfied, that is, we estimate
a(ty)/o(ty). In particular, we estimate the length L, = a(t,) of the systoles of the resul-
ting surface X(T).
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Lemma 6.1. We have
tn = nlog(1 + v2) +0(1) and L, = a(ty) = 4nlog(l + v/2) —2log2 + o(1)
as n — oQ.

Proof. Recall that the equality a(z) = c(t) is equivalent to
tanh(e(z)/4) sinh(e(t)/4) = cosh(z) (6.1)

by the proof of Lemma 2.5, and that e(z) /4 = n arcsinh(coth(z)).

Let & > 0 and let A = log(1 4+ +/2) = arcsinh(1). We will show that if 7 is large
enough then the difference between the LHS and the RHS of (6.1) switches sign when ¢
is between nA — ¢ and nA + «.

First observe that e(¢)/4 > n arcsinh(1) = nA for every ¢t > 0 and every n. Moreover,
ift >nA —eg, thene(t)/4 <e(nir —e)/4 =nk +o(1) asn — oco. Now

tanh(x) sinh(x) = exp(x)/2 + 0o(1) and cosh(x) = exp(x)/2 + o(1)

as x — oo. Thus at nA — ¢ the LHS of (6.1) is at least exp(nA)/2 + o(1) whereas the
RHS is equal to exp(nA —€)/2 + o(1). So the RHS is smaller than the LHS at nA — ¢ if n
is large enough. Similarly, the RHS is larger than the LHS at nA + ¢ if n is large enough.
This shows that #,, is in the interval (nA — &,nA + ¢) if n is large enough. Since & > 0 was
arbitrary, t, = nA + o(1).
Recall that a(t,) = c(t,) and cosh(c/2) = sinh?(e/4). Since
arccosh(sinh?(x)) = 2x —log2 + o(1)
asx — oo and e(t,)/4 = nA + o(1) we obtain
a(ty) = c(ty) = 2arccosh(sinh?(e(t,)/4)) = 4nA —21log2 + o(1)

asn — oQ. ]

The next thing we need is an asymptotic lower bound for o (#,).
Lemma 6.2. We have o(t,) > (1 4+ ~/2)7™" if n is large enough.

Proof. According to (2.5) we have
2
cosh(a(t)) = coth“(t) =1 + m
so that
cosh(o(t)) — 1 — > 2exp(—21).
2 2 sinh?(¢)
Now x > sinh(x/2) for every x € [0, 4.354]. Morever t, > 1 for every n > 2 (see

the proof of Lemma 2.6), which implies that o'(f,) < arccosh(coth?(1)) ~ 1.141. We
conclude that

0 (ty) = sinh(0(1x)/2) = V2 exp(—t,) = V2(1 + ~/2)7"F°D > (1 4+ /2)™"

if n is large enough, where we used Lemma 6.1 for the equality sign. ]

sinh?(0(1)/2) =
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Remark 6.3. Actually, o(,) is closer to 2+4/2(1 + +/2)™", but the above is all we need.

The previous two lemmata combined together yield the following estimate for the
ratio of a(t,) over o (,). If the signed graph I" has girth larger than this, then the systoles
of X(I') are the a-, b- and c-curves according to Theorem 2.16.

Corollary 6.4. There is a constant K > 0 such that a(t,)/o(t,) < Kn(1 + ~/2)" for
everyn > 2.

For small n, we can compute f,, a(t,) and o (¢,) numerically to get a more explicit
bound on the girth (see Table 1).

Table 1. Approximate values of 7, and a(t,)/o (¢,) for small n.
n In a(tn) o(tn) a(tn)/o(tn)
2 1.745752  5.909039  0.503760  11.729861
3 2.645975  9.256205 0.201312  45.979325
4 3.526946 12.731803 0.083188  153.048057

For n = 2, the girth of I needs to be at least 12, hence the genus of X(I") at least 13.
The minimal number V' of vertices needed for a 3-regular graph I" to have girth 46 is not
known, but it is at least 2 ij'io 2/ = 16,777,214 by the Moore bound. The corresponding
surfaces X (I") have genus at least 1 + 3V//2 = 25,165,822. The genus required for n = 4
is at least 1 + 4 Z;io 3/ =2.377 — 1, which is astronomical.

6.2. Counting signed graphs

In this subsection, we give a lower bound for the number of isomorphism classes of con-
nected, n-regular, signed graphs with g — 1 edges, girth larger than a(z,,)/o (¢,), and trivial
automorphism group for g sufficiently large. This concludes the proof of Theorem 1.1
from the introduction, which we restate more precisely as follows.

Theorem 6.5. Forn,g > 3, let N(n, g) be the number of local maxima x of the systole
function in Mg with sys(x) = L, = a(t,) whose group of orientation-preserving isome-
tries is trivial. Then there exists a constant B > 0 such that for every n > 3, there is an
oy > 0 such that if g is large enough and 2(g — 1)/ n is an integer, then

N(n,g) = an(Bg)'>/m*
where o, satisfies

1
logloglog — ~ nlog(1 + \/5) asn — oo.
o

n

The asymptotic notation f(x) ~ g(x) used in the above statement means that

DACH

xi>ngo g(x)
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If the functions involved depend on several variables, we will indicate which one is sent
to infinity by writing f ~, g.

We start by giving a lower bound for the number S(n, E, w) of isomorphism classes
of unlabelled, connected, n-regular, signed graphs with E edges and girth at least w. To
simplify matters, we consider the labelled version of such graphs first.

Recall that a signed graph is a graph together with a cyclic ordering of the edges
attached to every vertex and a choice of sign between consecutive edges such that the
product of the signs around any vertex is negative. Also recall that the cyclic order around
any vertex can be reversed (and two signs around each neighbor changed appropriately)
without changing the isomorphism class of a signed graph. Thus a signed graph I" with
labelled vertices has a total of 2¥ isomorphic representations with the same vertex labels,
where V' is the number of vertices in I

Assume that a cyclic order has been chosen for the edges around each vertex (there
are (n — 1)! cyclic orders on n elements). Then there are n signs to pick around each
vertex, but since their product is required to be negative, any sign can be deduced from
the remaining ones. Hence the number of admissible sign patterns around a vertex is 2" 1.
The total number of sign patterns on the whole graph is therefore 2*=DV

Now to count the number of isomorphism classes of unlabelled signed graphs, we
have to take into account the fact that some graphs admit non-trivial automorphisms,
which could result in overcounting. To remedy this, we restrict ourselves to underlying
graphs that are asymmetric, that is, have trivial automorphism group. Let A(n, E, w) be
the number of unlabelled, connected, asymmetric, n-regular graphs with £ edges, and of
girth at least w. Then the above reasoning shows that

S(n,E,w) =22V (n -1 A, E, w). (6.2)

Note that all the signed graphs with an asymmetric underlying graph are themselves asym-
metric.

To estimate A(n, E, w) we combine a few results from graph theory. Let U(E, n, w)
be the number of unlabelled n-regular graphs with E edges and girth at least w. In the
literature, it is often assumed that the graphs are simple, namely, that w > 3 (no monogons
or bigons). To emphasize this and to maintain a consistent notation, we use U(E, n, 3) for
the number of unlabelled n-regular simple graphs with E edges.

In [7] Bollobas showed the following:

Theorem 6.6 (Bollobas). For every n > 3, we have

) .
(n—1) (2E)!
Un.E.3) ~E CXP(_Z 2i )'25 E!VI(n)Y

i=1

as E — oo in such a way that 2E is divisible by n and where V.= 2E /n is the number
of vertices in the graphs.

For the rest of the paper, the symbol f ~fg g means the ratio of f and g goes to 1
as £ — oo in such a way that 2 F is divisible by n. Wormald [56] strengthened the above
result:
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Theorem 6.7 (Wormald). For everyn > 3 and every w > 3 we have

w—1 (l’l B l)l
Un, E,w) ~ — Un, E,3).
n o)~ (= 32 5 YU .9
Together, these two results imply that
w—1 i
(n—1) QQE)!
Un,E,w) ~g exp(—Z % "3E EVID (6.3)

i=1

Bollobés also showed that regular simple graphs are generically connected [9, p. 195]
and asymmetric [8, Theorem 6].

Theorem 6.8 (Bollobas). For every n > 3 we have
A(n,E,3) ~g U, E,3).

As a consequence, a generic n-regular graph of girth at least w > 3 is also connected
and asymmetric. Indeed,

Un,E,w)— A, E,w) Y= 1)iI\U®n, E,w)— A@n, E, w)
Uln, E. w) NECXP(; 2i ) Un, E.3)

w—1 j
n—1)'\U(n,E,3)— An,E,3)
< E ~p 0
= eXp(i=3 2i Uln, E.3) £

where the first ~ is Theorem 6.7, the inequality holds because graphs of girth at least w
form a subset of the set of graphs of girth at least 3, and the last ~ is Theorem 6.8. This
shows that

A(n, E,w) ~g U(n, E,w)

for every n > 3 and w > 3.
Combining this with (6.2) and (6.3), we get (after simplification)

w—1 j
(n—1y (2E)12F

S, E,w) =g exp(— Z} o ) EVi G’ (6.4)
Proof of Theorem 6.5. By Theorem 4.2 and Corollary 6.4, for every finite connected
n-regular signed graph I" of girth larger than Kn(1 4+ +/2)", the surface X(T") is a local
maximum of the systole function at height L, = a(#,) in Mg where g = E + 1. Also, by
Theorem 5.3, non-isomorphic signed graphs correspond to distinct points in moduli space,
and if the signed graph T" is asymmetric then X(I") has a trivial group of orientation-
preserving isometries. In other words, the number of asymmetric local maxima of the
systole function at height L, in M, is at least S(n, g — 1, [Kn(1 + +/2)"| + 1) .
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Thus, we only need to simplify (6.4) and write it in terms of n and g. Set
w—1 i
(n—1)
o, = exp (— Z T
i=1
where w = | Kn(1 + +/2)" | + 1. Note that o, depends only on 7 and not on g. We have
-1 w—1
u <log— < wn".
2w oy
Taking the logarithm two more times, we get
1
logloglog — ~; logw ~, nlog(1l + V2). (6.5)
Un

We use the Stirling’s formula to simplify the remaining terms. The latter implies that there
are positive constants 1, ..., B4 such that

QE)'Ze (B18)*. E!Sg(B29)%. VIS¢ (Bsg/m)*8/™ and (4n)” <g (Ban)*/™.

Hence, after collecting the constants, we can estimate the remaining terms in (6.4) as
2
g%

(1-2/n)g
g% (g/n)2e/m p2e/n e (BY) ,

E
2E)12F ge
E\V!(4n)V ™%

for some constant 8 > 0 independent of n and g. This finishes the proof. ]
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