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Abstract. The goal of this note is to indicate a gap in the proof of Theorem 5.6 of [J. Eur. Math.
Soc. 21, 2905-2944 (2019)], and the consequences it has on other results in the same paper. Let
us stress that the main result (Theorem A), which expresses the slopes at infinity of functionals in
algebro-geometric terms, is independent of the flawed result, and thus remains valid.

1. The flawed statement

We first repeat the statement in question [1, Theorem 5.6].

Theorem 1.1. Let G be a complex reductive group with a linear action on a finite dimen-
sional complex vector space U. If the (Zariski) closure of the G-orbit of a point x € P(U)
meets a G-invariant Zariski closed subset Z C P(U), then some z € Z N G - x can be
reached by a 1-parameter subgroup A : C* — G, i.e. lim;9 A(f) - x = z.

Set X :=P(U), K := C((t)) and R := C[t]. As in [2], our approach was based on
the Iwasawa decomposition theorem, which states that each double coset in G(K) modulo
G(R) is represented by a 1-PS of G (viewed as an element of G(K)).

By properness of X, each £ € X(K) has a reduction § € X(C), to be interpreted as
lim; 0 £(z). The problem with the proof of [1, Theorem 5.6] is the claim that for any
1-PS A of G and £ € X(K), the reduction of A - £ only depends on §.

This claim is indeed incorrect, as shown by the following simple counterexample,
kindly provided to us by Yan Li.
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Example 1.2. Consider £ :=[1:0], £ :=[1:¢]in P!(K) and the 1-PS A := diag(t2,172).
Thené =§ =[1:01 e PY(C),butA-£§ =[t2:0]=[1:0,A-& =[2:t"=[t3:1],
andhence A - £ =[1:0]#[0:1]=A-&.

Remark 1.3. While our proof of Theorem 1.1 is definitely incorrect, it is nevertheless
possible, to the best of our knowledge, that the statement itself remains valid.

2. Other affected results

The main result of [1] affected by Theorem 5.6 is Theorem 5.4, which itself affects
Theorem C and Corollaries D and E. However, Theorem A and Corollary B, which are
independent of Theorem 5.6, remain valid. This is more generally the case of all results
of [1] up to and including Section 4.
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