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Abstract. We study the problem of writing Gaussian primes as the sum of two squares, both of
which are interesting arithmetically, in particular, when one is the square of a prime and the other
the square of an almost-prime.
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1. Introduction and statement of results

The modern history of prime number theory might well be said to begin with the statement
of Fermat to the effect that the primes of the form 4mC 1 can be written as the sum of
two squares. The first recorded proof is due to Euler. We think of these today as being
the primes which occur as the norms of the unramified splitting primes aC 2bi in the
Gaussian field Q.i/ and we shall refer to them as Gaussian primes. Following the proof
of the prime number theorem, we have the following well-known asymptotic formula for
the number of these:

 .xI 4; 1/ D
X
n6x

n�1 .mod4/

ƒ.n/ D
X
n6x

nDa2C.2b/2

ƒ.n/ � 1
2
x;

where we are going to restrict to a and b being positive.
Beginning in the 1990s one began seeing how to count the frequency of subsets of

these primes for which one of the squares has an additional interesting arithmetic property.
The first result to note in this connection was the work [2] of E. Fouvry and H. Iwaniec in
which the asymptotic formula was obtained for the case wherein one of the squares was
the square of a prime (actually their result was rather more general). Subsequently, in [3],
the current authors obtained the asymptotic in the setting where one of the squares was the
square of a square and thus for the number of primes which could be written as the sum
of a square plus a fourth power. This result had an additional interest in first successfully
establishing the asymptotic formula for a thin set of prime values of a polynomial, that is,
one having density� x1�ı for some positive ı.

Following a gap of some fifteen to twenty years, there have now been a number of
newer developments along these lines of research. R. Heath-Brown and X. Li [6] have
shown that, in the statement of [3], one can replace the fourth power of an integer by the
fourth power of a prime and still establish for these the relevant asymptotic formula. Very
recently, K. Pratt [8] has succeeded with the thin set obtained when one of the squares
is the square of an integer which is missing three prescribed digits from its decimal
expansion. P. Lam, D. Schindler and S. Xiao [7] have succeeded in extending the origi-
nal work [2], replacing the Gaussian integers and Gaussian primes by the corresponding
values of an arbitrary irreducible positive definite binary quadratic form.

In all of these highly interesting works one is concerned with the specialization to
a particular subset those values taken on by one of the two coordinates. In this work we
shall be motivated by the question wherein we ask something special about both of them.

We are going to count the primes � D aC 2bi in the ring ZŒi � which have their coor-
dinates a, b restricted to special integers. Ideally, we would like to reach � D aC 2bi
with a and b both primes, but we are too old to reach these by currently developed tech-
nology. However, we still have enough strength for catching � D aC 2bi with a prime
and b almost-prime.

We accomplish the goal by estimating sums of type

G.x/ D
XX
4k2C`26x

ˇk`ƒ.4k
2
C `2/
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with coefficients ˇk ; ` which live on primes and almost-primes. In most parts of our con-
siderations these coefficients can be quite general, but sometimes we have to specialize.

Let ƒr D � � .log/r denote the von Mangoldt function of order r > 1 and ƒ D ƒ1.
The ƒr .n/ vanish unless n has at most r distinct prime factors and, in any case, we have
0 6 ƒr .n/ 6 .logn/r . In the Appendix we shall give some heuristic arguments leading
to the determination of an asymptotic formula for

Gr .x/ D
XX
4k2C`26x

ƒr .k/ƒ.`/ƒ.4k
2
C `2/:

Conjecture. We have
Gr .x/ � crx.log

p
x/r�1 (1.1)

with

c D
Y

p�1.4/

�
1 �

3

p

��
1 �

1

p

��3 Y
p�3.4/

�
1 �

1

p2

��1
: (1.2)

The case r D 1 is most challenging, because it requires breaking the parity barrier of
sieve theory.

Conjecture 1.1 (Gaussian Primes Conjecture). There holdsXX
4k2C`26x

ƒ.k/ƒ.`/ƒ.4k2 C `2/ � cx: (GPC)

We are able to estimate Gr .x/ positively for r > 7.

Theorem 1.1 (G7). We haveXX
4k2C`26x

ƒ7.k/ƒ.`/ƒ.4k
2
C `2/ � x.log x/6: (1.3)

Remarks 1.1. If n is not squarefree or n has a small prime factor, thenƒr .n/ contributes
to Gr .x/ a negligible amount, so we are really catching primes 4k2 C `2 with ` prime
and k having at most r prime factors, all distinct.

In fact, we shall estimate a more restricted sum.

Theorem 1.2 (Almost Primes Theorem). Let ˇk D 1 if k has at most seven prime factors,
all of which are larger than k

1
49 , and ˇk D 0 otherwise. ThenXX

4k2C`26x

ˇkƒ.`/ƒ.4k
2
C `2/ � x.log x/�1: (1.4)

Remarks 1.2. The lower bound of (1.3) follows from the lower bound of (1.4), because
ˇk.log k/7 � ƒ7.k/. The upper bounds can be derived directly by application of any
crude sieve method so we skip the proof.

We shall establish an asymptotic formula for G.x/ with relatively small error term
where ˇ is the convolution 1 � � with � supported on a relatively short segment. Put

ˇk D
X
hjk

�h (1.5)
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with j�hj 6 1 for h squarefree, h 6 y say, �h D 0 otherwise. Obviously we have in mind
the sieve weights �h of level y. Having the weights �h at our disposal, we can build the ˇk
having our favorite property. There are numerous possibilities to play with these weights.

The second coordinate ` is counted with weight ` about which we do not need to
know much. However, after serious attempts to handle ` in great generality we gave up
this ambition, because of tremendous complications in resolving the main term in certain
bilinear forms over the Gaussian domain. We are going to assume that

j`j 6 log ` if ` is an odd prime; (1.6)

and ` D 0, otherwise. Moreover, we need the asymptotic formulaX
`6x; `�a.q/

` D
x

�.q/
CO.x.log x/�B/ (1.7)

to hold for every q > 1, .a; q/ D 1, x > 2 and anyB > 2, the implied constant depending
only on B .

Remarks 1.3. For ` D log ` formula (1.7) is just the Siegel–Walfisz theorem. Have in
mind that our assumption (1.7) is meaningful for q < .log x/A with any A > 2, but has
no value for much larger moduli. By resizing, one is allowed to multiply (1.6) and (1.7)
by a fixed positive constant independent of the residue classes a .mod q/.

Theorem 1.3 (Main Theorem). Suppose ˇh are given by (1.5) with j�hj 6 1 for h square-
free,

h 6 y D x� ; 0 < � <
1

12
;

and �h D 0, otherwise. Suppose ` satisfies (1.6) and (1.7). Then we haveXX
4k2C`26x

ˇk`ƒ.4k
2
C `2/ D �Vx CO.x.log x/�A/ (1.8)

with any A > 2, the implied constant depending only on A, where

V D
X
h6y

�hg.h/ (1.9)

and g.h/ is the multiplicative function with g.p/ D 1
p�2

if p � 1 .mod 4/ and g.p/ D 1
p

if p 6� 1 .mod 4/. Moreover,

� D
Y
p

�
1 �

�.p/

.p � 1/.p � �.p//

�
with � .mod 4/: (1.10)

Before getting to the Main Theorem let us express some principles of its proof. First of
all, our arguments borrow substantial parts from the works [2] and [4], but as we impose
restrictions on both coordinates of the Gaussian integers `C 2ki some fresh ideas occur.
We consider the sequence A D .an/ of numbers

an D
X

4k2C`2Dn

ˇk` (1.11)
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and count them over primes. There will be a lot of Fourier analysis performed so it helps
to start with a smoothed counting.

Let f .t/ be a function supported on 1
2
x 6 t 6 x, twice differentiable and such that

jtjf .j /.t/j 6 1; j D 0; 1; 2: (1.12)

We are going to evaluate asymptotically the sum

S.x/ D
X
n

anf .n/ƒ.n/: (1.13)

Theorem 1.4 (Smoothed Main Theorem). Suppose ˇk and ` satisfy the conditions of
Theorem 1.3. Then

S.x/ D �V

Z
f .t/ dt CO.x.log x/�A/ (1.14)

with any A > 2, the implied constant depending only on A.

It is not difficult to derive Theorem 1.3 from Theorem 1.4; see a brief explanation in
Section 18.

Classical ideas for estimating sums of type (1.13) begin by partitioning into a sum of
sums

Ad .x/ D
X

n�0 .modd/

anf .n/

which we call “congruence sums”, and double sums

B D
X
m

X
n

umvnamnf .mn/

with suitable coefficients um, vn, which we call “bilinear forms”. There are plenty of
possibilities, see [4, Chapters 17 and 18]. For our purpose we choose [4, Theorem 18.5],
which is derived by finessing Bombieri’s asymptotic sieve.

The congruence sums are treated in Sections 3 and 4 with an application of the
large sieve type inequality for roots of the quadratic congruence �2 C 1 � 0 .mod d/,
see Lemma 3.1. The bilinear forms are treated in Sections 7–16. These bilinear forms
are modified in various directions to create special features, as required for the applica-
tion of distinct tools. One problem of independent interest to which they give rise (see
Section 16) is further developed in [5].

2. Interlude: An easier result

If one stares at our sum

Gr .x/ D
XX
4k2C`26x

ƒr .k/ƒ.`/ƒ.4k
2
C `2/

it seems only natural to ask what happens when we consider the visually similar sum

Hr .x/ D
XX
4k2C`26x

ƒ.k/ƒ.`/ƒr .4k
2
C `2/:
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Actually, this is a much easier problem and we can obtain the correct order of magnitude
as soon as r > 3. In the Appendix we give a very short proof of the following result.

Proposition 2.1. We have
H3.x/ � x.log x/2:

3. The congruence sums

In this section we extract the main term from the congruence sum Ad .x/ and provide
a Fourier series expansion for the error term. Then we estimate the absolute remainder
(the sum of absolute values of the error terms) in Section 4.

We have

Ad .x/ D
XX

4k2C`2�0.d/

ˇk`f .4k
2
C `2/

D

X
h

X
`

�h`
X

4b2h2C`2�0.d/

f .4b2h2 C `2/:

The summation is void if d is even so we always assume that d is odd. Taking advan-
tage of ` being an odd prime, we insert the restriction .`; d/ D 1 up to an error term
O.�.d/d�1

p
x log x/, where �.d/ is the number of roots of

�2 C 1 � 0 .mod d/: (3.1)

Keep in mind that �.d/ is multiplicative with �.p/ D 1C �.p/, where � is the non-
principal character modulo 4. Consequently, .h; d/ D 1. Now we split the inner sum
over b into residue classes b � �`2h .mod d/, gettingX

�2C1�0.d/

X
b��`2h.d/

f .4b2h2 C `2/: (3.2)

Recall the popular notation a .mod d/ which stands for the multiplicative inverse of
a .mod d/; aa � 1 .mod d/ if .a; d/ D 1. Do not confuse it with complex number con-
jugation. Working with (3.2), we no longer need the restriction .`; d/ D 1 so we drop it
up to the same error term which we committed when installing it.

First we evaluate (3.2) quickly byX
�2C1�0.d/

�
1

2dh

Z 1
0

f .t2 C `2/ dt CO.1/

�
D
�.d/

2dh
I.`/CO.�.d//;

where

I.`/ D

Z 1
0

f .t2 C `2/ dt:

Hence our congruence sum satisfies the approximation

Ad .x/ D
�.d/

2d
VdW.x/CO.�.d/y

p
x/ (3.3)
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with

Vd D
X

.h;d/D1

�h

h

and
W.x/ D

X
`

`I.`/: (3.4)

If we use assumption (1.7) (the PNT for ` with q D 1), we get

W.x/ D
�

4

Z
f .t/ dt CO.x.log x/�B/: (3.5)

However, to maintain transparency we shall keep the original expression (3.4) until (1.7)
is really needed.

The elementary formula (3.3) suffices for odd integers d , uniformly in the range
d 6 y�1

p
x.log x/�A. By the large sieve for characters � .mod d/ we can get good

results on average over d <
p
x.log x/�A. However, we can do even better by apply-

ing Poisson’s formula to (3.2). We extend the summation over b > 0, b � �`2h .mod d/
to all b � �`2h .mod d/, thus counting every term twice, except for b D 0 in which case
d D 1. We find that (3.2) is equal toX

�2C1�0.d/

1

2dh

X
s

e

�
�s`2h

d

�
F`

�
s

2dh

�
� "df .`

2/

D
1

2dh

X
s

�s`2h.d/F`

�
s

2dh

�
� "df .`

2/;

where "1 D 1, "d D 0 if d ¤ 1,

F`.v/ D
1

2

Z 1
�1

f .t2 C `2/e.�vt/ dt (3.6)

and

�c.d/ D
X

�2C1�0.d/

e

�
�c

d

�
is the Weyl harmonic from the theory of equidistribution of the roots of (3.1). Hence,
for d odd we have

Ad .x/ D
�.d/

2d
VdW.x/C rd .x/CO

�
�.d/

d
y
p
x log x

�
; (3.7)

where

rd .x/ D
XX
.h;d/D1

�h`.dh/
�1
X
s>0

�s`2h.d/F`

�
s

2dh

�
: (3.8)

Here the main term comes from the zero frequency s D 0 and rd .x/ can be considered
to be an error term because it will turn out to have small effect due to cancellation in the
Weyl harmonics. The last term in (3.7) is negligible.
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There is a considerable cancellation of the terms in (3.8) due to the spacing of the
fractions �=d modulo 1 as � runs over the roots of (3.1). This property of �

d
leads to the

following inequality of large sieve type.

Lemma 3.1. Let h > 1. For any complex numbers ˛n we haveX
X<d62X
.d;h/D1

X
�2C1�0.d/

ˇ̌̌̌ X
n6N

˛ne

�
�nh

d

�ˇ̌̌̌2
6 400.hX CN/

X
n6N

j˛nj
2: (3.9)

Proof. See [4, Section 20.2].

4. Estimation of the remainder

We need a bound for the remainder

R.x;D/ D
X
d6D
d odd

jrd .x/j;

where rd .x/ is given by the Fourier series (3.8). Since we shall not take advantage of the
summation over h, we partition (3.8) into

rd .x/ D
1

d

X
.2h;d/D1

�hh
�1rd .xI h/;

where

rd .xI h/ D
X
`

`
X
s>0

�s`2h.d/F`

�
s

2dh

�
; (4.1)

and we estimate the partial remainders

Rh.X/ D
X

X<d62X
.d;2h/D1

jrd .xI h/j (4.2)

separately for every h 6 y and 1 6 2X 6 D. We have

jR.x;D/j 6
X
h6y

j�hjh
�1
X
X

Rh.X/X
�1; (4.3)

where X D D
2
; D
4
; D
8
; : : : .

In order to apply (3.9) we build a single variable n D s` out of the two variables s
and ` which we need to separate from the modulus d . We accomplish the separation by
the change of the variable t in the Fourier integral (3.6) into t

s

p
x getting

F`

�
s

2dh

�
D

p
x

s

Z 1
0

f

�
`2 C

xt2

s2

�
cos
�
�t
p
x

dh

�
dt: (4.4)

The trivial bound

F`

�
s

2dh

�
�
p
x
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cannot be improved if s � dh=
p
x � hX=

p
x D S , say. If s is larger, we can gain by

twice integrating (4.4) by parts. We obtain another expression

F`

�
s

2dh

�
D �

2
p
x

s

�
dh

�s

�2 Z 1
0

�
f 0 C

2xt2

s2
f 00
�

cos
�
�t
p
x

dh

�
dt; (4.5)

where the derivatives f 0, f 00 are evaluated at `2 C xt2

s2
. Now estimating (4.5) trivially,

we get

F`

�
s

2dh

�
�
p
x

�
S

s

�2
:

Let S0 � 1. The part of (4.1) with S0 6 s < 2S0 is estimated by

p
x

Z 2S0

0

ˇ̌̌̌ X
n6N

˛n.t/�n2h.d/

ˇ̌̌̌
dt (4.6)

with N D 2
p
xS0, where ˛n.t/ does not depend on d ,

˛n.t/ D
X
`sDn

S06s<2S0

`s
�1f

�
`2 C

xt2

s2

�
� S�10 logn:

Summing (4.6) overX < d 6 2X with .d; 2h/D 1, we derive by estimate (3.9) (apply the
Cauchy–Schwarz inequality) that the partial remainder (4.2) restricted by S0 6 s < 2S0
is bounded by

.xX/
1
2 .hX C

p
xS0/

1
2 .
p
xS0/

1
2 log.xS0/: (4.7)

We have derived (4.7) using formula (4.4). Similarly, if we use formula (4.5), then we get
the bound (4.7) with an extra factor . S

S0
/2. Combining both bounds, we see that, with opti-

mal cutoff point, the worst result comes from S0 � S D
hXp
x

. Hence, we conclude that

Rh.X/� hx
1
2X

3
2 log x: (4.8)

Finally, inserting (4.8) into (4.3), we obtain

Proposition 4.1. We have

R.x;D/� y.Dx/
1
2 log x: (4.9)

Remark 4.1. The bound (4.9) is useful if y2D � x.log x/�A.

5. A model for A D .an/

By means of multiplicative functions we construct a sequence for which the main terms
of the congruence sums agree with those for Ad .x/. We consider B D .bn/ with the
numbers

bn D  .n/
X

.2h;n/D1

�h�.h/

h
; (5.1)
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where the multiplicative functions  .n/ and �.h/ are given by

 .2˛/ D 1; �.2˛/ D 1

and

 .p˛/ D �.p/

�
1 �

1

p

��
1 �

�.p/

p

��1
; �.p˛/ D

�
1 �

�.p/

p

��1
if p ¤ 2 and ˛ > 1. Recall that �.p/ D 1C �.p/ is the number of roots of the congru-
ence �2 C 1 � 0 .modp/.

Let w.y/ be a smooth function supported on 0 < y < 1 withZ 1

0

w.y/ dy D 1:

We are going to evaluate asymptotically the sum

Bd .x/ D
X

n�0 .modd/

bnw

�
n

x

�
:

Note that Bd .x/ D 0 if d is even.

Proposition 5.1. For d odd we have

Bd .x/ D
x

H

�.d/

2d
Vd CO

�
�.d/
p
d

Y
pjd

�
1C

1
p
p

�
p
x log x

�
; (5.2)

where H is the constant

H D
Y
p

�
1 �

�.p/

p

��
1 �

1

p

��1
: (5.3)

The implied constant in (5.2) depends only on the crop function w.

Proof. We execute the summation via L-functions rather than by Poisson’s formula. We
have

Bd .x/ D
X

.h;d/D1

�h
�.h/

h

X
.n;2h/D1

 .dn/w

�
dn

x

�
:

The corresponding Dirichlet series is equal to

L.s/ D
X

.n;2h/D1

 .dn/.dn/�s

D
 .d/

d s

Y
pjd

�
1 �

1

ps

��1 Y
p−2dh

�
1C

 .p/

ps

�
1 �

1

ps

��1�

D
 .d/

d s
�.s/

Y
pj2h

�
1 �

1

ps

� Y
p−2dh

�
1C

 .p/ � 1

ps

�

D
 .d/

d s
�.s/

Y
pj2h

�
1 �

1

ps

� Y
p−dh

�
1C

�.p/

ps

�
1 �

�.p/

p

��1�
:
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Now we borrow L.s;�/
�.2s/

and return it in the form of its Euler product, getting

L.s/ D
�.s/L.s; �/

�.2s/
P.s/

 .d/

d s

Y
pj2h

�
1 �

1

ps

� Y
pjdh

�
1C

�.p/

ps

�
1 �

�.p/

p

��1��1
;

where

P.s/ D
Y
p

�
1 �

�.p/

ps

��
1 �

1

p2s

��1�
1C

�.p/

ps

�
1 �

�.p/

p

��1�
:

For p ¤ 2 the local factor of P.s/ is 1C �.p/=.p � 1C �.p//.ps C �.p// so the prod-
uct converges for Re s > 0. We compute the residue of L.s/ at s D 1

res
sD1

L.s/ D P
 .d/

d

Y
pj2h

�
1 �

1

p

� Y
pjdh

�
1 �

�.p/

p

��
1 �

1

p

��1
D

P�.d/

2d�.h/
;

where P D P.1/L.1;�/
�.2/

. Checking the local factors, we find

P D
Y
p

�
1 �

�.p/

p

��1�
1 �

1

p

�
D

1

H
:

Finally, (5.2) follows by contour integration with the error term obtained by trivial esti-
mations on the line Re s D 1

2
.

Remarks 5.1. The main term of formula (5.2) agrees with that of (3.7) after normaliza-
tion. Checking the local factors of H in (5.3) and � in (1.10) against L.1; �/, we see
that

� D HL.1; �/ D
�

4
H:

6. Sums over primes

Theorem 18.5 of [4] gives an inequality between a sum over primes, sums of congru-
ence sums and a bilinear form. We can use this inequality as it stands, but we get faster
results with a slightly different inequality (which is actually derived in [4], but not stated
explicitly).

Proposition 6.1. Let 1 < z 6
p
x. For any complex numbers cn we haveˇ̌̌̌ X

xz�2<n6x

cnƒ.n/

ˇ̌̌̌
6
ˇ̌̌̌X
d6z

�.d/C 0d .x/

ˇ̌̌̌
C .log x/

X
d6xz�1

jCd .x/j

C 2.log x/
X
n

ˇ̌̌̌ X
mn6x
z<m6z2

�.m/cmn

ˇ̌̌̌
; (6.1)

where
C 0d .x/ D

X
n6x
n�0.d/

cn logn; Cd .x/ D
X
n6x
n�0.d/

cn:
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Remarks 6.1. The double sum overm, n is a bilinear form. The key feature of this form is
that the inner sum is weighted by the clean Möbius function �.m/; it is not contaminated
by some incomplete Dirichlet convolutions presented by similar identities in the literature.
Moreover, we sum �.d/C 0

d
.x/ with the Möbius factor �.d/ rather than with absolute

values. This slight (not vital) difference will simplify our work.

We apply (6.1) with z D xı , 0 < ı 6 1
8

, for the sequence of numbers

cn D anf .n/ �H
W.x/

x
w

�
n

x

�
bn;

where A D .an/ is our target sequence (1.11) and B D .bn/ is its model (5.1). Note
that cn D 0, unless n < x, n odd. The congruence sums of C D .cn/ have no main term;
compare (3.7) with (5.2).

On the left-hand side of (6.1) we get (up to O.xz3/)X
n

anf .n/ƒ.n/ �H
W.x/

x

X
n

bnƒ.n/w

�
n

x

�
D S.x/ �H

W.x/

x

X
h

�h
�.h/

h

X
.n;2h/D1

 .n/ƒ.n/w

�
n

x

�

D S.x/ �H
W.x/

x
V

X
p�1.4/

2w

�
p

x

�
logp CO.

p
x log x/

D S.x/ �HVW.x/CO.x.log x/�A/

by the PNT, where A is any number > 2.
On the right-hand side of (6.1) we get three sums. The first sum is

R0 D
X
d6z
d odd

�.d/

� X
n�0.d/

anf .n/ logn �H
W.x/

x

X
n�0.d/

bnw

�
n

x

�
logn

�
:

The second sum is

R D
X

d6xz�1

d odd

ˇ̌̌̌
Ad .x/ �H

W.x/

x
Bd .x/

ˇ̌̌̌
:

The third sum is the bilinear form

B D
X
n

ˇ̌̌̌ X
z<m6z2

�.m/amnf .mn/ �H
W.x/

x

X
z<m6z2

�.m/bmnw

�
mn

x

�ˇ̌̌̌
:

We estimateR0 by applying two elementary approximations to the main terms, namely
formula (3.3) with f .t/ replaced by f .t/ log t and formula (5.2) with w.y/ replaced
by w.y/ log xy. We obtain

R0 D
X
d6z
d odd

�.d/
�.d/

2d
Vd
X
`

`

Z 1
0

f .t2 C `2/

Z 1

0

w.y/ log
�
t2 C `2

xy

�
dy dt

CO.yz
p
x log x/:
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Note that the extra logarithmic factors log t and log xy in the crop functions make the
resulting main term different. They do not match exactly, yet they are close. If f .t/ is
supported in a relatively short interval centered at cx with the constant

c D exp
�Z

w.y/ logy dy
�
;

then the above main terms cancel out up to a sufficiently small error term, showing that
R0 is negligible. But we do not need to make such a restriction for f .t/, because we may
exploit cancellation from the summation over d . Indeed, by the PNT we getX

d6z
d odd

�.d/
�.d/

2d
Vd D

X
h

�h

h

X
d6z

.d;2h/D1

�.d/
�.d/

2d
� .log z/�A:

Hence
R0 � x.log x/�A

with any A > 2, the implied constant depending only on A.
In the second sum R the main terms match exactly, they cancel out and the remaining

terms are estimated in (4.9), (5.2), respectively. We get

R� z�
1
2 yx.log x/:

In the bilinear form B we also get cancellation due to sign changes of the Möbius
function �.m/. It is difficult to see that the function �.m/ does not correlate with the
original sequence amn, but this is clear for the model sequence bmn. We haveX

z6m6z2

�.m/bmnw

�
mn

x

�
D

X
.2h;n/D1

�h
�.h/

h

X
z<m6z2

.m;2h/D1

�.m/ .mn/w

�
mn

x

�
:

By the PNT we find that the last sum overm is� n�1x.log x/�A�3. Next, summing over
h 6 y and n < xz�1 we lose a factor .log x/2. Hence the total contribution of the model
sequence to the bilinear form B is� x.log x/�A�1 so we are left with

B.x; z/ D
X
n

ˇ̌̌̌ X
z<m6z2

�.m/amnf .mn/

ˇ̌̌̌
: (6.2)

Adding up the above estimates, we conclude this section with the following result
which does not contain the model sequence.

Proposition 6.2. Let
y2.log x/2AC4 6 z 6 x

1
8 : (6.3)

Then
jS.x/ �HVW.x/j 6 2B.x; z/ log x CO.x.log x/�A/: (6.4)

If we assume (1.7), then W.x/ satisfies (3.5) so (6.4) becomes

jS.x/ � �V

Z
f .t/ dt j 6 2B.x; z/ log x CO.x.log x/�A/:
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To complete the proof of (1.14), it remains to show that

B.x; z/� x.log x/�A�1 (6.5)

subject to condition (6.3).

7. Bilinear forms in the Gaussian domain

It remains to estimate the bilinear form (6.2). We need the bound

B.x; z/� x.log x/�A�1 (7.1)

with any A > 2. In this section we make several simplifications before launching the
essential arguments.

First we split the segment z < m 6 z2 into dyadic intervals M < m 6 2M . Assume
for simplicity that log z

log2 is an integer so we cover the segment exactly with 2 log z
log2 dyadic

intervals. We get

B.x; z/ 6
X
M

X
n

ˇ̌̌̌ X
m�M

�.m/amnf .mn/

ˇ̌̌̌
;

where M runs over the numbers z; 2z; 4z; : : : . Next we transfer the common factor
c D .m; n/ from m to n getting

B.x; z/ 6
X
M

X
n

X
c2jn

ˇ̌̌̌ X
m�Mc
.m;n/D1

�.m/amnf .mn/

ˇ̌̌̌
:

The contribution of terms with c > C is estimated trivially byX
h

j�hjh
�1
X
c>C

�.c/c�2x log x � C�1x.log x/2:

This bound satisfies (7.1) if C D .log x/AC3. Now we ignore the condition c2 j n for
c 6 C getting

B.x; z/ 6 B�.M/.log x/AC4 CO.x.log x/�A�1/;

where

B�.M/ D
X
n

ˇ̌̌̌ X
m�M
.m;n/D1

�.m/amnf .mn/

ˇ̌̌̌

for someM with z
C

6 M < z2. Note that the support of f .t/ implies that n runs over the
segment N

4
< n < N with MN D x.

Next we write (see (1.5) and (1.11))

an D
X
h

�han.h/;
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where
an.h/ D

X
4k2C`2Dn

hjk

`:

Hence
B�.M/ 6

X
h

j�hjB
�
h .M/;

where

B�h .M/ D
X
n

ˇ̌̌̌ X
m�M

.m;2hn/D1

�.m/amn.h/f .mn/

ˇ̌̌̌
:

Note that we have introduced the restriction .m; 2h/ D 1, which is permitted because it is
redundant. Indeed, if e D .m; 2h/ ¤ 1, then e j `2, e j `, e2 j mn, e2 j m, contradiction!

Typically, for bilinear forms of this nature, one applies Cauchy’s inequality and inter-
changes the order of summation. However, in our case amn.h/ has multiplicity which
would become more difficult to treat after application of Cauchy’s inequality. Our next
step is to express the variables in terms of Gaussian integers so that there is no multiplicity,
after which Cauchy’s inequality can be applied without leading to such complications.

In the following, the gothic letters a;b;m;n; : : : denote Gaussian integers and the
corresponding latin letters a, b, m, n; : : : denote the norms; a D aa, b D bb, m D mm,
n D nn; : : : . By the unique factorization in ZŒi � we obtain B�

h
.M/ 6 B�

h
.M/, where

B�h .M/ D
X

n

ˇ̌̌̌ X
.m;2hn/D1; m�M

Im mn�0.2h/

�.m/�.mn/f .mn/

ˇ̌̌̌
:

Here we put
�.a/ D Re a:

Note that m D mm is squarefree odd so this inner sum runs over Gaussian integers
m with .m;m/ D 1 (called primitive). In this case the Möbius function �.m/ in ratio-
nal integers agrees with the Möbius function �.m/ in Gaussian integers. For notational
convenience we shall be writing m �M to say that m D mm �M .

The condition .m; n/ D 1 was needed for performing the unique factorization in ZŒi �.
After that, the resulting condition .m;n/ D 1 is a hindrance so we are going to remove it
using a similar argument by which we inserted it, but now in the Gaussian domain.

We start from the formulaX
bcDm;cjq

�.b/ D

´
4�.m/ if .m;q/ D 1;
0 otherwise;

which holds for any m, q in ZŒi �, mq ¤ 0 (the factor 4 accounts for four units). Hence
the inner sum in B�

h
.M/ is bounded byX

cjn1

ˇ̌̌̌ X
.cm;2h/D1; cm�M

Im cmn�0.2h/

�.m/�.cmn/f .cmn/

ˇ̌̌̌
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and

B�h .M/ 6
X

n

X
cjn1

ˇ̌̌̌ X
m�Mc ; .m;2h/D1

Im mn�0.2h/

�.m/�.mn/f .mn/

ˇ̌̌̌
:

Note that there is no condition .m; c/ D 1.
We keep the terms with c 6 C1 D .log x/2AC8 and estimate the remaining terms with

larger c trivially getting

B.x; z/ 6 B.M/.log x/3AC12 CO.x.log x/�A�1/

for some M with z
CC1

6 M < z2, where

B.M/ D
X
h

j�hjBh.M/

and

Bh.M/ D
X

n

ˇ̌̌̌ X
m�M; .m;2h/D1

Im mn�0.2h/

�.m/�.mn/f .mn/

ˇ̌̌̌
: (7.2)

Now we need to show that

B.M/� x.log x/�4A�13

for some M with
z.log x/�3A�11 6 M < z2: (7.3)

Some properties of n in the outer sum of (7.2) are hidden but can be inferred from the
equation mn D 4b2h2 C `2 and the support of f .mn/ being x

2
< mn < x. In particular,

the inequality ` <
p
x is redundant information in every expression containing the crop

function f . From now on the dyadic segment m �M never changes so sometimes we
skip writing m �M or m �M , but never forget it.

Now we are ready to apply Cauchy’s inequality as follows:

B2.M/� C.M/N logy;

where
C.M/ D

X
h

j�hjhCh.M/ (7.4)

and

Ch.M/ D
X

n

ˇ̌̌̌ X
m�M; .m;2h/D1

Im mn�0.2h/

�.m/�.mn/f .mn/

ˇ̌̌̌2
:

Note that we borrowed a factor h into C.M/. Now we need to show that

C.M/� NM 2.log x/�8A�27: (7.5)

Squaring out and interchanging the order of summation, we write

Ch.M/ D
XX

.m1m2;2h/D1

m1�M;m2�M

�.m1/�.m2/Dh.m1;m2/ (7.6)
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with
Dh.m1;m2/ D

X
n

�.m1n/�.m2n/f .m1n/f .m2n/; (7.7)

where the summation runs over all Gaussian integers n satisfying

Im m1n � Im m2n � 0 .mod 2h/:

Opening the Gaussian domain, we see that

Dh.m1;m2/ D
X
`1

X
`2

`1`2f .m1n/f .m2n/; (7.8)

where the summation runs over the solutions of the system

m1n D `1 C 2hb1i;

m2n D `2 C 2hb2i

in n, `1, `2 and b1, b2. Since b1, b2 run over rational integers unrestricted, equivalently
we can express this system by two congruences

m1n � m1n .mod 4h/;
m2n � m2n .mod 4h/

(7.9)

and two equations
m1nCm1n D 2`1;

m2nCm2n D 2`2:
(7.10)

Put
� D �.m1;m2/ D

i

2
.m1m2 �m1m2/ D Im m1m2

so � is a rational integer, relatively small;

j�j < 4M < 4z2:

8. The diagonal terms

First we give a quick estimation of Dh.m1;m2/ in the singular case�D�.m1;m2/D 0.
We get m1m2 D m1m2, m1 j m2 and m2 j m1, m2 D "m1 with " D ˙1;˙i . From
system (7.10) we obtain

`1m2 � `2m1 D �i�n:

In the singular case this yields "`1 D `2, so " D 1. Therefore we have m1 D m2 D m
and `1 D `2 D `, say. In this case Dh.m;m/ is bounded by the number of solutions in b
and ` of

`C 2hbi � 0 .mod m/; j`C 2hbi j <
p
x:

Here jbj <
p
x

2h
and ` <

p
x, `2 C 4h2b2 � 0 .modm/. Hence we conclude that

Dh.m;m/�
x�.m/

mh
:
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The contribution of Dh.m;m/ to Ch.M/ is estimated by

x

h

X
m�M

�.m/

m
6
x

h

X
m�M

�.m/2

m
�

x

h
.logM/2:

Hence the contribution of Dh.m;m/ to C.M/ is� yx.log x/2 � NM 2.log x/�8A�27

by (7.4) as required by (7.5), provided

y.log x/11AC40 6 z: (8.1)

9. In the off-diagonal area

From now on we assume that � D �.m1;m2/ ¤ 0. Now the system of equations (7.10)
has a unique solution in the complex number n given by

i�n D `1m2 � `2m1: (9.1)

Since n must be a Gaussian integer, this means `1, `2 satisfy

`1m2 � `2m1 .mod�/: (9.2)

For n given by (9.1) the congruences (7.9) become

m1.`1m2 � `2m1/Cm1.`1m2 � `2m1/ � 0 .mod 4�h/;
m2.`1m2 � `2m1/Cm2.`1m2 � `2m1/ � 0 .mod 4�h/:

We write these congruences in the form similar to (9.2):

`1.m1m2 Cm1m2/ � 2`2m1 .mod 4�h/; (9.3)
`2.m1m2 Cm1m2/ � 2`1m2 .mod 4�h/: (9.4)

In other words the summation in (7.7) runs over the odd prime numbers `1, `2 satisfying
the congruences in (9.2), (9.3), (9.4), and n D nn is determined by (9.1).

The congruences (9.2), (9.3), (9.4) imply several conditions on m1, m2. It will be
easier to see these conditions after pulling out the common factor d D .m1;m2/. We put
(temporarily)

m1 D a1d; m2 D a2d with .a1; a2/ D 1:

Note that d is primitive and .d; 2ha1a2/ D 1, because m1, m2 are primitive squarefree,
co-prime with 2h. Put

D D �.a1; a2/ D
�.m1;m2/

d
; d D dd:

Note that .a1a2; 2D/ D 1. Dividing (9.2) by d and conjugating, we get

`1a2 � `2a1 .mod dD/; (9.5)

and dividing (9.3), (9.4) by d D dd, we get

`1.a1a2 C a1a2/ � 2`2a1 .mod 4Dh/ (9.6)
`2.a1a2 C a1a2/ � 2`1a2 .mod 4Dh/: (9.7)
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Recall that a1 D a1a1 and a2 D a2a2. Since a1a2 C a1a2 D 2a1a2 C 2iD, we can write
(9.6) and (9.7) in the form

`1.a1a2 C iD/ � `2a1 .mod 2Dh/ (9.8)
`2.a1a2 C iD/ � `1a2 .mod 2Dh/: (9.9)

Multiplying these congruences by sides and dividing by `1`2, we getD2 � 0 .mod 2Dh/,
hence

D � 0 .mod 2h/ and � � 0 .mod 2h/: (9.10)

Having condition (9.10) it is now clear that (9.8) is equivalent to (9.9). Indeed, (9.8)
implies

a1`2.a1a2 C iD/ � `1.a1a2 C iD/
2

D `1.a
2
1a
2
2 C 2iDa1a2 �D

2/

D a1`1a2 � `1D
2

� a1`1a2 .mod 2Dh/;

which yields (9.9). Conversely (9.9) implies (9.8) by similar arguments.
We are left with (9.5) and (9.9). These two congruences determine `2=`1 uniquely

modulo the least common multiple of dD and 2Dh which is 2dDh. Since `2=`1 is ratio-
nal, it is determined uniquely modulo the least common multiple of 2dDh and 2dDh
which is 2dDh. Therefore we can write the two congruences (9.5) and (9.9) for `1, `2 as
one congruence

`2 � !`1 .mod 2dDh/; (9.11)

where ! is the unique rational reduced residue class modulo 2dDh D 2�h such that

!a1 � a1a2 .mod dD/

and
!a1 � a1a2 C iD .mod 2Dh/:

By (7.8) and (9.11) we can write

Dh.m1;m2/ D
XX

`2�!`1 .mod2�h/

`1`2f .m2n/f .m1n/ (9.12)

with n given by (9.1), that is n is a quadratic form in `1, `2;

n D n.`1; `2/ D j`1m2 � `2m1j
2��2: (9.13)

By the distribution of primes `1, `2 in arithmetic progressions we expect that the main
term of (9.12) should be

Eh.m1;m2/ D
1

'.2�h/

X
`1

X
`2

`1`2f .m2n/f .m1n/ (9.14)
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which does not depend on !. Subtracting Eh.m1;m2/ from Dh.m1;m2/ we get

Rh.m1;m2/ D
XX

`2�!`1.2�h/

`1`2f .m2n/f .m1n/

�
1

'.2�h/

X
`1

X
`2

`1`2f .m2n/f .m1n/

(9.15)

which is regarded as an error term.
We need to sum Eh.m1;m2/ and Rh.m1;m2/ over m1, m2 as in (7.6) and over h

as in (7.4) restricted by�.m1;m2/ � 0 .mod 2h/, see (9.10). Therefore our moduli 2�h
run over multiples of 4h2.

10. Separation of variables

In Section 12 we shall estimate the error terms by means of the large sieve. To this end,
we need to separate the variables `1, `2 from m1, m2, because m1, m2 are constituents
of the moduli �.m1;m2/h. Although in most cases the determinant �.m1;m2/ is as
large as M , it can take smaller values which require special attention. Our technique of
separation of variables addresses this issue.

We are going through the Fourier transform of

f .x1; x2/ D f .m2n.x1; x2//f .m1n.x1; x2//

D

“
g.˛1; ˛2/e.˛1x1 C ˛2x2/ d˛1 d˛2;

(10.1)

where

g.˛1; ˛2/ D

“
f .x1; x2/e.�˛1x1 � ˛2x2/ dx1 dx2: (10.2)

Recall that n.x1; x2/ is the quadratic form given by (9.13). By the linear change of
variables .x1; x2/ D .x; y/ given by

x1 D x Im
m1

m2

C y Re
m1

m2

; x2 D y;

we diagonalize n.x1; x2/ D 1
m2
.x2 C y2/ getting

g.˛1; ˛2/ D I

“
f .x2 C y2/f

�
m1

m2
.x2 C y2/

�
e.�˛1Ix � .˛2 C ˛1R/y/ dx dy;

where we denote temporarily I D Im m1
m2

and R D Re m1
m2

. Note that

I D �
�.m1;m2/

m2
¤ 0

so jI j > M�1. Moreover,
I 2 CR2 D

m1

m2
� 1

so if I is small, then jRj � 1.
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Because f .x2 C y2/f ..x2 C y2/m1
m2
/ is radial, so is its Fourier transform. Precisely,

it holds in general that“
f .x2 C y2/e.�ax � by/ dx dy D F.a2 C b2/; (10.3)

where F.s/ is the Hankel transform of f .t/,

F.s/ D �

Z 1
0

J0.2�
p
st/f .t/ dt:

Here J0.z/ is the Bessel function

J0.z/ D
1

�

Z �

0

cos.z cos˛/ d˛:

For the proof of (10.3) apply polar coordinates.
In our case

s D a2 C b2 D .˛1I /
2
C .˛2 C ˛1R/

2

is the quadratic form

s.˛1; ˛2/ D

ˇ̌̌̌
˛2 C ˛1

m1

m2

ˇ̌̌̌2
D ˛22 C 2˛1˛2 Re

m1

m2

C ˛21
m1

m2
; (10.4)

F.s/ D �

Z 1
0

J0.2�
p
st/f .t/f

�
tm1

m2

�
dt; (10.5)

g.˛1; ˛2/ D IF.s.˛1; ˛2// (10.6)

and

f .m2n/f .m1n/ D I

“
F.s.˛1; ˛2//e.˛1`1 C ˛2`2/ d˛1 d˛2: (10.7)

Going through the Fourier transform, we lost sight on the ranges of `1, `2 so let us record
that

`1; `2 <
p
x: (10.8)

This information is redundant when the original function (10.1) is present.
Estimating directly and after integrating by parts two times of (10.5), we find that

F.s/� x.1C sx/�2:

Hence F.s/ is very small if s > x�1.log x/2C so the integration (10.7) runs effectively
over the set (ellipse)

S D
®
.˛1; ˛2/ 2 R2 W s.˛1; ˛2/ D .˛1I /

2
C .˛2 C ˛1R/

2 6 x�1.log x/2C
¯

whose volume (the Lebesgue measure) is equal to

jS j D
�.log x/2C

jI jx
: (10.9)
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Note that the trivial integration shows that (10.7) is bounded

jI j

“
R2
jF.s.˛1; ˛2//j d˛1 d˛2 D

“
R2
jF.˛21 C ˛

2
2/j d˛1 d˛2

� x

“
R2
.1C .˛21 C ˛

2
2/x/

�2 d˛1 d˛2

D

“
R2
.1C ˛21 C ˛

2
2/
�2 d˛1 d˛2 � 1:

Similarly we find that the integral over R2 n S is small;

jI j

“
R2nS

jF.s.˛1; ˛2//j d˛1 d˛2 � jI jx.log x/�C
“

R2
.1C s.˛1; ˛2/x/

� 32 d˛1 d˛2

D .log x/�C
“

R2
.1C ˛21 C ˛

2
2/
� 32 d˛1 d˛2

� .log x/�C :

Therefore, we lost essentially nothing by the separation of the variables `1, `2 through the
Fourier transform (10.7). We get

f .m2n/f .m1n/D I

“
S

F.s.˛1; ˛2//e.˛1`1C˛2`2/ d˛1d˛2CO..logx/�C /: (10.10)

11. Estimation of R00
h
.m1; m2/

Recall that the error term Rh.m1;m2/ is given by (9.15). Introducing (10.10) into (9.15),
we get

Rh.m1;m2/ D R0h.m1;m2/CR00h.m1;m2/

where

R00h.m1;m2/�
x

'.�h/
.log x/�C ; (11.1)

R0h.m1;m2/ D I

“
S

F.s.˛1; ˛2//H.˛1; ˛2/ d˛1 d˛2 (11.2)

and
H.˛1; ˛2/ D

X
`2�!`1.2�h/

`1`2e.˛1`1 C ˛2`2/

�
1

'.2�h/

X
`1

X
`2

`1`2e.˛1`1 C ˛2`2/:

(11.3)

The total contribution of R00
h
.m1;m2/ to Ch.M/ is (see (7.6) and (9.10))XX

.m1m2;2h/D1

0¤�.m1;m2/�0.2h/

�.m1/�.m2/R
00
h.m1;m2/:
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The determinant� D �.m1;m2/ occurs with a multiplicity which is bounded by 8M so
the above contribution is bounded by

Mx.log x/�C
X

16�<4M
��0.2h/

1

'.�h/
� h�2Mx.log x/2�C :

Inserting this bound into (7.4), we find that the total contribution of R00
h
.m1;m2/ to

C.M/, say C 00.M/, satisfies

C 00.M/�Mx.log x/3�C :

This bound satisfies our requirement (7.5) if we take C to be a sufficiently large constant,
specifically C > 8AC 30.

12. Small determinant

The estimation R0
h
.m1;m2/ is quite delicate because the determinant�D�.m1;m2/D

Imm1m2 can be small, in which case the separation of the variables `1, `2 by means of the
Fourier transform (see (11.2) and (11.3)) cannot be treated in a straightforward fashion.
The set S has relatively large measure, see (10.9), and there is a lot of room for ˛1. Recall
that s.˛1; ˛2/ is the quadratic form in ˛1, ˛2 and

s.˛1; ˛2/ D .˛1I /
2
C .˛2 C ˛1R/

2 6 .�I /2

with

I D Im
�

m1

m2

�
D �

�

m2
�
j�j

M
; R D Re

�
m1

m2

�
� 1

and

� D
.log x/C
p
xjI j

; so j˛1j 6 �; j˛2 C ˛1Rj < �jI j:

We detect the congruence `2 � !`1 .mod 2�h/ in (11.3) by means of Dirichlet char-
acters � .mod 2�h/ getting

jH.˛1; ˛2/j 6
1

'.2�h/

X
�¤�0

ˇ̌̌̌X
`

`�.`/e.˛1`/

ˇ̌̌̌ˇ̌̌̌X
`

`�.`/e.�˛2`/

ˇ̌̌̌
: (12.1)

Hence, by the Cauchy–Schwarz inequality

R0h.m1;m2/ D I

“
S

FH � jI jx

“
S

jH j

6 jI j
x

'.2�h/

�X
�

“
S

ˇ̌̌X
`

`�.`/e.˛1`/
ˇ̌̌2� 12

�

�X
�

“
S

ˇ̌̌X
`

`�.`/e.�˛2`/
ˇ̌̌2� 12

:
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Note that we have included � D �0. From the first sum of integrals we getX
�

“
S

ˇ̌̌X
`

ˇ̌̌2
6 2�jI j

X
�

Z
j˛j<�

ˇ̌̌X
`

`�.`/e.˛`/
ˇ̌̌2
d˛:

Now we enlarge the integral by introducing a majorant weight function w.˛/ whose
Fourier transform Ow.v/ has compact support. For this job we choose

w.˛/ D 4

� sin �˛
2�

�˛
2�

�2
; Ow.v/ D 8�max.1 � 2�jvj; 0/:

We get the bound

16�2jI j'.2�h/
XX

`1�`2.2�h/

j`1�`2j<
1
2�

j`1`2 j � �jI j
p
x D .log x/C :

From the second sum of integrals we getX
�

“
S

ˇ̌̌X
`

ˇ̌̌2
6 jS j'.2�h/

XX
`1�`2.2�h/

j`1`2 j �
.log x/2C

jI j
:

Multiplying both estimates we conclude that

R0h.m1;m2/�
jI j

1
2

'.�h/
x.log x/

3C
2 :

This bound is better than (11.1) for R00
h
.m1;m2/ if

jI j 6 .log x/�5C : (12.2)

Therefore we are done in this case.

13. Estimation of R0
h
.m1; m2/ on average

In most cases

I D Im
m1

m2

D �
�

m2
�
j�j

M

is not smaller than (12.2). Assuming I does not satisfy (12.2), we give a better treatment
of R0

h
.m1;m2/ using the Siegel–Walfisz condition and the large sieve inequality.

We begin by removing the twists by additive characters from the multiplicative char-
acter sum (12.1). To this end, we apply partial summation losing factors 1C 2�j˛1j

p
x

and 1C 2�j˛2j
p
x. Specifically, we apply the expression

e.˛`/ D 1C 2�i˛

Z `

0

e.˛t/ dt (13.1)
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to the sums over ` in (12.1) getting

jH.˛1; ˛2/j 6 .1C 2�j˛1j
p
x/.1C 2�j˛2j

p
x/G.t1; t2/

with

G.t1; t2/ D
1

'.�h/

X
�¤�0

ˇ̌̌̌ X
t1<`<

p
x

`�.`/

ˇ̌̌̌ˇ̌̌̌ X
t2<`<

p
x

`�.`/

ˇ̌̌̌
for some 0 < t1; t2 <

p
x. The loss is not large because, for .˛1; ˛2/ in S ,

.1C 2�j˛1j
p
x/.1C 2�j˛2j

p
x/� I�2.log x/2C 6 .log x/12C :

Integrating this over S against F.s.˛1; ˛2//� x, we conclude by (11.2) that

R0h.m1;m2/� G.t1; t2/.log x/14C : (13.2)

Remarks 13.1. The cropping parameters t1 and t2 come from integration in the expres-
sion (13.1). We could carry such integration to the very end of our arguments and only
then choose the worst values t1, t2 which are independent of the preceding variables m1,
m2, h. To simplify the presentation we accept (13.2) having t1, t2 independent of m1,
m2, h. By 2G.t1; t2/ 6 G.t1; t1/CG.t2; t2/, we arrive at

R0h.m1;m2/� .log x/14C
1

'.2�h/

X
�¤�0

jL.�/j2

with
L.�/ D

X
t<`<

p
x

�.`/`

for t D t1 or t D t2.

We need to sum R0
h
.m1;m2/ over m1, m2 as in (7.6) and over h as in (7.4) sub-

ject to the condition � D �.m1;m2/ � 0 .mod 2h/, see (9.10). The total contribution
of R0

h
.m1;m2/ to C.M/ is bounded by R.M/.log x/14C , where

R.M/ D
X
h

j�hjh
XX

.m1;m2;2h/D1

0¤�.m1;m2/�0.2h/

j�.m1/�.m2/j

'.2�h/

X
� .mod2�h/
�¤�0

jL.�/j2:

Recall thatm1 �M ,m2 �M and m1, m2 are primitive. The determinant� occurs with
certain multiplicity which is bounded by 8M , so

R.M/�M
X
h<y

j�hj

'.h/

X
hr<4M

1

'.r/

X
� .mod rh2/
�¤�0

jL.�/j2:

Each character � ¤ �0 is induced by a unique primitive character �1 .mod q/with q ¤ 1,
q j rh2 and �.`/ D �1.`/ for primes ` > rh2. Hence

R.M/�M
X

1<q6Q

c.q/
X�

�1 .modq/

jL.�1/j
2;
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where Q D 8My and

c.q/�
X
h<y

j�hj

'.h/

X
r<8M

rh2�0.q/

1

'.r/
�

logM
'.q/

X
h<y

j�hj

'.h/
.q; h2/

� �.q/2q�1 min.
p
q; y/.logM/2:

Hence
R.M/�M.logM/2

X
1<q6Q

q"�1 min.
p
q; y/

X�

�1 .modq/

jL.�1/j
2:

Using the Siegel–Walfisz condition for small q and the large sieve inequality for larger q,
we get

R.M/�Mx.log x/�B (13.3)

with any B > 2, provided Qmin.
p
Q;y/ < x

1
2�". Hence (13.3) holds if

yz 6 x
1
4�": (13.4)

Finally, the total contribution of the error terms Rh.m1;m2/ to C.M/ is bounded by

R.M/.log x/14C �Mx.log x/14C�B :

This bound satisfies our requirement (7.5) if we take B large.
Every bound obtained so far satisfies our requirements subject to conditions (6.3)

and (13.4). It remains to estimate the contribution of the main terms Eh.m1;m2/ to
Ch.M/ on average over h, see (9.14), (7.4), (7.5). It turns out that the main term is a harder
piece than the error terms!

14. Preparation of the main terms

Recall that the main terms Eh.m1;m2/ are defined by (9.14) and we need to estimate the
sums

Fh.M/ D h
XX

.m1m2;2h/D1

0¤�.m1;m2/�0.2h/

�.m1/�.m2/Eh.m1;m2/ (14.1)

and
F .M/ D

X
h6y

j�hjFh.M/:

Our goal is to show that
F .M/� NM 2.logM/�B (14.2)

with any B > 2, which bound is fine for the requirement (7.5).
In this section we make preparations for the application of tools in the next two sec-

tions. First it helps to execute the summation over `1, `2 in (9.14). To this end, we exploit
our assumption (1.7) for q D 1, that is the PNT for the coefficients `.
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Let us check that the restrictions (10.8) are redundant. Indeed, from the support of f
and n given by (9.13) we get

m2n D `
2
2 C

�
`1 � `2R

I

�2
< x;

hence `2 <
p
x. Interchanging `1, `2 and m1,m2, we get a similar formula for m1n,

hence `1 <
p
x.

We show that the partial derivatives of f .x1; x2/ defined by (10.1) satisfy

x1
@

@x1
f .x1; x2/� 1; x2

@

@x2
f .x1; x2/� 1: (14.3)

To this end, we compute as follows:

@

@x1
f .m2n.x1; x2// D

@

@x1
f

�
x22 C

�
x1 � x2R

I

�2�
D 2

x1 � x2R

I
f 0
�
x22 C

�
x1 � x2R

I

�2�
�
p
xx�1:

Hence

x1
@

@x1
f .m2n.x1; x2//�

x1
p
x
� 1:

Similarly for f .m1n.x1; x2// and for the partial derivatives with respect to x2. Hence,
(14.3) holds.

Using the Prime Number Theorem by partial summation (9.14) yields

'.2�h/Eh.m1;m2/ D

“
f .x1; x2/ dx1dx2 CO.x.log x/�B/

with any B > 2. Here the integral is just the Fourier transform g.˛1; ˛2/ at the point
.˛1; ˛2/ D .0; 0/, see (10.2). Then (10.6) and (10.5) yield

g.0; 0/ D IF.s.0; 0// D IF.0/;

F.0/ D �

Z 1
0

J0.0/f .t/f

�
tm1

m2

�
dt D �m2

Z 1
0

f .tm2/f .tm1/ dt;

m2I D m2 Im
m1

m2

D Im m1m2 D ��:

Combining these results, we obtain

Eh.m1;m2/ D �
��

'.2�h/

Z 1
0

f .tm2/f .tm1/ dt CO

�
x

'.�h/
.log x/�B

�
: (14.4)

Inserting (14.4) into (14.1), we get (note that '.2�h/ D 2h'.�/)

Fh.M/ D �
�

2

Z 1
0

Kh.t/ dtCO

�
x

.log x/B
XX

.m1m2;2h/D1

0¤�.m1;m2/�0.2h/

j�.m1/�.m2/j

'.�/

�
; (14.5)
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where

Kh.t/ D
XX

.m1m2;2h/D1

0¤�.m1;m2/�0.2h/

�.m1/�.m2/f .tm1/f .tm2/�='.�/:

The error term in (14.5) on average over h 6 y satisfies the bound (14.2) so we are done
with it. The integral in (14.5) is over the segment N

4
< t < N so we need to show that

K.t/ D
X
h6y

j�hKh.t/j �M 2.logM/�B (14.6)

for any N
4
< t < N (recall MN D x) and any B > 3. Writing

�

'.�/
D

Y
pj�

�
1 �

1

p

��1
D

2h

'.2h/

X
d j�

.d;2h/D1

�2.d/

'.d/
;

we get

Kh.t/ D
2h

'.2h/

X
.d;2h/D1

�2.d/

'.d/

XX
.m1m2;2h/D1

0¤�.m1;m2/�0.2dh/

�.m1/�.m2/f .tm1/f .tm2/: (14.7)

The inner sum over m1, m2 is bounded by .8M/2

dh
. Hence the contribution of d > D

is� M2

D'.h/
. Summing over h 6 y, this does not exceed the bound (14.6), unless

d 6 .logM/BC1: (14.8)

Assuming (14.8), we can drop the restriction �.m1;m2/ ¤ 0. If �.m1;m2/ D 0, then
m1 D m2, so these added terms contribute to (14.7) at mostO.M logM/ and to (14.6) at
most O.yM logM/ which is admissible if

y 6 M.logM/�B�1:

Writing m1 D u1 C iv1 and m2 D u2 C iv2 the congruence �.m1;m2/ � 0.2dh/

means u1v2 � u2v1 .mod 2dh/. Hence we have .2dh; v1/D .2dh; v2/D b, say, because
.u1; v1/ D .u2; v2/ D 1. Put 2dh D bc, v1 D bw1, v2 D bw2 so .w1w2; c/ D 1 and the
congruence become u1w2 � u2w1 .mod c/, or equivalently

u1w1 � u2w2 .mod c/;

where w .mod c/ denotes the multiplicative inverse (not the complex conjugate). Hence
(14.7) becomes (up to an admissible error term)

Kh.t/ D
2h

'.2h/

XX
.d;2h/D1
2dhDbc

�2.d/

'.d/

XX
.m1m2;2h/D1
.w1w2;c/D1

u1w1�u2w2.c/

�.m1/�.m2/f .tm1/f .tm2/; (14.9)

where m1 D u1 C ibw1 and m2 D u2 C ibw2. The inner sum over m1, m2 is bounded
by O.M 2=b2c/. Hence the contribution of b > b0 is bounded by O.�.h/M 2='.h/b0/
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which is negligible for b0 D LBC2. From now on we assume that

b 6 .logM/BC2: (14.10)

The condition .m1m2; 2h/ D 1 in the inner sum of (14.9) is equivalent to�
m1m2;

c

.c; d/

�
D 1:

This is a harmless, but inconvenient condition. We are going to remove it by a cute trick.
Let T � denote the sum over m1, m2 with the condition .m1m2;

c
.c;d/

/ D 1 and T the
sum without this condition. We show that

0 6 T � 6 T: (14.11)

Proof. Recall that the congruence u1w1 � u2w2 .mod c/ implies

m1m2 � m1m2 .mod c/:

Hence the condition .m1m2;
c

.c;d/
/ D 1 is equivalent to .m2;

c
.c;d/

/ D 1, because m1,
m2 are odd primitive. Hence

T � D
XX

.m1m2;
c

.c;d/
/D1

D

X
m1

X
.m2;

c
.c;d/

/D1

D
1

c

X
a .mod c/

� X
m1Du1Cibw1
.w1;c/D1

�.m1/f .tm1/e

�
a

c
u1w1

��

�

� X
m2Du2Cibw2

.w2;c/D.m2;
c

.c;d/
/D1

�.m1/f .tm2/e

�
�
a

c
u2w2

��
:

By Cauchy’s inequality, T � 6 T
1
2 .T �/

1
2 , hence (14.11) holds.

By the above considerations we derive the following inequality:

Kh.t/ 6
2h

'.2h/

X0 X0

.d;2h/D1
2dhDbc

'.c/

c'.d/
T .b; c/; (14.12)

where

T .b; c/ D
1

'.c/

X
a .mod c/

ˇ̌̌̌ X
mDuCibw
.w;c/D1

�.m/f .tm/e

�
a

c
uw

�ˇ̌̌̌2
and the sums

P0P0 are restricted by the conditions in (14.8) and (14.10). Moreover, we
dropped out of (14.12) a few parts which we already showed to be admissible for the goal
(14.6). Here we have 2h'.c/='.2h/c'.d/ D b'.c/=d'.bc/ 6 b=d'.b/ so

Kh.t/ 6
X0X
bc6Q

b

'.b/

� X0

2dhDbc

d�1
�
T .b; c/;
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where Q D 2y.logM/BC1. Hence

K.t/ 6 .logM/
X0X
bc6Q

b

'.b/
T .b; c/:

Writing a
c

in the lowest terms, we get

K.t/ 6 .logM/
X0XX
bqr6Q

b

'.b/'.r/
T .b; q; r/; (14.13)

where

T .b; q; r/ D
1

'.q/

X�

a .modq/

ˇ̌̌̌ X
mDuCibw
.w;qr/D1

�.m/f .tm/e

�
a

q
uw

�ˇ̌̌̌2
: (14.14)

15. Small moduli

We can estimate the sum over mD uC ibw in (14.14) using the following Siegel–Walfisz
theorem in the Gaussian domain. See [1, Lemma 5] or [3, Lemma 16.1] and the references
therein.

Lemma 15.1. Let ` > 1 and ! 2 ZŒi �. For x > 2 we haveX
m�! .mod `/

m6x

�.m/� x.log x/�B1 (15.1)

with any B1 > 1, the implied constant depending only on B1.

Remark 15.1. The bound (15.1) is trivial (it has no value) if ` > .log x/B . We relax the
condition .w; r/ D 1 by Möbius formula and apply (15.1) as follows:ˇ̌̌̌ X

mDuCibw
.w;qr/D1

�.m/f .tm/e

�
a

q
uw

�ˇ̌̌̌
6

X
kjr

.k;q/D1

ˇ̌̌̌ X
mDuCibkw
.w;q/D1

�.m/f .tm/e

�
a

q
ukw

�ˇ̌̌̌

D

X
kjr; k6K

.k;q/D1

ˇ̌̌X
m

ˇ̌̌
CO

�
�.r/

M

bK

�

6
X
kjr

k6K

XX
˛;ˇ .modbkq/
ˇ�0.bk/

ˇ̌̌̌ X
m�˛Ciˇ .modbkq/

�.m/f .tm/

ˇ̌̌̌

CO

�
�.r/

M

bK

�
� �.r/bKq2M.logM/�8B C

�.r/M

bK

D 2�.r/qM.logM/�4B
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for K with bKq D .logM/4B . Hence

T .b; q; r/� .�.r/qM/2.logM/�8B ;

and the partial sum of (14.13) with q 6 Q0, say K.q 6 Q0/, satisfies

K.q 6 Q0/� Q3
0M

2.logM/7�7B :

This bound satisfies (14.6) if
Q0 D .logM/2B�3:

16. Large moduli

It remains to estimate the partial sums of (14.13) with Q1 < q 6 2Q1, say K.q � Q1/,
for Q0 6 Q1 6 Q

2
, i.e.

.logM/2B�3 6 Q1 6 y.logM/BC1:

In this range we no longer need help from the Möbius function �.m/; the cancellation is
due to the variation of e.a

q
uw/. We need saving a bit larger than the size of the conductor q

so the saving from averaging over the classes a .mod q/ (making the Ramanujan sum) is
not enough. But even a little extra averaging extracted from q would do the job by means
of the large sieve inequality. However, we do not have any multiplicative structure of q
from which to borrow a little extra averaging so we throw the whole range q � Q1 into
the game.

For elements m of the form m D uC ibw with m �M the first coordinate u runs
over the segment juj 6

p
2M which is sufficiently long for exploiting the large sieve

inequality effectively. Because we do not need help from the second coordinate v D bw,
.w; qr/ D 1, we can simplify the matter1 by estimating (14.14) as follows:

T .b; q; r/ 6
4
p
M

b'.q/

X
jwj<

p
2Mb�1

X�

a.q/

ˇ̌̌̌ X
mDuCibw

�.m/f .tm/e

�
au

q

�ˇ̌̌̌2
:

Summing over q � Q1, we get by the large sieve inequalityX
q�Q1

1

'.q/

X�

a.q/

ˇ̌̌X
m

ˇ̌̌2
�

�
Q1 C

p
M

Q1

�
p
M 6

2M

Q0

provided QQ0 6 2
p
M , i.e.

y 6
p
M.logM/�3B : (16.1)

1This aspect of the estimation leads to a problem of independent interest and has been fur-
ther developed in [5]. However, it does not on its own lead to a sharpening of the main results of
this paper.
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Recall that M satisfies (7.3). HenceX
q�Q1

T .b; q; r/�
M 2

b2Q0

and X
q�Q1

K.q � Q1/� Q�10 .M logM/2 DM 2.logM/5�2B :

This is sufficient for (14.6) if B > 3.

17. Proof of Theorem 1.4. Conclusion

Putting together the results of Sections 6–16, we complete the proof of (6.5) and of
Theorem 1.4 (see (6.4)) under the following conditions:

y2.log x/2AC4 6 z 6 x
1
8 see (6.3);

y.log x/11AC40 6 z see (8.1);

yz 6 x
1
4�" see (13.4);

y < z
1
2 .log x/�3B�2A see (16.1):

The choice z D x
1
6 and y D x� with any � < 1

12
is good. This completes the proof

of (1.14).

18. Derivation of Theorem 1.3

It is not hard to derive Theorem 1.3 from Theorem 1.4 simply by subdividing the range
1 6 t 6 x into dyadic segments

T < t 6 2T; T D 2�ax; a D 1; 2; : : : ;

and smoothing at the end points over two short intervals

T < t < T .1C ı/; 2T .1 � ı/ < t < 2T:

The total contribution of n’s in the short intervals is estimated trivially by O.ıx.log x/4/
which is absorbed by the error term in (1.8) if

ı D .log x/�A�4:

The resulting smooth function f .t/ supported in a given dyadic segment is f .t/ D 1,
except for t in the short intervals adjacent to the end points where tjf .j /.t/� ı�j .
Because we require only j D 0; 1; 2, condition (1.12) can be secured by resizing f .t/ by
a factor ı2. This factor does not ruin (1.14), because we can use (1.14) with A replaced
by 3AC 8.
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19. Derivation of Theorem 1.2

We derive the Almost Primes Theorem 1.2 from the Main Theorem 1.3 by applying the
Almost-Prime Sieve from [4, Chapter 25] to the sequence C D .ck/, 1 6 k 6 K D

p
x,

with
ck D

X
4k2C`26x

ƒ.`/ƒ.4k2 C `2/:

We have X
k

ck D X CO.x.log x/�A/

with X D �x. For any 1 6 h 6 y, h squarefree, we set the error terms

rh D
X

k�0 .modh/

ck � g.h/X

and we derive by (1.8) with some �h D ˙1 thatX
h6y

jrhj D
X
h6y

�hrh

D

XX
4k2C`26x

ˇkƒ.`/ƒ.4k
2
C `2/ �X

X
h6y

�hg.h/� x.log x/�A:

In other words, speaking the language of sieve theory, our sequence C D .ck/ has the
absolute level of distribution y and the density function g.h/ satisfies [4, linear sieve
condition (5.38)]. Therefore, [4, Theorem 25.1] is applicable givingX

.k;P.z//D1

�.k/6r

ck � x.log x/�1;

with z D y
1
4 , subject to [4, condition (25.25)]. In our situation this condition reads

y > K"C
1
�r ;

that is �r > 1
2�

. Since �r > r C 1 �
log4
log3 (see [4, condition (25.24)]) and � is any num-

ber < 1
12

, we are fine with r D 7. This completes the proof of Theorem 1.2 and hence of
Theorem 1.1.

Appendix

We now give a proof of Proposition 2.1. As will be seen, the argument uses nothing of
what has gone before and is much simpler than the main theorems of the paper.

Proof. We are going to apply the sieve to study the sequence A D .an/, with

an D
XX
4k2C`2Dn
16k; `6x

ƒ.k/ƒ.`/:
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Note that, for notational convenience, we restrict k, `, rather than 4k2 C `2 and we use x
rather than

p
x. If d is odd, we have

Ad D
X

n�0 .modd/

an

D

X
�2C1�0.d/

X
`�2�k.d/
.`k;d/D1

ƒ.k/ƒ.`/

D

X
�2C1�0.d/

X�

a.d/

 .xI d; 2�a/ .xI d; a/CO..log x/6/

D

X
�2C1�0.d/

X�

a.d/

�
 .x/

'.d/
CE.xI d; 2�a/

��
 .x/

'.d/
CE.xI d; a/

�
CO..log x/6/

D
�.d/

'.d/
 .x/2 C

X
�2C1�0.d/

X�

a.d/

E.xI d; 2�a/E.xI d; a/CO..log x/6/;

where, as we recall, E.xI d; a/ is the error term in the prime number theorem for that
arithmetic progression (note that, up to the existing error term, the cross terms disappear
after summation over the residue classes a .mod d/ .a; d/ D 1) and �.d/ is the number
of roots of �2 C 1 � 0 .mod d/. Put

rd D Ad �
�.d/

'.d/
 .x/2:

Then
jrd j 6 �.d/

X�

a.d/

jE.xI d; a/j2 CO..log x/6/

�
�.d/

'.d/
x
X�

a.d/

jE.xI d; a/j C .log x/6:

Hence, the remainder of level D is estimated as follows:

R.D/ D
X
d6D

jrd j

� x.log x/
� X
d6D

X�

a.d/

jE.xI d; a/j2
� 1
2

CD.log x/6

� x2.log x/�A

by the Barban–Davenport–Halberstam Theorem (see [4, (9.75)]), where A is any positive
number and D D x2.log x/�B with some B D B.A/. Therefore the sequence A D .an/

is supported on n 6 N D 5x2, it satisfies the linear sieve conditions and it has level of
distributionD � N 1

2 .logN/�B . Now, just about any sieve, such as for example [4, Theo-
rem 6.9], gives the upper bound claimed in the proposition. Since also

�3 > 4 �
log 4
log 3

> 2;
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it follows from [4, Theorem 25.1] that the lower bound in the proposition holds and
specifically X

!.n/63

.n;P.D
1
4 //D1

an � x
2.log x/�1;

which implies the proposition.

We conclude the paper with heuristics supporting formula (1.1). If r > 2, we use
Bombieri’s sieve in [4, Theorem 3.5] showing that (1.1) holds with the constant

c D �
Y
p

.1 � g.p//

�
1 �

1

p

��1
D �

Y
p�1.4/

�
1 �

1

p � 2

��
1 �

1

p

��1
:

Recall that � is given by (1.10), hence c is given by (1.2). Of course, this result is condi-
tional subject to the assumption that the sequence C D .ck/ has exponent of distribution
as large as 1, meaning (1.8) holds for y D x� with any � < 1

2
.

If r D 1, we write

ƒ.k/ D
X
hjk

�h; �h D ��.h/ log h;

and apply (1.8). For r D 1 Bombieri’s sieve gives no help so we simply ignore that (1.8) is
applicable unconditionally only for h < y, because we believe that for larger h the Möbius
function does not correlate with anything “different” on its way. We arrive at (GPC) with
the constant

�
X
h

�.h/.� log h/g.h/ D c:
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