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Abstract. Let X0 be a semi-flat Calabi—Yau manifold equipped with a Lagrangian torus fibration
P : Xo — Bo. We investigate the asymptotic behavior of Maurer—Cartan solutions of the Kodaira—
Spencer deformation theory on X¢ by expanding them into Fourier series along fibres of p over
a contractible open subset U C By, following a program set forth by Fukaya [Graphs and Patterns in
Mathematics and Theoretical Physics (2005)] in 2005. We prove that semi-classical limits (i.e. lead-
ing order terms in asymptotic expansions) of the Fourier modes of a specific class of Maurer—Cartan
solutions naturally give rise to consistent scattering diagrams, which are tropical combinatorial
objects that have played a crucial role in works of Kontsevich and Soibelman [The Unity of Mathe-
matics (2006)] and Gross and Siebert [Ann. of Math. (2) 174 (2011)] on the reconstruction problem
in mirror symmetry.
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1. Introduction

1.1. Background

The celebrated Strominger—Yau—Zaslow (SYZ) conjecture [45] asserts that mirror sym-
metry is a T-duality, meaning that a mirror pair of Calabi—Yau manifolds should admit
fibre-wise dual (special) Lagrangian torus fibrations to the same base. This immedi-
ately suggests a construction of the mirror (as a complex manifold): Given a Calabi—Yau
manifold X, one first looks for a Lagrangian torus fibration p : X — B. The base B is
then an integral affine manifold with singularities. Letting By C B be the smooth locus
and setting
XO = Té()//\ VO’
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where A 5 C TBO denotes the natural lattice locally generated by affine coordinate vec-
tor fields, ylelds atorus bundle p : Xo — By which admits a natural complex structure Jo.
called the semi-flat complex structure. This would not produce the correct mirror in gen-
eral,' simply because Jo cannot be extended across the singular points Bsi"z But the SYZ
proposal suggests that the mirror is given by deforming Jo using quantum corrections
coming from holomorphic disks in X with boundary on the Lagrangian torus fibres of p.

The precise mechanism of such a mirror construction was first depicted by Kontsevich
and Soibelman [35] using rigid analytic geometry and then by Fukaya [21] using asymp-
totic analysis. In Fukaya’s proposal, he described how instanton corrections would arise
near the large volume limit given by scaling of the symplectic structure on X by #i € R~,
which is mirrored to scaling of the complex structure Jo on Xo. It was conjectured
that the desired deformations of fo were given by a specific class of solutions to the
Maurer—Cartan equation of the Kodaira—Spencer deformation theory of complex struc-
tures on Xo, whose expansions into Fourier modes along torus fibres of p would have
semi-classical limits (i.e. leading order terms in asymptotic expansions as # — 0) con-
centrated along gradient flow trees of a canonically defined multi-valued Morse function
on éo (see [21, Conjecture 5.3]). On the mirror side, holomorphic disks in X with bound-
ary on fibres of p were conjectured to collapse to gradient flow trees emanating from
the singular points Bt ¢ B (see [21, Conjecture 3.2]). From this one sees directly how
the mirror complex structure is determined by quantum corrections. Unfortunately, the
arguments in [21] were only heuristical and the analysis involved to make them precise
seemed intractable at that time.

These ideas were later exploited by Kontsevich and Soibelman [36] (for dimension 2)
and Gross and Siebert [28] (for general dimensions) to construct families of rigid analytic
spaces and formal schemes respectively from integral affine manifolds with singularities,
thereby solving the very important reconstruction problem in SYZ mirror symmetry. They
cleverly got around the analytical difficulties, and instead of solving the Maurer—Cartan
equation, used gradient flow trees in Eo (see [36]) or tropical trees in the Legendre dual By
(see [28]) to encode the modified gluing maps between charts in constructing the mirror
family. A key notion in their constructions is that of scattering diagrams, which are com-
binatorial structures encoding possibly very complicated gluing data. It has also been
understood (by works of these authors and their collaborators, notably [27]) that these
scattering diagrams encode Gromov—Witten data as well.

In this paper, we revisit Fukaya’s original ideas and apply asymptotic analysis moti-
vated by Witten—Morse theory [46]. Our primary goal is to connect consistent scattering
diagrams to the asymptotic behavior of a specific class of solutions of the Maurer—Cartan
equation. In particular, we prove a modified version of (the “scattering part” of) Fukaya’s
original conjecture in [21]. As pointed out by Fukaya himself, understanding scatter-
ing phenomenon is vital to a general understanding of quantum corrections in mirror
symmetry.

]Except in the semi-flat case when B = 1;’0 where there are no singular fibres; see [39].
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We start with a Calabi—Yau manifold X (regarded as a symplectic manifold) equipped
with a Lagrangian torus fibration which admits a Lagrangian section s

s

X. 0, J)——— B

and whose discriminant locus is given by Bs"¢ ¢ B, over which the integral affine struc-
ture develops singularities. Restricting p to the smooth locus EO =B \ Bi"g_ we obtain
a semi-flat symplectic Calabi—Yau manifold Xy < X, which, by Duistermaat’s action-
angle coordinates [16], can be identified as a quotient of the cotangent bundle of the
base Xo = T*Bo /A% , where Ago C T* By is the natural lattice (dual to A éo) locally
generated by affine coordinate 1-forms. We then have a pair of fibre-wise dual torus bun-
dles over the same base:

X0=7*EMAa Xo =TBo/Ajg,

Bo.

We scale both the complex structure on Xo and the symplectic structure on Xy by
introducing a R~ ¢-valued parameter # (so that # — 0 give the respective large structure
limits) and consider the family of spaces (as well as the associated dgla’s) parametrized
by 7.

As suggested by Fukaya [21] (and motivated by the relation between Morse theory and
de Rham theory [12,31,46]), we consider the Fourier expansion (see Definition 2.9) of tlle
Kodaira—Spencer differential graded Lie algebra (dgLa) (KSy = Q%*(Xo, T"*Xo),
[-,-]) associated to Xo along fibres of p, and try to solve the Maurer—Cartan (abbrev
MC) equation

5@+§Q@=0 (1.1)

Remark 1.1. The idea that Fourier-type transforms should be responsible for the inter-
change between symplectic-geometric data on one side and complex-geometric data on
the mirror side (i.e. T-duality) came from the original SYZ proposal [45]. This has been
applied successfully in the toric case: see [1,2, 10, 11, 13, 14, 17, 18, 22-24, 34, 35] for
compact toric varieties and [3,5,6,8,9,25,26,29,33,38,40] for toric Calabi—Yau varieties.
Nevertheless, no scattering phenomenon was involved in those examples.

1.2. Main results

Before describing our main results, we first choose a Hessian-type metric (see Defini-
tion 2.3) on the affine manifold By which allows us to apply the Legendre transform (see
Section 2.3) and work with the Legendre dual By. This originates from an idea of Gross
and Siebert [28] who suggested that, while tropical trees on By correspond to Morse gra-
dient flow trees on éo under the Legendre transform, the former are easier to work with
because of their linear nature.
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We will also choose a convex open subset U C By, fix a codimension 2 tropical affine
subspace Q C U and work locally around Q.” In U, a scattering diagram can be viewed
schematically as the process of how new walls are being created from the transversal
intersection between non-parallel walls supported on tropical hyperplanes in U . The com-
binatorics of this process is governed by the algebra of the tropical vertex group [27],
which will be reviewed in Section 3.

We work with dglLa’s over the formal power series ring R = C[[t]], where ¢ is a
formal deformation variable. Our goal is to investigate the relation between the scattering
process and solutions of the MC equation of the Kodaira—Spencer dgla KS %o [[£]).°

To begin with, let w = (P, ®) be a single wall supported on a tropical hyperplane
P C U containing Q (although Q does not play any role in this single wall case) and
equipped with a wall-crossing factor ® (as an element in the tropical vertex group). Our
first aim is to see how ©® is related to solutions of the MC equation (1.1).

Recall that in Witten—-Morse theory [12, 31, 46], the shrinking of a fibre-wise loop
m € w1 (p~1(x), s(x)) towards a singular fibre indicates the presence of a critical point
of the symplectic area function fj, in the singular locus (in B), and the union of gra-
dient flow lines emanating from the singular locus should be interpreted as a stable
submanifold associated to that critical point. Furthermore, this codimension one stable
submanifold should correspond to a bump differential 1-form with support concentrated
along P (see [12]).

Inspired by this, given a wall w, we are going to write down an ansatz [T € KSl [[l]]
solving (1.1); see Definition 4.2 for the precise formula. Since X o(U) := X, 0 XB, U does
not admit any non-trivial deformations, the MC solution IT is gauge equivalent to 0, i.e.
there exists ¢ € KSO [[£]] such that e® x 0 = IT; we further use a gauge fixing condition
(P(p =0)to umquel)(3 determine the gauge ¢.

In Proposition 4.28, we demonstrate how the semi-classical limit (as # — 0) of ¢
determines the wall-crossing factor ® (or more precisely, Log(®)); see the introduction
of Section 4 for a more detailed description. Moreover, the support of the bump-form-
like MC solution IT (see Figure 4) is more and more concentrated along P as i — 0. In
Definition 4.19, we make precise the key notion of having asymptotic support on P to
describe such asymptotic behavior. We further show that any MC solution IT with asymp-
totic support on P would give rise to the same wall crossing factor ® in Section 4.2.3 (see
Remark 4.29).

At this point we are ready to explain the main results of this paper. From now on,
unlike the case of a single wall, we will be solving the Maurer—Cartan equation only up
to error terms with exponential order in ', i.e. terms of the form O(e~¢/*). This is
sufficient for our purpose because those error terms tend to zero as one approaches the
large volume/complex structure limits when ## — 0, and thus they do not contribute to the

2In the language of the Gross—Siebert program [28], we are working locally near a joint (i.e.
a codimension 2 cell) in a polyhedral decomposition of the singular set Sing(D) of a scattering
diagram D.

3There are other approaches to the scattering process or wall-crossing formulas such as
[7,19,44].
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Fig. 1. A collection of walls sharing a common boundary Q.

semi-classical limits of the MC solutions and the associated scattering diagrams.* To make
this precise, we introduce in Section 5.2.1 a dgla g*/&*(U) which is a quotient of a sub-
dgLa of KSz (U)[[t]], and we will work with and construct MC solutions of g*/&6*(U).
Our first main result relates a specific class of MC solutions (satisfying the two as-
sumptions described below) to consistent scattering diagrams (see Definition 3.5 for the
precise meaning of consistency). Suppose that we have a countable collection { P, }sew
of tropical half-hyperplanes (supports of the walls) sharing the codimension 2 tropi-
cal affine subspace Q as their common boundary, as shown in Figure 1. We consider
a Maurer—Cartan solution ¢ € g*/&*(U) ® g m which admits a Fourier decomposition

O = Z @ (1.2)

where the sum is finite modulo m”*1 for every N € Z~¢ (here m is the maximal ideal
in R = C[[t]]).

Assumption I (see Assumption 5.48 for the precise statement). Each summand ®@ has
asymptotic support on the corresponding half-hyperplane P, (intuitively meaning that the
support of ®@ is more and more concentrated along P, as i — 0) and has asymptotic
expansion (as # — 0) of the form

®@ — gy@ + F(a),

where ¥ is the leading order term consisting of terms with the leading % order and F®
is the error term consisting of terms with higher % orders.

From this assumption, we deduce that:

Lemma 1.2 (= Lemma 5.40). For each a € W, the summand ®@ is a solution of the
Maurer—Cartan equation (1.1) over U \ Q.

4This point was also anticipated by Fukaya in [21].
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Pul

Fig. 2. A slice in a tubular neighborhood around Q.

Now we delete Q from U and work over A := U \ Q. We also choose an open set
Ay in the universal cover A of A and consider the covering map p : Ag — A.

Assumption II (see Assumption 5.49 for the precise statement). Applying the homotopy
operator Je (defined by integration over a homotopy / : R x Ay — Ay contracting A to
a point in (5.17)) to the pullback of the leading order term ¥(®) by p gives a step function
which jumps across the lift of P, in Ao and whose restriction to the affine half space
H(P,) \ P, produces an element Log(®,) in the tropical vertex Lie-algebra ) (defined
in Definition 3.1). Figure 2 illustrates the situation in a slice of a tubular neighborhood
around Q.

Since X, o(U) x4 Ao does not admit any non-trivial deformations, each summand o@
in (1.2) is gauge equivalent to 0, so there exists a unique solution ¢, to e¥e * 0 = o@
satisfying the gauge fixing condition ¢, = 0. We carefully estimate the orders of the
parameter 7 in the asymptotic expansion of the gauge ¢, as in the single wall case above,
and obtain the following:

Lemma 1.3 (= Lemma 5.44). The asymptotic expansion of the gauge @, is of the form
(see Notation 4.10 for the precise meaning of Oioc(h1/2))

90 = Va + Owc(B'/?),

where V., the semi-classical limit of ¢, as h — 0, is a step function which jumps across
the half-hyperplane P, and is related to an element ®, of the tropical vertex group by the
formula

Log(®g4) = wal]I:]I(Pa)\Pa;
here ]I:]I(Pa) \ P, C Ay is the open half-space (defined in Notation 5.39) which contains
the support of V¥g.

Thus, each @ or more precisely, the gauge ¢,, determines a wall w, = (Py, O4)
supported on a tropical half-hyperplane P, and equipped with a wall crossing factor ®,.
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Fig. 3. Scattered walls P, from two initial walls.

Hence the Fourier decomposition (1.2) of the Maurer—Cartan solution ¢ defines a scatter-
ing diagram D(®) consisting of the walls {w, }sew. Our first main result is the following:

Theorem 1.4 (= Theorem 5.50). If ® is any solution to the Maurer—Cartan equation
of g* /&*(U) satisfying both Assumptions 1 and 11 (or more precisely Assumptions 5.48
and 5.49), then the associated scattering diagram D(®) is consistent, meaning that we
have the identity

0, p@) = 1d,

where the left-hand side is the path ordered product (whose definition will be reviewed
in Section 3.2.1) along any embedded loop y in U \ Sing(D(P)) intersecting D(P)
generically; here Sing(D (D)) = Q is the singular set of the scattering diagram D(®P).

Our second main result studies how a scattering process starting with two non-parallel
walls wy = (P1,01), wa = (P2, ®,) intersecting transversally at Q0 = Py N P, gives
rise to a MC solution of g*/&*(U) satisfying both Assumptions I and II, thereby produc-
ing a consistent scattering diagram via Theorem 1.4.

In this case, there are two solutions to the MC equation (1.1) Iy, € KS}EO I,
i = 1,2, associated to the two initial walls wy, wy, respectively (e.g. those provided by
our ansatz), but their sum IT := Iy, + Iy, € KSy (U)[[t]] does not solve (1.1), even
up to error terms with exponential order in ™! Nevertheless a method of Kuranishi [37]
allows us to, after fixing the gauge using an expllclt homotopy operator (introduced in
Definition 5.14), write down a solution & = IT + ---, as a sum over trees (5.10) with
input II, of equation (1.1) up to error terms with exponentlal order in #~!, or more
precisely, of the MC equation of the dgla g* /E*(U).

SIndeed, Assumptions I and II (or more precisely Assumptions 5.48 and 5.49) are extracted
from properties of the MC solutions we constructed.
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The MC solution @ has a Fourier decomposition as in (1.2) of the form

=T+ Z @,
aeW

where the sum is over a = (a1,az) € W := (Z2)pim Which parametrizes the tropi-
cal half-hyperplanes P,’s containing Q and lying in-between P; and P,, as shown in
Figure 3. Our second main result is the following:

Theorem 1.5 (= Theorem 5.46). The Maurer—Cartan solution ® satisfies both Assump-
tions 1 and 11 (or more precisely Assumptions 5.48 and 5.49) in Theorem 1.4, and hence
the scattering diagram D(®) associated to ® is consistent, meaning that we have the

identity®
14
O,n@) = @11(92( I @a)®1®21 =1d
acW

along any embedded loop y in U \ Sing(D (D)) which intersects D(P) generically; here
Sing(D(®)) = Q = P N Ps.

The proofs that & satisfies both Assumptions 5.48 and 5.49 occupy Sections 5.2.3
and 5.2.4; Assumption 5.48 will be handled in Theorem 5.25 in Section 5.2.3 while
Assumption 5.49 will be handled in Lemma 5.31 in Section 5.2.4.

Remark 1.6. Notice that the scattering diagram D(®) is the unique (by passing to a min-
imal scattering diagram if necessary) consistent extension, determined by Kontsevich—
Soibelman’s Theorem 3.7, of the scattering diagram consisting of two initial walls wy
and w.

1.3. A reader’s guide

The rest of this paper is organized as follows.

In Section 2, we review the Kodaira—Spencer dgla KSy ~associated to the semi-
flat Calabi—Yau manifold X, followed by a brief review of the Legendre and Fourier
transforms.

In Section 3, we review the tropical vertex group and the theory of scattering dia-
grams (in particular a theorem due to Kontsevich and Soibelman) following the exposition
in [27].

Section 4 is about the single wall scenario. In Section 4.1, we write down an ansatz
associated to a given single wall solving the MC equation. In Section 4.2.3, we formulate
the key notion of asymptotic support on a tropical polyhedral subset which allows us
to define a filtration (4.9) to keep track of the # orders. We also prove two key results,
namely, Lemma 4.22 (and its extension Lemma 4.25) and Lemma 4.23, which form the

6 Another common way to write this identity is as a formula for the commutator of two elements
in the tropical vertex group: @51 0102 @1_1 = HZEW Og.
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basis for the subsequent asymptotic analysis. Applying them, we prove the main results
Lemma 4.27 and Proposition 4.28 for the single wall case. Except Definition 4.19 and the
statements of Lemmas 4.22 and 4.23, the reader may skip the rather technical Section 4.2
at first reading.

Section 5 is the heart of this paper where we study the scattering process which starts
with two initial walls. In Section 5.1, Kuranishi’s method of solving the MC equation of
a dgla is reviewed. In Section 5.2, we introduce the dgla g*/&*(U) by which we make
precise the meaning of solving the MC equation of KSy (U)|[t]] up to error terms with
exponential order in i~ 1. We then begin the asymptotic analysis of the MC solutions
of g / &*(U); the key results here are Theorem 5.25 and Lemma 5.35. In Section 5.3,
we apply the results obtained in Section 5.2 to prove Lemmas 5.43 and 5.44 (which
are parallel to Lemma 4.27 and Proposition 4.28 in Section 4), from which we deduce
Theorems 1.4 and 1.5.

2. The Kodaira-Spencer dgLa in the semi-flat case

In this section, we review the classical Kodaira—Spencer deformation theory of com-
plex structures and the associated dgla [42,43] in the semi-flat setting, as well as the
Legendre and Fourier transforms [32, 39] which play important roles in semi-flat SYZ
mirror symmetry.

2.1. The semi-flat Calabi—Yau manifold )?0

We let Aff(R”) = R” x GL, (R) be the group of affine linear transformations of R” and
consider the subgroup Affr(Z")o := R" x SL,(Z).

Definition 2.1 ([27]). An n-dimensional smooth manifold B is tropical affine if it admits
an atlas {(U;, ¥;)} of coordinate charts v; : U; — R” such that y; o w/_l € Affr(Z")o
foralli, . '

Given a (possibly non-compact) tropical affine manifold By, we set
X 0-= Té() / A é s

where the lattlce subbundle A 5z C T By is locally generated by the coordinate vector
fields P 1 AU 8x” for a glven ch01ce of local affine coordinates X = (x!, ”) in
a contractible open subset U C By. Then the natural projection map p : XO — By is
a torus fibration. We also let y/ be the canonical coordinates on the fibres of j over U
with respect to the frame ., axi,, of Téo.

Choosing

0
axl> -

n
: . d v
— J (¥ i - 1
B = Z Bl (D)dx' @ 5— € QN (T Bo)
i,j=1
satisfying VB =0 € QZ(TEO), where V is the natural affine flat connection on éo, we
get a one-parameter family of complex structures parametrized by # € R~ defined by
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the family of matrices

~ —hp nl

Jﬂ_(_ _1(1+h2,62) h/g) 2.1)
with respect to the local frame Ll N afz,, , 831 ey aa,, , where we write § as a matrix
with respect to the frame ai .. ai Locally, the Correspondmg holomorphic vol-

ume form is given by

= A ((dyf =Y Blaxk) + ih—ldxf),
j=1

k=1

and a holomorphic frame of T10X o can be written as

v d i ad d
S - = — — — - 2.2
9 dlogz/  Axm <8y1 (;ﬂ/ ayk 8x1>)’ 22)

for j = 1,...,n. So the local complex coordinates are given by
z/ =exp( 2m( Zﬂ +ih1xf)). (2.3)
The condition that Y ;_, ,3; (¥)dx* being closed for each j = 1,...,n is equivalent to

integrability of the almost complex structure Jg.

2.2. The Kodaira—Spencer dglLa

For a complex manifold b'¢ o, the Kodaira—Spencer complex is the space
KSy = Q%*(Xo, T X,)

of T1:0X,-valued (0, *)-forms, which is equipped with the Dolbeault differential d and
a Lie bracket defined in local holomorphic coordinates z1, ..., z, € Xg by

[paz’, ydz'] = (¢, y]dz" ndZ’,
where ¢, ¥ € T(T1-°X,). The triple

(KS)ZO? év [ ’ ])
defines the Kodaira—Spencer differential graded Lie algebra (abbrev. dgLa), which gov-

erns the deformation theory of complex structures on Xo. Given an open subset U C Xo,
we may also talk about the local Kodaira—Spencer complex KS %o ).

Notation 2.2. We let R = C[[¢]] to be the ring of formal power series and m = (¢) denote
the maximal ideal generated by ¢, and consider dglas over R to avoid convergence issues.

An element ¢ € Q%1(X,, T1°X,) ® m defines a formal deformation of complex
structures if and only if it is a solution to the Maurer—Cartan equation (1.1). The exponen-
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tial group KS% ® m acts on the set of Maurer—Cartan solutions MCs (R) as automor-
phisms of the)f{grmal family of complex structures over R, and therefore One can define the
space of deformations of X, over R by Dest)?O (R) := MCKSXO (R) /exp(KS(})?0 ® m)
via the dgla KS)?O.

2.3. The Legendre transform

To define the Legendre dual By of By so that we can work in the tropical world, we need
ametric g on By of Hessian type (see, e.g. [4, Chapter 6]):

Definition 2.3. A Riemannian metric g = (g;;);,; on By is said to be Hessian type if it
is locally given by
_ PP i
g= Z FEY dx' ® dx
i,j

in local affine coordinates x1!, ..., x™ for some convex function ¢.

To construct Kéhler structures, we further need a compatibility condition between g
and B in (2.1), namely, we assume that

Z ﬂijgjkdxi Adxk =0
i,j.k
when we write ) '
B=>_ B X)dy; ndx’
i,j
in the local coordinates x!,... , X", ¥1,...,¥n. Given such a Hessian-type metric g,
a Kihler form on X is given by

® =2idd¢p = Zgjkdyj A dxk.
J.k

We can now introduce the Legendre transform following Hitchin [32]; see also
[4, Chapter 6]. Given a strictly convex smooth function (]3 U (c éo) — R, we trivial-
ize T*U =~ U x R” via affine frames and define the Legendre transform L P U — R"
by

x = LX) :=d$(X) eR",
or equivalently, by
0¢
X]' = W’

where x = (x1, ..., X,) € R” denote the dual coordinates. The image U := Lq; ((7) CR”
is an open subset and L b is a diffeomorphism. The Legendre dual ¢ : U — R of ¢
is defined by the equation ¢(x) := Z?:l xjx/ — ¢(%), and the dual transform Ly is
inverse to L ;.

If qvﬁ is the semi-flat potential in Definition 2.3 which defines a Hessian-type metric,
then the dual coordinate charts U = L d;(l} ) actually glue to give another tropical affine
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manifold By, which we call the Legendre dual of éo, whose underlying smooth manifold
is same as that of BO (see [4, Chapter 6]. The lattice bundles A g, = Av are interchanged
in this process, so that we can write

Xo = T*Bo/A},.

and using the affine coordinates (x1, ..., x,) on By, we can write
n
= (04 S -in s ). 6= Yt
k=1 j=1 k=1

2.4. The Fourier transform

Definition 2.4. The sheaf of integral affine functions AffZ as a sheaf over By (which is
the same as BO as a smooth manifold), is the subsheaf of 0the sheaf of smooth functions
over By whose local sections AffZ0 (U) overa contractlble openset U C By are defined to
be affine linear functions of the form m(X) = m;x' + --- + m,x" + b for some m; € Z
and b € R, in local affine coordinates on Bo (cautwn not By). This sheaf fits into the
following exact sequence of sheaves over By:

0—>R—>Aff§0—>ABo—>0~

Since X, = T By /A j,. exponentiation of complexification of local affine linear
functions on By give local holomorphic functions on Xy as follows.

Definition 2.5. Given m € Afva (U), expressed locally as m(x) = Zj m;x/ + b, we
let
M= R (2 2y e Oy, (7 (U)),

where z/ is given in equation (2.3). This defines an embedding
AffE (U) = Og, (57" (U)),
and we denote the image subsheaf by 9%, as a sheaf over By.

We can embed the lattice bundle AIV30 > Px T1-9X, into the push forward of the sheaf
of holomorphic vector fields; in local coordinates U, it is given by (cf. equation (2.2))

. . 9
n=n)— o, :=Zn1
J

dlogz/

_ L ii_'h k_—_ 0 0
4 _n(ayf ZXk: J ayk g]kax

for alocal sectionn € A}y (U ). This embedding is globally defined, and by abuse of nota-
tions, we will write A]_Y; to stand for its image subsheaf. For later purpose, we introduce
the notation

(2.4)

h ; 0
n = Eznjg]ka (2.5)
J
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Notation 2.6. Since we work in a contractible open coordinate chart U, we will fix
arank n lattice M =~ Z" and its dual N = Hom(M, Z), and identify

UCMr:=M®®zRx=R"

as an open subset containing the origin 0 and write Ng := N ®z R. We also trivialize
Apylu = M and Ay |y = N and identify

Xo(U) = p~'(U) = U x (Ng/N).

Since TU = Ap, ®z R, a local section m € M (U) naturally corresponds to an affine
integral vector field over U, which will be denoted by m as well. The exact sequence in
Definition 2.4 splits and we will call the m or the associated z™ the Fourier modes.

Definition 2.7. Consider the sheaf O*" ®z A over By and define a Lie bracket [-, -]
on it by restriction of the usual Lie bracket on p,O (T 1 Xy).

Notice that the Lie bracket on O*" ®7 Ay is well defined because in a small enough
affine coordinate chart, we have the following formula from [27]:

[Zm ® én» Zm/ &® én/] = Zm+m/é(m/,n)n’—(m,n/)n, (2'6)
which shows that O*" ®z A} is closed under the Lie bracket on PO(T10X,).

Notation 2.8. The pairing (1, n) in (2.6) is the natural pairing between m € Apg,(U) and
ne A}_{,O (U). Given alocal sectionm € Ap,(U), weletm* C A}éo (U) be the sub-lattice
perpendicular to m with respect to (-, -).

Definition 2.9. On a contractible open subset U C By = l§o, the Fourier transform

F:GU)= P QU)-2"®zN —KSy (U)
mGABO(U)

is defined by sending @ € Q*(U) to (p*(«r))*! (where (-)*! denotes the (0, 1)-part of the
1-form) and n € N to d,. ¥ is injective and hence induces a dgla structure on G*(U)
from that on KSy (U ).” We also let

Gy (U) :=G*(U) ® R/m" !

and R
* T *
G*(U) = l(inGN(U).
N
Remark 2.10. For more details on how Fourier (or SYZ) transforms can be applied to
understand (semi-flat) SYZ mirror symmetry, we refer the readers to Fukaya’s original
paper [21] and a recent survey article [41] by the third named author.

"Direct computation shows that we have the formula E_)(Zm z"mal In) = Y mzM(da) .
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3. Scattering diagrams

In the section, we review the notion of scattering diagrams introduced in [28,36]. We will
adopt the setting and notations from [27] with slight modifications to fit into our context.

3.1. The sheaf of tropical vertex groups

We start with the same set of data (By, g, #) as in Section 2.3, and use x = (X1, ..., Xy,)
as local affine coordinates on By and X = (xl, ...,x") as local affine coordinates on l§0
as before. Given the formal power series ring R = C[[¢]] and its maximal ideal m, we
consider the sheaf of Lie algebras g := (0" ®z Ay, ) ®c R over By.

Definition 3.1. The subsheaf ) < g of Lie algebras is defined as the image of the embed-
ding (EBmeAB @) C 2" ®z (m1)) ®c R — g(U) over each affine coordinate chart
U C By.® The sheaf of tropical vertex groups over By is defined as the sheaf of expo-
nential groups exp(§) ® g m) which act as automorphisms on f) and g.

3.2. Kontsevich-Soibelman’s wall crossing formula

This formulation of the wall crossing formula originated from [36] but we will mostly
follow [27] as we want to work on By instead of By. From now on, we will work locally
in a contractible coordinate chart U C By. We use the same notations as in Section 2.

Definition 3.2. Given m € M \ {0} and n € m™, we let
f)m,n = (C[Zm] 'Zm)én ®C m<- g

whose general elements are of the form ) k=14 jkzk’” 5ntj , where aj; # 0 for only
finitely many k for each fixed j. This defines an abelian Lie subalgebra of g by for-
mula (2.6).

Definition 3.3. A wall win U is a triple (m, P, ®), where
e m e M \ {0} parallel to P,

e P is a connected oriented codimension one convex tropical polyhedral subset of U
(by a convex tropical polyhedral subset we mean a convex subset which is locally
defined by affine linear equations and inequalities defined over Q),

o O € exp(bm,n)|p is a germ of sections near P, where n € A}go(U) =~ N is the unique
primitive element satisfying n € (TP)* and (vp,n) <0,and vp € TU = U x My is
a vector normal to P such that the orientation of TP & R - vp agrees with that of U.

Definition 3.4. A scattering diagram D is a set of walls {(my, Py, ®y)} such that there
are only finitely many a with @, # Id (modm®) for every N € Z~o. We define the

81t is a subsheaf of Lie subalgebras of g as can be seen from formula (2.6).
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support of D to be supp(D) := | Jyep Pw, and the singular set of D to be
Sing(D) := U APy U U Py, N Py,

weD wihwso

where w; M w, means transversally intersecting walls.’

3.2.1. Path ordered products. An embedded path y : [0, 1] — By \ Sing(D) is said to be
intersecting D generically if y(0), y(1) ¢ supp(D), Im(y) N Sing(D) = @ and it inter-
sects all the walls in D transversally. Given such an embedded path y, we define the path
ordered product along y as an element of the form

4
®y,D = 1_[ Oy € exp(h ®r m)y(l)
weD
in the stalk of exp(h) ® g m) at (1), following [27]. More precisely, for each k € Z~q, we
define 611293 € exp(h ®g (m/m**1)), ;) and let Oy p := limg_ 400 ®§,.D, where @;D
is defined as follows.
Given k, there is a finite subset D ¢ D consisting of walls w with

Oy # Id (mod m**1)

from Definition 3.4. We then have a sequence of real numbers 0 = 1) <t <fp <--- <
ts < tgy1 = 1 such that {y(t,)....,y(ts)} = y N supp(D¥). For each 1 <i < s, there
are walls w; 1,...,w;, in Dk such that y(ti) € Pi,j :=supp(w, ;) forall j =1,...,1[;.
Since y does not hit Sing(D), we have codim(supp(w;,;,) N supp(w;, ;,)) = 1 for any
J1. j2, ie. the walls w; 1,...,w;;, are overlapping with each other and contained in
a common tropical hyperplane Then we have an element ©,,(,) := H =1 oy, _j» Where
o; = 1 if orientation of P; ; @ R - y/(t;) agree with that of By and o; = —1 otherwise.
(Note that this element is well defined without prescribing the order of the product since
the elements ©,, ; are commuting with each other.) We treat ©,,(;,) as an element in
exp(h ®r m)y(l) by parallel transport and take the ordered product along the path y as

@I;;D = Opay) Oy Oy
Definition 3.5. A scattering diagram D is said to be consistent if we have ©,, » = Id, for
any embedded loop y intersecting D generically. Two scattering diagrams D and D are
said to be equivalent if ©, p = G‘)y’@ for any embedded path y intersecting both D and
D generically.

Remark 3.6. Given a scattering diagram D, there is a unique representative D i, from
its equivalence class which is minimal. First, we may remove those walls with triv-
ial automorphisms ® as they do not contribute to the path ordered product. Second, if
two walls w; and w, share the same P and m, we can simply take the multiplication
® = O o O, and define a single wall w. After doing so, we obtain a minimal scattering
diagram equivalent to D.

9There is a natural (possibly up to further subdivisions) polyhedral decomposition of Sing(D)
whose codimension 2 cells are called joints in the Gross—Siebert program [28].
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3.2.2. The wall crossing formula. Next, we consider the case where D is a scattering dia-
gram consisting of only two walls w; = (m1, P, ®1) and w, = (m3, P;, ©®;), where the
supports P; are tropical hyperplanes of the form P; = Q — R - m; intersecting transver-
sally in a codimension two tropical subspace Q := P; N P, C U. In this case, we have
the following theorem due to Kontsevich and Soibelman [36]:

Theorem 3.7 (Kontsevich and Soibelman [36]). Given a scattering diagram D con-
sisting of two walls wy = (my, Py, ®1) and w, = (my, P, ©,) supported on tropical
hyperplanes Py, P, intersecting transversally in a codimension two tropical subspace
Q := P N Py, there exists a unique minimal consistent scattering diagram S (D) D Dyin,
obtained by adding walls to Dy, supported on tropical half-hyperplanes of the form
0 —Rxo - (aymy + axmy) fora = (a1, a2) € (Z2 ) prim-

Remark 3.8. Interesting relations between these wall crossing factors and relative
Gromov—Witten invariants of weighted projective planes were established in [27]. In gen-
eral it is expected that these wall crossing factors encode counts of holomorphic disks
on the mirror A-side, which was conjectured by Fukaya in [21, Section 3] to be closely
related to Witten’s Morse theory.

4. Single wall diagrams as deformations

As before, we will work with a contractible open coordinate chart U C By. In this sec-
tion, we consider a scattering diagram with only one wall w = (m, P, ®), where P is
a connected oriented tropical hyperplane in U. Recall that we can write

Log(®) = D ajz""dnt. (4.1)
J.k>1

where a ;i # 0 for only finitely many k’s for each fixed ;.

The hyperplane P divides the base U into two half spaces Hy and H_ according to
the orientation of P, meaning that vp should be pointing into H4 where vp € TU is
the normal to P we choose so that the orientation of TP @ R - vp agrees with that of U.
We consider a step-function-like section ¢ € Q%0 (Xo(U) \ p~H(P), Tl’o)zo)[[t]] of the
form

0 on H_. *+2)
Our goal is to write down an ansatz I1 = I1j (depending on #) solving the Maurer—Cartan
equation (1.1) such that IT = e x0 € Q%! ()ZO(U), T1-%) represents a smoothing of e¥ %0
(which is delta-function-like and not well defined by itself), and show that the semi-clas-
sical limit of ¢ is precisely ¥ as #i — 0.

v = {Log(@) on Hy,

4.1. Ansatz corresponding to a single wall

We are going to use the Fourier transform ¥ :G*(U) > KSy %, (U)[[7]] defined in Defi-
nition 2.9 to obtain an element IT € G* (U), and perform all the computations on G, (U)
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or G* (U) following Fukaya’s ideas [21]. We will omit the Fourier transform ¥ in our
notations, and we will work with tropical geometry on By instead of Witten—Morse the-
ory on B following Gross—Siebert’s idea [28]. We start by choosing some convenient
affine coordinates u,, ;’s (or simply u;’s, if there is no confusion) on U for each Fourier
mode m.

Notation 4.1. For each Fourier mode m € M \ {0}, we will choose affine coordinates
(uy,...,uy) for U with the properties that u is along —m. We will denote the remaining
coordinates by up,, 1 := (42,...,u,). We further require that the coordinates u; for m
and km is the same with k € Z_ for convenience.

Given a wallw = (m, P, ®) as above, we choose u; to be the coordinate normal to P
and pointing into H. We consider a 1-form depending on # € R~ given by

1
1\2
S = S = (—) e duy, 4.3)

him
which has the property that

/ Sm =1+ O(e™/™)
L
for any line L =~ R intersecting P transversally. This gives a bump form which can
be viewed as a smoothing of the delta 1-form over P, as shown in Figure 4. We will
sometimes write 5
Sm = e_"Z/hme,

where [y, 1= (%)%d U», to avoid repeated appearances of the constant (%)%.

PP
v

Fig. 4. 6, concentrating along P.

Definition 4.2. Given a wall w = (m, P, ®) where Log(®) is as in (4.1), we let
I = —6y - Log(©) = —8m Y auz¥™iut/ € G'(U)
Jik=>1
be the ansatz associated to the wall w, by viewing G* as a module over Q*(U).
Remark 4.3. Our ansatz depends on the choice of the affine coordinates (uy,...,u,)
because 4, does so, but the property that it has support concentrated along the tropical

hyperplane P is an abstract notion which does not depend on the choice of coordinates,
as we will see shortly.
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Proposition 4.4. The ansatz 11 satisfies the Maurer—Cartan (MC) equation
ATl + %[n, ] = 0.
Proof. In fact, we will show that both terms 911 and %[H, IT] vanish. First we have
A(Smz*™0n) = (d8m) "8, = 0
from the fact that d(8,,) = 0 which is obvious from (4.3). Next we show that
[ z¥1 8, 8mz*2™3,] = 0

Lo 2 . .
for any ki, k,. This is simply because 8, = e 2/ 1, and i, is a covariant constant
form (with respect to the affine connection), so we have

[szklmén, szk”"én] = lm A [e_”%/hzk‘mén,e_“%/f‘zkzmén] =0. n

4.2. Relation with the wall crossing factor

Since )ZO(U ) = U x T" has no non-trivial deformations, the element I1 must be gauge
equivalent to 0. In this subsection, we will explain how the semi-classical limit of the
gauge is related to the wall crossing factor Log(®).

4.2.1._Solving for the gauge ¢. So we are going to solve the equation e? x 0 = II for
¢ € G*(U) with desired asymptotic behavior. Using the definition in [42, Section 1] for
gauge action, we are indeed solving

adp _ 7, _
— (M—d)aw — Il 4.4)
ad,

Solutions ¢ to (4.4) is not unique. We will make a choice by choosing a homotopy oper-
ator H. Since G*(U) = P,,(2*(U)z™) ®z N is a tensor product of N with a direct
sum, it suffices to define a homotopy operator H,, for each Fourier mode m contracting
Q*(U) to its cohomology H*(U) = C.

Definition 4.5. We fix a based point ¢ € H_. By contractibility, we have the map
pq 10,1l xU - U

satisfying p, (0,-) = ¢q and p,(1,-) = Id, which contracts U to {g}.
This defines a homotopy operator

H, : Q*(U)z"™ - Q*(U)[-1]z"
by
A 1
H,(az™) = / g (0)z™.
0
We also define the projection

P Q*(U)Z" — H*(U)Z"
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by setting
BP(as™) = ol zm  fora E. QoU),
0 otherwise,
and
tm : H*(U)Z™ — Q*(U)z™
by setting ¢, : H*(U)z™ — Q*(U)z™ to be the embedding of constant functions on U
at degree 0 and 0 otherwise. R
These operators can be put together to define operators on G*(U), Gy (U) or G*(U)
and they are denoted by H, P and., respectively.

Remark 4.6. The based point g is chosen so that the semi-classical limit of the gauge
@o (as i — 0) behaves like a step-function across the wall P. There are many possible
choices of H, corresponding to choices of p, for this purpose. In Definition 5.12, we will
write down another particular choice (suitable for later purposes) in the case when the
open subset U is spherical (see Section 11).

In the rest of this section, we will fix ¢ € H— in the half space H_ and impose the
gauge fixing condition qu = 0 to solve for ¢ satisfying (4.4); in other words, we look for
a solution satisfying ¢ = H B(p +0H Q= H dy to solve equation (4.4) order by order;
here H ¢ = 0 by degree reasons. This is possible because of the following lemma which
we learn from [42].

Lemma 4.7. Among all solutions of e¥ % 0 = I, there exists a unique one satisfying
Pp =0.

Proof. Notice thatforanyo =01 + 02 +--- €t .G* (U) with do = 0, we have
e? x0=0,

and hence e¥*? % 0 = II is still a solution for the same equation With (p e o given by
the Baker—-Campbell-Hausdorff formulaas g e 0 = ¢ + 0 + 3 Lip,0) 4+ -+, we can then
solve the equation P (¢ ® 0) = 0 order by order under the assumption that 30 =0. ]

Under the gauge fixing condition P ¢ = 0, setting

k
Qsi1 = —H (H + Z T+ 1),3<px) N 4.5)

where the subscript s + 1 on the right-hand side means taking the coefficient of ! and
@S = @1 + -+ + @5, defines ¢ = @1 + ¢ + - -+ inductively.

Remark 4.8. Notice that

(H+Z(k+1>' AL

so the operator H , which is defined by integration along paths, is independent of the paths
chosen upon applying to these terms.
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Remark 4.9. Observe that the terms ¢; vanish on the direct summand (2* (U )z™) @7 N
whenever m # km. Furthermore, we can see that each dg, (and all its derivatives) decay
exponentially as Os, g (e ~¢-K/%) on any compact subset K C H_ away from P.

We are going to analyze the behavior of ¢ as # — 0 to show that it admits an asymp-
totic expansion with leading order term exactly given by ¥ on Xo(U) \ p~1(P).

4.2.2. Asymptotic analysis for the gauge ¢. Observe that when we are considering a sin-
gle wall w = (m, P, ®), the Maurer—Cartan solution IT and hence the gauge ¢ will be
non-trivial only for the summand (Q*(U)z™) ®z N where it = km for some k € Z~g.
We use the affine coordinates u = (u1, ..., u,) from Notation 4.1 for each component U
for all these summands.

By Remark 4.8, when dealing with closed 1-forms, we can replace the operator I-Alm
by the path integral over any path with the same end points. Let us consider the path o,
defined by

(1 =20)uf + 20uy,uf), ) if 1 €0, 1],

= 1) =
Qu = Quyy, 1. () {(ul,(Zt—l)um,J_+(2—2t)ufn,J_) ifr e [L1],

where u® = ¢ (see the left picture of Figure 9). From now on, we will assume that g, is
contained in the contractible open set U by shrinking U if necessary. Then we define the
operator I by

[(a) =: / a. (4.6)
Qu

By what we just said, we have

P},;,(O(Zrh) = f(a)z';’ = (/ a)z';’
Qu
for closed 1-forms «.

We are going to apply I, instead of H, to the closed 1-form

b ad’;s é s
( LGy “’)m

to solve for @541 because this could somewhat simplify the asymptotic analysis below.
First of all, the first term ¢; can be explicitly expressed as

Y1 = Zalki(Sm)kaén,
k

where 8, is the 1-form defined in (4.3) and 5,, is the affine vector field defined in (2.4)."°

10Note that there is a factor % in front of the expression of 5,, in (2.4), which will become
important later when we count the 7 orders in the asymptotic expansions.
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Since

1
- 12 3 1+ Owc(fi) ifu € Hy,
1 (8m) =/ Om = (—) / e_Tzduz = + Otoc () 1 u +
ou firr ou Oloc (%) ifue H_,
we see that ¢ has the desired asymptotic expansion, with leading order term given by the
coefficient of ¢! in v given in (4.2), where the notation Oj,.(#) means the following:

Notation 4.10. We say that a function f(x,#%) on an open subset U x R~o C By X R>¢
belongs to Oy (A') if it is bounded by Cx#* for some constant Cx (independent of %) on
every compact subset K C U.

Next we consider the second term ¢,. Notice that [z* my, Zkzmén] = 0 for all posi-
tive k1, k5. Therefore we have

[or. ] == > ark, @1k, (£ 6m)(Va, 6m)0n — 8 Va, (1 () ) 261K - (4.7)
k1.k2

where I refers to the coefficient of ¢+* in IT and d,, was introduced ip 2.5).
To compute the order of # in each term in (4.7), we first have |/ (8,,)| < 2 from the
definition of §,, in (4.3), and using the formula

1
1 2
S = (—) (€73 duy),
hm
we get

11 (1 (8,) V3, 6m)]

fi -

ch'l? / (Vg ni €3 dus)
ou r Xk

IA

< CH'/2,

This follows from the fact that V(u5)? vanishes along P up to first order, giving an
extra /2 upon integrating against e—%3/% Similarly, we can show that

118V, (I 5m)))] < CH'/2.
Therefore we have

> anz My + ) Owe (B9, on pT(HY),

k>1 k>1

$2 = v
Y Owe(®'?)zFm9, on p~'(H-),
k>1

where the notation Oloc(hl/ 2)ka(§n means a finite sum of terms of the form qbzkm 5,1
with ¢ € O (B1/?).

We would like to argue that the same kind of asymptotic formula holds for a general
term ¢, as well. To study the order of # in derivatives of the function eu3/ % we need the

following stationary phase approximation (see e.g. [15]).
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Lemma 4.11. Let U C R" be an open neighborhood of 0 with coordinates x, . .., Xy,
¢ : U — Rs¢ a Morse function with unique minimum ¢(0) =0 in U and X1, ..., %,
a set of Morse coordinates near 0 so that ¢(x) = %()?12 + -+ + X2). For every compact
subset K C U, there exists a constant C = Cg_y such that for every u € C*°(U) with
supp(u) C K, we have

oy p N A (v
(fperroma) - @ty (sz_k!A (g)“’))'

k=0
<CHPHN N sup |0%ul.
la|<2N +n+1
where
A= Z K ¥ = :I:det(ﬁ) and  3(0) = (det V2¢(0))!/?
03’ dx)’ '

In particular, if u vanishes at O up to order L, then we can take N = [L/2] and get

/ ooy,
K

We will keep track of the order of % in solving the general equation (4.5), and will
see that the leading order contribution of ¢4 simply comes from —H (IT541). From the
above calculation, we learn that for the 1-form §,, defined in (4.3), any differentiation
V{:,n (8m) will contribute an extra vanishing of order #'/2, and hence can be considered as
an error term. Systematic tracking of these 7 orders during the iteration (4.5) is necessary.
So we extract such properties of §,, which we need later in the following lemma.

Given a wall P C U, there is an affine foliation {P;}zen of U, where each P,
is a tropical hyperplane parallel to P and N is an affine line transversal to P which
parametrizes the leaves, as shown in Figure 5. Given any point p € P and a neighborhood
V C U containing p, there is an induced affine foliation {(Py,4)}4en on V.

< cpn/2HIL/2],

Lemma 4.12. Using u, as a coordinate for N so that ¢ = uy € N (recall that specific
affine coordinates (uy, ..., uy,) in U have been chosen in Notation 4.1), and considering
the function g := (u»)2, we have the integral estimate

/ g (sup V7 () )dua = Cpry 24
N

V.ouy

forany j,r € Z>o.
Proof. First we notice that V/ (e&/%) consists of terms of the form
M
. g
M ( [Lv g))éh,
i=1

where ) ; s; = j. We see that

=0
P

M
v! ( [ v g))

i=1
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forl < ZIA; max (0,2 — s;) =: L. We observe that the terms contributing to the lowest
#i power are either of the form
143
ﬁ_L%Jug 1_[ (Vig)e h
i=1

having s; < 2, or of the form

J
—j . &g
Ay [ [(Vig)e
i=1
having s; = 1. In both cases, applying the stationary phase approximation in Lemma 4.11
and counting the vanishing order along P, we obtain

R 4 1yr+j_ r—j 41
/ u ((sup V7 (e F))duz = €yt = €t "
N Py
The reader may notice that taking the supremum supp,, ,, in Lemma 4.12 is redundant
because g is constant along the leaves of the foliation {(Py,4)}4en; We write it in this
way in order to match Definition 4.19 below.

Remark 4.13. The order #~"2"+3 which appears in Lemma 4.12 is related to a similar
weighted L? norm in [30].

4.2.3. Differential forms with asymptotic support. Motivated by the procedure of track-
ing the 7% orders as in Lemma 4.12, we would like to formulate the notion of a differential
k-form having asymptotic support on a closed codimension k tropical polyhedral subset
P C U; by atropical polyhedral subset we mean a connected locally convex subset which
is locally defined by affine linear equations or inequalities over QQ, as in the codimension 1
case above (Definition 3.3). Before doing so, we first need to define the notion of a dif-
ferential k-form having exponential decay, or more precisely, having exponential order
O(e~¢/%); the error terms which appear in our later discussion will be of such shape:

Notation 4.14. We will use the notation Q2;(Bo) (similarly for ;(U)) to stand for
['(Bo x Rsg, /\" T*By), where the extra R+ direction is parametrized by 7.

Definition 4.15. Define W,*°(U) C Q’; (U) to be those differential k-forms o € Q’g )
such that for each point g € U, there exists a neighborhood V' of ¢ where we have
IVl oo vy < Djye v/
for some constants ¢y and D; y . The association U > ’Wk_ ®(U) defines a sheaf over By
which is denoted by W, .
We will also consider differential forms which only blow up at polynomial orders
in# 1
Definition 4.16. Define W2°(U) C Q’g (U) to be those differential k-forms o € Q’g U)
such that for each point ¢ € U, there exists a neighborhood V' of ¢ where we have
IV el ooy < Dyt N3V
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for some constant D,y and Ny € Z=. The association U > W2°(U) defines a sheaf
over By which is denoted by 'Wg°.

Notice that the sheaves 'Wki°° in Definitions 4.15 and 4.16 are closed under appli-
cation of V.o, the de Rham differential d and wedge product of differential forms. We
also observe the fact that ‘W, is a differential graded ideal of 'Wg°; this will be useful
later in Section 5.2. In particular, we can consider the sheaf of differential graded algebras
WX /W °, equipped with the de Rham differential.

The following lemma will be useful in Section 5.3 (readers may skip it until Sec-
tion 5.3):

Lemma 4.17. The following statements hold.

(1) Suppose that a € (W° /W, ) (U) = W (U)/W,*(U) (note that the sheaves
WE® are both soft sheaves) satisfies da = 0 in (WS /Wi e D). Then for any
compact family of smooth (k + 1)-chain {y, }yek in U, we have

/ &
vu

for any u € K, where & is any choice of lifting of a to W°(U).

(2) For any a € (W /W;®)(U) and a fixed based point x° € U, the path integral
fo = f;o Q, defined locally by first choosing a contractible compact subset K C U,
then a family of paths o : [0,1] x K — U joining x° to x € K, and also a lifting &
of a to W°(U), gives a well-defined element in (Wg° /Wy °°)(U), meaning that for
different choices of K, ¢ and &, the path integrals only differ by elements in Wy *°(U).

< DK’&e_CK.&/h

Proof. For the first statement, the equation da = 0 in (W2°/W,"°°)(U) means that we

have d@ = B for some B € W, 27 (U). Stokes” Theorem then implies that

o0

+1

/ @= | B=0gp(e ks
Bl’u Yu

For the second statement, we first fix a point x € U and a contractible compact sub-
set K C U such that x € int(K), and also a lifting & withda = 8 € W;*°(U). Suppose
that we have two families of paths 01,03 : [0, 1] X K — U parametrized by K. Using
contractibility of U, we have a homotopy & : [0, 1] x K — U between g1 and o5 sat-
isfying 2(0,-) = 09, h(1,-) = 01, h(-,0) = x° and h(-, 1) = Idg. Therefore we have
01 — 0o = 0h, and hence the difference of the two path integrals is given by

/ 6{—/ &z/ d&z/ ﬂ=/ h*(B).
01(-,x) 00(-,x) h(-,x) h(-,x) [0,1]%

Taking the covariant derivatives by V/ of this difference, we have

v (/«;1('&6) ‘- /Qo(~,X) &) - /[0,1]2 v

From the fact that § € 'W;*°(U), we have
IV (R* (B)(s. 1. u) < D g pe” KAl
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for any point (s, 7, u) € [0,1]?> x K, and therefore

IV (fra — foa)llLeok)y < Djgpe” 7K1/,

Hence f,, as an element of (W§°/ Wy *°)(U), is independent of the choice of the family
of paths p.

Now if K1, K, are two contractible compact subsets with x € int(K; N K3), we can
change the family of paths parametrized by each K; to an auxiliary one parametrized by
K1 N K>. By above, the path integral will only differ by elements in ‘W, *°(U). Finally,
for two different liftings &, &, of o, we have &1 — &, € W *°(U) and so

x
/ Ay — @y € WO_OO(U)
X

0

This completes the proof of the second statement. ]

Notation 4.18. Let P C U be a closed codimension k tropical polyhedral subset.

(1) There is a natural foliation { P4 }4en in U obtained by parallel transporting the tangent
space of P (at some interior Eoint in P)to every pointin U by the affine connection V
on By. Weletvp € I'(U, /\" (Np)) be a top covariant constant form (i.e. V(vp) = 0)
in the conormal bundle N of P (which is unique up to scaling by constants); we
regard vp as a volume form on space of leaves N if it admits a smooth structure. We
also let v}V, e AN p be a volume element dual to vp, and choose a lifting of U}V, as an
element in AXT U (which will again be denoted by v}, by abusing notations).

(2) For any point p € P, we choose a sufficiently small convex neighborhood V C U
containing p so that there exists a slice Ny C V' transversal to the foliation { P, N V'}
given by intersection of { P, },en with V, i.e. a dimension k affine subspace which is
transversal to all the leaves in { P; N V'}; denote this foliation on V by {(Py,¢)}geny »
using Ny as the parameter space. See Figure 5 for an illustration. In V', we take local
affine coordinates x = (x1,...,Xy) such that x" := (xy,..., xx) parametrizes Ny
with x” = 0 corresponding to the unique leaf containing P. Using these coordinates,
we can write vp = dx; A+ Adxg and vy = % A-er A %.

Fig. 5. The foliation near P.
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Definition 4.19. A differential k-form o € WZ°(U) is said to have asymptotic support
on a closed codimension k tropical polyhedral subset P C U if the following conditions
are satisfied:

(1) For any point p € U \ P, there exists a neighborhood V' C U \ P of p such that
aly € W o(V)on V.

(2) There exists a neighborhood Wp of P in U such that we can write
a = h(x,A)vp + 1,

where vp is the volume form Notation 4.18 (1), h(x,%) € C*°(Wp x R~¢) and 7 is
an error term satisfying n € ‘W, (Wp) on Wp (see Figure 4).

(3) For any p € P, there exists a sufficiently small convex neighborhood V' containing
p such that using the coordinate system chosen in Notation 4.18(2) and consider-
ing the foliation {(Py x/)}xen, in V, we have, for all j € Z>¢ and multi-index
B=(B1,....0k) € Z’;O, the estimate

; J+s—IBl—k

/ (x')ﬂ< sup |V’ (va(x)|)vp < Dj,V,ﬂh_l 2 (4.8)
x’eNy PV,X’ F

for some constant D; y g and some s € Z, where || = ), f; is the vanishing order

of the monomial (x')# = x’l31 x,f" along Py/—g.

Remark 4.20. Note that condition (3) in Definition 4.19 is independent of the choice of
the convex neighborhood V', the transversal slice Ny and the choice of the local affine
coordinates x = (x1, ..., X,) (although the constant D; i, g may depends these choices).
Therefore this condition can be checked by choosing a sufficiently nice neighborhood V
atevery point p € P.

Remark 4.21. The idea of putting the weight (x’)# and the differentiation V/ in condi-
tion (3) in Definition 4.19 comes from a similar weighted L? norm used in [30]. In this
paper, instead of L2 norms, we use a mixture of > and L' norms for the purpose of
Lemma 4.22.

The estimate in condition (3) of Definition 4.19 defines the following filtration:
WX C-CWps ConCWpl CWR CWpCWRCoeeCWp
c---cwecokw,

where, for any given s € Z, Wi = Wi (U) denotes the set of k-forms o« € 'Wg°(U) with
asymptotic support on P such that estimate (4.8) holds with the given integer s. Note
that the degree k of the differential forms has to be equal to the codimension of P. Also
note that the sets W,ztoo(U ) are independent of the choice of P. This filtration keeps track
of the polynomial order of # for k-forms with asymptotic support on P, and it provides
a convenient tool for us to prove and express our results in the subsequent asymptotic
analysis. In these terms, Lemma 4.12 simply means §,, € Wp (U ), where P is the tropical
hyperplane supporting a wall.
The filtration satisfies

(4.9)

\Y

9
dx;

Wi (U) C Wyt(U)
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forany/ =1,...,n, and
@ wp) c w W)
for any affine monomial (x")? with vanishing order |B| along P, so we have the nice
property that
WPV s -V 2 WH(U) C witi =B, (4.10)
Lemma 4.22. For two closed tropical polyhedral subsets Py, P, C U of codimension
k1, ko, respectively, we have

Wi, (U) A Wp,(U) C Wpt(U)
for any codimension k1 + k, polyhedral subset P containing Py N P, normal to vp, Avp,
if they intersect transversally,"" and
'Wfpl ) A W1r>2(U) C W,;l‘sz(U)

if their intersection is not transversal.

Before giving the proof, let us clarify that, when we say two closed tropical polyhe-
dral subsets Py, P, C U of codimension k1, k, are intersecting transversally, we mean
the affine subspaces containing Py, P, and of codimension k1, k5, respectively, are inter-

secting transversally; this definition also applies to the case when dP; # @, as shown in
Figure 6.

Fig. 6. Foliation in the neighborhood V.

Proof of Lemma 4.22. We first consider the case when P; and P, are not intersecting
transversally. Part (2) of Definition 4.19 says that we have neighborhoods Wp, of P; such
that we can write o; = h;vp, +n; fori = 1,2. Since vp, Avp, = 0in Wp, N Wp, by
the non-transversal assumption, we have oy A oy € ’Wk’ *(Wp, N Wp,) near Py N P,
and hence a; Aay € W, *°(U) by condition (1) in Definition 4.19 and the fact that
W, °°(U) is a differential ideal of 'W°(U).

' particular, we can take P = Py N Py if codimg (P N Po) = k1 + k».
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Next we assume that Py h P, = Q. Leta; € Wp, (U)and oy € Wb, (U). Using again
the fact that 'W,"*°(U) is a differential ideal of 'WZ°(U), same reasoning as above shows
that condition (1) in Definition 4.19 holds for a; Ay € WE“S (U). Condition (2) in
Definition 4.19 is also satisfied because in this case we have

Vg =vp, AVp,

in Wo = Wp, N Wp,. So it remains to prove condition (3) in Definition 4.19.
Fixing a point p € Q, we take an affine convex coordinate chart given by

V(C TpU = Mg) > U

centered at 0 € T,U. Then Vg := V N T,Q is a neighborhood of 0 in T, Q. We take
Q-affine bases ml,....m% of T,P;/T,0 and m!,....m"" of T,P,/T,0, respec-
tively, and the corresponding dual bases in (7,U/ T, P»)* and (T, U/ T, P1)*. We use

k;
x’-mizg ximl, =12,
=1

to stand for the natural pairing between x! = (x],... ,x]il) € (T,U/ T, P1)* and m],
,m]fl, and between x2 = (xf, ... ,xiz) € (T,U/T,P2)* and m% . ,m’zcz, respec-
tively. By shrinking V if necessary, we can write it as
v=|J " mi+x*my+ Vo)
xle(-5,8)%1
x2e(=8,8)k2

for some small § > 0, as shown in Figure 6. Then we can parametrize the foliations
induced by O, P; and P, respectively, as
Oy, (x1 x2) = xtemy +x%omay + Vo,
(P)y1 =x'-my + U (x*-my + Vo).
x2e(=8,8)k2
(P2)yy2 = x2-my + U (x!-my + Vo).
xle(=5,8)k1

We also extend (x!, x2) to local affine coordinates

1 1 .2 2
(xl,...,xkl,xl,...,xkz,xk1+k2+1,...,xn)

onV.
Now for a; € W{,l (U)and a; € 'Wf,z (U), we first observe that we can write

o = hi(x,h)dx’ +n; = h,-(x,h)dx{ /\---dx,ii + n;
fori = 1,2, and we have

Vih) = Y (VV'h)(V2h).
J1tj2=j
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Also, any affine monomial (x")? (in the coordinates (xl1 e ,x,il , x%, cees xiz) with van-

ishing order | 8| along Q can be rewritten in the form
@HPr )2,

where (x/)#i has vanishing order |g;| along Q.
Since the error terms 7; are not contributing when we count the polynomial order
in 771, it remains to estimate a term of the form

(NP1 (x2)P2 (VI hy)(V72hy).
‘We have
(xl)ﬁl (xz)ﬁz sup |(Vj1h1)(Vj2h2)| dxl dx?

QV,(xl‘xz)

-/ (x2>ﬁ2( [ GHH sup |(vf1h1>(vf2hz)|dxl)dx2
x2e(=8,8)k2 xle(=8,8)k1

Qp (x1.42)

< / P sup |(Vj2h2)|( / P sup |(vf1h1)|dx1)dx2
x2 ( x! 0

P2y 2 V.xlx2)

_J1ts—lByl—ky 2485 i 5
=D yanymh 2 L6 sup [(V2ho)| dx
x P2y 2
_Jits=IBil=ky _ Jja+r—IBal—kp
2 % 2

/(x 1 x2)e(=§,8)k1tk2

=D vxysr Djy vy
_JAs+r—IBl—k

<D J.V, xﬂh 2 s

which gives the desired estimate in condition (3) of Definition 4.19. [

For a given closed tropical polyhedral subset P C U, we choose a reference tropical
hyperplane R C U which divides the base U as U \ R = U4 U U_ such that P C Uy,
together with an affine vector field v (meaning Vv = 0) not tangent to R pointing into U..
We let

I(P):=(P +Rxov)NU (4.11)
be the image swept out by P under the flow of v.

By shrinking U if necessary, we can assume that for any point p € U, the unique flow
line of v in U passing through p intersects R uniquely at a point x € R. Then the time-?
flow along v defines a diffeomorphismz : W — U, (¢, x) — ©(t,x), where W C R x R
is the maximal domain of definition of t (namely, for any x € R, there is a maximal time
interval I, C R so that the flow line through x has its image lying inside U). For any
point x € R, we denote by 74 () := t(¢, x) the flow line of v passing through x. Figure 7
illustrates the situation.

We now define an integral operator I as

I(a)(t, x) := /Ot L%(r*((x))(s,x) ds. (4.12)

Note that I depends on the choice of the tropical hyperplane R.
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Fig. 7. The flow along v and I(P).

Lemma 4.23. For a € Wp(U), we have I(a) € W X (U) if v is tangent to P, and
I(a) € "WIS(_Pl)(U) if v is not tangent to P, where I(P) is defined in (4.11).

Proof. In order to simplify notations in this proof, we will omit t* in the definition (4.12)
of I by treating r : W — U as an affine coordinate chart.

Suppose that v is tangent to P. By condition (2) of Definition 4.19, we have a neigh-
borhood Wp C U such that o = hvp + 7. For each point x € R, the path 7, (¢) is tangent
to the foliation { P, }4en in Wp whenever t,(¢) € Wp by the tangency assumption. This
means ta%(vP) = 0in ;' (Wp) and hence we have

I(a)(t,x) = / L%OC(S,X) ds

[0.7]

/ toals,x)ds + / tan(s,x)ds.
[0.:0nz L W\Wp) ¥ [0.0nzx L (Wp) 7

So we have I(a) € W, %7 (U) by conditions (1) and (2) of Definition 4.19.
Now suppose that v is not tangent to P. Let

1Wp) = JWp +1-0)NU.

t>0

which gives an open neighborhood of /(P). Concerning condition (1) in Definition 4.19,
we take t(fg, xg) € U \ I(P), and then a neighborhood V' of t(ty, xo) in U \ I(P) and
a neighborhood Wy, C Wp of P such that, for any point z(¢, x) € V, the flow line joining
(¢, x) to R does not hit Wp. This implies that /(a)|y € W, °7(V) since we have

o\ € WU\ Wp)

and

I(a)(t,x) = /Ot L%a(s,x) ds = /[ toa(s,x)ds.

0,(1nty L (U\WL)
So condition (1) in Definition 4.19 holds for /().
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Concerning condition (2) in Definition 4.19, we first note that v = % is tangent

to I(P), so by parallel transporting the form ¢.2 vp to the neighborhood 7(Wp), we obtain
a volume element in the normal bundle of /(P), which we denote by v;(p). For a point
q € I(Wp), we take a small neighborhood V near g, and for t(z, x) € V, we write

t

I(a)(t,x) = /(; t%a(s,x) ds

= / Lga(s,x)ds+/‘ ta (hvp +1n)(s,x)ds
[0.1ne ' @\Wp) * [o.ne ' (wp) *

= ([ h(s, x) dS)l)](p) +/ tan(s,x)ds
(0,617 ' (Wp) [.anec (Wp)

+/ Lo oals,x)ds,
o.ne @ \Wp)

where the last two terms are in ‘W, (), and condition (2) in Definition 4.19 holds
for I(w).

Concerning condition (3) in Definition 4.19, we fix a point p = t(b, x) € I(P) and
let p’ = t(a, x) € P be the unique point such that p, p’ lie on the same flow line .
We take local affine coordinates x = (X1,..., Xg—1, Xk, .., Xn—1) € (=8,8)"! of R
centered at p’ (meaning that p’ = (a,0)) such that x’ = (x1,...,Xx;—_1) are normal to
the tropical polyhedral subset pr(t~!(P)) C R, where pgr : W (C R x R) — R is the
natural projection.

By taking § small enough, we have 7 : (a —§,b + §) x (—8,8)""! — U mapping
diffeomorphically onto its image, such that it contains the part the flow line 7¢|[4,p] join-
ing p’ to p. We can also take V = t((b — 8, b + 8) x (—6,8)"~1) with (bh,0) = p, and
arrange that V' = t((a — §,a + §) x (=8,8)"!) C Wp with 7(a,0) = p’. Notice that
there is a possibility that p = p’ € P and therefore a = b in the above description which
means V = V’. Figure 8 illustrates the situation.

Recall that there is a foliation { P, }4en codimension k affine subspaces parallel to P.
Then the induced foliation { P x'}(,x)en,,, of the neighborhood V'’ can be parametrized
by

Nyr:=(a—68,a+8) x (=8,8)k 1.

Therefore the foliation of V' induced by I(P) is parametrized as {/(P)’}x’en, ,» Where

I(P)y= | J (Pox+1tv). Ny=(=88"
te(b—48,b+6)

For o € W}, we consider
t
I(a) = / toa(s,x)ds
0 as
in the neighborhood V', and what we need to estimate is the term

() sup |V’
Ny I(P)

I(@)|vipy-

L,V
VIp)
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‘/7
P:Tn(b)
~ \e(bé,b+5)
/’ \
’/’ \
- 2,
/”

-

P = mo(a)

Fig. 8. Neighborhood along the flow line 7¢(z).

The integral /(«) can be split into two parts as

t a—§ t
L=1 =l
0 0 a—§

and we only have to control the second part

t
I, s(@):= f L%a(s,x) ds
a—§

because o € W5 (U) satisfies condition (1) in Definition 4.19, so foa_g tio(s,x)ds, as
a function of (7, x) which is constant in 7, lies in W, °7(U) (as the integral misses the
support P of o). Writing

v/ =V{vZ,
at
where V] () = 0, we have two cases depending on whether j, = 0 or j, > 0.

Case I: j, = 0. Then we have

. a+é . b+§ .
Vi, Uams@nl = [ 19 el + [ 19yl ds.

a+

The latter term can be dropped because the domain fab:; misses the support of P, so it

lies in ‘W,_%. For the first term, we treat [, :_J%S |VJ/_ (L,,Iv) «)| ds as a function of (¢, x) on V



Scattering diagrams from Maurer—Cartan equations 805

which is constant along the 7-direction. Therefore we estimate

a+é
(x")8 sup (/ . 4 (L a)|ds)v1(p)

x' I(P) s

a+§ .
:/(x/)ﬂ sup (/ |Vi(tv1v)oe)|ds)v1(p)
x’ PO,x/J’_bv a—§

a+é8
<[ s ([ s v va>|ds)w(P>
x' Py xr+bv a—§ P

s.x/

a+é8
= [ ([, @ s 1vleenlas o

s.x/

_Jts—=IBl=k
=Gy ph 2,

where the first inequality follows from the inequality
a+8 ) a+é8 .
[ wlegatds= [ s 9{eglds
a—§8 £ a—8 Py s £

and the second equality is due to the fact that f 8 supp, |VJj_(Lv1v)a)| ds, treated as
function on V, is constant along the leaf Py + bv. Wrmng

JHs—IBl—k=j+E-D—[B—(k=-1),
we obtain the desired estimate so that o € WIS(_PI)(U ).
Case 2: j, > 0. Then we have

V20 (Ia_s(@) = vn Ny o).

LV
Fae (0]

We can rewrite it as
t . .
V“ V’ztv (Ta—s (@) (t,x) = / V7 (v a)(s,x)ds + (V]az_IVJ]_‘ (tvva)>(a —38,x),
1(P) s P 2 P
where the latter term lies in ‘W, "%} because it misses the support P of &, and the first term
is bounded by

t ) a+§ ) b+§ )
/ VI (v a)(s, x) ds 5/ |Vf(t,,voz)|(s,x)ds+/ V7 (t,va)|(s, x) ds.
a—§ £ a—s £ a+s £

The same argument as Case 1 can then be applied to get the desired estimate. ]

Remark 4.24. Lemmas 4.22 and 4.23 say that we can relate the differential-geometric
operations A and / to intersection and suspension of asymptotic supports. These proper-
ties are essential for relating Maurer—Cartan solutions, which are differential-geometric
in nature, to combinatorics of scattering diagrams.
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In order to apply the notion of asymptotic support to keep track of the # order in
asymptotic expansions of the gauge element ¢° = @1 + ¢ + -+ + @5, we will restrict
our attention to the dg Lie subalgebra (EB we W )Z’”) ®z N C G*(U), whose ele-
ments are finite sums of the form ), , o z™ dp. where ol € WX (U). Restriction of H
defined in Definition 4.5 to (€D,,, W°° (U )z’") ®z N gives the homotopy operator

a: (@ w;:°(U)zm) ®z N — (@ 'Wfil(U)z’”) ®z N
m m
defined as .
I:I(Za,”nzmén) = Z/ P;(Olfn)zmén,
m,n m,n 0
using pg in Definition 4.5. We also write
f( Za;’nzmén) = Z f(a;’n)zmén
m,n m,n

when the o), are 1-forms. Extending Lemma 4.22 to this dg Lie subalgebra, we have the

following:

Lemma 4.25. Given my,m, € M, n1,n, € N, and o1 € "Wf,l (U) and a5 € 'WI’JZ(U).

If Py of codimension ky intersects Py of codimension k, transversally, then we have
(12 0y, 0022™20p,] € 01 A azzmﬁmza(mz,,,l)nz_(ml,nz),,l

+ W;;+S_1(U)Zml+m2 ®Z N

and o1 Aoy € W{,"’S(U) for any codimension ki + ko polyhedral subset P containing
P N Py normal to vp, A vp,. If the intersection is not transversal, then we have

[oelz'"‘é,,l ,azzmzénz] € W 2U)z™ ™2 ®7 N.
Proof. From the definition of the Lie bracket we have
oy 2™ é’11 N é"2] =1 Aapz™ M2 Ev)(mz,nl)ﬂz—(ml n2)n|
+ a1 A Vg, ()220,
+ax AV, (a1)2m1+m25n1
When P; and P, are intersecting transversally and let P as above, Lemma 4.22 says

that oy Aoy € "W;,H (U), so it remains to show that the last two terms are lying in
WS (U)zm1Hm2 gy, A, - Notice that we have

Vi, (@) € Wp '(U) and  Vj, (a2) € Wy, ' (U)

and hence result follows by applying Lemma 4.22 again. When P; and P, are not inter-
secting transversally, it follows from the non-transversal case of Lemma 4.22 that all the
terms lie in W, *°(U)z™ "2 @z N. m
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Remark 4.26. We note that the terms z"! +ma a(mz,nl)nz (my.,n-)n, Which appear in Lem-
ma 4.25 come from [z 8,“ z 28,,2] using formula (2.6). In particular, if we have both
(my,n1) = 0and (m3, ny) = 0 (which means that both z™! 8,,1 and z"2 8,,2 are elements
in the tropical vertex group), then the leading order term of [or1 2! 8,,1 oy z™2 8,,2] is given
by a1 A@az™ MG mymoynys AN 2GS an element
in the tropical vertex group as well. This property will be important to us in Section 5.3.

At this point we are ready to go back to the asymptotic analysis of the gauge ¢. Recall
that there are two integral operators: [ defined in (4.6) and [ defined in (4.12). If we
restrict ourselves to differential 1-forms, we can treat both [ and I as path integrals,
where the choices of paths differ only by a path lying inside R, as shown in Figure 9.
(Indeed, the requirement that, for any point p € U, the unique flow line of v in U passing
through p intersects R uniquely at a point x € R when we define / is equivalent to the
condition that U contains the path o,, when we define 1)

Path defining / Path defining I

Fig. 9. The difference between / and I.

The key observation is that Lemma 4.23, which applies to the operator I/, can be
applied to I as well because R is chosen so that R N P = @, and hence integration of
terms with asymptotic support on R over any path in R will produce elements in ' W_*°(U).

We show by induction that the term

(Z(kJrl)' ) +1

does not contribute to the leading % order term in ¢z defined in (4.5). For that we take
P to be codimension 1 hyperplane in U.

Lemma 4.27. For the gauge ¢ = @1 + @2 + - - - defined iteratively by (4.5), we have

05 € D Wip) (U)K m0,1°. adls(Bp') e P WHU)F"out!
k>1 k>1
1=/=s(+1)

foralls > 1andl > 1, where ¢°* = o1 + @2 + -+ + @s.

Proof. We prove by induction on s. The s = 1 case concerns the term ¢; = —I (1), and
we have

adlw] (0p1) = —adfpl (ITy).
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Now IT; € Py», 'W}, U)zkm 5nt1 from Definition 4.2, so we have

o1 = —1 (1) € @@ Wi py (U)K bt
k>1

by Lemma 4.23. Applying Lemma 4.25 [ times, together with the fact that /(P) and P
intersect transversally, we have

I 0 km3y .j
—ad, (M) e @ WpU)ZF"0,17.
k>1
1<j<l+1
The key here is that all the terms are linear combinations of Zk”’én’s, between which the
Lie bracket vanish since m is tangent to P and #n is normal to P, and hence the leading
contribution in Lemma 4.25 vanishes.
Now we assume that the statement is true for all s" < s. The induction hypothesis
together with the fact that ;41 € @y, Wp (U)z%™ 9,15+ imply that

_ adt, «
s =1 [ J0° Wl U kmanls-i-l.
Ps+1 ( +§(1+1)! <ﬂ)s+1€ke>9l p(U)z

- dls a .
Applying Lemma 4.23 to 541 = =1 (IT + } /5, %&ps)ﬁl then gives
(ps+1 € @ W;)(P)kaénts+l.
k>1

The second statement follows by applying Lemma 4.25 multiple times with the same
reasoning as above. This completes the proof. |

By Lemma 4.27, we have
¢s € ~1(T) + P TWRH W) 9t
I>1

for all 5. Lemma 4.23 tells us that f(W?, U)) C "WI_(}D)(U), SO —f(HS) € "WIO(P)(U) is
the only term which contributes to the leading order in 7. Since /(P) is of codimension 0,
'WI_(}D) (U) C O (B'/?) (Where Oy (f1/2) is defined in Notation 4.10). We conclude that:

Proposition 4.28. For the gauge ¢ = @1 + @2 + - - - defined iteratively by (4.5), we have

> a0t + @D Wiipy (U)Z*™ a1 on TN (HY).

k>1 k>1

¥s € km w1
@WO_OO(U)Z "0, " onp  (H-),
k>1

which implies that ¢ = y + D iks1 OIOC(hl/Z)kavént'j overvpv_l(U \ P), or equiva-
lently, ¢ .= F (@) =¥ + D jks1 Oroc(BV/2)2*m 3,17 over Xo \ p~1(P).
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Remark 4.29. Recall that the ansatz in Definition 4.2 is defined by multiplying &, to the
wall crossing factor Log(®). But indeed the only properties that we need are &, € Wl )
and that 1 (8,,) has its leading # order term given by 1 on H4. So Proposition 4. 28 still
holds for any solution to the Maurer—Cartan equation in Proposition 4.4 (or more gen-
erally, to the Maurer—Cartan equation of the quotient dglLa g*/&*(U) to be introduced
in Section 5.2.1) of the form

Me— Y (@i + WpU))z" 0,17
Jk=1

with 9TT = 0 such that each 8;” € "Wl, (U) and can be written as

](;3 = (nh)~ Te™ ﬁ dx

in some neighborhood Wp, of P;, where x is some affine linear function on Wp; such that
P; is defined by x = 0 locally and bup, dx > 0.

5. Maurer-Cartan solutions and scattering diagrams

In this section, we interpret the local scattering process, which produces a consistent
extension § (D) of a scattering diagram D consisting of two non-parallel walls, as arising
from semiclassical limits (as # — 0) of a solution of the Maurer—Cartan (MC) equation.

5.1. Solving Maurer—Cartan equations in general

Let us begin by reviewing the process of solving MC equations in a general dgla (G*, d,

[-,-]). We will apply Kuranishi’s method [37] to solve the MC equation using a homotopy

which retracts G* to its cohomology and acts as the gauge fixing (see e.g. [43]).
Suppose that we are given an input

H=H1+H2+---€G1®m

satisfying 9T = 0, where IT; € G! @ m* is homogeneous of degree k in z. We attempt to
find @ = 5, + 83 4 --- € G @ m, where Z; € G! ® m* is homogeneous of degree k
in £, such that

=0 +P4+---€G' @m,

where each term @y := I1; + & € G! ® m* is homogeneous of degree k in 7, gives a
solution of the following MC equation, i.e.

5@+hq@=0 (5.1)

We assume that there are chain maps ¢, # and homotopy H

L
.
N —chy

P
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such that £ o1 =1Id,andId — t o P = dH + H0. Then, instead of the MC equation, we
look for solutions ® of the equation

1
d=1II- EH[CD’ . (5.2)
This originates from a method of Kuranishi [37] used to solve the MC equation of the
Kodaira—Spencer dgla. His method can be generalized to a general dgla as follows (see

e.g. [42])

Proposition 5.1. Suppose that ® satisfies equation (5.2). Then ® satisfies the MC equa-
tion (5.1) if and only if P[P, ] = 0.

In general, the k-th equation of the above equation (5.2) is given by

5 + .Z %H[cbj, @] =0, (5.3)
jH+l=k
and Zj (recall that & = ® — II) is uniquely determined by =, j < k. In this way, the
solution & to (5.2) is uniquely determined.
There is a beautiful way to express the unique solution & as a sum of terms involv-
ing the input IT over directed trees (reminiscent of a Feynman sum). To this end, we

will introduce the notions of a directed tree and a directed tree with ribbon structure,
following [20].

Definition 5.2. A (directed) k-tree T consists of the following data:

e a finite set of vertices T together with a decomposition 719 = T[O] u Tl {v,),
where TH[1 ], called the set of i 1ncom1ng vertlces is a set of size k and v, 1s called the

outgoing vertex (we also write Too = T Iy {vo}),
e a finite set of edges T[l], and

e two boundary maps 0;,, 0, : TH — T (here 9, stands for incoming and d, stands
for outgoing)

satisfying all of the following conditions:

(1) Every vertex v € T is trivalent, and satisfies #9; ' (v) = 2 and #3;-! (v) = 1.

(2) Every vertex v € Tlfl] has Valency one, and satisfies #9, ! (v) = 0 and #3;' (v) = 1;
we let 711 .= 700\ o—1(7L0),

(3) For the outgoing vertex v,, #3,, ! (v,) = 1 and #9,1(v,) = 0; we let e, := 3,1 (v,)
be the outgoing edge and denote by v, € T Iy T[O] the unique vertex (Wthh we
call the root vertex) with e, = 9;,! (v,).

(4) The topological realization |T| := (] ] ec7[0, 1])/~ of the tree T is connected and
simply connected; here ~ is the equivalence relation defined by identifying boundary
points of edges if their images in 7' are the same.

Two k-trees Ty and T are isomorphic if there are bijections 7_’1[0] = 7_"2[0] and 7_’1[1] > 7_"2[1]

preserving the decomposition

70 = 7O 700 g, )

1 1,In
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and boundary maps 0;, and 9;,. The set of isomorphism classes of k-trees will be
denoted by Ty. For a k-tree T, we will abuse notations and use 7 (instead of [T]) to
denote its isomorphism class.

Definition 5.3. A ribbon structure on a k-tree is a cyclic ordering of 9, (v) U 9, ! (v) for
each v € T, Equivalently, it can be regarded as an embedding |T'| < D of |T| into the
unit disk D C R? mapping TCL(,)] to dD, from which the cyclic ordering is induced by the
clockwise orientation on D. We will use T to denote a ribbon k-tree, and T to denote the
k-tree underlying T.

Two ribbon k trees Ty and T, are isomorphic if they are isomorphic as k-trees and
the isomorphism preserves the cyclic ordering. The set of isomorphism classes of ribbon
k-trees will be denoted by RTy. We will again abuse notations by using T to denote an
isomorphism class of ribbon k-trees.

Definition 5.4. Given aribbon k-tree T € RTg, label the incoming vertices by vy, . .., vk
according to its cyclic ordering (or the clockwise orientation on D if we use the embed-
ding |T'| < D). We define the operator [ 1 : L[11®F — L[1] by

(1) aligning the inputs {1, ..., € L at the vertices vy, . .., vk, respectively,
(2) applying m, at each vertex in T, where m, : L[1] ® L[1] — L[1] is the graded
symmetric operator on L[1] (= L shifted by degree 1) defined by
ma(e, B) = (~1)*F+D[e, g
(here @ and B denote degrees of the elements «, 8 € L, respectively), and
(3) applying the homotopy operator —H to each edge in T,
We then define [ : L[1]®% — L[1]by [y := Y yerr, 30 k1-

The operation [ t can be symmetrized to give the following operation Jx r associated
toak-tree T € Ty:

Definition 5.5. Given a k-tree T € Ty, let T € RTy be a ribbon tree whose underlying
tree is T = T. We consider the set Xy := {0 | 0 : 1£0] — {1,...,k}}. Then we define
the operator g 1 : Sym*(L[1]) — L[1] by

Ber @il = Y DD 1oy Lot

OGEk

here the sign (—1)% @9 s determined by the rule that, when the permutation

G180 = Cowpys -+ -5 Soqur)

is decomposed as a product of transpositions, each transposition interchanging ¢; and {;
contributes (— 1)(§'+1)(§/+1) (where {; denotes the degree of {; € L). Note that 3% 7 is
independent of the choice of the ribbon tree T. We then define 3% : Sym* (L[1]) — L[1]

by
Z ~9k T
|Aut(T)|’

where |Aut(7')| is the order of the automorphlsm group of a k-tree T'.
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Setting
1
E::Zﬁsk(n,...,n)=Zrk(n,...,n), (5.4)
k>2 k>2
we have that
1
q>:=n+5=Zﬁsk(n,...,n):Zrk(n,...,n), (5.5)
k>1 k>1

is the unique solution to equation (5.2) obtained from recursively solving (5.3)

The equality between the two sums in (5.4) (and hence those in (5.5)) follows from the
facts that the inputs are all the same and of degree 1, and simple combinatorial arguments
in counting of trees. Also note that the sums in (5.5) are finite sums (mod m” +1) for every
N € Z-o because IT = T1; + I1, +--- and II; € G! @ mF so that, modulo m" 1,
there are only finitely many trees and finitely many IT;’s involved.

Remark 5.6. Both the operators 3x 7 and [ p will be used, but for different purposes:
[, 1 does not involve automorphisms of trees, so it will be used in Section 5.2.3 to simplify
some of the notations; while 3 r is conceptually more relevant to operations on dgla’s,
as we will see later.

Remark 5.7. Sum-over-trees formulas similar to (5.5) appear quite often in the literature,
in particular in applications of the homological perturbation lemma [35] and study of L
(or Ao) structures [20].

5.2. Scattering of two non-parallel walls

Suppose we are given two non-parallel walls w; = (my, Py, ®1) and wy, = (m3, P>, ©5),
where Pp, P, are oriented tropical hyperplanes intersecting in a codimension 2 tropical
subspace Q := P; N P in an affine convex coordinate chart U C By. The ansatz in Def-
inition 4.2 gives two Maurer—Cartg\n (abbrev. MC) solutions Ily, € GI(U ), i =1,2,
but their sum 1 := Iy, + Iy, € G'(U) does not solve the MC equation (5.1).

As we mentioned in the Introduction, the method of Kuranishi [37] with a specific
choice of the homotopy operator allow us to construct from IT a MC solution ® of
GL(U) up to errors terms with exponential orderin#i~!, i.e. terms of the form O(e~¢/f) 12
More precisely, we will construct MC solutions of the dgla g*/&*(U), which is a quo-
tient of a sub-dgLa of G* (U), and show that they naturally give rise to consistent scatter-
ing diagrams. -

We will first introduce the dgla g*/&*(U) in Section 5.2.1 and construct a specific
homotopy operator H in Section 5.2.2, before starting the asymptotic analysis of the MC
solutions we constructed in Sections 5.2.3 and 5.2.4. The key results are Theorem 5.25
and Lemma 5.35.

1211 is not a MC solution even up to such errors terms.
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5.2.1. Solving the MC equation modulo error terms with exponential order in #i~1.

Definition 5.8. We define a dg-Lie subalgebra in G, (U) by
gy (U) = (EB W:"(U)z'") ®z A}, (U) ®c (R/mVTh),
m

where W°(U) C Q5 (U) is the space of differential forms with polynomial %71 order
defined in 4.16. A general element of g}, (U) is a finite sum of the form

Z Z a}‘mzméntj,

j mn

where Ol € W2(U). We have the inverse limit g*(U) := lim gN ).
There is a dg-Lie ideal €}, (U) of gy, (U) containing exponentlally decay errors terms
in#zL:

ex(U) = (GB W;°°<U>z'") ®z A, (U) ®c (R/mV ),

where W, *°(U) C Q7 (U) is the space of differential forms with exponential #~1 order
as in Definition 4.15.
Then we take the quotient

)/ (0) = () (W) Wo =)= ) 92 A}, V) we (R/m" )

m
and define the dgla g*//g* (U) as the inverse limit g*//g* U):= l(ln(gj‘v U)/&x5)).

Remark 5.9. The advantage of working with the quotient W°/W_ is that, given any
element o € W (U) and any cut off function y (independent of %) such that y = 1 ina
neighborhood of P, we have o = ya in the quotient Wy, (U)/ W, (U), so an element
in Wi (U)/ W, °°(U) can be treated as a delta function supported along P.

Lemma 5.10. For the dgLa gy (U)/€Ey,(U) in a contractible open subset U, we have
H> gy (U)/&%(U)) = 0and

HO (g (U)/E5(U)) = (@ H°<w:°(U)/W;°°<U)>z'") ®zAY, (U)®c(R/mV+)

where

{f:Rag =R ||f(H)| < CHE™N for some C and N}
{f :Reg = R || f(#)| < Ce=</ for some c and C}"

HO (W2 (U)/W;>(U) =

The proof of the above Lemma 5.10 relies on construction of homotopy operator. We
will give the proof using the homotopy operator H constructed in Section 5.2.2 when U is
a spherical neighborhood as described in Notation 5.1 1; the proof of a general contractible
U works exactly in the same way by using the homotopy operator constructed from the
map p,o0 : [0, 1] x U — U which contracts U to a point x°.
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5.2.2. Construction of the homotopy operator. Recall from Section 5.1 that a homotopy
operator H (sometimes called a propagator) is needed for gauge fixing if we want to
apply Kuranishi’s method to solve the MC equation. To define this (and other operators),
we may need to shrink U to a spherical neighborhood as follows.

Notation 5.11. Suppose we have two non-parallel walls w; = (m;, P;,0;) (i = 1,2)
intersecting transversally in a codimension 2 tropical subspace Q := P; N P in an affine
convex open subset V' C By. We fix a point go € Q. By reversing the orientations on P
and P, (and replacing ®; by @i_] accordingly) if necessary, we can choose the oriented
normals of P; and P, to be —m; = —vp, and —m, = vp,. We orient the rank 2 normal
bundle NQ by the ordered basis {—m, —m5}. By identifying an open neighborhood of
the zero section in the normal bundle NQ with a tubular neighborhood of Q in By, we
see that the two walls are dividing V' N NQ into 4 quadrants; this can be visualized in the
2-dimensional slice VN NQy, in V N NQ, as shown in Figure 10.

Fig. 10. The slice VN NQg4,in V N NQ.

Now we fix local affine coordinates in V' near gg, and choose an affine flat metric
gy with the property that m, m, and TQ are perpendicular to each other. Then we
choose a point x° in the third quadrant in NQ,, (see Figure 10) with x° ¢ (P; U P,)
and aball U C V (defined using the metric gy) centered at x° which contains go. We fix
this neighborhood U centered at x° and call it a spherical neighborhood; see Figure 11.
From this point on, we will work with a spherical neighborhood U C By for the rest of
this paper.

Since TU = Ap, ® zR and I'(U, Ap,) = M, we can identify an element 0 # m € M
with an affine vector field m € I'(U, Ag,) C I'(U, T U) (with respect to the affine struc-
ture on By). We denote by U,j the tropical hyperplane perpendicular to m with respect to
the metric gy. Then U+ divides U into two half-spheres U, and U,,, which are named
so that —m is pointing into U,. The property that my, m, and TQ are perpendicular to
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Scattered walls

U+

almi+a’ms

Fig. 11. The spherical neighborhood U'.

each other then implies that
QNUcCUY (5.6)

almi+a?m,
for all (a',a?) € (Z=0)? \ {0}; see Figure 11.

To define a homotopy operator on g}, (U), we will first define one on the direct sum
P,, W°(U)z™ and extend it by taking tensor product. For each m € M, recall that we
have d(az™) = d(a)z™, where d is the de Rham differential on U. So the cohomol-
ogy H*(WX(U)z™,3) = {f :Rsg — R | | f(#)| < CH N for some C and N} is rep-
resented by functions depending only on # and with polynomial growth in 7!,

We are going to construct a homotopy operator H,, on ‘W°(U)z™ which retracts
to its cohomology H*(W°(U)z™) = H*(W(U))z™. The hyperplane U;- we chose
above is playing the role of the reference hyperplane R when we define the operator / in
(4.12) in Section 4.2.3. In the current situation, we need a family of reference hyperplanes
UaJ] m, +a2m,» and condition (5.6) is to ensure that we can define Hy, in the same way as /
and apply Lemma 4.23 for each m = a'm; + a’ms,.

Now for0 # m € M, asin Lemma 4.23, we use flow lines along the affine vector field
—m to define a diffeomorphism t,, : W,,, — U, where W, C R x U,ﬁ is the maximal
domain of definition of 7. Under the diffeomorphism t,,, we obtain affine coordinates
(t =:Um1,Um2s--. Umn)on U such that x® = (0,...,0). Note that these coordinates
satisfy the condition in Notation 4.1 and we will set U, | 1= (U2, ..., Um,n). Form =
0 € M, we will choose an arbitrary set of local affine coordinates (u¢,1, U2, . .., Uo,) In
defining the homotopy operator H .

In the coordinates (Upm,1, - - ., Um,n), We decompose a differential form a € WZ°(U)
uniquely as

a=0ap+dum1 ANay, 5.7
where
t_a apg=1t_a oy =0

Ny | Um,1
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We define a contraction p,, | : R x U,f; — U,ﬂ; by

P, L(F U, 1) =T U, L.

Definition 5.12. We define the homotopy operator Hy, : W°(U)z™ — W2, (U)z™ by
Hp(az™) = (Im,er (@) + Ln(2))z™, where we set

1 1
Iner @umoiin )= [ i@ 0 = [ (e s @olyg) ar

Um,1
I (@) (U, 1, U, L) 1= / o1(S, Um,1)ds
0

using the decomposition of differential forms o € 'W°(U) specified in (5.7).
We define the projection Py, : W(U)z™ — H*(W°(U))z™ by

(a]40)z™  for o of degree 0,

0 otherwise,

P (@z™) 1= {

where a|,0 is evaluation of & at the point x° and is to be treated as a constant function
along U, and the operator (,, : H*(W°(U))z"™ — W (U)z™ by tm(az™) := t(a)z™,
where  : H*(W2°(U)) — W(U) is the embedding of constant functions over U at
degree 0 and 0 otherwise.

We will abuse notations by treating H,,, $,, and i, as acting on the spaces 'W°(U)
and H*(W(U)).

Proposition 5.13. The operator Hy, is a homotopy retract of W°(U)z™ onto its coho-
mology H* (W (U))z™, i.e. we have
Id — 1y P = 0Hpm + Hpd.
The integral operator H,, preserves W_°°(U) because the path integrals preserve

terms with exponential decay in # as one can see from Definition 4.15. Also, we have the
natural identifications

H*(WWU),d) ={f :Roo >R ||f(H)] < C# N for some C and N},
H*(W;®W),d) ={f : Rag = R | | f(#)| < Ce /" for some ¢ and C},
under which we see that the operators $,, and ¢, can be descended to the quotient:
P : WEWU) /W2 WU) - HY (W U). d)/H* (W, (V). d),
tm - H* (W2 (U), d)/H* (W= (U),d) - W2 U)W, >(U).

again by Definition 4.15. Thus, Proposition 5.13 holds in the quotient W°(U)/W_*°(U)
as well.

Definition 5.14. We define the operators H := @ Hy,, P := P P and ¢ := Py act-
ing on the direct sum €p,, W°(U)z™ and its cohomology. These operators extend natu-
rally to the tensor product gy, (U) = (B,, W (U)z™) ®z AI\QO(U) ®c (R/mY*1) and
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descend to the quotient gy, (U)/&y, (U) (since Ey (U) is a dg ideal of gy, (U)). We take
the inverse limit to define the operators H, & and ¢ acting on g*/&*(U).

Remark 5.15. We remark that the homotopy operators defined above depend on the
choices of U, the affine coordinates, etc, and so does the MC solution ® that we are

going to construct. However, the scattering diagram D (®) associated to @ is independent
of these choices.

Proof of Lemma 5.10. We prove the statement of this lemma for each direct summand
(W2 (U)/ W, °(U))z™, which will be identified with (WZ°(U)/W,°°(U)) so that the
Witten differential d becomes the usual de Rham differential d. We have the following
operators:
Hy : WEU)/W2WU) — W2 (U)/ WA U),

{f :Reg — R ||f(#)| < C#H Y for some C and N}
{f :Rso = R ||f(#)| < Ce=¢/* for some ¢ and C}
AR =R f(H)] < C#=N for some C and N}
“{f :Rsg = R ||f(H)| < Ce=¢/% for some ¢ and C}
defined in Definition 5.14. By descending the formula in Proposition 5.13 to the quo-

tient by W_°°(U), we have [ — i, o P, = 0Hp, + Hp, 0. The result follows by a natural
extension of this homotopy equation to gy, (U). |

P = W)/ W,2U) —

- WZ(U)/ W= (U)

lm

5.2.3. Asymptotic analysis of Maurer—Cartan solutions. Going back to the two given
non-parallel walls w; = (m, P1,®1), wo = (m», P>, ®5). Recall that each wall cross-
ing factor ©; is of the form

Log(®;) = Z a](.lk)wk'"i 5nit-i,
Jik=1
where n; € A};O(U ) 2 N is the unique primitive element satisfying n; € (TP;)* and
(vp;,n;) <0, and vp, € TU a normal to P; so that the orientation on TP; ® R - vp,
agrees with that on U (see Definition 3.3). As in Remark 4.29 in Section 4, we assume
that the two inputs D, 1@ associated to the walls w1, Wy are of the following form:

Assumption 5.16. We assume that there are two MC solutions IT(), TI® of g*/&*(U),
which can be represented by elements in g*(U) of the form

n®e— Y a5 + wp (U)Fmi 9,17 (5.8)
J-k=1
with aj(.Q # 0 only for finitely many integers k for each fixed j, and each 8;2 € 'W},i )
can be written as

. 2
85 = (wh) ™12~ dy

130bviously MC solutions of the dg-Lie subalgebra g*(U) C KS Xo (U)[[t]] descend to the
quotient to give MC solutions of g*/&*(U).
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in some neighborhood Wp, of P; for some affine linear function n on Wp, such that P; is
defined by 1 = 0 locally and ¢,, P dn > 0.

___For convenience, we will abuse notations and use % e *(U) to denote its class in
g*/&*(U) as well. We will also denote by
no .= — Z aj(lk)Sj(;c) femi .t (5.9)
Jk=1
the leading order term of the input IT) for i = 1,2. Then we have

0o e (@ Wp. (U)zFmi 5ni)[[t]]s

k>1
n® — 1o e (@ Wp, (U)zFmi é,,i)[[z]].
k>1
We now solve the MC equation of the dglLa g*//g* (U) by solving equation (5.2) with

the input data T := I 4 T1®_ Using the homotopy operator H and applying the sum
over trees formula (5.5), we obtain an element

= Z—sk(H LI = Zrk(n,...,n), (5.10)

k>1 k>1
in g*(U), whose class in g*//g*(U) will also be denoted by ®.

Lemma 5.17. The solution ® constructed from the input T1 = ITMW 4 11 using (5.2)
and the homotopy operator H defined in Definition 5.14 is a MC solution in g*/&*(U),
i.e. we have

P[P, D] =0
in gf/—g* U).

We postpone the proof of Lemma 5.17 to Section 5.2.3. From Lemmas 5.17 and
5.10, we obtain a unique element ¢ € g /8 (U) satistying e * 0 = ® and P (¢) =0
in g* /€*(U) using Lemma 4.7. To start the asymptotic analysis of ® and ¢, we first
decompose the Lie bracket [-,-] on g* /&*(U) into three types of operators:

Definition 5.18. For @ = fz™J, and B = gz™ 9,/, where f,g € WX(U), we decom-
pose the Lie bracket [ -, -] into three operators {, {f and b defined by

e, B) = (=) EFD gz 9, 27 G,

8@ B) = (=17 EHD £ (Vy, )2 by,

(. p) = () HDE(V, )z,

here f and g denote the degrees of f and g, respectively. These operators extend by
linearity to gy, (U) by treating a general element as a polynomial on the basis {z™¢/},
and descend to the quotient gy (U)/&y, (U), and can be further extended to g*(U) and
g / &*(U) by taking inverse limits.
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Next we will decompose the operation [; defined in Definition 5.4 according to the
above decomposition of the Lie bracket [ -, -], the powers of the formal variable ¢ and the
Fourier modes {z"}. For this purpose, we need to introduce the notion of a labeled k-tree.

Definition 5.19. A labeled ribbon k-tree is a ribbon k-tree 7 together with

e alabeling of each trivalent vertex v € glo] by i, ff or b, and
e alabeling of each incoming edge e € 0;! (’J‘LEO]) by a pair (me, j.), where m, = km;
(for some k > 0 and i = 1, 2) specifies the Fourier mode and j, € Z~¢ specifies the

order of the formal variable ¢ (corresponding to the input term zK™i /e in g*(U)).

Similarly, we define a labeled k-tree as a k-tree T together with a labeling of the trivalent
vertices TI% by fj or ff + b (as only symmetric operations are allowed if there is no ribbon
structure) and the same labeling of the incoming edges 95! (Ti[l?]) as above. We use 7 to
denote the underlying labeled k-tree of a labeled ribbon k-tree 7.

Two labeled ribbon k-trees 77 and 75 (resp. two labeled k-trees T and T,) are said to
be isomorphic if they are isomorphic as ribbon k-trees (resp. k-trees) and the isomorphism
preserves the labeling. The set of isomorphism classes of labeled ribbon k-trees (resp.
labeled k-trees) will be denoted by LRT¥ (resp. LTX). As before, we will abuse notations
by using 7 (resp. T) to stand for an isomorphism class of labeled ribbon k-trees (resp.
labeled k-trees).

Notation 5.20. For a labeled ribbon k-tree T (resp. labeled k-tree T), there is an induced
labeling of all the edges in 711 (resp. TI!l) by the rule that at any trivalent vertex v € 70
(resp. v € TI) with two incoming edges ey, e, and one outgoing edge e3, we set

(mg3, je3) = (mel s jel) + (mezv jez)-
We also write (mg, jg) (resp. (mr, j7)) for the labeling of the unique edge e, attached to
the outgoing vertex v,,.

Definition 5.21. Given a labeled ribbon k-tree 7, we label the incoming vertices by
V1,..., VU according to its cyclic ordering. We define the operator (similar to Defini-
tion 5.4) [ g : @*(U)[1])®* — g*(U)[1], for inputs &1, ..., & by

(1) extracting the coefficient of the term z™¢i t/¢i in ¢; and aligning it as the input at v;,

(2) applying the operators 1, ff or b to each trivalent vertex v € 7 according to the
labeling,

(3) and applying the homotopy operator —H to each edge in 7.

The operator [ 5 descends to g*//g* (U) and will be denoted by the same notation.
Notation 5.22. We decompose the set LRT¥ of isomorphism classes of labeled ribbon
k-trees into two parts: LRTF = LRTS L LRT’f, where LRT’(j consists of trees whose trivalent

vertices are all labeled by [] and LRT’I‘ := LRTF \ LRTlg. We then consider the following
operators:

1 1
li0 := Z zk—_lIk,T, [k = Z 2,{—_11k,7~

T €LRTS T eLRTf
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It is easy to see that for each labeled ribbon k-tree 7, the labeling mg associated
to the unique outgoing edge is of the form mg = [(a;my + axmy) for some I € Z~
and (a1,a2) € (Z>0)Zy> Where (Z30)2y, denotes the set of all primitive elements in
(Z>0)? \ {0}, so the solution ® can be decomposed as a sum of Fourier modes param-
etrized by (Zs0)?

prim*

Notation 5.23. We let m, := aymy + axm; fora = (a1, az) € (Zzo)gﬁm. Note that we
have m 0y = m1 and m,1) = my. For each a € (Zzo)gﬂm, we let P, be the tropical
half-hyperplane P, = Q —Rx¢ - m,. We equip each P, with a normal vp, such that
{—mga,vp,} agrees with orientation given by {—m, —m>} on NQ, and this gives an ori-
entation on P, such that the orientation of TP, @ R - vp, agrees with that of By (so that
vp, satisfies the condition in Definition 3.3 as well).

Definition 5.24. Given the input IT = TT®) + IT® € §*(U), we put
V=Y o= Y v,

k>1 ae(Z=0)>

prim
where

v@e P > WRU)-zFma,t7 (modmN T

k=1 neAy (U)
1<j<N

nlmg
foreacha € (Zzo)gﬂm’ and
Fi=) (G(I,.... ) —o(d.....I) = Y F9
k>1 aE(Zzo)ﬁrim

where

FOe @ > weU)-z5mad,t/ (modmN T

k=1 neAy (U)
1<j<N

for each a € (ZzO)gﬂm-

Then we have ® = ¥ + F, where ¥ are the leading # order terms and F are the error
terms, as # — 0. We also put ®@ := ¢@ 4 F@ The key result on the asymptotic
analysis of @ is the following:

Theorem 5.25. For each a € (Z>0)3y, we have

w@ ¢ (@ W (U)zkme 5,1“)[[1]],

k>1

F@ ¢ (@ Z W?’a (U)kaa én) ([e1],

k=1neAy (U)

where n, € AI\QO(U) is the unique primitive normal to P, such that (vp,,ng) < 0.
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Proof. According to the definitions of ¥@ and F@ in Definition 5.24, this theorem is
equivalent to the following statements:

e (1., TT) € W) (U)z™7 §,,t/7  if T € LRTS,
leg (... T = L g (... 1) € Y WP (U)z7 0,17 if T € LRI,
n

g (..... ) e > W (U)z 0,07 if T e LRTE.
n

The condition n, L P, in the first statement follows from a simple induction argument
using formula (2.6); see the proof of Lemma 5.35 for more details. All other statements
follow from Lemma 5.27 below. ]

To state Lemma 5.27, we fix a labeled ribbon k-tree 7 whose incoming edges are
ei, ... e with labeling (me,, je,), ... (Mey ., jei ), TESpectively.
We then consider the operation

Ce.g (10, )21 171 (o )2k 1ok )
forgiveny,...,ax € WP(U)andny,...,ng € I'(U, szs*o)’ defined in exactly the same
way as in Definition 5.21 above, and treat it as an operation on «;dy,, ..., 0y, Vvia
the formula
g (@10ny s QO ) 2T 17 = (e (@1 Oy )21 170, (O )2k 27K), (5.11)
which will further be abbreviated as [ (@, 1) := Ik,gr(ozlén1 e ,akénk), where we put
a:=(ay,...,ar)and n := (ny,...,ng).

Notation 5.26. Given a labeled ribbon k-tree 7 and suppose that for each incoming edge
e;, we have assigned a closed codimension 1 tropical polyhedral subset P, which is
either one of the two initial hyperplanes P;, P> or one of the half-hyperplanes P, intro-
duced in Notation 5.23. We then inductively assign a (possibly empty) tropical hyperplane
or half-hyperplane P, to each edge e € T as follows:

If ¢ and é;, are two incoming edges meeting at a vertex v with an outgoing edge
é3 for which Ps, and P;, are defined beforehand, we set Py, := (Q — Rxomg,) N U
if both P and P;, are non-empty and they intersect transversally at Q := P; N Py
and Pg, := @ otherwise (recall that transversal intersection between two closed tropical
polyhedral subsets, including the case when they have non-empty boundaries, was defined
right before the proof of Lemma 4.22).

We denote the hyperplane or half-hyperplane associated to the unique outgoing edge
¢o by Py. Note that if Py # @, then P = P, for some a € (Zzo)z

prim*

Lemma 5.27. Given a labeled ribbon k-tree T, each of whose incoming edges e; is
assigned with a closed codimension 1 tropical polyhedral subset P,., which is either one
of the two initial hyperplanes Pi, P> or one of the half-hyperplanes P, introduced in
Notation 5.23. Also given ay,...,or € WX(U) and ny,...,nx € T'(U, szao) and sup-
pose that o; has asymptotic support (Definition 4.19) on P,; with either a; € Wll’e,» 0)
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ora; € 'Wge‘ (U) foreachi = 1,...,k, then we have

le7(@.7) € Wp_(U) ®z Ay (U) if T € LRTg, Py # 0 and
ai € Wy (U) foralli,

(k7 (@.7) € Wp_(U) ®z A (U) if T €LRT§, Pr # @ and there exists i
such that a; € nge» ),

lk,7(@.7) € Wp_(U) ®z A} (U) if T € LRTf and Pr # 0.

Ik,(r(&,ﬁ) e W) ®z A}/;O(U) if Py = 0.

For the purpose of the induction argument used to prove Lemma 5.27, we will tem-
porarily relax the condition that m,;, = km; for i = 1,2 on the labeling of the incoming
edges e; in Definition 5.19 and replace it by the condition that m., = km, for some k > 0

and some a € (Z30) 2

Proof. We prove by induction on the number of vertices of a labeled ribbon k-tree 7. The
initial step is trivial because LRT! = LRT0 and [ o is the identity.

We illustrate the induction step by Considering the simplest non-trivial case, namely,
when we have a labeled ribbon 2-tree 5~ with only one trivalent vertex v, two incom-
ing edges e, e> and one outgoing edge ¢, meeting v. Suppose that the incoming edges
e1, e are assigned labeling (m¢,, je,), (Me,, je,) and inputs a18 ze1tler aza ze2tles
respectively.

If7 e LRTlg (i.e. with labeling f at every v € T711) and P7 # @, then we have

g (@, 71) = Leg (@1 0n, @20ny) = —Himo (@1 A 002) 8y »

where ng = (me,,n1)nz — (Mg, n2)ny is given by formula (2.6) (here we are viewing
H,o as an operator on W2°(U) as in Definition 5.12).

The first case is when o1, s € 'W},e' (U). Since Py # @, the walls P,, and P,, are
intersecting transversally at Q, so we have

a1 Aoz € Wi, np, (U) = W5 (U)

by Lemma 4.22. Recall the decomposition Hy,, = Iy + Iy er in Definition 5.12. For
the second integral I, ., its domain of integration lies inside the hyperplane U,jj_ which
does not intersect Q by our choice of the spherical neighborhood U in Notation 5.11
(see (5.6) and Figure 11), so it produces terms in 'W_°°(U). For the first integral I, ,
applying Lemma 4.23 gives

— Iy (@1 Aaz) € Wp_(U),

where P+ = (Q — Rsomg) N U as described in Notation 5.26. This proves the first case.
For the second case, either o1 € Wge] (U)ora, € ngel (U), so we have

ap Nop € Wé(U)

by Lemma 4.22. The rest of the argument is the same as in the first case.
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In the third case, we have T € LRT’Ic and Py # (. This means that either ff or b is
applied at v; we will only give the proof for the case when f is applied because the other
case is similar. In such a case, we have

le7 (@10n, . @20ny) = —Hmg (1 A (Va,,, @2))0n,.
Now Vanl (ap) € ’Wgez (U) by (4.10) and (2.5), so we get
a1 A (Vy, @2) € Wy (U)

and the rest of the proof is same as in the first case.

Finally, for the fourth case we have Py = @, meaning that P., and P, not inter-
secting transversally. Then we have a1 A ax € 'W;°°(U) by Lemma 4.22 and the integral
operator H,,, preserves W_°°(U) by its definition in Definition 4.15. This completes the
proof of labeled ribbon 2-tree.

Next, suppose that we have a general labeled ribbon k-tree 7, and v, € 71 is the
unique trivalent vertex adjacent to the unique outgoing edge e,. Assuming that ¢; and é,
are the incoming edges connecting to v, so that the edges ¢1, é,, ¢, are arranged in clock-
wise orientation. We split 7 at v, to obtain two trees 77, 7> with outgoing edges ¢, é, and
k1, ko incoming edges respectively such that k = k; + k,. We split the inputs (&, 77) into
two accordingly as &y = (1, ....0k,), i1 = (n1,...,nk,) and & = (g, 41, - - -, Xk),
Ny = (Mg, +1. ..., nk). We then consider the operation (¢, 7 (&; , 71;) associated to each 7;.

If one of the Pg; is empty, say, if Py, = @, then

Ikl,frl (&la fil) € WI_OO(U) ®Z A}/}O(U)
by the induction hypothesis. Hence we also have
[k”j’(&, n) € Wl_oo(U) Kz AIVQO(U)

since W_*°(U) is a dg-Lie ideal of W°(U) and H,, preserves W_°(U).

So it remains to con31der the case when Py, # @ fori = 1,2. Note that T € LRTk if
and only if J; € LRTO for both i = 1,2 and the labeling of the root vertex v, is also g,
and Py # @ if and only if P;, intersects P, transversally at Q. The induction step is
completed by replacing a; 0,,; with [, 7, (a;, ﬁi) fori = 1, 2 and using the same argument
as in the case for labeled ribbon 2-tree. ]

Pr00f of Lemma 5.17. Let us recall that the spherical neighborhood U was chosen so that
x% & P, for any a € (Z>o)? prim? where x© is the center of U (see Notatlon 5.11, (5.6)
and Figure 11). By Theorem 5.25, we have a neighborhood V' C U of x° such that V is
compact and @[y € €5 (V) (modm¥ 1) forevery N € Z. This implies that

[®, @]|y € &3 (V) (modm"*1)

for every N € Zx¢ since €y (V) is closed under the bracket [-,-]. As the operator &
preserves €y, (1), we have

P, ®]|y € &% (V) (modm™ T1)

for every N € Z(. But then this means that P[®, ®] = 0 in g%* (U) since &P is the
evaluationat x° e V C U. [ ]
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5.2.4. Leading #i order terms of a Maurer—Cartan solution. Recall from Section 5.2.3
that the leading order term ¥ (constructed in Definition 5.24) is a sum over labeled ribbon
trees in LRTk (i.e. those with only {] labeling on trivalent vertices; see Notation 5.22) with
inputs o (deﬁned in (5.9)). This operation is closely related to the tropical vertex group
as well as tropical counting. We are going to discuss the precise correspondence in this
subsection.

For this purpose, it would conceptually be more appropriate to use labeled trees rather
than labeled ribbon trees, because tropical trees are not equipped with ribbon structures.
As in the case of labeled ribbon k-trees, we split the set of isomorphism classes of labeled
k-trees into two components LT¥ = LTK L LTX, where LT consists of those whose triva-
lent vertices are all labeled by 1] and LT¥ := LT* \LTk Then given a labeled k-tree
Te LTk and taking an arbitrary labeled ribbon k-tree 7 with T = T, we can define the
operation 3% 1 by

B 8 = Y PO T oy Lotpy).

oEX

as in Definition 5.5.
Nonetheless, we prefer to work with labeled ribbon k-trees 7 instead to simplify the
formulas. There is a combinatorial relation

1 .
(... 0 = leq (IL.... TD),
KAu()] e ) ?Z_:Tzk 7 ( )

where the sum is over all labeled ribbon k-trees 7~ with underlying labeled k-tree T =T
and |Aut(T)| is the order of the automorphism group of T. Since II € g / &*(U) has
cohomological degree 1, we have
1 - v . #HT =T}
k!|Auz(T)|“”"T(H"“’H)_ 2k=1
for an arbitrary labeled ribbon k-tree 7o with underlying labeled k-tree To = T. We will
obtain results for 3, Jk 1 by working with [ ¢ through equation (5.12) in this section.
Given T € LRT0 with Py # @ (recall from Notation 5.26 that Py is the wall attached
to the unique outgoing edge e,), we have an alternative way to describe the operation [ 7.
Recall that 701 is the set of edges excluding the incoming edges (but including the out-
going edge) by Definition 5.2. We let 77 be the flow of the affine vector field —m, for
time s (s € R so it is flowing backward in time), where (1., j.) is the labeling of the

edge e € 7101,

(.70 (11, ..., TT) (5.12)

Definition 5.28. Given a sequence of edges e = (eg, e1,...,¢e;), as a path which starts
from e and ends at ¢; following the direction of the tree 7, we define amap t€¢ : W, — U,
by

(5, x) =l ot 00 1 (x),

rv[]

where s; is the time coordinate for the flow of —nMe;, is the subset

{60,61,...,€]}CT 1]
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[
and W, C Rg‘; | % U is the maximal domain such that the image of the flow 7€ liesin U.
It can also be extended naturally to a map

ne . 1R [y g (1]
© W - RZ V<,
7. plT T gt g ) _
where W, := R, x We, by taking direct product with R_, . Notice that

this definition does not depend on the ribbon structure on 7, $0 it can be regarded as
a definition for a labeled k-tree T := 7.

Definition 5.29. We attach a differential form v, on RE)U]' to each e € T recursively
by letting v, := 1 for each incoming edge e, and v, = (—1)%2 Ve, A Ve, A dSe, (here
Ve, 1s the cohomological degree of v,,) if v is an internal vertex with incoming edges
e1,ep € Ty and outgoing edge e3 such that eq, e;, e3 is clockwise oriented. We let vy
be the differential form attached to the unique outgoing edge e, € T, which defines
a volume form or orientation on RE;)

As usual, we let vy,..., v be the clockwise ordered incoming vertices of 7 and
e1,...,e the incoming edges respectively. We associate to each e; a unique sequence e;
of edges in 7111 (excluding the incoming edge ¢; itself) joining e; to the outgoing edge e,
(including the outgoing edge e,) along the direction of T~

Remark 5.30. The subset Wg = (ﬂf-czl We,-) C Rgoml x U, can be viewed as a moduli
space of tropical trees in U, denoted by Mg (U), with prescribed slope data {1, },cq11
(as in Notation 5.20) as follows (this will not be necessary for the rest of the paper):
A point (5, x) € Wg C R'J M U will prescribe the location of the vertices 71 LI {v,}
of 7. First, x € U is the image of the outgoing vertex v,. For any trivalent vertex v € 711,
there is a unique sequence of edges e = (eg, €1, ..., ¢;) connecting v to v, and 7°(5, x)
is the image of v. The images of these vertices are allowed to overlap with each other as
s is taken from RLOI Figure 12 illustrates the generic situation.

Definition 5.21, which deﬁnes the operator [¢, 7, uses the labeling (m,; , je;) for each
incoming edge e € 9, 1(J ) to extract the coefficient of z™¢ t/¢i in I and then treat
it as the input at v;. For the input «; 8,1[ ,we have n; € TPJ- and (vp,,n;) > 0, and

= —8(.1) or — 8(.2)

(see equation (5.9)) so that o; € 'W}, (U). We decompose the output [ (¢, 71) (defined
in equation (5.11)) into a differential form partag € Wl (U ) and a vector field part 8,,9_

lkg(@,71) = a7 dny (5.13)

where EV),W = [k,(r(énl ey Ev)nk); note that ny € Z - n, if we write P = P, for some
a € (Zso)? prim? where n, € AI_Y;O(U ) is the unique primitive normal to P = P, such that
(vp,.ng) < 0. The following lemma shows how g (x) can be expressed as an integral

over the space
k
m N
=R, 'x{xhn (ﬂ W)
i=1

for any x € U up to error terms of exponential order in 771,
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7(0,0, ) < v,

Fig. 12. Wy parametrizing tropical trees in U.

Lemma 5.31. We have the identity
ar(x) = (—DF! / () (o) A= A (1) (o)
dx

i
in We(U)/ Wy (U), where we use the volume form vy on Rlsjo ‘for the integration
on the right-hand side.

Proof. We prove the lemma by induction on the number of vertices of a labeled ribbon
k-tree T (as in the proof of Lemma 5.27). In the initial step, J is just the point {x} and
the right-hand side is nothing but evaluation at x, so the result follows from the fact that
[,7 is the identity.

As in the proof of Lemma 5.27, we illustrate the induction step by considering the
simplest non-trivial case when we are given a labeled ribbon 2-tree 7 with only one
trivalent vertex v, two incoming edges €1, e, and one outgoing edge e, meeting v. Sup-
pose that the incoming edges ey, e, are assigned labeling (m,, , je, ), (Me,, je,) and inputs
010, 261171, @p 0, 262172, respectively. The operator [; 5 associated to T is explicitly
expressed as

a‘TanT = Ik,‘T(alanl »a28n2) = _Hmfr (a1 A 012)8}177

with ng = (Me,,n1)na — (Mg, , n2)n; given by formula (2.6).

There are two cases depending on whether P, and P,, are intersecting transver-
sally or not, as in proof of Lemma 5.27. In both cases we can treat a; A oy € W2,(U)
(because if intersection is not transversal, then we have a; A oy € W;°(U) C 'Wé ).
From Definition 5.12, we have the decomposition Hy,- = In; + Ing er. By our choice
of the spherical neighborhood U in Notation 5.11, the domain of integration for the sec-
ond integral I, o, is supported away from Q, so it gives a term in ‘W, °°(U). Thus we
have ag € —Ip, (21 Aaz) + WP (U).



Scattering diagrams from Maurer—Cartan equations 827

In the current case, 711 consists of the unique outgoing edge e,, s0 e; = e, = (e,)

and hence the map
™ =12 W, - U

is simply given by the flow associated to —mg = —m,,. Now we have the half space U, +
containing Q, as shown in Figure 11. Using the coordinates (¢, u~) on U where u* aIe
local affine coordinates on U,#_ , we obtain a maximal interval (a,, 1, b, 1) for each point
ut on U,fl; such that the interval (a,1,b,1) x {u'} lies in U. Then the two integrals
that we want to compare are

J

the difference between which is given by

t
I (o A ap)(t,ut) = / Ly (o Aaz)(s, ut)ds,
O A

t
(@ na) = [ g ety ds
a | S

(taul) u

0
| g @ nana, s
a,. as
which produces a term in ‘W °°(U ) because it misses the asymptotic support Q of oy Aas.
This proves the statement for the current case.

Next we consider the induction step. We will adapt the same notations as the induc-
tion step in the proof of Lemma 5.27 (see Notation 5.26). So we take a general labeled
ribbon k-tree T € LRTlg , and then split it at the unique vertex v, € 7% adjacent to the
unique outgoing edge e, to obtain two trees 77, 7> with incoming edges ey, ..., ek, and
€k, +1; - - - » €k, respectively. Denote by €y, ..., €, (resp. €x,+1, ..., éx) the sequences of
edges in 7 (resp. J>) associated to the incoming edges ey, ..., ek, (resp. ek, +1,...,€k)
obtained respectively from the sequences ey, ..., ek, (resp. ek, +1,...,ex) of edgesin T
by removing the unique outgoing edge e,.

By the induction hypothesis, we have

(1Mo (x) = /J (1) (@) A A ) (@)

modulo 'W;*°(U), where

ki
7 .
i =R ' x (x) N (ﬂ We(,-l))’
i=1
and
(1) g, (x) = /J () (@, 11) A A (T (o),
2.x
where

73 ~
Jox = (RI<0 ! X {x} ( ﬂ We(,-2)>§
i=k;+1

7 x U is the domain associated to ¢; for the tree 77 as in Defini-

here W(l) C ]R
tion 5. 28
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Fixing a point x € U, we consider the flow t% : W, (C R x U) — U by

—Me, = —Mg

0o

and let 50 := (R<o x {x}) N W,,. From its definition, we have, for x € U,

T 17
U Jl T‘O(X)XJZTeO(X)X{S}CR XR<0 XR§0~

sedl

Using the same reasoning as in the 2-tree case, together with the fact that ag; A ag, is
again having asymptotic support on Q, we have

D) = 02 [ @) (e nan)
J5o

= Jyeo (Te")*(/ () * (1) -+ (T%1)* (o)

1,789 ()

/\ /
‘12,15" (x)

- / (£%0)* ((£¥1)* (e) -~ (%) * ()
Useno 4y 260 (%35 00 () X1s

(rékw)*(ak,m---(r%*(ak))

- /J (1) (@) - (%) ()

modulo terms in 'W;°°(U). This completes the proof of the lemma. ]

Remark 5.32. Geometrically, Lemma 5.31 means that terms of the form (XTénTZmT tiT
for T e LRT’& , which appear in the leading order contribution of the Maurer—Cartan solu-
tion ® (introduced in Definition 5.24), can be expressed as integrals over the moduli space
Mg (U) of tropical trees in U.

We will see in Section 5.3 that what we essentially care about is the path integral
/ oy = (=" f (T (@) -+ ()" () + O(e™/™) (5.14)
e do

along an embedded affine path ¢ : (a,b) — U that crosses the wall Pg transversally and
positively (meaning that TPy @ R - o’ agrees with the orientation of By), where we let

U dew- (5.15)

te(a,b)

Here J,, is equipped with coordinates ({S¢ },c7111,¢), Where (s¢)e € szom‘ and? € (a,b).
We are going to calculate the 1ntegra1 in (5.14) explicitly. -

We recall that o; = —s4 k or —8(?, and each «; has asymptotic support on P,; which
is either Py or P, (supports of the two initial walls). For eachi € {1,...,k}, we take an
affine coordinate 7; associated to the corresponding 5@ i as in Deﬁmtlon 5.16, namely,
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such that {; = 0} = P, and ,,,, dn; > 0, so that we can write

1 "1‘2
o = —(wh) 2e” # dn;

locally near P, .
The flow 7% corresponding to the outgoing edge e, is an affine map

0 . e
%), U d ‘(’t) - U,
t€(a,b)

where J(Z‘(’t C R is the maximal domain of backward flow associated to —m,, starting
from the point @(¢). The property that ¢ h Pz is equivalent to the condition that the
image of |, intersects transversally with Q at a point ¢;. For each i € {1,... k},
we let N; C U be the afﬁne line through the point ¢; € Q transversal to P, Then we
consider the affine space ]_[l —; N; with local affine coordinates 71, ..., nk. See Figure 13.

Fig. 13. The lines N; through ¢ € Q.

We define the affine map
k
T JQ — l_[ N;
i=1
by requiring that (7)*(n;) = n; (% (5, x)), where t% is defined in Definition 5.28.
Lemma 5.33. There exists some constant ¢ > 0 such that
@*(dni A+ Adne) = (=D Doy Ad,

where we set (—1)X(7) = [Tyerio (=1)XT V) (with the convention that (—1)*T) =1 if
701 = §) and (—1)XT) is defined for each trivalent vertex v (attached to two incoming
edges e1, e, and one outgoing edge e3 so that ey, e, e3 are arranged in the clockwise
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orientation) by comparing the orientation of the ordered basis {—m, , —m., } with that of
{—m1,—m2} of NO (cf. Notation 5.11). In particular, T is an affine isomorphism onto its
. > k

image C(7) C [[;=; Ni.

Proof. Once again, we will prove by induction on the number of vertices of the labeled
ribbon tree 7. The initial step concerning labeled ribbon 1-trees is trivial because in this
case J, = (a,b) and T = o.

As before, we will consider the next step, or the simplest non-trivial case, namely,
when we are given a labeled ribbon 2-tree 7~ with only one trivalent vertex v, two incom-
ing edges e1, e, and one outgoing edge e, meeting v, to illustrate the induction step.

We first assume that the orientation of {—m,, , —m,, } agrees with that of {—m;, —m>}.
We can treat 71, 172 as oriented affine linear coordinates on the fiber NQ,, of the normal
bundle NQ. We will use (s, 7) for the coordinates of d, = J° defined in (5.15). Let
xo := 7(0,%9) € 0 N P be the unique intersection point between ¢ and Py . Then there
exists a unique so < 0 such that g; = 7(so. %) € P, N Pe,. We see that

- d . 9
{(df)(SO,to)(g) =-—mg #0, (dt)(xo,to)(ﬁ)}

is an oriented basis of NQ,, by the assumption that g intersects positively with Py ; in
other words, (d7)(s,,z,) is a linear isomorphism from T, +,)d, onto NQg4, and we have
(T)*(dn1 A dnz) = cds A dt for some ¢ > 0.

In the opposite case when the orientation of {—m,,,—me,,} disagrees with that of
{—m1, —m2}, 2, n1 are oriented coordinates of NQ,,. So we get

(D)*(dn Adny) = —cds Adt = (=) ds A di

for some ¢ > 0, because y(7°) = 1 in this case.

For the induction step, we again split a general k-tree T € LRT’& at the root vertex
v, to get two trees 7 and 77, as in the proof of Lemma 5.27. Since Py # @, both Py,
and P7, are non-empty and they intersect transversally. We take two embedded paths
o1 and g, intersecting positively with Py, and Pz, at ¢; with coordinates ny; and 77,
respectively. By the induction hypothesis, the forms

@ dm) A= A @) (dig,) = e (=D TDvgy A diyg,
and B ~
(@) (g 1) Ao A @) (dng) = e2(=D* P vgy Adipg,
are non-degenerate on J,, and d,,, respectively. Therefore we have a non-trivial product
@ (dn1) A= A @) (dng) = ()X TV 0 A ve A dng, A dig,

on d,, X dp,, where vy, denotes the degree of the differential form vy, .

Assuming that the orientation of {—mp,, , —mpy, } agrees with that of {—m1, —my}
on NQg,, we can treat {17, , 17, } as an oriented basis for NQg, . Using the same argument
as in the 2-tree case, we use (s, t) as coordinates for |_J, e(a,b) J;‘(’t) and obtain the relation

(% o) " (dng, Adngy) = cds A dt
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for some ¢ > 0. Combining with the induction hypothesis, we get
(@) (dny) Aee A (THF) (d)
= ()" ()" (@) A=+ A (1) (dni)
= (=) +x(T2)+V7, (‘L’e"|g)*(])g'1 A v, Adng A d?’]{rz)
= (—)XTHFATITI7, (80| V¥ (g A g, ) Ads Adt
= (~1)*Dyg Adr;

here we have (7, v,) = 0 because we assume that the orientation of {—mp
agrees with that of {—mp,, , —mpg, }.

Reversing the orientation condition, we will have (7, v,) = 1, while at the same
time we get an extra (—1) in the above formula because

71 _mPTl }

(z%o)*(dng, A dng,) = —cds A dt,

exactly as in the 2-tree case. This completes the proof. ]

Now d,, i 1s an open neighborhood of 0 x Im(g) in the cone R | x Im(g) and we
let C(7) C ]_[l_l N; be its image under the map 7. The local dlffeomorphlsm T allows us
to transform the integral in (5.14) to an integral over C (%), so we have the identity

/ ay = (—l)k_I/ (1 Ao Aag) + O(e_%g)
x€o C®@)

k

- Zl C,
= (C)FOH () / E5 g e+ 0 F)

c@)
- I(C() N Be) 2
— (—XOFL i YO o%h?).
=D I By 07

Wthh computes the leading order contribution of f o7 ; here Be denotes the €-ball in
]_[l —1 N; and vol is the volume with respect to the standard metric Z, ) nl

Remark 5.34. The meaning of the above equation is that the leading order contribution
of [, xeo T (corresponding to the effect of crossing the new wall Pg) depends on how the
image C(7) of the locus J, in the moduli space Mg (U) of tropical trees in U intersects
with the normals of the initial walls Py, P,. Figure 14 illustrates the situation for a tree
with only two incoming edges ej, e; and one outgoing edge, where the ansatz for the
initial walls P;, P, are drawn as in Figure 4.

The following lemma summarizes the results of this subsection:
Lemma 5.35. For a labeled ribbon k-tree T € LRTk with Py # 0, we write
T T CA))

as in (5.13). Then, for any embedded affine line o : (a,b) — U intersecting transversally
and positively with Py, we have

) 1(C(7) N Be)
— (— DLy YOO T Be) | 5 p1/2
/Q‘"T (=1) I By T
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P,

U 70, o)

label tree 7 /

€1 €2

I

M,

P,

?(v*li-fl)) 01

Fig. 14. Intersection C(7) with P;’s giving tropical counting.

where vol is the volume with respect to the standard metric Zle d 771-2 on ]_[f-c:l N;, and
x(T) is defined as in Lemma 5.33. Moreover, we have ng € (T Py)* and

()X (vp, . ng) < 0.

Proof. It remains to prove the last statement, which is yet another induction on the number
of vertices of the labeled ribbon tree 7. The initial step is trivially true.

For the simplest non-trivial case, we look at a labeled ribbon 2-tree 7~ with only one
trivalent vertex v, two incoming edges e, ¢, and one outgoing edge e, meeting v, as
before. Since n; € (TP,-)J- and (Upei ,n;) <0fori = 1,2, we have, by formula (2.6),

ng = (Me,, N1)Np — (Mg, N2)N71 € (TPT)J‘

since Py = Q — R - my.

When the orientation of {—m,,,—m,,} agrees with that of {—m, —m,}, we can
choose —m,, as an oriented normal to Py (here we only care about orientation so there
are many different choices), so we have (—me,, ng) = (—me,, n2)(—=me,,n1) < 0 which
means that (vp,,n5) < 0 in this case.

When the orientation of {—m,, , —m,, } disagrees with that of {—m, —m5}, we have
(vps,n7) > 0 from the above argument as now —nmi,, is chosen as an oriented normal
to Py . This completes the proof of the 2-tree case.

By (once again) splitting a k-tree T € LRT’é at the root vertex v, into two trees 73
and 73, we can prove the induction step using exactly the same argument as above with
ni,ny replaced by nq, , ny,, respectively. ]

Remark 5.36. The integral in Lemma 5.31 depends on the ribbon structure on I~ because
the order in taking the wedge product and the orientation of 4, given by Definition 5.29
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depend on it. Nevertheless, as Lemmas 5.33 and 5.35 show, the whole expression 05757 is
independent of the ribbon structure, as only the sign of d¢ depends on the ribbon structure
and so does a5, and this dependence cancels out with each other. This matches our earlier
observation in equation (5.12) that the term Ik’g'(ﬁ, e, f[) is independent of the ribbon
structure.

5.3. Consistent scattering diagrams from Maurer—Cartan solutions

In this subsection, we apply the results we obtained in Sections 5.2.3 and 5.2.4 to prove
Theorems 1.4 and 1.5 in the Introduction.

5.3.1. The scattering diagram associated to the MC solution ®. Recall that the Maurer—
Cartan solution ® constructed in (5.10) is decomposed as a sum of Fourier modes

d@ — g@ + F@

(see Definition 5.24). The asymptotic behavior of each ®@ is described by Theorem 5.25
and a precise expression for the leading order terms ¥(® is obtained in Lemma 5.35.
Applying these results, we are going to associate a scattering diagram D(®P) to P.

We will first construct a finite diagram D(®)y for each fixed N € Z, producing
a sequence {D(P)n}nez., such that D(P)y 1 is extension of D(P)y in the sense
that there is an inclusion D(®)y C D(®)yy; identifying walls (mod m" *1) and each
w e D(®)y+1 \ D(P)y has a trivial wall crossing factor (mod m¥+1). Then we define
D(P) as the limit of this sequence.

The order N scattering diagram D(®)y will be constructed by adding to the initial
diagram D(®); = {wy, w,} new walls w, parametrized by a finite set of a € (Z>0)§rim,
where each w, is supported on the half-hyperplane P, = Q — R - m, and equipped
with a wall crossing factor ®, (which could be trivial) determined from the leading order
term ¥ @ in the asymptotic expansion of ®@_ In order to parametrize the old and new
walls by the same parameter space, we introduce the following notations:

Notation 5.37. Weseta € (@)gﬁm = (Zzo)gﬂmu{(— 1,0), (0, —1)} and use the (rather
unusual) convention that

M-1,00 = M(,0) =mi and me,—1) = M,1) = M2

for the Fourier modes corresponding to the two initial walls w; and w,. We use (Z;))
to parametrize the set of half-hyperplanes P, emanating from Q with slope

2
prim

—mg = —(aimy + azmy)

for a = (a1,a3), where we are regarding each initial wall w; as a union of two half-
hyperplanes.

For a fixed N € Z~, there will only be finitely many Fourier modes involved in the
expression for the MC solution @ in Definition 5.24. For this purpose, we use
W(N):={ae (2\26)2 | Img =mg forsome [ > 1and 7 € LRT* with 1 < j3 < N},

prim
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where (mg, jg) is the labeling of the unique outgoing edge e, attached to the outgoing
vertex v, in 7 (see Definition 5.19 and Notation 5.20), to parametrize the possible walls
involved in ® (modm? *1).

It makes sense to regard each of the two initial walls w;, w, as a union of two half-
hyperplanes in Notation 5.37 because of the following construction:

Definition 5.38. Given an input term T1®) in the form of (5.8) having asymptotic support
on P; fori = 1,2, we take an affine coordinate function u,,; 1 along —m; which assumes
the value 0 along Q. Then the functions

1 % uml'.l _ﬁ
Xi+WUm; 1) = (h_) / e ds,
T —00

1 \2 [*® 2
firr U 1

N—

have asymptotic support on {u,, 1 > 0} N U and {u,, 1 < 0} N U, respectively, which
implies that the cut-offs ®(1.0) := y; , TIM and ®-1.0) := y; _TTM have asymptotic
support on {u;,,,1 > 0} N Py and {u,, 1 < 0} N Py, respectively, as well; the cut-offs
®©.£1 can be defined similarly using y» 4+ and they have asymptotic support on the
subset {Um,,1 > 0} N P, and {um,,1 < 0} N P, respectively.

From this construction, we see that both 543(1’0), (1.0 (resp. 5CI>(°’1), E_?CD(O’_I))
have asymptotic support on {u,,,1 = 0} N Py = Q (resp. {Um,,1 =0} N P, = O).

To prove that D(®)y is consistent (mod m¥ *1), we will remove Q = P; N P, =
Sing(D) from the spherical neighborhood U and apply a monodromy argument on the
annulus A := U \ Q by considering the universal cover p : A — A, which is endowed
with the pullback affine structure from A. We use polar coordinates (r, f) on a fiber of
the normal bundle NQ (identified with a slice of a tubular neighborhood around Q)
together with a set of affine coordinates b := (b3, ...,bn) on Q to get the coordinates
b:=(by=rby=0,bs,... .by)on A"

We fix, once and for all, an angle 6y (chosen up to multiples of 2m) such that the
half-hyperplane Rg, with slope 6 through O contains the center x% of the spherical
neighborhood U (recall that the initial walls w;, w, are dividing U N NQ into four quad-
rants and x? lies in the third quadrant; see Figures 10 and 11) and also a base point
b® = (ro,bo,b°) € Ry, such that p(bg) = x°.

Notation 5.39. Foreacha € W (N), we associate to the wall P, an angle ¢, in the branch
{(r,0,b) | 8o < 8 < By + 27} to parametrize the lifting of P, N A in A. We identify
P, N A with its lift in A, and will denote it again by P, by abusing notations.

Choose a sufficiently small € and set V := {(r,0,b) | 6g — €0 + 2w < 0 < 6y + 27}
so that the open subset V — 27 = {(r,0,b) | 8y — €9 < 6 < 6y} stays away from all the
possible walls {w, }, as shown in Figure 15.

14Note that the polar coordinates (r, §) are not affine coordinates.
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Fig. 15

For computation of some monodromy around Q, we consider the open subset
Ao :={(r,0,b) | g —eo < 0 < By + 27} C A.

Through the covering map p : Ay — A, we pull back the dglas gy (4), €y (A) and
gy (A)/Ex(A) to Ao, and consider gy (Ao), &y (Ao) and gy (Ao)/g (Ao).
We write

@ .— p*(q;(a))’ g@ .— p*(g/(a))’

F@ ._ p*(F(a)), p* (@) 1= Z p*(q)(a)) — Z g@ 4 F@ (modm¥ 1),
acW(N) aceW(N)

for the pullbacks to Ao. We then have the following lemma.

Lemma 5.40. For each a € (Z>0) prime The @ﬂwr mode ®@ s itself a solution of the
Maurer—Cartan equation (5.1) of the dgLa g*/&*(Ao) which further satisfies

Ip@ — [q)(a)’ q)(a)] =0.

Proof. For any fixed N € Z~g, ® = ZaeW(N) @@ (modm™ 1) by Definition 5.24
and W (N) is a finite set. Now for two different a,a’ € W(N), we have

(PaNPy)NA=0,
hence [@, @] ¢ 2 (AO) which means that
[q)(a) q)(ll/)] =0

in g3 (Ao)/éf2 (Ay). Therefore each ®@ is itself a MC solution in gy (Ao)/8* (Ao).
Taking inverse limit shows that ®@ is a MC solution in g / €*(Ap). Furthermore, as
D@ s having asymptotic support on P,, we have

[&)(a)’ &)(a)] =0
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in gf/_g* (/IO) by Lemma 4.25 (because P, intersects itself non-transversally), so
6@ — §6@ 4+ L@ @) =g .
2 ' '

Lemma 5.40 says that ®@ = J@ 4 F@ j5 3 Maurer—Cartan solution in g*//g* (Ao)
with support concentrated along the wall P,. Using a similar argument as the proof of
Lemma 5.10, we note that the higher cohomologies of the complex g}, (Ag)/ &% (Ao) and

:/E (Ao) are all trivial. Therefore, there are no non-trivial deformations of the dglLa

g*/6* (AO). In particular, the MC solution O@ i gauge equivalent to 0, i.e. there exists
an element ¢, € g'/&'(Ag) such that

e x0=¢g@ 4 F@ (5.16)

on Ag. As in the single wall case (Section 4.2), we need to define a homotopy operator Je

on g*/&*(Ay) in order to fix the choice of Pa-. 5 5
_ We take a smooth homotopy /4 : [0, 1] x A9 — Ao contracting Ag to the fixed point
b% with the property that

h(1,b)y=b and h(0,b) = b°.
We define the homotopy operator J Ff°(,4fo) — FXX, (Ao) by

1
H (o) := /0 h* () (5.17)

for a € F®(Ay), and we also define P by the evaluation at the base point b0 and © by
the embedding of constant functions on /fo, as before (cf. Section 4.2); one can see that
these operators descend to the quotient Ff°(/fo) JFo %(A4) using the same argument as
in the explanation for Definition 5.14. We extend the above operators to the complex
gy (AO)/S (Ay) as follows.

Definition 5.41. We define the operators J¢, P and i by extending linearly the formulas
Jf(azmantj) = Jf(oz)zmant/ ,
Pz ot?) = P(a)z™ Ot
Naz™ont?) = ()2 dpt
descending to the quotient and taking inverse limit.

Definition 5.42. Slmllar to the deduction of (4.5) from (4.4) (see [42]), we solve equa-
tion (5.16) in g / €*(Ay) iteratively to obtain the gauge

Qa 1= —H (ady, /(e*ea —1d))(F@ + F@)

associated to @@ = ¥@ 4 F@ which satisfies the gauge fixing condition j’((pa) =0;
this gauge is unique by Lemma 4.7.

We now apply asymptotic analysis to the gauge ¢,, similar to what we have done
in the single wall case. First of all, as in Section 4.2.2 (see Remark 4.8 and the setup



Scattering diagrams from Maurer—Cartan equations 837

before Lemma 4.23), we shall replace Je by another operator 4, which is defined using
an integral over affine lines transversal to the wall P,. For this purpose, we consider
the half-space H(P ):={(r,0.b) € Ay | 6 = 6,} in Ay, on which ¢, is possibly having
asymptotic support. Note that 6 is not an affine coordinate but we can always express
H(P, ) as a tropical half-space in Ao (by pulling back an affine linear function defining
P, to Ag and parallel transporting to hyperplanes parallel to P,).

We write

oo o0 oo
P = les(a), F@ = ZFS(a), Pa = Z¢a,s
s=1 s=1 s=1
according to powers of the formal variable . We also set
0= an ¥t Qug, TOS = J/l(“) oY@ F@s .- ?fa) 4.+ F@,

Then we have the following lemma, which is parallel to Lemma 4.27 in Section 4.

Lemma 5.43. The gauge o has asymptotic support on the (codimension 0) tropical half-
space H(P ) C Ay, and we have

Pa,s € @ Z F]I(—)]I(P )(ILIO) . kaaants’

k=1neAy (U)

s+ A €@ Y Fly (o)
k=1neAy (U)

adlfpg (3¢2) € @ Z Fp. (Ag) - Z*mad, 17
k=1 neAy, (U)
1<j<s(+1) 0
foralls > 1andl > 1.

Proof. We prove by induction on s (the power_ of the formal variable 7). In the initial
case, the equation defining ¢g,1 1S 4,1 = — g (!I/ @) +F a)) We want define an integral
operator to replace J¢ in order to apply Lemma 4.23. Since all the assertions that we need
to prove are local properties, we will work locally around any given point in Ao.

So we fix a point b1 € Ay and choose a sufficiently small pre-compact open neigh-
borhood K C Ag of bl, and then try to prove the initial case in K. We will also need
to choose a family of piecewise affine lines, as in the single wall case. There are two
scenarios:

(1) If bl e H(P ), we choose a sufficiently small pre-compact open neighborhood K of
b and a family of paths og : [0, 1] x K — Ay such that

0x(0.5) =b°, ox(1.b)=b

and there exists a partition 0 =ty < -+ < f;_1 < t; = 1 so that only one of the inter-
vals [t;,—1, ti,] has its image pos51bly intersecting with P, and that QK|[,510 1tig] is
a flow line of the affine vector field vg pointing into H(P ).
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~ ]L"l'i.l]xlx’

Fig. 16

2) If EAI g ]I:]I(Pa), we choose a sufficiently small pre-compact open neighborhood K
of ! with K N H(P,) = @ and a family of paths ok : [0, 1] x K — Ao such that
0k (0,b) = b° 0k (1,b) = b and Im(ex) N Py = 0.

Such a family always exists when K is sufficiently small. Figure 16 illustrates the differ-
ence between the integral operators # and J, k. Then we set

1
Jux@® = [ @b
0
Applying Lemma 4.23 to the piece QK|[II.071 4] gives

—JH @Dy e FQ  (K)- (Km0, )it

H(Pa)
—HED e Y Fyl, (K)- @it
neA}éO )

which proves the first two assertions in the initial case.
For the third assertion, we have

gus = DR+ FO) = 5O _FO @ Y FL () omedy!
k>1 "EAIEV?O(U)

from the gauge fixing condition in Definition 5.42. Upon repeated applications of Lem-
ma 4.25, we have

ad,(Fi e @ Y Fp(Ag)-Fmednt,
k=1 neAy (U)
1<j<l+1 Y
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so we only need to take care of the term ad;1 (;j/l(”))_ Writing
s = B 1 FO)

and applymg Lemma 4.25 again, we see that the only term we have to consider is the
term ad’. Jg(q,m))(lll )m the expression ad’ e (@@ + F(a))(lll ) because the appearance
of any of ad—j (F@) in the above expression will result in a term in

D X ERA)-EFmedar.

jk=1neAy, (U)

Concerning the term ad’ (llfl(a)), Theorem 5.25 says that n, L P, in the expres-

sions

@) e @ FY, (Ao)-2"adn, 1t B e @ Fp, (Ao)-2Hma by, 1",
k>1 k>1

J{(q/(”))

meaning that the leading order term of ad— j (@) (lfll(a)) given by Lemma 4.25 vanishes.
Hence the third assertion follows.
Now we assume that the assertions hold for s’ < 5. We consider the equation

adk
70 (G(@) F(a) 3
Gaser = —H(WS +FE + Z ATE %a)511

which determines ¢, s iteratively. From the induction hypothesis, we have
k

ad _ ~ «
F(a)l+(2(k fal)"a‘”“) ISP IR ACDIESES T

k=1neAy (U)

Applying Je (replacing Je by ja, k again) to this expression give the first two assertions
of the induction step by Lemma 4.23.
For the third assertion, we have

afpa s+1 = _(llls(i)l (a) 1+ Z (k n 1)'a‘pa)s+1

in g*//g* (Ao), again from the gauge fixing condition in Definition 5.42. Applying now
Lemma 4.25 as in the proof of the initial step, we see that the essential term to be
considered is adl_jg(q;m,sﬂ)('f/(“)’“l). By Theorem 5.25 again, we have n | P, in the
following expressions:

]g(q/(a) s+1) c @ H(P )(/IO) . kaaénatj
k>1

1<j<s+1
li/(a),S-Fl e @ FI-l’a (A‘O) . kaa éngtj
k>1

1<j<s+1
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Then we can conclude that

ad!

—je(q?(a>.s+1)(li/(a)’s+l) < @ Fp (Ag) - zFmag,,t/

k>1
1<j=<(s+1)(+1)

because the leading order term given by Lemma 4.25 vanishes, as in the proof of the initial
step. This finishes the proof of the induction step. ]

The following lemma is parallel to Proposition 4.28 in Section 4.

Lemma 5.44. Over the half-space ]I:]I(Pa) \ P,, we have

0 Vat (B X Flpp PO\ P78, )1,

k>1 "GAEO )

where Y, = Log(0®,) for some element O, of the tropical vertex group of the form
— Y bk
Jk=1
where b(Z) are constants independent of i with b(a) = 0 only for finitely many integers k
for each fixed j and ng is the unique primitive normal to P, satisfying (vp,,ng) <O0;
while over the other half-space Ag \ H(P ), we have ¢, = 0.

Proof. We first consider ¢, over H(Pa) \ P,.From the proof of Lemma 5.43, we see that

R
o = (0 4 FO 4 Y P h ) @ A GhoHed

k>0 S k=1 neAyg )

for every s > 1. In particular, we have 8<pa s=0ing /8 (H(P,) \ Pa).
Applying Lemma 5.10 to g /8 (H(P,) \ P,), we can write
@a,s = (i1 0 e771)(90(1 )

where P 1 is the projection operator defined by evaluating at a point bt € H(P )\ P,
and 7y is the corresponding embedding operator, constructed similarly as % in Definition
5.41."5 By Lemma 5.43 and the above discussion, it remains to show that the leading
order term of the asymptotic expansion of

k

(J(’(ll/(“) +F@ 4 Z & + 1), Z‘l)s)

is exactly of the form 1, over H(Pa) \ P,.

I5Note that & and {/A’1 are defined by evaluation at two different points l;o and l;1, respectively.
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Choose a neighborhood K C Ay of l;1 and a family of paths gk, and using the
operator d, g as defined in the proof of Lemma 5.43, we see that

k

PY (jf( )+F(a)+2(k+1)|8(p2 1))

k
—1
= g@ 4 F@ 4 —3(ps 1) .
[gk(~,51>( Z «(k+D

Also we have

,.() ad](;sfl - 1
{ FY2+ Y —2—09¢s~ )
I/QK(.,I;I)( s Z(k+1)! a )

_ kmg 3}
e > FH(P P, (H(P,) \ Pa) - zKmad, 15

k=1neAy (U)

So it remains to compute fg(.’l;l)(iffa)).
Lemma 5.27 together with Lemma 5.35 allow us to compute the leading order term
of the integral — fg(' By U@ explicitly as

~ 1 . 9
—/ A DI / L (M. TD).
ok (-.b) 2

. pl
T eLRT ex (b1
Py #D,mg |mq

From the discussion in Section 5.2.4, we learn that [z 7(1'[ H) = a7 8,, Z™T T for
eachT € LRTk Therefore, restricting to the interval [£;,—1, t,O] of o K( bl) and applying
Lemma 5.35, we find that the # order expansion of f o(- b1 [k, 7(1'1 H) is of the form

/ L (. ) e 0+ 02k,
ok (-,b1)

where kgm, = mqg (here my, jr and ng are introduced in Definition 5.19 and (5.13)).
This proves the desired result over H( P)\ P,.
Over the other half-space Ay \ ]HI(P ), the same reason yields

8<pa,s =0
in g*//g* (/fo \ H( P,)). Therefore we have
Qas = (10 P)(Pas) =0

from the g/& fixing condition in Definition 5.42, where J P is treated as an operator
acting on g*/&*(Ag \ H(P )). |

Now we are ready to construct the order N scattering diagram D(®)y for any fixed
N € Z~o.Givena € W(N), Lemma 5.44 says that the leading order term in the asymp-
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totic expansion of the gauge ¢, produces the element

Vo= Y b k™, 17 (modmNHT)
k>1
1<j<N

over ]ﬁI(Pa) \ P,.
Definition 5.45. We define the order N scattering diagram as
D(@)n :={Wa | a € W(N)}
where each newly added wall w, is supported on the tropical half-hyperplane
P,=0—-Rsom, CU
and equipped with the wall crossing factor ®, defined by

Log(®,) := Z b/(.z) -zk’”“énat-i (modm™+1),

k>1
I<j<N

The order N + 1 diagram D(®)y 1 is naturally an extension of the order N diagram
D(P) v because ®@, Y@ and hence ¢, are defined for all orders of . Hence this defines
a scattering diagram D(®) associated to .

5.3.2. Consistency of D(®). We are now ready to prove Theorem 1.5:

Theorem 5.46 (= Theorem 1.5). For the Maurer—Cartan solution ® constructed in equa-
tion (5.10), the associated scattering diagram D(®) defined in Definition 5.45 is consis-
tent, i.e. we have the identity

y
Opp@y= || ©a=1d
Wa €D(D)
for any embedded loop y in U \ Sing(D(®P)) intersecting D(P) generically.
Proof. Let us first recall that we are working over the open subset
Ao = {(r.0.b) | 6o — €0 < 0 < B + 27},

in the universal cover A of A = U \ Q, where Q = P; N P, = Sing(D(P)). We have
also fixed a strip

V ={(r,0,b) | o — €0 + 21 < 0 < by + 27}

so that the strip
V =27 ={(,0,b) | B —€0 < 0 < 6o}

stays away from all the possible walls in D(®); see Figure 17.
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Fig. 17

It is enough to show that D(®P)y is a consistent scattering diagram for each fixed
N € Z-y. Recall from Definition 5.42 that the gauge ¢, is written as

Va = —j€(ad¢a/(ead“’a —1d)) (lf/(“) + IE(“)) (mod m”¥ 1),
and it satisfies the gauge fixing condition !/A’(gpa) = 0 and solves the equation
e¥e x () = lf/(a) + /:_(a)

ingy (4o)/& N (Ap). We first show that, given any embedded loop y in U \ Q intersecting
D(®) generically (see Figure 17), we have

Y
[] ¢ =1d (modm™+"), (5.18)
acW(N)

over V.
Lemma 5.47. Over A 0, we have
( ﬁ e"’”) *0 = Z (F@ 4 F@) (modm™ 1),
acW(N) aeW(N)
where the (finite) product on the left-hand side is taken according to the orientation of y.
Proof of Lemma 5.47. By Lemma 5.44, we have ¢, = 0 over the half-space
Ao \ H(Pa) = {(.6.) € Ao | 6 < b4}
for any a € W(N). So supp(¢s’) N P, = @ for any a,a’ € W(N) with 6, < 6, (see
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Figure 17). As a result we have [¢,/, @ + F@] = 0 (modm™+1), and we get

. - - - oy 14 - -
e x (W@ 4 F@) = (@ 4 F@) _ (—e )(d%, +{P@D + F@D g,
ady,,
=g 4 F@) 4 g@ 4 f@
ingy (Ao)/ &y (Ao). The lemma follows by applying this argument repeatedly according
to the anti-clockwise ordering (i.e. increasing values of 6,). ]

On the other hand, since ® is a Maurer—Cartan solution of gy (U)/&}, (U), whose
deformations are all trivial in view of Lemma 5.10, we can find a gauge ¢ solving the
equation e? * 0 = ® and satisfying the condition $#(¢) = 0 over U. Pulling back via
p: Ay — A, we get p*(¢) solving eP @ % 0 = p*(®) and satisfying !/A"(p* (¢)) = 0 (the
latter using the fact that p(bg) = x°) over Ag. Then uniqueness in Lemmas 4.7 and 5.18
imply that P ) = HZEW(N) e ingy (JO)/E;;, (Ao).

But ¢ is defined over the whole spherical neighborhood U, instead of just over the
annulus A = U \ Q, so in fact I—[ZGW(N) e e gy (/IO)/SI’(, (Ay) is monodromy free. In

particular, this tells us that
Y
V-2n aeW(N)

Y
acW(N)

Note that V is chosen so that V — 27 stays away from Uaew( N) ]I:H(Pa). Thus we have
(HZGW(N) e%a)|y_2; = Id (modm" 1) by Lemma 5.44, so we obtain the identity
y
[[ e =1d(modm"+) (5.19)
acW(N)

(modm?™ ).

v

over the strip V.
Equation (5.19) is an identity in the Lie algebra
P > F(V) 20t
mEABO(U) nEABO(U)
1<j<N
Passing to the quotient by the ideal

P D 2 A REAE

mEABO(U)nGABO(U)
1<j<N
gives the identity
14
[[ e¥ =1d(modm"*) (5.20)
aceW(N)
in .
D X (RO W)
mGABO(U)nEABO(U)
I<j<N

over V.
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The embedding
H(V)®& m/m" ) P Y F(V) 2"t

meA g, (U) neA g, (U)
1<j<N

whose image has trivial intersection with

D X AW
meAp,(U) neA g, (U)
1<j<N

because coefficients of an element in the image are all constants independent of #, so it
descends to the quotient to give an embedding

H(V) ®r m/mV Ty — Y (FYV)/Fy (V) - 2"t
meAp,(U)neAp,U)
1<j<N

Therefore we obtain

4
[[ ©u=1d(modm"*)
aceW(N)
from (5.20) and completes the proof of the theorem. ]

5.3.3. Consistent scattering diagrams from more general Maurer—Cartan solutions. From
the proof of Theorem 5.46, we observe a general relation between Maurer—Cartan solu-
tions of the dgla g*/&*(U) with suitable asymptotic behavior and consistent scattering
diagrams in U.

In this subsection we work with a contractible open coordinate chart U C By and
the dglas gy (U)/€&x (U) as well as g*/&*(U). We also fix a codimension 2 tropical
subspace Q C U, which plays the role of the common boundary of the walls.‘(;lgorder
to obtain a consistent scattering diagram from a Maurer—Cartan solution ® of g*/&*(U),
we put two Assumptions 5.48 and 5.49 on the asymptotic behavior of &, the first of which
is the following.

Assumption 5.48. We assume that ® admits a (Fourier) decomposition of the form

o= ) 0@,

aceW

where we have a partition of the index set W into three subsets W = W, LI Wy U Wyy;
here the subscripts stand for incoming walls, outgoing walls and undirectional walls,
respectively, following the notations in [28]. We further assume that there is an associa-
tiona € W = m, € M = Ap,(U) satisfying m, is not parallel to Q if a € Wi, Ll W,

160ne can regard Q as a joint in the Gross—Siebert program [28] and we are indeed considering
MC solutions near a joint Q in By.
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and my is parallel to Q if a € W,, and an association
a € W > a tropical half-hyperplane P, containing Q in U

satisfying P, = Q —R<o-mg if a € Wiy, P, = Q —Rxq-mg if a € Wy, and Py # Py
if a # a’ in W, such that the summand ®@ has asymptotic support on P, and admits
a decomposition ®@ = g@ 4 F@) where

v e (69 F}, (U)zkme a) [, F@e (@ Y Fp (U)zkma én)[[rn;

k>1 k>1 n
here n, is a primitive normal to P,. 18

Under Assumption 5.48, we can solve for the gauge ¢, by the same process as in
Definition 5.42 and prove the same statement as in Lemma 5.43 for each ¢, (because we
have (m,,n,) = 0 even for undirectional walls).

Next, we consider the annulus A := U \ Q and the universal cover p : A — A, as
before. We choose a reference half-hyperplane Rg, of the form Rg, = QO — Rxomyg, with
mg, € Mg \ M, sothat Rg, cannot overlap with any of the possible walls. Again we com-
bine polar coordinates (r, ) on a fiber of NQ with affine coordinates b := (b3, ..., by)
on Q to obtain coordinates b = (by =r,by =0, b3,...,b,) On A. We consider the branch
{(r,0,b) | 6y < 0 < Oy + 27}, where 6 is a fixed angular coordinate for the half-hyper-
plane Rg,. For each a € W, we let 6o < 8, < By + 27 be the angular coordinate of the
half-hyperplane P, and set H(P,) := {(r,0,b) | 6, < 0 < Oy + 27}.

Assumptlon 5.49. We assume that there exists an element Va =D jk>1 b(a)ka,, Ong,
where b k are constants independent of # with bj Z# 0 only for ﬁmtely many 1nte-
gers k for each fixed j and n, is a primitive normal to P, such that

HE D gpp, € Va+ (@ atpanp, FL(Pa) \ Pa) - 2 5"0)[[t]] o

For each fixed N € Z~(, we choose a sufficiently small ey > 0 such that the subset
Vy :={(,0,b) | 6p —eny + 21 < 0 < By + 27} is disjoint from all the P,. We then
restrict our attention to Ag := {(r, 6, b) | fp —en < 6 < 6y + 27} in order to apply a mon-
odromy argument as in Section 5.3.1. We also fix the homotopy operator # as in Defini-
tion 5.41, together with # and i. Then we can prove the same statement as in Lemma 5.44
under Assumption 5.49.

So altogether, assuming both Assumptions 5.48 and 5.49, we have Lemmas 5.43
and 5.44, and a scattering diagram D(®) can be associated to the given Maurer—Cartan
solution ® in exactly the same way as in Definition 5.45. Finally, the same proof as in
Theorem 5.46 gives the following.

7Note that there is no restriction on P, if a € Wy, hence the name undirectional walls.
8Note that we do not need to specify the sign of (v P, »a) in this assumption.
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Theorem 5.50 (= Theorem 1.4). Suppose that we have a Maurer—Cartan solution ® of
g*/&*(U) satisfying both Assumptions 5.48 and 5.49. Then the scattering diagram D(®)
associated to ® is consistent, i.e. we have the following identity:

y
O, p@) = H ®,=1d
wa€D(P)
along any embedded loop y in U \ Sing(D(®P)) intersecting D(P) generically.
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