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Abstract. We present a method to construct a Ruelle–Pollicott spectrum for the geodesic flow on
manifolds with strictly negative curvature and a finite number of hyperbolic cusps.
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The spectrum of Ruelle–Pollicott resonances is a notion that was developed in the 1980s
[51, 53, 54] to associate Axiom A flows [58] with a discrete set of complex numbers
that describe its mixing properties. Let us recall their definition: if 't is a flow on some
manifoldM , d� an invariant measure and A;B 2 C1c .M/ two observables, then we can
define the correlation function

�A;B.t/´

Z
M

.A ı 't / � B d�;

as well as its Laplace transform O�A;B.s/ which is holomorphic for Re.s/ > 0. Pollicott
[51] and Ruelle [54] proved that, for Axiom A flows, this Laplace transform O�A;B extends
meromorphically to a small strip Re.s/ > �" for a certain class of measures. Its poles
are called Ruelle–Pollicott resonances of 't with respect to �. In the following decade,
several works [22, 29, 34, 55] were dedicated to obtaining sharp bounds on the maximal
strip on which the continuation is possible in terms of the regularity of the flow. More
recently, it has been understood that these resonances can be seen as the discrete spectrum
in the usual sense of the generator of the flow on some carefully chosen Banach spaces.
They appear as the poles of the meromorphic continuation of the resolvent kernel. See [10,
15,17,20,23,39], and also [2–5,19,25] for the related case of hyperbolic diffeomorphisms.
A wide generality of dynamical systems is considered in these articles; however, all these
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results have in common that they assume the system has a compact trapped set

K.'t /´
®
x 2M j lim inf

t!˙1
d.x; 't .x// < C1

¯
:

Since this is where the “non-trivial” part of the dynamics happen, one can crucially use
Fredholm theory. In this paper, we consider a family of hyperbolic flows whose trapped set
is not compact. For this class, we explain how Ruelle–Pollicott resonances can be defined.
We are convinced that the methods developed in this article will also apply to more general
settings and that they will lead to subsequent results such as meromorphic continuation
of zeta functions, and decay of correlations results. However, the new arguments that we
introduce to handle the non-compact trapped set are already a bit more involved than the
usual ones. We have thus chosen to restrain ourselves to the following setting, where they
can be cleanly developed.

The class of dynamical systems we are considering are geodesic flows on mani-
folds with cusps. We assume that .N; g/ is a complete, smooth, .d C 1/-dimensional
Riemannian manifold, that decomposes into a compact core with strictly negative vari-
able sectional curvature, and a finite union of hyperbolic cusps with constant negative
curvature, that are attached to this core (see Definition 1.1 for more precision). We con-
sider the geodesic flow 't acting on the cosphere bundle M D S�N and denote its
vector field by X . When endowed with the Sasaki metric, M is a .2d C 1/-dimensional
Riemannian manifold. From the inclusion M � T �N , M inherits the Liouville measure
�L which is preserved by the geodesic flow, and gives finite volume to M . As N has
strictly negative curvature, the geodesic flow is uniformly hyperbolic, and due to the par-
ticular structure of the cusps, its trapped set (in forward and backward times) has full
measure in M .

As X is an antisymmetric unbounded operator on L2.M/´ L2.M;�L/, we deduce
that its resolvent

R.s/´ .X � s/�1WL2.M/! L2.M/

is a holomorphic family of bounded operators for Re.s/ > 0. We prove the following
theorem.

Theorem 1. The resolvent has a meromorphic continuation as a family of continuous
operators R.s/WC1c .M/! D 0.M/ from Re.s/ > 0 to the whole complex plane, and for
any pole of this meromorphic continuation, the residue is a finite rank operator.

Note that, for A;B 2 C1c .M/ and �A;B the correlation function with respect to �L,
it is easy to check that, for Re.s/ > 0,

O�A;B.s/ D hR.s/A;BiD 0;C1c :

Thus the meromorphic continuation of the resolvent gives the continuation of O�A;B to the
whole complex plane and its poles coincide with the poles of R.s/ – when A and B vary
in C1c .M/. Consequently, we call the poles of R.s/ Ruelle–Pollicott resonances of the
geodesic flow (with respect to the Liouville measure).
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To the best of our knowledge, such a global definition of Ruelle–Pollicott resonances
of the geodesic flow on cusp manifolds was so far not known, even in the case of constant
negative curvature manifolds. We therefore want to mention another consequence.

Corollary 1. Let � � PSL.2;R/ be a co-finite Fuchsian group such that there is a tor-
sion-free, normal subgroup Q� E � of finite index1. Let us consider the orbifold

M� ´ S�.� nH/ Š � n PSL.2;R/:

Then the resolvent R.s/´ .X � s/�1WL2.M�/! L2.M�/ has a meromorphic con-
tinuation R.s/WC1c .M�/! D 0.M�/.

Proof. Theorem 1 applies to the smooth manifold M Q� D Q� n PSL.2;R/. The corollary
then follows by definition of smooth functions and distributions on orbifolds and because
the resolvent commutes with isometries.

We now want to mention some results related to Theorem 1. In order to study eigen-
values of the Laplacian on moduli spaces, Avila and Gouëzel [1] develop a functional
analytic framework for the Teichmüller flows which are also a class of dynamical systems
with non-compact finite volume trapped set. They obtain a meromorphic continuation
of the resolvent to a neighbourhood of zero (cf. [1, Proposition 3.3]). It would prob-
ably be possible to adapt their method to geodesic flows on cusp manifolds in order to
obtain a continuation to a small strip along the imaginary axis (instead of C in our case).
However, their functional analytic tools are quite different from ours.

Another series of related results have been obtained for the special case of surfaces
of constant negative curvature with cusps. It has been shown in a series of articles by
Mayer, Morita and Pohl [41, 45, 49, 50] that one can associate the geodesic flow with
one-dimensional expanding maps, using a carefully chosen discretization. Out of this dis-
cretization, one can build transfer operators with discrete spectrum, and these spectra have
interesting relations to number theory and the theory of Maass cusp forms [7, 38, 43].
One should be able to recover these spectra as a subset2 of the resonances defined from
Theorem 1. It will be subject to further research to establish this connection precisely.

As Ruelle–Pollicott resonances are an important tool to study decay of correlations,
let us shortly mention that the question of mixing is not yet satisfactorily answered for our
class of cusp manifolds: for constant curvature manifolds with cusps, exponential decay
of correlations for the Liouville measure was proved in [44], while for variable curvature,
only its mixing property is known [12]. Two other recent results on the mixing of Weil–
Petersson geodesic flows on manifolds with cusp-like singularities3 have been obtained

1Note that a particular example of this situation is � D PSL.2;Z/ and Q� D �.2/ the principal
congruence subgroup (see e.g. [32, Section 2.3]).

2More precisely, the connection should be to the so-called first band of Ruelle–Pollicott
resonances (cf. [14, 27, 28]).

3Note that their notion of cusp singularities differs from ours: they consider singularities where
the distance to the cusp is bounded, but the curvature is divergent.
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in [8, 9]. We hope that the analytic tools that we develop in this article will prove to be
helpful in the future for studying mixing properties of geodesic flows on manifolds with
hyperbolic cusps.

The meromorphic continuation of dynamical zeta functions is another important field
where meromorphically continued resolvents of flow vector fields have successfully been
applied. If P denotes the set of primitive periodic orbits of a hyperbolic flow and `.
/
their lengths, then the Ruelle zeta function is defined for Re.s/� 0 by

�R.s/´
Y

2P

.1 � e�s`.
//:

Smale [58] raised the question if, for Axiom A flows, the Ruelle zeta function4 has a mero-
morphic continuation to C? This question has recently been affirmatively answered by
Dyatlov and Guillarmou [16] following a long series of precedent works that prove mero-
morphic continuation under additional assumptions [15, 17, 22, 23, 47, 52] (we refer to
[2,60] for a recent overview of the literature). In all the recent accounts [15–17,21,23] of
these meromorphically continued zeta functions, a meromorphically continued resolvent
was the central ingredient. Consequently, Theorem 1 indicates5 that the Smale conjecture
could hold for geodesic flows on cusp manifolds, i.e. beyond the class of Axiom A flows.
So far, such a result is only known in the particular case of constant negative curvature
where it is a rather direct consequence of Selberg’s trace formula.

Contrary to the “classical” Ruelle–Pollicott resonances, the definition of “quantum”
resonances of the Laplace–Beltrami operator �N on a cusp manifold N has been estab-
lished for a long time starting with works of Maaß [40] and Selberg [56]. See the intro-
duction of [37] for the constant curvature case, and [11, 46] for the variable curvature
case. In fact, the proof of our main result borrows ideas from the definition of quantum
resonances (such as the compact Sobolev embedding, Lemma 4.12).

Let us shortly sketch the further ingredients for proving the meromorphic continuation
of the resolvent to the whole complex plane (Theorem 1). As a first step, we construct
a family of anisotropic spaces H 
m that are adapted to the hyperbolic structure of the
flow. These are Hilbert spaces of distributions on M , and C1c .M/ is dense in each H 
m.
They are an adaptation of the spaces defined by Faure–Sjöstrand [20] and Dyatlov–
Zworski [17]. Using a mix of their techniques, we obtain much in the same way a first
parametrix, which inverts X � s up to a smoothing remainder. However, this parametrix
is – contrary to the compact case – not sufficient for a meromorphic resolvent. Therefore,
it was necessary to introduce another technique. We chose to use ideas from Melrose’s
b-calculus to deal with the explicit form of the generator X in the cusp. From the very

4Actually, Smale considered a different version of a dynamical zeta function which is rather an
analogue of Selberg’s zeta function. The question of meromorphic continuation is however trivially
related to �R.

5In fact, the full statement of our result (Theorem 3) already provides several further ingredients
necessary for the meromorphic continuation of �R such as the extension to differential forms and
wavefront estimates.
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nature of these techniques, they work independently of the dimension of N . It is not
entirely clear whether the technique could be applied or not to the case that the curvature
is not exactly equal to �1 in the cusps, only close to �1. However, by analogy to the
resonances of the Laplace operators, we conjecture that the meromorphic continuation to
the full complex plane will not hold true when assuming only pinched negative curvature
in the cusps.

Let us present the structure of the paper. In Section 1, we introduce the precise set-
tings in which we are working and collect several properties of the geodesic flow on cusp
manifolds, that will be crucial in the sequel. To prove our theorem, we then build a first
parametrix in Section 2.2 following the arguments of [17,20]. The geometric construction
of the escape function is presented; however, the technical microlocal lemmas are proved
in Appendix A. Section 3 is devoted to introducing techniques adapted from b-calculus
and proving the meromorphic continuation of the resolvent of a certain class of transla-
tion invariant operators. These operators show up precisely when restricting the geodesic
flow to the zeroth Fourier mode in the cusp. In Section 4, such a resolvent is used for
the construction of a parametrix (up to compact remainder) of the geodesic flow vector
field. Then, using analytic Fredholm theory, we conclude on the meromorphic continu-
ation announced in Theorem 1. In Sections 3 and 4, we work in a more general setting
under a list of assumptions. This should allow for an easy generalization to more gen-
eral settings (such as fibred or complex hyperbolic cusps) in the future. In Section 5, we
finally compute explicitly the indicial roots for the b-operators associated to the geodesic
flow on our class of cusp manifolds and we check that all the necessary assumptions in
Section 3 and 4 are fulfilled.

Note that, in fact, we prove more general and more precise versions of Theorem 1.
For example, we continue the resolvent for a certain class of derivations on vector bundles
(cf. Definition 1.4) including the geodesic vector field with smooth potential, Lie deriv-
atives on perpendicular k-forms and general associated vector bundles over constant
curvature manifolds (cf. Examples 1.5–1.7). Furthermore, we give a precise descrip-
tion of the wavefront set of the resolvent. For a full statement, we refer the reader to
Theorems 3 and 4.

1. Geometric preliminaries

1.1. The geodesic flow on cusp manifolds

Let us give a precise definition of the manifolds on which we are working.

Definition 1.1. A manifold N will be called an admissible cusp manifold if the fol-
lowing assumptions hold. First, .N; g/ is a .d C 1/-dimensional Riemannian manifold,
connected and complete when endowed with the corresponding Riemannian distance.
Second, it decomposes as the unionN0 [Z1 [ � � � [Z� , whereN0 is a compact manifold
whose boundary @N0 is a finite disjoint union of d -dimensional tori. At each component
` D 1; : : : ; � of @N0 is glued the hyperbolic cusp Z`, which takes the form

Z` D Œa;C1Œy � .R
d=ƒ`/� :
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K < 0

N0

K D �1

K D �1
Z2

Z1

Fig. 1. Schematic sketch of a cusp manifold

(Here, ƒ` is a lattice in Rd , and we can impose the normalization condition that it is
unimodular.) We require that the metric g has strictly negative curvature in the whole
of N , and additionally, we fix, for each ` D 1; : : : ; �,

gjZ` D
dy2 C d�2

y2
: (1.1)

Then the sectional curvature is �1 in each cusp, and the volume of N is finite. Since
the sectional curvature of N is pinched, we deduce that its geodesic flow 't is a uni-
formly hyperbolic flow6 on its cosphere bundle. More precisely, we have the following
proposition.

Proposition 1.2. Let M D S�N be the cosphere bundle of an admissible cusp manifold.
There is a splitting

TM D E0 ˚Es ˚Eu

into d't -invariant subbundles, which is Hölder continuous with uniform constants. Fur-
thermore, the angle between any pair of the invariant bundles is bounded from below by
a uniform constant. Finally, there are global constants c; C; ˇ; B > 0 such that

ce�Btkvk � k.d't /vk � Ce
�ˇt
kvk for all v 2 Es; t > 0;

ce�Btkvk � k.d'�t /vk � Ce
�ˇt
kvk for all v 2 Eu; t > 0:

Proof. Let QN be the universal cover ofN . It is a simply connected, complete Riemannian
manifold with pinched negative sectional curvature (�k2max < K < �k2min < 0) because
the non-compact ends Zi are endowed with a constant negative curvature metric. For
the same reason, all derivatives of the sectional curvature are bounded. Thus [48, The-
orem 7.3 and Lemma 7.4] apply to this situation and they provide the splitting into invari-
ant bundles over S� QN with the above properties. As the invariant bundles are invariant
under isometries, taking the quotient, we obtain the desired result.

6Often, uniformly hyperbolic flows are also called Anosov flows. Several authors use the term
“Anosov flow” however only in the more narrow setting of hyperbolic flows on compact manifolds.
For this reason we refrain from using the term Anosov in our setting to avoid confusion.
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For the proof of Theorem 1, it will be crucial to have a precise understanding of
the geometry and the dynamics on the non-compact ends of S�N . We therefore start by
introducing explicit coordinates on S�Z`. In order to simplify the notation, we will drop
the indices ` D 1; : : : ; � that number the cusps.

Recall that a cusp is Z D Œa;1Œ �Rd=ƒ, and since we have assumed that ƒ is uni-
modular, we have canonical coordinates y 2 Œa;1Œ, � 2 Rd=ƒ. In many cases, it will
be convenient to perform the change of variables r D logy 2 Œlog a;1Œ, and the metric
becomes

g D dr2 C e�2r d�2:

A single cusp has the local isometry pseudo-group given by R �Rd which is realized by
linear scaling and translations in the y; � variables,

T�;�0.y; �/´ .e�y; e�� C �0/; (1.2)

or in r; �-variables,
T�;�0.r; �/´ .r C �; e�� C �0/: (1.3)

Using the y; � variables, we can write � 2 T �y;�Z as � D Y dy C J d� for Y 2 R and
J 2 Rd , and the Riemannian norm of such a cotangent vector is given by

j�jg D y
q
Y 2 C jJ j2

Rd
:

Elements � 2 S�y;�Z of a cosphere fibre are thus in bijection with

� ´ y.Y; J / 2 Sd � RdC1:

In particular, the cosphere bundle over the cusp is trivializable S�Z Š Z.y;�/ � Sd
�

. The
usual metric on S�Z, the Sasaki metric (see e.g. [26] for an easily accessible introduc-
tion), is not a product metric. However, one can check (see the expression of the Sasaki
metric in [6, Section C.2]) that it is equivalent to the product metric gZ ˝ gSd , where
gSd is the usual metric on the sphere. We will use the product metric in the sequel.

For the study of the geodesic flow, some more precise variables on the spheres are
useful. We choose a orthonormal base of coordinates �1; : : : ; �d in Rd . We fix

.yY D 1; J D 0/ ' y�1 dy

to be zenith, and we fix y�1 d�1 to be the azimuthal reference. With these conventions,
a point � 2 S�y;�Z is non-ambiguously determined by its inclination ' – the angle it makes
with the zenith – and its azimuthal position, u 2 Sd�1, which is determined by the choice
of base in Rd . As a point in RdC1, � D .cos'; sin'u/' y�1 cos' dy C y�1 sin'u � d� .

We single out two important points, the North Pole N 2 Sd with ' D 0 that corres-
ponds to the cotangent element y�1 dy D dr 2 S�Z pointing into the direction of the
cusp and the South Pole � corresponding to �y�1 dy D � dr pointing perpendicularly
to the bottom of the cusp.

The geodesic flow is known to be the Hamiltonian flow with Hamiltonian

h.x; �/ D 1
2
gx.�; �/ D

1
2
y2.Y 2 C jJ j2

Rd
/;
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N

�

� 2 Sd

Z
y

a
�

0

Fig. 2. This figure illustrates the dynamics of the geodesic flow on a cusp. The left part shows the
fundamental domain of a cusp (for d D 1) in the y; � variable. The black solid line is the trace of
a geodesic projected from S�Z to Z. The arrows indicate the direction of the flow and correspond
to the cotangent vectors. On the right, each of these arrows is represented by its � coordinate in Sd ,
evidencing the transient dynamics from N to � .

and a straightforward calculation with the canonical symplectic structure on T �Z gives
the associated Hamiltonian vector field

y2Y @y C y
2J � @� � y.Y

2
C J 2/@Y :

Restricting this vector field to S�Z and using the spherical coordinates '; u, we obtain
an explicit expression for the geodesic vector field,

X D y cos.'/@y C y sin.'/u � @� C sin.'/@'
D cos.'/@r C er sin.'/u � @� C sin.'/@' :

Note that u � @� is understood after identifying u 2 Sd�1 � Rd Š T� .R
d=ƒ/.

The dynamics of the geodesic flow vector field is illustrated in Figure 2. Let us
emphasize two important properties of the geodesic flow dynamics on S�Z.
(A) The Hamiltonian h is independent of the � variable, which implies that the corres-

ponding momentum variable u is a constant of motion under the geodesic flow.
(B) The dynamics of the variable � 2 Sd Š S�y;�Z is decoupled from the dynamics

on Z. By property (A), this dynamics is even rotationally invariant around the axis
through N and � , and it is precisely the gradient flow on the sphere Sd with the
obvious height function.
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This has the following consequence for the dynamics of the geodesic flow on the cusp.
Assume that trajectories stop when they reach the lower boundary y D a. Then the only
wandering trajectories are those with � D N or � D � . They correspond to the geodesics
that leave or enter the cusp, parallel to the y-axis. All other trajectories only rise up to
a finite height into the cusp and are thus “trapped”. However, by choosing � arbitrary close
to N , this height can be made arbitrary large and the trapped set is non-compact. Since
the non-compactness of the trapped set is the central problem in extending the techniques
of [17, 20], these regions around N and � will become crucial in the analysis.

Finally, let us add a third remark that is not directly related to the dynamics of the
geodesic flow, but rather to its action as a differential operator.
(C) As the geodesic vector field commutes with local isometries, it commutes in partic-

ular with the Rd -action by translation and thus preserves the Fourier modes in the �
variable. If k is an element in the dual latticeƒ� � Rd , then restricting the geodesic
flow vector field to the Fourier modes eik� yields a differential operator

Xk D cos.'/@r C sin.'/@' C ier sin.'/u � k: (1.4)

When k D 0, this is a vector field with coefficients that do not depend on r .

Remark 1.3. The structure of the flow restricted to the zeroth Fourier mode is essential
to our proof. Indeed, since it is translation invariant, we can use techniques adapted from
Melrose’s b-calculus to find an exact inverse for the model flow on a “full” cusp (cf. Sec-
tion 3). The fact that, in the other Fourier modes, the flow does not have such a nice
structure is compensated by the fact that we have a compact injection for functions inH 1

whose zeroth Fourier mode vanishes in each cusp (cf. Lemma 4.12).

1.2. Admissible vector bundles

As mentioned in the introduction, we want to prove the meromorphy of the resolvent
not only for the geodesic vector field acting on functions but also for a larger class of
admissible vector bundles. In order to precisely define these admissible vector bundles,
let us first recall how to write the non-compact ends S�Z` as locally homogeneous spaces.

Given a cusp Z` D Œa`;1Œ �Rd=ƒ`, we will consider the associated full cusp to
be the space Z`;f D .RC/y � .Rd=ƒ`/� with the metric g defined in equation (1.1)
extended to Z`;f in the obvious way. Let G D SO.d C 1; 1/; then using the Iwasawa
decomposition, we can write G D N A K, where A D .RC; � /, N D .Rd ;C/ are abelian
groups and K D SO.d C 1/ is the maximal compact subgroup in G. Then a full cusp
is simply the double quotient Z`;f D ƒ` nG =K, where we consider ƒ` � N Š Rd .
The unit cosphere bundle can then be simply written as S�Z`;f D ƒ` nG =M, where
M D SO.d/ (see e.g. [27, 30] for more details). Recall furthermore that the Bruhat de-
composition on the Lie algebra

g D m˚ a˚ nC ˚ n�

is Ad M invariant. Accordingly, G =M is a reductive homogeneous space, and for any
orthogonal representation .�; V / of M, the associated vector bundle G��V is a homo-
geneous Riemannian vector bundle with a canonical compatible connection.
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Now we can define admissible vector bundles.

Definition 1.4. Let N D N0 [ .
S�
`D1Z`/ be an admissible cusp manifold in the sense

of Definition 1.1 and M D S�N . Let L!M be a Riemannian bundle endowed with a
compatible connection r. Moreover, L is an admissible vector bundle if, for each cusp
Z`, ` D 1; : : : ; �, there is an orthogonal M-representation .�`; V`/ such that LjZ` co-
incides with the associated vector bundle

L`;�` D ƒ` nG��`V`:

(The Riemannian bundle metric and connection of L are also assumed to coincide with
those of the associated bundle.)

Let X be a derivation on sections of L that lifts the geodesic flow vector field X . That
is to say that it satisfies the Leibnitz relation

X.f s/ D .Xf /s C fXs for f 2 C1.M/; s 2 C1.M;L/:

We say that X is an admissible lift of X if there is a fixed A` 2 End.V`/M for each
cusp Z` such that, when restricted to LjZ` , X acts as X`´ rX C A`.

Let us mention three important examples of admissible vector bundles and differential
operators.

Example 1.5. Let V 2C1.M/ be so that, in each cusp, V is just a constant. ThenX C V
is an admissible operator on the trivial bundle.

Example 1.6. Let � � G be a non-uniform torsion-free lattice. Then � nG =K is a non-
compact manifold of constant curvature whose ends are cusps in the sense we have
defined; it is thus an admissible cusp manifold. There is a finite number of ends. Given
an orthogonal representation � of M on V , we can then construct globally the bundle
L� D � nG��V and the corresponding connection. Then the operator rX is an admiss-
ible lift of the geodesic flow on M D � nG =M.

Example 1.7. Let us take N an admissible cusp manifold, M D S�N and X the corres-
ponding geodesic vector field. We can consider the Lie derivative LX acting onƒ.T �M/,
the bundle of forms of arbitrary degree overM ; it is an admissible lift ofX . Further, define

ƒ?.T �M/´ ¹! 2 L.T �M/ j {X! D 0º:

This sub-bundle of ƒ.T �M/ is invariant under LX . Also, LX preserves the Liouville
one-form ˛, which is a contact one-form. In particular, we can identify the action of LX
on ƒ?.T �M/ with the action of LX on ƒ..ker˛/�/. This is also an admissible lift of X .

2. Anisotropic space and first parametrix

The main idea that was presented in [20] was to resort to usual semi-classical techniques
to prove the meromorphic continuation of the resolvent of the flow generator for Anosov
flows on compact manifolds. This is not the only method available for compact mani-
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folds – see [10] – but it is the one we will extend to our case. Another paper [17] used
propagation of singularities to obtain the wavefront set of the resolvent, in order to sim-
plify the proof of meromorphic continuation of the zeta functions. We will use a mixture
of both, since we use the approach of [20] to continue the resolvent, and ideas from [17]
to obtain the wavefront set of the resolvent.

We consider L!M D S�N an admissible bundle and X an admissible lift ofX the
geodesic flow on M . Since we will use semi-classical techniques, we introduce a small
parameter 0 < h � h0, and we let X´ hX. We refer to Appendix A where we collect
the definition of the notions of microlocal and semi-classical analysis (pseudo-differential
operators, symbol classes, . . .) which we will use in the sequel.

The first result in this section is the following proposition.

Proposition 2.1. For each 
 > 0 and h > 0, we can build a space of L-valued dis-
tributions H 
m on M that contains C1c .M;L/, and a pseudo-differential operator Q
microsupported in an arbitrarily small neighbourhood of the zero section in the fibres
of T �M , so that there exists h0 > 0 so that, for 0 < h � h0 and for jIm sj < h�1=2 and
Re.s/ > �
 ,

X �Q � hs is invertible and k.X �Q � hs/�1kH
m D O.1=h/:

As h varies, the spaces H 
m remain the same as vector spaces, with equivalent norms.

The space H 
m will take the form (see Definition 2.7)

Op.e�
G/ � L2.M;L/:

In this formula, G denotes a so-called escape function, and Op a semi-classical quant-
ization that we define in Appendix A (see equation (A.4)). The construction of G will
be done first for X acting on functions. Then the general case is obtained by tensorizing
Op.e�
G/ with the identity 1 2 End.L/.

Remark 2.2. As should be clear after reading the proof, the construction of the escape
function is local in the sense that it can be done in the universal cover. In particular,
Proposition 2.1 should hold in any geometrically finite negatively curved manifold whose
universal cover has bounded geometry. We do not prove this general result because that
would require the construction of an explicit quantization with uniform bounds on these
non-compact spaces. This seemed too much a detour considering that our aim is to study
cusp manifolds and that a suitable quantization in this setting has already been developed
by the first author in [6].

2.1. Building the escape function

In this subsection, we want to construct an escape function in complete analogy to [20,
Lemma 1.2]. As we deal with a non-compact situation, we however have to take care that
the required uniform bounds hold.
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The escape function G will be a function on the cotangent bundle T �M , and we
introduce the decomposition

T �M D E�0 ˚E
�
u ˚E

�
s (2.1)

so that E�0 D R˛, where ˛ is the Liouville one-form �� � dx. Furthermore, we have
E�u D .E

u ˚E0/? and E�s D .E
s ˚E0/?.

We have to introduce some notation regarding the dynamics. We lift the geodesic
flow 't symplectically to the flow

ˆt W .x; �/ 7!
�
't .x/; .dx'

�
t /
�1
� �
�
:

It is the Hamiltonian flow associated to the Hamiltonian

p.x; �/´ � �X.x/; (2.2)

which is the symbol of �iX , and we denote by Xˆ its Hamiltonian vector field. Decom-
position (2.1) is preserved by the flow, and

.x; �/ 2 E�s H) jˆt .x; �/j � Ce
�ˇt
j.x; �/j for t > 0: (2.3)

(Likewise in negative time for E�u .)

Lemma 2.3. For any sufficiently small uniform conical neighbourhoods N0; Nu; Ns of
E�0 ; E

�
u ; E

�
s , there are constants CG ; R > 0 such that, for any ı > 0, there is an escape

function G 2 C1.T �M/ with

(i) XˆG > 1 outside of ¹j�j < Rıº [N0,

(ii) XˆG � 0 globally on ¹j�j > ıº,

(iii) for j�j > Rı

G.x; �/ D

8̂<̂
:
CCG logj�j CO.1/; � 2 Nu;

�CG logj�j CO.1/; � 2 Ns;

0; � 2 N0;

(iv) eG 2 Sm
log.M/: it is an anisotropic symbol of order m.x; �/, with m 2 S0cl.M/ being

a 0-homogeneous classical symbol (see Definition A.6 for a definition of classical
symbol classes) with

m.x; �=j�j/ D

8̂<̂
:
CCG ; � 2 Nu;

�CG ; � 2 Ns;

0; � 2 N0:

In order to prove Lemma 2.3, it will be helpful to restrict ˆt to the unit sphere
bundle S�M . In order to do this, let us interpret S�M Š .T �M n ¹0º/=R, where R
acts on each fibre by linear multiplication. Then, by homogeneity, ˆt factors to a flow
Q̂
t WS
�M ! S�M with vector field X Q̂ . By an abuse of notation, we can see E�0 , E�u

and E�s as subsets of S�M . From the uniform estimates in Proposition 1.2, we obtain the
following lemma.
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Lemma 2.4. For � > 0, let U �u � S
�M be the �-neighbourhood of E�u and likewise let

U �0;s � S
�M be the �-neighbourhood of E�0 ˚E

�
s . Then there exists � > 0 such that U �u

and U �0;s are disjoint. Furthermore, for any fixed � as above, there is a finite maximal
transition time �max > 0 such that, for t � �max,

(1) for all .x; �/ 2 S�M n U �u , Q̂ �t .x; �/ 2 U �0;s ,

(2) for all .x; �/ 2 S�M n U �0;s , Q̂ t .x; �/ 2 U
�
u .

Finally, for any T > 0, there is �0 > 0 such that U �
0

u �
Q̂
T .U

�
u / and U �

0

0;s �
Q̂
�T .U

�
0;s/.

The same statement holds for E�0 ˚E
�
u and E�s .

Proof of Lemma 2.3. Let us first construct the weight function m. This decomposes into
two symmetrical steps.

Take an � > 0 from Lemma 2.4 such that U 3�u \ U
3�
0;s D ;. In a first step, we want to

smooth the characteristic functions 12�u ; 1
2�
0;s 2 L

1
loc.S

�M/ on these two sets. Therefore,
take Q�m 2 C1c .���; �Œ/, with Q�m � 0 and Q�m.0/ > 0. Then we define a smoothing kernel
�m 2 C

1.S�M � S�M/ by

�m.x; x
0/´

Q�m.d.x; x
0//R

S�M
Q�m.d.x; x00// dx00

;

and we denote byKm the corresponding smoothing operator. Now we define the function
mu0;s ´ Km.12�u � 12�0;s/ which, by the construction of the smoothing operator, fulfils the
following assumptions:
(1) mu0;s 2 C1.S�M/ – this means that all derivatives are bounded, see the discussion

at the start of Appendix A;
(2) mu0;s equalsC1 on U �u and �1 on U �0;s;
(3) mu0;s takes values in Œ�1; 1�.
Now take the time T D 2�max (with �max being the transition time from Lemma 2.4), and
set

mCT D

Z T

�T

mu0;s ı
Q̂
t dt:

We have
X Q̂mCT D m

u
0;s ı

Q̂
T �m

u
0;s ı

Q̂
�T :

By Lemma 2.4, for any .x; �/ 2 S�M , either Q̂ T 2 U �u or Q̂ �T 2 U �0;s . Since mu0;s takes
values in Œ�1; 1�, we deduce that everywhere

X Q̂mCT � 0:

Now let us define Vu´ ˆT .S
�M n U �0;s/ � U

�
u and V0;s ´ ˆ�T .S

�M n U �u / � U
�
0;s .

Then, for .x; �/ … .Vu [ V0;s/, Q̂ T .x; �/ 2 U �u and Q̂ �T .x; �/ 2 U �0;s , and consequently,

X Q̂mCT .x; �/ D 2:

On the other side, if .x; �/ 2 Vu, then mu0;s. Q̂ t .x; �// D 1 for t > ��max, and from the
definition of T , we deduce that mCT .x; �/ � T . For the same reason, mCT < �T on V0;s .
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Finally, with �0 > 0, from Lemma 2.4, we deduce that mCT is constantly equal to 2T
(resp. �2T ) on U �

0

u (resp. U �
0

0;s).
The second step is to build a similar function m�T replacing E�u by E�s , and going

through the same procedure. Taking

m D
mCT Cm

�
T

2
;

we get
(a) m 2 C1.S�M/,
(b) X Q̂m � 0 in S�M ,
(c) X Q̂m � 1 on S�M n .Vu [ Vs [ U �0 /,
(d) on U �

0

u (resp. U �
0

s , U �
0

0 ), m equals 2T (resp. �2T , 0),
(e) m > T on Vu and m < �T on Vs .
The actual weight function m will be m multiplied by a constant that we will determine
at the end.

Now comes the second part of the proof: building the symbol G. Choose Nu (resp.
Ns; N0) to be the cone in T �M generated by Vu � S�M (resp. Vs; U �0 ). We want to
choose a symbol f 2 S1.M/ to be a positive elliptic symbol so that, outside of j�j < ı,
on N0, it equals jpj. We also want that, on Nu (resp. Ns), it satisfies Xˆ logf � ˇ=2
(resp. � �ˇ=2). We would like to set f to be just the norm j�j in a neighbourhood
of E�u ˚E

�
s , but this is not suitable because the constant C in estimate (2.3) is not

necessarily 1. However, we find that, for .x; �/ 2 E�s ,

Xˆ

�
1

2t

Z t

�t

logjˆs.x; �/j ds
�
�

logC
2t
� ˇ:

This suggests to pick T 0 > 2 log.C /=ˇ and define, for .x; �/ in a fixed conical neighbour-
hood of E�u ˚E

�
s ,

fus.x; �/´ exp
�
1

2T 0

Z T 0

�T 0
logjˆt .x; �/j dt

�
:

This is not a norm anymore, but is still 1-homogeneous and smooth – except at 0. On E�s ,
Xˆ logfus � �3ˇ=4 so that, if � > 0 was chosen small enough, Xˆ logfus � �ˇ=2
in Ns . We also have the corresponding estimates in Nu. We can piece together fus and
jpj around N0 to obtain a globally defined elliptic 1-homogeneous symbol. Let cf be its
infimum on ¹j�j D 1º.

We have all the pieces to define

G.x; �/ D C 0G

h
1 � �G

�
j�j

ı

�i
m
�
x;

�

j�j

�
log

2f .x; �/

cf ı
;

where C 0G > 0 is a constant fixed later and �G is a C1c .��1; 1Œ/ function that equals 1 in
Œ�1

2
; 1
2
� and takes values between 0 and 1. It is there to ensure that G is smooth at � D 0.
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We can check that G � 0. By the properties of m from above, we directly deduce that
Lemma 2.3 (iii) holds.

Now we can compute

XˆG D �C
0
G.Xˆ�G/m log

2f

cf ı
C C 0G.1 � �G/

h
.X Q̂m/ log

2f

cf ı
Cm

Xˆf

f

i
:

Let us discuss the different terms: Xˆ�G vanishes outside ¹j�j < ıº; thus the first line is
irrelevant for properties (i) and (ii) of Lemma 2.3. Let us consider the second line case
by case.
� .x; �/ … .N0 [Nu [Ns/: Note that jmj and jXˆf=f j are globally bounded by a con-

stant C0. By property (c) above,X Q̂m > 1. By the fact that f is elliptic, there is a con-
stant R > 0 such that, when ¹j�j > Rº, log.2f=cf / > 1C C 20 . Then, for j�j > Rı,
we also have log.2f=cf ı/ > 1C C 20 ; thus XˆG > C 0G for j�j > Rı
� .x; �/ 2 Nu: Now we only know thatX Q̂m � 0, so we need a uniform lower bound for

the second term. But, from the choice of f , it is precisely there that Xˆf=f > ˇ=2.
Together with property (e) of m above, we deduce XˆG > ˇTC 0G=2 for j�j > ı.
� .x; �/ 2 Ns: As in the previous case, we obtain XˆG > ˇTC 0G=2 for j�j > ı.
� .x; �/ 2 N0: As f is a function of p on N0 and Xˆ is the Hamiltonian flow of p, we

have Xˆf D 0. Since X Q̂m � 0, we conclude XˆG � 0 for j�j > ı.
Let N 0u (resp. N 0s) be the conical neighbourhood corresponding to U �

0

u (resp U �
0

s ).
We have N 0u � Nu and N 0s � Ns . On N 0u (resp. N 0s), G D 2C

0
GT logj�j CO.1/ (resp.

�2C 0GT logj�j CO.1/). So we choose C 0G � max. 2
ˇT
; 1/. This gives CG D 2C 0GT and

m D C 0Gm.
At last, we have to verify that m and G are symbols in the right class in the sense of

Definition A.6. The weight was constructed as a C1 function on S�M , and that is the
definition of being in S0cl.M/. For eG to be elliptic in Sm

log.M/, it suffices then to check
that .1 � �G.j�j//f itself is elliptic in S1cl.M/. By definition, this means that f=j�j is
a C1 function on S�M . That is also a direct consequence of the construction.

Actually, in our case, we can say something a little better, that will simplify the rest
of the proof.

Lemma 2.5. We can assume that, for y > a with a large enough, both G and m are
invariant under the local isometries T�;�0 defined in equation (1.2).

Proof. Recall from the discussion in Section 1.2 that each cuspZ` can been seen as a sub-
set of the full cuspZ`;f D ƒ` nG =K. The geodesic flow on the hyperbolic space G nK
or rather on its sphere bundle S.G =K/ D G =M is known to be uniformly hyperbolic
with analytic stable and unstable bundles QEs=u which are invariant under all isometries of
the hyperbolic space G =K, i.e. under the left G action. Consequently, these bundles des-
cend to the full cusp SZ`;f and can thus be restricted to the cusps. We call them the stable
and unstable bundles corresponding to constant curvature and denote them by Ecu=s . By
the invariance under isometries of hyperbolic space, the bundles Ecu=s are invariant under
the local isometries T�;�0 defined in equation (1.2).
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Let us now explain that Ecu=s and Eu=s become O.1=y/-close high in the cusp. Let
us do this for the example of Es . First, note that Eu ˚Es D Ecu ˚E

c
s (this is because

the contact form of both flows coincides. Now, for trajectories whose past is included in
the cusp, Eu and Ecu have to coincide, so at the bottom of the cusp (y D a), directions
that are close to the South Pole (i.e. incoming trajectories), Es and Ecu are transverse
(by continuity of the bundles). Now, high in the cusp (y � a) in an arbitrary direction
(except in N ), its trajectory, when it exits the cusp, has to be almost vertical, i.e. in the
neighbourhood of the South Poles considered above; now the uniform hyperbolicity of
both splittings implies that Es and Ecs are O.1=y/-close as y !C1.

As a consequence of the fact that the bundles Ecu=s and Eu=s become close, when
building the functions mu0;s and ms0;u, we can actually choose them to be invariant by
T�;�0 high in the cusp – say y > y0.

Since it takes at least a time � logy to go from height y in the cusp to the compact
part N0, and since all the constructions above make use only of propagation for a global
finite time under the flow, we obtain that, for y > y0eT , m is also invariant under T�;�0 .

The last thing to check is the invariance of f . In the cusp, the vector field X is also
invariant under local isometries of the hyperbolic space so that f also can be chosen to
be T�;�0 invariant for y > y0eT

0

.

Remark 2.6. We can choose a so that it coincides with the a in Definition 4.3. It will be
smaller than the a of point (7) of Proposition A.8.

2.2. A first parametrix

Now that we have built our escape function, we focus on building an approximate inverse
for X � hs. Recall that we use semi-classical analysis: we had defined X D hX, and
we will work with the semi-classical quantization Opwh;L acting on sections of L; see
Appendix A, equation (A.4). For a simpler notation, we simply write Op in the sequel.
A priori, for Op.�/ to make sense, we need that � is valued in End.L/. If � is just a func-
tion, we can consider Op.� ˝ 1/. This operator will be denoted by abuse of notation just
as Op.�/.

Definition 2.7. Let ı > 0, and let Gı be the corresponding escape function given by
Lemma 2.3. Let 
 > 0. We denote by H 
m

ı
the set of distributions

H

m
ı
D Op.e�
Gı / � L2.M;L/:

It is endowed with the norm

kf kH
m
ı
D kOp.e�
Gı /�1f kL2.M;L/:

The space actually does not depend on h or on ı, but the norm does. As a convention, we
denote H 0

ı
D L2.M;L/.

We will drop the ı indices in the notation, to lighten a bit the presentation, and just
writeH 
m.D H


m
ı

). Only at the end of Section 4 in the proof of Theorem 3, we will let ı



Resonances and hyperbolic cusps 867

go to 0. From the properties of G, we directly obtain the following regularity properties,
which show that H 
m

ı
is an anisotropic space7.

Lemma 2.8. For any 
 > 0, ı > 0, we have the continuous inclusions

HCCG
 � H

m
ı
� H�CG
 :

Furthermore, near E�u , H 
m
ı

is microlocally equivalent to HCG
 , and near E�s , H 
m
ı

is
microlocally equivalent to H�CG
 . In particular, for A 2 S0.M;L/,

WFh.A/ 2 Ns H) kAukH
m
ı
� CkAukH�CG
 ;

WFh.A/ 2 Nu H) kAukHCG
 � CkAukH
m
ı
:

The differential operator X, which is a priori defined on C1c .M;L/, has a unique
closed extension [20, Lemma A.1] to the domain D
 ´ ¹u 2 H 
m W Xu 2 D
º. The
domain D
 is naturally a Hilbert space with respect to the scalar product

h � ; � iD
 ´ h � ; � iH
m C hX � ;X � iH
m :

The action of X � hs on H 
m, is equivalent to the action on H 0 D L2 of

Op.e�
G/�1.X � hs/Op.e�
G/ D X � h
�

 Op.¹p;Gº/C s

�
CO.h2‰�1

C

log /:

Since Xˆ is the Hamiltonian vector field of the Hamiltonian p defined in (2.2), we have
¹p;Gº D XˆG. We will need the following observation.

Lemma 2.9. There are constants C;C 0 > 0 such that X � hsWD
 ! H 
m is invertible
for Re.s/ > C.1C 
/. We denote the inverse by R.s/, and its operator norm is bounded:
kR.s/kH
m!H
m � C 0h�1.

Proof. From the sharp Gårding inequality (Lemma A.10), we conclude that there are
C; " > 0 such that Reh.X � hs/u; uiH
m < �"hkuk2H
m for Re.s/ > C.1C 
/ and all
u 2 C1c .M/ (C does not depend on 
 ).

We deduce that k.X � hs/ukH
m � "hkukH
m . Consequently, the image of .X � hs/
is closed. We deduce that it is the orthogonal of the kernel of the adjoint. We also get
that the kernel of .X � hs/ is empty. Additionally, we observe that the adjoint of X � hs
satisfies the same sharp Gårding estimate so that it also is injective, and thus .X � hs/ is
surjective. We conclude that it is invertible.

For each ı > 0, we pick Q (D Qı ), a self-adjoint semi-classical pseudo-differential
operator, of the form Op.q/, with q 2 S0 equal to 1 in ¹j�j � 2Rıº, everywhere posit-
ive, and supported in ¹j�j < 3Rıº – the constant R was given in Lemma 2.3. This is an
absorbing potential. Let us define

XQ.s/ D X �Q � hs:

7The spaces that show up here are distributions that are regular in theE�u direction and irregular
in the E�s direction. This is no contradiction to precedent works like e.g. [15] where the authors
continue the resolvent of the operator �X and thus obtain the converse regularity properties.



Y. G. Bonthonneau, T. Weich 868

Then we have the following key estimate.

Proposition 2.10. Let ı > 0; then there is a constant Cı > 0. Assume that s satisfies
Re.s/ > Cı � 
 C 1 and jIm sj � h�1=2. Then, for sufficiently small h, the operator XQ.s/
is invertible on H 
m. Denoting by RQ.s/ its inverse, we get kRQ.s/k D O.h�1/.

Proof. We fix a tempered family of functions u 2 C1c .M;L/. We consider the regions

�ell ´ ¹.x; �/ j j�j < 3Rı=2 or jp.x; �/j > �h�iº;
�Gårding ´ ¹.x; �/ j j�j > Rı and �=j�j … N0º:

If � > 0 is chosen small enough, then they overlap, so we can build a partition of unity
1 D Aell C AGårding, with Aell (resp. AGårding) microsupported in �ell (resp. �Gårding), and
both A’s in ‰0.

In the region �ell, the principal symbol of XQ.s/ is elliptic, so we deduce8, from
Proposition A.14,

kAellukH
m � CkXQ.s/ukH
m CO.h1/kukH
m :

Now we can concentrate on the region of interest �Gårding. By definition, the action of
XQ.s/ on H 
m is conjugated by Op.e�
G/ to the action on L2 of

AXQ.s/ D X �Q � h
�

 Op.¹p C iq; Gº C s/

�
CO.h2‰�1

C

log /:

We denote by BAGårding the operator obtained after conjugation by Op.e�
G/, and define
Qu´ Op.e�
G/�1u 2 L2. We consider

�RehAXQ.s/BAGårding Qu; BAGårding QuiL2 D hPA2BAGårding Qu; BAGårding QuiL2

C h.Re.s/C 
/kBAGårding Quk
2
L2
;

where A2 is a microlocal cutoff in a slightly bigger neighbourhood of WFh.AGårding/ and

P ´ �Re XCQC h
 Op.¹p;Gº � 1/CO.h2‰�1
C

log /:

(Here, Re X is the real part of X acting on L2, and it is an O.h/ order 0 operator.)
By Lemma 2.3 (i) (recall that ¹p;Gº D XˆG), we conclude that PA2 2 ‰0C has non-
negative principal symbol, and by the sharp Gårding inequality A.10, we deduce that

�RehAXQ.s/BAGårding Qu; BAGårding QuiL2 � h
�
�Cı C Re.s/C 


�
kBAGårding Quk

2
L2
:

8Note that Proposition A.14 (2) is stated in terms of ordinary Sobolev spaces and not in terms
of anisotropic Sobolev spaces. The statement on anisotropic spaces can however be deduced
by applying Proposition A.14 (2) to the conjugated operators Op.e�
G/�1Aell Op.e�
G/ and
Op.e�
G/�1.X �Q � hs/Op.e�
G/ respectively. Note therefore that the conjugation does not
affect the ellipticity.
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The constant depends on Q, which depends itself on ı. Using Cauchy–Schwarz and our
assumption Re.s/ > Cı � 
 C 1, we get

kBAGårding QukL2 � Ch
�1
kAXQ.s/BAGårding QukL2 ;

i.e.
kAGårdingukH
m � Ch�1kXQ.s/AGårdingukH
m :

Gathering our estimates, we find that

kukH
m � Ch�1kXQ.s/AGårdingukH
m C CkXQ.s/ukH
m CO.h1/kukH
m :

Now let us consider

kXQ.s/AGårdingukH
m � kAGårdingXQ.s/ukH
m C kŒXQ.s/; AGårding�ukH
m :

We have ŒXQ.s/; AGårding� 2 h‰
0, and as WFh.ŒXQ.s/; AGårding�/ � �ell \�Gårding, we

get by elliptic regularity kŒXQ.s/; AGårding�ukH
m � CkXQ.s/ukH
m CO.h1/kukH
m .
By continuity of AGårding, we deduce kAGårdingXQ.s/ukH
m � CkXQ.s/ukH
m , so alto-
gether, we get kXQ.s/AGårdingukH
m � CkXQ.s/ukH
m , and consequently,

kukH
m �
C

h
kXQ.s/ukH
m CO.h1/kukH
m :

This estimate implies that, for sufficiently small h, the operatorXQ.s/ is injective and has
closed range. Performing exactly the same estimates for the adjoint operator, we deduce
that XQ.s/ is surjective.

In the case of compact manifolds, the end of the proof of the equivalent of Theorem 1
is based on the fact that, by writing

.X � hs/RQ.s/ D 1CQRQ;

we have that X � hs is invertible modulo a smoothing operator, and smoothing operators
are compact on compact manifolds, so X � hs is invertible modulo compact operator.
Hence it is Fredholm, of index 0, and its inverse is a meromorphic family of operators in
the s parameter.

However, in our case, smoothing operators are not compact. We will present a spe-
cial ingredient in the next section to overcome this problem. Before that, we consider
wavefront sets.

Proposition 2.11. Let �C be the subset of phase space

�C´ ¹..x; �/Iˆt .x; �// j p.x; �/ D 0; t � 0º � T
�M � T �M:

Recall that �.T �M/ is the diagonal in T �M . The wavefront set of RQ.s/ satisfies

WF0h.RQ.s// \ .T
�M � T �M/ � �.T �M/ [�C:
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Proof. First, by ellipticity in ¹p.x; �/ ¤ 0º [ ¹j�j � 2Rıº, the wavefront of RQ.s/ is
contained in �.T �M/ [ ¹p.x; �/ D p.x0; � 0/ D 0; j�j; j� 0j > 2Rıº.

Next, note that, by Lemma A.13, we have to prove that, for

..x; �/; .x0; � 0// 2 T �M � T �M

fulfilling

p.x; �/ D p.x0; � 0/ D 0; j�j; j� 0j > 2Rı; and ..x; �/; .x0; � 0// … �C;

there are A;A0 2 S0, elliptic in .x; �/ (resp. .x0; � 0/) such that

ARQ.s/A
0
D OH�1!H1.h

1/:

In order to achieve this, let ..x; �/; .x0; � 0// 2 T �M � T �M be such a point. Recall
that, as t !C1, jˆt .x0; � 0/j either goes to 0 or to 1. Hence we can chose two rel-
atively compact open sets U;U 0 � T �M such that ˆt .U / \ U 0 D ; for all t � 0, and
.x; �/ 2 U , .x0; � 0/ 2 U 0. Fix A;A0 2 ‰0 microsupported in respectively U and U 0.

Let us prove that ARQ.s/A
0 D OH�1!H1.h

1/. Let u be a tempered family of
distributions. Let T > 0, and B;B1 elliptic on respectively ˆT .U / and

S
0�t�T ˆt .U /.

Observe that ARQ.s/A
0u is in all Sobolev spaces because A;A0 are compactly microsup-

ported. Then we get by propagation of singularities (Lemma A.16) that, for k 2 R,

kARQ.s/A
0ukHk � CkBRQ.s/A

0ukHk C
C

h
kB1A

0ukHk COk;u.h
1/:

By the assumption on the microsupport of A and A0, by taking the microsupport of B1
small enough, we can ensure that B1A0u D O.h1/; hence

kARQ.s/A
0ukHk � CkBRQ.s/A

0ukHk COk;u.h
1/: (2.4)

Now we just have to consider what happens when the time T becomes larger. For

.x; �/ 2 ¹p D 0º � T �M;

there are only two possibilities: either there is T > 0 such that

ˆT .x; �/ � ell1.Q/ D ¹j�j � Rıº;

orˆt .x; �/ converges toE�u \ @T �M (see Definition A.6 for the radial compactification).
In the first case, take U sufficiently small such that ˆT .U / � ell1.Q/. Thus we can

assume that B in the propagation estimate (2.4) is microsupported in ell1.Q/. Taking
B 0 2 ‰0 elliptic on the microsupport of B , the elliptic estimate (Proposition A.14) gives

kBRQ.s/A
0ukHk � CkB

0A0ukHk COm;u.h
1/:

Since we can choose B 0 such that WF.B 0/ \WF.A0/ D ;, the right-hand side is O.h1/.
Now we turn to the second case which we will treat using the high regularity radial

estimate (Proposition A.18). Note that E�u \ @T �M is a sink in the sense of Defini-
tion A.17. Next, let us choose C 2 ‰0 such that E�u \ @T �M � ell1.C / and such that
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WFh.C / \WFh.A0/ D ;. Then Proposition A.18 provides us with an order 0 operator
C1 which is elliptic in a neighbourhood of E�u \ @T �M . Furthermore, we can assume
WFh.C1/ � Nu.

Since C1RQA
0u 2 H 
m and it is microsupported in Nu, by Lemma 2.8, we know

that C1RQ.s/A
0u 2 H 
CG , and taking 
CG > k0, we have the necessary regularity for

the sink estimate. We get, for any k > k0,

kC1RQ.s/A
0ukHk �

C

h
kCA0ukHk CO.h1/ D O.h1/: (2.5)

Finally, for U sufficiently small and by propagation of singularity for a long enough
but finite time T , we can assume that ˆT .U / � ell1.C /. Combining (2.4) and (2.5), we
obtain as desired kARQ.s/A

0ukHk D O.h1/.

We have a final remark for this section.

Definition-Proposition 2.12. If 
 � 0 andN 2 R, we say that k D 
mCN is a weight.
Such a weight is said to be large if 
 is large and N=
 is small. We define

H k
.ı/.M;L/´ Op.e�
Gı /HN .M;L/:

Then the conclusion of Proposition 2.10 holds on the space H k when jIm sj < h�1=2,
Re s � Cı � 
 C CN C 1 for some constant C independent of 
;N , and for h > 0 small
enough.

The proof is completely analogous to the proof of Proposition 2.10.

3. Continuation of the resolvent for translation invariant operators

In this section, we will be considering a vector bundle over some compact Riemannian
manifold L! F, endowed with a bundle metric and a compatible connection. We will
always see the space R � L as a fibre bundle over .R/r � .F /� , endowed with the product
structure. We will also use the natural measure dr d�, and L2.R � L/ will be understood
as the space of square-integrable sections with respect to this measure.

Let us first see how bundles of this type can be naturally obtained from admissible
vector bundles in the sense of Definition 1.4.

Example 3.1. Let L!M D S�N be an admissible vector bundle, and fix a cusp Z`.
Then, over this cusp, the bundle takes the form L D ƒ` nG��`V`. Using the Iwasawa
decomposition G D N A K and identifying A Š .R;C/;N Š .Rd ;C/, we obtain

L D .Rd=ƒ`/ �R � .K��`V`/:

In Section 4, we will study sections of these bundles that are independent on the variable
� 2 .Rd=ƒ`/, and these sections are naturally identified with sections of R � .K��`V`/.
This shows that studying � -independent sections of admissible vector bundles LjS�Z`
leads to the study of sections of R� L`!R� F with L` DK��`V`!K=MŠ Sd D F.
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Remark 3.2. For the proof of Theorem 3 on vector bundles, one could restrict the dis-
cussion of the whole section to the special case in the example above. As all arguments,
however, hold without any further complications in the general case of vector bundles
L! F over general compact manifolds F, we announce and prove all results in this sec-
tion in this setting. Additionally, we expect that this wider class is likely to show up when
studying uniformly hyperbolic flows on fibred cusps.

3.1. b-Operators

We will consider a particular class of operators on R � L! R � F. Recall that, by the
Schwartz kernel theorem, any continuous linear operator AWC1c .R � L/! D 0.R � L/ is
represented by its kernel KA 2 D 0.R �R � L� L/. We call such an operator A a convo-
lution operator if there is QKA 2 D 0.R � L� L/ such that KA D p� QKA, where

pWR �R � L� L 3 .r; r 0; l � l 0/ 7! .r � r 0; l � l 0/ 2 R � L� L :

Definition 3.3. The set of semi-classical pseudo-differential operators acting on sections
of R � L that are convolution operators in the r variable will be denoted by ‰b.R � L/.
It is the set of b-operators.

Such operators that additionally are supported in ¹jr � r 0j � logC º will be denoted
‰b;C .R � L/. We say that they are b-operators with precision C . When C D 1, the ker-
nels are supported on ¹r D r 0º.

Remark 3.4. Our notion of b-operators is, as its name suggests, strongly inspired by
Melrose’s b-calculus (see e.g. [42]). However, in this article, we use a much more restrict-
ive class of operators. Let us shortly explain the relation of our b-operators to the usual
class of b-differential operators in the sense of Melrose. Let Œ0;1Œx �R� be the simplest
model of a manifold with boundary. Then the b-differential operators are those in the
algebra of operators generated by b-vector fields that take the form a.x; �/x@xCb.x; �/@�
with a; b 2 C1.Œ0;1Œx �R� /. Using a Taylor expansion, the leading order near the
boundary of these operators takes the form a0.�/x@x C b0.�/@� . After a variable trans-
formation r D log.x/, these are in the form a0.�/@r C b0.�/@� . Such operators are then
translation invariant in the r variable, i.e. are convolution operators. Their kernels take the
form

a0.�/ı.r � r
0/C b0.�/ı.� � �

0/:

In some sense, our class of b-operators contains just those which are equal to their lead-
ing part in the asymptotic expansion near the boundary of the usual class of b-(pseudo-)
differential operators. For our purpose, this is sufficient, and the restriction to this class
allows us to concentrate on the difficulties that arise from the fact that we have to construct
a parametrix for an operator that is not elliptic (even in a b-calculus sense).

Example 3.5. The generator of the geodesic flow acting on functions supported in a cusp
and not depending on � is a differential operator acting on the trivial bundle, i.e. on
L2.R � Sd ; e�rddr d�/ given by (cf. equation (1.4))

X0b D cos'@r C sin'@' :
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In order to make it a b-operator acting onL2.R � Sd ; dr d�/, we conjugate it with e�rd=2

and get

Xb D cos'@r C
d

2
cos' C sin'@' : (3.1)

In order to work in the semi-classical calculus, we write Xb ´ hXb .

The aim of Section 3 is to show that the resolvent of Xb can be continued meromorph-
ically from Re.s/ > 0 to C. In fact, for the reasons discussed in Remark 3.2, we will treat
a more general class of operators Xb 2 ‰b;0.R � L/ whose precise assumptions will be
formulated in Section 3.2

Next, let us introduce symbols and quantizations that lead to b-operators.

Definition 3.6. Denote by g the metric on F and by T .T � F/ D H ˚ V the splitting into
vertical and horizontal directions with respect to the Levi-Civita connection. We endow
T �.R � F/ with the metric described in Definition A.1. Consider its restriction gb to
.T �0 R/� � .T

� F/.�;�/. It can be expressed as

gb;.� I�;�/.X
v
C Y h C �@�; W

v
CZh C �0@�/

D g� .Y;Z/C
1

1C g� .�; �/C �2
Œg� .X;W /C ��

0�:

By Lemma A.2, gb has bounded geometry.

Definition-Proposition 3.7. We denote by S0
b
.R � L/ the set of C1 sections of T �.R �

F/ ! End.L/ with uniformly bounded derivatives with respect to gb which addition-
ally are independent of the r variable. They are the translation invariant elements of
S0.R � F;R � L/ from Definition A.3. Similarly, we define S0

b;�
, S0

b;�;�
and S0

b;log. We
call them order 0 b-symbols. Givenmb 2 S0b .R � F/, we can also define Smb

b;log.R � L/ as
h�imbS0

b;log.R � L/. It is the set of anisotropic symbols of order mb .
These symbol classes are stable by all the usual symbolic manipulations (because gb

has bounded geometry).

Consider a semi-classical Weyl quantization Opwh for sections of L! F (see e.g. [59,
Theorem 14.1] or Appendix A.2). Given a finite open cover Uk of F and a trivializa-
tion tk W pr�1L!F.U /! V �Rdim.Lx/ as well as a quadratic partition of unity

P
k �

2
k
D 1,

�k 2 C
1
c .Uk ;R�0/, such a quantization can be written for � 2 Sm.L/ by

Opwh;L.�/´
X
k

�kt
�
k Opw

h;Rdim F..t
�1
k /��/.t�1k /��k ; (3.2)

where Opw
h;Rdim F is the usual Weyl quantization on Rdim F.

Now we can use Opwh;L to define a quantization of b-symbols �b 2 Smb .R � L/ on
R � L by

.Opb.�b/f /.r; �/´
1

2�h

Z
e.i=h/�.r�r

0/ŒOpwh;L.�b. � ; � I�//f .r
0; � /�.�/ d� dr 0; (3.3)
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which yields an element of ‰b.R � L/. If, additionally, we choose a smooth cutoff �C
supported in �� logC; logC Œ, equal to 1 in �� logC 1=2; logC 1=2Œ, we can multiply the
kernel of Opb.�b/ by �C .r � r 0/ and obtain an operator Opb.�/C in ‰b;C .R � L/.

It should be noted that plugging in (3.2) into (3.3) and writing

Qtk WR � pr�1L!F.U / 3 .r; l/ 7! .r; tk.l// 2 R � V �Rdim.Lx/;

we get
.Opb.�b/f /.r; �/´

X
k

�k Qt
�
k Opw

h;Rdim FC1..Qt
�1
k /��b/.Qt

�1
k /��k :

From this expression, we see that all usual properties of quantizations, such as composi-
tion formulas,L2 estimates, sharp Gårding inequalities, etc., that hold for the quantization
on Rdim FC1 (see e.g. [18, Appendix E]) directly transfer to Opb.�b/. The same holds for
Opb.�b/C because the cutoff away from the diagonal modifies the operator only by an
element of h1‰�1.

Remark 3.8. We will see in Proposition 4.11 that there will be a method to construct
b-symbols from any symbol � 2 S.L! S�Z/ which is invariant by the local isometries
of the cusp T�;� . (Recall that e.g. the escape function had this property.)

3.2. Approximate inverse

Definition 3.9. Let Xb 2 ‰1b;1.R � L/, Gb 2 S0Cb .R � F/ and Qb 2 ‰�1b;C .R � F/. We
will say that this triple is admissible if
� �iXb and Qb have scalar, real principal symbols,
� e
G is elliptic in Smb

b;log for some mb 2 S0b ,
� Xb D hXb , where Xb is a differential operator independent of h,
� letting ipb be the principal symbol of Xb , there is a ı0 > 0 such that

jpbj � ı
0
j�j and j�j > ı0 H) ¹pb; Gbº > 1;

� for the same ı0 > 0, Qb is elliptic on j�j < 2ı0 and microsupported in j�j < 3ı0.

Example 3.10. We will see in Section 4 that X, G and Q defined in Section 2.2 will
give rise to an admissible triple after restricting to � -invariant sections. The constant ı0 is
just Rı when ı > 0 is small enough.

Definition 3.11. As in Definition-Proposition 2.12, we say that kb 2 S0b is a weight if it
is of the form 
mb CN . When we say that a weight is large, it means that 
 > 0 is large
and that N=
 is arbitrarily small.

Given a weight kb and � 2 R, we will work with the space of L-valued distributions
on R � F,

Hkb
b;� ´ e�r Opb.e�
Gb h�i�N /CL2.R � L/;

endowed with the corresponding norm

kukHkb
b;�
´ kOpb.e�
Gb h�i�N /�1C e

��ruk2
L2
:
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(Note that, for h > 0 small enough, Opb.e�
Gb h�i�N /�1C exists because of the ellipticity
of e�
Gb h�i�N in S�
mb�N

b;log .R � F/.)

The main result in this subsection is the following.

Lemma 3.12. Assume that .Xb; Gb;Qb/ is an admissible triple. Then there is a constant
C > 0 such that, for Re.s/ > 1C Cı C C.j�j C jN j/ � 
 and jIm sj � h�1=2, and for
small enough h > 0, Xb �Qb � hs is invertible on H


mbCN

b;�
.

Proof. We can apply the same arguments as in the proof of Proposition 2.10. Note that, in
the positive commutator part, which uses the sharp Gårding inequality, it is important that
the real part of Xb �Qb � hs on H


mbCN

b;�
is unitarily equivalent to the action on L2 of

Re Xb �Qb � h
�
Re.s/C 
 Opb.¹pb; Gbº/C

CN Opb.¹pb; logh�iº/C � e��r Œi ImXb; e
�r �
�
COL2!L2.h

2/: (3.4)

It is crucial that the absolute value of the second line in (3.4) is bounded byC.j�j C jN j/ –
it would not be the case a priori replacing logh�i by m0

b
logh�i, where m0

b
2 S0

b
.

3.3. The indicial family

For the following constructions, it is useful to bear in mind the elementary method of
inversion of convolution operator on R. Consider some f 2 D 0.R/ compactly suppor-
ted and the operator Tf Wg 7! f � g. Obviously, the Fourier transform of Tf g is just Of Og.
To invert Tf , is suffices then to invert Og 7! Of Og. Our aim is to invert the b-operators intro-
duced in Section 3.1, which motivates us to introduce an analogon to the above appearing
Fourier transform.

Let A 2‰b;C .R� L/, f 2C1.L/. For � 2C, we consider e�r=hf .�/ 2C1.R� L/.
By the support properties of the kernel, A is a properly supported pseudo-differential
operator and thus defines a continuous operator on C1.R � L/. Moreover, by the fact
that A is a convolution operator, .r; �/ 7! e��r=h.Ae��=hf .�//.r; �/ is independent of r ;
thus � 7! e��r0=h.Ae��=hf .�//.r0; �/ is independent of r0 and is a well defined smooth
section of L.

Definition 3.13. Given A 2 ‰b;C .R � L/ and � 2 C, we define the indicial family asso-
ciated to A as the family of operators I.A; �/WC1.L/! C1.L/ given by

.I.A; �/f /.�/´ e��r0=h.Ae��=hf .�//.r0; �/

Note that, given a second operator B 2 ‰b;C .R � L/, it follows from the definition
that I.AB; �/ D I.A; �/I.B; �/.

Example 3.14. If Xb is obtained from the geodesic flow on a cusp, i.e. is the operator in
equation (3.1), the corresponding indicial family is

I.Xb; �/ D � cos' C h
�d
2

cos' C sin'@'
�
:
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An equivalent description of the indicial family is the following: fix � 2 C1c .R/ withR
�.r/ dr D 1; then the indicial family is the family of operators

I.A; �/WC1.L/! D 0.L/

such that, for any f1; f2 2 C1.L/,

hf2; I.A; �/f1iC1.L/;D 0.L/

D

Z
�.r/e��r=hhf2.�/; .Ae

��=hf1.�//.r; �/iL� dr: (3.5)

This expression is helpful for two purposes. First, by taking complex derivatives of the
right-hand side with respect to �, we conclude with the following lemma.

Lemma 3.15. ForA 2 ‰b;C .R � L/, I.A; �/ is holomorphic in � as a family of operators
C1.L/! D 0.L/.

Secondly, it allows to extend the definition of the indicial families to convolution
operators on R � L that fail to be in ‰b;C . Note that we will work with non-elliptic prob-
lems; thus the appearing inverse operators (like for example .Xb �Qb � hs/�1 from
Lemma 3.12) will not be pseudo-differential operators, so it will be crucial to have the
following extended definition.

Lemma 3.16. Let A be a convolution operator C1c .R � L/! D 0.R � L/ such that, for
some N1; N2 2 R and �0 < �1,

kAkHN1
b;�0
!H

N2
b;�0

<1 and kAkHN1
b;�1
!H

N2
b;�1

<1:

Then equation (3.5) defines for Re.�/ 2 ��0; �1Œ a holomorphic family of linear operators
C1.L/! D 0.L/. Furthermore, for � 2 ��0; �1Œ, we have

kI.A; �C iw/kHN1 .L/!HN2 .L/ � C hwi
jN1jCjN2j:

Given a second convolution operator B fulfilling kBkHN2
b;�0=1

!H
N3
b;�0=1

<1, we have, for
any Re.�/ 2 ��0; �1Œ,

I.AB; �/ D I.A; �/I.B; �/: (3.6)

Proof. We want to show that, for f1 2 HN1.L/ and Re.�/ 2 ��0; �1Œ, Ae��=hf1.�/ is
well defined. Let us choose a partition of unity ‰1; ‰2 2 C1.R/, supp.‰1/ 2 ��1; 1�,
supp.‰2/ 2 ��1;1�, ‰1 C‰2 D 1. Choose � 2 ��0; �1Œ, and set � D �C iw. Then the
maps ´

HN1.L/ 3 f1.�/ 7! ‰1.r/e
�r=hf1.�/ 2 HN1

b;�0
;

HN1.L/ 3 f1.�/ 7! ‰2.r/e
�r=hf1.�/ 2 HN1

b;�1

are continuous with operator norm bounded by C hwijN1j. By the compact support of the
cutoff function � appearing in (3.5), for any �0 2 R, the linear operator

H�N2.L/ 3 f2.�/ 7! �.r/e��r=hf2.�/ 2 H
�N2
b;�0
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is well defined and bounded by C hwijN2j. Using the continuity of AWHN1
b;�0 ! H

N2
b;�0 and

AWH
N1
b;�1 ! H

N2
b;�1 respectively yields that

hf2; I.A; �/f1iC1.L/;D 0.L/

D h�.r/e��r=hf2.�/; .A‰1.�/e
��=hf1.�//iC1c .R�L/;D 0.R�L/;

C h�.r/e��r=hf2.�/; .A‰2.�/e
��=hf1.�//iC1c .R�L/;D 0.R�L/;

� C hwijN1jCjN2jkf2kH�N2 .L/kf1kHN1 .L/:

This shows the well-definedness of I.A; �/ for Re.�/ 2 ��0; �1Œ and the bounds on the
operator norm. The holomorphicity is again deduced from the fact that the right-hand
side of (3.5) is holomorphic in �. The above calculations also show that

A.e��=hf1.�// D e
��=hI.A; �/f1;

and from this equation, the composition property (3.6) follows directly.

Lemma 3.17. Let �b 2 Sb.R� L/. Then there is a holomorphic family �! �b;� 2 Sb.L/
such that

I.Opb.�b/C ; �/ D Opwh L.�b;�/:

It is given by

�b;�.�; �/´
1

2�h

Z
R
�b.�; �; �

0/ O�C

�
�i� � �0

h

�
d�0: (3.7)

Furthermore, if �b 2 S
mb
b;log.R � L/, then �b;� 2 S

mb;0
log .L/ and the leading asymptotics in

the high frequency limit is given by �b. � ; � ; 0/, i.e.

�b;� � �b. � ; � ; 0/ 2 .1C logh�i/Smb;0�1log .L/: (3.8)

In particular, the leading asymptotics of �b;� in the high frequency regime is independent
of �.

Proof. We use Definition 3.13 and choose r0 D 0 for simplicity. Then, using (3.3), we
get

I.Opb.�b/C ; �/f D
1

2�h

Z
e.i=h/�

0.r�r 0/�C .�r
0/e�r

0=hŒOpwh;L.�b. � ; � I�
0//f � d�0 dr 0

D
1

2�h

Z
O�C

�
�i�0 � �

h

�
ŒOpwh;L.�b. � ; � I�

0//f � d�0:

Now the fact that the d�0 integral can be interchanged with Opwh;L is justified by the fact
that Opwh;L is defined in a finite number of charts (see (3.2)).

It remains to study the leading asymptotics of �b;�. Let �b 2 S
mb
log .R � L/, and choose

N > 0 such that �N � mb � N . By the symbol estimates, we deduce

j@˛� @
ˇ
� @
k
��b.�; �; �/j � C.1C logh�i/j˛jCjˇ jCk.h�ih�i/mb.�;�;�/�jˇ j�k : (3.9)
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In particular, we have @k
�
�b.�; �; 0/ 2 log.2C �2/kSmb.�;�;0/�klog .L/. Now, by remainder

estimates on the Taylor series in �, for any .�; �/ 2 T � F and � 2 R, there is jp�;�;�j � j�j
such that

�b.�; �; �/ D

2NX
kD0

1

kŠ
@k��b.�; �; 0/�

k
C

�2NC1

.2N C 1/Š
.@2NC1
�

�b/.�; �; p�;�;�/:

Plugging this into the formula for �b;� yields

�b;�.�; �/´ �b.�; �; 0/C

2NX
kD1

ck � @
k
��b.�; �; 0/

C
1

2�h

Z
R

�2NC1

.2N C 1/Š
.@2NC1
�

�b/.�; �; p�;�;�/ O�C

�
�i� � �0

h

�
d�0:

Now (3.9) assures that the last term is in S�N�1.L/. Putting everything together, we
conclude �b;� � �b. � ; � ; 0/ 2 log.2C �2/Smb;0�1log .L/.

Now we can define spaces on L! F.

Definition 3.18. Let kb D 
mb CN be a weight. We denote by H
mbCN
�

the space

I.Opb.e�
Gb h�i�N /C ; �/L2.L/;

endowed with the corresponding norm.

Remark 3.19. The different letters are associated to functional spaces on different ob-
jects. First, H k or H k.M;L/ is a space on the whole manifold. Then, Hkb is the cor-
responding space “restricted” to the zeroth Fourier mode in a cusp. Finally, Hkb

�
is the

“Fourier transform” of Hkb .

Let us discuss the � subscript in the notation of the spaces H
mbCN
�

. It may seem that
these spaces depend on the parameter �, and since we want to consider analytic families
of operators depending on the parameter �, this may be problematic – recall that, for
the theory of Kato [33] to apply, we need that operators are of type (A), which basically
means that they all act on the same domain. To address this problem, we start with the
following lemma.

Lemma 3.20. For any weight kb , the space Hkb
�
.L/ does not depend on the � parameter.

Only the norm does, and it varies continuously with �.

Proof. Recall from Definition 3.11 that Opb.e�
Gb h�i�N /�1C exists for small enough
h > 0, and by the fact that I.A; �/ is an algebra homomorphism, we get

I.Opb.e�
Gb h�i�N /C ; �/�1 D I.Opb.e�
Gb h�i�N /�1C ; �
0/:

It suffices to check that the operators

I.Opb.e�
Gb h�i�N /C ; �/I.Opb.e�
Gb h�i�N /�1C ; �
0/;

I.Opb.e�
Gb h�i�N /�1C ; �/I.Opb.e�
Gb h�i�N /C ; �0/
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are bounded on L2 for �; �0 2 C (and depend continuously on �, �0). Since they are
pseudo-differential and their symbols have the same asymptotics for large � (see (3.8)),
this is a consequence of usual pseudo-differential arguments.

Besides the indicial family, we will need the following inverse construction.

Definition-Proposition 3.21. Let �0 < �1, and for Re� 2 ��0; �1Œ, let � 7! I.�/ be a
holomorphic family of continuous operators I.�/WC1.L/! D 0.L/. Also assume that it
is tempered, i.e. kI.�/kHN .L/!H�N .L/ � C hIm�iN , with C;N > 0 depending continu-
ously on Re�.

Then, for � 2 ��0; �1Œ, there is a continuous operator

A.I; �/WC1c .R � L/! D 0.R � L/

with kernel given by
e�.r�r

0/=hF�1h .I.�C i � //.r � r 0/:

The resulting operator does not depend on �, so we denote it by A.I /. In the case that
I.�/ D I.A; �/ for A 2 ‰b;C or some A as in Lemma 3.16, we get that A.I / D A.

Further, for two families I1.�/; I2.�/ of operators holomorphic on Re.�/ 2 ��1; �2Œ
fulfilling

kI1.�C iw/kHk1 .L/!Hk2 .L/ � C hwi
N1 ; kI2.�C iw/kHk2 .L/!Hk3 .L/ � C hwi

N2 ;

one has
A.I2I1/ D A.I2/A.I1/:

Proof. Let us first check that the given kernel defines a well defined continuous oper-
ator A.I; �/WC1c .R � L/! D 0.R � L/. The expression of the kernel means that, for
f1; f2 2 C

1
c .L/, g1; g2 2 C

1
c .R/, one has

hf1g1; A.I; �/f2g2iC1c .R�L/;D 0.R�L/

´
1

2�h

Z
eiw.r�r

0/=he�.r�r
0/=hg1.r/g2.r

0/

hf1; I.�C iw/f2iC1c .L/;D 0.L/ dr dr
0 dw;

D

Z
F�1h .e��=hg1/.w/Fh.e

���=hg2/.w/

hf1; I.�C iw/f2iC1c .L/;D 0.L/ dw: (3.10)

As the Fourier transform of compactly supported functions extends holomorphically to
C, the independence from � follows from Cauchy’s theorem. The fact that A.I; �/ can
be extended continuously to arbitrary (non-product) elements of C1c .R � L/ can be seen
by letting any of the f1; f2 2 C1.L/ or g1; g2 2 C1c .R/ to zero in the corresponding
topologies. Then the temperedness assumption of I.�/ implies that (3.10) goes to zero.
As to whyA.I.A// D A, this follows by Fourier inversion after plugging in the definitions
(3.5) and (3.10) and a few lines of straightforward calculations. Also the multiplicativity
A.I2I1/ D A.I2/A.I1/ follows from a straightforward calculation which is completely
analogous to the calculations needed to show that the Fourier transform of a product is
the convolution of Fourier transforms.
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Next, we have the following lemma on boundedness.

Lemma 3.22. Consider I.�/ as in Definition-Proposition 3.21. We have the following
identities. For h� 2 ��0; �1Œ and two weights kb D 
mb CN and `b D 
 0mb CN ,

kA.I; h�/kHkb
b;�!H

`b
b;�
D sup

Re�Dh�
kI.�/kH

kb
�
!H

`b
�
: (3.11)

Proof. The first step is to reduce to the case � D 0. Since

kA.I /kHkb
b;�!H

`b
b;�
D ke��rA.I /e�rkHkb

b;0
!H

`b
b;0
;

the action ofA.I / is equivalent to the action ofA� on H
kb
b;0
! H

`b
b;0

, whereA� is an oper-
ator whose kernel is that of A multiplied by e�.r

0�r/, i.e. it is F�1h .I.h�C i � //.r � r 0/.
Let I�.�/ D I.�C h�/. We deduce that the action of A.I; h�/ is equivalent to the action
of A.I�; 0/ on H

kb
b;0
! H

`b
b;0

. Next, we conjugate to an operator L2 ! L2. By definition,

kA.I�/kHkb
b;0
!H

`b
b;0
D kOpŒe�


0Gb h�i�N
0

��1C A.I�/OpŒe�
Gb h�i�N �C kL2!L2 ;

kI�.�/kH
kb
�
!H

`b
�
D kI.Op.e�


0Gb h�i�N
0

/; �/�1I.�/I.Op.e�
Gb h�i�N /; �/kL2!L2 :

Now both maps A! I.A/ and I ! A.I / are multiplicative. We deduce that it suffices
to prove the lemma in the case that kb D `b D 0.

After this additional reduction, we are left to prove that

kA.I /kL2!L2 D sup
Re�D0

kI.�/kL2!L2 :

This is just an avatar of the Plancherel formula. By the definition of A.I / (see (3.10)),
one has, for f1; f2 2 C1c .L/, g1; g2 2 C

1
c .R/,

hf1g1; A.I; �/f2g2iL2.R�L/

D
1

2�h

Z
Fh.g1/.w/hf1; I.�C iw/f2iL2.L/Fh.g2/.w/ dw;

and from this, formula (3.11) can be read off directly.

Finally, we get the following proposition.

Proposition 3.23. Let Xb 2 ‰1C .R � L/, and let kb be a weight. Then each I.Xb; �/
has a unique extension as a closed operator on Hkb

�
.L/. The domain, as a subset of

Hkb
�
.L/ D Hkb0 .L/ � D 0.L/, does not depend on �.

Proof. Since Xb is of order 1, I.Xb; �/ and I.Xb; �0/ differ by an order 0 operator, which
acts boundedly on each Hkb

�
.L/. So it suffices to check the case � D 0. The operator

I.Xb; 0/WC1.L/ � Hkb0 .L/! Hkb0 .L/ is unitarily equivalent to the operator

W D I
�
Opb.e�
Gb h�i�N /C ; 0

��1
I.Xb; 0/

I
�
Opb.e�
Gb h�i�N /C ; 0

�
WC1.L/ � L2.L/! L2.L/;

and W is a PDO of order one in L. Now the uniqueness of the closed extensions follows
from the proof of [20, Lemma A.1].
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As a consequence, the family I.Xb; �/ is a type (A) family so that we can apply the
results from [33].

3.4. Fredholm indicial families

We now come back to admissible triples and will prove that their indicial families are
Fredholm.

Lemma 3.24. Assume Re.s/ > 1C Cı C C.h�1jRe�j C jN j/ � 
 and jIm sj � h�1=2.
Then I.Xb �Qb � hs; �/ is invertible with norm O.1=h/ on H
mbCN

�
, uniformly in �.

Additionally, if either8̂<̂
:
jIm sj � h�1=2;

Re.s/ > 1C Cı C C.h�1jRe�j C jN j/ � 
;
jIm�j > 4ı0;

(3.12)

or
Re.s/ > C.1C 
 C h�1jRe�j C jN j/;

then I.Xb � hs; �/ is also invertible with norm O.1=h/ on H
mbCN
�

, uniformly in �.

Proof. We start with the invertibility of I.Xb �Qb � hs; �/. By Lemma 3.12, we deduce
that .Xb �Qb � hs/�1 is a well defined convolution operator for s in the announced
domain. It furthermore fulfils all requirements of Definition 3.16, and thus we conclude
that I..Xb �Qb � hs/�1; �/ is well defined. By the multiplicativity of I. � ; �/, we con-
clude

I..Xb �Qb � hs/; �/�1 D I..Xb �Qb � hs/�1; �/;

and Lemma 3.22 implies that it is O.1=h/ uniformly in �.
Now we turn to the case of I.Xb � hs; �/, in the region that I.Xb �Qb � hs; �/ is

invertible. First, we study I.Qb; �/. SinceQb is microsupported for j�j < 3ı0, we can use
Lemma 3.17 and equation (3.7) to deduce that, when jIm�j > 4ı0, I.Qb; �/ D O.h1/

in ‰�1 uniformly in Im� and locally uniformly in Re�. This implies that I.Xb � hs; �/
is invertible because

I.Xb � hs; �/I.Xb �Qb � hs; �/�1 D 1C I.Qb; �/I.Xb �Qb � hs; �/�1

D 1CO.h1/ (3.13)

(the remainder being bounded on the relevant spaces).
Finally, when Re.s/ > C.1C 
 C h�1jRe�j C jN j/, recall formula (3.4) (remov-

ing the Qb part). We deduce that the sharp Gårding inequality applies to show that
I.X � hs; �/ is invertible with norm O.1=h/ uniformly in �, provided C is large enough
(as in the proof of Lemma 2.9).
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Now we get to the aim of this section. Recall from Definition 3.9 of Xb and Defini-
tion 3.13 that I.Xb � hs; h�/ D h.P� � s/, where P� is an h-independent holomorphic
family of differential operators on L. By Lemma 3.24, we know that

I.Xb � hs; h�/�1WL2.L/! L2.L/

is well defined and holomorphic on ¹Re.s/ > C.1C jRe�j/º � C2.

Proposition 3.25. We have meromorphic extension of I.Xb �hs; h�/�1WL2.L/!L2.L/
to C2 as operators I.Xb �hs; h�/�1WC1.L/!D 0.L/.

Proof. All the work has already been done in some sense, since formula (3.13) shows
that, up to an invertible operator, I.Xb � hs; �/ can be written as 1CK.�; s/, where
K is a holomorphic family of compact operators (recall that I.Qb; �/ 2 ‰�1.F/). The
statement then follows from analytic Fredholm theory.

3.5. Effective continuation

In this last subsection of Section 3, we want to establish a meromorphic continuation of
.Xb � hs/�1.

Before going on with the proof, let us come back to the convolution operator on the
real line Tf Wg 7! f � g, with f 2 D 0.R/ compactly supported. In the language above,
I.Tf ; h�/ D Of .�i�/. Since f is compactly supported, Of is an entire function and acts by
multiplication on the whole of C. Given s 2 C, the function . Of � s/�1 is a meromorphic
function. So one can define, for g 2 C1c .R/ and �0 2 R,

Rf .�0; s/g.x/´
1

2�i

Z
Re�D�0

e�x
Og.�i�/

Of .�i�/ � s
d�:

Note that, in the general notation from Definition-Proposition 3.21, we can identify after
setting h D 1, Rf .�0; s/ D A..I.Tf ; �/ � s/�1; �/. One finds that .Tf � s/Rf .0; s/ D 1
when s is not in the closure of Of .R/. By Cauchy’s theorem, Rf .�0; s/ D Rf .�1; s/ when
Of .�i�/ does not take the value s in the region Re� 2 Œ�0; �1�. Now consider �1 2 C

such that Of .�i�1/ D s, Of 0.�i�1/ ¤ 0, and Of .�i � / does not take the value s another
time in a region Re� 2 �Re�1 � �;Re�1 C �Œ for some � > 0. Another application of
Cauchy’s theorem gives�

Rf .Re.�1/C �; s/ �Rf .Re.�1/ � �; s/
�
g.x/ D �ie�1x

Og.�i�1/

Of 0.�i�1/
: (3.14)

Using this argument, one can hope to obtain a meromorphic continuation of the re-
solvent of a translation invariant operator Xb from the meromorphicity of the resolvent
of its indicial family I.Xb; �/. This is done by replacing “multiplication” by “action in
the � variable”. This heuristics is at the core of Melrose’s b-calculus and will be pursued
here. As one can expect, just as it is crucial to follow the solutions of Of .i�/ D s for the
convolution by f , we have to follow the .�; s/’s such that I.Xb � hs; h�/ is not invertible.
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Definition 3.26. Given an admissible triple Xb , Gb , Qb , let us consider the meromorph-
ically continued family of indicial operators I.Xb � hs; h�/�1 from Proposition 3.25.
(1) For fixed s 2 C, the set of � 2 C such that I.Xb � hs; h�/�1 is singular is the set

of (s-)indicial roots of Xb . It will be denoted by Specb.s/, and by construction, it is
independent of h.

(2) If there are ak 2 R n ¹0º, jakj � C uniformly in k, bk 2 C such that

Specb.s/ D ¹aks C bkº;

then we say that the roots are affine.
(3) For affine roots, say that a root �k.s/ D aks C bk is positive if ak > 0 (resp. negative

if ak < 0), and we denote the set of positive/negative roots by Specb
˙.s/.

(4) For any �1 � � < �0 � 1, we define

Specb
.˙/.s; �; �0/´ ¹� 2 Specb

.˙/.s/ j � < Re� < �0º:

In particular, we call elements of Specb
C.s;�1; 0/ (resp. Specb

�.s; 0;C1/) the
positive (resp. negative) visible roots.

By the analytic Fredholm theorem, the set

C´ ¹.�; s/ j I.Xb � hs; h�/ is not invertibleº

is a complex analytic submanifold of C2, possibly with algebraic singularities – corres-
ponding to intersection of indicial roots. The set Specb.s/ is the intersection of C with
¹.�; s/ j � 2 Cº. From Proposition 3.25, we deduce that the set of roots depends neither
on the choice of Qb nor on that of Gb . From now on, we work under the assumption
that all indicial roots are affine. (This implies in particular that there are no algebraic
singularities in C.)

Example 3.27. In Section 5, we will be able to explicitly compute the indicial roots for
the geodesic flow vector field (and even for admissible lifts in the sense of Definition 1.4).
In the scalar case, we get (see Proposition 5.5)

Specb.s/ D
°
˙

�
s C

�d
2
C n

��
; n 2 N

±
:

Conjecture 3.28. The roots of an admissible triple are always affine, and for Re s D 0,
no root is on the imaginary axis.

The next theorem is the technical heart of our article. In order to formulate it, we
introduce

�max.s/´ max¹0º [ ¹jRe�j j � 2 Specb
C.s;�1; 0/ or � 2 Specb

�.s; 0;1/º; (3.15)

which encodes the maximal real part of the visible indicial roots. Note that, under the
assumption that the roots are affine, we deduce that �max.s/ is continuous and depends
only on Re.s/. Furthermore, ¹� j �.�/ ¤ 0º is a semi-bounded interval ��1; �0Œ on which
�max is strictly decreasing.
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Im.�/

Re.�/

Specb
C.s/

Im.s/

d=2

Specb
�.s/

Im.�/

Re.�/

Specb
C.s;�1; 0/

Specb
�.s; 0;1/

Fig. 3. Indicial roots for the geodesic flow on a .d C 1/-dimensional cusp. On the left, the situation
is depicted for Re.s/ D 0 and on the right for negative Re.s/ D �.d=2C 4:5/. The visible positive
and negative roots that have crossed the imaginary axis are marked in red.

Theorem 2. Assume that, for some h-differential operator Xb , there exist Qb and Gb
such that .Xb; Gb;Qb/ form an admissible triple with affine roots. Then the inverse
.Xb � hs/�1, defined as a bounded operator on L2.R � L/ for Re.s/ > C for some
constant C > 0, has a meromorphic extension RXb .s/ to C, as an operator mapping
C1c .R � L/ to D 0.R � L/.

Additionally, given any �;N 2 R, 
 > 1C Cı C C.j�max.�/j C jN j/ � � (with the
constants of Lemma 3.12), then RXb .s/ is a meromorphic family of bounded operators

RXb .s/W e��max.�/hriH

mbCN

b;0
! e�max.�/hriH


mbCN

b;0
(3.16)

on the domain Re.s/ > � and jIm sj � h�1=2. At the eventual poles, the order is finite,
and the rank of the Laurent expansion is also finite.

The remainder of this section is devoted to the proof of Theorem 2. We start with
some observations. As a direct consequence of Lemma 3.24, we get the following lemma.

Lemma 3.29. Let Specb
˙.s/ D ¹ak;˙s C bk;˙º; then there is a constant C 2 R such

that˙Re.bk;˙/ > C . Furthermore, for all R > 0,

sup¹jIm bkj W jRe.bk/j < Rº <1

Proof. For the first statement, we recall from Lemma 3.24 that there is a constant C such
that, for Re.s/ > C , there are no indicial roots with Re.�/ D 0. Consequently, all posit-
ive indicial roots satisfy Re.aks C bk/ > 0 if Re.s/ > C . By the assumption that ak are
uniformly bounded, the assertion follows for positive roots and is completely analogous
for negative ones.

The second statement follows directly from considering (3.12) in the case s D 0.
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We call � 2 R s-regular if Specb.s/ \ .�C iR/ D ;. The above bounds on ak and bk
imply that, for any s 2 C, the set of s-regular � 2 R is open and dense. Furthermore, for
an s-regular �, Lemma 3.24 implies that

I.Xb � hs; h�C iw/�1WH

mbCN

h�Ciw
! H
mbCN

h�Ciw

is uniformly bounded in w 2 R with norm O.1=h/ provided that


 > 1C Cı C C.�C jN j/ � Re.s/:

Thus we can define

RXb
� .s/´ A.I.Xb � hs; �/�1; h�/WH


mbCN

b;�
! H


mbCN

b;�

which is again bounded with norm O.1=h/. Indeed, one directly checks that

.Xb � hs/RXb
� .s/ D RXb

� .s/.Xb � hs/ D 1:

However, RXb
� .s/ depends strongly on the choice of � due to the fact that I.Xb � hs; �/�1

has singularities, i.e. that there exist indicial roots. In order to understand the mero-
morphic continuation, one has examine what happens if indicial roots cross the integration
contours.

In order to shorten the notation in the sequel, it is convenient to define

F W .s; �/ 7! he�.r�r
0/I.Xb � hs; h�/�1;

seen as a meromorphic function on C2 taking values in convolution operators on R � L.
The h factor is actually chosen such that it becomes h-independent, and using the defini-
tion of A.I / (Definition-Proposition 3.21), we write

RXb
� .s/ D

1

2�ih

Z
Re.�/D�

F.s; �/ d�: (3.17)

When freezing the s variable, the poles of F.s; � / are precisely Specb.s/. We can integ-
rate F over a small closed curve 
 around a pole �0, enclosing only �0, and obtain its
residue Res.F.s; � /; �0/ in the � variable. With this notation, we can state an equivalent
to equation (3.14).

Lemma 3.30. Let �1 < � < �0 <1 be s-regular for some s 2 C. Then Specb.s; �; �
0/

is finite and
RXb
�0 .s/ � RXb

� .s/ D h
�1

X
�2Specb.s;�;�0/

Res.F.s; � /; �/:

Proof. That the sets are finite follows from the uniform estimates on ak ; bk . The identity
is a consequence of Cauchy’s theorem and (3.17).

The following lemma is crucial in the proof.
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Lemma 3.31. Define B.s; �/´ h�1 Res.F.s; � /; �/ which is by definition a convolution
operator on R � L. Consider a parametrized indicial root �k.s/ D aks C bk and Then
the map

s 7! B.s; �k.s//

is a meromorphic function of s, and the set of poles is contained in the set of s’s such that
�k.s/ crosses another root.

Proof. Since we already know that we can parametrize the roots without algebraic singu-
larities – in the words of Kato, there is no branching point – this is a direct consequence
of [33, Theorem 1.8, p. 70].

Now we can come back to the proof of our theorem.

Proof of Theorem 2. First, we focus on the meromorphic continuation of the Schwartz
kernel of the resolvent. Recall from Lemma 3.24 that there is C such that I.Xb � hs; i�/
is invertible for Re.s/ > C , and in this half plane, we define

RXb .s/ D A
�
I.Xb � hs; �/�1; 0

�
:

If �1 < 0 < �2 are such that ¹Re� 2 Œ�1; �2�º does not intersect Specb.s/, we deduce that
RXb .s/ is bounded on all spaces H

kb
b;� for � 2 Œ�1; �2�, given that the weight kb is large

enough.
We want to construct a meromorphic continuation of RXb .s/ to all C, and therefore,

we have to take care of the indicial roots that cross the contour at Re.�/ D 0. We define the
set of positive (resp. negative) visible roots at s as Specb

C.s;�1; 0/ and Specb
�.s; 0;1/,

respectively (see Figure 3 for the case of the geodesic flow for cusps).
By the uniform bounds on ak ; bk , we deduce that, for any s 2 C, there are finitely

many visible roots.
Let U be the set of s 2 C such that 0 is s-regular, i.e. Specb.s/ \ iR D ;. For s 2 U ,

we set

RXb
U .s/´ RXb

0 .s/ �
X

�2Specb
C.s;�1;0/

B.s; �/C
X

�2Specb
�.s;0;1/

B.s; �/: (3.18)

As RXb
0 .s/ is holomorphic on any connected component of U and as B.s; �k.s// are

meromorphic by Lemma 3.31, this defines a meromorphic family on U . It remains to
prove that we can patch the different connected components of U (which are vertical
strips because the roots are affine) together.

Therefore, take s0 such that 0 is not s0-regular; we consider � < 0 < �0 small enough
such that Specb.s0; �; �

0/ � iR. Then, for s in a small vertical stripD around s0, � and �0

are still s-regular. For s 2 D, we define

RXb
D .s/´ RXb

� .s/C
X

�2Specb
�.s;�;1/

B.s; �/ �
X

�2Specb
C.s;�1;�/

B.s; �/

D RXb
�0 .s/ �

X
�2Specb

C.s;�1;�0/

B.s; �/C
X

�2Specb
�.s;�0;1/

B.s; �/:
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The equality between the two expressions follows from Lemma 3.30. By construction and
by Lemma 3.31, RXb

D .s/ defines a meromorphic operator on the stripD. It only remains to
check that, on U \D, both definitions of RXb

U .s/ and RXb
D .s/ coincide. But this is again

a direct consequence of Lemma 3.30. We can thus patch the definitions to a globally
meromorphic operator which we denote by RXb .s/.

Now we will determine on which functional spaces this meromorphic continuation
acts. Let us focus on the structure of the residues B of F . If we assume that �0 is an
s-indicial root and that, for � > 0, there are no other indicial roots in ¹�; j� � �0j � �º.
In that case,

B.s; �0/ D
1

2i�h

Z
j���0jD�

F.s; �/ d�:

We will need the following lemma.

Lemma 3.32. For � > 0 and � 2 R, we have the equality of spaces

e�rC�hri Opb.e�
G/HN .R � L/ D Opb.e�
G/e�rC�hriHN .R � L/:

The corresponding norms are equivalent with O.1/ constants as h! 0.

Proof. It suffices to prove that both

e��hriOpb.e�
G/�1e�hri Opb.e�
G/; Opb.e�
G/�1e��hriOpb.e�
G/e�hri

are bounded on L2.R � L/. However, since the quantization is properly supported, these
operators are pseudo-differential with symbols in 1CO.hS�1

C

/. Hence they give rise to
bounded operators on L2.R � L/.

With �0; � as above, we deduce

kB.s; �0/ke�2�hriHkb
b;Re�0

!e2�hriH
kb
b;Re�0

�
C�

h
sup

j���0jD�

ke�Re�0r�2�hri Op.e�
G�N logh�i/�1F.s; �/

Op.e�
G�N logh�i/eRe�0r�2�hrikL2!L2 :

If W is the multiplication by e�2�hri, the operator in the norm is the composition WS�W
so that S� is a convolution operator whose kernel takes the form

he.��Re�0/.r�r 0/I
�
Op.e�
G�N logh�i/�1.Xb � hs/Op.e�
G�N logh�i/; h�

��1
:

Recall that Re s > 1CCı CC.j�max.s/jC jN j/�
 and jIm sj � h�1=2, so we can apply
Lemma 3.24. In particular, the indicial operator in the last line is bounded on L2 with
norm C.�/. Since the kernel of S� decomposes as a product, we see directly that it
is bounded from eRe.���0/r��hriL2 to eRe.���0/rC�hriL2. But, since j� � �0j D �, it is
thus bounded from e�2�hriL2 to e2�hriL2 uniformly in �. Finally, since W maps L2 to
e�2�hriL2 and e2�hriL2 to L2, we obtain the desired result

kB.s; �0/ke�2�hriHkb
b;Re�0

!e2�hriH
kb
b;Re�0

�
C.s; �/

h
; (3.19)
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for some C.s; �/ > 0 locally uniform. On the other hand, using Lemma 3.22, we obtain
that, when � is s-regular,

kRXb
� .s/kH


mb
b;�
!H


mb
b;�
� Cs;�: (3.20)

If Re.s/ is such that there are no visible roots, i.e.

Specb
C.s;�1; 0/ [ Specb

�.s; 0;1/ D ;;

then the boundedness estimate (3.16) follows directly from (3.18) and (3.20).
Else, if s 2 C with Re.s/ > � such that there are visible roots, let us choose " > 0

such that
max

�2Specb
C.s;�1;0/[Specb

�.s;0;1/

jRe.�/j C 2" < �max.�/:

Note that this is possible because we are in the case �.�/ > 0, and thus, as was discussed
after (3.15), � is strictly monotonous. Now, combining equations (3.18), (3.19) and (3.20),
we deduce that

kRXb .s/ke��max.�/hriH
kb
b;��max

!e�max.�/hriH
kb
b;�max

� Cs;�:

To obtain the boundedness for s 2 C nU , one can use similar arguments.
Consider a pole s of RXb .s/ corresponding to an indicial root crossing �0. From the

considerations above, it follows that the Laurent expansion has its image contained in the
direct sum of

e�0rH0 ˚ � � � ˚ r
ke�0rHk ;

where H0; : : : ;Hk are finite-dimensional subspaces of Hkb
�0
.L/, related to the images of

the Laurent expansion of I.Xb � hs; �/�1 around �0. In particular, this is finite-dimen-
sional.

Note that, in the case of a geodesic flow, we will see in Section 5 that the reson-
ant states of Xb coming from the indicial resolvent can be explicitly expressed by Dirac
distributions and homogeneous distributions on the North and South Pole of F D Sd .

4. Black box formalism and main theorem

In this section, we introduce a black box formalism in the spirit of [57]. For the same
reason as in Section 3, we work in a geometric setting that is more general than the
admissible bundles L! S�N from Definition 1.4. Again, this bigger generality comes
without any additional effort in the proofs. Let us define the geometric setting of this
section.

Definition 4.1. Let us consider a cusp Z D Œa;C1/ �Rd=ƒ and a product Z � F with
.F; gF/ a compact connected Riemannian manifold. The product .Z � F; gZ C gF/ is
a trivial fibred cusp.
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Definition 4.2. Let .M; g0/ be a complete connected Riemannian manifold, and assume
that it can be decomposed as the union of a compact manifold M0 and several ends
M1; : : : ;M� that are trivial fibred cusps. Then we say that M is an admissible manifold.

Observe that if M is admissible, then its curvature tensor is C1 bounded.

Definition 4.3. Let .M; g0/ be an admissible manifold. Let L!M be a vector bundle
with Riemannian bundle metric k � kL and compatible connection r. We say that L is
a general admissible bundle if, over each cusp Z` � F, for y > a, L has a product struc-
ture LjZ` ' Z` � L`, where L` is a Riemannian bundle over F`.

Again, if L is general admissible, its curvature and derivatives are bounded.

Example 4.4. Let .N; g/ be an admissible cusp manifold, and let L!M D SN ! N

be an admissible bundle. Then L!M is a general admissible bundle and the fibre F is
just the sphere Sd .

Let L!M be a general admissible bundle, with � cusps Z1; : : : ; Z� . Take a > a,
and let

L2a .M;L/ D

²
f 2 L2.M;L/

ˇ̌̌̌ Z
f jy>a d� D 0

³
:

We have the orthogonal decomposition

L2.M;L/ D L2a .M;L/˚

 
�M
`D1

L2.�log a;C1Œ � L`; e
�rd dr d�/

!
: (4.1)

In Section 3, we used the measure dr d� instead of e�rd dr d�. In particular,

L2.e�rd dr d�/ D erd=2L2.dr d�/:

In equation (4.1), the first term will be regarded as a black box and the second one as the
free space. In the black box, we will use the variable y (more appropriate for geometric
purposes), and in the free space the r variable (more appropriate for analysis). In the case
of elliptic operators, one can really isolate the black box because it can be embedded in
another space where the relevant operator – mostly the Laplacian – has compact resolvent.
However, in our case, since being uniformly hyperbolic is a global property, such surgery
cannot be performed a priori. It is the fact that the flow is exactly translation invariant that
will save us.

We can define extension and restriction operators. Let � 2 C1.M;L/. We let Pa
`
�

be the function in C1.Œlog a;C1Œr � F� ; L/ obtained by restriction to the cusp Z` and
averaging in the � variable. Conversely, let � 2 C1c .�log a;C1Œr � F� ; L/. We consider
it as a function E a

`
� supported in cusp Z`, not depending on � . We have Pa

`
E a
`
D 1. We

extend these definitions to distributions by duality: for distributions v 2 D 0.M;L/ and
u 2 D 0.Œlog a;C1Œ � F; L/,

hE a
` u; �i ´ hu;P

a
`�i and hPa

`v; �i ´ hv;E
a
` �i:

Note that, after this extension, we can apply E a
`

equally to C1.Œlog a;1Œ/ and the com-
position E a

`
Pa
`

is well defined. Given a function � 2 C1.Œlog a;C1Œ/ that is constant
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near a, we can define the associated black box multiplication operator as the operator

B.�/ D �.log a/C
X
`

E a
` .�.r/ � �.log a//Pa

` : (4.2)

(Here �.r/ is the multiplication operator.) Note that, with this definition, the operator
B.�/ acts on L2a .M;L/ simply by multiplication with the constant �.log a/ and on the
free spaces L2.�log a;1Œ � L`/ as a multiplication operator with �.r/.

In this section, we will define a class of operators that preserve this structure, and
review some of their properties. Then we will conclude on the meromorphic extension of
the resolvent of admissible such operators.

4.1. The class of cusp-b-pseudors

Now that we have added some structure to our space L2.M;L/, we need to determine
a reasonable class of operators that will preserve the structure. First, consider a differential
operator P that commutes with y@� and y@y in each cusp, for y > a. It thus acts on the
space of smooth functions supported in a cusp that do not depend � . We denote by P 0

b;`

that restriction for each cuspZ`. Then we find that, for i D 1; : : : ; �, acting on D 0.M;L/,

Pa
`P D P

0
b;`P

a
` :

We also have the dual statement, acting on C1c .�a;C1Œ � F`; L`/,

E a
` P

0
b;` D PE a

` :

Since we want to use anisotropic spaces that can only be defined using pseudo-differential
operators, we have to accept slightly different relations. Indeed, pseudo-differential oper-
ators cannot be exactly supported on the diagonal.

Definition 4.5 (Cusp-b-operators). Let A be an operator C1c .M;L/! D 0.M;L/. We
say thatA is a black box operator with precisionC �1 at height a if, acting onC1c .M;L/,

PCa
` A.1 � E a

`Pa
`/ D 0 for all ` D 1; : : : ; �; (4.3)

and acting on C1c .�log.Ca/;C1Œ � F; L/,

.1 � E a
`Pa

`/AE Ca
` D 0 for all ` D 1; : : : ; �: (4.4)

If additionally, for each ` D 1; : : : ; �, Pa
`
AE Ca

`
acts on C1c .�log.Ca/;C1Œ � F; L/ as

the restriction of a translation invariant operator A0
b;`

on sections of R � L, that is suppor-
ted for jr � r 0j � logC , we say that A is a cusp-b-operator.

We define
Ab;`´ e�rd=2A0b;`e

rd=2;

which is again translation invariant. In this way, while A0
b;`

acts naturally on

L2.R � L; e�rd dr d�/;

Ab;` acts on
L2.R � L; dr d�/:
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Finally, ifA 2 ‰.M;L/ is also a pseudo-differential operator, we say thatA is a cusp-
b-pseudor and write A 2 ‰b;C .M;L/.

Example 4.6. In the case of the geodesic flowM D S�N , the vector field of the geodesic
flow X is a cusp-b-operator with precision 1. We also have

X0b;` D cos'@r C sin'@' and Xb;` D cos'@r C
d

2
cos' C sin'@' :

In what follows, the constant a will be fixed a priori, it is a geometric data of the prob-
lem, and we will mostly not mention it. Let us give a word of explanation. Condition (4.3)
implies that if f has zero mean value in the � variable in each cusp for y > a, then the
mean value of Af in the � variable vanishes when y > Ca. Condition (4.4) is the dual
version of the assumption: it means that if f was supported only in cusps for y > Ca and
did not depend on � , then Af would be supported in y > a and also not depend on � .

Proposition 4.7. Let A 2 ‰b;C .M;L/. Then, for ` D 1; : : : ; �, the operator Ab;` defined
from A by Definition 4.5 is an element in ‰b;C .R � L`/ – see Definition 3.3.

This follows directly from the definition. Recall from Section 1.1 that covectors de-
compose as � D Y dy C J d� C � d�.

Definition 4.8. Let � 2 S0.M;L/. Assume that, in each cusp, @�� D 0 for y > a, and
for r > log a, ` D 1; : : : ; �, let

�b;`.r; �I�; �/´ � jZ`.e
r ; �; �I e�r�; J D 0; �/:

Assume that �b;` does not depend on r for ` D 1; : : : ; �. Then we say that � is a b-
symbol of order 0 and write � 2 S0

b
.M;L/. Given a cusp-b-symbol m of order 0, we

correspondingly define Sm
b
.M;L/ the set of cusp-b-symbols of order m.

By a direct computation, one gets the following proposition.

Proposition 4.9. For a general admissible bundle L!M ! N , any � 2 S.M;L/ that
is invariant under the action of local isometries T�;� (see equation (1.3)) in each cusp is
a cusp-b-symbol.

We also get the following lemma.

Lemma 4.10. Let � 2 Sb.M;L/. Then, for ` D 1; : : : ; �, we have �b;` 2 Sb.R � L/ –
see Definition-Proposition 3.7.

Proof. From the considerations in Section A.1.1, we deduce that �b;` satisfies usual
symbol estimates on R � L. The r-invariance follows from the definition.

Let us consider � 2 Sb.M;L/ and the corresponding operator Op.�/. According to
Proposition A.8, by adjusting the parameter a � a, we get that Op.�/ satisfies equa-
tion (4.4). It is not difficult to check that it also satisfies equation (4.3) for similar reasons.
We now consider its restriction to functions f supported in the cuspZ` and not depending
on � . Actually, we want to compute directly ¹Op.�/ºb;` instead of ¹Op.�/º0

b;`
. Thus we
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take a function of the form erd=2f .r; �/ so that the action of Op.�/ on L2.L/ – with the
measure e�rd dr d� – will correspond to the action on L2.R � L; dr d�/. By definition
of the quantization – see equations (A.2) and (A.3) – and already replacing

.2�h/�d
Z
eih���

0;J i=h d� 0

by ıJD0, we get, for e�rd=2 Op.�/erd=2f ,

1

.2�h/1Ck

Z
�Op

�
log

y

y0

�
ei=h.hy�y

0;Y iCh��� 0;�i/

�
ˇ̌̌
Z`

�y C y0
2

;
� C �0

2
; Y; J D 0; �

�
f .y0; �0/

r
y

y0
dy0 d�0 dY d�

(recall k is the dimension of F). We take the coordinate change

r D logy and � D .y C y0/
Y

2
:

The volume form becomes

2er
0C.r�r 0/=2

er C er
0 dr 0 d�d�0 d�;

and the phase

ˆ.r; �; �; �/ D h� � �0; �i C 2� tanh
r � r 0

2
:

The symbol under the integral giving Op.�/f is now in the form

�Op.r � r 0/ Qf .r 0; �0/�b;`

�
r C log

1C er
0�r

2
;
� C �0

2
; �; �

�
;

where Qf DP`f . Since �b;` does not depend on r , we deduce that

¹Op.�/ºb;` Qf .r; �/´
Z
ei=hˆ.r;�;�;�/�Op.r � r 0/ Qf .r 0; �0/

�b;`

�� C �0
2

; �; �
�2e.rCr 0/=2
er C er

0

dr 0 d�d�0 d�

.2�h/1Ck
:

Provided that the support of the cutoff �C chosen after equation (3.3) is slightly larger
than the support of �Op, we can find a symbol e�b;` 2 Sb.R � L/ such that

¹Op.�/ºb;` D Opb.e�b;`/C :
We have proved the following proposition.

Proposition 4.11. Let � 2 Sb.M;L/. Then Op.�/ 2 ‰b;C .M;L/, whereC > 1 is a con-
stant chosen in the construction of the quantization and there is a symbol z�b;` 2 Sb.M;L/
such that ¹Op.�/ºb;` D Opb.e�b;`/C . When the height a at which � starts being invariant
varies, we can change the quantization and keep the same constant C .
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4.2. Meromorphic continuation of resolvents of admissible b-operators

In this section, we will need the following crucial compactness lemma.

Lemma 4.12. Let L!M be a general admissible bundle as in Definition 4.3. Let a > a
and

H 1
a .M;L/´ ¹f 2 H

1.M;L/ jPaf D 0º:

This is a closed subspace of H 1.M;L/, and the injection H 1
a .M;L/ ,! L2.M;L/ is

compact.

Proof. We can adapt the argument of Lax–Phillips [36]. Let � 2 C1c .R; Œ0; 1�/ be equal
to one in a neighbourhood of 0, and set �n.y/´ �.y=n/. Consider the multiplication
operator �n.y/ in each cuspZ` ofM . From Rellich’s theorem, the multiplication operator
�n is compact for all n fromH 1

a .M;L/ to L2.M;L/. Now assume that, as n!C1, �n
restricted to H 1

a .M;L/ has the injection H 1
a .M;L/ ,! L2.M;L/ as norm limit. Then

that injection has to be compact also.
To show that it is a norm limit, we have to show that, for f 2 H 1

a .M;L/,

kf kL2.M;L/;y>n � Cnkf kH1.M;L/;

with a constant Cn ! 0 as n!C1. We use the Poincaré inequality: consider a unimod-
ular lattice ƒ � Rd and Tƒ D Rd=ƒ. For Qf 2 H 1.Tƒ/ with

R
Qf D 0, we have

k Qf kL2 � Cƒkr
Qf kL2 :

Now, with � the number of cusps,

kf k2
L2.M;L/;y>n

D

�X
`D1

Z
y>n

dy d�

ydC1
kf .y; �; � /k2

L2.Tƒ` /

� C

�X
`D1

Z
y>n

dy d�

ydC1
k@�f .y; �; � /k

2
L2.Tƒ` /

� C
1

n2
kf k2

H1.M;L/
:

We have a statement for general weights.

Definition-Proposition 4.13. Pick a smooth function r 0.r/ equal to log a for r � logCa,
and equal to r when r > logC 2a. Then, given 
;N; � 2 R and the corresponding black
box multiplication operator B.e�r 0/ from (4.2), we define

H 
mCN
� .M;L/´ B.e�r

0

/H 
mCN .M;L/:

Let � < �0. Then the injection H 
mCNC1
� .M;L/ ,! H


mCN
�0 .M;L/ is compact.

Proof. From the choice of r 0 and pseudo-differential operator symbol calculus, we can
reduce directly to the case of 
 D 0 and N D 0. Applying B.e.���0/r 0/, we can also
reduce to the case � < 0 D �0. Then we can adapt the argument from before, adding
a contribution from the zeroth Fourier mode that decays as e� lognkf kL2 .
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Definition 4.14. Let L!M be a general admissible bundle. Let X be a derivation on
sections of L extending a vector field X on M . Also assume that X´ hX 2 ‰b.M;L/.
Assume that the flow generated by X is uniformly hyperbolic and that we can con-
struct escape functions G 2 Sb.M;L/ for any ı > 0 satisfying conclusions (i)–(iv) of
Lemma 2.3 as well as the invariance properties from Lemma 2.5. Then we say that X is
a general admissible operator. We denote by Eu;s and E�u;s the corresponding stable and
unstable bundles.

Given a general admissible operator, the proofs of Propositions 2.10 and 2.11 apply,
so we get a first parametrix RQ.s/´ .X �Q � hs/�1 with norm O.h�1/. Furthermore,
from Definition 4.5 and Proposition 4.11, we deduce straightforwardly the following
proposition.

Proposition 4.15. Let L!M be a general admissible bundle, and let X a general
admissible operator. Let ı > 0. Let G be a corresponding escape function. Moreover,
let Q 2 ‰�1

b
.M;L/ be microsupported in j�j < 3Rı and elliptic in j�j < 2Rı – as the

Q used in Proposition 2.10. Then, for each `, .Xb;`; Gb;`;Qb;`/ is an admissible triple in
the sense of Definition 3.9.

Consequently, from Lemma 3.12 and Theorem 2, we deduce that

RQ;`.s/´ .Xb;l �Qb;` � hs/�1

and that RXb;`.s/ are analytic, respectively meromorphic families of operators on the
appropriate anisotropic spaces. We now choose � 2 C1.R/ such that

�.r/ D

´
0 for r < log.Ca/;

1 for r > log.C 2a/

and define
R 0Q.s/´ RQ.s/C

X
`

E`�ŒRXb;`.s/ � RQ;`.s/��P`:

Next, let us define, for � 2 R,

�max.�/´ sup
`

�max;`.�/:

Recall that �max;` was defined in equation (3.15). Also keep in mind that weights are
functions of the form k D 
mCN , and they are large when 
 is large and so is 
=jN j.

Lemma 4.16. Let � < 0, and let k be sufficiently large. Then, for

Re.s/ > � and jIm.s/j � h�1=2;

the operator family R 0Q.s/ is a meromorphic family of bounded operators fromH k
��0max.�/

to H k
�0max.�/

. Additionally, we can write

.X � hs/R 0Q.s/ D 1CK.s/;

where K.s/ is a meromorphic family of compact bounded operators on H k
��0max.�/

. Addi-
tionally, 1CK.s/ is invertible for Re.s/ large enough.
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As a consequence, we get the main theorem of this article.

Theorem 3. Let X D hX be a general admissible operator (see Definition 4.14) on
a general admissible bundle L!M (see Definition 4.3), and assume that the indicial
roots are affine in the sense of Definition 3.26. The Schwartz kernel of R.s/´ .X � s/�1

has a meromorphic continuation to C. The corresponding poles are finite order, finite
rank. We also have the wavefront set statements

WF0.R.s// DWF0h.R.s// \ T
�.M �M/ � �.T �M/ [�C [E

�
s �E

�
u : (4.5)

Furthermore, if s0 is a pole and

R.s/ D
JX
jD1

Aj

.s � s0/j
CRH .s/

is the Laurent expansion, with holomorphic part RH .s/, then

WF0.Aj / � E�s �E
�
u and WF0.RH .s0// � �.T

�M/ [�C [E
�
s �E

�
u : (4.6)

Proof of Lemma 4.16. Recall that

K.s/ D .X � hs/R 0Q.s/ � 1:

The meromorphy of R 0Q.s/ and K has already been proved, and so has the invertibility
for large Re s > 0 of 1CK.s/. It suffices now to show that K.s/ is compact on the
appropriate space. We will use the fact that if k is large, then so is k˙ 1.

The first observation is that, from a standard resolvent identity, for ` D 1; : : : ; �, we
have

RXb;`.s/ � RQ;`.s/ D RXb;`.s/Qb;` RQ;`.s/:

This is a bounded operator from e��max;`.�/hriH k�1
b

to e�max;`.�/hriH kC1
b

(it is smoothing).
Now we compute .X � hs/R 0Q.s/ and find that the operator K.s/ D K1.s/CK2.s/

writes as the sum of two terms. The first one is

K1.s/´
X
`

E`ŒXb;`; ��RXb;`.s/Qb;` RQ;`.s/�P`:

This operator is compact on H k
��max.�/

since it maps it continuously to 1y<CH kC1 – here
we are applying Theorem 2 crucially.

The other term in K.s/ is

K2.s/´ QRQ.s/ �
X
`

E`�Qb;` RQ;`.s/�P`:

Applying .X �Q � hs/ on the right, we obtain

Q �
X
`

E`�Qb;`�P`„ ƒ‚ …
´K3

C

X
`

E`�Qb;` RQ;`.s/Œ�;Xb;` �Qb;`�P`„ ƒ‚ …
´K4

:
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Since �.y/ D 1 when y > C 2a, we get that

PC3a
h
Q �

X
`

E`�Qb;`�P`

i
D 0:

Using thatQ is smoothing together with Lemma 4.12, we deduce thatK3.X �Q � hs/�1
is a compact operator onH k

��0max.�/
. According to Lemma 3.12, provided k is large enough,

RQ;`.s/ is bounded on spaces H
kb
b;�

with � < ��max.�/. Recall that � was chosen to
be constant outside a compact set, so Œ�;Xb;` �Qb;`�WH kb

b;�1 ! H
kb
b;�2 is bounded for

arbitrary �1; �2. We deduce that K4.X �Q � hs/�1 maps H k
��0max.�/

to H kC1
� for some

� < ��max.�/, and by Lemma 4.13, it is compact. This concludes the proof.

Proof of Theorem 3. From Lemma 4.16, using the Gohberg–Sigal theorem [24] – see [18,
Theorem C.7] for a version in English – we deduce that R 0Q.s/.1CK.s//

�1 is a mero-
morphic right inverse to .X � hs/, bounded on H k

��max.�/
! H k

�max.�/
for Re s > � and k

large enough. As, for Re.s/ > 0, X � hs is invertible, it has to coincide with the inverse
there, and we deduce it is a meromorphic continuation of .X � hs/�1. Since C1c .M;L/
is contained and dense in all spaces H 
mCN

� , we deduce the meromorphic extension of
the Schwartz kernel. In particular, the poles do not depend on the choice of space.

It remains to show the announced property on the wavefront set. We can use the
arguments from [17, page 18 of the arXiv version] again as in the end of the proof of
Theorem 2. We reproduce the argument here. We have by the second resolvent identity

R.s/ D hRQ.s/ � hRQ.s/QRQ.s/CRQ.s/QR.s/QRQ.s/: (4.7)

(One can check that all the terms in the equation are well defined.) The wavefront set of the
first term in the right-hand side is contained in the announced wavefront set for R.s/, so
we concentrate on the second and third term. For both of them, their WF0

h
\T �.M �M/

is a subset of

¹.x; �; x0; � 0/ j there exists .x1; �1; x01; �
0
1/ such that .x; �; x1; �1/ 2WF0h.RQ.s/Q/;

.x01; �
0
1; x
0; � 0/ 2WF0h.QRQ.s//º:

This is contained in EC
ı
�E�

ı
, where

E˙ı D ¹.x; �/ 2 T
�M j there exists T > 0 such that jˆ˙T .x; �/j � 3Rıº:

Since the wavefront set of R.s/ does not depend on ı, we can let it go to 0. The intersec-
tion of the EC

ı
�E�

ı
for ı � 0 is exactly E�s �E

�
u .

For the wavefront set at a pole s0, we consider (4.7). Comparing the Laurent coeffi-
cients, we obtain

AJ D RQ.s/QAJQRQ.s/:

We can apply the same argument as above and obtain WF0.AJ / � E�s �E
�
u . For the

other coefficients as well as RH .s0/, we can argue inductively. Indeed, formula (4.7) will
provide us with a formula for the Laurent coefficients that will involve other Laurent
coefficients Aj of higher order and derivatives of RQ.s/ in the s parameter. But, as
@sRQ.s/ D �RQ.s/

2, the wavefront set of its derivatives is contained in the same set.
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5. Explicit computations for the geodesic flow

In this section, we come back to the case of admissible bundles over S�N with N an
admissible cusp manifold. Let us denote by Amax the maximum of Re.�/ when � ranges
in the eigenvalues of the endomorphisms A`. Then we define

�max;L.�/ D max
�
0; Amax � � �

d

2

�
:

Note that, for functions, i.e. L being the trivial bundle, we have Amax D 0. We prove the
following theorem.

Theorem 4. Let N be an admissible cusp manifold, L!M D S�N an admissible
bundle and X an admissible lift of the geodesic flow vector field (see Definitions 1.1
and 1.4).

Then the resolvent R.s/´ .X � s/�1 which is defined on L2.M;L/ for Re s � 0

has a meromorphic continuation to C as a family of continuous operators

R.s/WC1c .M;L/! D 0.M;L/:

More precisely, for any � < 0 and N 2 R, there is a sufficiently large 
 such that, on
Re.s/ > � , jIm.s/j � h1=2, the resolvent is a meromorphic family of bounded operators

R.s/WH 
mCN
��max;L.�/

! H

mCN
�max;L.�/

:

Finally, the wavefront set of R.s/ satisfies estimate (4.5), and its polar part satisfies (4.6)
as in Theorem 3.

According to the proof of Theorem 3, it suffices to show that the roots are affine in the
sense of Definition 3.26. This will be shown in Lemma 5.11.

We will explicitly calculate the indicial roots for an admissible lift of the geodesic flow
in the sense of Definition 1.4. We do this in three steps. First, we compute the family of
indicial operators for admissible lifts. Then we determine the indicial roots for the scalar
case, and finally deduce the precise formula for the indicial roots of an admissible vector
bundle.

5.1. The indicial operator for admissible lifts

From now on, let M D S�N be the sphere bundle over an admissible cusp manifold,
L!M an admissible vector bundle and X an admissible lift in the sense of Defini-
tion 1.4. Set X D hX, and fix a cusp Z`. Then, as a first step towards the indicial family,
we want to calculate the b-operator Xb;` acting on sections of R � L` ! R � F. Recall
that, in Example 3.1, we have already determined that L` DK��`V`! FDK=MD Sd .
In order to give an explicit expression of the operator, we use the coordinates r 2 R and
spherical coordinates .'; u/ 2 Œ0; �� � Sd�1 on Sd as introduced in Section 1.1.
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Lemma 5.1. X 2 ‰b;1.M;L/ is a cusp-b-operator, and its associated b-operator Xb;` in
‰b;1.R � L`/ as defined in Definition 4.5 is given by

Xb;` D h
h
cos.'/@r C

d

2
cos.'/Cr.`/Xgr

C A`

i
; (5.1)

where r.`/ is the canonical connection on L`, A` 2 End.V`/M is given by Definition 1.4
and acts as a zeroth order operator on L`, and Xgr D sin'@' is the vector field of the
gradient flow on Sd .

Proof. Let us fix a cusp Z` and consider a section f 2 C1.S�Z`; L/ supported in
¹y > aº. Recall that LjS�Z` D ƒ` nG��`V`; thus we can identify f with a function
Qf Wƒ` nG ! V` that is right M-equivariant, i.e. Qf .ƒ`gm/ D �`.m�1/ Qf .ƒ`g/. Note

that the geodesic flow on S�Z`;f Š ƒ` nG =M is given by the right A-action and we
can write9

.X Qf /.ƒ`g/ D h
h d
dt jtD0

Qf .ƒ`ge
Ht /C A` Qf .ƒ`g/

i
(5.2)

for a suitably normalized H 2 a D Lie.A/. Let us check that X preserves sections that
are independent of the � variable. Note that, with respect to the N A K decomposition,
this means that Qf .ƒ`ng/ D Qf .ƒ`g/ (cf. Section 1.2). That such functions are preserved
under X is obvious by (5.2). Consequently, X is a black box operator according to Defin-
ition 4.5.

Let us thus remove the dependencies in � 2 ƒ` nN and consider the operator X0
b;`

acting on sections f 2 C1.R � F;R � L`/. Further, identify these sections with right
M-invariant functions Qf WA�K! V`. By the N A K-Iwasawa decomposition, we can
write any g 2 G in a unique way as g D nNAK.g/aNAK.g/kNAK.g/. With this notation,
we can write

X0b;` Qf .a; k/ D h
h d
dt jtD0

Qf
�
aNAK.ake

Ht /; kNAK.ake
Ht /

�
C A` Qf .a; k/

i
D h

h d
dt jtD0

Qf
�
aaNAK.ke

Ht /; kNAK.ke
Ht /

�
C A` Qf .a; k/

i
;

where we used the identities aNAK.ag/ D a � aNAK.g/ and kNAK.ag/ D kNAK.g/. This
formula shows directly that X0

b;`
commutes with translations in the A direction, and we

have thus shown that X is a cusp-b-operator according to Definition 4.5. It finally remains
to express X0

b;`
in the coordinates r; '; u of R � Sd Š A�K =M as introduced above.

In particular, we have to identify the differential operators

d

dt jtD0
aaNAK.ke

Ht / on A Š R and
d

dt jtD0
kNAK.ke

Ht / on K =M Š Sd :

9The identification of the canonical connection on reductive homogeneous spaces can be found
in many geometry textbooks. For a short exposition in the context of geodesic flows on vector
bundles over locally symmetric spaces, we refer to [35, Section 1.1.5].
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As these differential operators are independent of the choice of the vector bundle, we can
simply restrict to the scalar case and compare to the expression of the geodesic flow vector
field in coordinates that have been calculated in Example 3.5 (cf. also equation (1.4)).
This yields d

dt jtD0
aaNAK.ke

Ht / Š cos'@r and d
dt jtD0

kNAK.ke
Ht / Š sin'@' D Xgr.

Taking into account the definition of the canonical connection on L` D K��`V`, we get

X0b;` D hŒcos'@r Cr
L`
Xgr
C A`�:

In order to pass from X0
b;`

to Xb`, one simply has to conjugate the differential operator by
e�rd=2, which creates the additional d=2 cos' term in (5.1).

Now, from equation (5.1) and the definition of the indicial family (Definition 3.13),
we directly obtain the following corollary.

Corollary 5.2. For Xb` as in Lemma 5.1, one has

I.Xb;`; �/ D � cos' C h
hd
2

cos' CrL`
Xgr
C A`

i
: (5.3)

5.2. Finding the indicial roots for functions

In this section, we focus on the action on functions. In that case, X D X and X D hX .
Since the flow is the same for each cusp, we can safely drop the dependence in the index `.
We compute the indicial roots of I.Xb; �/ � hs. As this operator will frequently show up
in the sequel, we introduce the shorter notation

P�´ I.Xb; �/ D h sin'@' C
h
�C h

d

2

i
cos': (5.4)

Le us introduce some notation which we will need to formulate the spectral proper-
ties of P�. Recall that we have introduced the coordinates .'; u/ 2 Œ0; �� � Sd�1 on Sd .
Consider the projection of Sd to the equatorial plane. It is a smooth chart on both strict
hemispheres. We denote these smooth restrictions by

�N W

°
.'; u/ 2 Sd

ˇ̌̌
' <

�

2

±
! ¹x 2 Rd j kxk < 1º;

�� W

°
.'; u/ 2 Sd

ˇ̌̌
' >

�

2

±
! ¹x 2 Rd j kxk < 1º:

Note that .�; u/´ .sin'; u/ 2 Œ0; 1� � Sd�1 are exactly the radial coordinates in both
charts.

For further reference, we recall that the Taylor expansion in radial coordinates at 0 for
f 2 C n.Rd / can be written in the following fashion:

f .�; u/ D
X
j�j�n

@
�
xf .0/

�Š
� �j�j � ‡�.u/C o.�

n/ as �! 0: (5.5)

Here � 2 Nd is a multi-index, ‡� 2 C1.Sd�1/ is the monomial x�, x 2 Rd , of degree
j�j restricted to the unit sphere Sd�1 � Rd .
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Let us come back to P�. According to Lemma 3.20, to determine the indicial roots,
it suffices to consider the action of P� on H
mb0 .Sd /, that we denote just H
mb .Sd /.
Inspecting formula (5.4), we see that it is a gradient vector field plus a complex poten-
tial. Ruelle–Pollicott resonances for Morse–Smale gradient flows were studied in detail
by Dang and Rivière [13]. In particular, the spaces they defined are quite similar to
H
mb .Sd /. Recall that CG was defined in Lemma 2.3

Lemma 5.3. There is an � > 0 such that the following holds.

� Let f 2 D 0.Sd / be supported in the �-neighbourhood of the North Pole. Then

f 2 H
mb .Sd / ” f 2 H�CG
 .Sd /:

� Let f 2 D 0.Sd / be supported in the �-neighbourhood of the South Pole. Then

f 2 H
mb .Sd / ” f 2 HCG
 .Sd /:

Proof. Let us prove the first assertion. By Definition 3.18 of H
mb and standard pseudo-
differential operator arguments, it is enough to prove that mb;0 2 S0.L/ is constantly
equal to �CG in a neighbourhood of N modulo some lower order terms S�1C".L/. By
Lemma 3.17 and Proposition 4.11, the leading term is given by

mb;0.�; �/ D m.r; �; �; � D 0; J D 0; �/ mod S�1C".L/;

where m 2 S0.M;L/ is the order function constructed in Lemma 2.3. By construction
of m, we know that, high enough in the cusp, m D �CG in a neighbourhood of

E�c;s ´ .Esc ˚E
0
c /
?:

Here Esc and E0c are the stable and neutral bundles corresponding to constant curvature
(see discussions in the proof of Lemma 2.5). If we consider some point .r; �;N / 2 SZ

and write T .r; �;N /.SZ/ Š TrR˚ T� .R
d=ƒ/˚ TN Sd , then by standard hyperbolic

geometry, we have .E0c /.r;�;N / D TrR and .Esc / D T� .R
d=ƒ/. Consequently, E�c;s is

precisely given by � D 0, J D 0. Putting everything together, we know that, at leading
order, mb;0 is constantly equal to �CG around N , which implies the first assertion.

The second statement follows from similar arguments.

The following lemma shows that, in the charts �N ;� , the operator P� takes a particu-
larly simple form – recall that here � D sin'.

Lemma 5.4. On the northern hemisphere, the function 2 tan.'=2/=sin' is an analytic,
non-zero function, and expressed in the .�; u/-charts, defined above, we have�2 tan.'=2/

sin'

��s
.P� � hs/

�2 tan.'=2/
sin'

�s
D

p
1 � �2

�
h�@� � hs C �C h

d

2

�
:

On the southern hemisphere, the function 2 tan.'=2/ sin' is an analytic, non-zero func-
tion, and expressed in the .�; u/-charts, defined above, we have�

2 tan
�'
2

�
sin'

��s
.P� � hs/

�
2 tan

�'
2

�
sin'

�s
D

p
1 � �2

�
�h�@� � hs � � � h

d

2

�
:
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Proof. The results follow from a straightforward calculation using standard trigonometric
identities.

Let � 2 Nd be a multi-index; then we define the standard Dirac distributions on Rd

by ı.�/0 WC
1
c .R

d / 3 f 7! .@
�
xf /.0/. Recall that all distributions on Rd , supported in 0

are linear combinations of finitely many ı.�/0 . Furthermore,

�@�ı
.�/
0 D �.j�j C d/ı

.�/
0 : (5.6)

If �N is the chart of the northern hemisphere, then we define for any � 2 C the distribution

ı
.�/

N ;�
´

�2 tan.'=2/
sin'

��=h�.j�jCd=2/
��N ı

.�/
0 2 D 0.Sd /;

and for �� the chart of the southern hemisphere, we define the distribution

ı
.�/

�;�
´

�
2 tan

�'
2

�
sin'

���=hC.j�jCd=2/
���ı

.�/
0 2 D 0.Sd /:

Combining (5.6) with Lemma 5.4, we obtainh
P� �

�
� � h

�
j�j C

d

2

��i
ı
.�/

N ;�
D 0;h

P� C
�
� � h

�
j�j C

d

2

��i
ı
.�/

�;�
D 0;

(5.7)

and up to linear combinations, these are the only eigendistributions of P� supported in
the North or South Pole.

We next want to study the kernels of the operators P� on H
mb .Sd /. According to
Proposition 3.23, each P� has a unique closed extension, and the domain D
mb .Sd /
does not depend on �, so that � 7! P� is a type (A) family as in [33]. Further, to prove
Proposition 3.25, we proved that P� � hs is Fredholm of index 0 when

Re.s/ > �
CG C
d

2
C

ˇ̌̌
Re
��
h

�ˇ̌̌
:

The rest of this section is devoted to the proof of the following proposition.

Proposition 5.5. The indicial roots of Xb acting on functions are affine, and they are
given by

Specb.s/ D
°
˙

�
s C

�d
2
C n

��
; n 2 N

±
:

We start with the following lemma.

Lemma 5.6. Let 
 > 0, � 2 C. Then, for Re.s/ > �
CG C d=2C jRe.�=h/j, the oper-
ator .P� � hs/WD
mb .Sd /! H
mb .Sd / is injective unless

� D ˙h
h
s C

�d
2
C n

�i
for some n 2 N.
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Proof. Assume that w 2 D 0.Sd / is a distribution that fulfils .P� � hs/w D 0. Then we
can distinguish two cases: either wjSd n¹N ;�º D 0 or not.

In the first case, w must be a linear combination of ı.�/
N =�

, and from (5.7), we deduce
that the possible solutions are either � D h.s C nC d=2/ and w is a linear combination
of ı.�/

N ;�
with j�j D n, or � D �h.s C nC d=2/ and w is a linear combination of ı.�/

�;�
,

again with j�j D n.
Whether these distributional solutions belong to H
mb .Sd /, or not, depends on 
 .

Suppose that 
CG > nC d=2, n 2 N; then locally around the South Pole, according to
Lemma 5.3, distributions in H
mb .Sd / have to be of positive Sobolev order, so none of
the Dirac distributions ı.�/

�;�
are allowed. Near the North Pole, distributions are allowed

to be in H�n�d=2�".Sd /, again from Lemma 5.3, and consequently, all the distributions
ı
.�/

N ;�
with j�j � n are contained in H
mb .Sd /.

In the second case, i.e. wjSd n¹N ;�º ¤ 0, we work in Sd n ¹N ; �º with the coordin-
ates .'; u/ 2 �0; �Œ � Sd�1. As P� is independent of u, we can choose a product form
wjSd n¹N ;�º D f ˝ g with f 2 D 0.�0; �Œ/ and g 2 D 0.Sd�1/. Thus the PDE reduces to
the (ordinary) differential equation .P� � hs/f D 0. By ellipticity, f has to be a smooth
function on �0; �Œ, and for every �; s, there is a unique solution

f .'/´ .sin'/�d=2��=h
�
2 tan

�'
2

��s
:

We now have to discuss under what conditions f ˝ g can be extended to a distribution
in H
mb .Sd /. For d=2 > � > 0, let ˛ D 
CG � d=2 � �; then from Lemma 5.3 and the
Sobolev embedding theorem, distributions have to be C ˛.Sd / in a neighbourhood of the
South Pole. Going to the charts �� , we obtain�

2 tan
�'
2

�
sin'

��s
w D ��d=2��=h�s ˝ g:

As, in a neighbourhood of the South Pole, .2 tan.'=2/ sin'/�s is a smooth non-vanishing
C1.Sd / function, we have to extend ��d=2��=h�s ˝ g to a C ˛-function on Rd . Accord-
ing to (5.5), this is possible if either Re.�d=2� �=h� s/ � ˛ or if �d=2� �=h� s D n
for some n 2 N and g is a linear combination of ‡� with j�j D n (or in other words, g
is a homogeneous polynomial of degree n). Note that the first case is ruled out since we
assumed that �Re.s C �=h/ < �d=2C CG
 so that we would have ˛ < CG
 � d , and
� > d=2, contrary to our assumption.

Now, to complete the proof of Proposition 5.5, we have to check that, for

� D ˙h
�
s C

d

2
C n

�
;

the kernel is not empty. We have already done this in the proof for � D h.s C d=2C n/
for n 2 N, so we concentrate on the case that � D �h.s C d=2C n/.

The question is whether the functions f ˝ ‡�, j�j D n, can be extended to distribu-
tions over the whole sphere Sd . We have hs D �� � h.nC d=2/. Let ‡ 2 Rk.S

d�1/,
where Rk.S

d�1/ denotes the space of homogeneous polynomial of degree n restricted to
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the unit sphere. We introduce the notation

f 0�;‡;� D .sin'/�d=2��=h
�
2 tan

�'
2

���.nCd=2C�=h/
˝ ‡.u/: (5.8)

If we express these functions in the .�; u/ coordinates in a neighbourhood of the North
Pole, we get �2 tan.'=2/

sin'

�nCd=2C�=h
f 0�;‡;� D �

�d�2�=h�n‡.u/:

Since 2 tan.'=2/=sin' is a non-vanishing C1.Sd / function near N , we conclude that
f 0

�;‡;�
is in L1loc.S

d / and a legitimate distribution whenever nC 2Re�=h < 0. Now,
using the ideas of Hadamard regularization as in [31, Theorem 3.2.4], we can show that
f 0

�;‡;�
extends from Re� < �hn=2 to the whole of C as meromorphic family of distri-

butions F�;‡;�. When  2 C1.Sd / is not supported around N , the value of F�;‡;�. /

is given by f 0
�;‡;�

. /, so we can concentrate on the case of  supported around N , and
consider a smooth function supported in ¹� < �º in Rd such that, when Re� < �hn=2,�2 tan.'=2/

sin'

�nCd=2C�=h
f 0�;‡;�. / D

Z �

0

Z
Sd�1

��2�=h�n�1 .�u/‡.u/ du d�:

Integrating by parts in the � variable, N times when Re� < �hn=2, we obtain that

��2�=h�n�1‡. /

D

N�1Y
jD0

1

2�=hC n � j

Z �

0

Z
Sd�1

��2�=h�nCN�1‡.u/.@N�  .�u// du d�:

The expression in the right-hand side is obviously meromorphic for Re� < h.N � n/=2.
The poles are situated at � D h.j � n/=2, with j D 0; : : : ; N � 1, and they are of order 1.
At such a point, we find s D �.nC d C j /=2 and � D h.s C d=2C j /. In other words,
the poles of F�;‡;� correspond to root crossings. This is sufficient to ensure that the
indicial roots are exactly the ˙h.s C d=2C n/ with n 2 N and finishes the proof of
Proposition 5.5.

Now, while not necessary for the proof of the main theorem, we want here to describe
the Jordan block structure at the root crossings. Since the residue of F�;‡;� at a pole
does not depend on the level of regularization N (as long as N � j C 1), we can choose
N D j C 1. Then the residue is given by

h

2j Š

Z �

0

Z
Sd�1

‡.u/.@jC1�  .�u// d� du:

But, as  is supported in ¹� < �º, this is just

h

2j Š

Z
Sd�1

‡.u/
�� @
@�

�j
j�D0

 .�u/
�
du D

h

2

X
j�jDj

1

�Š

�Z
Sd
‡�.u/‡.u/ du

�
ı
.�/
0 . /;
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where the equality can be read off (5.5). Writing a� D 1=�Š
R

Sd�1 ‡.u/‡�.u/ du, the
residue of F�;‡;� at � D h.j � n/=2 is thus given by

h

2

X
j�jDj

a�ı
.�/

N ;�
:

The finite part of F�;‡;� at such a point is a distribution Aj such that Aj coincides with
f�;‡;h.j�n/=2 in Sd nN . Additionally, since we have, for all �,�

P� C �C h
�
nC

d

2

��
F�;‡;� D 0;

differentiating in the parameter �, we deduce that�
Ph.j�n/=2 C h

nC j C d

2

�
Aj D �.1C cos'/

h

2

X
j�jDj

a�ı
.�/

N ;h.j�n/=2
:

Consequently, the finite part of F�;‡;� is an eigendistribution of P� if all the a� vanish.
If ‡ is chosen such that this is not the case, we can however modify Aj in order to get
a generalized eigendistribution. Consider Ej the space of distributions supported in ¹N º,
of order smaller than j . Choosing a basis of such distributions of decreasing order, we find
that Ph.j�n/=2 acts on Ej in an upper triangular fashion, and the diagonal coefficients are
non-singular. We deduce that Ph.j�n/=2 is invertible on Ej . In particular, since�

Ph.j�n/=2 C h
nC j C d

2

�2
Aj 2 Ej ;

we can find ej 2 Ej such that�
Ph.j�n/=2 C h

nC j C d

2

�2
.Aj C ej / D 0:

In particular, the kernel is non-empty, and there is an order 2 Jordan block.

Definition 5.7. When � ¤ h.j � n/=2 with j; n some integers, and ‡ 2 Rn.Sd /, we
denote by f�;‡;� the continuation F�;‡;�. When � D h.j � n/=2, f�;‡;� will instead
refer to the distribution Aj C ej thus defined.

Before we proceed, it will be useful to introduce some notation. Given real-valued
g; f 2 C1.Sd�1/, we let

hf; gi D

Z
Sd�1

fg:

We recall that Rn.Sd�1/ is the set of functions on the sphere that are restrictions of real
homogeneous polynomials of order n on Rd .

As a consequence of the proof of Lemma 5.6, we get the following explicit description
of the generalized eigenstates of P�.

Lemma 5.8. Let � 2 C, n 2 N and 
CG > d C nC 2jRe.�=h/j; consider the operator
P�WD


mb .Sd /! H
mb .Sd / and the kernel of P� C h.d=2C n/˙ �.
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� If � … hZ=2, then for any n 2 N, there are no Jordan Blocks, and

ker
�
P� C h

�d
2
C n

�
C �

�
D span¹f�;‡�;� j j�j D nº;

ker
�
P� C h

�d
2
C n

�
� �

�
D span¹ı.�/

N ;�
j j�j D nº:

� If � D hk=2, k 2 N, and n D 0; : : : ; k � 1, then for P� C h.d=2C n/ � �, there are
no Jordan Blocks, and one has

ker
�
P� C h

d C 2n � k

2

�
D span¹ı.�/

N ;�
j j�j D nº:

� For � D hk=2, k 2 N, and n D k; k C 1; : : : , one has Jordan Blocks of index 2 for
P� C h.d=2C n/ � �, and

ker
�
P� C h

d C 2n � k

2

�2
D span¹ı.�/

N ;�
; f�;‡� ;� j j�j D n; j�j D n � kº;

ker
�
P� C h

d C 2n � k

2

�
D span¹ı.�/

N ;�
j j�j D nº

[ ¹f�;‡;� j ‡ 2 Rn�k.S
d�1/; h‡;‡�i D 0

for all j�j D nº:

� If � D �hk=2, k 2 N, and n D 0; : : : ; k � 1, then for P� C h.d=2C n/C �, there
are no Jordan Blocks, and one has

ker.P� C h.d C 2n � k/=2/ D span¹f�;‡�;� j j�j D nº:

� For � D �hk=2, k 2 N and n D k; k C 1; : : : , one has Jordan Blocks of index 2 for
P� C h.d=2C n/C �, and

ker
�
P� C h

d C 2n � k

2

�2
D span¹f�;‡�;�; ı

.�/

N ;�
j j�j D n; j�j D n � kº;

ker
�
P� C h

d C 2n � k

2

�
D span¹ı.�/

N ;�
j j�j D n � kº

[ ¹f�;‡;� j ‡ 2 Rn.S
d�1/; h‡;‡�i D 0

for all j�j D n � kº:

5.3. Indicial roots for fibre bundles

After this study of the action on functions, we come back to the action on admissible vec-
tor bundles L D K��`V` ! K =M Š Sd . For the moment, let us fix a cusp and drop the
index `. Note that Definition 1.4 does not assume that � is an irreducible M representation.
However, we can reduce the problem to the irreducible case. Consider the complexi-
fied representation .�; VC/ which decomposes into irreducible unitary representations
.�i ; Wi /. We then get

L2.Sd ;K��V / D
nM
iD1

L2.Sd ;K��iWi /: (5.9)
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Furthermore, using the explicit form of I.Xb; �/ from (5.3) and the fact that, according
to Definition 1.4, the non-scalar zero order term A is M equivariant, we conclude that
I.Xb; �/ preserves this splitting. Finally, we have to take into account that we do not
want to study the operator acting on L2 but rather on the anisotropic spaces H
mb .Sd ; L/.
Recall that the escape function is a purely scalar symbol. We can pick the quantization so
that scalar symbols are mapped to operators that preserve the decomposition (5.9) – that is
a lower order term condition. In particular, I.Opb.e�rGb /; �/ acts on L2.Sd ;K��iWi /
as a principally scalar operator. Thus we assume from now on that we have fixed a cusp
and that .�; V / is unitary and irreducible. Since it is irreducible, the M equivariant term A

has to be scalar by Schur’s lemma and the indicial operator

I.Xb; �/ D � cos' C h
hd
2

cos' CrL
Xgr
C A

i
becomes the sum of a covariant derivative and a scalar term. It will thus be convenient to
study its action on local trivializations by orthogonal parallel frames. Let bN

1 ; : : : ; b
N
dimV

be an orthonormal basis of the fibre LN over the North Pole N 2 Sd . Any point

.'; u/ 2 Sd n ¹�º

can be connected to N by a path Œ0; 1� 3 t 7! .t'; u/ in a unique way, and via parallel
transport along these paths, we can define the orthonormal basis bN

i .�/ of the fibre over
� 2 Sd n ¹�º. By definition, this means

r
L
Xgr
bN
i D 0:

Similarly we chose a orthonormal parallel frame b�
i .�/ on Sd n ¹N º. Comparing these

two orthonormal frames on the equator ' D �=2, u 2 Sd�1, we get a smooth gluing
function gWSd�1 ! U.V / such that

g.u/bN
i

��
2
; u
�
D b�

i

��
2
; u
�

for i D 1; : : : ; dimV:

With this gluing function, we can express the transformation under the change of trivial-
ization for w 2 D 0.Sd n ¹N ; �º; L/ as follows:

w D

dimVX
kD1

w�
k b

�
k .'; u/ D

dimVX
lD1

 
dimVX
kD1

D
g.u/bN

k

��
2
; u
�
; bN
l

��
2
; u
�E
V„ ƒ‚ …

DWgl;k.u/

w�
k

!
bN
l .u; '/:

Having introduced these orthonormal frames, we can prove the following lemma.

Lemma 5.9. If we fix a cusp and consider L D K��V for an irreducible unitary M
representation .�; V /, then the operator I.Xb � hs; �/WD
mb .Sd ; L/! H
mb .Sd ; L/ is
injective unless

� D ˙h
h
s � AC

�d
2
C n

�i
;

where A 2 End.V /M has been identified with a scalar by Schur’s lemma and n 2 N.



Resonances and hyperbolic cusps 907

Proof. Let us reduce the problem to the case of functions, dealt with by Lemma 5.6. Sup-
pose that w 2 D
mb .Sd ; L/ n ¹0º with I.Xb � hs; �/w D 0. Then one of the following
cases holds.
First case: supp.w/ n ¹N ; �º ¤ ;. Then we can expand the restriction of w to Sd n ¹N º
in the orthonormal trivialization b�

k
and get

wSd n¹N º D
X

w�
k b

�
k .'; u/

for scalar distributions w�
k
2 D 0.Sd n ¹N º/. From the fact that rXgrb

�
k
D 0, we deduce

that h
h
�
Xgr C

d

2
cos'

�
C � cos' � h.s � A/

i
w�
k D 0:

Next, using that w 2 H
mb .Sd ; L/ and Lemma 5.3, we conclude that w�
k
2 HCG
 .Sd /,

in a small neighbourhood around � . Furthermore, at least one w�
k

must be non-vanishing
on Sd n ¹N ; �º. We are thus precisely in the setting of the second case in Lemma 5.6,
and we deduce with the same arguments that such a distribution only exists if

s � A D �
d

2
�
�

h
� n for some n 2 N

and the eigendistributions are precisely given by a linear combination of f�;�;‡� with
j�j D n.
Second case: supp.w/ D ¹�º. Then we use the same trivialization as above. This would
require distributions w�

k
2 H
mb .Sd / with suppw�

k
D � . But, as Lemma 5.3 requires

these distributions to have positive Sobolev regularity, they have to be zero.
Third case: supp.w/ D N . Then, using the trivialization on Sd n ¹Sº, we write

w D
X

wN
k b

N
k .'; u/ with wN

k 2 H
mb .Sd /; supp.wN
k / D N ;

and h
h
�
Xgr C

d

2
cos'

�
C � cos' � h.s � A/

i
wN
k D 0:

We are thus precisely in the setting of the first case in Lemma 5.6, and we deduce that
such distributions only exist if h.s � A/ D � � h.nC d=2/ for some n 2 N and they are
precisely given by linear combinations of ı.�/

N ;�
with j�j D n.

As in the case of functions, we have to care about the extension of those distributions
coming from f�;‡�;� and check which still remain in the kernel of the indicial operator.
Therefore, the following notation is convenient: given

‡ D .‡ .1/; : : : ; ‡ .dimV // 2 .Rn.S
d�1//dimV ;

define the section F�;‡;�´
PdimV
lD1 f�;‡.l/;�b

�
l

. In order to understand the extension in
the sense of homogeneous distributions at the North Pole, we use the definition of f�;‡;�

(equation (5.8)) and pass to the trivialization bN
l

:

F�;‡;� D .sin'/�d=2��=h
�
2 tan

�'
2

���.nCd=2C�=h/ dimVX
lD1

 
dimVX
iD1

gl;i .u/‡
.i/.u/

!
bN
l :
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We see that each coefficient in front of bN
l

is again a homogeneous distribution around N

of degree ��d�2�=h�n, and we can apply the discussion before Definition 5.7 to extend
each of the coefficient distributions. We conclude that the extension remains in the kernel
of the indicial operator if and only if one of the following condition holds:
� � … hZ=2,
� .2Re�=hC n/ < 0,
� � D �hk=2, k 2 Z, k � n andZ

Sd�1

 
‡�.u/

dimVX
iD1

gl;i .u/‡
.i/.u/

!
du D 0 (5.10)

for all l D 1; : : : ; dimV , j�j D n � k, and ‡� 2 Rn�k.S
d�1/.

We will denote the set of all‡ 2 .Rn.Sd�1//dimV that fulfil (5.10) by Nn;n�k . Obviously,
Nn;n�k � .Rn.S

d�1//dimV is a subvectorspace.

Lemma 5.10. Fix a cusp and a unitary irreducible representation .�; V /. Consider

L D K��V ! Sd :

Let � 2 C, n 2 N and 
CG > d C nC 2jRe.�=h/j; consider the operator

I.Xb; �/WD
mb .Sd ; L/! H
mb .Sd ; L/;

and identify A 2 End.V /M with a complex number by Schur’s lemma. We give the fol-
lowing description of the generalized eigenspaces:

K j

�;n;˙
´ ker

�
I.Xb; �/C h

�d
2
C n � A

�
˙ �

�j
by distinguishing the following cases.

� If � … hZ=2, then for all n 2 N, there are no Jordan Blocks, i.e.

K 2
�;n;˙ D K 1

�;n;˙

and

K 1
�;n;C D span¹f�;‡�;�b

�
l j l D 1; : : : ; dimV; j�j D nº;

K 1
�;n;� D span¹ı.�/

N ;�
bN
l j l D 1; : : : ; dimV; j�j D nº:

� If � D hk=2, k 2 N, and n D 0; : : : ; k � 1, there are no Jordan Blocks, i.e.

K 2
�;n;� D K 1

�;n;�

and

K 1
�;n;� D span¹ı.�/

N ;�
bN
l j l D 1; : : : ; dimV; j�j D nº:

� For � D hk=2 and n D k; k C 1; : : : , one has Jordan Blocks of index 2, i.e.

K 3
�;n;� D K 2

�;n;�
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and

K 2
�;n;� D span¹ı.�/

N ;�
bN
l ; F�;‡;� j j�j D n; l � dimV; ‡ 2 Rn�k.S

d�1/dimV
º;

K 1
�;n;� D span¹ı.�/

N ;�
bN
l ; F�;‡;� j j�j D n; l � dimV; ‡ 2 Nn�k;nº:

� If � D �hk=2, k 2 N, and n D 0; : : : ; k � 1, there are no Jordan Blocks, i.e.

K 2
�;n;C D K 1

�;n;C

and

K 1
�;n;C D span¹F�;‡;� j ‡ 2 Rn.S

d /dimV
º:

� For � D �hk=2 and n D k; k C 1; : : : , one has Jordan Blocks of index 2, i.e.

K 3
�;n;C D K 2

�;n;C

and

K 2
�;n;C D span¹ı.�/

N ;�
bN
l ; F�;‡;� j j�j D n � k; l � dimV; ‡ 2 Rn.S

d�1/dimV
º;

K 1
�;n;C D span¹ı.�/

N ;�
bN
l ; F�;‡;� j j�j D n � k; l � dimV; ‡ 2 Nn;n�kº:

Taking into account that an admissible cusp manifolds has only finitely many cusps
and that, over each cusp, the finite-dimensional unitary representation �`; V` that describes
the admissible vector bundle over the cusp splits into finitely many irreducible subrepres-
entations, we obtain the following corollary.

Corollary 5.11. For an admissible cusp manifold and an admissible vector bundle in the
sense of Definition 1.4, the indicial roots are affine. Their multiplicities are finite and can
be calculated by Lemma 5.10.

Appendix A. Quantization on manifolds with cusps and propagation
of singularities

A.1. Symbols on non-compact spaces

Since we are working with pseudo-differential operators acting on fibre bundles over
non-compact manifolds, it is important to clarify what notion of symbols we are using.
We want to use symbols in the usual Kohn–Nirenberg class, but we have to be slightly
careful to take into account the lack of compactness of the manifold. Throughout our
arguments, we refer to C k functions as functions with C k regularity, and C k functions as
elements of the corresponding Banach space. The notation C k implies the use of a metric
to measure the size of the derivatives. Given a Riemannian or Hermitian vector bundle
L!M over a Riemannian manifold, endowed with a compatible connection, we can
also define C k.M;L/ spaces as well as Sobolev spaces H s.M;L/. We introduce the
following definition.
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Definition A.1 (Kohn–Nirenberg metric). Assume that .M; g/ is a Riemannian manifold.
Then its cotangent bundle decomposes as

T .T �M/ D H ˚ V;

where V D ker d� , with � WT �M !M the usual projection. The so-called horizontal
space H is given by the Levi-Civita connection. We have natural identifications

V ' H ' TM;

so we can define horizontal and vertical lifts – see [26]. We define the metric g on T �M
by

g.x;�/.X
v
C Y h; W v

CZh/ D gx.Y;Z/C
1

1C g.�; �/
gx.X;W /:

Lemma A.2. Assume that the curvature tensor of .M; g/ is bounded and so are all its
covariant derivatives. Then the same holds for .T �M;g/.

This can be proved using the expressions for the curvature tensor of such a metric
presented in [26]. From now on, whenever M is a Riemannian manifold, its cotangent
bundle will be endowed with g.

Definition A.3 (Symbol classes). Let .L; k � k/! .M; g/ be a Riemannian or Hermitian
vector bundle over M with compatible connection r. Assume that both the curvatures of
L andM are bounded, as are all their covariant derivatives. Then the semi-classical Kohn–
Nirenberg symbols Sn.M;L/ onL of order n are family of sections �hWT �M 7!L .L;L/

parametrized by a parameter 0 < h � h0 such that, for all k 2 N, there is Ck independent
of h such that

kr
k�h.x; �/k � Ckh�i

n:

Note that rk�h is a section of the bundle .T �.T �M//˝k ˝L.L;L/! T �M and the
norm k�k is constructed by the operator norm on L.L;L/ and the Kohn–Nirenberg metric
g on T �.T �M/.

For the definition of the anisotropic Sobolev spaces, we need the following class of
anisotropic symbol classes.

Definition A.4. Letm 2 S0.M/ be an order zero Kohn–Nirenberg symbol which we call
an order function. The space of anisotropic symbols Smlog.M;L/ consists of those sections
�hWT

�M 7! L .L;L/ parametrized by a parameter 0 < h � h0 such that, for all k 2 N,
there is Ck independent of h such that

kr
k�hk � Ckjlog.1C h�i/jkh�im.x;�/:

Note that the loss of logh�i is necessary for the space of anisotropic symbols to contain
sufficiently interesting elements such as for example h�im.x;�/.

In the sequel, we will usually drop the parameters h to simplify the notation unless
we want to emphasize dependence on h.
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Consider two symbols �; & 2 S.M;L/. We say that � is scalar if it takes the form � 01
with � 0 2 S.M;R/. In this case, we define the Poisson bracket

¹�; &º ´ rH�0&;

where H� 0 is the Hamiltonian vector field of � 0 2 S.M;L/ � C1.T �M/.

Proposition A.5. Under the assumptions of the definition, the sets of symbols, i.e. the
union S.M;L/´

S
n S

n.M;L/ and Slog.M;L/´
S
n S

n
log.M;L/, satisfy all the usual

properties. They are stable by product, sum, division by elliptic symbols, and graded by
the order in the usual sense. They are also stable under the Poisson bracket provided one
of the symbols is scalar.

It is important to notice that the set of symbols S.N;R/, where N is an admissible
cusp manifold, is exactly the same class of symbols as was described in the paper [6]. It is
straightforward to show that the proofs there apply to Slog (the largest of all classes here).

To close this section, we consider the radial compactification of the cotangent space.

Definition A.6. Let T �M be the radial compactification of the cotangent space. It has
a structure of continuous manifold, but not of C1 manifold a priori. We consider the map

compW .x; �/!
�
x;

�

1C h�i

�
D .x; � 0/:

This is a homeomorphism of T �M to B.0; 1/ in T �M , and it endows T �M with the
structure of a smooth manifold with boundary. Let zg D comp� g, and define C k

Qg
norms

on T �M using zg. Then we define the classical symbols as

S0cl.M/´ C1
Qg .T

�M/;

and for k 2 Z, we set Skcl.M/´ h�ikC1
Qg
.T �M/.

Note that, for the prescribed smooth structure on T �M , h�i�1 is a boundary defining
function. In particular, because classical symbols are smooth up to the boundary, they
have a homogeneous expansion as � !1.

Proposition A.7. We have the inclusion S0cl.M/ � S0.M/.

Proof. We set g0 D comp� g – it is a metric on the open ball B.0; 1/. Then, close to
j� 0j D 1,

g0 D
1

1 � j� 0jx
.� 0d� 0/2 C g0;

where g0 is a smooth symmetric 2-form, and g � Cg0. Passing back to T
�
M , we deduce

Qg � Cg. This is sufficient to deduce that the C k norms of Qg control those of g.
Since Qg has bounded curvature, and derivatives thereof, one can estimate its C k norms

using flat derivatives in exponential coordinates in balls of size � 1. In other words, we
can restrict our attention to the open unit ball in Rn, and assume that g � 1. We then have
to show that the exponential map expg0 has uniformly bounded derivatives (on the unit
ball for g).
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We start by observing that it maps the unit ball for g inside the standard unit ball
(because geodesics for g travel at speed� 1=kgk1=2 � 1). The derivative of the exponen-
tial map can be expressed in terms of Jacobi fields along geodesics through 0, and these
fields satisfy equations involving only the curvature tensor of g. For the higher derivat-
ives, we also have a description using fields satisfying a Jacobi equation, with a forced
term this time. The forcing term is itself a covariant derivative of the curvature tensor
along Jacobi fields. In this way, one sees that the derivatives of the exponential map are
all controlled using only the curvature of g and its covariant derivatives. Since those are
bounded with respect to g, they are also bounded with respect to 1, and we are done.

This proves that C1
Qg
� C1g , and thus the inclusion

S0cl.M/ D C1
Qg .T

�M/ � C1g .T
�M/ D S0.M/:

A.1.1. Symbols on cusps. Symbols on cusps have a particular structure that is central
to all the arguments of the article. Consider a cusp Z and a symbol � 2 Sn.Z/. For the
extension to trivially fibred cusps, nothing different happens, so we concentrate on Sn.Z/.
The symbol estimates take the form (recall that � D Y dy C J d�)

j.y@y/
˛.y@� /

ˇ .y�1@�/
˛0.y�1@J /

ˇ 0� j � C
�
1C y2.Y 2 C J 2/

�n�˛0�jˇ0j
2 :

We change variables to r D logy, yY D �. We get that

j.@r /
˛.er@� /

ˇ .@�/
˛0.e�r@J /

ˇ 0� j � C.1C �2 C e2rJ 2/
n�˛0�jˇ0j

2 :

Now a case of special importance will be symbols that do not depend on � . When that is
the case, we deduce from the estimate above that

� D z�.r I�; erJ /; (A.1)

where z� is a symbol on Rr �R2
�

in the usual sense that

j@˛r @
ˇ

�
z� j � C h�in�jˇ j:

A.2. Quantization on fibred cusps

We will use a quantization procedure similar to that presented in [6]. For most of the
technical details, we refer to that article; we will only clarify a few points.

We want to obtain operators on trivially fibred cusp Z � F (see Definition 4.1). The
Schwartz kernels will be understood as taken with reference to the Euclidean volume
form on the cusp, dy d� dvolF.�/.

First off, let us write k D dim F; given an open set U � Rk , and a symbol � on
T �.Z � U/, we define an operator Opw;0

h;Z�U
.�/ on HdC1

.y;�/
� U� by the kernel

1

.2�h/dC1Ck

Z
ei=hˆ�

�y C y0
2

;
� C � 0

2
;
� C �0

2
; Y; J; �

�
d�
� y
y0

�.dC1/=2
; (A.2)
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where ˆ is the usual phase function

hy � y0; Y i C h� � � 0; J i C h� � �0; �i:

Here, we have identified the symbol � with the corresponding ƒZ-periodic function on
T �.HdC1 � U/. The operator we obtain is well defined on ƒZ-periodic functions, pre-
serves them, and so we obtain an operator acting on Z � U – as was explained in [6,
page 319].

Actually, there is the slight inconvenience that we do not know exactly how the
kernel of the quantization Opw;0

h;Z�U
decays far from the diagonal. To avoid this discus-

sion altogether, we take a function �Op 2 C1c .��C;C Œ/ equal to 1 around 0, and we let
Opwh;Z�U .�/ be the operator on Z � U whose kernel is

KOpw;0
h;Z�U

.�/
�Op

�
log

y

y0

�
: (A.3)

Taking local charts on F, we can thus build a quantization Opwh;Z�F on a trivially fibred
cusp.

We next want to define a quantization on general admissible vector bundles L!M

in the sense of Definition 4.3. Given a relatively compact open set U �M , we can take
a coordinate patch to RdC1 �Rk that maps the volume form to the standard volume form
of RdC1Ck . Such a chart will be called a compact chart, and we will use the ordinary Weyl
quantization on these compact charts (see e.g. [59, § 4.1.1 and Theorem 14.1]). Now we
have another type of charts: they are supported on open sets of the form UZa � U with
UZa D ¹z 2 Z j y.z/ > aº and U � F with a � a. They can be mapped to open sets of
the form UZa � U with U relatively compact in Rk . We will also impose that the volume
form on the fibres F is sent to the standard volume of Rk , which is possible because the
metric takes a product form. Such a chart will be called a cusp chart.

On any such open chart, we can define a quantization for sections of L by tensorizing
a quantization on functions with a local orthogonal frame for L. This can be done over
cusp charts because of the product structure of L.

In particular, we can choose a � a and find a corresponding finite cover U` of M by
compact charts or cusp charts and a corresponding partition of unity

P
�2
`
D 1. Then we

define for � 2 S.M;L/ its quantization Opwh;L.�/WC
1
c .M;L/! C1.M;L/ by

Opwh;L.�/f ´
X
`

�` Opwh;U`;L.�/�`f: (A.4)

The notation will soon be shortened to just Op, and we obtain the following proposition.

Proposition A.8. Let L be an admissible bundle, and consider (for j D 1; 2),

�j 2 S
nj .M;L/ for nj 2 R

(respectively in Snjlog with nj 2 S0.M;L/). We have several properties, valid in the limit
h! 0.

(1) There exists a third symbol $ 2 Sn1Cn2.M;L/ (respectively Sn1Cn2log .M;L/) such
that

Op.�1/Op.�2/ D Op.$/CR;
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where the remainder kRkH�N!HN D O.h1/ for all N 2 N and R is uniformly
properly supported. Furthermore, we have

$ � �1�2 2 hS
n1Cn2�1 .resp. h log.1C h�i/Sn1Cn2�1log /:

(2) Assume that �1 is scalar. Then we have the commutator formula

ŒOp.�1/;Op.�2/� D
h

i
Op.¹�1; �2º/CO.h2Sn1Cn2�2/:

The remainder worsens to h2 log.1C h�i/2Sn1Cn2�2log in the case of exotic symbols.

(3) If � is hermitian valued, Op.�/ is symmetric.

(4) For � 2 S0log.M;L/, s 2 R, Op.�/WH s.M;L/! H s.M;L/ is bounded uniformly
in h > 0.

(5) For n 2 S0.M;L/, if � 2 Snlog.M;L/ is elliptic, i.e. if ��1 2 S�nlog .M;L/, then Op.�/
is invertible on Sobolev spaces for h small enough so that we can let

Hn.M;L/´ Op.�/�1L2.M;L/:

(6) Assume that @�� D 0 for y � a. Consider f supported in some fibred cusp end
M` D Z` � F, and assume that f takes the form eik�g.y; �/, where k 2 ƒ0

`
and

g is supported in ¹y > Caº. Taking C > 1 large enough depending only on the par-
tition of unity appearing in (A.4), Op.�/f has the same form except that it is now
supported in ¹y > aº. In particular, Op.�/ preserves Fourier modes exactly.

The stabilization of Fourier modes is a nice feature from which we profit because we
have assumed that the curvature is constantly �1 in the cusps. In a more general case of
curvature tending to �1, one would have to look for more subtle estimates.

Remark A.9. The remainderR in the product formula can actually be written as a Op0.r/,
with r an O.h1S�1/ symbol, if Op0 is another quantization built in the same fashion, but
where the cutoff away from the diagonal has been changed to another one with sufficiently
larger support.

We will also need a sharp Gårding lemma.

Lemma A.10 (Sharp Gårding). Let � 2 S1.M;L/. Assume that Re.�/ � 0. Then

Re.hOp.�/u; ui/ � �Chkuk2
L2
:

We will prove together Proposition A.8 and Lemma A.10.

Proof. Proofs for (1)–(5) can be found in [6] for non-exotic symbols. The arguments,
however, all transfer to exotic symbols. Note that the key argument in [6] is that, for
a symbol on a cusp, in an interval at height y0, the cusps can be rescaled such that one
transfers the problem to an Euclidean cylinder. The crucial point is that the symbols trans-
form uniformly in y0 under this rescaling (see [6, Section 1.3]). Furthermore, since we
introduced a cutoff away from the diagonal in our quantization (A.3), we can rescale the
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whole operator from a neighbourhood of y D y0 to a fixed Euclidean cylinder with uni-
form estimates. Much as in [6], the proof of boundedness and other estimates follow from
the estimates holding on Rn. It is also the case for the sharp Gårding estimate.

Let us say a word on property (6) in Proposition A.8. Inspecting formula (A.2), we
observe that, in the � variable, the kernel is just a Fourier transform of � in the J variable.
Such an operator commutes with @� and thus preserves Fourier modes. To be able to use
this formula, we just need that the support of f does not intersect the support of the cutoff
function �` corresponding to compact charts, hence the condition that g is supported in
¹y � Caº.

Following [6, Lemma 1.8], we can prove that our operators actually act as pseudo-
differential operators, and that our quantization is a quantization in the usual sense.

Definition-Proposition A.11. Takem 2 S0.M;R/ scalar. Let ‰m.M;L/ be the algebra
of operators generated by operators of the form Op.�/ with � 2 Smlog.M;L/. We call
them the algebra of semi-classical pseudo-differential operators (or also just pseudo-
differential operators in short).

On ‰m, we have a principal symbol map �0m which is defined independently of the
choice of quantization Op as a map �0mW‰

m ! Smlog=hS
m�1
log , with �0.Op.�// D Œ��.

Once we have fixed a quantization, we obtain by iterations a full symbol map

� W‰m ! Sm=h1S�1:

A.3. Semi-classical ellipticity and wavefront sets

Let us recall the notions of wavefront set and ellipticity.

Definition A.12. Let A 2 ‰m.M;L/. We say that .x; �/ 2 T �M is not in the wave-
front set WFh.A/ of A if and only if k�.A/.x0; � 0/k D O.h1h� 0i�1/ in an open neigh-
bourhood of .x; �/. We say that A is microsupported in a set S � T �M if and only if
WFh.A/ � S .

For an order m pseudor A 2 ‰m.M;L/, we also define the ı-elliptic set for some
ı > 0,

ellı.A/ D ¹.x; �/ j kh�im�.A/�1k < ı�1º;

and we define the set of elliptic points by ell.A/ D
S
ı>0 ellı.A/.

A family of distributions uh 2D 0.M;L/ parametrized by 0 < h� h0 is called h-tem-
pered if there is N 2 N such that kuhkH�N D O.h�N /. For any h-tempered family of
distributions uh, we say that .x; �/ is not in WFh.u/ if and only if there is A 2 ‰0.M;L/,
ı > 0, such that .x; �/ 2 ellı.A/ and

Au D OH1.h
1/:

We let WF.u/ DWFh.u/ \ @T �M . As usual, we call WF the classical wavefront set,
and WFh the semi-classical wavefront set. The first measures the regularity in terms of
C k spaces, while the second additionally measures a finer regularity as h! 0.
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Finally, we also have a concept of wavefront set for operators. Given an operator K
with kernel K.x; x0/, we let

WF0hK ´ ¹.x; �I x
0;�� 0/ j .x; �I x0; � 0/ 2WFh.K. � ; � //º � T �.M �M/:

When A 2 ‰.M;L/, WF0
.h/
.A/ is the image of WF.h/.A/ under the diagonal embed-

ding T �M ! T �.M �M/.

Lemma A.13. Let K be an operator on sections of L!M . Then

.x; �I x0; � 0/ 2 T �.M �M/ is not in WF0h.K/

if and only if there are pseudors A and B , 1-elliptic respectively at .x; �/ and .x0; � 0/ so
that

AKB D OH�1!H1.h
1/:

Proof. See e.g. [17, Lemma 2.3].

Proposition A.14 (Elliptic regularity). Take P 2‰k.M;L/, A 2‰0.M;L/ and u a tem-
pered family of distributions. Then the following statements hold.

(1) Let ı > 0 and WFh.A/ � ellı.P /; then there is

Q 2 ‰�k.M;L/ with WFh.Q/ �WFh.A/

such that
A D QP CO.h1‰�1/:

(2) Let ı > 0, r 2 R and WFh.A/ � ellı.P /; then there is a constant C such that

kAukHr � CıkPukHr�k COH1.h
1/:

(3) As a consequence,
WFh.u/ \ ell.P / �WFh.Pu/:

Proof. (1) follows from a standard inductive parametrix construction (see e.g. [18, Pro-
position E.32]). The notion of ı-elliptic set has been introduced precisely to assure that
the construction yields a symbol in the uniform symbol classes.

(2) follows from kAukHr D kQPukHr CO.h1/ after applying the uniform oper-
ator norm estimate (Proposition A.8 (4)) to Q.

For (3), assume that .x; �/ 2 ell.P /; then this particular point is also in ellı.P / for
some ı > 0. Assume further .x; �/ …WFh.Pu/. By definition, there is B 2 ‰0.M;L/
with .x; �/ 2 ellı.B/ such that BPu 2 OH1.h

1/. Now we apply (2) to the operator
B and use that .x; �/ 2 ellı.BP /. We thus get A 2 ‰0 with .x; �/ 2 ellı.A/ fulfilling
Au 2 OH1.h

1/.

A.4. Propagation of singularities and other estimates

Throughout the paper, to obtain results on the wavefront sets of several operators, we have
used lemmas that were almost identical to some lemmas in [17]. In this section, we give
the versions on admissible cusp manifolds.
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For the most part, the proofs given in [17, Appendix] are also valid in our case. As
a consequence, this is a cursory review of some special technicalities, destined to the
reader already acquainted with the detail of the arguments in [17].

Remark A.15. The only difference in our setting from the usual quantization on com-
pact manifolds is that we do not have the conclusion of Beal’s theorem, i.e. we cannot
incorporate smoothing O.h1/ remainders that are not properly supported in the symbols.
However, that is not a problem because Beal’s theorem is not invoked in [17].

Since we will refer to [17] for details, we explain the correspondence between our lem-
mas and theirs. Proposition 2.11 is where the following lemmas will be used. It is the equi-
valent of the wavefront set part of [17, Proposition 3.4]. Its proof employs Lemma A.13
and Propositions A.14, A.16 and A.18. Lemma A.13 is equivalent to [17, Lemma 2.3];
Proposition A.14 is similar to [17, Proposition 2.4], and Proposition A.18 to [17, Pro-
position 2.6]. Now we turn to the most involved one, the propagation of singularities
(Lemma A.16), equivalent to [17, Lemma 2.5].

Lemma A.16 (Propagation of singularities). Let X 2 ‰1.M;L/ have a scalar principal
symbol of the form

Œip � q� 2 S1=hS0;

with p; q real, and q � 0. Also assume that p 2 S1cl.M/. Take a tempered family uh, and
ı > 0.

(1) Consider A;B;B1 2 ‰0.M;L/ such that B;B1 ı-control A in time T0. That is,
whenever .x; �/ 2WFh.A/, there exists 0 < T < T0 such that eTHp .x; �/ 2 ellı.B/
and etHp .x; �/ 2 ellı.B1/ for all t 2 Œ0; T �. Then, for each weight m 2 S0.M;R/,

kAukHm.M;L/ � CıkBukHm.M;L/ C
Cı

h
kB1XukHm.M;L/ CO.h1/:

(2) As a consequence, if .x; �/ …WF.u/ and e�tHp .x; �/ …WF.Xu/ for t 2 Œ0; T �, then
e�THp .x; �/ …WF.u/.

The constants are O.1/eO.T0/, but we will not need this fact. One can mimic the proof
in [17] step by step. Be mindful that Re P has to be replaced by� Im X, and Im P by Re X.

Proof. In the whole proof, when working on subsets of T �M , we work with the notion
of distance obtained on T �M obtained by pulling back the distance on B.0; 1/ � T �M
by the map comp defined in Definition A.6. Since p 2 S1cl, e

tHp is a smooth flow for this
structure. Additionally, we can always assume that the symbols of A, B and B1 are in S0cl,
i.e. smooth up to the boundary of T �M .

To start with, applying a partition of unity argument, we can assume that A is micro-
supported in a ball with small radius �0 > 0. Then we can also assume thatB is microsup-
ported in a 3�0-neighbourhood of the image eTHp .WFh.A// for some T 2 Œ0; T0�, andB1
is microsupported in a 3�0-neighbourhood of the union

S
t2Œ0;T � e

tHp .WFh.A//.
Since the proof in [17] is based on local considerations along the trajectories of the

flow in bounded time, and we are not seeking to determine the behaviour of the constants
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when the time T0 goes to infinity, we already observe that the estimate holds if A is
supposed to be microsupported in a fixed compact set of M , with constants that depend
on the compact set. As a consequence, we can restrict our attention to the case when A,
B , B1 are supported in a fibred cusp end M`, above a set of the form ¹y > y0º with y0
arbitrary large, and satisfy symbol estimates with constants not depending on y0.

From the structure of symbols estimates in the cusps – see equation (A.1) – we deduce
that we can find operators zB , zB1 such that

WFh. zB/ � ellı=2.B/; eTHp .WFh.A// � ellı=2. zB/ and Œ@� ; zB� D 0;

and similarly for zB1 andB1. The idea is that the symbols ofB andB1 are almost invariant
under rotations in the � variable high in the cusp so that we can forget that variable
altogether. Indeed, then we replace A by QA such that jAj � QA, and QA also is invariant
under rotations, and its wavefront set takes the form

WFh. QA/ D ¹.y0; �; �0/ j .y0; �0; �0/ 2 B..y; �0; �/I 2�0/; � 2 Rd=ƒZº:

(� designates a generic point in the generic fibre M of M ! N ).
Let us do some more reduction. The vector field Hp acts in a uniform C1 fashion

on T �M , and as such, jrHpjL1 <1. Additionally, by symbol estimates, we know
that @�p D O.y�1/. As a consequence, for y large enough, an escape function for
p D

R
p d� is also an escape function for p. In other words, we can assume that p does

not depend on � . Then Hp commutes with @� .
Consider that, in the cusp, we have an additional fibre structure. Indeed, write

M` D .R
d=ƒ`/� �Rr � F� :

Then we can see T �M` as a fibre bundle

ProjWT �M` D Œ.R
d=ƒ`/� �Rd � � T �ŒRr � F� �! M0´ Rd � T �.R � F/

by forgetting the � variable. Seeing M0 as a vector bundle over R � F, we can also extend
Proj as a map T �M` ! M0. Since Hp commutes with @� , it projects to a vector field H 0

p

on the base M0. Then, for ı0 > 0, let

Uı0 ´ ¹.x; �/ 2 T �M` j jH
0
p .x; �/j < ı

0e�CT0º;

with C=jrHpjL1 > 1. These are � invariant sets.
Provided C was chosen large enough, when .x; �/ 2 Uı0 , etHp .x; �/ 2 UeCT0ı0 for

t 2 Œ0; T0� so that
d
�
Proj.x; �/;Proj.etHp .x; �//

�
D O.ı0/:

Since the symbol estimates on the symbol of B are uniform over the whole manifold,
we deduce that, when eTHp .x; �/ 2 ellı.B/ for some T 2 Œ0; T0� and .x; �/ 2 Uı0 , then
.x; �/ 2 ellı=2.B/, provided ı0 is small enough – and smaller and smaller as the symbol
of B is allowed to become more singular. In such a case, we can apply directly the elliptic
estimate (Proposition A.14) to conclude.
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Now we can concentrate on the case when WFh.A/ \ Uı0 D ;. But the injectivity
radius of R � F is positive, and the vector field H 0

p is C1. As a consequence, on the
complement of Uı0 , we can apply a formal form for non-vanishing vector fields to obtain
tubular coordinates.

We can build a local section of the flow z ! .x.z/; �.z// from a small open set
Utube � R` around 0 to M0 with .x.0/; �.0// D .x; �/, and a local diffeomorphism

CoordW .z; �/ 2 Utube �
�
�
1
2
; T0 C

1
2

�
7! e�H

0
p .x0.z// 2 Proj.U c

ı0e�CT0
/:

We can choose these coordinates so that they satisfy C k estimates that do not depend on
the central point .x; �/, and the size of the open set Utube is fixed also independently of
.x; �/. If the point .x; �/ is close to a periodic orbit, this map is not injective, but the map
is injective on each set of the form ¹j� � �0j < ı00º for ı00 > 0 small enough.

Consider a function � 2 C1c .Utube/ equal to 1 around 0, and  2 C1c .��
1
2
; T C 1

2
Œ/

such that  .�/ > 1 for � 2 Œ0; T0�,  � 0 everywhere, and

 0.�/ � C .�/ for � 2
�
�
1
2
; T � 1

2

�
:

Finally, let
f .x0; � 0/´

X
Coord.z;�/D.x0;�0/

�.z/ .�/: (A.5)

When the trajectory of .x; �/ is sufficiently far from periodic trajectories, the sum is
reduced to 1 element, but there may be periodic points. Now we need to check that f
thus defined satisfies symbol estimates independently of .x; �/. There are two things to
verify. First, since the tubular coordinates were constructed with uniform C n norms, each
branch in equation (A.5) satisfies uniform C n estimates. Then we need to check that
there are a finite number of such branches. But, from the local injectivity of the tubular
coordinates, the sum has at most T=ı00 non-vanishing terms.

Now that we have an escape function adapted to the problem, the rest of the proof
in [17] follows through.

Before going to the equivalent of [17, Proposition 2.6], let us recall the definition of
radial sinks.

Definition A.17. Let L be a conic subset of T �M n ¹0º. Assume that it is invariant
under ˆt . Also assume that, for some � > 0, its �-conic neighbourhood U� is such that if
� is the projection on @T �M ,

d.�.etHpU/; �.L//! 0 as t !C1;

and for some constant C0 > 0, jetHp .x; �/j > CeC0t j�jx whenever .x; �/ 2 U . Then L
is a radial sink.

Note that E�u � T
�M is a radial sink (cf. Lemma 2.4). Now we can state the high

regularity radial sink estimate analogous to [17, Proposition 2.6] (note that their termin-
ology of sink and source is reversed compared to ours, as they propagate in the opposite
time direction). We will not introduces sources since we will not use them.
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Proposition A.18 (Sink estimate). Let X be as in Lemma A.16. Let L be a radial sink.
Then there exists k0 > 0 such that, for some � > 0,

(1) for all C 2 ‰0, with �.L/ � el l�.C /, there exists C1 2 ‰0 also �-elliptic around
�.L/ such that, whenever u is tempered and k � k0,

C1u 2 H
k0 H) kC1ukHk � Ch

�1
kCXukHk CO.h1/;

(2) as a consequence, if Cu 2 H k0 and WF.Xu/ \ �.L/ D ;, then WF.u/ \ �.L/ D ;.

Proof. Inspecting the proof in [17], the arguments are very similar to those in the proof of
Lemma A.16. The only novelty is the introduction of a lemma “C.1” on the construction
of escape functions. These escape functions are simplified versions of the escape func-
tion we built in Section 2.1, which itself is adapted from [20]. Since we have put in the
definition of sinks that the neighbourhood U is actually a uniform �-neighbourhood, the
constructions are valid.
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