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Abstract. We consider the question of how well points in a quadric hypersurface M � Rd can
be approximated by rational points of Qd \M . This contrasts with the more common setup of
approximating points in a manifold by all rational points in Qd . We provide complete answers to
major questions of Diophantine approximation in this context. Of particular interest are the impact
of the real and rational ranks of the defining quadratic form, quantities whose roles in Diophan-
tine approximation have never been previously elucidated. Our methods include a correspondence
between the intrinsic Diophantine approximation theory on a rational quadric hypersurface and the
dynamics of the group of projective transformations which preserve that hypersurface, similar to
earlier results in the non-intrinsic setting due to Dani (1986) and Kleinbock–Margulis (1999).
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1. Introduction and motivation

Classical theorems in Diophantine approximation theory address questions regarding the
way points x 2 Rd are approximated by rational points, considering the trade-off between
the height of the rational point – the size of its denominator – and its distance to x; see
[13, 49] for a general introduction. Often x is assumed to lie on a certain subset of Rd ,
for example a smooth manifold M , leading to Diophantine approximation on manifolds.
This area of research has experienced rapid progress during the last two decades, owing
much of it to methods coming from flows on homogeneous spaces.

It was observed in [11,17,18] that all sufficiently good rational approximants to points
on certain rational varieties must in fact be intrinsic – that is, they are rational points
lying on the variety itself. These results, in part, have motivated a new field of intrinsic
approximation, which examines the degree to which points on a manifold or variety can
be approximated by rationals lying on that same subset. Questions about the quality of
these approximations were raised already by Lang [40] and Mahler [43]. Following some
recent results on quadric hypersurfaces [26, 27, 50] and a comprehensive treatment of
Diophantine approximation on spheres [34], this paper seeks to fully explore the topic of
intrinsic approximation on quadrics. One of the most novel and important aspects of our
work is an elucidation of the role of the Q-rank and the R-rank of the defining quadratic
form (see Definition 3.3). It turns out there are qualitative differences between the intrinsic
approximation theories of forms with different rank pairs, highlighting the importance of
rank, rather than the dimension of the hypersurface. In particular, we will see below that
our Dirichlet-type theorem, Theorem 5.1, is independent of the dimension d , but changes
depending on whether the Q-rank and R-rank are equal or different. We remark that
[34] considers only the case where both ranks equal 1; therefore the dependence on the
ranks is not explored there, and significant new ideas have had to be developed in the
present paper.

Convention 1. The symbols ., &, and � will denote asymptotics; a subscript of C
indicates that the asymptotic is additive, and a subscript of � indicates that it is multi-
plicative. For example, A .�;K B means that there exists a constant C > 0 (the implied
constant), depending only on K, such that A � CB . Furthermore, A .C;� B means that
there exist constants C1; C2 > 0 so that A � C1B C C2. In general, dependence of the
implied constant(s) on universal objects such as the manifold M will be omitted from the
notation.

Convention 2. For any c � 0, we let

 c.q/´
1

qc
:

Convention 3. The symbol C will be used to indicate the end of a nested proof.

Glossary of notation. For the reader’s convenience, we summarize a list of notations and
terminology in the order that they appear in the sequel.
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M a complete metric space (Section 1)
Q a countable subset of M (Section 1)
H a height function (Section 1)
BA. ;M;Q;H/ the set of badly approximable points (Section 1)
WA. ;M;Q;H/ the set of well approximable points (Section 1)
A. ;M;Q;H/ the set of  -approximable points (Section 1)
Hstd the standard height on projective space (Section 2)
Q a quadratic form on RdC1 (Section 2)
LQ the light cone of Q (Section 2)
MQ a nonsingular rational quadric hypersurface (Section 2)
pR the real rank of Q (Section 2)
pQ the rational rank of Q (Section 2)
Qaff a quadratic polynomial with integer coefficients on Rd (Section 2)
MQaff the nonsingular rational quadric hypersurface

associated to Qaff (Section 2)
AMQ. / the set of  -approximable points on MQ (Section 2)
BAMQ the set of badly approximable points on MQ (Section 2)
Q0 the exceptional quadratic form (Section 2)
BQ the symmetric, bilinear form associated to Q (Section 3)
Lm

Pm�1
iD0 Rei (Section 3)

QQ the remainder of the form Q after normalizing (Section 3)
y� the reverse of the matrix � (Section 3)

g�

24� IdC1�2m
y�

35 (Section 3)

gt gdiag.e�t0 ;:::;e�tm�1 / (Section 3)

gt

24e�t Id�1
et

35 (Section 3)

ı.ƒ/ minp2ƒX¹0ºkpk (Section 3)
ıQ.ƒ/ minp2ƒ\LQX¹0ºkpk (Section 3)
O.Q/ ¹g 2 SL˙dC1.R/ W Q ı g D Rº (Section 3)
�Q the space of Q-arithmetic lattices (Section 3)
�d the space of all lattices in RdC1 (Section 3)
O.QIƒ/ the stabilizer of ƒ under the action of O.Q/ (Section 3)
�Q;ƒ the homogeneous space O.Q/=O.QIƒ/ (Section 3)
�1; �2 projections O.R/!MQ and O.R/! �R;ƒ� (Section 4)
ƒpr the set of primitive vectors of ƒ (Section 4)
�R; �R;ƒ� Haar measures on O.R/ and �R;ƒ� (Section 4)
Codiam.�/ the diameter of the quotient space Span.�/=� (Section 5)
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NM .T / #¹Œr� 2 PdQ \M W Hstd.Œr�/ � T º (Section 6)
S�;z ¹x 2 X W �.x/ � zº (Section 7)
ˆ�.z/ �.S�;z/, the tail distribution function of � (Section 7)
'.C/.x/ maxdistX .x0;x/�C '.x

0/ (Section 8)
'.C/.x/ mindistX .x0;x/�C '.x

0/ (Section 8)
P a parabolic subgroup of G (Section 8)
�P the modular function of P (Section 8)
A a maximal Q-split torus (Section 8)
� the sum of the positive roots of A,

counted with multiplicity (Section 8)

1.1. General terminology and basic problems in metric Diophantine approximation

In order to review some known facts and state our theorems, let us first introduce basic
notations which we will follow throughout the paper (some of it has been introduced in
a different context in [23]).

Definition 1.1. By a Diophantine triple, we will mean a triple .M;Q;H/, where M is
a closed subset of a complete metric space .X; dist/, Q is a countable subset of X whose
closure contains M , and H is a function from Q to .0;1/.

Definition 1.2. Say that a nonincreasing1 function  W .0;1/! .0;1/ is a Dirichlet
function for .M;Q;H/ if, for every x 2M , there exist Cx > 0 and a sequence .rn/11
in Q such that

rn !
n

x and dist.rn; x/ � Cx .H.rn//: (1.1)

If Cx can be chosen independent of x, then we call  uniformly Dirichlet.

When  is a Dirichlet function, it is often important to understand whether a faster
decaying function can also be Dirichlet. We formalize this thought in the next definition.

Definition 1.3. A Dirichlet function  is optimal for .M;Q;H/ if there is no function '
which is Dirichlet for .M;Q;H/ and satisfies '.x/

 .x/
! 0 as x !1.

It turns out that the optimality of  is under some fairly general assumptions equiva-
lent to the existence of so-called badly approximable points. This notion deserves a special
definition.

Definition 1.4. If .M;Q;H/ is a Diophantine triple and if  W .0;1/! .0;1/, then
a point x 2M is said to be badly approximable with respect to  if there exists " > 0
such that, for all r 2 Q,

dist.r; x/ � " .H.r//:
The set of such points will be denoted BA. ;M;Q;H/, and its complement will be
denoted WA. ;M;Q;H/ (the set of well approximable points).

1The approximating functions  will be assumed to be nonincreasing throughout the paper.
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If BA. ;M;Q;H/ ¤ ;, then it is easy to see that  is an optimal Dirichlet function
for .M;Q;H/.2 Note also that Q \M is always contained in WA. ;M;Q;H/.

Definition 1.5. Also, we will let

A. ;M;Q;H/´ ¹x 2M W there exist infinitely many r 2 Q

with dist.r; x/ �  .H.r//º
D lim sup

r2Q

�
B.r;  .H.r/// \M

�
be the set of  -approximable points. Note that

WA. ;M;Q;H/ D .Q \M/ [
\
">0

A." ;M;Q;H/:

We can now list a few basic general problems one can pose, given a Diophantine triple
.M;Q;H/.
(1) Find a Dirichlet function for .M;Q;H/. Even better – find an optimal one; determine

whether or not it is uniformly Dirichlet.
(2) Find a function  such that BA. ;M;Q;H/ ¤ ;. Even better – do it for a Dirichlet

function, thus proving it to be optimal. In the latter case, determine how big is the set
BA. ;M;Q;H/, e.g. in terms of its Hausdorff dimension.

(3) Given a function  and a measure on M , what is the measure of A. ;M;Q;H/?
This measure could be a Riemannian volume onM if the latter is a manifold or, more
generally, the Hausdorff measure relative to some dimension function. A special case
of the last question is a determination of the Hausdorff dimension of A. ;M;Q;H/.
Note that, since A. ;M;Q;H/ is a lim sup set, the easy direction of the Borel–

Cantelli lemma shows that, for any measure � on M , if the seriesX
r2Q\U

�
�
B.r;  .H.r/// \M

�
(1.2)

converges whenever U is a bounded subset of X , then one has �.A. ;M;Q;H// D 0.
The hope is that for “nice” measures the (much harder) complementary divergence case
can be established. Also, in general, it is not clear how to explicitly decide for which func-
tions  the sum (1.2) converges or diverges; for that, one often needs extra information
concerning the number of points of Q satisfying a given height bound.

1.2. Diophantine approximation in Rd

In the classical Diophantine approximation setup, one has X DM D Rd , Q D Qd , and

H.r/ D Hstd.r/´ q; where r D p=q is written in reduced form (1.3)

(this will be referred to as the standard height).

2See [23, Theorem 2.6] where this is stated under the assumption that M D X ; one can check
that the latter assumption is not necessary for the argument. Furthermore, the converse is true
assuming the � -compactness of M ; see [23, Proposition 2.7].
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Dirichlet’s theorem asserts that, for all x 2 Rd and T � 1, there exists p=q 2 Qd with
q � T satisfying

dist
�p
q
; x
�
�

C

qT 1=d
; (1.4)

where C > 0 is a constant depending on the choice of the norm on Rd . A corollary is that

 1C1=d is uniformly Dirichlet for .Rd ;Qd ;Hstd/ (1.5)

(see Convention 2). Note that, when the distance is given by the supremum norm on Rd ,
one can take C D 1 in (1.4), and thus Cx � 1 in (1.1). (It is clear that the property of  
being Dirichlet or uniformly Dirichlet does not depend on the choice of the norm.)

On the other hand, it is well known that, for all d , the set

BAd ´ BA. 1C1=d ;Rd ;Qd ;Hstd/

of badly approximable vectors in Rd is nonempty (see e.g. [47, 49]), implying the opti-
mality of  1C1=d as a Dirichlet function for .Rd ;Qd ;H/. Indeed, Schmidt [49] showed
that

BAd has full Hausdorff dimension in Rd ; (1.6)

generalizing a result of Jarník [31], who proved the case d D 1 of (1.6). We shall refer
to (1.6) as the Jarník–Schmidt theorem. Note that, together, Dirichlet’s theorem and the
Jarník–Schmidt theorem solve problems (1) and (2) above for the case of the Diophantine
triple .Rd ;Qd ;Hstd/.

Resolving problem (3) gives rise to theorems of Khintchine and of Jarník–Besicovitch.
For convenience, let us denote A. ;Rd ;Qd ;Hstd/ by Ad . /. If � is Lebesgue measure
on Rd , it was proven by Khintchine [33] that, if  is nonincreasing3, Ad . / is either
null or conull depending on whether the series

P1
qD1 q

d�1 .q/d converges or diverges.
More generally, for 0 < s < d , one can replace � with H s , the s-dimensional Hausdorff
measure, and get the Jarník–Besicovitch theorem [5, 32]: H s.Ad . // is either 0 or 1
depending on whether the series

P1
qD1 q

d�1 .q/s converges or diverges.

2. Main results

Convention 4. Throughout the paper, propositions which are proven later in the paper
will be numbered according to the section they are proven in.

We now consider the main setup of the paper, namely that of intrinsic approxima-
tion. One way to do it is to take X D Rd , choose a submanifold M of Rd , and let
Q D Qd \M and H D Hstd as in (1.3). However, we have chosen a different approach:
state and prove the main results of the paper for submanifolds of projective spaces. This
way, in most cases, statements of results and their proofs become more natural and trans-
parent; see Remark 2.1 below.

3The monotonicity assumption is not needed if d > 1; see [25].
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Let PdR denote the d -dimensional real projective space, and let � WRdC1 X ¹0º ! PdR
be the quotient map �.x/´ Œx� so that Œtx� D Œx�. The distance on PdR will be given by
the formula dist.Œx�; Œy�/ D min.ky � xk; kyC xk/ (kxk D kyk D 1). For a subset S of
RdC1, we let ŒS� D �.S X ¹0º/. With some abuse of notation, let us define the standard
height function HstdWPdQ ! N by the formula

Hstd.Œp�/ D kpk; where p is the unique (up to a sign)
primitive integer representative of Œp�:

Here and elsewhere, k � k represents the max norm.

Remark 2.1. To see the difference between results for affine and projective spaces, note
that if �d WRd ! PdR is given by the formula �d .x/ D Œ.1; x/� and if B � Rd is a bounded
set, then �d jB is bi-Lipschitz and

Hstd.�d .r// ��;B H.r/ for all r 2 Qd
\ B: (2.1)

In particular, the Diophantine triples

Taff ´ .M;Qd
\M;Hstd/;

Tproj ´
�
�d .M/;PdQ \ �d .M/;Hstd

�
are “locally isomorphic”. However, both the bi-Lipschitz constant and the implied con-
stant of (2.1) depend on the chosen bounded set B . Thus concepts which are robust under
point-dependent multiplicative constants will not be affected by the transformation. For
example, whether or not a function is Dirichlet will be the same for the triples Taff and
Tproj, but it is conceivable that a function could be uniformly Dirichlet for the triple Tproj
but not for the triple Taff.

Because of this difference, it is perhaps worthwhile to give a justification for why
we are stating our results in projective space rather than affinely. The simplest answer to
this question is that the projective statements are closest to how the results are actually
proven. Moreover, in those cases where projective statements cannot be reformulated as
affine statements, we feel it is important to keep the full strength of the projective theorem.
To give a simple example, consider the classical Dirichlet theorem. By examining its
proof, we can deduce that

 1C1=d is uniformly Dirichlet for .PdR ;P
d
Q;Hstd/: (2.2)

This result is stronger than the classical (1.5), in the sense that simply translating (1.5)
to projective space along the lines indicated above does not yield (2.2), while translating
(2.2) to affine space yields (1.5) at least on the unit cube Œ0; 1�d , and applying translations
recovers the full force of (1.5).

To guide the reader, we have included affine corollaries after most of the main results.
Each affine corollary can be deduced from its corresponding result together with Re-
mark 2.1. We omit those affine corollaries which would merely be restatements of the
theorems with PdR replaced by Rd .
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In the following theorems, we fix d � 2 and let Q be a nonsingular (see Defini-
tion 3.2) quadratic form on RdC1 with integer coefficients. (See Remark 2.8 for a dis-
cussion of the singular case.) Denote by

LQ ´ ¹x 2 RdC1 W Q.x/ D 0º (2.3)

the light cone of Q, and let MQ D ŒLQ�. Manifolds MQ of this form are called nonsin-
gular rational quadric hypersurfaces.

We will denote by pR the R-rank of Q, defined as the dimension of any maximal
totally isotropic (with respect to Q) subspace of RdC1. Similarly, pQ will stand for
the Q-rank of Q, i.e. the dimension of any maximal totally isotropic rational subspace
of RdC1. Clearly, pR � pQ; see Section 3.2 for more details. To avoid trivialities, in our
theorems, we will make the standing assumption that pQ � 1 or, equivalently, that

PdQ \MQ ¤ ;: (2.4)

Note that Meyer’s theorem states that (2.4) is satisfied as soon as d � 4 and MQ ¤ ;.
Moreover, if d D 2 or 3, the Hasse–Minkowski theorem (e.g. [7, Theorem 1 on p. 61])
allows one to determine computationally whether (2.4) is satisfied for any given quadratic
form Q; cf. [7, Chapter 1, Section 7, in particular the remarks on the top of page 62].

For the affine corollaries to our theorems, we consider a quadratic polynomial

QaffWR
d
! R

with integer coefficients, and we letQWRdC1 ! R be the projectivization ofQaff, that is,
the unique homogeneous quadratic polynomial (i.e. quadratic form)Q on RdC1 such that
Q.1; x/ D Qaff.x/ for all x 2 Rd . Then MQaff , the zero set of Qaff, is equal to ��1

d
.MQ/.

We call MQaff a nonsingular rational quadric hypersurface whenever MQ is. Note that it
may be the case that MQ is singular due to “singularities at infinity” rather than singular-
ities at finite points; in this case, we still consider the hypersurface MQaff to be singular
despite its having no “singular points”.

The problem of intrinsic approximation on MQ was implicitly considered by Druţu
in [18] where the Hausdorff dimension of sets AMQ. / was computed. (Druţu actually
studied ambient approximation on MQ and, generalizing an earlier result of Dickinson
and Dodson [17, Lemma 1], showed that it reduces to intrinsic approximation if  is
assumed to decay fast enough.) The case Q.x/ D x21 C � � � C x

2
d
� x20 was recently con-

sidered in [34].4 One of the theorems from the latter paper asserts5 that there exists C > 0

(possibly depending on d ) such that, for all Œx� 2MQ and for all T � T0, there exists
Œr� 2 PdQ \MQ with

Hstd.Œr�/ � T and dist.Œr�; Œx�/ �
Cp

Hstd.Œr�/T
: (2.5)

4The article [34] is written in the affine setup; specifically, the manifold Sd�1 � Rd is dis-
cussed. Since this set is compact, Remark 2.1 gives an exact correspondence for Diophantine results
in Sd�1 and those in �d .Sd�1/ DMQ.

5Moshchevitin [46] has recently provided an elementary proof of this assertion for the case
MQaff D S2. His proof gives an explicit value for the constant C appearing in (2.5).
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In particular, it follows that  1 is uniformly Dirichlet for intrinsic approximation onMQ.
It was also shown in [34] that
(i)  1 is optimal – moreover, BAMQ. 1/ has full Hausdorff dimension,
(ii) for any  WN ! .0;1/ such that

the function q 7! q .q/ is nonincreasing;

the Lebesgue measure of AMQ. / is full (resp. zero) if and only if the sum
1X
qD1

qd�2 .q/d�1

diverges (resp. converges).
The last statement was also shown to imply, via the Mass Transference Principle of

Beresnevich and Velani [3, Theorem 2], a similar statement for Hausdorff measures.
In the present paper, we generalize all the aforementioned results to the case of arbi-

trary quadric hypersurfaces.

Theorem 5.1 (Dirichlet-type theorem for quadric hypersurfaces). Let MQ � PdR be a
nonsingular rational quadric hypersurface with pQ � 1. Then

(i) the function  1 is Dirichlet for intrinsic approximation on MQ.

(ii)  1 is uniformly Dirichlet if and only if pQ D pR.

(iii) The following are equivalent:

(A) pQ D pR D 1.

(B) (“Strong Dirichlet”) There exist C; T0 > 0 such that, for all Œx� 2MQ and for
all T � T0, there exists Œr� 2 PdQ \MQ such that (2.5) holds.

(C) The set

¹Œx� 2MQ W there exist C; T0 > 0 such that, for all T � T0;
there exists Œr� 2 PdQ \MQ satisfying (2.5)º

has positive �MQ -measure.

Affine Corollary. Let MQaff � Rd be a nonsingular rational quadric hypersurface with
pQ � 1. Then

(i) the function  1 is Dirichlet for intrinsic approximation on MQaff .

(ii) If pQ D pR, then  1 is uniformly Dirichlet on compact subsets of MQaff .

(iii) The following are equivalent:

(A) pQ D pR D 1.

(B) (“Strong Dirichlet”) For every compact set K �MQaff , there exist C; T0 > 0
such that, for all x 2 K and for all T � T0, there exists r 2 Qd \MQaff such
that

Hstd.r/ � T and dist.r; x/ �
Cp

Hstd.r/T
(2.6)
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(C) The set

¹x 2MQaff W there exist C; T0 > 0 such that, for all T � T0;
there exists r 2 Qd

\MQaff satisfying (2.6)º

has positive �MQaff
-measure.

As for the optimality of Theorem 5.1, as stated above, it suffices to show that the set

BAMQ ´ BAMQ. 1/

of intrinsically badly approximable points of MQ is nonempty. It follows from the Cor-
respondence Principle below (Lemma 4.2) that points in BAMQ correspond to bounded
orbits of some dynamical system (cf. Corollary 4.3). Then the results of [35] imply the
following theorem.

Theorem 4.5 (Jarník–Schmidt for quadric hypersurfaces). Let MQ � PdR be a nonsin-
gular rational quadric hypersurface. Then dim.BAMQ/ D dim.MQ/. In particular, the
Dirichlet function  1 is optimal.

(No changes needed for the affine corollary.)
Using the methods of [38], one can strengthen the conclusion of this theorem to say

that BAMQ is winning (in the sense of Schmidt). This conclusion also follows from
a much more general theorem in [21] which applies to all nondegenerate manifolds
and asserts that the set of intrinsically badly approximable points is hyperplane absolute
winning (see [9] for the definition).

Before stating the analogue of Khintchine’s theorem for intrinsic approximation on
quadric hypersurfaces, let us introduce the following definitions, which will be used in
Sections 6–9.

Definition 2.4. Call a function  regular if, for every (equivalently, for some) C1 > 1,
there exists C2 > 1 such that, for all q1; q2, if 1=C1 � q2=q1 � C1, then

1=C2 �  .q2/= .q1/ � C2:

This may be stated succinctly as follows: q1 �� q2 implies  .q1/ ��  .q2/.

Definition 2.5. The exceptional quadric hypersurface is the hypersurface MQ0 � P3R
defined by the exceptional quadratic form

Q0.x0; x1; x2; x3/ D x0x3 � x1x2: (2.7)

If a quadratic form QWR4 ! R is conjugate over Q to Q0, we will write Q � Q0. We
remark that Q � Q0 holds if and only if Q is a rational quadratic form in four variables
for which pQ D pR D 2 (see Lemma 3.6 for more detail).

The hypersurface MQ0 , which we study in detail in Section 9, has very interest-
ing properties for intrinsic Diophantine approximation. Note that if Q � Q0, then the
intrinsic Diophantine theory on MQ will be more or less the same as the intrinsic Dio-
phantine theory onMQ0 . Specifically, the rational equivalence betweenQ andQ0 defines
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a diffeomorphism between MQ and MQ0 which sends rational points to rational points
and preserves heights up to a multiplicative constant.

Theorem 6.3 (Khintchine-type theorem for quadric hypersurfaces). Let MQ � PdR be
a nonsingular rational quadric hypersurface with pQ � 1. Fix  WN ! .0;1/, and sup-
pose that  is regular and that the function q 7! q .q/ is nonincreasing. Then AMQ. /
has full Lebesgue measure if the series6´P

T22N T d�1 d�1.T /; Q œ Q0;P
T22N T 2 log logT 2.T /; Q � Q0;

(6.4)

diverges; otherwise, AMQ. / is Lebesgue null.

(No changes needed for the affine corollary.)
The appearance of two cases in Theorem 6.3 is due to nontrivial relations among the

collection of sets definingAMQ0 that are not present whenQ œ Q0. A discussion of these
relations, and their implications, is given in Section 9 (see particularly Remark 9.3).

Using the Mass Transference Principle of Beresnevich and Velani [3, Theorem 2],
one can deduce the divergence case of the Jarník–Besicovitch theorem for quadric hyper-
surfaces (Theorem 6.4). Combined with the convergence case (Corollary 6.2), this gives
a complete analogue of the Jarník–Besicovitch theorem when Q œ Q0, and a slight dis-
crepancy between the convergence and divergence conditions in the exceptional case. This
discrepancy, however, does not affect the computation of the Hausdorff dimension of the
set of intrinsically  c-approximable points for all c > 1, AMQ. c/; namely, Theorem 6.4
immediately implies

dim.AMQ. c// D
d � 1

c
: (2.8)

See Section 6 for a detailed discussion.

Remark 2.7. Let Hd denote the d -dimensional hyperbolic space. Given a quadric hyper-
surface MQ � PdR satisfying pQ D pR D 1, there exists a lattice � � Isom.Hd / and
a diffeomorphism ˆW @Hd !MQ such that if P� � @Hd is the set of parabolic fixed
points of � , thenˆ.P�/ D PdQ \MQ. This correspondence allows one to deduce the case
pQ D pR D 1 of all the results of this subsection as consequences of known theorems
about Diophantine approximation of lattices in Isom.Hd /; see Section 3.4 for more detail.

Remark 2.8. In the above theorems, the form Q is always assumed to be nonsingular
with integer coefficients. The latter assumption may be made without loss of generality
since, if Q is a quadratic form which is not a scalar multiple of any quadratic form with
integer coefficients, then PdQ \MQ is not dense in MQ; cf. Remark 5.11. On the other
hand, the nonsingularity assumption does involve a loss of generality. In Theorem 5.1,
the singular case can be deduced from the nonsingular case; cf. Remark 5.9. However,
this is not the case for Theorem 6.3. The use of the nonsingularity assumption appears
unavoidable in Theorem 6.3 since, if Q is singular, then the associated algebraic group
O.Q/ is not semisimple.

6Here and hereafter, 2N stands for ¹2n W n 2 Nº.



L. Fishman, D. Kleinbock, K. Merrill, D. Simmons 1056

The structure of the paper. In Section 3, we recall the necessary preliminaries from the
theory of quadratic forms. In Section 4, we state and prove the Correspondence Princi-
ple, which relates intrinsic Diophantine approximation on a nonsingular rational quadric
hypersurfaceMQ with dynamics on a certain space of arithmetic lattices. This correspon-
dence is similar to the one developed for ambient approximation by Davenport–Schmidt
and Dani; see [14–16,36,37] and generalizes the one used in [34]. In particular, we prove
(Corollary 4.3) that Œx� 2 BAMQ if and only if a certain trajectory on the corresponding
homogeneous space is bounded.

In Section 5, we prove Theorem 5.1 (Dirichlet for quadric hypersurfaces). In Sec-
tion 6, we use [37, Theorem 1.7] to reduce Theorem 6.3 (Khintchine for quadric hyper-
surfaces) to a statement about Haar measure on the space ofQ-arithmetic lattices (Propo-
sition 8.9). In Section 8, we use the generalized Iwasawa decomposition [39, Proposi-
tion 8.44] and the reduction theory for algebraic groups [41, Proposition 2.2] to prove
Proposition 8.9, thus completing the proof of Theorem 6.3. Finally, in Section 9, we ana-
lyze in detail the exceptional quadric hypersurface MQ0 and explain intuitively why the
converse to (the naive application of) Borel–Cantelli does not hold for intrinsic approxi-
mation on this hypersurface.

3. Preliminaries on quadratic forms and lattices

3.1. Orthogonality and nonsingularity

Let V be a vector space over R, and let QWV ! R be a quadratic form. We denote by
BQ the unique symmetric bilinear form on V satisfying

Q.x/ D BQ.x; x/ for all x 2 V:

We remark that BQ may be written explicitly in terms of Q via the formula

BQ.x; y/ D
Q.xC y/ �Q.x/ �Q.y/

2
:

Definition 3.1. Two elements x; y 2 V are Q-orthogonal if BQ.x; y/ D 0. The set of
all vectors which are Q-orthogonal to a given vector x will be denoted x?, and for any
S � V , we let S?´

T
x2S x?.

Definition 3.2. The quadratic formQ is called nonsingular if, for every x 2 V X ¹0º, we
have x? ¤ V or, equivalently, if the map x 7! BQ.x; � / is an isomorphism between V
and V �.

Note that a form Q is nonsingular if and only if its corresponding hypersurface MQ

is nonsingular as a manifold. Indeed, recall that MQ D ŒLQ�, where LQ is the light
cone of Q defined in (2.3). Then MQ is nonsingular if and only if LQ X ¹0º is non-
singular, which in turn happens if and only if rQ.x/ ¤ 0 for all x 2 LQ X ¹0º. Since
rQ.x/ D 2BQ.x; � /, we have rQ.x/ D 0 if and only if x? D RdC1. Thus MQ is non-
singular if and only if x? ¤ RdC1 for all x 2 LQ. Since x? D RdC1 implies x 2 LQ,
this proves the assertion.
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3.2. Totally isotropic subspaces; rank and renormalization

Throughout this subsection, fix K 2 ¹R;Qº and d � 1, and let QWRdC1 ! R be a non-
singular quadratic form whose coefficients lie in K. We say that a subspace E � RdC1

is a K-subspace if E has a basis consisting of elements of KdC1 or, equivalently, if E is
defined by equations whose coefficients lie in K. (In the literature, it is sometimes said
that E is defined over K.)

Definition 3.3. A subspace E � RdC1 is totally isotropic if QjE D 0. It is known (see
e.g. [19, Corollary 8.12]) that any two maximal totally isotropic K-subspaces of RdC1

have the same dimension. This common dimension is called the K-rank of Q and is
denoted by pK.

It turns out to be convenient to conjugate totally isotropic subspaces to canonical
subspaces, namely to subspaces of the form

Lm´

m�1X
iD0

Rei : (3.1)

By choosing the right conjugation map �, we may also guarantee that the conjugated
quadratic formR D Q ı � has a particularly nice form. We make this rigorous as follows.

Definition 3.4. For m � dC1
2

, a quadratic form R is m-normalized if there exists a qua-
dratic form zR on RdC1�2m such that

R.x/ D x0xd C x1xd�1 C � � � C xm�1xd�mC1 C zR.xm; : : : ; xd�m/:

The quadratic form zR will be called the remainder of R.

Proposition 3.5. Let E � RdC1 be a totally isotropic K-subspace of dimensionm. Then
m � dC1

2
, and there exists � 2 GLdC1.K/ such that

(i) ��1.E/ D Lm and

(ii) R´ Q ı � is m-normalized.

Proof. Since Q is nonsingular, we may identify E� with RdC1=E? via the map

xCE? 7! BQ.x; � /jE : (3.2)

Let .fi /m�1iD0 be a K-basis for E, and let .f0
d�i
CE?/m�1iD0 be its dual basis. Inductively,

define fd�i 2 f0
d�i
CE? by letting

fd�i D f0d�i �
i�1X
jD0

BQ.f0d�i ; fd�j /fj �
1

2
Q.f0d�i /fi :

Direct calculation shows that BQ.fd�i ; fd�j / D 0 for j � i . Thus E2´
Pm�1
iD0 Rfd�i

is also a totally isotropic K-subspace of RdC1. Note that, by construction, E2 is isomor-
phic toE� via the map (3.2). SinceE is totally isotropic,E �E? and thusE \E2D ¹0º.



L. Fishman, D. Kleinbock, K. Merrill, D. Simmons 1058

Let E3 D E? \E?2 D .E CE2/
?. Since QjECE2 is nonsingular, we have

.E CE2/ \E3 D ¹0º

and thus RdC1 D E ˚E2 ˚E3. It follows that

dim.E3/ D d C 1 � dim.E/ � dim.E2/ D d C 1 � 2m;

and in particular m � .d C 1/=2. Let .fi /d�miDm be a K-basis for E3, and let � be the
.d C 1/ � .d C 1/ matrix whose columns are given by f0; : : : ; fd so that �.ei / D fi for
i D 0; : : : ; d . Then � 2 GLdC1.K/ by the above-mentioned decomposition

RdC1 D E ˚E2 ˚E3:

Parts (i) and (ii) follow immediately.

Note that it follows from the above proposition that pR is always less than or equal
to dC1

2
. Also, if Q has coefficients in Q, then pQ �

d�3
2

unless pQ D pR. Indeed,
without loss of generality, suppose that Q is pQ-normalized, and let zQ be the remain-
der of Q. If pQ ¤ pR, then zQ represents zero over R. Since zQ is a quadratic form
in d C 1 � 2pQ variables, if d C 1 � 2pQ � 5, by Meyer’s theorem, zQ represents zero
over Q. This would contradict the definition of pQ. So d C 1 � 2pQ � 4; rearranging
gives pQ �

d�3
2

.
Another consequence of Proposition 3.5 is a nice characterization of quadratic forms

rationally equivalent to the exceptional quadratic formQ0 defined in (2.7). Recall that the
determinant det.Q/ of a quadratic form QWRdC1 ! R is the determinant of the linear
map �QWRdC1 ! .RdC1/� � RdC1 defined by x 7! BQ.x; � /.

Lemma 3.6. The following are equivalent for a rational quadratic form Q in four vari-
ables with pQ � 1:

(i) Q � Q0;

(ii) pQ D pR D 2;

(iii) det.Q/ is a square of a rational number.

Proof. Note that, for any � 2 GL4.R/, it holds that det.Q ı �/ D det.Q/ det.�/2. In par-
ticular, if Q1 and Q2 are equivalent over Q, then det.Q1/ is a square if and only if
det.Q2/ is. Thus the implication (i) ) (iii) follows immediately upon calculating that
det.Q0/ D 1=16.

For the implication (iii)) (ii), suppose that det.Q/ is a square. By Proposition 3.5,
we may without loss of generality assume that Q is 1-normalized. In this case, we have
det.Q/ D �.1=4/ det. zQ/ where zQ is the remainder of Q. By the well-known canonical
form of quadratic forms, we may without loss of generality assume that

zQ.x/ D a1x21 C a2x
2
2 for some a1; a2 2 Q:

Then �det. zQ/D�a1a2 is a square. Thus b´ .0; a2;
p
�a1a2; 0/ 2Q4, and Re0CRb

is a totally isotropic subspace of dimension 2, proving that pQ D 2.
Finally, (ii)) (i) is a straightforward consequence of Proposition 3.5.
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A convenient fact aboutm-normalized quadratic forms is that any element of GLm.R/
extends to an element of SLdC1.R/ which preserves everym-normalized quadratic form.
Specifically, given a quadratic form RWRdC1 ! R, let

O.R/ D ¹g 2 SL˙dC1.R/ W R ı g D Rº:

Then a direct computation yields the following.

Observation 3.7. Fix m � dC1
2

and � 2 GLm.R/. Define the reverse of the matrix �
to be the matrix whose .i; j /th entry is equal to the .m � j;m � i/th entry of ��1, and
denote this matrix by y�. Visually, y� is ��1 flipped along the northeast-southwest diagonal.
Let

g� D

24� IdC1�2m
y�

35 : (3.3)

Then g� 2 O.R/ for every m-normalized quadratic form R.

Next, for each m � dC1
2

and t 2 Rm, let

gt D gdiag.e�t0 ;:::;e�tm�1 / D

266666666664

e�t0

: : :

e�tm�1

IdC1�2m
etm�1

: : :

et0

377777777775
: (3.4)

Of particular importance will be the case m D 1, in which case

gt D

24e�t Id�1
et

35 : (3.5)

A simple computation immediately yields the following observation, which will turn
out to be quite useful.

Observation 3.8. For t � 0 and x 2 RdC1,

dist.x;L1/ � kgt .x/k; (3.6)

where L1 is as in (3.1).

3.3. The space of lattices; Mahler’s compactness criterion

As stated in the introduction, our main tool for proving theorems concerning intrinsic
approximation on MQ is a correspondence principle between approximations of a point
in MQ and dynamics in the space of lattices. We will describe this correspondence prin-
ciple in Section 4 below, while here we introduce the space of lattices which we are
interested in, namely the space of Q-arithmetic lattices.
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Definition 3.9. Fix a quadratic form QWRdC1 ! R. A lattice ƒ � RdC1 is Q-arith-
metic if Q.ƒ/ � Z. (Symmetrically, we may also say that Q is ƒ-arithmetic.) The set of
Q-arithmetic lattices will be denoted by �Q, while the set of all lattices in RdC1 will be
denoted by �d .

Observation 3.10. A quadratic form is ZdC1-arithmetic if and only if its coefficients are
integral.

Clearly, �Q is preserved by the action of O.Q/. If ƒ 2 �Q is fixed, we denote its
stabilizer by O.QIƒ/ and its orbit by �Q;ƒ. We will implicitly identify �Q;ƒ with the
homogeneous space O.Q/=O.QIƒ/ via the map gO.QIƒ/ 7! gƒ. This automatically
endows �Q;ƒ with a topological structure and, since O.Q/ is unimodular and O.QIƒ/
is discrete, a Haar measure, which we will denote by �Q;ƒ.

Viewing�Q;ƒ as a homogeneous space could conceivably give it a different topology
than viewing it as a subset of �d , which has its own topology from its identification with
GLdC1.R/=GLdC1.Z/ coming from the map gGLdC1.Z/ 7! g.ZdC1/. Fortunately, it
turns out that these topologies are identical.

Proposition 3.11. The inclusion map �Q;ƒ ! �d is proper and continuous when both
spaces are endowed with the topologies coming from the identification with their corre-
sponding homogeneous spaces. Consequently, the topology on �Q;ƒ is unambiguous.

Proof. The continuity of the inclusion map follows directly from the continuity of the
inclusion map from O.Q/ to GLdC1.R/. Let us show that the inclusion map is proper.
Let .ƒn/11 be a sequence in �Q;ƒ converging to a point ƒ0 2 �d . Then there exist

GLdC1.R/ 3 gn ! g0 2 GLdC1.R/

such thatƒn D gn.ZdC1/ for all n � 0. This implies that, for all n � 1,Qn´ Q ı gn is
a ZdC1-arithmetic quadratic form, and Qn ! Q0´ Q ı g0. Since the space of ZdC1-
arithmetic quadratic forms is discrete (being identical to the space of quadratic forms
with coefficients in Z), we have Qn D Q0 for all sufficiently large n. (Thus a posteri-
ori Q0 is ZdC1-arithmetic, or equivalently ƒ0 2 �Q.) For n satisfying Qn D Q0, we
have hn´ gng

�1
0 2 O.Q/; in particular, ƒ0 D h�1n .ƒn/ 2 �Q;ƒ. On the other hand,

ƒn D hnƒ0 and hn ! h0 D id; this implies that ƒn ! ƒ0 in the topology on �Q;ƒ
coming from its identification with the homogeneous space O.Q/=O.QIƒ/.

We now recall Mahler’s famous compactness criterion and deduce an analogue in the
context of quadratic forms. For ƒ 2 �d , let

ı.ƒ/´ min
p2ƒX¹0º

kpk: (3.7)

Theorem 3.12 (Mahler’s compactness criterion [42, Theorem 2]). A set S � �d is pre-
compact if and only if ı is bounded from below on S , and the covolumes of all lattices
in S are uniformly bounded from above.

For ƒ 2 �Q, let
ıQ.ƒ/ D min

p2ƒ\LQX¹0º
kpk:
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We let ıQ.ƒ/ D1 if ƒ \ LQ X ¹0º D ;.

Observation 3.13. If we let

kQk D max
kxkDkykD1

jBQ.x; y/j;

then min.ıQ; 1=
p
kQk/ � ı � ıQ.

Proof. For p 2 ƒ X LQ, kpk �
p
jQ.p/j=kQk � 1=

p
kQk.

Corollary 3.14 (Analogue of Mahler’s compactness criterion). Fix ƒ 2 �Q. Then a set
S � �Q;ƒ is precompact if and only if ıQ is bounded from below on S .

Proof. By Observation 3.13, ıQ is bounded from below on S if and only if ı is bounded
from below on S . But by Theorem 3.12, since the covolumes of all lattices in �Q;ƒ are
the same, ı is bounded from below if and only if S is precompact in the topology of �d .
By Proposition 3.11, this occurs if and only if S is precompact in the topology of �Q;ƒ.
(Here we use not only the fact that the topology on�Q;ƒ is the one induced from�d , but
also the fact that the inclusion map is proper, and consequently�Q;ƒ is closed in�d .)

3.4. Relation to Kleinian lattices

In this subsection, we describe the relation between the intrinsic Diophantine approxima-
tion of a quadric hypersurface MQ satisfying pQ D pR D 1 and the approximation of
points in the boundary of d -dimensional hyperbolic space Hd by parabolic fixed points
in a lattice � � Isom.Hd / which depends on the quadric hypersurface MQ. Since the
latter situation is well-studied, this correspondence can be used to immediately prove the
theorems of Section 2 in the case pQ D pR D 1. (However, our proofs of the theorems of
Section 2 in the general case are not dependent on assuming pR > 1, so this subsection
can be skipped without any loss of generality.)

Let QWRdC1 ! R be a quadratic form with integer coefficients satisfying

pQ D pR D 1:

Then the signature of Q is either .d; 1/ or .1; d/. Without loss of generality, we will
suppose that its signature is .d; 1/. The hyperboloid model of hyperbolic geometry is the
set

Hd
´ ¹x 2 RdC1 W Q.x/ D �1º

with the Riemannian metric QjHd (its positive definiteness is guaranteed by the fact that
the signature of Q is .d; 1/). The hyperbolic distance is given by the formula

cosh dist.x; y/ D jBQ.x; y/j:

Note that, by Sylvester’s law of inertia, up to isometry, the space .Hd ; dist/ does not
depend on Q, but only on d . For the equivalence of the hyperboloid model with other
standard models of hyperbolic geometry, see e.g. [12]. The boundary of Hd , denoted
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@Hd , is defined to be the boundary of ŒHd � in PdR . Observe that @Hd DMQ. A horoball
in Hd is a set of the form

¹x 2 Hd
W BŒr�.z; x/ > tº;

where z 2 Hd , Œr� 2 @Hd , t 2 R, and BŒr� denotes the Busemann function

BŒr�.z; x/ D lim
Œy�!Œr�

Œdist.y; z/ � dist.y; x/�:

Such a horoball is said to be centered at the point Œr�. The isometry group of Hd is given
by

Isom.Hd / D O.Q/:

Since Q has integer coefficients, the subgroup

� ´ O.QIZ/´ O.Q/ \ GLdC1.Z/

is a lattice in O.Q/ (see [6, Theorem 7.8]). Let P� � @Hd denote the set of parabolic
fixed points of � .

We now state the relation between intrinsic approximation of MQ and approximation
of @Hd by P� .

Proposition 3.15. The following statements hold.

(i) There exists a �-invariant disjoint family of horoballs .HŒr�/Œr�2PdQ\MQ
such that, for

each Œr� 2 PdQ \MQ, HŒr� is centered at Œr� and

Hstd.Œr�/ �� edist.z;HŒr�/; (3.8)

where z 2 Hd is fixed.

(ii) PdQ \MQ D P� .

Using Proposition 3.15, one may translate [52, Theorems 1 and 4], [51, Theorem C],
and [44, Theorem 2] (see also [24] and the references therein for subsequent generaliza-
tions) into the context of quadratic forms, yielding the results of Section 2 in the case
pQ D pR D 1. Details are left to the reader.

Proof of (i). Fix " > 0, and for each Œr� 2 PdQ \MQ, let

HŒr� D ¹x 2 Hd
W jBQ.x; r/j < "º;

where r is the unique primitive integral representative of Œr�. The fact thatHŒr� is a horoball
centered at Œr� follows from the following well-known formula for the Busemann function
in the hyperboloid model:

BŒr�.x; y/ D log
jBQ.x; r/j
jBQ.y; r/j

:

Since PdQ \MQ and Q are both invariant under � , the collection .HŒr�/Œr�2PdQ\MQ
is

clearly �-invariant. Next, we will show that the collection .HŒr�/Œr�2PdQ\MQ
is disjoint

for " sufficiently small. Indeed, suppose x 2 HŒr1� \HŒr2�, and apply g 2 O.Q/ such
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that g.x/ D w, where w 2 Hd is fixed. Then jBQ.w; g.ri //j < ", where ri is the prim-
itive integral representative of Œri �. On the other hand, since Q has signature .d; 1/ and
Q.w/ D �1, we have

jBQ.w; r/j �� krk for all r 2 LQ: (3.9)

Thus kg.ri /k .� ", and so jBQ.r1; r2/j .� kQk"2. Thus jBQ.r1; r2/j < 1
2

for " suffi-
ciently small. On the other hand, BQ.r1; r2/ 2 Z=2 since Q has integer coefficients, so
BQ.r1; r2/ D 0. Since pQ D 1, this implies Œr1� D Œr2�.

As the horoballs .HŒr�/Œr�2PdQ\MQ
are disjoint open subsets of the connected set Hd ,

there exists z 2 Hd X
S
Œr�HŒr�. Now fix Œr� 2 PdQ \MQ, and we will demonstrate (3.8).

Letting x 2 @HŒr� be arbitrary, we calculate

edist.z;HŒr�/ D eBŒr�.z;x/ D
jBQ.z; r/j

"
:

Combining with (3.9) yields (3.8).

Proof of (ii). Suppose that Œr� is a parabolic fixed point of � , say g.Œr�/ D Œr� for some
parabolic g 2 � . Then the line representing Œr� is precisely the set

¹x 2 RdC1 W g.x/ D xº;

which is a rational subspace of RdC1. Consequently, Œr� 2 PdQ \MQ.
Conversely, suppose that Œr� 2 PdQ \MQ. As above, we fix z 2 Hd X

S
Œr�HŒr�. Since

the collection .HŒr�/Œr�2PdQ\MQ
is �-invariant, this implies g.z/ … HŒr� for all g 2 � . In

particular, Œr� cannot be a conical limit point of � (see e.g. [8, Section 3.2] for the def-
inition). But since � is a lattice, every point of @Hd is either a conical limit point or
a parabolic fixed point (e.g. [8, Section 4]). Thus Œr� 2 P� .

4. The correspondence principle

In this section, we introduce the correspondence principle alluded to in the introduction.
It is an intrinsic approximation analogue of the so-called Dani correspondence for ambient
approximation [14–16, 36, 37]. A special case can be found in [34, Theorem 1.5].

Fix d � 2, and let QWRdC1 ! R be a nonsingular quadratic form with integer coef-
ficients. Suppose that pQ � 1. By Proposition 3.5, there exists a matrix � 2 GLdC1.Q/
such that R´ Q ı � is pQ-normalized. Let ƒ� D ��1.ZdC1/. Note that ƒ� is com-
mensurable with ZdC1 and that ƒ� 2 �R. Moreover, the Q-ranks of Q and R are iden-
tical, and the same goes for the R-ranks, so denoting these ranks by pQ and pR will not
cause ambiguity.

Consider the maps �1WO.R/!MQ and �2WO.R/! �R;ƒ� defined by

�1.g/ D � ı g.Œe0�/;

�2.g/ D g
�1ƒ� D .� ı g/

�1.ZdC1/:
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Now fix g 2 O.R/, and let

Œx� D �1.g/ and ƒ D �2.g/: (4.1)

The first version of the correspondence principle gives a relation between the following
entities:
(A) Rational points in PdQ \MQ which are close to Œx�.
(B) Points in ƒpr \ LR which are close to L1. Here ƒpr denotes the set of primitive

vectors of ƒ, and L1 D Re0 is as in (3.1).
(C) Pairs .t;q/, where q 2 gtƒpr \ LR is close to ¹0º.

Lemma 4.1 (Correspondence principle, form 1). Let g, Œx�, and ƒ be as in (4.1). Then

(i) the map p 7! � ı g.Œp�/ is a bijection between ƒpr \ LR and PdQ \MQ.

(ii) Fix p 2 ƒpr \ LR, and let Œr� D � ı g.Œp�/. Then

dist.Œr�; Œx�/ ��;g
dist.p;L1/

kpk
and Hstd.Œr�/ ��;g kpk: (4.2)

In particular, if  W .0;1/! .0;1/ is a regular function (cf. Definition 2.4), then

dist.Œr�; Œx�/
 ıHstd.Œr�/

��;g; 
dist.p;L1/

kpk .kpk/
: (4.3)

In each case, the implied constant can be made independent of g if g is constrained
to lie in a bounded subset of O.R/.

(iii) Fix p 2 ƒ \ LR X ¹0º such that jp0j D kpk, i.e. jp0j � dist.p;L1/. For t � 0,

max
�

dist.p;L1/;
kpk
et

�
� kgt .p/k

.� max
�

dist.p;L1/;
kpk
et
;
et dist.p;L1/

2

kpk

�
: (4.4)

In particular, letting t .p/ D log.kpk=dist.p;L1//, we have

kgt.p/.p/k �� dist.p;L1/: (4.5)

Proof. Part (i) is straightforward. Regarding part (ii), formula (4.2) is perhaps elucidated
by the calculation

dist.Œr�; Œx�/ D dist.� ı g.Œp�/; � ı g.Œe0�// ��;g dist.Œp�; Œe0�/ ��
dist.p;L1/

kpk
;

Hstd.Œr�/ D k� ı g.p/k ��;g kpk:

Formula (4.3) follows from (4.2) together with the regularity of  ; asHstd.Œr�/ ��;g kpk,
we have  ıHstd.Œr�/ ��;g  .kpk/, and (4.3) follows upon combining with the first part
of (4.2).

We proceed to the proof of (iii). The first inequality of (4.4) is an immediate con-
sequence of the definition of gt . To show the second inequality of (4.4), let q D gt .p/,
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and write q D .q0; : : : ; qd /. Then jq1j; : : : ; jqd�1j � dist.p;L1/, while jq0j D kpk=et .
To bound jqd j, we use the fact that q 2 LR, which means that

R.q/ D q0qd C zR.q1; : : : ; qd�1/;

where zR is the remainder of R. Rearranging, we have

jqd j D
j zR.q1; : : : ; qd�1/j

jq0j
�
k zRk � k.q1; : : : ; qd�1/k

2

jq0j

.�
dist.p;L1/

2

jq0j
D
et dist.p;L1/

2

kpk
:

The second version of the correspondence principle depends on  W .0;1/! .0;1/,
and may be stated as follows.

Lemma 4.2 (Correspondence principle, form 2). Let g, Œx�, and ƒ be as in (4.1), and
assume that Œx� is irrational (equivalently, that ƒ \L1 D ¹0º). Let  W .0;1/! .0;1/

be a regular function such that the map q 7! q .q/ is nonincreasing and tends to zero.
Then

lim inf
Œr�!Œx�

Œr�2PdQ\MQ

dist.Œr�; Œx�/
 ıHstd.Œr�/

��;g; lim inf
Œp�!Œe0�

p2ƒpr\LR

dist.p;L1/

kpk .kpk/

��; lim inf
t!1

e�t

 .etıR.gtƒ//
: (4.6)

Proof. The first asymptotics follows directly from (i) and (ii) of Lemma 4.1. Using the
function ‰.q/´ q .q/, the second asymptotics can be rewritten in a more convenient
form:

lim inf
Œp�!Œe0�

p2ƒpr\LR

dist.p;L1/

‰.kpk/
�� lim inf

t!1

ıR.gtƒ/

‰.etıR.gtƒ//
: (4.7)

To demonstrate the . direction of (4.7), for each t � 0, choose pt 2 ƒpr \ LR such that
ıR.gtƒ/ D kgt .pt /k. Then by (4.4), we have

dist.pt ;L1/ � ıR.gtƒ/ and kptk � etıR.gtƒ/

and thus
dist.pt ;L1/

‰.kptk/
�

ıR.gtƒ/

‰.etıR.gtƒ//
: (4.8)

Here we have used the fact that the function ‰ is nonincreasing. Next, suppose we have
a sequence tk !1 such that

lim
k!1

e�tk

 .etkıR.gtƒ//
<1:

Since ‰.q/! 0 as q !1, it follows that ıR.gtkƒ/! 0. In particular,

dist.ptk ;L1/! 0:
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Since ƒ \L1 D ¹0º, this implies that the set ¹ptk W k 2 Nº is infinite. Combining with
(4.8) yields the . direction of (4.7).

To demonstrate the & direction of (4.7), suppose that pk 2 ƒpr \ LR is a sequence
such that Œpk �! Œe0�. For each k, let tk D t .pk/ be defined as in (iii) of Lemma 4.1.
Since Œpk �! Œe0�, we have tk !1. On the other hand, by (4.5), we have

ıR.gtkƒ/ � kgtk .pk/k �� dist.pk ;L1/;

etkıR.gtkƒ/ .� etk dist.pk ;L1/ D kpkk;

and so
ıR.gtkƒ/

‰.etıR.gtkƒ//
.�

dist.pk ;L1/

‰.kpkk/
:

Letting k !1 finishes the proof.

The next corollary is a direct analogue of Dani’s correspondence between bounded
orbits and badly approximable vectors/matrices [14, Theorem 2.20].

Corollary 4.3. Let g, Œx�, and ƒ be as in (4.1). Then the following are equivalent.

(A) Œx� is intrinsically badly approximable, i.e. Œx� 2 BAMQ .

(B) infp2ƒ\LQX¹0º dist.p;L1/ > 0.

(C) The orbit .gtƒ/t�0 is bounded in �R.

Proof. Clearly, all the above statements are false if Œx� is irrational. Otherwise, let C be
the class of all regular functions  such that the map q 7! q .q/ is nonincreasing and
tends to zero. Then (A) is equivalent to the assertion that the left-hand side of (4.6) is
positive for all  2 C , (B) is equivalent to the assertion that the middle of (4.6) is positive
for all 2 C , and (C) is equivalent (by Corollary 3.14) to the assertion that the right-hand
side of (4.6) is positive for all  2 C .

Remark 4.4. It is somewhat annoying that Lemma 4.2 requires the assumption that
q .q/! 0 as q !1, so that the Dirichlet function  D  1 is ruled out. (If we were
allowed to use  D  1, then the proof of Corollary 4.3 could be made even simpler –
just consider  D  1 rather than all functions  2 C .) However, this assumption is nec-
essary, as can be seen as follows. Arguing as in [34, Proof of Corollary 3.5], one can
show that there exists C > 0 such that ıR.ƒ/ � C for all ƒ 2 �R;ƒ� . (Indeed, other-
wise, one can take a sequence ƒn 2 �R;ƒ� with ıR.ƒn/!1; such a sequence cannot
have a convergent subsequence, yet it is precompact in view of Corollary 3.14.) This C is
a uniform upper bound on the right-hand side of (4.6) when  D  1. However, we know
that, when pQ ¤ pR, then there is no uniform upper bound on the left-hand side of (4.6);
this follows from Theorem 5.1 (ii) below. Thus the left- and right-hand sides cannot be
asymptotic.7

7A closer analysis shows that, when  D  1, the left- and right-hand sides of (4.6) are not
necessarily asymptotic even when both of them are close to 0.
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Using Corollary 4.3, we can now prove Theorem 4.5.

Theorem 4.5. Let MQ � PdR be a nonsingular rational quadric hypersurface. Then we
have dim.BAMQ/ D dim.MQ/. In particular, the Dirichlet function  1 is optimal.

Proof. First observe that BAMQ DMQ if pQ D 0; thus it suffices to consider the case
pQ � 1. Let BA�R � �R denote the set of lattices in �R whose orbit under the gt flow
is bounded. By [35, Theorem 5.2], we have dim.BA�R/ D dim.�R/. On the other hand,
by Corollary 4.3, we have B ´ ��12 .BA�R/ D �

�1
1 .BAMQ/.

Since �2 is a fibration whose fibers are isomorphic to Stab.ƒ�/, the set

B D ��12 .BA�R/ � O.R/

has the same local structure as the product BA�R � Stab.ƒ�/ � �R � Stab.ƒ�/. Now,
since Stab.ƒ�/ is a manifold, its Hausdorff dimension and upper box dimension are equal.
(We refer to [20, p. 38] for the definition of upper box dimension.) So, by [20, Corol-
lary 7.4], we have dim.A � Stab.ƒ�// D dim.A/C dim.Stab.ƒ�// for allA � �R. Tak-
ing the cases A D BA�R and A D �R and using the fact that Hausdorff dimension is
a local property, we have

dim.B/ D dim.BA�R/C dim.Stab.ƒ�//;
dim.O.R// D dim.�R/C dim.Stab.ƒ�//:

A similar argument gives

dim.B/ D dim.BAMQ/C dim.Stab.Œe0�//;
dim.O.R// D dim.MQ/C dim.Stab.Œe0�//:

Thus, since dim.BA�R/ D dim.�R/, we have dim.BAMQ/ D dim.MQ/.

Under the assumption that q .q/! 0 as q !1, Lemma 4.2 can be used to dynam-
ically describe the sets AMQ. / and WAMQ. /.

Corollary 4.6. Let  W .0;1/! .0;1/ be a regular continuous function such that the
map q 7! q .q/ is nonincreasing and tends to zero, let r .t/´ e�t �1.e�t / (this is
well defined for large enough t ), and let

A.r ;�R;ƒ�/´¹ƒ 2�R;ƒ� W ıR.gtƒ/� r .t/ for an unbounded set of t � 0º: (4.9)

Then, for every compact set K � O.R/, there exists C > 0 (depending on  and K)
such that

��11 .AMQ. =C// \K � ��12 .A.r ; �R;ƒ�// \K � ��11 .AMQ.C // \K:

Consequently, if g, Œx�, and ƒ are as in (4.1), then Œx� 2WAMQ. / X .P
d
Q \MQ/ if and

only if
ƒ 2WA.r ; �R;ƒ�/´

\
">0

A."r ; �R;ƒ�/
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Proof. Given g 2 O.R/ and Œx�; ƒ as in (4.1), write C.Œx�/ for the left-hand side of (4.6)
and write C.ƒ/ for the right-hand side of (4.6). Then

C.Œx�/ < ˛ H) Œx� 2 AMQ.˛ / H) C.Œx�/ � ˛
and

C.ƒ/ < 1 H) ƒ 2 A.r ; �R;ƒ�/ H) C.ƒ/ � 1:

The conclusion follows. The “consequently” part follows from the regularity of  and the
elementary computation r" .t/ D e�t �1.e�t="/.

In applying the correspondence principle, the following observations happen to be
useful.

Observation 4.7. There exists a compact set K � O.R/ such that �1.K/ DMQ.

Proof. This follows from the facts that MQ is compact, O.R/ is locally compact, and �1
is open and surjective.

We remark that the corresponding assertion is not true for �2 since �R;ƒ� is not
compact by Corollary 3.14.

Now let �R and �R;ƒ� denote Haar measures on O.R/ and �R;ƒ� , respectively.

Observation 4.8. The measures8 �MQ and �1Œ�R� are mutually absolutely continuous.
The measures �R;ƒ� and �2Œ�R� are mutually absolutely continuous.

We remark that Corollary 4.3, the ergodicity of the gt -action on�R;ƒ� , and the above
observation allow one to conclude that the set BAMQ is �MQ -null. This is a special case
of a more general Khintchine-type result – namely Theorem 6.3.

5. A Dirichlet-type theorem

In this section, we prove the following.

Theorem 5.1 (Dirichlet-type theorem for quadric hypersurfaces). Fix d � 2, and letMQ

be a nonsingular rational quadric hypersurface in PdR with pQ � 1. Then

(i)  1 is Dirichlet for intrinsic approximation on MQ.

(ii)  1 is uniformly Dirichlet if and only if pQ D pR.

(iii) The following are equivalent:

(A) pQ D pR D 1.

(B) There exist C; T0 > 0 such that, for all Œx� 2MQ and for all T � T0, there
exists Œr� 2 PdQ \MQ such that

Hstd.Œr�/ � T and dist.Œr�; Œx�/ �
Cp

Hstd.Œr�/T
: (5.1)

8Note that the measures �1Œ�R� and �2Œ�R� are not � -finite; in fact, they are ¹0;1º-valued.
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(C) The set

¹Œx� 2MQ W there exist C; T0 > 0 such that, for all T � T0;
there exists Œr� 2 PdQ \MQ satisfying (5.1)º

has positive �MQ -measure.

Except for the forward direction of (ii) (i.e. uniformly Dirichlet implies pQ D pR),
which we will prove separately (see p. 1075), all of these results are consequences of the
following theorem together with the correspondence principle,9 namely Lemma 4.1 (i), (ii)
and Observations 4.7 and 4.8. Details are left to the reader.

Theorem 5.2. Fix d � 2, and let R be a nonsingular quadratic form on RdC1 with
pQ � 1 which is pQ-normalized. Fix ƒ� 2 �R commensurable to ZdC1. Then

(i) for all ƒ 2 �R;ƒ� , there exists Cƒ > 0 such that

dist.p;L1/ � Cƒ (5.2)

holds for infinitely many p 2 ƒ \ LR X ¹0º.
(ii) If pQ D pR, then the constant Cƒ in (5.2) can be made independent of ƒ.

(iii) The following are equivalent:

(A) pQ D pR D 1.

(B0) There exist C; T0 > 0 such that, for all ƒ 2 �R;ƒ� and for all T � T0, there
exists p 2 ƒ \ LR X ¹0º with kpk � T such that

dist.p;L1/ � C

r
kpk
T
: (5.3)

(C0) The set

¹ƒ 2 �R;ƒ� W there exist C; T0 > 0 such that, for all T � T0;
there exists p 2 ƒ \ LR X ¹0º satisfying kpk � T and (5.3)º

has positive �R;ƒ� -measure.

Proof of (i). We require the following preliminary result.

Lemma 5.3. LetQ be a nonsingular quadratic form on RdC1, and fixƒ 2 �Q satisfying
ƒ \ LQ X ¹0º ¤ ;. Then

Span.ƒ \ LQ/ D RdC1:

9However, the correspondence principle cannot be used to deduce Theorem 5.2 from Theo-
rem 5.1 (or similarly, Theorem 6.5 from Theorem 6.3), due to the lack of an analogue of
Observation 4.7 for �2. Similar considerations prevent the forwards direction of Theorem 5.1 (ii)
from being deduced from an appropriate analogue in the space of lattices.
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Proof. After applying a matrix (namely one whose columns form a basis of ƒ), we may
without loss of generality assume that ƒ D ZdC1. The assumption ƒ \ LQ X ¹0º ¤ ;
will then imply that pQ � 1, and by applying Proposition 3.5, we may without loss of
generality assume that Q is 1-normalized and ƒ is commensurable with ZdC1. Then,
clearly,

r0e0; rd ed 2 ƒ \ LQ for some nonzero r0; rd 2 Q: (5.4)

On the other hand, for each i D 1; : : : ; d � 1, we have

ei CQ.ei /e0 � ed 2 LQ

by direct calculation. Since ƒ is Q-arithmetic and commensurable with ZdC1, it follows
that

ri .ei CQ.ei /e0 � ed / 2 ƒ

for some nonzero ri 2 Q; hence, in view of (5.4), ei 2 Span.ƒ \ LQ/. C

For t � 0, let gt 2 O.R/ be as in equation (3.5). Applying Corollary 3.14 to the
lattices .gtƒ/t�0, we see that one of the following two cases holds.

Case 1: There exists a sequence tn!1 and a sequence gtn.ƒ\LR/ 3 gtn.pn/! 0.
In this case, for all sufficiently large n, (3.6) implies that pn satisfies (5.2). If the set
¹pn W n 2 Nº is infinite, this completes the proof. Otherwise, there exists p 2 ƒ such that
pn D p for arbitrarily large n. In particular, we have gtnk .p/! 0 for some increasing
sequence .nk/11 . Comparing with (3.5), we see that p 2 L1. Since the vectors np (n 2 Z)
all satisfy (5.2), this completes the proof.

Case 2: There exists a sequence tn !1 such that gtnƒ! zƒ 2 �R;ƒ� . In this case,
by Lemma 5.3, we have zƒ \ LR ª L?1 , where L?1 denotes the set of vectorsQ-orthogo-
nal to e1 as in Definition 3.1. Thus we may fix zp 2 zƒ \ LR XL?1 . Since gtnƒ! zƒ,
there is a sequence gtnƒ 3 gtn.pn/! zp. Let Cƒ D 2kzpk; then for all sufficiently large n,
(3.6) implies that pn satisfies (5.2). If the set ¹pn W n 2 Nº is infinite, this completes the
proof. Otherwise, there exists p 2 ƒ such that pn D p for arbitrarily large n. In particular,
etnk dist.p;L?1 /! dist.zp;L?1 / ¤ 0 for some increasing sequence .nk/11 . This is clearly
a contradiction.

Proof of (ii). We first need to define the codiameter of a discrete subgroup.

Definition 5.4. The codiameter of a discrete subgroup � � RdC1, written Codiam.�/,
is the diameter of the quotient space Span.�/=� .

We require the following lemma.

Lemma 8.11. There exists C1 > 0 such that, for every ƒ 2 �R;ƒ� , there exists a totally
isotropic ƒ-rational10 subspace V � RdC1 of dimension pQ satisfying

Codiam.V \ƒ/ � C1:

10A subspace V � RdC1 is ƒ-rational if Span.ƒ \ V / D V .
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The proof of Lemma 8.11 requires reduction theory, so we delay its proof until Sec-
tion 8.

Let C1 be as in Lemma 8.11. Fix ƒ 2 �R;ƒ� . For each t � 0, applying Lemma 8.11
to the lattice gtƒ 2 �R;ƒ� yields a totally isotropic gtƒ-rational subspace Vt � RdC1

of dimension pQ satisfying

Codiam.Vt \ gtƒ/ � C1: (5.5)

At this point, we divide the proof into two cases.
Case 1: L1 � Vt for some t � 0. In this case, since the set

S ´ ¹x 2 g�t .Vt / W dist.x;L1/ � C1º

has infinite volume in the vector space g�t .Vt /, by Minkowski’s theorem, it contains
infinitely many lattice points p 2 ƒ \ S . Note that each such p is inLR since Vt is totally
isotropic. On the other hand, (5.2) is clearly satisfied (with Cƒ D C1 independent of ƒ).
This completes the proof.

Case 2: L1 ª Vt for all t � 0. Fix t � 0. Note that if Vt � L?1 , then Vt CL1 is
a totally isotropic vector space of dimension pQ C 1 D pR C 1 > pR, a contradiction.
Thus Vt ª L?1 . Fix a unit vector vt 2 Vt which is perpendicular to Vt \L?1 with respect
to the Euclidean quadratic form EdC1 D

Pd
0 x

2
i . By (5.5), there exists gt .pt / 2 Vt \ gtƒ

satisfying kgt .pt / � 2C1vtk � C1. Then (3.6) implies that pn satisfies (5.2), Cƒ D 3C1
independent of ƒ. If the set ¹pt W t � 0º is infinite, this completes the proof. Otherwise,
there exists p 2 ƒ such that pt D p for arbitrarily large t . However, for all t , we have
gt .pt / 2 Vt X .Vt \L?1 /D Vt XL?1 , and thus p …L?1 . This implies that kgt .p/k ! 1,
a contradiction.

Proof of (iii). For the purpose of this proof, we introduce a new system of coordinates on
RdC1. For x 2 RdC1, let

H.x/ D jx0j; W.x/ D k.x1; : : : ; xd�1/k; L.x/ D jxd j:

We will think of the letters H , W , and L as being short for “height”, “width”, and
“length”, respectively. Note that, for t 2 R,

H.gtx/ D e�tH.x/; W.gtx/ D W.x/; L.gtx/ D etL.x/:

In other words, for t � 0, applying gt decreases height and increases length while leaving
width fixed. Moreover,

kxk D max.H.x/;W.x/; L.x//;
dist.x;L1/ D max.W.x/; L.x//:

If x 2 LR, then
H.x/L.x/ D j zR.x1; : : : ; xd�1/j � k zRkW 2.x/; (5.6)

where zR is the remainder of R.
We will now rephrase the Diophantine condition on a lattice ƒ 2 �R;ƒ� described

in (B0) and (C0) of Theorem 5.2 (iii) as a dynamical condition on the same lattice ƒ.
Precisely, we have the following observation.
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Observation 5.6. Fix C; T0 � 1 with T0 > C 2, and fix ƒ 2 �R;ƒ� . Then we have that
(1)) (2)) (3).
(1) For all t � 1

2
log.T0/, there exists q 2 gtƒ \ LR X ¹0º satisfying

kqk � C and W.q/ �
p
CH.q/:

(2) For all T � T0, there exists p 2 ƒ \ LR X ¹0º with kpk � T satisfying (5.3).
(3) For all t � log.T0/, there exists q 2 gtƒ \ LR X ¹0º satisfying

kqk � C 2 max.1; k zRk/ and W.q/ � C
p
H.q/:

(1)) (2). Fix T � T0, and let t D log.T=C / � 1
2

log.T0/. Let q 2 gtƒ \ LR X ¹0º be
as in (1), and let p D g�t .q/ 2 ƒ \ LR X ¹0º. Then

kpk � etkqk �
T

C
C D T:

To demonstrate (5.3), we bound W.p/ and L.p/. First of all,

W.p/ D W.q/ �
p
CH.q/ D

s
C
H.p/
T=C

D C

r
H.p/
T

: (5.7)

On the other hand, we have

L.p/ D
L.q/
T=C

�
C

T=C
D
C 2

T
;

which implies

L.p/ D
p
L.p/

p
L.p/ �

p
L.p/

r
C 2

T
D C

r
L.p/
T

:

Combining with (5.7) demonstrates (5.3). C

(2)) (3). Fix t � log.T0/, and let T D et � T0. Let p 2 ƒ \ LR X ¹0º be as in (2),
and let q D gt .p/ 2 gtƒ \ LR X ¹0º. Then

H.q/ D e�tH.p/ � e�tT D 1:

On the other hand, (5.3) is written in terms of height, width, and length as

max.W.p/; L.p// � C
r

max.H.p/;W.p/; L.p//
T

;

and since T � T0 > C 2, the case where the maximum is W.p/ or L.p/ cannot occur.
Thus

max.W.p/; L.p// � C
r
H.p/
T

:
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In particular,

W.q/ D W.p/ � C
r
H.p/
et
D C

p
H.q/:

Since q 2 LR, (5.6) gives

L.q/ � k zRk
W 2.q/
H.q/

� k zRk
C 2H.q/
H.q/

D C 2k zRk:

Thus kqk D max.H.q/;W.q/; L.q// � max.1; C; C 2kRk/ � C 2 max.1; kRk/. C

For each C > 0, consider the set

FC ´ ¹ƒ 2 �R;ƒ� W there exists q 2 ƒ \ LR X ¹0º such that
kqk � C; W.q/ �

p
CH.q/º:

Then (B0) and (C0) of Theorem 5.2 (iii) are equivalent to the following conditions, respec-
tively.
(B00) There exists C > 0 such that, for all ƒ 2 �R;ƒ� and for all t � C , gtƒ 2 FC .
(C00) The set

¹ƒ 2 �R;ƒ� W there exists C > 0 such that, for all t � C; gtƒ 2 FC º

D

[
C>0

lim inf
t!1

g�t .FC /

has positive �R;ƒ� -measure.
Now (B00) is clearly equivalent to the following.
(B000) There exists C > 0 such that FC D �R;ƒ� .
We claim that (C00) is also equivalent to (B000). Indeed, it is clear that (B000) implies (C00).
Conversely, if (C00) holds, then by Moore’s ergodicity theorem [1, Theorem III.2.1],11 the
set FC has full �R;ƒ� measure, where C is large enough so that the .gt /-invariant set
lim inft!1 g�t .FC / has positive measure. But since FC is closed, this implies (B000).

To complete the proof, we must show that (B000) is equivalent to (A).

Proof of (A)) (B000). Since pR D 1, the remainder zR does not represent zero over R,
i.e. it is either positive definite or negative definite. Without loss of generality, suppose
that it is positive definite. Then

p
zR is a norm on Rd�1, so there exists K > 0 such that

zR.x/ �
1

K
W 2.x/ for all x 2 Rd�1:

11If d D 3 and pR D 2, then the group G D O.Q/ is not simple (being isomorphic to O.2; 2/),
so one should use [1, Theorem III.2.5] rather than [1, Theorem III.2.1]. Note that the fact that
the group .gt /t2R is totally noncompact in G follows from the inequality .�i /0.z/ ¤ 0 proven on
p. 1083 of the present paper.
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Then, for all x 2 LR,

W 2.x/ � K zR.x1; : : : ; xd�1/ D �Kx0xd D KH.x/L.x/; (5.8)

providing an asymptotic converse to (5.6).
Let C1 > 0 be as in Lemma 8.11. Fix ƒ 2 �R;ƒ� , and we will show that ƒ 2 FC1K .

Indeed, by Lemma 8.11, there exists q 2 ƒ \ LR X ¹0º satisfying kqk � C1. Then (5.8)
gives

W.q/ �
p
KH.q/L.q/ �

p
C1KH.q/;

demonstrating that ƒ 2 FC1K . C

Proof of (B000)) (A).

Claim 5.7. We may without loss of generality12 suppose that R is pR-normalized and
that ƒ� \LpQ D ZdC1 \LpQ .

Proof. Let EQ be a ƒ�-rational totally isotropic subspace of RdC1 of dimension pQ.
Let ER � EQ be a totally isotropic subspace of RdC1 of dimension pR. By Propo-
sition 3.5, there is a matrix �1 2 GLdC1.R/ such that R0´ R ı �1 is pR-normalized
and ��11 .ER/ D LpR . In particular, � ´ ��11 .ƒ� \EQ/ � LpR . Let �2 2 GLpR.R/
send � to ZdC1 \LpQ . Let g�2 be defined by equation (3.3) so that g�2 2 O.R0/. Then
g�1�2 .�/DZdC1 \LpQ . Letting �D �1 ı g�1�2 , we have ��1.ƒ� \EQ/DZdC1 \LpQ ,
or equivalently ��1.ƒ�/ \LpQ D ZdC1 \LpQ . Let ƒ0� D �

�1.ƒ�/, and observe that
R0 D R ı �. Then R0 is pR-normalized and ƒ0� \LpQ D ZdC1 \LpQ . On the other
hand, both conditions (A) and (B000) are unaffected by replacingR andƒ� withR0 andƒ0�,
respectively. C

Now suppose (A) fails, i.e. pR > 1. Fix t � 0, and let t D .t; : : : ; t / 2 RpQ . Then

ƒt ´ gtƒ� 2 �R;ƒ� :

Claim 5.8. If p 2 ƒt \ LR satisfies kpk < et=.2kRk/, then p 2 �t ´ ƒt \LpQ .

Proof. For each i D 0; : : : ; pQ � 1, we have ei 2 ZdC1 \LpQ � ƒ� \ LR, and thus
gt.ei / D e�tei 2 ƒt \ LR. Since ƒt is R-arithmetic, we have

BR.p; gt.ei // 2
Z

2
: (5.9)

On the other hand,

jBR.p; gt.ei //j � kRk � kpk � kgt.ei /k < kRk
� et

2kRk

�
e�t D

1

2
:

Combining with (5.9), we see that

BR.p; gt.ei // D e�tBR.p; ei / D 0:

12Here we abandon the assumption that ƒ� is commensurable to ZdC1.
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It follows that the ƒt -rational subspace LpQ CRp is totally isotropic, and so, by the
maximality of pQ, we have p 2 LpQ . C

Now let �t 2 O.EpR/ satisfy �t .�t / \L1 D ¹0º, where EpR is the Euclidean metric
on RpR . Such a choice is possible since by assumption pR > 1. Let g�t be given by (3.3)
so that g�t 2 O.R/ \ O.EdC1/. Let ƒ0t D g�tƒt .

Let


 D

24 1

Id�1
1

35
so that


.FC / D ¹ƒ 2 �R;ƒ� W there exists q 2 ƒ \ LR X ¹0º such that
kqk � C; W.q/ �

p
CL.q/º:

We claim that, for all C > 0, there exists t � 0 such that ƒ0t … 
.FC /; in particular,
FC ¤ �R;ƒ� . Indeed, fix C and t , and suppose we have q D g�t .p/ 2 ƒ0t \ LR X ¹0º
with kpk �� kqk � C and W.q/ �

p
CL.q/. If t is large enough (depending on C ),

then by Claim 5.8, we have p 2 �t and thus q 2 LpR XL1. In particular, L.q/ D 0, but
W.q/ > 0. This is a contradiction. Thus FC ¤ �R;ƒ� for all C > 0, so (B000) fails. C

This completes the proof of Theorem 5.2.

We complete the proof of Theorem 5.1 by demonstrating the forwards direction of (ii).

Proof of Theorem 5.1, forwards direction of (ii). Let VQ be a maximal isotropic Q-sub-
space of RdC1 and VR a maximal isotropic R-subspace of RdC1 such that VQ ¤ VR.
Then ŒVQ� ¤ ŒVR�. By contradiction, suppose that  1 is uniformly Dirichlet. This is
equivalent to the existence of a constant C > 0 such that, for all Œx� 2MQ, there exist
infinitely many r 2 ZdC1 \ LQ satisfying

dist.r;LŒx�/ � C; (5.10)

where LŒx� D Rx.
Fix Œx� 2 ŒVR� X ŒVQ� �MQ. Since Œx� … ŒVQ�, only finitely many r 2 VQ \ ZdC1

can satisfy (5.10), so there exists r 2 ZdC1 \ LQ X VQ satisfying (5.10). Let x be the
projection of r onto LŒx� so that

kx � rk D dist.r;LŒx�/ � C: (5.11)

Let b1; : : : ;bpQ be a basis of VQ \ ZdC1. Since VR is totally isotropic and x 2 VR, we
have BQ.x;bi / D 0 for all i D 1; : : : ; pQ. Thus

jBQ.r;bi /j D jBQ.x � r;bi /j
� kBQk � kx � rk � kbik � N ´

l
CkBQk

pQ�1
max
iD0
kbik

m
;

and so, since Q is ZdC1-arithmetic,

z´ .BQ.r;bi //
pQ�1

iD0 2 ¹�N; : : : ; N ºpQ :
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On the other hand, since r … VQ, the maximality of VQ implies that VQ CRr is not
isotropic (it is clearly a Q-subspace). Thus BQ.r;bi / ¤ 0 for some i D 1; : : : ; pQ, i.e.

z ¤ 0:

Choose real numbers c1; : : : ; cpQ linearly independent over Q, and let

s D
pQX
iD1

cibi 2 VQ:

Let
Œxm�!

m
Œs� with Œxm� 2 ŒVR� X ŒVQ�:

For each m, let rm, xm, and zm be defined as above, with the additional stipulation that
krmk � m (this is possible since there were infinitely many possible choices for rm).
Then, for each m 2 N, we have

jBQ.rm; s/j D jzm � cj;

where c D .ci /
pQ�1

iD0 . Thus

jBQ.rm; s/j 2
®
jz � cj W z 2 ¹�N; : : : ; N ºpQ X ¹0º

¯
;

which implies jBQ.rm; s/j � " for some " > 0 independent of m. Let tm D ˙kxmk=ksk;
since Œxm�!

m
Œs�, we have 


s �

xm
tm




!
m
0

after choosing the appropriate˙ signs to define tm. Now

"tm � jBQ.rm; tms/j
D jBQ.rm � xm; tms/j (since xm; s 2 VR)
� jBQ.rm � xm; tms � xm/j C jBQ.rm � xm; xm/j

D jBQ.rm � xm; tms � xm/j C
1

2
jQ.rm/ �Q.xm/ �Q.rm � xm/j

D jBQ.rm � xm; tms � xm/j C
1

2
jQ.rm � xm/

ˇ̌
(since rm; xm 2 LQ)

� kQk � krm � xmk
h
ktms � xmk C

1

2
krm � xmk

i
� CkQk

�C
2
C ktms � xmk

�
: (by (5.11))

Dividing by tm, we have

" .�
1

tm
C




s �
xm
tm




!
m
0;

a contradiction.
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Remark 5.9. The hypothesis of nonsingularity can be dropped from parts (i) and (ii) of
Theorem 5.1 if the hypothesis that PdQ \MQ ¤ ; is replaced by the stronger hypothesis
that ZdC1 intersects LQ X .RdC1/?.

Proof. Any singular quadratic form is conjugate to a quadratic form QWRdC1 ! R of
the form

Q.x0; : : : ; xd / D zQ.x0; : : : ; xm/;

where zQ is a nonsingular quadratic form on RmC1 for some m < d . In particular, we
have LQ D L zQ �Rd�m. Note that the hypothesis on Q guarantees that PmQ \M zQ ¤ ;.

Fix Œx� 2MQ and a representative x D .x.1/; x.2// 2 LQ. Suppose first that x.1/ ¤ 0,
and let r.1/ 2 ZmC1 \ L zQ be such that

dist.r.1/;Rx.1// � CŒx.1/�: (5.12)

Then there exists t 2 R so that kr.1/ � tx.1/k � CŒx.1/�. Choose r.2/ 2 Zd�m so that
kr.2/ � tx.2/k � 1. Then

k.r.1/; r.2// � txk � CŒx.1/� C 1: (5.13)

Now, by Theorem 5.1 (i) applied to zQ, there exist infinitely many r.1/ 2 ZmC1 \ L zQ
satisfying (5.12); thus there exist infinitely many pairs .r.1/; r.2// satisfying (5.13).

On the other hand, if x.1/ D 0, let r.1/ D 0, and for each t 2 R, choose r.2/ satisfying
kr.2/ � tx.2/k � 1; then (5.13) holds. Letting t !1, there exist infinitely many pairs
.r.1/; r.2// satisfying (5.13).

Finally, if pQ D pR, then by using Theorem 5.1 (ii) in place of Theorem 5.1 (i), the
above argument shows that the implied constant is independent of x.

Remark 5.10. The same technique cannot be used to remove the nonsingularity hypoth-
esis from Theorem 6.3 below. Indeed, if we suppose that Œx.1/� 2 A ;M zQ for some  ,
then CŒx.1/� will be replaced by CHstd.Œr�/ ıHstd.Œr�/ in (5.13), but the second term
(namely 1) will not be changed. Thus the overall bound is no better than if we did not
know that Œx.1/� 2 A ;M zQ .

Remark 5.11. The hypothesis that MQ is rational certainly cannot be dropped from
Theorem 5.1. Indeed, Theorem 5.1 (i) implies that the set PdQ \MQ is dense inMQ when-
ever MQ is a nonsingular rational quadric hypersurface in PdR satisfying PdQ \MQ ¤ ;.
By contrast, if Q is a quadratic form which is not a scalar multiple of any quadratic form
with integer coefficients, then PdQ \MQ is not dense in MQ.

Proof. Let � WR! Q be a Q-linear map, and let RWRdC1 ! R be the unique quadratic
form so that R D � ıQ on QdC1. Then, for r 2 QdC1, Q.r/ D 0 implies R.r/ D 0;
thus PdQ \MQ �MR. If PdQ \MQ is dense in MQ, then MQ �MR, and so Q is
a scalar multiple of R. But R has rational coefficients and is therefore a scalar multiple of
a quadratic form with integer coefficients.



L. Fishman, D. Kleinbock, K. Merrill, D. Simmons 1078

6. Khintchine-type theorems and counting of rational points

Recall that, in the classical setting, the convergence case of Khintchine’s theorem fol-
lows directly from the Borel–Cantelli lemma combined with estimates for the number of
rational points whose height is less than a fixed number T . So, in the case of intrinsic
approximation, one must find upper bounds on expressions of the form

NM .T /´ #¹Œr� 2 PdQ \M W Hstd.Œr�/ � T º;

where M � PdR is an arbitrary manifold. Such bounds have been considered extensively
in the case where M is algebraic in [10]. We will pay special attention to the following
result due to D. R. Heath-Brown. Recall that Q is a rational quadratic form in d C 1
variables, dim.MQ/ D d � 1, and Q0 is the exceptional quadratic form on R4 defined
in (2.7).

Theorem 6.1 ([30, Theorems 5, 6, 7, 8 and remarks afterwards]). Let MQ � PdR be
a nonsingular rational quadric hypersurface with pQ � 1. Then

NMQ.T / ��

´
T d�1; Q œ Q0;

T 2 logT; Q � Q0:
(6.1)

In order to clarify the relation between the above paraphrased version of Heath-
Brown’s results with the original theorems, we make the following comments.

(1) Theorems 5, 6, 7, and 8 in [30] provide asymptotics with an error term for the
weighted sum

N.F;w/ D N.F;w;P /´
X

x2ZdC1\F�1.0/

w.P�1x/;

where F is a rational quadratic form in d C 1 variables, and w a function on RdC1 which
is required to be C1. However, to estimate NMQ.T /, one must let w D 1B.0;1/. Since
w0 D 1B.0;1/ can be approximated from above and below by C1 functions wn in a way
such that the singular integrals �1.F;wn/ approach �1.F;w0/ 2 .0;1/ as n!1,
[30, Theorems 5, 6, 7, and 8] will still hold for w0 D 1B.0;1/, but without an estimate on
the error term; namely, we have

lim
P!1

N.F;w0; P /

leading term
D 1

for each result in [30]. In Theorem 6.1, we have stated only the weaker conclusion that
the left-hand side is bounded from above and below (in lim sup and lim inf, respectively).

(2) According to [30, Theorems 5, 6, 7, and 8], the number of integer vectors on
quadric hypersurfacesQ�1.0/ of RdC1 inside the ball of radius T is up to a multiplicative
constant asymptotically equal to8̂̂̂̂

<̂
ˆ̂̂:
T d�1 if d � 4 [30, Theorem 5];

T 2 if d D 3 and Q œ Q0 [30, Theorem 6];

T 2 logT if d D 3 and Q � Q0 [30, Theorem 7];
T logT if d D 2 [30, Theorem 8]:

(6.2)
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Note however that our goal is to count rational points on MQ, which correspond to prim-
itive integer vectors on Q�1.0/. The relation between counting primitive vectors and
counting all lattice vectors is clarified in [30] after the theorems are stated. In particu-
lar, [30, Theorems 5, 6, and 7] lead to equivalent results for counting of primitive vectors,
which the only change is that the leading term is divided by a constant. However, the
situation with [30, Theorem 8] is different: in view of [30, Corollary 2], for the count of
primitive integer vectors, the factor logT in the last line of (6.2) disappears.

(3) In [30], it is shown that the modified singular series �� is positive and finite if and
only if the equation Q D 0 has nontrivial solutions in every p-adic field. Since the forms
we deal with satisfy PdQ \MQ ¤ ;, the equationQ D 0 has nontrivial solutions over Q,
and so certainly over every p-adic field.

For any nonincreasing function  WN ! .0;1/, we may write

AMQ. / � lim sup
T!1

T22N

[
Œr�2PdQ\MQ
Hstd.Œr�/�2T

B.Œr�;  .T //:

Combining with (6.1) and using the Hausdorff–Cantelli lemma [4, Lemma 3.10], one can
immediately deduce the following corollary.

Corollary 6.2. Suppose that MQ � PdR is a nonsingular rational quadric hypersurface
with pQ � 1. Fix a positive s � d � 1, and let  WN ! .0;1/ be nonincreasing. If the
series ´P

T22N T d�1 s.T /; Q œ Q0;P
T22N T 2 logT s.T /; Q � Q0;

(6.3)

converges, then H s.AMQ. // D 0.

The case s D d � 1 corresponds to Lebesgue measure.
Based on the above, one would expect that Khintchine’s theorem for quadric hyper-

surfaces would state that the converse of Corollary 6.2 holds when s D d � 1 (possibly
with some additional assumptions on  ). However, we instead have the following.

Theorem 6.3 (Khintchine-type theorem for quadric hypersurfaces). Let MQ � PdR be
a nonsingular rational quadric hypersurface with pQ � 1. Fix  WN ! .0;1/, and sup-
pose that  is regular (see Definition 2.4) and that the function q 7! q .q/ is non-
increasing. Then AMQ. / has full Lebesgue measure if the series´P

T22N T d�1 d�1.T /; Q œ Q0;P
T22N T 2 log logT 2.T /; Q � Q0;

(6.4)

diverges; otherwise, AMQ. / is Lebesgue null.

In other words, whenever Q œ Q0, the above intuition is correct: Theorem 6.3 then
says that, when Q œ Q0, the converse to the standard Borel–Cantelli argument holds
for the collection of sets defining AMQ. /. On the other hand, the series (6.4) does not
agree with (6.3) when Q � Q0, and so, philosophically, there is some nontrivial relation
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between the sets appearing in the definition of AMQ0 . /. A description of this relation
is given in Section 9 (see in particular Remark 9.3), where an elementary proof of the
convergence case of Theorem 6.3 for the manifold MQ0 is given.

Using the Mass Transference Principle of Beresnevich and Velani [3, Theorem 2], one
can immediately deduce the following.13

Theorem 6.4 (Jarník–Besicovitch theorem for quadric hypersurfaces). Fix 0< s < d � 1.
Let  WN ! .0;1/ be regular, and suppose that q 7! qd�1 s.q/ is nonincreasing. If the
series ´P

T22N T d�1 s.T /; Q œ Q0;P
T22N T 2 log logT s.T /; Q � Q0;

(6.5)

diverges, then H s.AMQ. // D1.

This, in particular, computes the Hausdorff dimension of the set of  c-approximable
points of MQ; see (2.8).

It follows from Corollary 6.2 that, for Q œ Q0, convergence of (6.5) implies

H s.AMQ. // D 0:

However, in the case of the exceptional quadratic formQ0, there is a discrepancy between
(6.5) and the series (6.3) appearing in Corollary 6.2, and the former may converge, while
the latter diverges. In this case, we do not know the value of H s.AMQ. //. However,
the coarser Hausdorff dimension result (2.8) holds regardless. For reasons explained in
Remark 9.3, the authors conjecture that Theorem 6.4 remains true if (6.5) is replaced
by (6.3).

Note also that if q2 .q/! 0, then all  -good rational approximations of points in
MQ are intrinsic, meaning that AMQ. / D Ad . / \MQ (see [18, Lemma 4.1.1]). Con-
sequently, for such  , Theorem 6.4 may be rephrased in terms of ambient approximation.
The rephrased result has been proven in the case Qaff.x/ D x21 C x

2
2 by Dickinson and

Dodson [17, Theorem 1], and in the case whereQ œ Q0 by Druţu [18, Theorem 4.5.7].14

Note that Theorem 6.3 is analogous to the main result of [28], the difference being that
we are considering intrinsic approximation and the authors of [28] are considering a spe-
cific type of extrinsic approximation. Also, it is likely that the techniques of Druţu [18]
can be used to prove Theorem 6.3 in the case Q œ Q0 via the use of ubiquitous systems
as considered in [2]. On the other hand, Druţu’s methods do not apply to the exceptional
quadric hypersurface MQ0 (cf. footnote 14). We opt to use the machinery of Kleinbock
and Margulis [37] to establish Theorem 6.3.

13The dimension s > 0 may be replaced by a dimension function f ; we omit the statement for
brevity.

14Although the hypothesis Q œ Q0 does not appear explicitly in Druţu’s theorem, it is required
by her standing assumption that the lattice � is irreducible (cf. [18, Section 2.5,Section 4.5]) since,
when Q � Q0, � is reducible (see p. 1083).
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Theorem 6.3 can be deduced directly from the following theorem together with the
correspondence principle (Corollary 4.6 and Observation 4.8). As before, details are left
to the reader.15

Theorem 6.5. Fix d � 2, let R be a nonsingular pQ-normalized quadratic form on
RdC1, and fix ƒ� 2 �R commensurable to ZdC1. Let  W .0;1/! .0;1/ be a contin-
uous function, and suppose that q 7! q .q/ is nonincreasing. Let r W .0;1/! .0;1/

and AR. / D A.r ; �R;ƒ�/ be defined as in Corollary 4.6; see (4.9). Then AR. / has
full measure with respect to�R;ƒ� if (6.4) diverges; otherwise, AR. / is null with respect
to �R;ƒ� .

The proof of Theorem 6.5 will occupy Sections 7 and 8.

7. Proof of Theorem 6.5 modulo a volume computation

In the current section, we reduce Theorem 6.5 to a statement about the asymptotic behav-
ior of the measure �R;ƒ� . Namely, we will deduce Theorem 6.5 as a corollary of one of
the main results of [37], which we now recall.

Definition 7.1. Let .X; distX / be a metric space, let � be a (finite Borel) measure on X ,
and let �WX ! R be a continuous function. For each z 2 R, let

S�;z D ¹x 2 X W �.x/ � zº and ˆ�.z/ D �.S�;z/;

where ˆ� is called the tail distribution function of �. We say that � is distance-like if
(I) � is uniformly continuous, and
(II) ˆ� is regular (see Definition 2.4).

Let G be a connected semisimple center-free Lie group without compact factors, and
let � � G be a lattice. By [48, Theorem 5.22], one can find connected normal subgroups
G1; : : : ; G` � G such that G is the direct product of G1; : : : ; G`, �i ´ Gi \ � is an
irreducible lattice in Gi for each i D 1; : : : ; `, and

Q`
iD1 �i has finite index in � . Of

course, if � is irreducible, then we have ` D 1, G1 D G, and �1 D � . Let �1; : : : ; �`
denote the projections from G to the factors Gi .

Theorem 7.2 ([37, Theorem 1.7 (a)]). Fix G;�;G1; : : : ; G` as above. Let g denote the
Lie algebra of G, and let z 2 g be an element of a Cartan subalgebra of g. Suppose that
.�i /

0.z/ ¤ 0 for all i D 1; : : : ; `. (If G is simple, this just amounts to saying that z ¤ 0.)
Let X D G=� , let �X be normalized Haar measure on X , let distG be a right-invariant

15It is helpful to notice that the convergence/divergence of the series (6.4) is unaffected by the
substitution  7! C , where C > 0 is a constant. Also, the fact that the assumption q .q/! 0
appears in Corollary 4.6 but not Theorem 6.3 can be remedied by the observation that BAMQ has
measure zero, which follows either from applying Theorem 6.3 to any function  satisfying the
hypotheses and such that the series (6.4) diverges, or by the argument at the end of Section 4.
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Riemannian metric on G, let distX be the quotient of distG by � , and let �WX ! R be
a distance-like function.16 If .zt /11 is a sequence in R, then

�X
�
¹x 2 X W etz.x/ 2 S�;zt for infinitely many t 2 Nº

�
D

´
0 if

P1
tD1ˆ�.zt / <1;

1 if
P1
tD1ˆ�.zt / D1:

Remark 7.3. In [37, Theorem 1.7 (a)], � is assumed to be irreducible, and z is simply
assumed to be a nonzero vector in a. However, in [37, Section 10.3], the authors of [37]
describe how to modify their proof to include the case where � is reducible. Incorporating
those modifications leads to the above theorem.

For the purposes of this paper, it will be more convenient to deal with the following
“continuous” version of Theorem 7.2.

Theorem 7.4. Let G;�; a; z; X; �X ; � be as in Theorem 7.2. If zW .0;1/! .0;1/ is
nondecreasing, then

�X
�
¹x 2 X W etz.x/ 2 S�;z.t/ for arbitrarily large t > 0º

�
D

´
0 if

P1
tD1ˆ� ı z.t/ <1;

1 if
P1
tD1ˆ� ı z.t/ D1:

(7.1)

Proof of Theorem 7.4 using Theorem 7.2. Let z.1/t D z.t/, and let z.2/t D z.t/ � C for
some C > 0. To complete the proof, it suffices to demonstrate the following:
(i)

P1
tD1ˆ�.z

.i/
t / <1 if and only if

P1
tD1ˆ� ı z.t/ <1,

(ii) etz.x/ 2 S�;z.1/t for infinitely many t 2 N implies etz.x/ 2 S�;z.t/ for arbitrarily
large t > 0, and

(iii) if C is large enough, then we have that etz.x/ 2 S�;z.t/ for arbitrarily large t > 0
implies etz.x/ 2 S�;z.2/t for infinitely many t 2 N.

Indeed, (i) follows from the fact that ˆ� is regular (since � is assumed distance-like),
and (ii) is obvious, so we turn to (iii). Suppose that etz.x/ 2 S�;z.t/ for some t , and let
t 0 D btc. Then

distX .et
0z.x/; etz.x// � C1

for some constant C1 > 0; since � is uniformly continuous, there exists C D C2 > 0
independent of t so that j�.et

0z.x// ��.etz.x//j � C2. On the other hand, since z is
nondecreasing, z.2/t 0 � z.t/ � C ; it follows that et

0z.x/ 2 S�;z.2/
t0

.

16We remark that whether or not � is distance-like is independent of the choice of the right-
invariant Riemannian metric distG since any two such metrics dist1; dist2 satisfy dist1 �� dist2.
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Let O.R/0 denote the identity component of O.R/. We claim that Theorem 6.5 fol-
lows from applying Theorem 7.4 with

G D O.R/0; � D O.RIƒ�/ \ O.R/0;
X D G=� � �R;ƒ� ; � D � log ı; where ı is as in (3.7);

z D
@

@t
gt

ˇ̌̌
tD0
D

24�1 0d�1
1

35 ; and

z.t/ D � log r .t/:

(7.2)

Obviously, the verification of this claim consists of two parts: showing that the hypotheses
of Theorem 7.4 are satisfied, and showing that Theorem 6.5 follows from the conclusion
of Theorem 7.4.

Verification of the hypotheses. The verification of hypotheses is mostly a consequence of
well-known facts; we leave the details to the reader, proving only the following state-
ments.

(1) .�i /0.z/ ¤ 0 for all i . To see this, note that the groupG is isomorphic to O.p; q/0,
where p D pR and q D d C 1 � pR. Now O.p; q/0 is simple as long as p C q � 3
and .p; q/ … ¹.4; 0/; .2; 2/; .0; 4/º; if .p; q/ 2 ¹.4; 0/; .2; 2/; .0; 4/º, then O.p; q/0 is only
semisimple. In our case, we have 1 � p � q and p C q D d C 1 � 3, so G is simple
unless p D q D 2. If G is simple, there is nothing to prove, so assume that p D q D 2.
Then, by Proposition 3.5, G � O.2; 2/0 is conjugate in SL4.R/ to O.Q0/0, where

Q0.x/ D x0x3 � x1x2
is the exceptional quadratic form; moreover, it is readily seen that

O.Q0/0 D SL2.R/ � SL2.R/;

where G �H denotes the set of all matrices of the form g ˝ h, where g 2 G and h 2 H .
(See the “product structure” of MQ0 described in Section 9). Write

G D �.SL2.R/ � SL2.R//

for some matrix � 2 SL4.R/. Then the factors of G are given by the formulas17

G1 D �.SL2.R/ � I /; G2 D �.I � SL2.R//:

The tangent spaces are given by the formulas g1 D �.sl2.R/ � I /, g2 D �.I � sl2.R//.
Now any element of either of these tangent spaces has eigenvalues �; �;��;�� for some
� 2 R. On the other hand, the eigenvalues of z are 1; 0; 0;�1. Thus z … g1;g2. It follows
that .�i /0.z/ ¤ 0 for all i .

(2) � is uniformly continuous. To see this, fix g 2 G and ƒ 2 X ; then for all r 2 ƒ,
we have kgrk � kgk � krk, where kgk is the operator norm of g. Taking the minimum
over r 2 ƒ X ¹0º gives ı.gƒ/ � kgkı.ƒ/, or equivalently �.ƒ/ � �.gƒ/C logkgk.

17If � is irreducible, then there will actually be only one factor, namely G, and so, as before,
there is nothing to prove. (In fact, this happens if and only if pQ D 1.)
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A symmetric argument gives

�.gƒ/ � �.ƒ/C logkg�1k:

Since logkgk; logkg�1k � distG.id; g/ for all g, it follows that

� is 1-Lipschitz: (7.3)

(3) ˆ� is regular. This will be a consequence of the following asymptotic formula for
ˆ�.z/, whose proof will occupy Section 8, and which we will make further use of below.

Proposition 8.9. For z large enough,

ˆ�.z/ ��

´
e�.d�1/z ; R œ Q0;

e�2zz; R � Q0:

This completes the verification of the hypotheses of Theorem 6.5.

Completion of the proof. First, we rewrite (7.1) using (7.2):´
0 if

P1
tD1ˆ�.� log r .t// <1;

1 if
P1
tD1ˆ�.� log r .t// D1

D �R;ƒ�
�
¹ƒ 2 �R;ƒ� W gtƒ 2 S� log ı;� log r .t/ for arbitrarily large t > 0º

�
D �R;ƒ�

�
¹ƒ 2 �R;ƒ� W ı.gtƒ/ � r .t/ for arbitrarily large t > 0º

�
D �R;ƒ�.AR. //:

So, to complete the proof, it suffices to show that the series

1X
tD1

ˆ�.� log r .t// (7.4)

is asymptotic to (6.4). First of all, by Proposition 8.9, we have

(7.4) ��

´P1
tD1 r .t/

d�1; R œ Q0;P1
tD1 r .t/

2.� log r .t//; R � Q0:

Let

n D

´
0; R œ Q0;

1; R � Q0:
(7.5)

Then we can write both (6.4) and (7.4) in a uniform manner:

(6.4) D
X
T22N

T d�1 logn logT d�1.T /;

(7.4) ��
1X
tD1

r .t/
d�1.� log r .t//n:
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Since  is regular, each of these series is asymptotic to its corresponding integral, that is,

(6.4) �C;�

Z 1
0

.2x/d�1 logn log.2x/  d�1.2x/ dx;

(7.4) �C;�

Z 1
0

r .t/
d�1.� log r .t//n dt:

Let ‰.T / D T d�1 logn logT . In the following integrals, we omit the finite limit of inte-
gration since it is irrelevant for determining whether or not the integral converges. The
reader should think of the finite limit of integration as being some arbitrarily large number.

(6.4) �C;�

Z 1
.2x/d�1 logn log.2x/  d�1.2x/ dx

��

Z 1
T d�1 logn logT d�1.T /

dT
T

D

Z 1
R d�1.T /

dR
T‰0.T /

(letting T D ‰�1.R/)

��

Z 1
 d�1.‰�1.R// dR: (since ‰.T / �� T‰0.T /)

We shall now resort to the following lemma.

Lemma 7.6. Let f W Œc;1/! .0;1/ be a strictly decreasing continuous function. ThenZ 1
c

f .x/ dx C cf .c/ D
Z f .c/

0

f �1.x/ dx:

Proof. The regions whose areas are represented by these integrals are congruent to each
other via the map .x; y/ 7! .y; x/. C

Applying this lemma with f D  d�1 ı‰�1, we continue our calculation:

(6.4) �C;�

Z
0

‰. �1.U
1
d�1 // dU (by Lemma 7.6)

��

Z 1
‰. �1.e�t //e�.d�1/t dt (letting U D e�.d�1/t )

D

Z 1
r .t/

d�1 logn log. �1.e�t // dt:

Comparing with (7.4), we see that we have proven Theorem 6.5 in the case n D 0, and
also for all functions  satisfying

log log �1.e�t / �C;� � log r .t/: (7.6)

Remark 7.7. For the remainder of the proof, we could require n D 1 and thus d � 1 D 2
to simplify notation somewhat. However, we prefer to keep the original notation.
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For each c > 0, let  1;c be defined by the equation

r 1;c .t/ D
1

tc
;

i.e.
 �11;c .x/ D

1

x.� log x/c
:

Then
� log r 1;c .t/ D c log t �� log t;

log log �11;c .e
�t / D log.t C c log t / �C log t:

This yields the following.

Claim 7.8. Fix c1 > c2 > 0. Then Theorem 6.5 holds for any function  1;c1 �  �  1;c2 .

Proof. We have  �11;c1 �  
�1 �  �11;c2 and r 1;c1 � r � r 1;c2 , and thus

log log �1.e�t / �C log t �� � log r .t/;

i.e. (7.6) holds. C

Remark 7.9. This completes the proof of Theorem 6.5 for the case of most “reason-
able” functions  , for example if  can be written in terms of the elementary operations
together with exponents and logs. Such a  is always comparable to every function  1;c
(see [29, Chapter III]). On the other hand, if c1 > 1

d�1
> c2 > 0, then (6.4) converges

with  D  1;c1 but diverges with  D  1;c2 . If  .�  1;c1 , then AR. /� AR.C 1;c1/
for some C > 0, implying that �R;ƒ�.AR. // D 0. Similarly, if  &�  1;c2 , then we
have �R;ƒ�.AR. // D 1. Finally, if  1;c1 .�  .�  1;c2 , then Claim 7.8 gives the
desired result.

We now proceed to prove the general case of Theorem 6.5, using Claim 7.8. Fix

c1 >
1

d � 1
> c2 > c3 > 0:

Claim 7.10. We can without loss of generality assume  �  1;c1 .

Proof. Suppose that the theorem is true for all  �  1;c1 , and let  be arbitrary. Let
 0 D max. ;  1;c1/. Note that (6.4) converges for  D  0 if and only if it converges
for  D  . Applying the known case of the theorem, we have

�R;ƒ�.AR. 
0// D

´
0; (6.4) converges;
1; (6.4) diverges:

On the other hand, we have

AR. 0/ D AR. / [ AR. 1;c1/:

Since the latter set has measure zero, the measures of AR. 0/ and AR. / are equal. C
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So, from now on, we assume  �  1;c1 . If  �  1;c3 , then this completes the proof
(of Theorem 6.5). So we will assume that  .q/ >  1;c3.q/ for arbitrarily large q.

Claim 7.11. Fix T2 for which  .T2/ >  1;c3.T2/, and let T1 < T2 be the largest value
for which  .T1/ �  1;c2.T1/. ThenZ T2

T1

T d�1 logn logT d�11;c2
.T /

dT
T

&� log.c2=c3/.1�.d�1/c2/ T2 � C log1�.d�1/c2 T2 (7.7)

for some constant C > 0.

Proof. Since q 7! q .q/ is assumed to be nondecreasing, we have

T1 1;c2.T1/ � T1 .T1/ � T2 .T2/ > T2 1;c3.T2/:

On the other hand,

 c.q/ ��
1

q logc q
; so logc2 T1 .� logc3 T2:

NowZ T2

T1

T d�1 logn logT d�11;c2
.T /

dT
T

��

Z T2

T1

logn logT

log.d�1/c2 T

dT
T
D

Z logT2

logT1

logn t
t .d�1/c2

dt �
Z logT2

logT1
t�.d�1/c2 dt

�� log1�.d�1/c2 T2 � log1�.d�1/c2 T1

&� log.c2=c3/.1�.d�1/c2/ T1 � C log1�.d�1/c2 T1: C

Since the right-hand side of (7.7) tends to infinity as T2!1, the existence of infinite-
ly large values of T2 for which the hypotheses of the claim are satisfied implies thatZ 1

T d�1 logn logT min. .T /;  1;c2.T //
d�1 dT

T
D1;

i.e. (6.4) diverges for  D min. ;  1;c2/. Thus, by Claim 7.8, we have

�R;ƒ�
�
AR.min. ;  1;c2//

�
D 1:

But since AR. / � AR.min. ;  1;c2//, this completes the proof of Theorem 6.5.

8. Estimating the measure �R;ƒ�

In this section, we estimate
R
' d�R;ƒ� for any function 'W�R;ƒ� ! Œ0;1/. Our main

tools will be the generalized Iwasawa decomposition (Theorem 8.1) and the reduction
theory of algebraic groups (Theorem 8.4). We first prove a theorem for general algebraic
groups and then specialize to the case G D O.R/0.
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We will need the following notation: if X is a metric space with distance distX , ' is
a nonnegative continuous function on X , and C > 0, we define

'.C/.x/´ max
distX .x0;x/�C

'.x0/; '.C/.x/´ min
distX .x0;x/�C

'.x0/:

Let G be a semisimple algebraic group. Let P � G be a parabolic subgroup, and let
P DMAN be a Langlands decomposition of P . Let g, p, m, a, and n denote the corre-
sponding Lie algebras. Let K � G be a maximal compact subgroup whose Lie algebra k
is orthogonal to a with respect to the Killing form.

Theorem 8.1 (Generalized Iwasawa decomposition [39, Proposition 8.44]). Let �P be
the modular function of P . Then, given any Haar measures �K , �M , �A, �N on K, M ,
A, N , respectively, the measure �G given byZ

G

ˆ d�G ´
Z
K�M�A�N

�P .a/ˆ.kman/ d.�K � �M � �A � �N /.k;m; a; n/;

where ˆ is a measurable function on G, is a Haar measure on G.

Now suppose that G is Q-algebraic and that P � G is a minimal parabolic Q-sub-
group. Let � � G be a lattice commensurable to GZ.

Definition 8.2. A set F � G is a coarse fundamental domain for � if
(I) F � D G, and
(II) #¹
 2 � W F 
 \ F ¤ ;º <1.

Consider the set
AC´ ¹a 2 A W Adajn is contractingº: (8.1)

Here Ada denotes the adjoint action of a.

Theorem 8.3 (Reduction theory for arithmetic groups, [41, Proposition 2.2] or [45, Theo-
rem 16.9]). There exist precompact open sets M0 �M and N0 � N and a finite set
F � GQ such that

F ´ KM0A
CN0F (8.2)

is a coarse fundamental domain for � .

Let distG denote a right-invariant Riemannian metric on G. Let X D G=� , and con-
sider the metric distX .x; x0/ D ming�Dx; g0�Dx0 distG.g; g0/. We note that distX is a Rie-
mannian metric on X . Let �X denote the normalized Haar measure on X .

Theorem 8.4. There exist C > 0 and a finite set F � GQ such that, for any function
'WX ! Œ0;1/, we haveZ

AC
�P .a/

X
f 2F

'.C/.af �/ d�A.a/ .�
Z
' d�X

.�
Z
AC

�P .a/
X
f 2F

'.C/.af �/ d�A.a/:
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Proof. Let M0 �M , N0 � N , and F � GQ be as in Theorem 8.3, and let F be given
by (8.2). Let F0 D KM0A

CN0 so that F D F0F . ThenZ
F0

X
f 2F

'.gf �/ d�G.g/ .�
Z

F

'.g�/ d�G.g/ (since #.F / <1)

.�
Z
' d�X (by (II) of Definition 8.2)

�

Z
F

'.g�/ d�G.g/ (by (I) of Definition 8.2)

�

Z
F0

X
f 2F

'.gf �/ d�G.g/:

Let ˆ.g/ D
P
f 2F '.gf �/ so thatZ

' d�X ��

Z
F0

ˆ d�G : (8.3)

Now, by Theorem 8.1,Z
F0

ˆ d�G D
Z
K�M0�AC�N0

�P .a/ˆ.kman/ d.�K � �M � �A � �N /.k;m; a; n/:

(8.4)
Now let

C D max¹distG.id; km.ana�1// W k 2 K; m 2M0; a 2 A
C; n 2 N0º: (8.5)

Since N is contracted by the adjoint action of AC, the set ¹ana�1 W a 2 AC; n 2 N0º is
precompact and thus C <1. For k 2 K, m 2M0, a 2 AC, and n 2 N0 fixed, we have

distG.a; kman/ D distG.a; km.ana�1/a/ � C

and thus
ˆ.kman/ D ˆ.km.ana�1/a/ 2 Œˆ.C/.a/;ˆ

.C/.a/�:

Thus, by (8.4),Z
K�M0�AC�N0

�P .a/ˆ.C/.a/ d.�K � �M � �A � �N /.k;m; a; n/

�

Z
F0

ˆ d�G

�

Z
K�M0�AC�N0

�P .a/ˆ
.C/.a/ d.�K � �M � �A � �N /.k;m; a; n/: (8.6)

Now, since K, M0, and N0 are open and precompact, we haveZ
K�M0�AC�N0

�P .a/ˆ
.C/.a/ d.�K � �M � �A � �N /.k;m; a; n/

��

Z
AC

�P .a/ˆ
.C/.a/ d�A.a/; (8.7)

and similarly for ˆ.C/. Combining (8.3), (8.6), and (8.7) completes the proof.
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Next we apply Theorem 8.4 to the case where G D O.R/0 for some quadratic form
RWRdC1 ! R. Suppose that ƒ� is an R-arithmetic lattice commensurable with ZdC1.
ThenX ´ �R;ƒ� Š G=� , where � D O.RIƒ�/; see (7.2). In view of Proposition 3.11,
it is properly embedded into the space�d of all lattices in RdC1. We are going to consider
functions 'W�R;ƒ� ! Œ0;1/ which are restrictions of functions on �d satisfying an
additional property defined below.

Definition 8.5. A function 'W�d ! Œ0;1/ is monotonic if

ƒ1 � ƒ2 implies '.ƒ1/ � '.ƒ2/:

Theorem 8.6. Let RWRdC1 ! R be a pQ-normalized quadratic form, and suppose that
ƒ� 2 �d is commensurable with ZdC1. Let

s D

2664
d � 1

d � 3
:::

d C 1 � 2pQ

3775 2 RpQ :

There exists C > 0 such that, for any monotonic function 'W�d ! Œ0;1/, we haveZ
t2aC

e�s�t'.C/.gtƒ�/ dt .�
Z
X

' d�X .�
Z

t2aC
e�s�t'.C/.gtƒ�/ dt:

We remark that, even though we integrate ' over X D �R;ƒ� , it is assumed to be
a function on �d ; in particular, the functions '.C/, '.C/ are defined with respect to the
Riemannian distance on �d Š GLdC1.R/=GLdC1.Z/.

Proof. LetG DO.R/0, and let � DO.RIƒ�/\O.R/0. ThenG is a semisimple Q-alge-
braic group, and � is commensurable with GZ. For t 2 RpQ , let ˆ.t/ D gt be as in (3.4)
so thatˆWRpQ ! G is a homomorphism. Let A D ˆ.RpQ/. Then the Lie algebra a of A
is isomorphic to RpQ via the map ˆ0.0/. In our notation, we will not distinguish between
a and RpQ .

Let aC D ¹t 2 RpQ W t0 > t1 > � � � > tpQ�1 > 0º � a, and let AC D exp.aC/. Then
A is a maximal Q-split torus, and AC is as in (8.1). Fix a 2 AC, and let N � G and
P � G be the groups

N ´ ¹g 2 GW anga�n !
n
0º;

P ´ ¹g 2 G W .anga�n/11 is boundedº;

i.e.N is the group of elements contracted byAC, andP is the group of elements stabilized
by AC. Then P is a minimal parabolic Q-subgroup of G whose Langlands decom-
position is P DMAN for some reductive group M � P . Moreover, AC is given by
formula (8.1). So, by Theorem 8.4, there exist C > 0 and a finite set F � GQ such that,
for any 'W�R;ƒ� ! Œ0;1/, we haveZ

t2aC
�P .gt/

X
f 2F

'.C/.gtfƒ�/ dt .�
Z
X

' d�X

.�
Z

t2aC
�P .gt/

X
f 2F

'.C/.gtfƒ�/ dt: (8.8)
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Here we remark that formally Theorem 8.4 produces (8.8) with '.C/, '.C/ replaced
by .'X /.C/, .'X /.C/, respectively, where the latter are defined with respect to the Rie-
mannian distance on X . But since we clearly have '.C/ � .'X /.C/ and '.C/ � .'X /.C/,
(8.8) follows.

Claim 8.7. For some C 0 > 0,X
f 2F

'.C/.gtfƒ�/ .� '.C
0/.gtƒ�/: (8.9)

Proof. For f 2 F � GQ fixed, fƒ� is commensurable with ƒ�, and thus

1

Nf
ƒ� � fƒ� � Nfƒ� for some Nf 2 N:

In particular, since ' is monotonic,

'.C/.gtfƒ�/ � '
.C/.gtNfƒ�/ D '

.C/.Nf gtƒ�/ � '
.CClogNf /.gtƒ�/;

where the last inequality follows since the distance on �d is defined via a Riemannian
metric on GLdC1.R/. Thus (8.9) holds with C 0 D C C log maxf 2F Nf . C

A similar argument shows thatX
f 2F

'.C/.gtfƒ�/ &� '.C 0/.gtƒ�/:

Thus (8.8) becomesZ
t2aC

�P .gt/'.C 0/.gtƒ�/ dt .�
Z
' d�R;ƒ�

.�
Z

t2aC
�P .gt/'

.C 0/.gtƒ�/ dt:

Claim 8.8. �P .gt/ D e
�s�t. (Here and hereafter, s � t denotes

PpQ�1

iD1 si ti .)

Proof. It is well known (see e.g. [39, (8.38)]18) that �P .gt/ D e
��.t/, where � is the sum

of the positive roots of A, counting multiplicity.
So, to demonstrate the claim, we must show that �.t/ D s � t. One verifies that the

positive roots of A are of the form

�i;j;˙´ e�i ˙ e�j ; i < j < pQ;

�i ´ e�i ; i < pQ;

18The sign difference between [39, (8.38)] and the present formula is due to Knapp’s convention
of assuming that n is the union of the positive root spaces, while we assume that n is the union of
the negative root spaces (cf. (8.1)).
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with corresponding root spaces

g�i;j;� D R.ej � e�i � ed�i � e�d�j /;

g�i;j;C D R.ed�j � e�i � ed�i � e�j /;

g�i D ¹x � e
�
i � ed�i � 2B zR.x; � / W .xpQ ; : : : ; xd�pQ

/ 2 RdC1�2pQº:

In particular, the multiplicity of the root �i;j;˙ is 1, and the multiplicity of the root �i is
.d C 1 � 2pQ/. Thus

� D

pQ�1X
jD1

j�1X
iD0

Œ.e�i C e�j /C .e
�
i � e�j /�C

pQ�1X
iD0

.d C 1 � 2pQ/e�i

D

pQ�1X
iD0

Œ2.pQ � i � 1/C .d C 1 � 2pQ/�e�i D
pQ�1X
iD0

Œd � 2i � 1�e�i : C

This completes the proof of Theorem 8.6.

Finally, we use Theorem 8.6 to complete the proof of Theorem 6.3. Recall that �
denotes the function � D � log ıW�R;ƒ� ! R (cf. (7.2)), where ı is defined by (3.7),
and that, for z 2 R,

S�;z D ¹ƒ 2 �R;ƒ� W �.ƒ/ � zº:

Proposition 8.9. For z large enough,

ˆ�.z/´ �R;ƒ�.S�;z/ ��

´
e�.d�1/z ; R œ Q0;

e�2zz; R � Q0:

Proof. Clearly, ı.ƒ/ D minp2ƒX¹0ºkpk and � D � log ı can be extended to �d using
the same definition. For each z 2 R, define

'z ´ 1¹ƒ2�d W�.ƒ/�zº:

Then the restriction of 'z to �R;ƒ� is the characteristic function of S�;z so that

ˆ�.z/ D

Z
�R;ƒ�

'z d�R;ƒ� :

Observe that 'z is monotonic in the sense of Definition 8.5, with X D �d . Thus, by
Theorem 8.6, there exists C > 0 independent of z such thatZ

t2aC
e�s�t.'z/.C/.gtƒ�/ dt .� ˆ�.z/ .�

Z
t2aC

e�s�t.'z/
.C/.gtƒ�/ dt:

Since � is 1-Lipschitz (see (7.3)), we have

.'z/.C/ � 'zCC and .'z/
.C/
� 'z�C ;

and so
f .z C C/ .� ˆ�.z/ .� f .z � C/;
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where
f .z/´

Z
t2aC

e�s�t'z.gtƒ�/ dt:

Thus, to complete the proof, it suffices to show that

f .z/ ��

´
e�.d�1/z ; R œ Q0;

e�2zz; R � Q0:
(8.10)

Indeed, observe that, for t 2 aC, the smallest vector in gt.ZdC1/ is gt.e0/ D e�t0e0. Thus
�.gtZdC1/ D t0. On the other hand, since ƒ� is commensurable with ZdC1, we have
1
N

ZdC1 � ƒ� � NZdC1 for some N 2 N, which implies

j�.gtƒ�/ ��.gtZ
dC1/j � logN for all t:

It follows that �.gtƒ/ �C t0, and so

'z.gtZ
dC1/ ��

´
1; t0 � z;

0 otherwise:

Therefore,

f .z/ ��

Z
t0>t1>���>tpQ�1

>0

t0>z

e�s�t dt:

Claim 8.10. For x � 1,Z
x>t1>���>tpQ�1

>0

e�s�t dt ��

´
1; R œ Q0;

x; R � Q0:

Proof. If pQ D 1, then the domain of integration is zero-dimensional, making the state-
ment trivial. Thus suppose pQ � 2. If d D 3, then Proposition 3.5 implies that R � Q0.
So if R œ Q0, then d � 4 and in particular s1 D d � 3 > 0. Since si � 0 for all i , we
have Z

t1>���>tpQ�1
>0

e�s�t dt �
Z
t1>���>tpQ�1

>0

e�s1t1 dt

�

Z
t1;:::;tpQ�1

>0

e
�

s1
pQ�1

PpQ�1

iD1
ti dt <1;

demonstrating the upper bound. The lower bound is trivial, so this completes the proof if
R œ Q0.

Now suppose that R � Q0. Then s1 D 0, andZ
x>t1>���>tpQ�1

>0

e�s�t dt D
Z
x>t1>0

1 dt1 D x: C
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Let n be given by (7.5) so thatZ
x>t1>���>tpQ�1

>0

e�s�t dt �� xn:

Integrating over t0 > z gives

f .z/ ��

Z
t0>z

e�s0t0 tn0 dt0 �� e�s0zzn D e�.d�1/zzn;

demonstrating (8.10).

We end this section by proving a lemma which was needed in the proof of Theo-
rem 5.1 (ii), (iii). Recall the definition of codiameter given in Definition 5.4.

Lemma 8.11. There exists C1 > 0 such that, for every ƒ 2 �R;ƒ� , there exists a totally
isotropic ƒ-rational subspace V � RdC1 of dimension pQ satisfying

Codiam.V \ƒ/ � C:

Proof. Let G, � , A, AC, N , P , and M be as in the proof of Theorem 8.6. Let M0 �M ,
N0 � N , and F � GQ be as in Theorem 8.3, and let F be given by (8.2). Then, for every
ƒ 2 �R;ƒ� , we can write ƒ D gƒ� for some g 2 F . Write

g D kmanf D km.ana�1/af;

where k 2 K, m 2M0, a 2 AC, n 2 N0, and f 2 F . Write h D km.ana�1/ so that

ƒ D hafƒ�:

We recall (cf. (8.5)) that distG.id; h/ � C for some C > 0 independent of ƒ.
Let V0 D LpQ , and let V D h.V0/. We observe that V0 is a totally isotropic afƒ�-

rational subspace of RdC1 of dimension pQ, and thus V is a totally isotropic ƒ-rational
subspace of RdC1 of dimension pQ.

Since a is contracting on V0, we have Codiam.V0 \ afƒ�/ � Codiam.V0 \ fƒ�/.
On the other hand, Codiam.V0 \ fƒ�/ �� 1 since f ranges over a finite set. Thus

Codiam.V \ƒ/ � edistG.id;h/ Codiam.V0 \ afƒ�/ .� eC :

This completes the proof.

9. The exceptional quadric hypersurface

Recall that the exceptional quadric hypersurface is the hypersurface MQ0 defined by the
exceptional quadratic form (2.7). This hypersurface occupies an interesting place in the
theory of intrinsic Diophantine approximation on quadric hypersurfaces developed in this
paper. To begin with, it has “more rational points than expected”. Specifically, according
to Theorem 6.1,

NMQ0 .T / �� T
2 logT; (9.1)

rather than NMQ.T / �� T
2, which holds when Q is a quadratic form on R4 which is

not equivalent to Q0. Nevertheless, these “extra points” do not appear to affect either the
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Dirichlet- or Khintchine-type theorems of these manifolds in quite the way one would
expect. With regards to the Dirichlet-type theorem, the extra points have no effect at
all, and the optimal Dirichlet function for MQ is always  1, independent of whether or
not Q � Q0. On the other hand, the extra points do affect the Khintchine-type theorem,
but not as expected: they introduce a factor of log logT into the series (6.4), rather than
a factor of logT as a naive application of the Borel–Cantelli lemma would predict.

It is natural to ask whether these extraordinary properties of the exceptional quadric
hypersurface are due to special algebraic properties. This turns out to be the case; in
this section, we make this special structure explicit and use this explicitness to derive
elementary proofs both of (9.1) and of the convergence case of Theorem 6.3 for the
manifold MQ0 .

We begin by describing the special algebraic property which leads to the results out-
lined above: the manifold MQ0 is isomorphic to P1R � P1R, with the isomorphism given
by the Segre embeddingˆWP1R � P1R ! P3R defined by the formulaˆ.Œx�; Œy�/ D Œx˝ y�,
or more explicitly,

ˆ.Œ.x0; x1/�; Œ.y0; y1/�/ D Œ.x0y0; x0y1; x1y0; x1y1/�:

Thus MQ0 has a “product structure”. This explains why the lattice O.Q0IZ/ \ O.Q0/0
factors as SL2.Z/ � SL2.Z/; each factor of SL2.Z/ acts on a different copy of P1R. Note
that the natural metric on MQ0 is compatible with the distance inherited from P3R under
the Segre embedding.

We also remark that the product structure of MQ0 is consistent with its Diophantine
structure. More precisely, the set of intrinsic rationals P3Q \MQ0 factors as P1Q � P1Q;
moreover, for Œp�; Œq� 2 P1Q,

Hstd.ˆ.Œp�; Œq�// D Hstd.Œp�/ �Hstd.Œq�/: (9.2)

Remark 9.1. According to formula (9.2), the Diophantine triple

.��13 .MQ0/;Q
3
\ ��13 .MQ0/;Hstd/

is locally isomorphic to the Diophantine triple .R2;Q2;Hprod/ considered in [22]. For
example, applying the affine corollary of Theorem 5.1 to the hypersurface MQ0 yields an
alternate proof of the case ‚ D prod, d D 2 of [22, Theorem 1.2].

We are now ready to begin proving statements about the manifold MQ0 by using the
decomposition MQ0 � P1R � P1R. We begin by computing the number of rationals up to
a given height.

An elementary proof of (9.1). It is well known that

#¹Œp� 2 P1Q W T=2 < Hstd.Œp�/ � T º �� #¹p 2 P1Q W Hstd.Œp�/ � T º �� T 2: (9.3)

Now, by (9.2),

NMQ.2
N / D #¹.Œp�; Œq�/ 2 .P1Q/

2
W Hstd.Œp�/ �Hstd.Œq�/ � 2N º
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D

NX
nD0

#
°
.Œp�; Œq�/ 2 .P1Q/

2
W 2n�1 < Hstd.Œp�/ � 2n;

Hstd.Œq�/ �
2N

Hstd.Œp�/

±
��

NX
nD0

X
Œp�2P1Q

2n�1<Hstd.Œp�/�2n

� 2N

Hstd.Œp�/

�2
(by (9.3))

��

NX
nD0

.2N�n/2#¹Œp� 2 P1Q W 2
n�1 < Hstd.Œp�/ � 2nº

��

NX
nD0

.2N /2 (by (9.3))

D .2N /2.N C 1/ �� .2
N /2 log.2N /;

demonstrating (9.1) in the case T 2 2N . The general case follows from a standard approx-
imation argument.

Next, we give an elementary proof of the convergence case of Theorem 6.3 for the
manifold MQ0 . This proof will give insight as to why in this case Theorem 6.3 does not
simply state the converse of the (naive) Borel–Cantelli lemma; cf. Remark 9.3.

Remark 9.2. In the following proof, we will assume that  is regular, but we do not need
to assume that q 7! q .q/ is nonincreasing, as was assumed in the proof of Theorem 6.3.

Proof of the convergence case of Theorem 6.3 assuming Q D Q0. Let � denote normal-
ized Lebesgue measure on P1R, and note that �MQ �� ˆ.� � �/. Let

A D
®
.Œx�; Œy�/ 2 .P1R/

2
W there exist infinitely many .Œp�; Œq�/ 2 .P1Q/

2 such that
dist.Œp�; Œx�/; dist.Œq�; Œy�/ �  .Hstd.Œp�/ �Hstd.Œq�//

¯
:

Then AMQ0 . / D ˆ.A /. So, to prove the convergence case of Theorem 6.3, we should
show that � � �.A / D 0, assuming that the seriesX

T22N

T 2 log logT 2.T / (9.4)

converges.
For each n � 0, let

Zn D ¹Œp� 2 P1Q W 2
n
� Hstd.Œp�/ < 2nC1º:

By (9.3), we have #.Zn/ �� .2n/2. Now fix 0 � n � N , and let

An;N D B.Zn; C .2
N // � B.ZN�n; C .2

N //;
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where C > 0 is a large constant. Since  is regular (as assumed in Theorem 6.3), if C is
large enough, then

A � lim sup
N!1

[
0�n�N

An;N ;

and so, by the Borel–Cantelli lemma, if the series

1X
ND0

NX
nD0

.� � �/.An;N / (9.5)

converges, then .� � �/.A / D 0. So, to complete the proof, it suffices to show that
(9.5) .� (9.4).

Fix 0 � n � N . We have

.� � �/.An;N / D �.B.Zn;  .2
N /// � �.B.ZN�n;  .2

N ///:

Since �.B.Œx�; �// �� r for all Œx� 2 P1R and 0 < � � 1, subadditivity gives

�.B.Zn;  .2
N /// .� #.Zn/ .2N /:

However, in some cases, it may be better to simply estimate from above by �.P1R/ D 1:

�.B.Zn;  .2
N /// � 1:

Similar bounds hold for �.B.ZN�n;  .2N ///. Thus

.� � �/.An;N / .� min.1; #.Zn/ .2N //min.1; #.ZN�n/ .2N //

�� min.1; .2n/2 .2N //min.1; .2N�n/2 .2N //

D

8̂<̂
:
.2n/2 .2N /; n � N C log2

p
 .2N /;

.2N�n/2 .2N /; n � � log2
p
 .2N /;

.2N /2 2.2N / otherwise:
(9.6)

The case N C log2
p
 .2N / � n � � log2

p
 .2N / cannot occur (for all but finitely

many N ) since  .2N / is less than 1=2N for all sufficiently large N (otherwise, the series
(9.4) would diverge).

Geometrically, note that the first two cases correspond to the bounds on .���/.An;N /
which result from coveringAn;N by vertical and horizontal rectangles, respectively, while
the third case corresponds to covering An;N by squares.

Now fix N , and vary 0 � n � N . We have

NX
nD0

.� � �/.An;N / ��

bN=2cX
nD0

.� � �/.An;N / (by symmetry)

.�
bNClog2

p
 .2N /cX

nD0

.2n/2 .2N /

C

bN=2cX
nDbNClog2

p
 .2N /cC1

.2N /2 2.2N /
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�� .2
NClog2

p
 .2N //2 .2N /

C .2N /2 2.2N /
�N
2
�
�
N C log2

q
 .2N /

��
D .2N /2 2.2N /C .2N /2 2.2N /

1

2
log2

� 1

2N .2N /

�
�� .2

N /2 2.2N / log
� 1

2N .2N /

�
:

Thus, for any function  satisfying

log
� 1

q .q/

�
.� log log q; (9.7)

we have (9.5) .� (9.4), and thus the conclusion of Theorem 6.3 holds in the convergence
case for such  .

To complete the proof, fix " > 0, and let

 �.q/ D
1

q log1=2C" q
:

Then  � satisfies (9.7); moreover, (9.4) converges at  D  �. Given any function  , let

 0 D max. �;  /:

Then, if (9.4) converges at  , it also converges at  0. Moreover,  0 satisfies (9.7), so if
(9.4) converges at  , then A 0 is a nullset. But since  0 �  , we have A � A 0 , so this
completes the proof.

Remark 9.3. There are two important points to be made about the above proof. The first
point is that the calculation (9.6) indicates what the nontrivial relation is which causes
the series (9.4) to differ from (6.3). Indeed, (9.6) shows that if n � N C log2

p
 .2N /

or n � � log2
p
 .2N /, then we are better off computing .� � �/.An;N / not by simply

adding the measures of the squares

B. � ; C .2N // � B. � ; C .2N //

which define An;N , but by estimating the measure of An;N in terms of the rectangles

B. � ;  .2N // � P1R or P1R � B. � ;  .2
N //;

respectively. Inside each rectangle, there are many overlapping squares, and this overlap
is what causes the difference in the series.

The second point is that we should not expect there to be a difference in series for
the Jarník–Besicovitch theorem if s < d � 1. Indeed, the same argument would work up
until the point where inequality (9.7) is required. But when s < d � 1, then the  which
we “expect to see” (i.e. those which are near the boundary of convergence/divergence)
will satisfy

log
� 1

q .q/

�
�� log q
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rather than (9.7). Thus the “refined argument” for the convergence case produces in this
case the same series (6.3).
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