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Abstract. The set of directions from a finite area quadratic differential on a Riemann surface of
finite type that diverge on average under Teichmüller geodesic flow has Hausdorff dimension exactly
equal to one-half.

Keywords. Teichmüller geodesic flow, flat surfaces

1. Introduction

1.1. Background on Teichmüller dynamics

Before stating the main result we give some background and terminology. Let Sg;n be an
orientable surface of genus g closed except for n punctures. A marked Riemann surface
structure on Sg;n is a homeomorphism from Sg;n to a Riemann surface. Two markings
f1 W Sg;n ! X1 and f2 W Sg;n ! X2 are said to be equivalent if there is a conformal
map g W X1 ! X2 so that g ı f1 is isotopic to f2. The Teichmüller space Tg;n is a com-
plex manifold whose points are in bijection with equivalence classes of marked Riemann
surface structures on Sg;n, or equivalently, by the uniformization theorem, marked hyper-
bolic surfaces. The mapping class group Mod.S/ of S – i.e. the group of isotopy classes
of orientation-preserving diffeomorphisms of S – acts properly discontinuously on Tg;n
and the quotient is Mg;n the moduli space of Riemann surface structures on Sg;n.

A meromorphic quadratic differential q on X assigns to each local coordinate z on X
a meromorphic function f z.z/, holomorphic except for possibly simple poles at the
punctures, which in an overlapping coordinate w, transforms by

f w.w/

�
dw

dz

�2
D f z.z/:
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A quadratic differential q has zeros and poles of order .k1; : : : ; kn/ with
nX
iD1

ki D 4g � 4:

Since all quadratic differentials will be assumed to be finite area, the poles are at most
simple poles.

In a more geometric fashion one can also describe a meromorphic quadratic differen-
tial q as a union of polygons embedded in C with pairs of sides identified by translations
or translations followed by rotations by angle � . Since each polygon is embedded in C,
letting z be the local coordinate on the polygon, defines a quadratic differential on the sur-
face made up of polygons by defining the quadratic differential to be dz2 in each polygon
away from the vertices. This associates a quadratic differential to the union of polygons
and conversely every quadratic differential can be formed from this construction. This jus-
tifies the synonym “half-translation surface” for “quadratic differential”. If the sides of the
polygons are only identified by translation, then the surface is called a translation surface
and is usually denoted .X; !/. Translation surfaces correspond exactly to quadratic dif-
ferentials that are squares of holomorphic one-forms ! on compact Riemann surfaces X .
They are classically called Abelian differentials.

A quadratic differential q defines a metric jq
1
2 jjdzj on X which is flat except at the

singularities, which have concentrated negative curvature. In the polygon version one
takes the Euclidean metric jdzj2 in each polygon. Translations and half translations pre-
serve the metric. Moreover, slopes of lines are preserved under the side identifications.
A line segment joining singularities without singularities in its interior is called a saddle
connection. If a geodesic ˇ joins a nonsingular point to itself without passing through
a singularity it is the core curve of a cylinder Cˇ , i.e. the isometric image of a Euclidean
cylinder Œ0; a� � .0; b/=.0; y/ � .a; y/ for some positive real numbers a and b, into the
flat metric on the surface. The cylinder is swept out by closed parallel loops homotopic
to ˇ. We will suppose throughout that all cylinders are maximal, i.e. in the notation of the
previous sentence that b is as large as possible.

Suppose one has a translation surface defined by a holomorphic 1-form !. Then
given an oriented line segment 
 one defines the holonomy of 
 by hol.
/ WD

R


!.

By identifying C with R2, the holonomy is a vector in R2. In the quadratic differen-
tial case the holonomy is defined up to multiplication by ˙1. In fact, letting † denote
the singularities of the flat metric defined by a quadratic differential q on X , there is
a homomorphism �1.X �†/! Z=2Z that sends curves with well-defined holonomy to
0 and those with holonomy only defined up to sign to 1. The associated double cover
of X �† induces a holomorphic branched double cover from a compact Riemann sur-
face Y – called the holonomy double cover of .X; q/ – toX . By construction, every curve
on Y has well-defined holonomy on the pullback of q, and hence the pullback of q is an
Abelian differential. This construction often allows one to reduce the study of quadratic
differentials to the study of Abelian differentials.

A half translation surface has a well defined vertical direction. These are the geodesics
along which q.z/dz2 is real and nonpositive or equivalently in the polygon version simply
the vertical lines. Therefore given any interval I of angles on the unit circle we say that
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the direction of a holonomy vector lies in I if the argument of the holonomy vector, taken
now as a complex number, belongs to I .

The cotangent space of Tg;n at X 2 Tg;n is naturally identified with the vector space
QD.X/ of quadratic differentials on X . The cotangent bundle of Tg;n, which we will
denote TQg;n, is the moduli space of marked hyperbolic surfaces together with a quadratic
differential. The mapping class group acts on TQg;n and its quotient – denoted Qg;n – is
the moduli space of Riemann surfaces together with a quadratic differential.

To every complex manifold, one may associate the Kobayashi semi-metric – the
largest semi-metric so that any holomorphic map from the hyperbolic plane into the man-
ifold is distance non-increasing. For Tg;n, the Kobayashi semi-metric is in fact a metric
(though not necessarily a Riemannian one) and the geodesic flow in this metric induces an
R-action on its cotangent bundle of Tg;n. Since TQg;n is the cotangent bundle to a com-
plex manifold, it also admits a C�-action by scalar multiplication. These two actions
generate an SL.2;R/ action on TQg;n, which is invariant under the mapping class group,
and hence descends to an SL.2;R/ action onQg;n. In the polygon description, the action
of SL.2;R/ is by the linear action of the matrix on the polygons.

We will be interested in the action of the subgroups containing the elements

gt D

�
et 0

0 e�t

�
for t 2 R; r� D

�
cos � sin �
� sin � cos �

�
for � 2 Œ0; 2�/:

The first action is the Teichmuller geodesic flow. It contracts each polygon along vertical
lines and expands along horizontal lines. The second rotates the quadratic differential.
See the survey paper of Zorich [26] for a more thorough introduction to Teichmüller
dynamics.

1.2. Statement of results

Now Qg;n has an SL.2;R/ invariant stratification into subsets Qg;n.�/ whose singu-
larities are prescribed by the vector �. If all the quadratic differentials in a stratum are
squares of Abelian differential, we will denote the stratum H .�/. Finally, we remark that
the SL.2;R/ action preserves the area, in the flat metric, of any quadratic differential.
We will therefore also make the tacit assumption in the sequel that our strata parameter-
ize unit-area quadratic differentials. Again we remark that this means we allow at most
simple poles. We are interested in the points in a stratum of quadratic differentials that
diverge on average.

Suppose generally that .gt /t2R is a flow on a noncompact topological space �. We
say that p 2 � is divergent if ¹gtpºt�0 eventually leaves every compact subset of �. We
say that p is divergent on average if ¹gtpºt�0 spends asymptotically zero percent of its
time in any compact set. More formally, p is divergent on average under the flow .gt /t�0,
if for any compact subset K � �

lim
T!1

1

T

Z T

0

�K.gtp/ dt D 0;

where �K is the indicator function on K.
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In the sequel, we will be interested in divergence (on average) of Teichmüller geo-
desics in spaces of quadratic differentials. One way for a Teichmüller geodesic to diverge
is that its projection to Mg;n diverges. Given a Riemann surface X 2Mg;n, there is
a unique hyperbolic metric on X that is in the conformal class of the complex struc-
ture induced by the Riemann surface structure. Let syshyp WMg;n ! R�0 be the function
that associates to a Riemann surface X the length of its systole; the shortest simple essen-
tial closed curve in the hyperbolic metric. By Mumford’s compactness theorem, a path in
Mg;n diverges if and only if the limit of syshyp exists and is zero along the path. Colloqui-
ally, a path diverges in Mg;n if and only if for all large times there is some curve that is
hyperbolically short. For a Teichmüller geodesic, this is the only way that it may diverge
in Qg;n.

A Teichmüller geodesic determined by a quadratic differential q is divergent on aver-
age in Qg;n if and only if

lim
T!1

1

T

Z T

0

syshyp.gtq/ dt D 0;

where we abuse notation to let syshyp.gtp/ mean the length of the systole on the underly-
ing Riemann surface.

However, since Teichmüller geodesic flow preserves strata Qg;n.�/ we may also ask
about divergence on average in strata of quadratic differentials. Since strata are subsets of
Qg;n, any Teichmüller geodesic that diverges in Qg;n also diverges in its stratum. How-
ever, there is another mechanism for divergence in strata. Recall that we defined a saddle
connection on a quadratic differential to be a geodesic in the flat metric defined by q that
begins and ends at (potentially distinct) singularities and contains no singularities in its
interior. Define sysflat W Qg;n.�/! R�0 to be the length of the shortest saddle connection
on the quadratic differential. Similar in spirit to Mumford’s compactness theorem, a path
in a stratum diverges if and only if sysflat has a limit along the path and that limit is zero.
A Teichmüller geodesic determined by a quadratic differential q is divergent on average
in a stratum Qg;n.�/ if and only if

lim
T!1

1

T

Z T

0

sysflat.gtq/ dt D 0:

For any holomorphic quadratic differential q it is a consequence of Chaika and Eskin
[4, Theorem 1.1] that the set of directions � such that the Teichmüller geodesic determined
by r�q diverges on average in its stratum has measure zero. We prove the following result.

Theorem 1. For a quadratic or Abelian differential q the set of directions � 2 Œ0; 2��
such that the Teichmüller geodesic ¹gtr�qºt�0 determined by r�q diverges on average
(either in its stratum or in Qg;n) has Hausdorff dimension exactly equal to 1

2
.

Given a noncompact Hausdorff topological space �, let C0.�/ denote the space of
continuous functions from � to R that vanish at infinity (i.e. that tend to zero along any
sequence that leaves all compact sets; equivalently that has a continuous extension to the
one-point compactification of � by sending the point at infinity to 0).

As a corollary, we have the following.
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Corollary 1. Let H be any stratum of quadratic or Abelian differentials and f 2 C0.H /.
Then for any q 2 H the set of � 2 Œ0; 2�/ such that

lim
T!1

1

T

Z T

0

f .gtr�q/ dt D 0

has Hausdorff dimension at least 1
2

.

Remark 1. Notice that Corollary 1 is on the face of it stronger than the lower bound in
Theorem 1 since sysflat and syshyp belong to C0.H / for any stratum H .

Remark 2. For any quadratic differential the set of directions that diverge on average
in Qg;n is contained in the set of directions that diverge on average in the stratum. In
al-Saqban, Apisa, Erchenko, Khalil, Mirzadeh and Uyanik [1], the authors adapted the
techniques of Kadyrov, Kleinbock, Lindenstrauss and Margulis [12] to show that the latter
set has Hausdorff dimension at most 1

2
(this result improves on results of Masur [17,18]).

Therefore, the novelty of the current work is establishing the lower bound of Hausdorff
dimension 1

2
for the set of directions that diverge on average in Qg;n.

Remark 3. The methods of [1] in fact show that the Hausdorff dimension of the set of
directions that diverge on average in any open SL.2;R/ invariant subset of a stratum is at
most 1

2
. Therefore, Theorem 1 remains true when divergence on average is considered on

any open SL.2;R/ invariant subset of a stratum of quadratic differentials.

Remark 4. In the classical case of SL.2;R/=SL.2;Z/, which is the genus 1 case, it
is known that the set of directions that diverge on average has Hausdorff dimension 1

2
.

In fact, the behavior of a geodesic is determined by the continued fraction expansion
of its endpoint x D Œa0; a1; a2; : : :� (see for instance Dani [9]). The geodesic diverges on
average if and only if .

Qn
iD1 ai /

1
n goes to1 as n!1 (see Choudhuri [8, Theorem 1.2])

and this set has Hausdorff dimension 1
2

by [11, Theorem 1.2]. In Cheung [6], it is shown
that the set of real numbers for which an tends to 1 at a certain prescribed rate has
Hausdorff dimension 1

2
. Our construction in higher genus Teichmüller space is modeled

on this construction.

1.3. Connection with previous results

For any holomorphic quadratic differential q on a Riemann surface X , every direction
specifies a foliation of the underlying Riemann surface. By Masur [18, Theorem 1.1],
if the Teichmüller geodesic ¹gtr�qºt�0 is recurrent, then the foliation in the � -direction
is uniquely ergodic. A foliation is said to be uniquely ergodic if there is a unique up
to scaling invariant transverse measure to the foliation. In particular, the non-uniquely
ergodic directions – NUE.q/ – are divergent directions.

By results of Strebel [22] and Katok and Zemlyakov [25], the collection of directions
with non-minimal flow – NM.q/ – is countable. In [19], the main theorem is that outside
finitely many exceptional strata of quadratic differentials (the exceptions being the ones
where every flat structure induced by a holomorphic quadratic differential has a holon-
omy double cover that is a translation covering of a flat torus), there is a constant ı > 0
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depending on the stratum so that for almost-every quadratic differential q in the stratum
the set of directions with non-ergodic flow with respect to Lebesgue measure – NE.q/ –
has Hausdorff dimension exactly ı. The sequence of inclusions is then

NM.q/ � NE.q/ � NUE.q/ � D.q/ � DA.q/;

where D.q/ and DA.q/ are the set of directions that diverge (resp. diverge on average).
The set D.q/ was shown to have measure zero in [13, Theorem 4].

The set NUE.q/ was shown to have Hausdorff dimension at most 1
2

by the main
theorem of Masur [18]. Recently, Athreya and Chaika [2] showed that this inequality is
actually an equality for almost every Abelian differential in H .2/; the space of Abelian
differentials in genus 2with a single zero of order 2 and Chaika and Masur [5] showed that
for hyperelliptic components of strata of Abelian differentials this inequality is actually
an equality for almost every Abelian differential.

Problem 1. Is it the case that the Hausdorff dimension of NUE.q/ is either 0 or 1
2

for all
quadratic differentials q?

For all known examples, the dimension is either 0 or 1
2

. Despite the fact that NE.q/
has positive Hausdorff dimension for a full measure set of quadratic differentials (out-
side of finitely many exceptional strata), in each stratum there is a dense set of Veech
surfaces – quadratic differentials whose stabilizer in SL.2;R/ is a lattice – for which
D.q/ D NM.q/ and hence is countable. The fact that D.q/ is positive-dimensional for
a full measure set of q and zero-dimensional for a dense set of q shows that an analogue
of Theorem 1 for divergent directions does not exist in general.

2. Proof of Theorem 1

In this section we will provide a proof of Theorem 1 modulo Propositions 1, 2, 3, 4, 5,
and 6. These propositions are, respectively, the main results of Sections 3, 4, 6, 5, 7,
and 8. This section provides both the strategy of the proof and an outline of the subsequent
sections.

In the sequel, given a quadratic or Abelian differential q, we will say that � is a
divergent on average direction if r�q diverges on average with respect to the gt flow on
the moduli space of quadratic differentials.

2.1. A mechanism for certifying divergence on average

The certificate that a Teichmüller geodesic diverges on average in moduli space (and not
just the stratum) will be large modulus cylinders. By a result of Maskit [15], large modulus
cylinders have hyperbolically short core curves.

Definition 1. Given a cylinder ˇ on a quadratic differential, let jˇj be the length of its
core curve in the flat metric and let �ˇ be the angle that the holonomy vector of its core
curve makes with the horizontal. We will occassionally abuse notation and let “the holon-
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omy vector of a cylinder” mean the “holonomy vector of its core curve”. Let Iˇ be the
interval of angles centered at �ˇ with radius 1

jˇ j2 log jˇ j
.

Definition 2. Fix positive constants c and M . Let ˇ be a cylinder. Another cylinder ˇ0 is
called a .c;M/-potential child of ˇ if the following hold:
(1) The area of ˇ0 is at least c.
(2) jˇj log jˇj � jˇ0j �M jˇj log jˇj.
(3) Iˇ 0 � Iˇ .

Lemma 2.1. Fix positive constants c, M , and 0 < � < 1. Let q be a quadratic differ-
ential. Suppose ˇ0 is a .c;M/-potential child of ˇ and � 2 Iˇ 0 � Iˇ . Suppose too that
4
�2
< log jˇj. Then for all

t 2 Œlog jˇj; log jˇ0j�;
except for a subset of size at most log 4M

�2
, ˇ has flat length at most � on gtr�q.

Proof. Suppose without loss of generality that we have rotated q so that � is the vertical
direction. Let h.t/ and v.t/ be the horizontal (resp. vertical) component of the holonomy
vector of ˇ on gtr�q. When t D log jˇj C log.2

�
/, we see that

v.t/ �
�

2
and h.t/ �

�
2jˇj

�

�
jˇj sin

�
1

jˇj2 log jˇj

�
�

2��1

log jˇj
�
�

2
:

Similarly, when t D log jˇ0j � log.2M
�
/, we see that

v.t/ �
�

2
and h.t/ �

�
M jˇj log jˇj

��
�

2M

�
jˇj sin

�
1

jˇj2 log jˇj

�
�
�

2
:

Therefore, for all times

t 2

�
log jˇj C log

�
2

�

�
; log jˇ0j � log

�
2M

�

��
the curve ˇ has length at most � on gtr�q.

Definition 3. Fix positive numbers c and M and a quadratic differential q. Notice that
if .ˇn/n�0 is a sequence of cylinders so that ˇn is a .c;M/-potential child of ˇn�1, then
.Iˇn/n�0 is a nested sequence of intervals whose diameter is tending to zero. By the
nested interval theorem there is an angle � so that

T
n Iˇn D ¹�º. Let D be the collection

of angles that can be written this way.

We will use computations of extremal length to determine when a quadratic differen-
tial is in the thin part of moduli space. We remind the reader of the definition.

Definition 4. A curve family � is a collection of curves on a Riemann surface X . The
extremal length of � is

sup
�

1

A.�/

�
inf

2�

Z



�.z/ jdzj

�2
;

where the supremum is taken over all conformal metrics � and where A.�/ is the area
of �. The extremal length of a curve 
 is defined to be the extremal length of the col-
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lection of curves freely homotopic to 
 ; it is also the reciprocal of the modulus of the
largest topological annulus embedded in the hyperbolic surface whose waist curve is
freely homotopic to 
 .

Corollary 2.2. Fix a quadratic differential q. Any angle � 2 D is a divergent on average
direction in the moduli space of quadratic differentials Qg;n (not just in a stratum).

Proof. Let � > 0. By the Mumford compactness theorem, Mg;n has a compact exhaus-
tion by sets K� of Riemann surfaces on which all simple closed essential curves have
hyperbolic length at least �. By Maskit [15], for sufficiently small �, there is an �0 > 0
so that K� is contained in the set of Riemann surfaces on which all simple closed curves
have extremal length at least �0.

Let �00 WD
p
c�0 and let tn WD log jˇnj. Since .jˇnj/n is an increasing sequence that

tends to1 let N be an integer such that

4

.�00/2
< log jˇnj for n > N .

By Lemma 2.1, for all n > N and for all but at most log 4M
.�00/2

times in Œtn; tnC1� the half-
translation surfaces ¹gtr�qº

tnC1
tDtn

contain a cylinder with core curve ˇn of length less than
�00 and of area at least c. For these times ˇn has extremal length at most

.�00/2

c
D �0

and hence the underlying Riemann surface lies outside of K� . Since tnC1 � tn tends to
1 as n!1 whereas the amount of time spent in K� for times in Œtn; tnC1� is
at most log 4M

.�00/2
, we see that ¹gtr�qº spends asymptotically zero percent of its time inK�

as desired.

The goal in the sequel will be to produce a set of Hausdorff dimension exactly 1
2

in D .

2.2. Reduction to the case of translation surfaces

In this subsection we will show that for studying divergence on average for quadratic
differentials it suffices to study abelian differentials.

Lemma 2.3. Let .X; q/ be a quadratic differential with holonomy double cover .Y; !/.
Any direction that belongs to D for .Y; !/ is a divergent on average direction for .X; q/.

Proof. A cylinder on the translation surface projects to a cylinder on the quadratic differ-
ential whose modulus is either equal to or half that of the original cylinder. The proof is
now identical to that of Corollary 2.2.

In the sequel, we will now only consider Abelian differentials. For the remainder of
the paper we fix the following notation. Fix a translation surface .X; !/ in a stratum H of
Abelian differentials on genus g Riemann surfaces. Let j†j denote the number of zeros
of !.
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Remark 5. In the sequel, all lengths and angles will be measured on .X; !/ unless
otherwise stated.

2.3. Set-up for the child selection process

Given a cylinder, we hope to produce child cylinders (as in Definition 2) so that the angle
of the holonomy vectors of their core curves can be used to build a Cantor set of divergent
on average directions as in Section 2.1. Suppose the holonomy vector of the cylinder we
start with is in the vertical direction. To construct child cylinders we will follow geodesics
corresponding to directions in Iˇ for a period of time t where t 2 Œlog jˇj;M log jˇj�. We
then find a cylinder on this new surface whose length is approximately one, that has
definite area, and that is approximately vertical and pull it back by the geodesic flow to
the original surface. We hope to produce many child cylinders this way. However, there is
at least one large obstacle – not every translation surface contains a definite area cylinder,
of bounded length, near the vertical direction. This leads us to the following definition.

Definition 5. Given ı > 0 and 0 < c < 1, we say a cylinder is .ı; c/-thin if its circum-
ference is at most ı and its area is at least c. A translation surface is said to belong to the
.ı; c/-thick part of a stratum if it contains no .ı; c/-thin cylinders.

Remark 6. We remark that the .ı; c/-thick set is not compact. One can have a sequence
of surfaces containing cylinders of circumferences going to 0 and areas less than c that lie
in the .ı; c/-thick part. These sequences enter what is usually referred to as the thin set,
i.e. the set where a curve is short with no reference to area.

Throughout the paper there will be technical conditions on the constants that appear.
We will call these “Conditions on Constants”. The final section will establish that con-
stants can be chosen to satisfy all of these conditions. We also note here that specific
integers will appear in the paper in the discussion of upper bounds. While they do not have
significance in their own right, the authors felt that by contrast using theO. / notation was
not sufficient in the discussion of constants.

We defer the proof of the following proposition to Section 3. It allows us to find new
cylinders under a thickness hypothesis.

Conditions on Constants 1. For positive constants c1; c2, �1, and ı we require that

(1) c1 < 1
3g�3

,

(2) c2 < �
g.2gCj†j�2/

, where † is the singular set and � D 1 � .3g � 3/c1
(3) c1 � c2
(4) cot �1 < c1

16
.

(5) ı is smaller than the Margulis constant, i.e. any two curves onX that have hyperbolic
length less than ı can be homotoped to not intersect.

(6) The base surface .X; !/ is .ı; c1/ thick.

Proposition 1. Let constants c1, c2, �1, and ı be chosen so that Conditions on Con-
stants 1 holds. Then there are positive constants L and �0 so that any .ı; c1/-thick trans-
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lation surface has a cylinder ˇ so that the following hold:

(1) Its circumference is strictly less than L.

(2) Its area is at least c2.

(3) The angle �ˇ the holonomy vector of the core curve of ˇ makes with the horizontal is
at least �1.

(4) If ˇ0 is any shorter cylinder satisfying the previous three properties, then

j�ˇ � �ˇ 0 j > �0:

We will refer to the constants L; �0 as determined by Proposition 1. Now for each
integer m set

M D
2mC2L

ı
:

Conditions on Constants 2. We choose c1; c2 and ı small enough, and m large enough
so

(1) c1 D c2 satisfies Conditions on Constants 1.

Calling this common value c and setting � D ı.192
p
2g�192

p
2/

c
:

(2) � < 1
4

.

(3) m > 6L.log. 2
1C2�

//�1.

(4) M > 21.

2.4. The child selection process

To recap, given a cylinder we need to produce many .c;M/-potential children (Defini-
tion 2) so that we can build a Cantor set of divergent on average directions contained
in D (see Section 2.1). So given a parent cylinder ˇ0, we will flow in a prescribed set
of directions, and if we are lucky and after flowing under geodesic flow for time approx-
imately log jˇ0j the surface is .ı; c/-thick we will pull back the cylinder described in
Proposition 1 to produce a .c;M/-potential child. It is this process that we now wish to
make precise and which will be the main object of study in the sequel.

Definition 6 (Child selection process). Consider the following process:
(1) Let .X0; !0/ be a .ı; c/-thick translation surface that contains a cylinder ˇ0 of area

at least c. Let 
 be a straight line that is contained entirely in ˇ0, that intersects the
core curve of ˇ0 orthogonally, and which joins one boundary of the cylinder, say at
point p, to the other. For any real number s, let 
s be the straight arc joining the two
boundaries that begins at p and has holonomy hol.
/C s hol.ˇ0/ – we think of these
arcs as partial Dehn twists of 
 about the core curve of ˇ0. We will restrict s so

s 2

�
2 log jˇ0j

ı
;
M log jˇ0j

2L

�
D

��
2 log jˇ1j

ı

�
; 2m

�
2 log jˇ1j

ı

��
:

The arcs 
s for these values of s will be called proto-children of ˇ0.



Divergence on average 1017

(2) Fix s and rotate the translation surface so 
s is vertical. Flow by gt so that 
s has
unit length. The new surface – call it .X1; !1/ – will be called the protochild surface
associated to 
s .

(3) If .X1; !1/ – the protochild surface associated to 
s – is .ı; c/-thick, then by Propo-
sition 1 there is a cylinder ˇ1 on .X1; !1/ whose circumference is at most L, area is
at least c, and such that the holonomy of the core curve makes an angle of at least
�1 with the horizontal direction on .X1; !1/. Call this cylinder the child of ˇ0 corre-
sponding to 
s . Similarly, call ˇ0 the parent. We will use ˇ1 to refer to the cylinder
on both .X0; !0/ and .X1; !1/.

The previous process therefore gives a means of associating “child” cylinders to
a “parent” cylinder. However, at the moment, several questions remain – the biggest is
how many child cylinders a parent cylinder has. Since child cylinders are only produced
when the proto-child surface is .ı; c/-thick it is a priori possible that the child selection
process produces no child cylinders for certain parents. This question will be addressed in
the following subsection. Another question, which we address now, is whether the chil-
dren produced by this procedure are, as the notation suggests, .c;M/-potential children
for the parent cylinder.

The main result of Section 4 is the following.

Definition 7. Let C WD Lc
16M

. Given a cylinder ˇ, define

Nˇ WD log jˇj and �ˇ WD
C

log jˇj
:

Fix a constant R0, upon which conditions will be put in the sequel, so that “sufficiently
large” will mean “larger than R0”. We will demand that log.R0/ > 1.

Proposition 2. Suppose that Conditions on Constants 1 holds. For a sufficiently large
parent cylinder ˇ, if ˇ0 and ˇ00 are distinct children of ˇ corresponding to indices s0 and
s00 so that js0 � s00j � 1, then

(1) jˇj log jˇj � jˇ0j �M jˇj log jˇj,
(2) Iˇ 0 � Iˇ ,
(3) the distance between Iˇ 0 and Iˇ 00 is at least �ˇ jIˇ j D C

N2
ˇ
jˇ j2

,
(4) Nˇ jˇ j

Nˇ0 jˇ
0j
�

1
6Ls0

.

The first two properties imply that the children constructed in the child selection pro-
cess are .c;M/-potential children of the parent cylinder. The final two properties on the
spacing of the intervals and the size of an interval associated to a parent interval relative
to one associated to its child, will be used in the computation of Hausdorff dimension.
A crucial issue to be addressed is to show there are enough children to make the desired
computations of Hausdorff dimension.

2.5. How to iterate the child selection process

The following proposition is the main result of Section 6. It allows us to begin the child
selection process.
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Proposition 3. Suppose that Conditions on Constants 3, 4, and 5 hold. Then there are
arbitrarily long cylinders ˇ of area at least c that contain a protochild whose protochild
surface is .ı; c/-thick.

The following proposition is the main result of Section 5. It says that we can find many
protochildren whose protochild surfaces are thick unless thinness is caused by cylinders
that are short on the base surface.

Proposition 4. Suppose that Conditions on Constants 1, 2, 3, and 4 hold. For any suffi-
ciently long parent cylinder ˇ0 and any interval of the form

Œs; 2s� �

�
2 log jˇ1j

ı
; 2m

2 log jˇ1j
ı

�
;

there are at least .1 � �/s � 1 points in Œs; 2s� that are all separated by at least unit
distance and whose protochild surfaces are either .ı; c/-thick or that contain a .ı; c/-thin
cylinder ˇ whose circumference satisfies

jˇj �
jˇ0j

2
p
2
:

As a reminder, while we let ˇ� denote cylinders on both the original surface – .X; !/
– and the protochild surface; the child selection process is only ever applied to cylinders
on .X; !/. The following proposition is the main result of Section 7. It says that in fact
that the second possibility in the conclusion of Proposition 4 does not hold so the first
conclusion must hold which therefore allows us to find many .ı; c/-thick protochildren.

Proposition 5. Suppose that Conditions on Constants 1, 2, 3, 4, 6, and 7 hold. Let ˇ0 be
a sufficiently large cylinder on .X; !/ with a child ˇ1. If ˇ1 has a protochild �1 whose
protochild surface has a .ı; c/-thin cylinder ˇ2, then on .X; !/ we have

jˇ1j

2
p
2
� jˇ2j:

In the final short section – Section 8 – we show

Proposition 6. It is possible to choose constants so that all Conditions on Constants are
satisfied.

2.6. Constructing a Cantor set in D

By Proposition 6, pick constants that satisfy all the Conditions on Constants. By Proposi-
tion 3, there is a cylinder ˇ0 on .X; !/ whose circumference is at least R0, area at least c,
and which contains a protochild �0 whose protochild surface .X1; !1/ is .ı; c/-thick.
Let ˇ1 be the child cylinder chosen in the child-selection process (Definition 6).

We will associate a collection of children to ˇ1. To each child cylinder constructed in
this way we will associate a new collection of child cylinders and so on. We describe this
iterative process. Let ˇ be a cylinder constructed in this process. Define its collection of
child cylinders Dˇ as follows.
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Consider the set of protochildren of ˇ, indexed by .2 log jˇ j
ı

; 2m
2 log jˇ j
ı

/. By Propo-
sition 5 any cylinder that is responsible for .ı; c/-thinness of a protochild surface has
circumference of size at least 1

2
p
2
jˇj. Divide the set of protochildren into sets

Ik WD

�
2k
2 log jˇj

ı
; 2kC1

2 log jˇj
ı

�
for k 2 ¹0; : : : ; m � 1º. By Proposition 4, there are at least .1 � �/2k 2 log jˇ j

ı
� 1 points,

call them J 0
k

, in Ik that are unit distance apart and whose corresponding protochild surface
is .ı; c/-thick. Let Jk be the subcollection of J 0

k
with the largest and smallest points

deleted. This is done so that any two distinct points in Jˇ WD
Sm�1
kD0 Jk are unit distance

apart. Then

jJkj � .1 � �/2
k 2 log jˇj

ı
� 3 > .1 � 2�/2k

2 log jˇj
ı
I

the last inequality holds since � < 1
4

and since by definition of constants

log jˇj � log.R0/ > 1 > c:

The set of childrenDˇ will then be the children constructed in the child-selection process
whose indices correspond to the indices in Jˇ .

Let D 0 be the collection of angles � that can be written as ¹�º D
T
n Iˇn for some

sequence .ˇn/n�0, where ˇn belongs to the set Dˇn�1 . By Proposition 2, the elements
of D 0 belong to D , which in turn is contained in the set of directions that diverge on
average (by Corollary 2.2).

2.7. Proof of Theorem 1

By Cheung [6, Theorem 3.3], given the set D 0 constructed in the previously described
way and given that the children satisfy the four enumerated conditions in Proposition 2,
then if s is some real number so that for every cylinder ˇ constructed in the above processX

ˇ 02Dˇ

�s
ˇ 0
jIˇ 0 j

s

�s
ˇ
jIˇ js

> 1;

then the Hausdorff dimension of D 0 is at least s. We have already seen that these directions
are divergent on average in the moduli space of quadratic differentials Qg;n.

Proof of Theorem 1. Setting s D 1
2

, we see thatX
ˇ 02Dˇ

�s
ˇ 0
jIˇ 0 j

s

�s
ˇ
jIˇ js

D

X
ˇ 02Dˇ

�
CNˇ

CNˇ 0

� 1
2
�
Nˇ jˇj

2

Nˇ 0 jˇ0j2

� 1
2

D

X
ˇ 02Dˇ

Nˇ jˇj

Nˇ 0 jˇ0j
:

By (4) of Proposition 2 the sum on the right is greater than

1

6L

m�1X
kD0

X
s02Jk

1

s0
:

For each k the smallest value of the inner sum occurs when the .1 � 2�/2k Nˇ
ı

values
of s0 in the interval Œ2k Nˇ

ı
; 2kC1

Nˇ
ı
� are all exactly distance 1 apart and lie in the interval
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Œ.1C 2�/2k
Nˇ
ı
; 2kC1

Nˇ
ı
�. But thenX

s02Jk

1

s0
� log

�
2kC1

Nˇ

ı

�
� log

�
.1C 2�/2k

Nˇ

ı

�
D log

�
2

1C 2�

�
:

Since there are m such sums, we see thatX
ˇ 02Dˇ

�s
ˇ 0
jIˇ 0 j

s

�s
ˇ
jIˇ js

>
m log

�
2

1C2�

�
6L

> 1;

where the final inequality holds by choice of constants in Conditions on Constants 2. By
Cheung [6, Theorem 3.3], the Hausdorff dimension of D is at least 1

2
. Therefore, the

Hausdorff dimension of the set of directions that diverge on average is exactly equal to 1
2

by [1].

3. Cylinders and the thick-thin decomposition – Proof of Proposition 1

In this section, we will establish Proposition 1, which roughly says that any .ı; c/-thick
translation surface contains a cylinder of bounded length and definite area whose core
curve has a holonomy vector that is close to vertical. Recall that we have chosen ı to be
smaller than the Margulis constant.

3.1. Summary of the ı0-thick-thin decomposition of Rafi and the Geometric
Compactification Theorem of Eskin–Kontsevich–Zorich

Given a translation surface, there are two natural metrics on the underlying Riemann
surface – the hyperbolic metric and the flat metric.

Definition 8. The ı0-thick-thin decomposition of the translation surface .Y; �/ – where Y
is a Riemann surface and � is an Abelian differential – is defined as follows. Let � be
the simple closed hyperbolic geodesics on Y whose hyperbolic length is less than ı0. For
each 
 2 � , there is a geodesic representative of 
 in the flat metric on .Y; �/. Either the
flat-geodesic is unique or it is contained in a flat cylinder. In the first case, cut out the
unique flat-geodesic from .Y; �/ and in the second excise the entire cylinder. Do this for
each 
 2 � . The resulting connected components are called ı0-thick-pieces.

The size of a thick-piece is defined as follows. If the thick piece is not a pair of pants,
its size is the smallest flat length of a simple closed curve in the thick piece that is not
homotopic to a boundary curve. If the thick piece is a pair of pants, then the size is the
maximal flat length of a boundary curve.

These definitions are due to Rafi [21] who showed that there is a constant C.g; j†j; ı0/
so that in a thick piece of size � and for any essential curve ˛ contained in the thick piece,

�

C.g; j†j; ı0/
`hyp.˛/ � `flat.˛/ � C.g; j†j; ı

0/�`hyp.˛/;

where `hyp and `flat denote lengths in the hyperbolic and flat metrics, respectively.
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Now we will state a result of Eskin, Kontsevich and Zorich [10, Geometric Com-
pactification Theorem (Theorem 10)], in the case of Abelian differentials. The theorem
studies a sequence of translation surfaces .Xn; !n/ that converges to a stable differential
on a compact nodal Riemann surface .Y; �/. A compact nodal Riemann surface always
admits a surjection from a smooth compact Riemann surface, called its normalization,
that is one-to-one outside of cofinitely many points – called preimages of nodes. This
makes precise the intuition that a nodal Riemann surface is a smooth Riemann surface
after gluing together finitely many finite collections of points.

The desingularization of a compact nodal Riemann surface will be defined to be the
normalization punctured at preimages of nodes. Since this is a (potentially disconnected)
Riemann surface, there is a unique hyperbolic metric on the desingularization. The injec-
tivity radius of this metric is what we will refer to with the phrase “the injectivity radius
of the desingularization of a nodal Riemann surface”.

Theorem 3.1 ([10, Theorem 10]). Let .Xn; !n/ be any sequence of unit-area translation
surfaces that are not contained in a compact subset of a stratum of Abelian differentials.
By passing to a subsequence assume that .Xn; !n/ converges to a stable differential ! on
a nodal Riemann surface Y . Let ı0 be less than half the injectivity radius of the hyperbolic
metric on the desingularization of Y . Then there is a subsequence of .Xn; !n/ so that each
thick component converges to a nonzero meromorphic quadratic differential when the flat
metric on the thick component is renormalized so that its size is one.

In the sequel we will also use a construction of Eskin, Kontsevich and Zorich
[10, Geometric Compactification Theorem (Theorem 10)], to build a triangulation. The
content of the statement and proof are found entirely in [10] (specifically in Lemma 4.2
and the first three paragraphs of the proof of Theorem 10) but we record them here since
there is not a more convenient reference to these facts in [10].

Lemma 3.2. Using the notation of Theorem 3.1, for sufficiently large n and after pass-
ing to a subsequence there is an identification of thick pieces of .Xn; !n/ with those of
.XnC1; !nC1/ for all n. Moreover, there is a triangulation of the thick pieces so that for
constants C1 and C2:
(1) The sizes of the thick pieces converge.
(2) The triangulations have the same combinatorial type for all n.
(3) There are fewer than C1 edges of the triangulation.
(4) The edges of the triangulation are saddle connections.
(5) The saddle connections that do not belong to the boundary of the thick piece have

length bounded below by �
2

and above by C2� where � is the size of the thick piece.
(6) The holonomy vectors of the edges of the triangulation, divided by the size of the thick

piece, converge as n tends to infinity. In particular, this implies that the holonomy
vectors of the edges of the triangulation converge whenever the size of the thick piece
does not tend to zero.

Proof. Since .Xn; !n/ converges to .Y; �/, for sufficiently large n, Y punctured at its
nodes is homeomorphic to the ı0-thick pieces of .Xn; !n/. Identify the thick pieces of
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.Xn; !n/ with those on .XnC1; !nC1/ by identifying homeomorphic pieces with each
other. (There is not a canonical way of doing this and the identification is merely a con-
venient way of fixing a way of talking about a single thick piece along the sequence.)
By passing to a subsequence assume that the sizes of the thick pieces converge. By
[10, Lemma 4.2], there are constants C1 and C2 depending only on the stratum so that
every thick component of .Xn; !n/ can be triangulated with fewer than C1 saddle con-
nections satisfying the length estimate in (5).

Now consider a thick piece of .Xn; !n/ whose flat metric is rescaled so that its size
is one. By [10, Lemma 4.2], the triangulation previously described has at most C1 edges,
all of which now have length between 1

2
and C2. There are finitely many combinatorial

types of triangulations with this property. Passing to a subsequence therefore allows one to
assume that the combinatorial type of a triangulation of a thick piece is constant for all n.
This provides a means of identifying edges of a triangulation of a thick piece on .Xn; !n/
with the edges of the triangulation of the corresponding thick piece on .XnC1; !nC1/.
Therefore, we may again pass to a subsequence to ensure that the holonomy vectors
(scaled by the size of the thick piece) of the edges of the triangulation converge along
the subsequence.

Definition 9. Suppose that A is an annulus around a curve 
 on X . The annulus A is
called regular if it is of the form ¹p W d.p; 
/ < rº for some r where d. � ; � / denotes
distance in the flat metric. The annulus is primitive if additionally it contains no singu-
larities in its interior. If A is a primitive regular annulus that is not a flat cylinder, then
define �.A/ WD log. j
oj

j
i j
/, where j � j denotes flat length and 
o (resp. 
i ) is the longer

(resp. shorter) boundary curve of A and is called the outer (resp. inner) curve of A. This
definition agrees with the one made in Minsky [20] up to a multiplicative constant that
only depends on the stratum containing .X; !/.

3.2. Proof of Proposition 1

Lemma 3.3. Under the hypotheses of Theorem 3.1, every flat cylinder in .Xn; !n/ around
a ı0-hyperbolically short curve has the length of its core curve tend to 0 as n!1.

Proof. By the result of Maskit [15, Corollary 2], since the ı0-hyperbolically short curves
have lengths tending to zero in the hyperbolic metric, their extremal length also tends to
zero as n!1.

Therefore, each ı0-hyperbolically short curve 
 is contained in a topological annulus
whose modulus tends to1 as n!1. By a result of Minsky [20, Theorems 4.5 and 4.6]
(note that the inequality� m0 should be� m0 in the statement of the Theorem 4.6), either

 is contained in a flat cylinder whose modulus is unbounded in n or there is a primitive
regular annulus An � .Xn; !n/ contained in a thick piece whose core curve is homotopic
to 
 and so that �.An/ tends to1 as n increases.

Notice that if the modulus of the flat cylinder containing 
 tends to1, then the flat
length of 
 tends to zero since each .Xn; !n/ is unit-area. Therefore, suppose that for
each n there is a primitive regular annulus An whose core curve is homotopic to 
 and so
that �.An/ is unbounded in n.
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Let `n be the flat length of 
 on .Xn; !n/ and let an be the area of the thick piece
containing An. The flat distance across An is at most hn WD an

`n
. The flat length of the

outer curve An in the flat metric is at most 2`n C 2�Mhn, whereM is some integer only
depending on the stratum. Therefore,�.An/ � log.2C 2�M

`n
/. Since�.An/ is unbounded

in n, `n ! 0 as n!1.

A similar argument to the one above is given in [7, Corollary 5.4].

Lemma 3.4. Fix a stratum H of Abelian differentials, an open set I on the unit circle, the
positive constant ı, the positive constants c1 and c2 satisfying Conditions on Constants 1.
Then there is an L so that for any .ı; c1/-thick unit area surface in H there is a cylinder
of area at least c2 whose core curve has length at most L and such that the direction of
the holonomy vector lies in I .

Remark 7. Only the first two conditions of Conditions on Constants 1 are needed for the
proof. The same holds for Proposition 1.

Proof. Let H.ı;c1/ be the locus of .ı; c1/-thick translation surfaces in H . By Vorobets [23,
Theorem 1.5], for every unit area translation surface in H there is a cylinder of area at least

1
2gCj†j�2

whose core curve has holonomy vector whose direction lies in I . Let C be the
set of cylinders of area at least c2 and whose core curve has the direction of its holonomy
vector lying in I . Notice that c2 is less than 1

2gCj†j�2
by Conditions on Constants 1. Let

`C W H ! R be the function that records the shortest length of a cylinder in C . (Notice
that this function is different from the function ` which is often used to denote the length
of the shortest saddle connection). Since cylinders persist on open subsets of H , it follows
that `C is bounded on compact subsets of H .

Arguing by contradiction assume the lemma does not hold. It follows that there is
a sequence .Xn; !n/ of translation surfaces in H.ı;c1/ so that the `C .Xn; !n/!1. Since
`C is bounded on compact subsets of H , it follows that .Xn; !n/ leaves all compact
subsets of H . By passing to a subsequence, we suppose that the sequence converges to
.X; !/ in the geometric compactification.

Let ı0 be less than half the injectivity radius of the desingularized hyperbolic metric
on X , and suppose that the ı0 thick pieces converge as in Theorem 3.1. We claim that
there is a thick piece that has definite area on each .Xn; !n/. In the thick-thin decom-
position, the only positive-area subsurfaces that are not contained in a thick piece are
flat cylinders around ı0-hyperbolically short curves. However, by Lemma 3.3 these cylin-
ders have the length of their core curves tend to zero along the sequence .Xn; !n/. By
truncating an initial segment of the sequence we may suppose that these core curves are
always less than length ı in flat length. Since .Xn; !n/ are .ı; c1/-thick surfaces, we have
that the thin part has area at most .3g � 3/c1. Therefore, the thick part has area at least
� WD 1 � .3g � 3/c1, which is positive by Conditions on Constants 1. Moreover, the thick
part has at most g components. In particular, it contains some translation surface of area �

g
.

By Vorobets [23, Theorem 1.5], this thick piece contains a cylinder whose core curve
has a holonomy vector whose direction lies in the interval I , of area at least �

g.2gCjsj�2/
.

Therefore, pulling it back to .Xn; !n/ (after again truncating a finite initial subsequence),
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produces a cylinder in C along the subsequence of bounded length, which is a contradic-
tion.

For convenience we restate Proposition 1 here.

Proposition (Proposition 1). There are positive constants L, �0 so that any .ı; c1/-thick
translation surface has a cylinder ˇ so that the following hold:

(1) Its circumference is strictly less than L.

(2) Its area is at least c2.

(3) The angle �ˇ its holonomy vector makes with the horizontal is at least �1.

(4) If ˇ0 is any shorter cylinder satisfying the previous three properties, then

j�ˇ � �ˇ 0 j > �0:

Proof of Proposition 1. Choose � > 0 so that �1 C � < � and let I be the collection of
angles on the circle that are at least �1 C � from the horizontal. Let L be the length
produced by Lemma 3.4. Given a translation surface, we will let C be the collection
of cylinders on the surface satisfying items one through three in the statement of the
proposition. This collection is nonempty for any .ı; c1/-thick surface by Lemma 3.4.

Arguing by contradiction suppose that .Xn; !n/ is a sequence along which the conclu-
sion fails. Suppose without loss of generality that the sequence has a limit .X; !/ in the
geometric compactification. Let ı0 be half the injectivity radius of X in the hyperbolic
metric. By passing to a subsequence assume that we have a triangulation of the thick
pieces as in Lemma 3.2.

Step 1. For sufficiently large n, a cylinder in C does not intersect a thick piece whose
size tends to zero.

Each cylinder in C has height at least c2
L

. Take n sufficiently large so that for each thick
piece whose size is tending to zero it is triangulated by saddle connections of length less
than c2

L
. Then C cannot intersect this thick piece since it cannot cross a saddle connection

of length less than c2
L

.

Step 2. For sufficiently large n, a cylinder in C does not intersect a positive area thin
piece.

These thin pieces are exactly flat cylinders around ı0-hyperbolically short curves. By
Lemma 3.3, the circumference of these flat cylinders tend to zero. Since each .Xn; !n/
is .ı; c1/-thick, these cylinders must have area strictly less than c1 � c2 for sufficiently
large n. Hence no cylinder in C can coincide with one of these cylinders. Moreover, the
heights of the cylinders in C are bounded below and so no cylinder in C can cross them
either (since the circumferences tend to zero).

Step 3. For sufficiently large n, a cylinder in C is contained in a single thick piece.

Consider a thick piece whose size does not tend to zero. By Eskin, Kontsevich and
Zorich [10, Geometric Compactification Theorem (Theorem 10)], when this piece is
rescaled by its size it converges to a meromorphic quadratic differential. However, since
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the size is bounded away from zero this quadratic differential has finite area, no boundary,
and trivial linear holonomy, i.e. it is an Abelian differential on a closed Riemann surface.
Therefore, the boundary of the thick piece necessarily consisted of saddle connections
whose holonomy tended to zero as n tended to1. Since cylinders in C have height that is
bounded below, it must be the case that C cannot cross the boundary of a thick piece when
n is sufficiently large (i.e. when all the saddle connections in the boundary are sufficiently
small).

Step 4. There is a finite collection of curves S defined only in terms of the combinatorial
type of the triangulation so that any cylinder belonging to C on .Xn; !n/ for sufficiently
large n, has core curve homotopic to a curve in S .

Recall that the triangulations of the thick pieces of .Xn; !n/ all have the same com-
binatorial type and that all edges converge in length. Let ` be the supremum of the edge
lengths that appear in these triangulations for all .Xn; !n/. Since the smallest that the
height of a cylinder in C can be is c2

L
, a cylinder in C can only intersect an edge of the

triangulation `L
c2

times. Consider the finite collection S of all paths through the triangula-
tions of these thick parts that are (1) straight lines in each triangle, (2) connect midpoints
of edges of the triangulation, and (3) cross any edge at most `L

c2
times. For sufficiently

large n, the core curves of the cylinders in C are homotopic to a curve in S and more-
over, since the curves in S are only defined in terms of the combinatorial type of the
triangulation, they define piecewise geodesic curves on all .Xn; !n/. Moreover, since the
holonomy vectors of the edges of the triangulation converge as n tends to1, so does the
holonomy of each element of S .

Step 5. One may choose a cylinder for each n to derive a contradiction.

Let Cn be the shortest cylinder in C on .Xn; !n/ whose holonomy belongs to I (such
a cylinder exists by Lemma 3.4). After passing to a subsequence, we may assume that
Cn corresponds to a fixed element s0 2 S for all n. Let holn.s0/ be the holonomy of
s0 on .Xn; !n/. If the angle of holn.s0/ with the horizontal converges to an angle � in
the interior of I , then on each .Xn; !n/ we notice that by choosing Cn on .Xn; !n/ we
have produced a cylinder in C , whose holonomy vector makes an angle of �1 from the
horizontal, and which, for sufficiently large n, makes an angle of d

2
from the angle of the

holonomy vector of the core curve of any shorter cylinder in C where d is the distance
from � to the boundary of I . However, .Xn; !n/ was chosen so that along the sequence
no such cylinder could be found. This is a contradiction.

Suppose now that the angle holn.s0/ makes with the horizontal converges to the
boundary of I . Without loss of generality suppose that it converges to �1 C �. Let S 0

be the subset of S of paths whose holonomy has its angle with the horizontal converges
to �1 C �. Define

ƒ WD
°

lim
n!1

�.holn.s//
±
s2S

;

where �.holn.s// is the angle holn.s/ makes with the horizontal. Let d be the distance
from �1 C � to the nearest distinct point inƒ (and let it be 2� if there are no other distinct
points). For each n, let Cn be the shortest cylinder in C whose core curve is homotopic
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to an element of S 0. Notice that unlike in the previous case, the angle with the horizontal
of the holonomy vector of the core curve of Cn might lie outside of I . However, for
sufficiently large n, the angle of the holonomy vector of the core curve of Cn will be
bounded away the horizontal by �1 and from any other element of C by at least d

2
. Again

this is a contradiction.

4. Elementary facts about the child selection process – Proof of Proposition 2

In this section, we prove Proposition 2, which states that children constructed in the child
selection process (Definition 6) are .c;M/-potential children (Definition 2) of the parent
cylinder and that the associated intervals have the size and spacing requirements needed
in the Hausdorff dimension computation in Section 2.

Let ˇ0, ˇ1, and 
s be defined as in the definition of the child selection process. Recall
that R0 was defined in Definition 7 to be a constant so that when the circumference of
a cylinder is sufficiently large, it will mean that the circumference is larger than R0.
Moreover, by Definition 7, we have set C D Lc

16M
. In the sequel, it will be necessary

to put several constraints on R0. We begin with the following.

Conditions on Constants 3. Suppose that R0 > max.e
4
C ; 21; e2ı ; eM /.

Make the following definition.

Definition 10. Given two straight line segments 
 and 
 0 in .X; !/, we will let �.
; 
 0/
denote the angle between them. We will always take this number to be positive. By asso-
ciating a cylinder ˇ with its core curve, we will also write �.
; ˇ/ to mean the angle
�.
; 
ˇ / where 
ˇ is the core curve of the cylinder ˇ.

Lemma 4.1 (Length facts). The following facts hold for the child selection process.

(1) If jˇ0j > 1, then it is immediate that

sjˇ0j � j
sj � .s C 1/jˇ0j:

Since s 2 .2 log jˇ0j
ı

;
M log jˇ0j

2L
/, it follows that

2

ı
jˇ0j log jˇ0j � j
sj �

M

L
jˇ0j log jˇ0j:

If e
ı
2 < jˇ0j, then jˇ0j < j
sj.

(2) Since the length of ˇ1 on .X1; !1/ is between ı and L and since its holonomy vector
makes an angle of at least �

4
with the horizontal, when ˇ1 is pulled back to .X0; !0/

by g�j
s j we have

j
sj
ı

2
� jˇ1j � j
sjL:

Combined with the previous estimate this yields

jˇ0j log jˇ0j � jˇ1j �M jˇ0j log jˇ0j:
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(3) If jˇ0j > eM , then
jˇ0j log jˇ0j
jˇ1j log jˇ1j

�
1

6Ls
:

Proof. Only the proof of (3) remains to be given. First,

jˇ0j

jˇ1j
�
jˇ0j

Lj
sj
�
jˇ0j

2Lsjˇ0j
D

1

2Ls
;

where the first inequality is from (2) and the second is from (1). Finally, by (2) we have

log jˇ1j
log jˇ0j

�
M

log jˇ0j
C

log jˇ0j
log jˇ0j

C
log log jˇ0j

log jˇ0j
� 3;

where the final inequality comes from the fact that each summand is less than 1.

Lemma 4.2 (Angle facts 1). The following facts hold for the child selection process.

(1) Since jˇ0 � st j D area.ˇ0/,

c

jˇ0jj
sj
� sin �.ˇ0; 
s/ D

area.ˇ0/
jˇ0jj
sj

�
1

jˇ0jj
sj
:

(2) The largest angle that ˇ1 makes with the vertical is when it lies in the direction of
.cos �1; sin �1/, which pulls back to . cos �1

j
s j
; j
sj sin �1/ on .X0; !0/. Therefore,

jtan �.ˇ1; 
s/j �
cot �1
j
sj2

�
.ı=2/2

jˇ0j2 log2 jˇ0j
:

(3) Since
j
s � 
s0 j D j.s0 C sˇ0/ � .s0 C s

0ˇ0/j D area.ˇ0/js � s0j;

it follows that

jsin �.
s; 
s0/j D
area.ˇ0/js � s0j
j
sjj
s0 j

:

If additionally, s; s0 2 Œ2 log jˇ0j
ı

;
M log jˇ0j

2L
� and js � s0j � 1, then

c.2L=M/2

jˇ0j2 log2 jˇ0j
� jsin �.
s; 
s0/j:

(4) Suppose that ˇ0 and ˇ00 are children of ˇ0 corresponding to 
s0 and 
s00 , respectively.
Suppose js00 � s0j � 1. Suppose also jˇ0j > e2ı . Then

cjs00 � s0j

16jˇ0j2js0s00j
� �.ˇ0; ˇ00/:

Proof. Only the proof of (4) remains to be given. By the triangle inequality,

�.ˇ00; ˇ0/ � �.
s00 ; 
s0/ � �.
s00 ; ˇ
00/ � �.
s0 ; ˇ

0/:

Since sin � � � � tan � for all 0 � � � �
2

, we have

�.ˇ00; ˇ0/ � sin �.
s00 ; 
s0/ � tan �.
s00 ; ˇ00/ � tan �.
s0 ; ˇ0/:
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By (2) and (3) we have

�.ˇ00; ˇ0/ �
area.ˇ0/js00 � s0j
j
s00 jj
s0 j

�
cot �1
j
s0 j2

�
cot �1
j
s00 j2

:

Assume without loss of generality that s0 > s00. Using the estimate that cot �1 < c
16

,

�.ˇ00; ˇ0/ �
c

4jˇ0j2

�
s0 � s00

s00s0
�
.1=4/

s02
�
.1=4/

s002

�
:

Now since s0 � s00 C 1,

4.s0 � s00/s0s00 � s02 � s002 � 2.s0 � s00/s00s0 � .s0 � s00/.s0 C s00/:

The right-hand side is equal to

.s0 � s00/.2s00s0 � s0 � s00/ D .s0 � s00/.s00.s0 � 1/C s0.s00 � 1//:

Therefore, we have

�.ˇ00; ˇ0/ �
cjs0 � s00j

16jˇ0j2s00s0

�
s0 � 1

s0
C
s00 � 1

s00

�
:

If jˇ0j > e2ı , it follows that s0 and s00 are greater than 1, hence

�.ˇ00; ˇ0/ �
cjs0 � s00j

16jˇ0j2s00s0
:

Lemma 4.3 (Angle facts 2). Suppose that jˇ0j > max.21; e
4
C /. The following facts hold

for the child selection process.

(1) Suppose ˇ1 is a child of ˇ0. Then Iˇ1 � Iˇ0 .

(2) Suppose that ˇ0 and ˇ00 are distinct children of ˇ0 corresponding to 
s0 and 
s00
respectively and suppose that js0 � s00j � 1. Then the distance between Iˇ 0 and Iˇ 00
is at least �ˇ0 jIˇ0 j.

Proof. (1) The radius of Iˇ1 is 1
jˇ1j2 log jˇ1j

and so the largest angle between an element of
Iˇ1 and ˇ0 is bounded by

1

jˇ1j2 log jˇ1j
C �.
s; ˇ0/C �.
s; ˇ1/

for any 
s . If jˇ0j > 4, it follows that from Lemma 4.2 (1) that sin �.ˇ0; 
s/ � 1
4

and
hence that �.ˇ0; 
s/ � 2 sin �.ˇ0; 
s/. From this observation and from Lemma 4.2 (2),
we have that the largest angle between an element of Iˇ1 and ˇ0 is at most

1

jˇ1j2 log jˇ1j
C

2

jˇ0jj
sj
C

.ı=2/2

jˇ0j2 log2 jˇ0j
:

By Lemma 4.1 this is at most

1

jˇ0j2 log2 jˇ0j
C

ı

jˇ0j2 log jˇ0j
C

.ı=2/2

jˇ0j2 log2 jˇ0j
:

If jˇ0j > 21, 1
log jˇ0j

< 1
3

. Since ı < 1
3

, the largest angle between an element of Iˇ1 and
the holonomy vector of ˇ0 is less than 1

jˇ0j2 log jˇ0j
as desired.
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(2) By definition, the interval Iˇ 0 with center �ˇ 0 has radius 1
jˇ 0j2 log jˇ 0j

whereas, since
js0 � s00j � 1, we have by Lemma 4.2 (4) that

�.ˇ0; ˇ00/ �
cjs0 � s00j

16jˇ0j2s0s00
:

The distance between two distinct intervals Iˇ 0 and Iˇ 00 is at least
1

jˇ0j2 log2 jˇ0j

�
Lc

8M
�

2

log jˇ0j

�
:

If jˇ0j > e
4
C , the distance is at least �ˇ0 jIˇ0 j as desired.

Proof of Proposition 2. If jˇ0j � R0, then all estimates in this section that require jˇ0j to
be of a certain length hold. The first and final items of Proposition 2 are items (2) and (3)
of Lemma 4.1, while the remaining two are the two items of Lemma 4.3.

5. A definite proportion of protochild surfaces are .ı; c/-thick – Proof of
Proposition 4

Throughout this section we will suppose that ˇ1 is a parent cylinder on a .ı; c/-thick
surface .X; !/. The main result of the section is that a definite proportion of the proto-
children of ˇ1 either have proto-child surfaces that are .ı; c/-thick (which is the outcome
we want) or admit a .ı; c/-thin cylinder which pulls back to a short cylinder on .X; !/
(a possibility that we rule out in Section 7).

Conditions on Constants 4. One has

ı <
c

768
p
2.g � 1/

:

Lemma 5.1. Suppose that 
s is a protochild of ˇ1 and that ˇ2 is a .ı; c/-thin cylinder on
the corresponding protochild surface. If on .X; !/ we have

jˇ1j

2
p
2
� jˇ2j;

then ˇ2 cannot be parallel to ˇ1.

Proof. We have

sin �.ˇ2; 
s/ �
ı

jˇ2jj
sj
�

2
p
2ı

jˇ1jj
sj
<

c

jˇ1jj
sj
� sin �.ˇ1; 
s/:

This implies ˇ2 cannot be parallel to ˇ1

Definition 11. If ˇ is a .ı; c/-thin cylinder on the protochild surface of 
s and jˇ1j
2
p
2
� jˇj

then make the following definitions,
(1) By Lemma 5.1, let s0 be the real number such that ˇ points in the direction of 
s0 .
(2) Let I.ˇ; r/ (resp. I h.ˇ; r/, I v.ˇ; r/) be the collection of s for which hol.ˇ/ (resp.

its horizontal, vertical component) has length less than r on the protochild surface
corresponding to 
s .
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(3) Define I1.ˇ/ WD I.ˇ; ı/, i.e. the collection of s so that ˇ is .ı; c/-thin on the proto-
child surface corresponding to 
s . Define I2.ˇ/ WD I.ˇ; c32 /. Define I h1 , I v1 , I h2 ,
and I v2 analogously.

Note that it is possible that s0 … I1.ˇ1/.

Lemma 5.2. Using the same notation as in Definition 11,

I h1 .ˇ/ D

²
s W js � s0j <

ıj
s0 j

area.ˇ1/jˇj

³
and similarly

I h2 .ˇ/ D

²
s W js � s0j <

cj
s0 j

32area.ˇ1/jˇj

³
:

Proof. Let 
s be a protochild. Rotate so 
s is vertical and let h be the horizontal compo-
nent of hol.ˇ/ – recall that we define this to mean the holonomy vector of the core curve
of ˇ. Now

h

jˇj
D sin �.
s; ˇ/ D sin �.
s0 ; 
s/ D

area.ˇ1/js � s0j
j
s0 jj
sj

:

We now apply gt until 
s has unit length. The number s belongs to I h1 .ˇ/ if and only if
hj
sj < ı, equivalently,

area.ˇ1/js � s0jjˇj
j
s0 j

< ı:

This proves the first statement. The proof of the second is identical.

Remark 8. Notice that when jˇ1j > 1, which follows from Condition on Constants 3,
we have

sjˇ1j � j
sj � .s C 1/jˇ1j:

If 1

2
p
2
jˇ1j � jˇj, then by Lemma 5.2 the radius of I h.ˇ; r/ is bounded above by 4.s0C1/rp

2c
.

If s0 > 1 then the bounds simplify to

j
s0 j � 2s0jˇ1j and jI h.ˇ; r/j � 2

�
8s0r
p
2c

�
:

Lemma 5.3. If jˇ1j
2
p
2
� jˇj and I1.ˇ/ intersects the interval .2 log jˇ1j

ı
; 2m

2 log jˇ1j
ı

/, then
I h2 .ˇ/ � I

v
2 .ˇ/.

Proof. Let vs. � / and hs. � / denote respectively the vertical and horizontal parts of
a holonomy vector when .X; !/ is rotated so that 
s is vertical. We will allow cylinders
as arguments by identifying them with the holonomy vector of their core curve.

If I1.ˇ/ intersects the interval of times s in which protochildren are chosen, then so
does I h1 .ˇ/. By Remark 8, it follows that, since I1.ˇ/ is centered at s0 and has radius
bounded above by 4.s0C1/ıp

2c
,

2 log jˇ1j
ı

< s0 C
4ı.s0 C 1/
p
2c

< .s0 C 1/

�
1C

1

144

�
;
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where the second inequality follows from Condition on Constants 4. Since log jˇ1j > 1
and ı < 1 (see Condition on Constants 3 and 4), it follows that s0 > 1, so we can use the
simpler bounds in Remark 8.

Notice that

lim
s!1

vs.ˇ/

j
sj
D 0:

Therefore, it suffices to show that if s0 is a point so that

vs0.ˇ/

j
s0 j
D

c

32
;

then s0 is less than the left endpoint of I h2 .ˇ/, which is at least s0.1 � 1

4
p
2
/ by Remark 8.

Arguing by contradiction suppose that there is a point s0 satisfying s0 > s0.1 � 1

4
p
2
/ such

that
vs0.ˇ/

j
s0 j
D

c

32
:

Since I1.ˇ/ is nonempty, there is some point s00 so that vs00 .ˇ/
j
s00 j

D ı and s00 is smaller
than the left endpoint of I v1 .ˇ/, i.e.

s00 � s0

�
1C

8ı
p
2c

�
< s0

�
1C

1

144

�
:

Notice that

sin �.
s00 ; 
s0/ D
js00 � s0jarea.ˇ/
jˇ1jj
s0 j

<
1

144

which implies that s00 is close enough to s0 that vs00.ˇ/ �
jˇ j
2

.
Since vs0 .ˇ/

j
s0 j
D

c
32

and vs00 .ˇ/

j
s00 j
D ı, we have

j
s0 jvs00.ˇ/ D
32ı

c
j
s00 jvs0.ˇ/:

This implies that
s0jˇ1jjˇj

2
<
64ıs00jˇ1jjˇj

c
:

In other words,

s0 <
128ıs00

c
< s0

�
1C 1

144

2

�
< s0

�
1 �

1

4
p
2

�
which is a contradiction. Therefore, we have that every point in I h2 .ˇ/ is also contained
in I v2 .ˇ/ as desired.

Corollary 5.4. If jˇ1j
2
p
2
� jˇj and I1.ˇ/ intersects the interval .2 log jˇ1j

ı
; 2m

2 log jˇ1j
ı

/, then

I h
�
ˇ;

c

32
p
2

�
� I2.ˇ/ � I

h
2 .ˇ/:

It follows that
jI1.ˇ/j

jI2.ˇ/j
�
32
p
2ı

c
:
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Proof. Notice that I2.ˇ/ contains the set

I h
�
ˇ;

c

32
p
2

�
\ I v

�
ˇ;

c

32
p
2

�
:

The proof of Lemma 5.3 with c replaced by cp
2

shows that this intersection is exactly
I h.ˇ; c

32
p
2
/, which establishes the first inclusion.

The second inclusion is immediate from Lemma 5.3.

Lemma 5.5. For any interval of the form Œs; 2s� � .
2 log jˇ1j

ı
; 2m

2 log jˇ1j
ı

/, the subset that
is contained in some I1.ˇ/, for some cylinder ˇ satisfying

jˇ1j

2
p
2
� jˇj;

has length at most ı.192
p
2g�192

p
2/

c
s

Note our choice of ı in Conditions on Constants 4 says the above quantity is at most s
2

.

Proof. We will proceed in three steps.

Step 1. Any 3g � 2 intervals of the form I2.ˇ/ have empty intersection.

Such an intersection would contain .3g � 2/ cylinders that have length at most c
32

and
area at least c, hence height at least 32. These cylinders cannot cross each other and hence
such an intersection would contradict the fact that there are at most 3g � 3 disjoint simple
closed curves on a surface of genus g.

Step 2. If I1.ˇ/ intersects Œs; 2s�, then I2.ˇ/ is no longer than s
4

.

If I1.ˇ/ intersects Œs; 2s�, then the s0 corresponding to ˇ must satisfy

s0 �
4
p
2ıs0

c
� 2s; that is s0 �

2s

1 � 4
p
2ı
c

:

This shows that s0 � 2
p
2s and so by the simplified estimates in Remark 8, the radius of

I2.ˇ/ is at most s
2

.

Step 3. The subset of Œs; 2s� that is contained in some I1.ˇ/ has length at most

ı.192
p
2g � 192

p
2/

c
s:

Let J be the collection of s0 from cylinders ˇ so that I1.ˇ/ intersects the interval
Œs; 2s�. For any such ˇ, I2.ˇ/ � Œ s2 ;

5s
2
� and each element in the interval Œ s

2
; 5s
2
� may lie

in at most 3g � 3 intervals of the form I2.ˇ/. Therefore,X
s02J

jI1.ˇ/j �
32
p
2ı

c

X
s02J

jI2.ˇ/j �
.192
p
2g � 192

p
2/ı

c
s;

where the first inequality holds by Corollary 5.4.
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For convenience we restate an equivalent form of Proposition 4 here.

Proposition. For any interval of the form Œs; 2s� � .
2 log jˇ1j

ı
; 2m

2 log jˇ1j
ı

/, there are at
least .1 � �/s � 1 points in Œs; 2s� that are not contained in any I1.ˇ/, for some cylinder
ˇ satisfying

jˇ1j

2
p
2
� jˇj;

and that are separated by at least unit distance.

Proof of Proposition 4. Recall � D ı.192
p
2g�192

p
2/

c
. Let s1 be the first point in Œs; 2s�

not contained in some I1 and set a1 D s1 � s. Let s2 be the next point that lies beyond
s1 C 1 and set a2 D s2 � .s1 C 1/. Iterate this procedure until sn lies within unit distance
of 2s. Let the leftover distance at the end be � D 2s � sn. By Lemma 5.5,

Pn
iD1 ai < �s.

Since

nC

nX
iD1

ai C � D s;

we must have
n � s � 1 � �s D .1 � �/s � 1:

6. Getting started – Proof of Proposition 3

We will continue to assume that all Conditions on Constants from previous sections hold
in this section. Make the following definitions.

Definition 12. Let Sys.X; !/ be the length of the shortest saddle connection on .X; !/.
Set

T1 WD 2g C j†j � 2 and T0 D 2
.24T1 /:

Let ‚.R/ � Œ��
2
; �
2
� be the collection of the angles of holonomy vectors of core curves

of cylinders whose circumference is at most R and whose area is at least 1
T1

.

We will use the following theorem about the distribution of cylinders on translation
surfaces, which is based on work of Chaika [3] and Vorobets [24].

Theorem 6.1 (Marchese, Treviño and Weil [14, Theorem 1.9 (4)]). FixK �
p
2T 2
0

Sys.X;!/ and
an integer n � 1. For any interval I � Œ��

2
; �
2
� such that

jI j �
1

2T1Sys.X; !/Kn�1

at least half of the points in I are within
p
3K

K2n
of the angle of the holonomy vector of an

element of ‚.R/.

We will only use the following immediate consequence.

Corollary 6.2. There are positive constants R00; d1; d2; d3 so that for any R > R00 there
are d1R2 cylinders of circumference at most R, area bounded below by d2, and whose
holonomy vectors make angles at least d3

R2
apart.
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Proof. Set

� WD

p
2T 20

Sys.X; !/
:

For any r > � there is some ` 2 Œ�; �2� so that r D `n for some positive integer n. Take
the interval I to be Œ��

2
; �
2
�. Theorem 6.1 states that half of all points in I are within

p
3�2

r2

of an element of ‚.r/ when r > �.
Fix r > � and divide the circle into intervals of equal size that are as close as pos-

sible to radius 1
r2

. There will be at least �
2
r2 � 1 > r2

2
intervals. Let N be the least

integer greater than or equal to
p
3�2. If the angle corresponding to the holonomy ele-

ment of ‚.r/ is contained in one of the intervals, then the ball of radius
p
3�2 about it is

contained in 2N C 1 intervals. The ball of radius
p
3�2 about any point in those 2N C 1

intervals is contained in 4N C 1 intervals.
Let S be a maximal collection of points in ‚.r/ whose corresponding angles are all

pairwise distance 4NC2
r2

apart. Theorem 6.1 implies that

jS j.4N C 1/ �
r2

4
:

Therefore, we have found r2

16NC4
cylinders of circumference less than r , area at least 1

T1
,

and whose angle of holonomy vectors are separated by a distance of 4NC2
r2

.

Remark 9. We see that all constants are explicit, that is, we may take

R00 D

p
2T 20

Sys.X; !/
; d1 D

1

16
p
3.R00/

2 C 20
;

d2 D
1

2g C j†j � 2
; d3 D 4

p
3.R00/

2
C 6:

We will also use the quadratic asymptotics of cylinders,

Theorem 6.3 (Masur [16, Theorem 1]). There is also a constant d4 such that for any R
there are at most d4R2 cylinders of circumference at most R.

Set

D WD max
�
2;

s
2d4

d1

�
:

Conditions on Constants 5. We make the following additional assumptions on the con-
stants c; ı, and R0:
(1) c < d2,

(2) ı < c
512D4

,

(3) R0 > max.R00; exp. 4
d3
/;D; 1

Sys.X;!/ /.

For convenience we record an equivalent version of Proposition 3.

Proposition. For R � R0 there is a cylinder ˇ of circumference at least R, area at
least c, and that contains a protochild whose protochild surface is .ı; c/-thick.
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Proof of Proposition 3. By Corollary 6.2, let Cyl be a collection of d1.DR/2 � 2d4R2

cylinders, of circumference at most DR, area bounded below by d2, and whose holon-
omy vectors make angles at least d3

.DR/2
apart. By Theorem 6.3, there are at most d4R2

cylinders of circumference less than R. Let C be the subcollection of at least d4R2

cylinders in Cyl whose circumference is in ŒR;DR�.

Step 1. Two distinct cylinders in C have disjoint sets of protochildren and the sets of
protochildren have length at least ıc

16.DR/2 log.DR/
.

Given a cylinder ˇ 2 C , the collection of angles of holonomy vectors of protochildren
has the form ŒN; 2mN�, where N D 2 log jˇ j

ı
. Therefore,

sin �.
N ; 
2mN / D
area.ˇ/j2mN �N j
j
N jj
2mN j

:

Using that j
N j � 2N jˇj and a similar estimate for j
2mN j, it follows that

ıc

16jˇj2 log jˇj
� sin �.
N ; 
2mN / � �.
N ; 
2mN /:

Since jˇj is large. it follows that sin �.
N ; ˇ/ is small and so,

�.
N ; ˇ/ � 2 sin �.
N ; ˇ/ �
2

jˇj2N
D

ı

jˇj2 log jˇj
:

Since sN is the furthest point from ˇ, we have that the largest distance from the angle
of ˇ to an angle of its protochild set is

ı

jˇj2 log jˇj
�

ı

R2 logR
:

If ˇ and ˇ0 are two distinct cylinders in C , then the angles are separated by a distance of
at least

d3

.DR/2
:

Therefore, the distance between the two sets of angles of protochildren of ˇ and ˇ0 is at
least

d3

.DR/2
�

2ı

R2 logR
:

Using the estimate that

ı <
1

512D4
and logR >

4

d3
;

we see that the distance between the angles of two sets of protochildren is at least d3
2.DR/2

.
Hence, the sets of protochildren are disjoint.

Let I be the collection of all protochildren of cylinders in C . Partition the interval
Œ1;DR� into subintervals

Ij WD

�
R

Dj
;
R

Dj�1

�
with j � 0. We analyze the following cases.
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Step 2. Cylinders of circumference greater than DR can only cause .ı; c/-thinness for
half of all protochildren in I.

This step follows immediately from Condition on Constants 4 and Lemma 5.5.

Step 3. Cylinders of circumference less thanDR cause .ı; c/-thinness for at most a quar-
ter of all protochildren in I.

Suppose that ˇ0 is a cylinder whose circumference belongs to Ij and which is thin for
the protochild surface of 
s of ˇ. Then

jˇ0j sin �.ˇ0; 
s/j
sj � ı:

In other words,

sin �.ˇ0; 
s/ �
ı

j
sjjˇ0j
�

ı2Dj

2R2 logR
:

Notice that we may assume that Dj < R2 because 1
R
< Sys.X; !/. This implies that

sin �.ˇ0; 
s/ <
ı2

2 logR
;

i.e. the sine of the angle is so small that we can use the estimate �
2
< sin � . Therefore,

the length of the collection of angles for which ˇ0 is .ı; c/-thin on the corresponding
protochild surface is at most

2ı2Dj

R2 logR
:

By Theorem 6.3, there are at most

d4R
2

D2j�2

cylinders with circumference in Ij . Since these cylinders are .ı; c/-thin on protochild
surfaces corresponding to an interval of angles of length at most

2ı2Dj

R2 logR
;

the total length of the collection of angles for which a cylinder with circumference in Ij
is .ı; c/-thin is at most�

d4R
2

D2j�2

��
2ı2Dj

R2 logR

�
D

�
2d4D

2ı2

logR

�
1

Dj
:

However, there are at least d4R2 cylinders in C and each has a collection of protochil-
dren whose corresponding angles of holonomy vectors has length at least

ıc

16.DR/2 log.DR/
:

Therefore, the length of the interval of angles from the collection of protochildren associ-
ated to cylinders in C is at least

.d4R
2/

�
ıc

16.DR/2 log.DR/

�
D

�
ıcd4

16D2 log.DR/

�
:
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Therefore, the largest proportion of I whose protochild surface contains a .ı; c/-thin
cylinder that has circumference smaller than DR on .X; !/ is�

2d4D
2ı2

logR

��
ıcd4

16D2 log.DR/

� 1X
jD0

1

Dj
<

�
32ıD4

c

��
log.DR/
log.R/

��
D

D � 1

�
:

Since 2 � D � R, this ratio is bounded above by .128D
4ı

c
/, which is at most 1

4
by Condi-

tions on Constants 5. Combining these steps we conclude that a fourth of all protochildren
have protochild surfaces that are .ı; c/-thick.

7. Cylinders that cause thinness are comparable in size to parent cylinders – Proof
of Proposition 5

We continue to assume that all previous Conditions on Constants hold and keep the nota-
tion of Definition 6. For reasons that will become apparent set .X0; !0/ WD .X; !/. We
add another Condition on R0.

Conditions on Constants 6. Set �2 WD arccot.10 cot �1/ and then let

R0 > max
�

exp
�

4

ı cot �1

�
;

r
12L2 cot �1

�
; exp

�
1

cot �1

�
;

s
4L

� sin �2
;

r
8

ı�

�
:

The main result of this section is the following.

Proposition. For jˇ0j � R0, if �1 is a protochild of ˇ1 whose protochild surface has
a .ı; c/-thin cylinder ˇ2, then on .X0; !0/ we have

jˇ1j

2
p
2
� jˇ2j:

In this section we will adopt the following notation. Let �1 be a protochild of ˇ1
whose protochild surface .X2; !2/ has a .ı; c/-thin cylinder ˇ2. Rename the protochild
of ˇ0 as �0 and suppose without loss of generality, that it is vertical on .X0; !0/. Let
.X1; !1/ be the protochild surface associated to �1.

Remark 10. Note here that the subscripts 0; 1; and 2 do not refer to times but to labeling.
Also, recall the convention that all angles and lengths will be measured on the .X0; !0/
unless otherwise mentioned.

Lemma 7.1. There is some constant c3 depending only on ı and �1 so that for jˇ0j � R0,
the angle � between the holonomy vectors of ˇ1 and ˇ2 satisfies

� �
c3

jˇ1j2 log jˇ1j
:

Proof. Let � D �.�0; �1/ be the angle between �0 and �1. Let � 0 D �ˇ2 be the angle that
the holonomy vector of ˇ2 makes with the horizontal on .X1; !1/. We proceed in three
steps.



P. Apisa, H. Masur 1038

Step 1. Since jˇ0j � 4
ı cot �1

, one has �.�0; �1/ �
3 cot �1
j�0j2

.

By Lemma 4.2 (2),

�.ˇ1; �0/ � tan �.ˇ1; �0/ �
cot �1
j�0j2

:

Similarly, by Lemma 4.2 (1) and that fact that �.ˇ1; �1/ is less than �
2

,

�.ˇ1; �1/ � 2 sin �.ˇ1; �1/ �
2

j�1jjˇ1j
:

The triangle inequality now implies that

� D �.�0; �1/ �
2 cot �1
j�0j2

C
2

j�1jjˇ1j
D

1

j�0j2

�
2 cot �1 C 2

j�0j

j�1j

j�0j

jˇ1j

�
:

Again by Lemma 4.1, the ratio j�0j
jˇ1j
�

2
ı

and the ratio j�0j
j�1j
�

1
log jˇ0j

so our choice of jˇ0j
gives

� �
3 cot �1
j�0j2

:

Step 2. Since jˇ0j �
q
12L2 cot �1

�
and log jˇ0j � 1

cot �1
, we have that jcot � 0j � 10 cot �1.

The matrix that passes from .X1; !1/ to .X2; !2/ is

g WD glog j�1jr�g� log j�0j D

 
j�1j
j�0j

cos � �j�0jj�1j sin �
sin �
j�0jj�1j

j�0j
j�1j

cos �

!
:

Therefore, if some vector .h; v/ has length less than ı after applying g, it follows thatˇ̌̌̌
h
j�1j

j�0j
cos � � vj�0jj�1j sin �

ˇ̌̌̌
� ı:

By the triangle inequality,

jhj
j�1j

j�0j
j cos � j � jvjj�0jj�1jjsin � j C ı:

Since j�0j >
jˇ0j
L

, Step 1 implies

� �
3L2 cot �1
jˇ0j2

so that by our choice of jˇ0j we have cos � > 1
2

. This implies that

jhj � 2ı
j�0j

j�1j
C 2jvjj�0j

2�:

By Step 1 we have

jhj � 2ı
j�0j

j�1j
C 6 cot �1jvj:
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Assume now that .h; v/ is the holonomy vector of ˇ2 on .X1; !1/. Dividing through
the previous equation by jvj, we see that

cot � 0 D
jhj

jvj
�

�
2ı

jvj

��
j�0j

j�1j

�
C 6 cot �1:

Since . j�0j
j�1j
/ < 1

log jˇ0j
< cot �1,

cot � 0 D
jhj

jvj
�

�
2ı

jvj
C 6

�
cot �1:

Recall that, by Conditions on Constants 1 and 2, cot �1 < c1
16
< 1

16
. Therefore, if jvj < ı

2
,

the previous displayed inequality implies that h < 5ı
16

and so .h; v/ has length less than ı.
However, since .X1; !1/ is .ı; c/-thick, it implies that .h; v/ has length at least ı. In other
words, jvj � ı

2
, which now implies that cot � 0 � 10 cot �1 as desired.

Step 3. For jˇ0j2 � max. 4L
� sin �2

; 8
ı�
/ there is some constant c3 depending only ı; �1 so

that � � c3
jˇ1j2 log jˇ1j

.

By Step 2, the vertical part of the holonomy vector of ˇ2 on .X1; !1/ is at least
ı sin �2. Therefore, on .X0; !0/,

jˇ2j � ıj�0j sin �2:

Let ˛1 be the angle between the holonomy vectors of �1 and ˇ2. Let .X 00; !
0
0/ be the

surface .X0; !0/ rotated so that �1 is vertical. On this surface the horizontal part of the
holonomy vector of ˇ2 is at most ı

j�1j
since ˇ2 has length less than ı on .X2; !2/.

Therefore, by the above lower bound on jˇ2j

sin˛1 �
ı

jˇ2jj�1j
�

1

sin �2j�0jj�1j
�

L

sin �2jˇ0j2 log jˇ0j
:

Let ˛2 be the angle between the holonomy vectors of �1 and ˇ1. We have

sin˛2 �
1

jˇ1jj�1j
�

2

ıjˇ0j2.log jˇ0j/2
:

Now our choice of jˇ0j says
˛i

2
� sin˛i

for i 2 ¹1; 2º.
By the triangle inequality,

� � 2

�
1

sin �2j�0jj�1j
C

1

jˇ1jj�1j

�
:

By Lemma 4.1 jˇ1j is comparable to j�0j and j�1j � jˇ1j log jˇ1j. It follows that there
is a constant c3 only depending on ı and �1 such that

� �
c3

jˇ1j2 log jˇ1j
:

This finishes the proof of the lemma.
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For Proposition 5 to hold we impose one final condition on constants.

Conditions on Constants 7. Suppose that

R0 > max
�

exp
�

c3

2
p
2ı2 sin �0

�
;
2c3

ı

�
:

Proof of Proposition 5. Arguing by contradiction assume that jˇ1j
2
p
2
� jˇ2j. The proof will

be divided into two steps.

Step 1. For log jˇ0j � c3
2
p
2ı2 sin �0

, on .X1; !1/ we have jˇ2j � jˇ1j.

Now changing notation from the previous lemma, let ˛i be the angle between ˇ1 and
ˇ2 on .Xi ; !i / for i 2 ¹0; 1º. Let j � ji denote lengths on .Xi ; !i / for i 2 ¹0; 1º. We have

ı2 sin˛1 � jˇ1j1jˇ2j1 sin˛1 D jˇ1jjˇ2j sin˛0 �
c3jˇ2j

jˇ1j log jˇ1j
;

where the left-hand inequality follows from the fact that .X1; !1/ is .ı; c1/-thick and the
righthand inequality follows from Lemma 7.1. By assumption, we have

sin˛1 �
c3

2
p
2ı2 log jˇ1j

:

By our choice of jˇ0j, since jˇ1j > jˇ0j it follows that

sin˛1 < sin �0:

However, if jˇ2j � jˇ1j on .X1; !1/, then by Proposition 1 (4), the angle ˛1 between the
holonomy vectors of ˇ1 and ˇ2 on .X1; !1/ is bounded below by �0, which is a contra-
diction to the above inequality.

Step 2. For jˇ0j �
2c3
ı

, on .X0; !0/ we have jˇ2j �
jˇ1j

2
p
2

.

We again argue by contradiction. The holonomy vector of the core curve of ˇ2 on
.X0; !0/ is

.jˇ2j cos.' C ˛0/; jˇ2j sin.' C ˛0//;

where ' is the angle that the holonomy vector of ˇ1 on .X0; !0/ makes with the horizon-
tal. The holonomy of ˇ2 on .X1; !1/ is�

j�0jjˇ2j cos.' C ˛0/;
jˇ2j

j�0j
sin.' C ˛0/

�
:

Therefore (using the comparison of L1 and L2 norms on R2: 1p
2
k � k1 � k � k2 � k � k1),

1
p
2

�
j�0jjˇ1j cos.'/C

jˇ1j

j�0j
sin.'/

�
� j�0jjˇ2j cos.' C ˛0/C

jˇ2j

j�0j
sin.' C ˛0/:

The right-hand side is bounded above by

j�0jjˇ2j cos' C j�0jjˇ2j sin˛0 C
jˇ2j

j�0j
sin' C

jˇ2j

j�0j
sin˛0:
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Subtracting
1

2
p
2
.j�0jjˇ1j cos.'/C

jˇ1j

j�0j
sin.'//

from both sides of the inequality yields (along with the estimate jˇ2j �
jˇ1j

2
p
2

),

1

2
p
2

�
j�0jjˇ1j cos.'/C

jˇ1j

j�0j
sin.'/

�
� j�0jjˇ2j sin˛0 C

jˇ2j

j�0j
sin˛0:

Again using the comparison of the norms k � k1 and k � k2 on R2 and the fact that ˇ1 has
length at least ı on .X1; !1/, we have

ı

2
p
2
� jˇ2j sin˛0 C

jˇ2j

j�0j2
sin˛0:

It now follows from Lemma 7.1 that

ı

2
p
2
�

c3jˇ2j

jˇ1j2 log jˇ1j
C

c3jˇ2j

j�0j2jˇ1j2 log jˇ1j
:

Applying the estimate jˇ2j �
jˇ1j

2
p
2

,

ı �
c3

jˇ1j log jˇ1j
C

c3

j�0j2jˇ1j log jˇ1j
:

By our condition on jˇ0j both terms on the right are smaller than ı
2

which yields a con-
tradiction.

8. Selecting constants – Proof of Proposition 6

For convenience we recall the statement of Proposition 6.

Proposition. It is possible to choose constants so that all Conditions on Constants are
satisfied.

Proof of Proposition 6. Choose constants as follows.
(1) Let d1; d2; d3; d4 be the constants associated to .X; !/ as in Section 6.
(2) Choose

c < min
�
d2;

1

2g.2g C j†j � 2/

�
:

Being less than the second quantity implies that we may choose c D c1 D c2, where
c1 and c2 satisfy Conditions on Constants 1. Being less than the first quantity is
required to satisfy Conditions on Constants 5.

(3) Define

D WD max
�
2;

s
2d4

d1

�
:
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(4) Choose

ı < min
�

c

512D4
;

c

768
p
2.g � 1/

;Sys.X; !/; �2

�
;

where �2 is the Margulis constant. Being less than the first quantity is required to
satisfy Conditions on Constants 5. Being less than the second quantity is required
to satisfy Conditions on Constants 4. Being less than the third and fourth is required
to satisfy Conditions on Constants 1.

(5) Choose �1 2 .0; �/ so that cot �1 < c
16

. Recall that c D c1. Conditions on Con-
stants 1 is now completely satisfied.

(6) Choose

� D
ı.192

p
2g � 192

p
2/

c
:

This choice of � and the above choice of ı says � < 1
4

(7) Let L and �0 be as in Proposition 1.
(8) Choose

M D
2mC2L

ı
for a positive integer m such that

m > 6L

�
log
�

2

1C 2�

���1
and so that M > 21. Conditions on Constants 2 are now completely satisfied.

(9) Define

T1 WD 2g C j†j � 2; T0 WD 2
.24T1 /; R00 WD

p
2T 20

Sys.X; !/
;

�2 WD arccot.10 cot �1/; C WD
Lc

16M
:

(10) Define

R000 WD max
�
R00; exp

�
4

d3

�
;D;

1

Sys.X; !/
; exp

�
4

C

�
; eM ; exp

�
4

ı cot �1

�
;r

12L2 cot �1
�

; exp
�

1

cot �1

�
;

s
4L

� sin �2
;

r
8

ı�

�
:

Now M > 21 and ı < 1 imply eM > 21 > e2ı . Thus the fact that

R0 � max
²
eM ; exp

�
4

C

�³
shows Conditions on Constants 3 is satisfied. Moreover, being larger than the final
five quantities implies that Conditions on Constants 6 is completely satisfied. Finally,
being larger than the first four terms is required to satisfy Conditions on Constants 5,
which is now completely satisfied.
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(11) For cylinders of circumference at least R000 , Lemma 7.1 produces a constant c3.
(12) Set

R0 WD max
�
R000; exp

�
c3

2
p
2ı2 sin �0

�
;
2c3

ı

�
:

Conditions on Constants 7 is now completely satisfied. At this point all conditions
on constants are satisfied
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