
© 2021 European Mathematical Society
Published by EMS Press. This work is licensed under a CC BY 4.0 license.

J. Eur. Math. Soc. 24, 1103–1160 (2022) DOI 10.4171/JEMS/1107

Francesc Castella � Carl Wang-Erickson
(with an appendix by Haruzo Hida)

Class groups and local indecomposability for
non-CM forms

Received October 24, 2018

Abstract. In the late 1990s, R. Coleman and R. Greenberg (independently) asked for a global
property characterizing those p-ordinary cuspidal eigenforms whose associated Galois representa-
tion becomes decomposable upon restriction to a decomposition group at p. It is expected that such
p-ordinary eigenforms are precisely those with complex multiplication.

In this paper, we study Coleman–Greenberg’s question using Galois deformation theory. In
particular, for p-ordinary eigenforms which are congruent to one with complex multiplication, we
prove that the conjectured answer follows from the p-indivisibility of a certain class group.
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1. Introduction

1.1. Overview

As recorded in [20, Question 1], R. Greenberg has asked when the 2-dimensional p-adic
Galois representation �f of Gal.Q=Q/ attached to a p-ordinary cuspidal eigenform f of
weight k � 2 has the property of being p-locally split, i.e. its restriction to a decomposi-
tion group Gal.Qp=Qp/ at p is isomorphic to the sum of two characters. An equivalent
form of this question, which appears to be a very subtle problem in the p-adic theory of
modular forms, was independently raised by R. Coleman [7, Remark 2, p. 232].1

One easily sees that p-ordinary eigenforms with complex multiplication have p-
locally split associated Galois representations, and the converse is expected to hold, i.e.
(see [14, Conj. (0.1)]):

�f jGal.Qp=Qp/
is split

‹
H) f has complex multiplication. (CG)

Let Q.f / � C be the Hecke field of f . The Galois representation �f is valued in
GL2.E/, whereE is the completion of Q.f / at a prime v above p. Serre [47] established
(CG) when k D 2 and Q.f / D Q using Serre–Tate deformation theory. Still in weight 2,
Serre’s argument was extended independently by Emerton [14] and Ghate [18] provided
�f is ordinary and p-split for all primes v of Q.f / above p (we then say that �f is
totally p-split); the general weight 2 case was recently established by Zhao [55] building
on Hida’s breakthrough [30]. For weights k > 2, Emerton [14] showed that (CG) follows
from a p-adic analogue of Grothendieck’s variational Hodge conjecture, at least when �f
is totally p-split. In a different direction, building on modularity lifting results [4, 5] in
weight 1, Ghate–Vatsal [20] showed under mild hypotheses that (CG) holds for all but
finitely many p-ordinary eigenforms in any single Hida family.

The main result of this paper is Theorem 1.3.1, which gives a sufficient condition
for (CG) to hold for all forms in a fixed congruence class Nf , allowing for any p-adic
weight. The condition is that a certain quotient X (later denoted X. �/) of the p-part of
the class group of the number field cut out by the associated mod p Galois representation
N�f is zero. Such an X can be associated to any congruence class that contains some
member with complex multiplication; we impose only mild additional assumptions. We
list some examples of vanishing X in §1.8.

Greenberg’s pseudo-nullity conjecture [22, Conj. (3.5)] suggests that a certain
Iwasawa-theoretic class group X�1 (later denoted X�1. 

�/), which surjects onto X , has
finite cardinality. To illustrate the influence of X�1, under an extra assumption, we prove
in Theorem 1.4.1 that the finiteness of X�1 can be used to produce another proof of the
main result of [20] for the class of N�f we consider in this paper.

It is natural to ask whether there exist converse arguments establishing the finiteness
of X�1. In this direction, we give modular characterizations of the vanishing of X�1 (The-
orem 1.3.4) and its finiteness (Theorem 1.4.4).

1See [3, Theorems 4.3.3, 4.4.8] for the equivalence between the two formulations.
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1.2. Setup

In order to state question (CG) and the main result of this paper precisely, we introduce the
objects of study. Here GF denotes an absolute Galois group of a field F , OF denotes the
appropriate standard integer ring of F , and “CM” is short for “complex multiplication.”
Let p be a prime (later, p � 5).

1.2.1. The question. We fix embeddings of algebraically closed fields Q ,! Qq for all
primes q, and Q ,! C. These embeddings give rise to a choice of q-adic valuation on
any algebraic complex number. They also determine a choice of decomposition group
Gq WD Gal.Qq=Qq/ ,! GQ and complex conjugation c 2 GQ. We write Iq � Gq for the
inertia subgroup.

Choose a classical normalized cuspidal Hecke newform f 0 of weight k � 2 and level
N 0 � 1. If p − N 0, let f be a p-stabilization of f 0 of level �0.p/ \ �1.N 0/; otherwise,
let f D f 0. Thus f is an eigenvector for the Up-operator. Let

f D
X
n�1

an.f /q
n

be the q-expansion of f at the cusp 1, write Q.f /=Q for the subfield of C generated
by the coefficients (also the Hecke eigenvalues) an.f /, and write v D vf for the prime
of Q.f / over p that is distinguished by the embeddings above. We call f p-ordinary
when its Up-eigenvalue ap.f / 2C, which is known to be an algebraic integer, is a p-adic
unit.

There is attached to f an absolutely irreducible p-adic Galois representation

�f W GQ ! GL2.Q.f /v/ (1.2.1)

characterized by the property that

trace �f .Frobq/ D aq.f / for all primes q − N 0p; (1.2.2)

where Frobq 2 GQ is a choice of arithmetic Frobenius element at q. It is known that
f is p-ordinary if and only if �f jGp admits a 1-dimensional unramified quotient with
Frobp-eigenvalue ap.f /.

We call such a representation of GQ, when equipped with the Frobp-eigenvalue,
p-ordinary. Similarly, we call a representation � of GQ p-locally split when, in addi-
tion, �jGp is isomorphic to the direct sum of two characters. We ask the question recorded
in §1.1: when k � 2, what property of f determines whether �f is p-locally split?

As discussed above, the proposal, denoted (CG), is that such f have CM. Recall that
f is called CM when there exists an imaginary quadratic fieldK=Q such that the attached
quadratic Dirichlet character

�
K=Q
�

�
satisfies

an.f /
�
K=Q
n

�
D an.f / for almost all n � 1 (the CM condition): (1.2.3)
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1.2.2. Fixing the congruence class. It is natural to study (CG) over one congruence class
of eigenforms modulo p at a time. Let F be a finite field of characteristic p. Let Nf 2 FJqK
be the reduction modulo vf of the f 2 OQ.f /JqK that we designated above. Let

N� WD .�f mod vf / W GQ ! GL2.F/

be the associated representation. The Hecke eigenvalues of Nf are determined by N� simi-
larly to (1.2.2). Since f is a p-ordinary eigenform, we know that
(100) N� is odd and N�jGp admits an unramified quotient with Frobp-eigenvalue N̨p WDap. Nf /.

Let N � 1 denote the tame level of Nf , which equals the (prime-to-p) Artin conduc-
tor of N�. While in general N divides the prime-to-p part N 0

.p/
of N 0, in this paper we

address f that are minimal, that is, N D N 0
.p/

.
Because question (CG) addresses p-ordinary eigenforms f such that �f jGp splits,

[19, Prop. 6] ensures that in the presence of .20/ and .30/ below, we may replace .100/ with
the more restrictive assumption
.10/ N� is odd and N�jGp ' N�1 ˚ N�2, where N�2 is unramified and N�2.Frobp/ D N̨p .

Our results on (CG) rely on conditions that imply that all Galois representations that
give rise to N� arise from Hecke eigenforms, i.e. “R D T .” Such R D T -type results are
subject to the following assumptions, when p is odd.
.20/ N�1 ¤ N�2, which is known as the residually p-distinguished condition on N�.

.30/ N�jGM is absolutely irreducible, where M D Q.
p
.�1/.p�1/=2p/.

1.2.3. The residually CM p-ordinary setting. The following (0)–(4) are the assumptions
we work under for the results of this paper.
(0) p � 5 and Nf has CM, in the sense of (1.2.3).
It follows that there exists an imaginary quadratic field K=Q and a character

N W GK ! F� such that N� Š IndQ
K
N :

Let  W GK !W.F/� denote the Teichmüller lift of N , let c0 �OK denote the conductor
of  , and let c � OK be the (prime-to-p) Artin conductor of N . Recalling the complex
conjugation c 2 GQ established above, the anti-cyclotomic character associated to N is

N � WD N � . N c/�1;

where N c.
/ denotes N .c
c/.
Having assumed (0), assumptions .10/–.30/ are implied (respectively) by

(1) p splits in K, i.e.
pOK D pp�;

where p is the prime distinguished by our fixed embedding Q ,! Qp , and also
N is unramified at p� with N .Frobp�/ D N̨p . One may then check that N D

NormK=Q.c/jDisc.K/j.



Class groups and local indecomposability for non-CM forms 1107

(2) N �jGp is non-trivial and vp.c
0/ � 1.

(3) N � has order at least 3.
(For (3)).30/, see [31, Prop. 5.2(2)].) Finally, we impose the following mild assumption.
(4) cC cc D OK .

1.3. Results, Part I

Our first main result addresses the representation �g W GQ! GL2.Qp/ attached to a nor-
malized p-ordinary p-adic eigenform g 2 ZpJqK that has tame level N , arbitrary p-adic
weight, and a congruence with Nf . We refer to whether g has CM by the same definition
(1.2.3), which makes sense for any p-adic weight.

The theorems in this section are subject to a condition on the following ideal class
group. Let  � W GK ! W � denote the Teichmüller lift of N � to the Witt vector ring
W D W.F/. Let K. �/=K be the finite abelian extension cut out by  �, and denote
by X. �/ the  �-isotypical component of the p-cotorsion of the ideal class group
of K. �/.

Theorem 1.3.1. Assume (0)–(4) of §1.2. Let g denote a p-ordinary p-adic eigenform
of tame level N and arbitrary p-adic weight that is congruent to Nf . If X. �/ D 0 and
�g jGp is split, then g has CM.

We apply the theorem to (CG).

Corollary 1.3.2. Assume (0)–(4) of §1.2. If X. �/D 0, then (CG) is true when restricted
to those eigenforms of level N that are congruent to Nf .

See §1.8 for explicit examples where (CG) is satisfied.

Remark 1.3.3. The conditionX. �/D 0 can be ensured analytically in some cases: it is
implied by the anti-cyclotomic Katz p-adicL-functionL�p . 

�/� in §3.2 being a unit (see
e.g. [2, Cor. 5.2.7]). We also note that the implication (CG) is trivial in the congruence
class of Nf unless a different Katz p-adic L-function L�p . 

�/, also defined in §3.2, is not
a unit. Indeed, whenL�p . 

�/ is a unit, any g congruent to Nf has CM (see Theorem 4.2.2).

In fact, we prove that the vanishing of X. �/ is equivalent to a stronger form of
the expected implication (CG). To formulate this, we refer to a modulo p generalized
eigenform Ng0 2 FJqK whose eigensystem equals that of Nf . We specify these objects in
§2.2, also explaining that such a Ng0 induces a Galois representation

� Ng0 W GQ ! GL2.A Ng0/;

where A Ng0 is a finite-dimensional augmented F -algebra, such that

.� Ng0 mod mA Ng0
/ ' N� and � Ng0 6' N�˝F A Ng0 :

We also explain that the conditions “p-locally split” and “CM” can be sensibly applied to
such Ng0.
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Theorem 1.3.4. Assume (0)–(4) of §1.2. The following conditions are equivalent.

(i) X. �/ ¤ 0.

(ii) There exists a modulo p generalized eigenform Ng0 such that

(a) the Hecke eigensystem of Ng0 is equal to that of Nf ,

(b) Ng0 does not have CM, and

(c) � Ng0 jGp is split.

If these conditions are true, then Ng0 in (ii) may be chosen so that its Hecke span is
2-dimensional, or equivalently A Ng0 ' F Œ��=.�2/.

1.4. Results, Part II

We expect that there are many choices of .K; N / such that X. �/ does not vanish, as the
results of §1.3 require. The following theorems address the general case.

We consider the following Iwasawa-theoretic class group tower over X. �/. Let
K�1=K be the anti-cyclotomic Zp-extension ofK. LetK�1. 

�/ be the composite ofK�1
and K. �/, and let X�1. 

�/ be the  �-isotypical component of the Galois group
of the maximal pro-p abelian unramified extension of K�1. 

�/. There is a surjection
X�1. 

�/� X. �/, and standard arguments about the action of Gal.K�1. 
�/=K/

on X�1. 
�/ imply that

X�1. 
�/ D 0 if and only if X. �/ D 0:

In light of Greenberg’s pseudo-nullity conjecture [22, Conj. (3.5)], it is natural to expect
that X�1. 

�/ is finite in cardinality (note that our assumptions rule out trivial zeros). We
prove a proportionally weakened version of Theorem 1.3.1 in this case.

Theorem 1.4.1. Assume (0)–(4) of §1.2 and that the class number of K is prime to p.
If X�1. 

�/ has finite cardinality, then there exist at most finitely many ordinary p-adic
eigenforms g of tame levelN congruent to Nf such that �g jGp is split and g does not have
complex multiplication.

Remark 1.4.2. We note in §3.3 that X�1. 
�/ is infinite if and only if the p-adic L-

functions L�p . 
�/ and L�p . 

�/� mentioned in Remark 1.3.3 have a common factor. It
follows from smoothness results of the ordinary eigencurve in cohomological weights (i.e.
k 2 Z�2; see [25, Cor. 1.4], along with a duality argument) that such a common factor
cannot correspond to a p-adic weight in Z X ¹1º.

Remark 1.4.3. The conclusion of Theorem 1.4.1 was proven subject only to the con-
ditions .10/–.30/ of §1.2 by Ghate–Vatsal [20, Thm. 13]. We describe the relationship
between the two methods in Remark 6.2.2.

In analogy with Theorem 1.3.4, we can also give a modular characterization of the
infinitude ofX�1. 

�/. However, a more pleasant criterion applies to a mild generalization
X�1. 

�/ of X�1. 
�/, which surjects onto X�1. 

�/ (see §3.3 for the definition), and is
isomorphic to it when p does not divide the class number of K.
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Similarly to the mod p case above, to any generalized p-adic eigenform g0 with eigen-
system equal to that of a p-adic eigenform with CM f with coefficient field E=W Œ1=p�,
there is associated a Galois representation

�g0 W GQ ! GL2.Ag0/;

where Ag0 is a finite-dimensional augmented local E-algebra, such that

.�g0 mod mAg0
/ ' �f and �g0 6' �f ˝E Ag0 :

As before, the conditions of being p-locally split and of being CM can be sensibly applied
to �g0 .

Theorem 1.4.4. Assume (0)–(4) of §1.2. The following conditions are equivalent:

(1) X�1. 
�/ has infinite cardinality.

(2) There exists a generalized p-adic eigenform g0 of tame level N such that

(a) the Hecke eigensystem of g0 has CM and is congruent to Nf ,

(b) g0 does not have CM, and

(c) �g0 jGp is split.

If these conditions are true, then g0 in .2/ may be chosen so that its Hecke span is
2-dimensional, or equivalently Ag0 ' EŒ��=.�2/.

Remark 1.4.5. Recently and independently, a similar analysis was carried out by Hsu
[37, §4], with a focus on the influence on the geometry of the eigencurve.

1.5. Method of Galois deformation theory

By Hida’s influential work [25], p-ordinary p-adic eigenforms of tame level N that are
congruent to Nf (such as g in the statement of Theorem 1.3.1, for example) are in bijective
correspondence with ring homomorphisms T ! Qp , where T is the “big” local p-adic
Hecke algebra arising from the Hecke action on p-ordinary modular forms of tame level
N whose residual Hecke eigensystem is congruent to Nf . On the other hand, upon assump-
tions .100/ and .20/, there exists a universal p-ordinary deformation ring Rord (constructed
by Mazur [42]) parameterizing p-ordinary deformations of N�. Hida’s further result [24] –
that the Galois representations attached to p-ordinary eigenforms interpolate in families –
implies that there exists a natural map Rord ! T . Under assumptions .100/, .20/, and .30/
along with mild local conditions, Diamond [11], following Wiles [54], has shown that this
induces an isomorphism Rord �! T .

Replacing .100/ with .10/ so that the expected implication (CG) is not trivial on T , we
use a universal Galois deformation ring denoted Rspl (constructed by Ghate–Vatsal [21])
that parameterizes p-locally split representations of Gal.Q=Q/ deforming N�. It fol-
lows from the definitions that there is a surjection Rord � Rspl. Thus, homomorphisms
Rspl ! Qp are in bijection with normalized p-ordinary eigenforms g such that �g jGp is
split.
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Assuming (0), there exist p-ordinary CM forms congruent to Nf , resulting in a quotient
T � T CM, where T CM arises from the Hecke action on these CM forms. The fact that
the Galois representations arising from p-ordinary CM eigenforms are p-locally split is
reflected in the fact that there exists a surjection Rspl � T CM fitting in a commutative
diagram

Rord � //

����

T

����
Rspl // // T CM

(1.5.1)

In terms of this deformation-theoretic picture, our main result is Theorem 5.5.1, which
states that the surjection Rspl � T CM is an isomorphism if and only if X. �/ D 0.
Theorem 1.3.1 follows directly from this. The argument for Theorem 1.4.1 is similar,
with the addition of commutative algebra arguments set up in §6 and further results on
the structure of T reviewed in §4.

Theorem 5.5.1 is deduced from Theorem 5.4.1, which shows that X�1. 
�/ constitutes

the conormal module of Spec.T CM/� Spec.Rspl/. With this structure ofRspl understood,
Theorems 1.3.4 and 1.4.4 are applications of Rord �! T and the duality between Hecke
algebras and cusp forms.

1.6. A question

One upshot of Theorem 5.5.1 is that (CG) lies somewhat deeper than the simplest possible
“big RDT”-type theorem one could hope for, namely, Rspl Š T CM. Is there a Hecke
algebra that always corresponds to Rspl? What is the module of “p-split” modular forms?
We intend to take this up in future work.

1.7. The appendix to this paper

These investigations arose from an attempt to study (CG), for congruence classes N� D
IndQ

K
N as introduced in §1.2.3 above, after restriction of the Galois representations

from GQ to GK , using the methods of Wake and the second author [52] to control resid-
ually reducible representations. In the process, we realized that some of these arguments
amounted to an application of a refined version of Shapiro’s lemma to move between
deformations of representations of GQ and GK . This is the method that is developed
in §5 to prove the key Theorem 5.4.1; in particular, the proof of our results makes no use
of the theory of ordinary pseudorepresentations of [52].

Independently and at about the same time as us, Haruzo Hida established similar
results to ours by building on [52] as well as his recent work [32]; see §A.3 for a dis-
cussion of the theory of ordinary pseudorepresentations. He has very kindly offered to
write his proof of our Theorem 1.3.1 (assuming the class number of K is prime to p) as
an appendix to this paper.
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1.8. Examples

Theorem 1.3.1 applies to tuples .p;K; /, where the  �-isotypical part of the ideal class
group ofK. �/ vanishes. In order for the theorem to apply non-trivially, we are interested
in cases where
(i) T 6Š T CM, i.e. there exist non-CM cusp forms congruent to Nf , and

(ii) X. �/ D 0.
This is because it is in these cases that Theorem 1.3.1 implies that there are no exceptions
to (CG) congruent to Nf .

There are seven examples of .p; K;  / satisfying (i) listed in [49, p. 268] (four of
which appear in [23, p. 142]), calculated by Maeda or Mestre. They also each satisfy the
running assumptions in our paper, because pOK D pp�,  � has order at least 3, and  
is ramified exactly at p. Among these examples, three of them satisfy ŒK. �/ W K� � 13,
so that we found it manageable to calculate K. �/ and its class group using PARI/GP
or Magma on a single machine. In each of these three cases, p does not divide the class
number of K. �/, so that (ii) is satisfied and Theorem 1.3.1 applies. These examples are

p K  

13 Q.i/ !8p

23 Q.
p
�7/ !10p

79 Q.
p
�7/ !12p

The character !p of GK is the Teichmüller lift of the following character N!p W GK ! F�p .
Letw WD #O�K and let N!p W .OK=p/

� �!F�p be the canonical identification. Then, for every
multiple a of w, one makes sense of !ap by taking the .a=w/-th power of the character
of GK associated via class field theory to the character

N!wp W .OK=p/
�=O�K ,! F�p :

To illustrate the example .p;K; /D .13;Q.i/; !8p/, we observe that  � has order 3
and cuts out the S3-extension of Q with minimal polynomial

x6 � 2x5 C 2x4 � 6x3 C 25x2 � 20x C 8:

Its class number is 3.

Remark 1.8.1. At the moment, we know of no single example where (ii) fails (which
implies that (i) holds), so that the surjection Rspl� T CM is not an isomorphism and also
the conditions of Theorem 1.3.4 are satisfied.

1.9. Notation and conventions

Homomorphisms between profinite topological groups and algebras, and related Galois
cohomology modules, are implicitly meant to be continuous.
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When F is a number field with a set† of places, we letGF;† denote the Galois group
of F†=F , where F† is the maximal subextension of Q=F that is ramified only at the
places in †. Other conventions about Galois groups, such as decomposition groups Gq ,
have been stated in §1.2. We use the case that F D Q and † is the set S of places
supporting Np1, thus the Galois group GQ;S . We use GK;S to denote GK;SK , where
SK is the set of places of K over S .

When F is either K or Q and T is a GF;S -module, we write C i .OF Œ1=pN �; T /
for the standard cochain complex of (inhomogeneous) GF;S -cochains valued in T , and
H i .OF Œ1=pN �; T / for its cohomology. We also use the notation Zi .OF Œ1=pN �; T / and
B i .OF Œ1=pN �; T / for the submodules of cocycles and coboundaries, respectively. For
a local field M arising as a completion of F , with absolute Galois group GM , we use
C i .M; T /, H i .M; T /, Zi .M; T /, and B i .M; T / to denote the analogues of the global
objects above.

2. Ordinary modular forms and Galois representations

In this section, we review background from the theory of p-adic interpolation of p-ordi-
nary modular forms and Galois representations.

2.1. Hida theory

Throughout this paper, we freely refer to the p-adic families of p-ordinary eigenforms
constructed by Hida (see [24, 25]), along with the associated Hecke algebras and big
Galois representations. This section summarizes the parts of this theory that we shall
apply, following [52, §3] in some of this summary.

We take the data Nf , N�, and N of §1.2.2 to be fixed in advance.

2.1.1. Ordinary ƒ-adic cusp forms and Hecke algebras. For r � 1, let S2.�1.Npr //ord
Zp

be the ordinary summand of the Zp-module of cuspidal forms of weight 2 and level Npr

with coefficients in Zp . Let

S 0ƒ D lim
�!
r

S2.�1.Np
r //ord

Zp
;

the limit being over the natural inclusion maps. Let T 0 be the Zp-algebra generated by
the endomorphisms of S 0ƒ given by the Hecke operators

Tn; U`; Up; hd i; where .n;Np/ D 1; .d;Np/ D 1; ` jN is prime: (2.1.1)

The action of these operators on the modulo p p-stabilized eigenform Nf gives rise to
a maximal ideal of T 0 with residue field F . Let T 00 denote the completion of T 0 at this
maximal ideal.

We write N� for det N�, and � for the Teichmüller lift of N�. Using the isomorphism
Gab

Q Š
OZ� of class field theory to think of � as a Dirichlet character on .Z=pNZ/� valued
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in Q
�

p , we define ƒQ as the �-isotypical quotient of ZpJZ�p � .Z=NZ/�K. Likewise,
using the projection OZ�� Z�p � .Z=NZ/�, we define the character

h�iQ W GQ ! ƒ�Q; (2.1.2)

which is a deformation of N� from F to ƒQ.
There is a natural map ZpJZ�p � .Z=NZ/�K! T 00 sending d 7! hd i for d 2 Z with

.d;Np/ D 1. We let
T WD T 00 ˝ZpJZ�p�.Z=NZ/�K ƒQ;

that is, we specialize T so that the nebentype on .Z=pNZ/� is constant and equal to �
(as opposed to a non-constant deformation, which is possible when p j�.N /). Let Sƒ WD
S 0ƒ ˝T 0 T ; this is the module of p-ordinary ƒ-adic cusp forms congruent to Nf and with
nebentype precisely �, and T the corresponding Hecke algebra.

By Hida’s control theorem [25, §3], both T and Sƒ are free ƒQ-modules of finite
rank, and by [25, §2] the pairing

h ; i W T � Sƒ ! ƒQ; .T; f / 7! a1.T � f /; (2.1.3)

is a perfect pairing of ƒQ-modules. Consequently, we may view F 2 Sƒ as a ƒ-adic
q-series in ƒQJqK via

F 7!
X
n�1

hT 0n;F iq
n; (2.1.4)

where T 0n D Tn for .n; Np/ D 1, and otherwise T 0n is the usual polynomial (see e.g. [48,
Thm. 3.24]) in the operators of (2.1.1) with coefficients in Z.

2.1.2. Cohomological weights. We define a p-adic weight to be a characteristic zero
height 1 prime P of ƒQ. Any weight arises from a pair of characters .�k ; �0/,

�k W Z
�
p ! Q

�

p and �0 W .Z=prNZ/� ! Q
�

p .for some r � 1/

such that
.�k � �

0/j.Z=pNZ/� D �

under the canonical decomposition Z�p Š F�p � .1C pZp/. In general k is a formal label,
but when we start with k 2 Z, then �k is the homomorphism �k.x/ WD x

k�1. The height
1 prime P D Pk;�0 � ƒQ associated to .�k ; �0/ is defined to be the kernel of the factor-
ization of the ring homomorphism ZpJZ�p � .Z=NZ/�K! Qp through ƒQ induced by
�k � �

0. A weight .�k ; �0/ is called cohomological when k 2 Z�2.
By Hida’s control theorem, T and Sƒ interpolate their classical analogues in coho-

mological weight. That is, for any p-adic weight .�k ; �0/ with k 2 Z�2, we recover the
module of cusp forms of this weight k and nebentype �0 that are congruent to Nf via

Sƒ ˝ƒQ ƒQ=Pk;�0 Š Sk;�0 WD Sk.�1.Np
r /; �0/ord

Nf
� Sk.�1.Np

r /; �0/ord
Zp
:
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Similarly, denoting by Tk;�0 the Hecke algebra generated by the Hecke action on Sk;�0 ,
we have a ring isomorphism

T ˝ƒQ ƒQ=Pk;�0 Š Tk;�0

and the ƒQ-adic duality (2.1.3) specializes modulo Pk;�0 to the Nf -congruent part of the
classical duality between Sk.�1.Npr /; �0/ and its Hecke algebra.

We will use these consequences of the foregoing theory.

Lemma 2.1.5. There is a bijection between forms in Sk;�0 ˝ƒQ=Pk;�0
Qp andƒQ-linear

maps T ! Qp factoring through T ˝ƒQ ƒQ=Pk;�0 , restricting to a bijection between
normalized eigenforms and multiplicative maps.

Proof. This is standard: see [25, Cor. 3.2] and [24, Thm. 1.2].

Lemma 2.1.6. T is reduced.

Proof. This follows from the argument of [31, Lem. 5.4]. Indeed, the nilradical of Tk;�0
is known to act faithfully on oldforms that are old at levels dividing N according to
[25, Cor. 3.3], and there are no such oldforms in cohomological weight by the assumption
that N is the Artin conductor of N�. Therefore T ˝ƒQ ƒQ=Pk;�0 is reduced for k 2 Z�2,
and since cohomological weights are dense in SpecƒQ and T is flat over ƒQ, T is
reduced.

2.1.3. Associated Galois representations. Hida [25] proved that the Galois representa-
tions �f of (1.2.1) associated to p-ordinary cuspidal eigenforms f interpolate along T .
Under some assumptions, this interpolation takes on the following particularly strong
form. For the statement, we write xf W T ! Ef � Qp for the homomorphism associated
to a cohomological p-ordinary eigenform f as per Lemma 2.1.5, where Ef is the residue
field of xf .

Proposition 2.1.7. Upon assumptions .100/ and .20/ of �1.2, there exists a continuous
representation

�T W GQ ! GL2.T /

characterized by the interpolation condition

�f ' �T ˝T ;xf Ef :

Moreover, �T is ramified only at places supporting Np1 and restricts to Gp with

�T jGp '

�
h�iQjGp � �

�1 �

0 �

�
; (2.1.8)

where � W Gp ! T� is an unramified character sending an arithmetic Frobenius Frobp
to Up and h�iQ was defined in (2.1.2).
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Proof. Using assumptions .100/ and .20/, Hida’s interpolation result [25, Thm. 2.1] may
be upgraded to the claimed form: see e.g. [15, Props. 2.2.7 and 2.2.9]. Then the character-
ization claim follows from the fact that T is flat over ƒQ and reduced by Lemma 2.1.6,
as T therefore injects into the product of the Ef .

Also, it follows from the above interpolation and the properties of �f that

det �T Š h�iQ ˝ƒQ T : (2.1.9)

In particular, we have equality of F -valued characters of GQ, .det �T mod mT / D

.h�iQ mod mƒQ/ D N�.

2.1.4. Complex multiplication in Hida families. When we impose assumption (0) – i.e.,
that N� is induced from N – there exist classical p-ordinary eigenforms with CM that are
congruent to Nf and have tame levelN . In each cohomological weight .�k ;�0/, these form
Hecke submodules

SCM
k;�0 � Sk;�0 :

The action of T on these submodules in cohomological weight results in a quotient
T � T CM which acts faithfully on them (see e.g. [31, Prop. 5.1]).

Recalling from (1.2.3) the definition of CM form, we observe that this also applies to
any element of Sƒ, using (2.1.4). Thus we have a ƒQ-submodule of ƒ-adic CM forms
SCM
ƒ � Sƒ.

It is known (see e.g. [31, §5]) that SCM
ƒ is Hecke-stable, T CM and SCM

ƒ are free ƒQ-
modules, and the duality (2.1.3) restricts to a ƒQ-linear perfect pairing

T CM
� SCM

ƒ ! ƒQ:

This duality along with the control theorem results in a CM-version of the control in
cohomological weights .�k ; �0/,

T CM
˝ƒQ ƒQ=Pk;�0

�
! T CM

k;�0 ; SCM
ƒ ˝ƒQ ƒQ=Pk;�0

�
! SCM

k;�0 :

We let ICM WD ker.T � T CM/, and denote by �CM the restriction of �T to the CM
locus: �CM WD �T ˝T T CM.

2.2. Non-classical weights and generalized eigenforms

We will have significant interest in both
(i) p-ordinary p-adic cusp forms of non-cohomological weight, and

(ii) p-ordinary modulo p cusp forms.
In both cases, we also need to define generalized eigenforms and their associated Galois
representations.

We define p-ordinary cusp forms of non-cohomological weight by interpolation.
These are all implicitly “of tame level N ”.
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Definition 2.2.1.
(1) A p-adic p-ordinary cusp form of p-adic weight .�k ; �0/ that is congruent to Nf is an

element of Sk;�0 WD Sƒ ˝ƒQ ƒQ=Pk;�0 .

(2) A p-ordinary p-adic Hecke eigensystem congruent to Nf is a homomorphism
T !Qp , and its weight .�k ; �0/ is determined by the unique height 1 prime P �ƒQ

through which the composite ƒQ ! T ! Qp factors.

Remark 2.2.2. Note that Sk;�0 is equal to the module of classical p-ordinary forms,
denoted identically, when the weight is cohomological.

The notions of
� Hecke eigenform,
� generalized Hecke eigenform, and
� CM by K (the condition of (1.2.3))
apply to such objects in the same manner as to their classical counterparts. In particular,
Lemma 2.1.5 generalizes straightforwardly to any p-adic weight. Thus the eigensystems
from Definition 2.2.1(2) are in natural bijection with normalized eigenforms, i.e., “multi-
plicity one” holds in the presence of .100/–.30/.

For the sake of clarity, we specify the meaning of “generalized eigenform”. We use
the notation .�/Œ1=p� as shorthand for .�/˝Zp Qp .

Definition 2.2.3. Let g0 be a p-adic p-ordinary cusp form in Sk;�0 that is congruent to Nf .
Denote by T Œ1=p�g0 the T Œ1=p]-span of g0 in Sk;�0 Œ1=p�. We call g0 a generalized eigen-
form when
(i) g0 is not an eigenform, and

(ii) soc.T Œ1=p�g0/ is simple as a T Œ1=p�-module, where soc.T Œ1=p�g0/ denotes the
socle of T Œ1=p�g0 as a T Œ1=p�-module.
From such a generalized eigenform, we obtain a p-adic p-ordinary eigensystem

T ! Qp of weight .�k ; �0/ via the T -action on this socle. Denote by Eg0 the sub-
field of Qp generated by the image of T in EndQp .soc.T Œ1=p�g0//. We also say that
the Hecke eigensystem of g0 is g when g 2 Sk;�0 is an eigenform and also is an Eg0 -basis
for soc.T Œ1=p�g0/.

We also define the p-ordinary modulo p cusp forms required for Theorem 1.3.4.

Definition 2.2.4. A p-ordinary modulo p cusp form (of tame level N ) congruent to Nf is
an element of SF WD Sƒ ˝ƒQ F .

Exactly as in the p-adic case, the definition of eigenform, generalized eigenform, and
CM by K are identically formulated in SF . Note, however, that the socle of the Hecke
span of an element of SF is always simple and even 1-dimensional over F , being spanned
by Nf . Thus every element of SF is a generalized eigenform with Hecke eigensystem
precisely Nf .
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Finally, we require Galois representations associated to generalized eigenforms
g0 2 Sk;�0 and Ng0 2 SF .

Definition 2.2.5. Let Ag0 be the Qp-subalgebra of EndQp .Tg
0 ˝Zp Qp/ generated by

the Hecke action on the Hecke span T Œ1=p�g0 of g0. Thus we have a natural homomor-
phism T ! Ag0 , and the Galois representation �g0 associated to g0 is given by

�g0 WD �T ˝T A
0
g :

The definition for � Ng0 is formulated identically.

Lemma 2.2.6. There is a canonical structure of augmentedEg0 -algebra on Ag0 , compat-
ible with the maps they receive from T . There is an identical statement for a generalized
eigenform Ng0 2 SF in place of g0.

Proof. Observe that Eg0 is the residue field of T ˝ƒQ ƒQ=Pk;� at its prime ideal }g0 ,
because }g0 is the kernel of the Hecke action homomorphism

T ˝ƒQ ƒQ=Pk;� ! EndQp .soc.T Œ1=p�g0//:

Likewise, Ag0 admits a surjection from the completion .T ˝ƒQ ƒQ=Pk;�/
^
}g0

at this
residue field. As this completion is naturally endowed with the structure of an augmented
local Artinian Eg0 -algebra, this gives Ag0 the same kind of structure. This augmentation
structure Eg0 ,! Ag0� Eg0 is T -equivariant, by construction.

2.3. The ordinary deformation ring

In this section, we recall a minimal ordinary deformation ring and its comparison to a
Hecke algebra.

Recall that we have fixed N� as in §1.3, with coefficient field F , and thatW D W.F/ is
the Witt ring of F . Recall also that we denote the semisimplification of N�jGp by N�1 ˚ N�2,
where N�2 is assumed to be unramified. We use ' to represent isomorphisms of represen-
tations up to conjugation, while we use D to denote identical homomorphisms into GL2.
Finally, recall also the notation GQ;S from §1.9.

Let CNLW denote the category of complete Noetherian local W -algebras A with
residue field A=mA Š F .

Definition 2.3.1 (The minimal ordinary deformation functor, e.g. [12, §3.1]). Let Dord W

CNLW ! Sets be the functor associating to A the set of strict equivalence classes of
homomorphisms �A W GQ;S ! GL2.A/ such that

(i) �A ˝A F D N�;
(ii) �AjGp '

�
�1 b
0 �2

�
, where �2 W Gp ! A� deforms N�2 and is unramified;

(iii) for primes ` jN such that # N�.I`/¤p, reduction modulo mA induces an isomorphism
�A.I`/

�
! N�.I`/;

(iv) for primes ` jN such that # N�.I`/ D p, �I`A is A-free of rank 1.
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The “strict” equivalence relation is conjugation by an element of 1CM2.mA/�GL2.A/.
Note also that # N�.I`/ D p is equivalent to N�.I`/ having unipotent image.

Deformations �A of N� satisfying the conditions definingDord will be called p-ordinary
of tame level N , or just p-ordinary.

The term “minimal” refers to conditions (iii) and (iv), while “ordinary” refers to con-
dition (ii). These conditions are well-known to be relatively representable on deformation
problems, as follows.

Proposition 2.3.2. The conditions .100/ and .20/ of �1.2 imply that Dord is representable
by Rord 2 CNLW . In this case, there is a universal ordinary deformation �ord W GQ;S !

GL2.Rord/ of N�.

Proof. Upon these conditions, the representability of a deformation ring for conditions (i)
and (ii) of Definition 2.3.1 is originally due to Mazur [42, §1.7, Prop. 3]. A simplification
of the argument for (ii) applies to show that (iv) is relatively representable as well. It is
standard that condition (iii) is relatively representable.

Assuming .100/–.30/, and under some mild additional conditions, one may produce a
mapRord!T corresponding to the representation �T and prove that it is an isomorphism.
This was first done in many cases by Wiles [54], followed by generalizations such as
those of Diamond [10, 11]. Note, however, that some of these generalizations require
modifications toRord or T . We state here only the case we need, where we assume (0)–(4)
of §1.2. In this generality, the isomorphism is due to Wiles [54, Thm. 4.8].

Theorem 2.3.3 (Wiles). Assume (0)–(4) of �1.2. Then the representation �T of Proposi-
tion 2.1.7 induces an isomorphism Rord �! T of complete intersection rings.

Due to assumption (4), there are no ` jN of type (iv) in the sense of Definition 2.3.1;
they are all of type (iii). While it is implicit in Theorem 2.3.3 that �T satisfies condi-
tion (iii), it will be useful later to have seen the following verification.

Lemma 2.3.4. Assume conditions (0)–(4) of �1.2. Then reduction modulo mT induces
isomorphisms

�T .I`/
�
�! N�.I`/ for all ` jN:

Proof. Because T is reduced (Lemma 2.1.6), by Lemma 2.1.5 it will suffice to prove the
result after replacing �T by �f for an eigenform f with a cohomological weight .k; �0/
of ƒQ.

Choose some prime ` j N , and write N�jG` ' N�`;1 ˚ N�`;2, where (only) N�`;1 is
ramified. It follows that H 1.Q`; . N�`;1 N�

�1
`;2
/˙/ D 0. This in turn implies that �f jG` '

�`;1 ˚ �`;2, where �`;i deforms N�`;i . Because we have fixed the determinant at ` (i.e.
det �f jI` D �

0jI`/, we observe that the claimed isomorphism fails if and only if �`;2 is
ramified if and only if the conductor of �f jG` exceeds that of N�jG` . However, we have
assumed that f is of level N , which is defined to be the prime-to-p conductor of N�.
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We have this addendum to Lemma 2.2.6.

Lemma 2.3.5. If we let g denote the eigensystem of g0, we have

�g0 6' �g ˝Eg0 Ag0 :

Proof. Since the socle of T Œ1=p�g0 is 1-dimensional over Eg0 but g0 is not an eigenform,
the Hecke action map T ! Ag0 cannot factor through the T -algebra mapEg0 ! Ag0 that
corresponds to the Hecke action on g. Since Rord, and hence T as well (Theorem 2.3.3),
is a quotient of the unrestricted deformation ring of N�, this means that distinct homomor-
phisms to Ag0 out of T must correspond to non-isomorphic Galois representations.

2.4. The p-locally split deformation ring

The following deformation problem was first considered by Ghate–Vatsal [21].

Definition 2.4.1. LetDspl W CNLW ! Sets be the subfunctor ofDord associating to A the
set of strict equivalence classes of homomorphisms of the form

�AjGp '

�
�1 0

0 �2

�
:

Deformations �A of N� satisfying the conditions defining Dspl will be known as p-split.

Proposition 2.4.2 (Ghate–Vatsal). Assume conditions .10/ and .20/ of �1.2. Then Dspl is
representable by Rspl 2 CNLW .

Proof. This is [21, Prop. 3.1].

Corollary 2.4.3. Assume conditions (0)–(4) of �1.2. Then the Galois representations �T

and �CM induce diagram (1.5.1).

Proof. We already know that Rord �! T from Theorem 2.3.3. The canonical surjection
Rord� Rspl arises from Proposition 2.4.2. Because �CM is induced via IndQ

K (see Propo-
sition 4.1.2 below) and p splits in K, �CMjGp is p-split. Thus �CM induces a surjection
Rspl � T CM. The commutativity of (1.5.1) is clear.

3. Anti-cyclotomic Iwasawa theory

In this section, we assemble background information about objects of anti-cyclotomic
Iwasawa theory and their relation to Galois cohomology. We will apply the assumptions
(0)–(4) of §1.2 and use the characters N and N � defined there.
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3.1. Anti-cyclotomic extensions and Iwasawa algebras

Recall that we assume that pOK D pp� splits, with Q � Qp inducing p. We have GK;S
as in §1.9. Our notation mostly follows [31, p. 636].

Let C be the prime-to-p conductor of N � W GK;S ! F�, which is equal to c � cc by
assumption (4). Then we consider the following abelian quotients of GK;S :

Z D the ray class group of K modulo Cp1,
Z� D the maximal quotient of Z where complex conjugation acts as �1;
Z�p D the maximal p-profinite quotient of Z�:

Let KCp1 be the ray class field of K modulo Cp1. Let K�Cp1;p=K denote the
maximal pro-p anti-cyclotomic subextension of KCp1=K, so that the Artin map supplies
canonical isomorphisms

Z Š Gal.KCp1=K/; Z�p Š Gal.K�Cp1;p=K/:

We also let ��K Š Zp be the maximal torsion-free quotient of Z�p , and let K�1=K be the
corresponding Zp-extension.

Let F 0 be the subfield of F generated by the values of N �, and denote by  � W
GK;S ! W 0� the Teichmüller lift of N �, where W 0 WD W.F 0/. Then  � factors through
a character on the quotient Z.p/� WD Z�=Z�p (a direct factor of Z�), hence defining a
projection

� � W W
0JZ�K! W 0JZ�p K

sending a group-like element .zp; z.p// 2 Z� � W 0JZ�K� to  �.z.p//zp 2 W 0JZ�p K. In
the following, we let

zƒ�W 0 WD W
0JZ�p K; ƒ�W 0 WD W

0J��KK (3.1.1)

denote the isotypical components of W 0JZ�K via � � , and via � � composed with the
natural projection Z�p � ��K , respectively. Let

I WD ker.zƒ�W 0� ƒ�W 0/

be the kernel of the natural projection.

Notation. For the rest of §3 we drop the subscript W 0 in zƒ�W 0 ; ƒ
�
W 0 , but we resume this

outside §3.

A choice of section s W ��K ,! Z�p endows zƒ� with the structure of an augmented
ƒ�-algebra. Moreover, it is free of finite rank, receiving a natural isomorphism

zƒ� Š ƒ�JGal.Hs=K/K; (3.1.2)

where Hs=K is the finite p-primary unramified extension of K cut out by the quotient
Z�p � Z�p =�

�
K .

Let
h�i� W GK;S ! .ƒ�/�; zh�i� W GK;S ! .zƒ�/� (3.1.3)
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be the canonical characters arising from the projection from the group rings (3.1.1), and
denote by ƒ�

h�i
(resp. zƒ�

h�i
) the free ƒ�-module (resp. zƒ�-module) of rank 1 on which

GK;S acts via h�i� (resp. zh�i�). In particular, the residual character in both cases is
N � W GK;S ! F 0�.

The following extension fields ofK are cut out by the characters  �, h�i�, and zh�i�,
respectively:

K. �/ D Q
ker. �/

;

K�1. 
�/ D the composite K�1K. 

�/;

K�1. 
�/ D the composite K�Cp1;pK. 

�/:

3.2. Anti-cyclotomic Katz p-adic L-functions

We briefly recall Katz’s p-adic L-functions attached to K. In this section we write W for
the Witt ring W.Fp/ of an algebraic closure of Fp .

For any prime-to-p ideal C � OK , Hida–Tilouine [35], following work of Katz [39]
in the case C D 1, produced an element

�p 2WJZK

(denoted �p.Cp�1/ in [9, Thm. II.4.14]) characterized by an interpolation property of
critical values of the complexL-functions attached to certain Hecke characters ofK mod-
ulo Cp1. Taking C to be the prime-to-p conductor of N �, we shall be concerned with
the projection

L�p . 
�/ 2WJZ�p K Š zƒ� Ő W 0W

of �p via the composite of the natural projection WJZK�WJZ�K with � � .
By the Weierstrass preparation theorem, we may and do fix a choice of zL�p . 

�/ 2 zƒ�

such that
.zL�p . 

�/˝ 1/ D .L�p . 
�//

as ideals in zƒ� Ő W 0W, and write L�p . 
�/ 2 ƒ� for its further specialization

to ƒ�. Finally, when Spec.I/ � Spec.zƒ�/ is some irreducible component, we denote
by zL�p . 

�/I the specialization of zL�p . 
�/ to I. The same constructions apply when p

is replaced by p� (i.e., starting with �p� ), yielding zL�p . 
�/� 2 zƒ�, etc. Altogether we

obtain the following avatars of the Katz p-adic L-functions that we will consider:

zL�p . 
�/; zL�p . 

�/� 2 zƒ�;

L�p . 
�/; L�p . 

�/� 2 ƒ�;

zL�p . 
�/I; zL

�
p . 

�/�I 2 I:

(3.2.1)

Since we impose condition (4), the following result gives us that the �-invariants of
these p-adic L-functions (when the coefficient ring is a domain) vanish.
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Proposition 3.2.2 (Finis [16], Hida [29]). The �-invariants of L�p . 
�/, L�p . 

�/�,
zL�p . 

�/I , and zL�p . 
�/�I are zero.

Remark 3.2.3. Each I is abstractly isomorphic to W 0Œ�pn �JtK for some n, where �pn
denotes a pn-th root of unity.

3.3. Anti-cyclotomic Iwasawa class groups

Consider the following metabelian field extensions of K:

M�1 D the maximal p-ramified pro-p abelian extension of K�1. 
�/;

M�1 D the maximal p-ramified pro-p abelian extension of K�1. 
�/;

L�1 D the maximal unramified pro-p abelian extension of K�1. 
�/;

L�1 D the maximal unramified pro-p abelian extension of K�1. 
�/:

We have Iwasawa modules coming from Galois groups of these extensions, along with
the following integral units in these fields:

Y �1 D Gal.M�1=K
�
1. 

�//; X�1 D Gal.L�1=K
�
1. 

�//;

Y�1 D Gal.M�1=K
�
1. 

�//; X�1 D Gal.L�1=K
�
1. 

�//;

E�1 D the group of global units in K�1. 
�/;

U�1 D the group of local 1-units in the completion of K�1. 
�/ above p:

We note that Y �1; X
�
1 are naturally modules over ZpJGal.K�1. 

�/=K/K, while
E�1;U

�
1; Y

�
1;X

�
1 are naturally modules over ZpJGal.K�1. 

�/=K/K. In either case,
we append . �/, e.g. Y �1. 

�/, to denote their  �-isotypical components. Thus
Y �1. 

�/; X�1. 
�/ are ƒ�-modules and E�1. 

�/;U�1. 
�/; Y�1. 

�/;X�1. 
�/ are

zƒ�-modules, and all of these are known to be finitely generated. They are related by
isomorphisms

Y �1. 
�/ Š Y�1. 

�/=IY�1. 
�/; X�1. 

�/ Š X�1. 
�/=IX�1. 

�/:

Class field theory then yields the “fundamental” exact sequence of zƒ�-modules

0! E�1. 
�/! U�1. 

�/! Y�1. 
�/! X�1. 

�/! 0: (3.3.1)

Proposition 3.3.2 (Anti-cyclotomic main conjecture [28, 36, 45]). The characteristic
ideal in ƒ� of Y �1. 

�/ is generated by L�p . 
�/, and the characteristic ideal of

Y�1. 
�/I is generated by zL�p . 

�/I . In particular,

Y�1. 
�/ D 0 ” Y �1. 

�/ D 0

and this is implied by L�p . 
�/ being a unit in ƒ�.

We apply the main conjecture toward the control of X�1. 
�/.
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Proposition 3.3.3. The following equivalences hold.

(i) X. �/ D 0, X�1. 
�/ D 0, X�1. 

�/ D 0, and this is implied by at least one
of L�p . 

�/ and L�p . 
�/� being a unit in ƒ�.

(ii) X�1. 
�/ is infinite if and only if there exists some irreducible component Spec.I/ �

Spec.zƒ�/ such that zL�p . 
�/I and zL�p . 

�/�I have a non-trivial common prime factor
P � I of characteristic zero.

Proof. The equivalences of (i) (and the leftmost equivalence of Proposition 3.3.2) follow
from Nakayama’s lemma. For example, X. �/ Š X�1. 

�/=m zƒ�X�1. 
�/. The rela-

tion of the vanishing of X�1. 
�/ to the L-functions in the statement of (i) follows from

Proposition 3.3.2 and its variant for the module Y�1. 
�/� obtained by swapping the roles

of p and p�.
To prove (ii), for convenience write Y (resp. Y�) for Y�1. 

�/ (resp. Y�1. 
�/�), Y

for Y �. �/, and X for X�1. 
�/. Because X is a quotient of Y, and we know from

Proposition 3.2.2 that the �-invariant of Y is zero, Lemma 3.3.4 below implies that X

has a non-zero p-torsion-free quotient.
Therefore XŒ1=p� is a non-zero zƒŒ1=p�-module. By examining a choice of presenta-

tion (3.1.2), we see that
zƒŒ1=p�

�
�!

M
I

.zƒ=I/Œ1=p�

is a regular ring. Therefore XŒ1=p� is supported at some maximal ideal of .zƒ=I/Œ1=p�
for some choice of irreducible component Spec.I/ � Spec.zƒ�/. Since we know that X

is a quotient of both Y and Y� (whose characteristic ideals on each I are associated to
zL�p . 

�/I by Proposition 3.3.2), this means that CharI.YI/ and CharI.Y
�
I / have a com-

mon factor. By Proposition 3.3.2 this is a common factor of zL�p . 
�/I and zL�p . 

�/�I as
well.

Lemma 3.3.4. Let Z be a finitely generated zƒ�-module. If Z is infinite and p-power
torsion, then the �-invariant of Z WD Z˝ zƒ� ƒ

� as a ƒ�-module is positive.

Proof. Because Z is finitely generated and p-power torsion, there exists some t 2 Z�1
such that pt �ZD 0. Because of the surjections �ps WZ=p� psZ=psC1Z, the infinitude
of Z implies that Z=p is infinite. Because zƒ�=p is generated over ƒ�=p by adjoining
finitely many nilpotents (via a choice of presentation (3.1.2)), the same argument implies
that Z=p is infinite. As Z is supported on Spec.ƒ�=p/ � Spec.ƒ�/, this means that the
�-invariant of Z as a ƒ�-module is positive.

3.4. Galois cohomology with support, and duality

In this section, we compute some Galois cohomology groups often known as “Iwasawa
cohomology,” relating them to the Iwasawa-theoretic objects defined in §3.3. We follow
the approach of [52, §6] and parts of [51, §2], using the notation for Galois cohomology
established in §1.9.
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We will make use of the modules ƒ�
h�i

, zƒ�
h�i

equipped with the canonical characters
defined in (3.1.3), and respectively denote by

ƒ�# ;
zƒ�#

the same underlying modules equipped with the inverse of those characters.
Let S 0 � SK denote some subset of places of K. We will study the cohomology of a

GK;S -module T with support in S 0, denoted H i
.S 0/

.OK Œ1=pN �; T /, which is defined to
be the cohomology of the cone of the morphism of complexes

C �.S 0/.OK Œ1=pN �; T / WD Cone
�
C �.OK Œ1=pN �; T /!

M
s2S 0

C �.Ks; T /
�
:

This gives rise to the standard long exact sequence in cohomology, whose terms in a single
degree are

H i
.S 0/.OK Œ1=pN �; T /! H i .OK Œ1=pN �; T /!

M
s2S 0

H i .Ks; T / (3.4.1)

We see that we have H i
.;/
Š H i .

The following module-theoretic version of global Tate duality will be useful.

Proposition 3.4.2. Let T be a free module of finite rank over a complete local Noethe-
rian Zp-algebra R that is Gorenstein. Equip T with an R-linear action of GK;S . Let V
denote a finitely generatedR-module .with a trivialGK;S -action/. Then there is a spectral
sequence

E
i;j
2 D ExtiR.H

3�j

.S 0/
.OK Œ1=pN �; T

�.1//; V /) H
iCj

.SKnS 0/
.OK Œ1=pN �; T ˝R V /;

where T � denotes the R-linear dual module with the contragredient GK;S -action.

Proof. This follows directly from [51, Prop. 2.2.1] when R is regular and S 0 2 ¹SK ; ;º.
We explain how to adapt the proof of loc. cit. to prove this proposition.

The generalization to an arbitrary subset S 0 � S follows from the fact that classical
Poitou–Tate duality (i.e. for T a finite abelian group and T � its Pontryagin dual) holds for
an arbitrary S 0 � S . For this, see e.g. [17, Thm. B.1].

The first part of the proof of [51, Prop. 2.2.1] reduces to the case V D R. It relies
on a particular case of [44, Prop. 5.4.3], which is an expression of this duality in the
derived category of R-modules. In this setting, T may be a bounded complex and T � is a
bounded complex representing RHomR.T; !R/, where !R is a dualizing complex for R.
In our statement, R is assumed to be Gorenstein (thus one may let !R be RŒ0�) and T is
R-free, so we may use the standard R-linear dual module T �.

The second part of the proof of [51, Prop. 2.2.1] uses [41, Prop. 3.1.3], and there is no
difference in its application.
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3.5. Kummer theory for anti-cyclotomic Iwasawa cohomology

We are interested in Galois cohomology with coefficients in T D zƒ�# .1/, which, in view
of the review of Iwasawa cohomology in [52, §6.1], is the case of Kummer theory.

Proposition 3.5.1 (Kummer theory). The long exact sequence (3.4.1) where T D zƒ�# .1/
and S 0 D ¹pº, namely,

0 D H 1
.p/.OK Œ1=Np�;

zƒ�# .1//! H 1.OK Œ1=Np�; zƒ
�
# .1//! H 1.Kp; zƒ

�
# .1//

! H 2
.p/.OK Œ1=Np�;

zƒ�# .1//! H 2.OK Œ1=Np�; zƒ
�
# .1//! H 2.Kp; zƒ

�
# .1// D 0;

is canonically isomorphic to the fundamental exact sequence (3.3.1). In particular, we
have isomorphisms

H 2
.p/.OK Œ1=pN �;

zƒ�# .1// Š Y�1. 
�/; (3.5.2)

H 2.OK Œ1=pN �; zƒ
�
# .1// Š X�1. 

�/: (3.5.3)

The proof technique is similar to that of [52, §6], which applies when Q is replaced
by K.

Lemma 3.5.4. There are canonical isomorphisms

H 1.OK Œ1=pN �; zƒ
�
# .1// Š E�1. 

�/

and (3.5.3).

Proof. The isomorphism with E�1. 
�/ appears in [52, Cor. 6.1.3]. The isomorphism

(3.5.3) follows just as in the proof of [52, Cor. 6.3.1]. Namely, because  � is non-trivial
at all primes ofK dividingN , and is clearly not congruent modulo p to Zp.1/, taking the
 �-component of the long exact sequence appearing in the statement of [52, Cor. 6.1.3]
results in the desired isomorphism.

Similarly, we have the Kummer isomorphism

H 1.Kp; zƒ
�
# .1// Š U�1. 

�/;

with respect to which the natural maps H 1.OK Œ1=pN �; zƒ
�
# .1//! H 1.Kp; zƒ

�
# .1// and

E�1. 
�/ ,! U�1. 

�/ are compatible. Because H 0.Kp; zƒ
�
# .1// D 0, it follows from

(3.4.1) that H 1
.p/
.OK Œ1=pN �; zƒ

�
# .1// D 0. By local Tate duality (“derived” as in Propo-

sition 3.4.2, which can be applied with R D zƒ� since this ring is a complete intersection,
given its presentation (3.1.2)), the vanishing ofH 2.Kp; zƒ

�
# .1// follows from the fact that

H 0.Kp; zƒ
�
h�i
=I / D 0 for all ideals I � zƒ�.

It remains to establish (3.5.2) compatibly with the isomorphisms we have already
drawn. Using the proof of [40, Prop. 5.3.3(b)] (which is written for S 0 D SK , but applies
to any choice of S 0, such as S 0 D ¹pº), we find that

H 2
.p/.OK Œ1=Np�;

zƒ�# .1// Š lim
 �
r

H 2
.p/.OKr Œ1=Np�; . 

�/�1.1//;
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where K�Cp1;p � Kr is a sequence of p-abelian extensions of K cut out by a fundamen-
tal system of open neighborhoods of the identity in Z�p , and the maps of the limit are
corestrictions. We use classical Poitou–Tate duality to draw a canonical isomorphism to

lim
 �
r;m

Hom.Ar;m;Qp=Zp/; where Ar;m WD H
1
.Np�/.OKr Œ1=Np�;  

�
˝Zp Z=pmZ/:

Because  � has order prime to p and is non-constant on Gq for all primes q of Kr
dividing Np�, we deduce

Ar;m Š H
1
.Np�/.OKrK. �/Œ1=Np�;Z=p

mZ/ 
�

from the analogous isomorphisms for the cohomology theories H 1.OKr Œ1=Np�;�/ or
H 1.Kq;�/ replacingH 1

.Np�/
.OKr Œ1=Np�;�/. Because taking the  �-part kills the con-

tribution of the cokernel of

H 0.OKrK. �/Œ1=Np�;Z=p
mZ/!

Y
q0jqjNp�

H 0..KrK. 
�//q0 ;Z=p

mZ/

to H 1
.Np�/

.OKrK. �/Œ1=Np�;Z=p
mZ/, we know that Ar;m is canonically isomorphic

to the group of  �-equivariant homomorphisms from the absolute Galois group of
KrK. 

�/ to Z=pmZ that are trivial on Gq0 for q0 jNp�.
We observe that H 1.Kq; N 

�/ D 0 for q jN follows from assumption (4); likewise,
ker.H 1.Kp� ; N 

�/! H 1.Kunr
p� ;
N �// D 0 follows from assumption (2). It follows that

triviality of an element of A1;1 D H 1.OK Œ1=Np�; N 
�/ at the decomposition group at

q jNp� is equivalent to being trivial on the inertia group at q. It is straightforward to
generalize this conclusion to general Kr and m � 1 from this base case (K1 D K and
m D 1), as Kr=K is ramified only at p. In other words, on the  � branch, p� being split
is equivalent to p� being unramified. Therefore, by definition of Y�1. 

�/, we deduce a
canonical isomorphism

Ar;m Š HomZp .Y
�
1. 

�/˝ zƒ� W
0JGal.Kr=K/K;Z=pmZ/:

Applying this isomorphism to the limits over m and r above, we deduce (3.5.2).
To complete the proof of Proposition 3.5.1, it remains to check that the connecting

map in (3.4.1) is compatible with the map U�1. 
�/! Y�1. 

�/ coming from the Artin
symbol, and that the map from H 2

.p/
to H 2 in (3.4.1) is compatible with Y�1. 

�/�
X�1. 

�/. This is standard, so we omit it.

4. Residually CM Hecke algebras

Continuing from §2.1.4, we apply (0)–(4) of §1.2 to describe the structure of T .
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4.1. CM Hecke algebras and associated Galois representations

The point of this section is to study the structure of the CM Hecke algebra T CM, a quo-
tient of T which we defined in §2.1.4. This will mainly be applied in §6. We do this by
understanding the relation of T CM to Galois representations.

Recall that Spec.T CM/ � Spec.T / is the minimal closed subscheme containing all
of the irreducible components of T with CM by K, and �CM D �T ˝T T CM denotes
the restriction of �T to this CM locus. Recall that c � OK denotes the prime-to-p Artin
conductor of  W GK;S ! W �.

We will also use the notation for anti-cyclotomic Iwasawa theory established at the
beginning of §3.1. We add to it the following definitions. Let Kcp1 denote the ray class
field of K modulo cp1, with ray class group Z. Let Zp denote the maximal pro-p quo-
tient of Z, which is also naturally a direct factor. Also let �p

K ' Zp be the maximal
torsion-free quotient of Zp .

We see that  factors through a character on the quotient Z.p/ WD Z=Zp , resulting in
a projection

� W W JZK� W JZpK
sending a group-like element .zp; z.p// 2 Z to  .z.p//zp 2W JZpK. In the following, we
let

zƒ WD W JZpK; ƒ WD W J�p
KK;

which are equipped with a canonical surjection zƒ� ƒ.
Similarly to (3.1.3), we denote by

zh�i W GK;S ! zƒ
�; h�i W GK;S ! ƒ�

the natural characters arising from projectionGK;S�Z and � (resp. also via zƒ�ƒ).
Each of zƒ andƒ is a complete local NoetherianW -algebra with residue field F , and these
two characters are residually equal to N .

Similarly to Definition 2.3.1, a deformation  A of N to A 2 CNLW is called minimal
at a prime q ofK if reduction modulo mA induces an isomorphism  A.Iq/

�
! N .Iq/. It is

standard (see e.g. [42, §1.4]) that zƒ with zh�i is a universal deformation of N as follows.

Lemma 4.1.1. There is a canonical isomorphism R N 
�
! zƒ, where R N represents defor-

mations  A W GK;S ! A� of N to A 2 CNLW that are minimal outside p.

Proposition 4.1.2. Assume (0)–(4) of �1.2. Induction IndQ
K produces an isomorphism

zƒ
�
! T CM, arising from the isomorphism

�CM ' IndQ
K
zh�i:

In particular, T CM is a reduced complete intersection.

Proof. As pointed out in the proof of [31, Prop. 5.7(2)], since we are working in the
minimal case (the tame level of our forms is equal to the prime-to-p conductor of N�) this
claim follows immediately from Lemma 4.1.1 as long as N� is induced only fromK among
all quadratic fields. By [31, Proposition 5.2(2)], assumption (3) of §1.2 implies this.



F. Castella, C. Wang-Erickson 1128

There is a notion of a Zariski-closed maximal induced locus for IndQ
K in SpecR,

where R 2 CNLW supports a Galois representation �R W GQ;S ! GL2.R/ deforming
N� D IndQ

K
N . (See, for example, [8].)

Corollary 4.1.3. The kernel ICM of the canonical surjection T � T CM cuts out the
maximal induced locus for �T W GQ;S ! GL2.T /.

Proof. By Theorem 2.3.3 and the proof of Lemma 2.3.5, any Zariski-closed locus in
Spec.T / is determined by the Galois deformations it supports. Thus the corollary follows
from Proposition 4.1.2 and the fact that the CM condition of (1.2.3) is equivalent to the
induced condition: R N parameterizes all characters  A such that IndQ

K  A is p-ordinary
of tame level N , and injects into T CM.

Proposition 4.1.2 also allows us to study the weight map ƒQ ! T CM Š zƒ.

Lemma 4.1.4. The composite map ˇ of ƒQ ! T � T CM Š zƒ satisfies

ˇ ı h�iQjGK;S D
zh�i � zh�i

c
: (4.1.5)

Also, ˇ is an isomorphism if and only if p − hK .

Proof. The first statement follows from (2.1.9), as Proposition 4.1.2 tells us that �CMjGK;S

' zh�i ˚ zh�i
c
.

A presentation of ƒQ as a power series ring W JtK arises from t 7! h
iQ � 1, where

 is any element of Ip that projects to a generator of the Galois group of the maximal
cyclotomic Zp-extension of Q. From the presentation of zƒ given above, and the equality
(4.1.5), we see that ƒQ ! zƒ is an isomorphism if and only if 
 � 1 2 ƒQ maps to a
power series generator of zƒ if and only if 
 maps to a generator of Zp . This is the case if
and only if Ip

�
! Ip � GK;S surjects onto Zp , which is equivalent to p − hK .

4.2. Congruence module of the CM locus

We recall Hida’s determination of the characteristic ideal of the congruence module of the
CM locus Spec.T CM/ � Spec.T /.

For this, and for the further study of non-induced deformations of induced representa-
tions in §5, we identify how anti-cyclotomic objects over zƒ�W 0 set up in §3 (like zL�p . 

�/)
are presented over zƒ.

Notation. In §3 only, we denoted zƒ�W 0 ; ƒ
�
W 0 without the subscript. Elsewhere, the rela-

tionship between the two notations is

zƒ� WD zƒ�W 0 ˝W 0 W; ƒ� WD ƒ�W 0 ˝W 0 W;

as in (4.2.1). We mildly abuse notation by continuing to use zh�i� (resp. h�i�) for the
base change of this character (as defined in §3.1) via˝ zƒ�

W 0

zƒ� (resp.˝ƒ�
W 0
ƒ�).
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These anti-cyclotomic Iwasawa algebras zƒ� and ƒ� are domains of isomorphisms

zı W zƒ�
�
�! zƒ; ı W ƒ�

�
�! ƒ (4.2.1)

that are characterized by inducing the equality of zƒ (resp. ƒ)-valued characters

zı ı zh�i� Š
zh�i � . zh�i

c
/�1; resp. ı ı h�i� Š h�i � .h�i

c/�1:

They are induced by the canonical isomorphism � W Zp Š Z
�
p of [31, p. 636].

Because T and T CM are reduced under our running hypotheses (see Lemma 2.1.6,
Proposition 4.1.2), there is a unique algebra decomposition of total fraction fields

Frac.T / ' Frac.T CM/˚X:

Letting T nCM be the projected image of T in X , we have ICM ,! T nCM and T nCM is
ƒQ-torsion-free. The quotient T nCM=ICM is the congruence module, in the sense of e.g.
[26, §5.3.3], between the two components Spec.T nCM/ and Spec.T CM/ of Spec.T /.

Theorem 4.2.2 (Hida). Assume conditions (0)–(4) of �1.2. Then

T nCM=ICM ' zƒ=.zL
�
p . 

�//:

Moreover, we have the following commutative diagram with exact rows and columns:

InCM
� //

��

.zL�p . 
�//

��
ICM //

o

��

T //

��

T CM Š zƒ

��
ICM // T nCM // zƒ=.zL�p . 

�//

Proof. This is shown in [31, Thm. 7.2], building on the proof originating from [43] of the
anti-cyclotomic main conjecture (Proposition 3.3.2). There we find the additional assump-
tion that N is ramified at p and p − �.N /. However, the first assumption is used only in
order to apply [31, Thm. 7.1] and ensure that T is a Gorenstein ring. In our setting, this
follows from Theorem 2.3.3. The assumption p − �.N / is used to rule out the failure of
minimality of CM families, but our assumptions guarantee minimality.

5. Computation of conormal modules using Shapiro’s lemma

In this section, we give an explicit interpretation of the conormal module of the closed
CM locus inside the p-ordinary (resp. p-locally split) locus. From this, we deduce the
main theorem (Theorem 1.3.1) in §5.5.
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5.1. Conormal modules

Assume (0)–(4) of �1.2 in all that follows. We will study the conormal modules of the
closed subspaces
(1) Spec.T CM/ � Spec.Rord/ Š Spec.T /, and
(2) Spec.T CM/ � Spec.Rspl/.
We set

J WD ICM D ker.T � T CM/; J s WD ker.Rspl � T CM/;

so that these conormal modules may be denoted

.1/ J=J 2 and .2/ J s=.J s/2;

respectively. For convenience, we will use the canonical isomorphism zƒ Š T CM of Lem-
ma 4.1.2 and write zƒ in place of T CM throughout this section, studying J=J 2 and
J s=.J s/2 as zƒ-modules.

We also let � represent a member of the strict equivalence class (the equivalence rela-
tion defining Dspl.zƒ/; see §2.4) of �CM characterized by demanding that

�.c/ D

�
0 1

1 0

�
and �jGK;S D

�
h�i 0

0 h�i
c

�
:

Indeed, the left equality fixes a basis up to ordering and scaling, and the second condition
fixes the order.

Let zƒŒV � denote zƒ˚ V as a square-zero augmented zƒ-algebra, so V 2 D 0. For R� 2
¹Rord; Rspl; zƒº, let HomCM.R

�; zƒŒV �/ denote the fiber of

HomƒQ.R
�; zƒŒV �/! HomƒQ.R

�; zƒ/ (5.1.1)

over the canonicalƒQ-algebra homomorphism �� W R
�� zƒ induced by �. Here we use

the isomorphism zƒ Š R N of Lemma 4.1.1 to speak of the identity automorphism of zƒ
induced by �. Note that HomCM.R

�; zƒŒV �/ has a natural zƒ-module structure coming
from the second argument.

In what follows, we will use, without further comment, the following concrete inter-
pretation of HomCM.R

�; zƒŒV �/ as a modified deformation functor D�� .

Lemma 5.1.2. LetD� 2 ¹Dord;Dspl;D º be the deformation problem represented byR�.
There is a canonical bijective correspondence between HomCM.R

�; zƒŒV �/ and the subset
D�� .
zƒŒV �/ � D�.zƒŒV �/ consisting of the image of strict equivalence classes within the

set of homomorphisms �V WGQ;S !GL2.zƒŒV �/ such that �V .mod V /D � and det�V D
h�iQ ˝ƒQ

zƒ.

Remark 5.1.3. Strict equivalence classes within D�� amount to conjugacy classes by
1CM2.V / � GL2.zƒŒV �/, which is why it is non-trivial to take the image in D�.
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Proof of Lemma 5.1.2. Let �V represent a strict equivalence class inD� that is the image
of a strict equivalence class in D�� . Then �V .mod V / ' � and det �V D h�iQ. The first
condition is equivalent to the map ��V W R

� ! zƒŒV � being induced by �V composed
with zƒŒV �� zƒ to produce ��. By examining (2.1.9), we see that the second condition is
equivalent to R�! zƒ being aƒQ-algebra homomorphism. Conversely, any strict equiv-
alence class in D�.zƒŒV �/ that satisfies both conditions contains a representative �V of a
strict equivalence class in D�� .zƒŒV �/, and it is clear that such a class is unique.

We also record the relationship between the HomCM.R
�; zƒŒV �/, which follows

directly from the surjections Rord � Rspl � zƒ.

Proposition 5.1.4. The conormal modules are characterized as zƒ-modules by

Hom zƒ.J=J
2; V / Š HomCM.R

ord; zƒŒV �/=HomCM.zƒ; zƒŒV �/;

Hom zƒ.J
s=.J s/2; V / Š HomCM.R

spl; zƒŒV �/=HomCM.zƒ; zƒŒV �/;

for all finitely generated zƒ-modules V .

Notation. We will write �V for a homomorphism

�V W GQ;S ! GL2.zƒŒV �/ such that �V .mod V / D � and det �V D h�iQ:

That is, �V is a representative ofD�� .zƒŒV �/. We also mildly abuse terminology by speak-
ing of a deformation �V , when really this is the strict equivalence class of �V , and refer
to �V as an element of D�� .zƒŒV �/ for D�� 2 ¹D

ord
� ;D

spl
� ;D N ;�º.

Next we find these �V as elements of an Ext1-module.

Lemma 5.1.5. For any finitely generated zƒ-module V and R� 2 ¹Rord; Rspl; zƒº, there
exists a zƒ-linear injection

D�� .
zƒŒV �/ D HomCM.R

�; zƒŒV �/ ,! Ext1
zƒŒGQ;S �

.�; �˝ zƒ V /

determined by sending any �V 2 D�� .zƒŒV �/ to the extension class determined by the
surjection

�V � �V ˝ zƒŒV �
zƒ D �:

Proof. The condition �V 2D�� .zƒŒV �/ implies that �V ˝ zƒŒV � zƒD �. One may then read-
ily check that the kernel of �V � � is isomorphic to � ˝ zƒ V (where V has a trivial
GQ;S -action). Then the map to Ext1 is injective because strict equivalence inD�� amounts
to conjugation by 1 CM2.V /. The fact that this map is zƒ-linear is a functorial (in V )
version of the standard fact (see e.g. [42, p. 399]) that the tangent space of a deformation
ringR� with residue field k is given, as a k-vector space, by Hom.R;kŒ��=�2/, and admits
a canonical isomorphism of k-vector spaces to Ext1

kŒGQ;S �
.�; �/.
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5.2. Local conditions

Next we address the local conditions that define the deformation problems Dord; Dspl,
thereby determining the images of the injections of Lemma 5.1.5. We will decompose the
condition on the constancy of the determinant of Lemma 5.1.2 into a sum of local inertial
conditions.

First we address conditions at p. As we have seen, �jGK;S ' ˚ 
c . Because p splits

inK (and recall that we have designated p such thatGp
�
! Gp), we also have this decom-

position of �jGp . The characters remain distinct after restriction to both GK;S and Gp

because N jGp D N�1 ¤ N�2 D
N c jGp , by the assumptions of §1.2. Therefore, restriction

to GK;S induces a canonical map

�p WExt1
zƒŒGQ;S �

.�;�˝V /!

0@ Ext1
zƒŒGp �

. zh�i; zh�i ˝ V / Ext1
zƒŒGp �

. zh�i
c
; zh�i ˝ V /

Ext1
zƒŒGp �

. zh�i; zh�i
c
˝ V / Ext1

zƒŒGp �
. zh�i

c
; zh�i

c
˝ V /

1A
(5.2.1)

(where the matrix stands for the direct sum of its entries). For 1 � i; j � 2, write �pi;j for
the projection to the .i; j /-th coordinate of the target of �p . Likewise, write �pi;i for the
composition of �pi;i with

Ext1
zƒŒGp �

. zh�i
ciC1

; zh�i
ciC1

˝ V /! Ext1
zƒŒIp �

. zh�i
ciC1

; zh�i
ciC1

˝ V /:

Lemma 5.2.2. Let V be a finitely generated zƒ-module.

(1) The ordinarity condition and Ip-constant determinant condition on the target of �p

are cut out by the kernel of �p2;1 ˚ �
p
1;1 ˚ �

p
2;2.

(2) The split condition and Ip-constant determinant condition on the target of �p are cut
out by the kernel of �p2;1 ˚ �

p
1;2 ˚ �

p
1;1 ˚ �

p
2;2.

Proof. This computation of the ordinarity condition amounts to the study of ordinary
deformation rings appearing in [42, §1.7, p. 401], and a straightforward generalization
to Dspl. We provide more details, and address the inertial determinant condition.

A choice of V -valued cocycles e D
�
a b
c d

�
representing a cohomology class in the

codomain of �p may be represented as 
a 2 Z1.Qp; V / b 2 Z1.Qp; zƒ

�
h�i
˝ V /

c 2 Z1.Qp; zƒ
�
# ˝ V / d 2 Z1.Qp; V /

!
;

where zƒ�
h�i
˝ V is short for zƒ�

h�i
˝ƒ� V , and where V is made to be a zƒ�-module via

the homomorphism zƒ� ! zƒ�W 0 ˝W 0 W
�
! zƒ found in (4.2.1). This data determines a

homomorphism

�e WD

 
zh�i � .1C a/ zh�i

c
b

zh�ic zh�i
c
� .1C d/

!
W Gp ! GL2.zƒŒV �/: (5.2.3)
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Conjugation by 1CM2.V / � GL2.zƒŒV �/ moves e within its cohomology class. There-
fore, a deformation of �jGp to zƒŒV � satisfies the conditions of the deformation func-
tor Dord if and only if c is a coboundary and d jIp D 0. The additional condition that the
deformation of the determinant is trivial on Ip is equivalent to .aC d/jIp D 0, so we must
have ajIp D 0 as well.

Similarly, a deformation of � to zƒŒV � restricting to Gp as �e determines an element
of Dspl.zƒŒV �/ with a trivial deformation of the determinant on Ip if and only if both b
and c are coboundaries and d jIp D ajIp D 0.

Next we address the conditions at primes ` jN . This is fairly simple, as we have noted
that the off-diagonal cohomology is trivial at ` in the proof of Lemma 2.3.4. We set up
the maps �`, �`i;j , and �`i;j just as for the prime p above.

Lemma 5.2.4. Let ` jN be a prime. The condition of minimality at ` is cut out by the
kernel of �`1;1 ˚ �

`
2;2.

Proof. This condition is part (iii) of Definition 2.3.1. As the codomains of �`i;j are zero
for .i; j / 2 ¹.1; 2/; .2; 1/º, only the conditions cut out by �`1;1, �`2;2 remain.

Thus we have determined the image of the injections of Lemma 5.1.5.

Corollary 5.2.5. Let V be a finitely generated zƒ-module.

(1) The image of

HomCM.R
ord; zƒŒV �/ ,! Ext1

zƒŒGQ;S �
.�; �˝ zƒ V /

is the kernel of �p2;1 ˚
L
vjNp.�

v
1;1 ˚ �

v
2;2/.

(2) The image of
HomCM.R

spl; zƒŒV �/ ,! Ext1
zƒŒGQ;S �

.�; �˝ zƒ V /

is the kernel of �p1;2 ˚ �
p
2;1 ˚

L
vjNp.�

v
1;1 ˚ �

v
2;2/.

5.3. An explicit form of Shapiro’s lemma

Because � Š IndQ
K
zh�i (see Proposition 4.1.2), we can apply Shapiro’s lemma to the

domain of (5.2.1) to obtain

Ext1
zƒŒGQ;S �

.�; �˝ V / Š Ext1
zƒŒGK;S �

. zh�i ˚ zh�i
c
; . zh�i ˚ zh�i

c
/˝ V /:

We need to relate this isomorphism to (5.2.1). For this, we develop, in this section, an
explicit version of Shapiro’s lemma for this particular case.

In order to state it, we use the notation .�/c on an extension class as follows, extending
the notation for representations of GK established in §1.2.3: When �1; �2 are representa-
tions of GK and e 2 Ext1GK .�2; �1/ is an extension class represented by the short exact
sequence

0! �1 ! �e ! �2 ! 0;
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then we write ec 2 Ext1GK .�
c
2; �

c
1/ for the extension class of

0! �c1 ! �ce ! �c2 ! 0:

Using the canonical isomorphism between these Ext-groups and group cohomology, we
also use the notation .�/c for the map

H 1.OK Œ1=Np�; �
�
2 ˝ �1/! H 1.OK Œ1=Np�; �

c
2
�
˝ �c1/

induced by the map on Ext-groups.
Similarly, choosing matrix-valued representatives for the �i and choosing some co-

cycle a 2 Z1.OK Œ1=Np�; ��2 ˝ �1/, we may use the notion of .�/c that applies to homo-
morphisms:

ac.
/ D a.c
c/ for 
 2 GK;S :

We next show that these are compatible.

Lemma 5.3.1. With notation as above, if we write �a for the extension of �2 by �1 induced
by the cohomology class of a, then the cohomology class of ac corresponds to the exten-
sion class of �ca.

Proof. Using matrix-valued representatives, we can write �a as a homomorphism�
�1 �1 � a

�2

�
and observe that �ca is represented by the homomorphism�

�c1 �c1 � a
c

�c2

�
:

For notational convenience, in the statement of Proposition 5.3.2 we use hi in place
of zh�i.

Proposition 5.3.2. The natural map

�K W Ext1
zƒŒGQ;S �

.�; �˝ V /!

 
Ext1
zƒŒGK;S �

.hi; hi ˝ V / Ext1
zƒŒGK;S �

.hic ; hi ˝ V /

Ext1
zƒŒGK;S �

.hi; hic ˝ V / Ext1
zƒŒGK;S �

.hic ; hic ˝ V /

!
(5.3.3)

is injective, and its image is given by´�
a b

c d

�
2

 
Ext1
zƒŒGK;S �

.hi; hi ˝ V / Ext1
zƒŒGK;S �

.hic ; hi ˝ V /

Ext1
zƒŒGK;S �

.hi; hic ˝ V / Ext1
zƒŒGK;S �

.hic ; hic ˝ V /

! ˇ̌̌̌
ˇ ac D d; bc D c

µ
:
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Proof. Shapiro’s lemma tells us that �K is injective.
Choose e D

�
a b
c d

�
in the group of cocycles whose cohomology class lies in the

codomain of �K ; for example, b 2 Z1.OK Œ1=Np�; zh�i � . zh�i
c
/�1 ˝ V /. This is a func-

tion e W GK;S !M2�2.V / that determines the homomorphism �e W GK;S ! GL2.zƒŒV �/
(similar to (5.2.3)) given by

�e WD

 
zh�i.1C a/ zh�i

c
b

zh�ic zh�i
c
.1C d/

!
W GK;S ! GL2.zƒŒV �/:

It extends to a function on GQ;S D GK;S qGK;Sc that we denote by Q�Ce , given by

Q�Ce W GK;Sc 3 
c 7! �e.
/ � C 2 GL2.zƒŒV �/

(so in particular Q�Ce .c/ D C ), where C 2 GL2.zƒŒV �/ has order 2 and satisfies

C �
�

1
1

�
.mod V /:

We observe that the set of lifts of � to zƒŒV � is in bijection with the set of pairs .e; C /
such that Q�Ce is a homomorphism. We break the determination of the homomorphism
condition on Q�Ce into cases.

Case C D
�

1
1

�
. When C D

�
1

1

�
, we claim that Q�Ce is a homomorphism if and only if

ac D d and bc D c, as cocycle functions GK;S ! V .
We want to verify that Q�Ce .


00
 0/D Q�Ce .

00/ Q�e.


0/ for all 
 00; 
 0 2 GQ;S . A brief com-
putation reduces this verification to the case where 
 0 2 GK;S and also 
 00 D 
c for some
unique 
 2 GK;S . In this case, rewrite 
 00
 0 D .
c/
 0 as 
.c
 0c/c, observing that the
desired equality holds if and only if

�e.c

0c/ D

�
1

1

�
�e.


0/
�

1
1

�
:

This condition holds if and only if ac D d and bc D c, proving the claim.

Case of general C . The set of all possible elements GL2.zƒŒV �/ satisfying the conditions
demanded of C are in bijection with

C D

²�
v11 v12
v12 v22

�
2M2�2.V /

ˇ̌̌̌
v11 C v22 D v12 C v21 D 0

³
via C 7! C �

�
1

1

�
. For the moment, fix .vi;j / so that it equals C �

�
1

1

�
. The function

arising from conjugating Q�Ce by 1C C 0 WD 1C
�
�v12=2 �v11=2
v11=2 v12=2

�
satisfies

.1C C 0/ Q�Ce .c/.1 � C
0/ D

�
1

1

�
:

Thus we may reduce to the case of C D
�

1
1

�
.

In order to carry out this reduction, we need a bit of additional notation. Write @
for the boundary map C 0.OK Œ1=Np�; M2.V // ! C 1.OK Œ1=Np�; M2.V //, and write
@ D

�
@11 @12
@21 @22

�
for its decomposition into matrix coordinates. Then we apply the case
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C D
�

1
1

�
and observe that 1C e is fixed by conjugation by 1C C 0 to deduce that Q�Ce is

a homomorphism if and only if

ac D d; bc D c:

A complement to C � pgl2 ˝ V is
�
0 w
w 0

�
. Conjugating Q�Ce by 1C

�
0 1
1 0

�
w fixes Q�Ce .c/

D C , fixes a and d , and sends

b 7! b � @12.w/; c 7! c � @21.w/;

which maintains the equality bc D c.
Altogether, we have calculated that lifts of � to zƒŒV � are in bijection with the

zƒ-module

.a; b; v11; v12/ 2 Z
1.OK Œ1=Np�; V /˚Z

1.OK Œ1=Np�; zƒ
�
h�i
˝ V /˚ V ˚2

via .a; b; v11; v12/ 7! Q�Ce , where e and C are defined as

e D

�
a b

bc ac

�
; C D

�
1

1

�
C

�
v11 v12
�v12 �v11

�
:

The action of conjugation by 1CM2�2.V /� GL2.zƒŒV �/ on the lifts of � to zƒŒV �, under
this bijection, amounts to translation by the zƒ-submodule

B1.OK Œ1=Np�; V /˚ B
1.OK Œ1=Np�; zƒ

�
h�i
˝ V /˚ V ˚2:

The quotient is naturally isomorphic to the claimed image of �K .

Using the foregoing expression of Shapiro’s lemma, we calculate HomCM.R
�; zƒŒV �/.

Write Hp for the p-primary summand of the ideal class group of K.

Proposition 5.3.4. For any finitely generated zƒ-module V , there are isomorphisms

HomCM.R
ord; zƒŒV �/

�
�! HomZp .Hp; V /˚H

1
.Np�/.OK Œ1=Np�;

zƒ�
h�i
˝ V /;

HomCM.R
spl; zƒŒV �/

�
�! HomZp .Hp; V /˚H

1
.Np/.OK Œ1=Np�;

zƒ�
h�i
˝ V /;

HomCM.zƒ; zƒŒV �/
�
�! HomZp .Hp; V /:

Proof. We apply throughout the interpretation of HomCM.R
�; zƒŒV �/ in Lemma 5.1.2.

Thus our goal is to calculate the image of the injections of Lemma 5.1.5, which are deter-
mined by Corollary 5.2.5. So it remains to interpret the conclusion of Corollary 5.2.5 in
terms of Proposition 5.3.2.

We use the notation of Galois cohomology instead of Ext1. For convenience, when v
is a rational prime dividing Np and � D ij for i; j 2 ¹1; 2º, we use the natural extensions
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of �v� and �v� to the codomain of �K : these are �v
� , �v

� , where v is the prime over v
distinguished by the embeddings of §1.2.1.

�
p
1;2 W H

1.OK Œ1=Np�; zƒ
�
h�i
˝ zƒ V /! H 1.Kp; zƒ

�
h�i
˝ zƒ V /;

�
p
2;1 W H

1.OK Œ1=Np�; zƒ
�
# ˝ zƒ V /! H 1.Kp; zƒ

�
# ˝ zƒ V /;

�v
i;i W H

1.OK Œ1=Np�; V /! H 1.Kunr
v ; V /; i D 1; 2:

We also use the isomorphism of Shapiro’s lemma as given by the top row of �K :

Ext1
zƒŒGQ;S �

.�;�˝ V /
�
�!H 1.OK Œ1=Np�;V /˚H

1.OK Œ1=Np�; zƒ
�
h�i
˝ zƒ V /: (5.3.5)

The map
L
vjNp.�

v
1;1˚ �

v
2;2/ factors through the summandH 1.OK Œ1=Np�;V / of the

codomain of (5.3.5), yielding

H 1.OK Œ1=Np�; V /!
M
vjNp

�
H 1.Kunr

v ; V /˚H 1.Kunr
v ; V /

�
;

a 7!
�
.ajIv ; a

c
jIv/ j primes v jNp

�
:

Using the equivalence ac jIp D 0, ajIp�
D 0, we find that these are V -valued homo-

morphisms factoring through Hp . This establishes the final claimed isomorphism, as
deformations induced from K are split upon restriction to K.

For the first claimed isomorphism, we calculate the ordinary case. Similarly to the
previous paragraph, �p

2;1 factors through the summand H 1.OK Œ1=Np�; zƒ
�
h�i
˝ zƒ V / of

the codomain of (5.3.5), yielding

H 1.OK Œ1=Np�; zƒ
�
h�i
˝ zƒ V /! H 1.Kp; zƒ

�
# ˝ zƒ V /;

b 7! bc jGp :
(5.3.6)

Let l be a prime of K over N . It follows from the cohomology calculation in the proof of
Lemma 2.3.4 thatH i .Kl; N 

�/D 0 for all i � 0. Therefore, the local factors overN of the
long exact sequence in cohomology (3.4.1) arising from the cone construction (with S 0 the
set of primes of K dividing Np� and T D zƒ�# ) are trivial. Likewise, for the local factors
over p, we haveH 0.Kp; N 

�/DH 0.Kp� ; N 
�/D 0, so there are no local terms in degree

zero in this long exact sequence. Also, bc jGp D 0 if and only if bjGp�
D 0. Therefore, the

kernel of (5.3.6) is canonically isomorphic to H 1
.Np�/

.OK Œ1=Np�; zƒ
�
h�i
˝ V /.

Recalling the decomposition (5.3.5), we conclude that �p
2;1˚

L
vjNp.�

v
1;1˚ �

v
2;2/ has

kernel naturally isomorphic to the direct sum of the two kernels above. This gives the first
isomorphism.

The argument for the second is essentially identical. We replace �p
2;1 with �p

1;2˚ �
p
2;1,

which also factors through the summand H 1.OK Œ1=Np�; zƒ
�
h�i
˝ zƒ V / of the codomain

of (5.3.5). This factorization is

H 1.OK Œ1=Np�; zƒ
�
h�i
˝ zƒ V /! H 1.Kp; zƒ

�
h�i
˝ zƒ V /˚H

1.Kp; zƒ
�
# ˝ zƒ V /;

b 7! .bjGp ; b
c
jGp/:
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Therefore the kernel of �p
1;2 ˚ �

p
2;1 ˚

L
vjNp.�

v
1;1 ˚ �

v
2;2/ is naturally isomorphic to the

direct sum of the two kernels from the factorization. Then, (3.4.1) computes this group by
the same argument as before, where S 0 is now the set of primes of K dividing Np.

Now we can interpret maps out of the conormal modules of the CM locus in the
ambient ordinary or split deformation space.

Corollary 5.3.7. For any finitely generated zƒ-module V , we have canonical isomor-
phisms

Hom zƒ.J=J
2; V /

�
�! H 1

.Np�/.OK Œ1=Np�;
zƒ�
h�i
˝ V /;

Hom zƒ.J
s=.J s/2; V /

�
�! H 1

.Np/.OK Œ1=Np�;
zƒ�
h�i
˝ V /

that are functorial in V .

Proof. We claim that the injections

HomCM.zƒ; zƒŒV �/ ,! HomCM.R
�; zƒŒV �/; � 2 ¹ord; splº;

induced by the canonical surjections Rord � Rspl � zƒ are compatible with the direct
sum decompositions in the statement of Proposition 5.3.4. This follows from the fact that
the image of these injections, say on an element a 2 HomZp .Hp; V /, corresponds exactly
to IndQ

K
zh�i � .1C a/. By Lemma 4.1.1, induced deformations of N� are exactly those that

arise from homomorphisms out of zƒ. Hence the statement follows from Proposition 5.1.4.

5.4. Interpretation as class groups

We arrive at the identification of the conormal modules. We apply the map zı of (4.2.1),
usually restricting it from its domain zƒ�W 0 ˝W 0 W to its subring zƒ�W 0 ˝ 1 Š zƒ

�
W 0 .

Theorem 5.4.1. We have isomorphisms

(i) Y�1. 
�/˝ zƒ�

W 0
;zı
zƒ
�
�! J=J 2 and

(ii) X�1. 
�/˝ zƒ�

W 0
;zı
zƒ
�
�! J s=.J s/2,

compatibly with the natural surjections J=J 2� J s=.J s/2 and Y�1. 
�/� X�1. 

�/.

Remark 5.4.2. Case (i) was originally proved by Hida; indeed, it follows immediately
from the computation of HomCM.R

ord; zƒŒV �/ in [27, Prop. 3.89, Thm. 5.33] combined
with the argument establishing Corollary 5.2.5.

Proof of Theorem 5.4.1. Let V be a finitely generated zƒ-module. Since zƒ is a complete
intersection (see Proposition 4.1.2), we may apply global Tate duality in the form of
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Proposition 3.4.2. Since H i
.p/
.OK Œ1=Np�; zƒ

�
# .1// D 0 for i ¤ 2 according to Proposi-

tion 3.5.1, the application to T D zƒ�# .1/ of the global Tate duality spectral sequence of
Proposition 3.4.2 degenerates. This yields

Hom zƒ.H
2
.p/.OK Œ1=Np�;

zƒ�# .1//; V /
�
�! H 1

.Np�/.OK Œ1=Np�;
zƒ�
h�i
˝ V /:

Because zƒ˝zı; zƒ�
W 0
.zƒ�W 0/#.1/ Š W ˝W 0 .

zƒ�W 0/#.1/, Proposition 3.5.1 allows us to

replace H 2
.p/
.OK Œ1=Np�; zƒ

�
# .1// by Y�1. 

�/ ˝ zƒ�
W 0
;zı
zƒ. Corollary 5.3.7 canonically

identifies Hom zƒ.J=J
2;�/ with

H 1
.Np�/.OK Œ1=Np�;

zƒ�
h�i
˝�/

as functors on finitely generated zƒ-modules. Because both J=J 2 and Y�1. 
�/˝ zƒ�

W 0

zƒ

are finitely generated as zƒ-modules, Yoneda’s lemma implies the result (i).
The proof of (ii) is essentially the same. Because H i .OK Œ1=Np�; zƒ

�
# .1// D 0 for

i > 2, the duality spectral sequence of Proposition 3.4.2 yields

Hom zƒ.H
2.OK Œ1=Np�; zƒ

�
# .1//; V /

�
�! H 1

.Np/.OK Œ1=Np�;
zƒ�
h�i
˝ V /:

By Proposition 3.5.1, we can replace H 2.OK Œ1=Np�; zƒ
�
# .1// by X�1. 

�/ ˝ zƒ�
W 0
;zı
zƒ.

The rest of the proof proceeds as in the proof of (i).

5.5. Proofs of main theorems

In this section, we deduce the main result (Theorem 1.3.1), and also Theorems 1.3.4 and
1.4.4, from the following main technical result. We resume writing T CM in place of zƒ.

Theorem 5.5.1. Assume conditions (0)–(4) of �1.2. Then the surjection Rspl � T CM is
an isomorphism if and only if X. �/ D 0.

Proof. We know that X. �/ D 0 if and only if X�1. 
�/ D 0 by Proposition 3.3.3(i).

Thus Theorem 5.4.1 implies the theorem as soon as we know that J s D 0 ,

J s=.J s/2 D 0. This follows from Nakayama’s lemma, as J s is contained in the maxi-
mal ideal of the complete Noetherian local ring Rspl.

The main theorem now follows.

Proof of Theorem 1.3.1. The conclusion of Theorem 1.3.1 is equivalent to the set

SpecRspl.Qp/ X Spec T CM.Qp/

being empty. When X. �/ D 0, this immediately follows from Theorem 5.5.1.

Now we deduce Theorems 1.3.4 and 1.4.4 from Theorem 5.5.1 and the background
in §2.
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Proof of Theorems 1.3.4 and 1.4.4. It follows from Proposition 2.4.2 that the p-locally
split condition is well-defined on the Galois representations associated to generalized
eigenforms g0, Ng0, even though their coefficient rings are not domains. Thus condition
(c) of the theorems is equivalent to the map T ! A Ng0 (resp. T ! Ag0 ) factoring through
T � Rspl.

Similarly, as we have noted that the CM condition is well-defined on generalized
eigenforms in §2.2, the “not CM” condition (b) of both theorems is equivalent to the map
T ! A Ng0 (resp. T ! Ag0 ) not factoring through T � T CM.

Case of Theorem 1.4.4. Assume that X�1. 
�/ is infinite, which is equivalent to X WD

X�1. 
�/˝ zƒ�

W 0
;zı
zƒ being infinite. Then as a ƒQ-module (where this module structure

arises from ˇ W ƒQ ! zƒ discussed in Lemma 4.1.4), X has support on some height 1
prime P � ƒQ. By Proposition 3.3.3(ii), P has characteristic zero; hence P D Pk;�0 for
some p-adic weight .k; �0/.

Let E D Ek;�0 denote the residue field of Pk;�0 , which is a finite extension of Qp . We
now consider the surjection with square-zero kernel

.Rspl=.J s/2/˝ƒQ E� T CM
˝ƒQ E:

By Theorem 5.4.1, its kernel surjects onto X ˝ƒQ E, which is non-zero. Because
T CM ˝ƒQ E is a finite product of finite extension fields over E, it has some factor
Ex D .T CM ˝ƒQ E/=mx with the following property: letting m0x be the kernel of the
surjection from .Rspl=.J s/2/˝ƒQ E to Ex , X ˝ƒQ E does not vanish under its natural
map to m0x=m

0
x
2.

Choose some 1-dimensional Ex-vector space quotient X0 of X ˝ƒQ Ex and let
Ax WD Ex ŒX

0� Š Ex Œ��=.�
2/ be the corresponding square-zero extension of Ex . Then

we may factor .Rspl=.J s/2/˝ƒQ E� Ex through Ax� Ex .
We now recall the discussion of generalized eigenforms and their attached Galois rep-

resentations from §2.2. The composite T � Rspl � Ax corresponds (via the duality of
Lemma 2.1.5) to a p-adic p-ordinary generalized eigenform g0 of p-adic weight .k; �0/
with eigensystem corresponding to the composite T � Ax � Ex . The corresponding
Galois representation �g0 W GQ;S ! GL2.Ax/ arising as �g0 WD �T ˝T Ax has the fol-
lowing properties:
(a) The eigensystem induced by T ! Ex has CM and is congruent to Nf , because it

factors through T � T CM.
(b) g0 does not have CM, because T ! Ax cannot factor through T CM: indeed, by The-

orem 5.4.1, if it did, then X would vanish when projected to Ax . But T ! Ax has
been constructed so that this does not happen.

(c) �g0 is p-locally split, because T Š Rord ! Ax factors through Rord � Rspl.
These are the properties (a), (b), and (c) of Theorem 1.4.4. We have also arranged for
Ax ' Ex Œ��=.�

2/, as claimed.
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For the converse, note that if g0 inducing T ! Ag0 arises from the action on a gener-
alized eigenform with properties (a), (b), and (c), then
(a) implies that the composite map T ! Ag0 ! Eg0 Š Ag0=mg0 to the residue field of

Ag0 amounts to an eigensystem that has CM,
(b) implies that this map does not factor through T � T CM, and
(c) implies that this map does factor through T � Rspl.
Consider the imageA�Ag0 ofRspl, which is a local ring that is not a field (by (a) and (b)).
Writing mA � A for its maximal ideal, we consider the induced map Rspl � A=m2

A. Its
restriction to J s factors through J s=.J s/2, and (b) implies that its image is non-zero.
Since this image is a Zp-submodule of a Qp-vector space, we deduce from Theorem
5.4.1 that X�1. 

�/ is infinite.

Case of Theorem 1.3.4. The proof of this case is essentially the same. The only differ-
ence is that F plays the role of both E and Ex , while T CM ˝ƒQ F is an Artinian local
F -algebra. Then the surjection of Artinian local algebras Rspl ˝ƒQ F � T CM ˝ƒQ F
induces a surjection of the square-zero extension quotients. By Theorem 5.4.1 and by
letting V D F in Proposition 5.3.4, this surjection is

F ŒX. �/˚ .Hp ˝Zp F/�� F ŒHp ˝Zp F �

(in the notation of Proposition 5.3.4). It is straightforward to deduce the result from here,
using arguments analogous to the case of Theorem 1.4.4.

6. Commutative algebra

In this section, we set up a proposition from commutative algebra and deduce Theorem
1.4.1.

6.1. A proposition using the resultant

The following lemma summarizes the theory of the resultant that we will require.

Lemma 6.1.1. Let R be a domain, and let F.y/; G.y/ 2 RŒy� be polynomials. There is
a resultant � 2 R of F.y/ and G.y/ with the following properties.

(1) � D 0 if and only if F.y/ and G.y/ have a non-constant common factor.

(2) � 2 R � RŒy� is an RŒy�-linear combination of F.y/ and G.y/, i.e.

� �
RŒy�

.F.y/;G.y//
D 0:

In the following proposition, we refer to the generic rank of a module M over a
domain R. This is defined to be the Frac.R/-dimension of M ˝R Frac.R/.



F. Castella, C. Wang-Erickson 1142

Proposition 6.1.2. Let R be a complete Noetherian regular local ring. Let S be an
augmented reduced local R-algebra that is finitely generated and torsion-free as an R-
module. Let T be an augmented local R-algebra quotient of S , and denote by K the
kernel of T � R.

Assume that K=K2 is supported in codimension at least 2 as an R-module. Then T
has generic rank 1.

Proof. For this proof, given an augmentedR-algebraR ,! A� R, we denote by Ac the
R-module complement to the summand R � A determined by the augmented R-algebra
structure. That is, we have a canonical isomorphism of R-modules A Š R ˚ Ac . We
note that A has generic rank 1 if and only if Ac is R-torsion; we will implicitly use this
equivalence in this proof.

Denote by J the kernel of S � R, and choose a minimal set G of generators for
the ideal J , which is also a minimal set of generators for S as an R-algebra. Choose an
element y 2 G and write S 0y � S , T 0y � T for the R-subalgebras generated by y. We
observe that S 0y ! T 0y is a morphism of augmented R-algebras.

We claim that it suffices to prove that T 0y has generic rank 1 for all y 2 G . Indeed,
consider these product algebras with an augmented RG -algebra structure

RG
!

Y
y2G

T 0y ! RG � R;

where the additional rightmost arrow is the diagonal projection homomorphism. We also
have a natural map Y

y2G

T 0y� T

lying over the diagonal projection, inducing a surjection of R-modulesM
y2G

.T 0y/
c� T c :

Thus we observe that T has generic rank 1 if and only if T 0y has generic rank 1 for all
y 2 G .

Having reduced to the case that #G D 1, we render S and T as

S D
RŒy�

.y � F1.y/; : : : ; y � Fn.y//
;

T D
RŒy�

.y � F1.y/; : : : ; y � Fn.y/; y �G1.y/; : : : ; y �Gr .y//
:

Now we have J D .y/. Note that J=J 2 is a torsion R-module generated by y .mod J 2/.
Indeed, if this were not the case, let m � 2 be minimal such that Jm=Jm�1 is R-torsion.
If P.y/ 2 RŒy� is a monic polynomial of minimal degree satisfied by y, then ym jP.y/
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because J i=J iC1 is free of rank 1 for i < m. Thus y � P.y/ is a nilpotent element of S ,
contradicting our assumption that S is reduced.

Observe that J=J 2 is a cyclic R-module, generated by y, and isomorphic as an R-
module to

J=J 2
�
�!

R

.F1.0/; : : : ; Fn.0//
:

Likewise, its quotient K=K2 is generated by the image y0 of y in T and is isomorphic as
an R-module to

K=K2
�
�!

R

.F1.0/; : : : ; Fn.0/; G1.0/; : : : ; Gr .0//
:

We claim that there exists a pair of polynomials F.y/;G.y/ in the set

¹F1.y/; : : : ; Fn.y/; G1.y/; : : : ; Gr .y/º

such that R=.F.0/; G.0// is supported in codimension 2. This follows directly from the
assumption that K=K2 is supported in codimension 2.

We note that
RŒy�

.y � F.y//
;

RŒy�

.y � F.y/; y �G.y//

are naturally augmented local R-algebras with augmentation ideal generated by y, and
with a surjective augmentedR-algebra map to S and T , respectively. Therefore, it suffices
to replace S and T with these algebras. Indeed, having done this, we observe that J=J 2

is torsion and K=K2 is supported in codimension 2. We define

T 0 WD
RŒy�

.F.y/; y �G.y//
;

the quotient of T by .F.y//, but note that T 0 is not an augmented R-algebra. Because the
kernel of T � T 0 is a cyclic R-module (generated by F.y/), and we know that T has
generic rank at least 1, it will suffice to show that T 0 is a torsion R-module.

Let � 2 R be the resultant of the polynomials F.y/; y � G.y/ 2 RŒy�. By Lemma
6.1.1(2), we have

� � T 0 D 0:

Thus we want to show that � ¤ 0. By Lemma 6.1.1(1), it suffices to prove that F.y/
and y � G.y/ do not have any non-constant common factors. Assume, for the sake
of contradiction, that there exists such a divisor H.y/ 2 RŒy�. We may assume that
H.y/ is irreducible and monic, since both F.y/ and y � G.y/ are monic. We see that
H.y/ ¤ y, because F.0/ ¤ 0. Next, note that H.0/ is not a unit in R, because if
H.y/ jF.y/ with quotient Q.y/, then S Š RŒy�=.y �H.y/ �Q.y// would not be a local
ring (consider S=mRS ). ThenH.0/ jF.0/ andH.0/ jG.0/. This contradicts the fact that
R=.F.0/;G.0// is finite, as it surjects onto the non-finite R=.H.0//.
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6.2. Proof of Theorem 1.4.1

We will apply Proposition 6.1.2 to Rspl in order to prove Theorem 1.4.1.

Lemma 6.2.1. Assume (0)–(4). Also assume that p − hK and that X�1. 
�/ has finite

cardinality. Then Rspl has generic rank 1 as a ƒQ-module.

Proof. We see that the conclusion of the lemma will follow from verifying that the
assumptions of Proposition 6.1.2 about .R; S; T;K/ are satisfied by

.R; S; T;K/ D .ƒQ; R
ord
Š T ; Rspl; J s/;

where the augmented ƒQ-algebra structure of Rord Š T is understood to be defined by
the ideal J Š ICM.

Recall from Lemma 4.1.4 the sequence of homomorphisms

ƒQ ! T � Rspl � T CM �
! zƒ� ƒ:

There, we see that these induce isomorphismsƒQ
�
! zƒ

�
!ƒ if and only if p − hK . Thus

we apply the assumption p − hK and identify ƒQ
�
! T CM Š zƒ, treating T � Rspl as a

morphism of augmented ƒQ-algebras.
All of the assumptions of Proposition 6.1.2, except the one that J s=.J s/2 is supported

in codimension at least 2, are satisfied by the properties of T checked in §2, especially
Lemma 2.1.6. We will show that the remaining property follows from the assumption that
X�1. 

�/ has finite cardinality.
For R D ƒQ, an R-module is supported in codimension 2 if and only if it has finite

cardinality. By Theorem 5.4.1, there is an isomorphism X�1. 
�/˝ zƒ�

W 0

zƒ Š J s=.J s/2.

When p − hK , we have X�1. 
�/ D X�1. 

�/, and the tensor product operation ˝ zƒ�
W 0

zƒ

preserves the finite cardinality property of these modules.

Proof of Theorem 1.4.1. By Lemma 6.2.1, we know that the assumptions of Theorem
1.4.1 imply that Rspl has generic rank 1 as a ƒQ-module.

Because the locus Spec.T CM/� Spec.T / parameterizes exactly the CM p-adic eigen-
forms congruent to Nf , it follows from the constructions of §4.2 that the map xg WT !Qp

of Lemma 2.1.5 corresponding to a p-adic eigenform g (congruent to Nf ) factors through
T � T nCM if g does not have CM. We also know that �g is p-locally split if and only if
xg factors through T � Rspl. Thus it will suffice to show that

Rsn
WD T nCM

˝T R
spl

is torsion as a ƒQ-module.
Since we have already deduced that Rspl has generic rank 1, it suffices to show that

the kernel of
Rspl � Rsn

has generic rank 1. In view of Theorem 4.2.2, we want to show that the kernel InCM � T
of T�T nCM, injects intoRspl under T�Rspl. But this follows from the same theorem,



Class groups and local indecomposability for non-CM forms 1145

as we see there that InCM injects under the composite quotient map T � Rspl � T CM

Š ƒQ, with torsion cokernel.

Remark 6.2.2. The main result of Ghate–Vatsal [20] establishes the conclusion of The-
orem 1.4.1 upon assumptions .10/–.30/ of §1.2. The additional assumptions we rely on to
prove Theorem 1.4.1 are (0), (4), and the finiteness of X�1. 

�/. In [20], the authors use
the fact that the ideal of .�/ � T generated by the image of Gp under the “�” of (2.1.8)
cuts out the quotient T � Rspl. Our method hinges on the study of maximal square-zero
augmented T CM-algebra quotients of T (resp.Rspl) overƒQ. We found in Theorem 5.4.1
that this maximal quotient is T � zƒŒY�1. 

�/� (resp. Rspl � zƒŒX�1. 
�/�), and that

the image of Gp cuts out the quotient Y�1. 
�/� X�1. 

�/. So our method relies on
detecting “�” in the conormal module ICM=I

2
CM Š Y�1. 

�/.

Haruzo Hida
Appendix A. Local indecomposability via a presentation of the Hecke algebra

A.1. Summary

Let p � 5 be a prime. In this appendix, we give a proof of Greenberg’s conjecture ((CG)
in the main text) of local indecomposability of a non-CM residually CM Galois repre-
sentation based on the presentation of the universal ring given in [32] (so, the proof is
different from the one given in the main text). We impose an extra assumption (H3-4) in
addition to the set of the assumptions made in the main text (we list our set of assumptions
as (H0)–(H4) below). We use the notation introduced in the main text. For each Galois
representation � of GK , we write K.�/ D Q

ker.�/
for the splitting field of �. We fix an

algebraic closure F of F and write W for the Witt vector ring W.F/.
A deformation �A W GK ! GL2.A/ for an algebra A in CNLW of the representation

� D IndQ
K  W GQ ! GL2.F/ as in §1.2.2 is said to be minimal if �A.Il / Š �.Il / by

the reduction map for all primes l jN [12, §3.1, p. 715]. By an R D T theorem (e.g.,
[11, Thm. 2.3]), we have a local ring T of the ordinary Hecke algebra and its Galois rep-
resentation �T WGQ!GL2.T / giving a universal ordinary pair with T being naturally an
algebra over the weight Iwasawa algebra ƒ WD W J1C pZpK Š W JT K. We assume that
Spec.T / contains a non-CM component Spec.T nCM/. We made the following assump-
tions in [32] to prove a presentation of T over ƒ:
(H0)  �jGp ¤ 1 (a local condition),
(H1)  has conductor c0 such that c0 C c0c D OK and p� − c0,
(H2) the character  � has order at least 3 (a global condition),
(H3) the class number hK of K is prime to p,

(H4) the class number hK. �/ of the splitting field K. �/ D Q
ker. �/

of  � is prime
to p.

Assuming T ¤ ƒ, the minimal presentation we found in [32] has the following form:

T Š ƒJT�K=.T�SC/: (A.1.1)
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Here the ring ƒJT�K is the one-variable power series ring over ƒ with variable T� and
SC is a power series in ƒJT�K prime to T�. We have an involution � over ƒ acting
on T corresponding to the operation � 7! � ˝ � for � WD

�
K=Q�. Non-triviality of �

is equivalent to the existence of a non-CM component of Spec.T /. This involution �
extends to an involution �1 of ƒJT�K so that �1.T�/ D �T� and �1.SC/ D SC. To
prove the presentation, we made in [32] some extra conditions whose removal will be
discussed in §A.2. To have a one-variable presentation in (A.1.1), we need to assume
p − hK (otherwise, we could have variables fixed by �1 in the presentation).

Let TC be the subring of T fixed by � . Let T nCM WD ƒJT�K=.SC/ and T CM WD

ƒJT�K=.T�/ D ƒ, and write ‚ for the image of T� in T . Since the CM Galois defor-
mation �T CM into GL2.T CM/ is induced from K, the involution � is trivial on T CM; so,
the image of T� with �1.T�/ D �T� vanishes in T CM; so, ‚ lives in .0 � T nCM/ \ T
(this is also clear from T CM D ƒJT�K=.T�/). This ‚ plays the role of L�p . 

�/ in the
main text in the sense that T nCM=.‚/ Š T nCM ˝T T CM Š ƒ=.L�p . 

�// (the iden-
tity of the congruence modules) even if ‚ lives in T nCM while L�p . 

�// 2 T CM D ƒ.
Then T ,! T nCM � T CM whose cokernel is isomorphic to T nCM=.‚/ as T -modules and
.‚/ D .0 � T nCM/ \ T . The congruence module T nCM=.‚/ after extending scalars to
W is isomorphic to .T CM b̋W W/=.L�p . 

�// for the anti-cyclotomic Katz p-adic L-
function L�p . 

�/ (of branch character  �, denoted in the main text as L�p . 
�/; see

Corollary A.2.5); so,‚ is a generator of ICM, and in this sense we regard‚ as an element
of T nCM.

Let P be a prime factor of p inK.�/ (the splitting field of �). Write the image of U.p/
in T as u. Writing the local Artin symbol Œx;Kp� (identifyingKp DQp), for the residual
degree f of P, the semisimplification of �T .Œp; Kp�

f / is a conjugate of
�
u�f 0
0 uf

�
as

det.�T .Œp;Qp�
f // D 1. Note here that  �.Œp;Kp�

f / D 1 and u2f �  �.Œp;Kp�
f / D

1 mod mT (as u �  .Œp; Kp�/ mod mT ). Put a D u2f � 1 2 mT , and for the Zp-
subalgebra W1 of W generated by the values of  � over Gp , define ƒ1 WD W1JT; aK
to be the subalgebra of T topologically generated over W1JT K � ƒ by a.

Theorem A.1.2. Let the notation be as above. Assume (H0)–(H4) and � ¤ id on T . Let
I p be the wild p-inertia subgroup of Gal.K.�T /=Q/ for the splitting field K.�T / of �T .
Then we have a decomposition I p D U Ì Gal.Q1=Q/ for the Zp-extension Q1=Q,
where U is an abelian group mapped by �T into the unipotent radical of a Borel subgroup
in GL2.T / whose logarithmic image u D Lie.U/ .in the nilpotent Lie ƒ-algebra T / is
equal to ‚ �ƒ1. In short, we have an isomorphism �T .I p/ Š

®�
tZp ‚ƒ1
0 1

�¯
� GL2.T /,

where t D 1C T 2 ƒ.

This theorem supplies us with a very explicit unipotent element . 1 ‚0 1 / in the image
of �T with .‚T b̋W W/ \ƒW D .L

�
p . 

�//; therefore, we can answer the question of
Greenberg:

Corollary A.1.3. Assume (H0)–(H4) and � ¤ id on T . For all prime divisors P in
Spec.T nCM/ with associated Galois representation �P , the following conditions are
equivalent:
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(1) the Galois representation �P is completely reducible over the inertia group Ip at p,

(2) P 2 Spec.T nCM/ \ Spec.T CM/,

(3) P j.L�p . 
�/ƒW \ƒ/.

As described in the main text, from [14] and [19, Prop. 11], the above corollary
implies:

Corollary A.1.4 (Coleman’s question). Assume (H0)–(H4). For every classical modular
form f of weight k � 2 and of level N with residual representation �, write g for the
p-critical stabilization of the primitive form associated to f . Then g is in the image of�
q d
dq

�k�1 if and only if f has complex multiplication.

A.2. Presentation of a Galois deformation ring

For a set Q of Taylor–Wiles primes satisfying conditions (Q0)–(Q10) in [32, §§3–4],
we write K.�/.pQ/ for the maximal p-profinite extension of K.�/ unramified outside
¹pº tQ. We simply writeK.�/.p/ forK.�/.pQ/ ifQD;. LetGQ WDGal.K.�/.pQ/=Q/
and HQ WD Gal.K.�/.pQ/=K/ with G D G; and H D H;. We first note that GQ D
Gal.K.�/.pQ/=K.�//ÌGal.K.�/=Q/ andHQ DGal.K.�/.pQ/=K.�//ÌGal.K.�/=K/
as p > 2 and p − ŒK.�/ W Q�. We fix such a decomposition; so, Gal.K.�/=Q/ Š �G
for a subgroup �G of Gal.K.�/.p/=Q/. Write � � �G for the subgroup isomorphic to
Gal.K.�/=K/; so, Œ�G W �� D 2.

Let N D DNK=Q.c
0/. Let hQ be the big Hecke algebra described in [34, §1] for

eachQ. We have a local ring TQ of hQ whose residual representation is isomorphic to �.
Let �Q W GQ ! GL2.TQ/ be the Galois representation of TQ such that Tr.�Q.Frobl //
for primes l outside ¹l jNpº tQ is given by the image in TQ of the Hecke operator T .l/.
On TQ, we have an involution � with the property that .�Q/� Š �˝ �Q for the quadratic
character � D

�
K=Q�. Put TQ

˙
WD ¹h 2 TQ j �.h/ D ˙hº. Let IQ WD TQ.� � 1/TQ D

TQTQ
� (the � -different) and TQ

CM WD TQ=IQ. It is known that TQ and TQ
CM are reduced

algebras finite flat overƒ. Further we have an algebra decomposition TQ ˝ƒ Frac.ƒ/D
Frac.TQ

CM/� Frac.TQ
nCM/ for TQ

nCM Š TQ=.Frac.TQ
CM/� 0/\TQ. In the above notation,

if Q D ;, we remove the superscript or subscript Q from the notation. If � is the identity
on T , we have T nCM D 0. Otherwise the subring T nCM

C fixed by � is a non-trivial ƒ-
algebra. The theorem proven in [32, Thms. B and 5.4] is:

Theorem A.2.1. Assume (H0)–(H4), � ¤ id on T and that p splits in K. Let Spec.T /
be a connected component of Spec.h/ associated to the induced Galois representation
� D IndQ

K  for the reduction  of  modulo mW for the maximal ideal mW ofW . Then
the following assertions hold:

(1) We have presentations

T Š ƒJT�K=.T�SC/; T nCM
Š ƒJT�K=.SC/;

TC Š ƒJT 2�K=.T 2�SC/; T nCM
C Š ƒJT 2�K=.SC/
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such that the involution �1 W T� 7! �T� over ƒ fixes the power series SC 2 ƒJT 2�K
and induces � on T .

(2) The rings T , TC, T nCM, T nCM
C are all local complete intersections free of finite rank

over ƒ.

(3) The T nCM-ideal I D T .� � 1/T � T nCM is principal and is generated by the image
‚ of T� with � WD‚2 2 TC, and‚ is not a zero divisor. The element‚ generates the
T nCM
C -module T nCM

� which is free over T nCM
C , and T nCM D T nCM

C Œ‚� is free of rank 2
over T nCM

C .

Proof. The result of [32, Thm. 4.10 and Prop. 6.2] asserts that T D ƒŒ‚� with �.‚/ D
�‚; so, we have a surjection � WƒJT�K� T with �.T�/D‚, and [32, Thms. A and B]
asserts that T is a local complete intersection overƒ. Thus T ŠƒJT�K=.S�/ for a power
series S� 2 ƒJT�K. By the construction of � of [32, §4] via a Taylor–Wiles patching
argument, we have an involution �1 of ƒJT�K lifting � such that �.T�/ D �T� and
�.S�/ D �S�; so, we have T� jS� and hence S� D T�SC. Since T is reduced, T� and
SC are co-prime inƒJT�K. This shows the assertion (1). The assertions (2) and (3) follow
from [32, Thm. B].

Strictly speaking, the patching argument is given in [32] under the following extra
assumptions:
(h2) N WD DNK=Q.c0/ for an O-ideal c0 prime to D with square-free NK=Q.c0/ (so, N

is cube-free),
(h3) p is prime to N

Q
ljN .l � 1/ for prime factors l of N .

Here is the reason why we can remove these two assumptions: We studied the minimal
deformation problem in [32] over the absolute Galois group GQ, but as was explained in
[12, p. 717], under the condition that p − j�.Il /j (which holds in our case), all minimal
deformations factor through G, and considering the deformation problem over ¹GQºQ
for appropriate sets Q of Taylor–Wiles primes satisfying [34, §3 (Q0)–(Q8)], every argu-
ment in the proof of [32, Thm. 5.4] goes through for the above choice of TQ (as is easily
checked), and thus we obtain the theorem. Indeed, we used (h3) in [32] just because
the universal minimal ordinary Galois representation of prime-to-p conductor N (con-
sidered in [32]) factors through G; so, just imposing deformations to factor through G
the arguments simply work; so, we do not need to assume (h3). The condition (h2) is
assumed to guarantee the big Hecke algebra is reduced, but again, each deformation over
G has prime-to-p conductor equal to N , which is equal to the prime-to-p conductor of
its determinant (the Nebencharacter). Then, by the theory of newforms, the Hecke al-
gebra is reduced if its tame character has conductor equal to the tame level; so, we do not
need (h2).

Since � acts trivially on T CM D T=.‚/, writing � WD .�T mod .‚//, we find � Š
�˝ � for �D .K=Q /. Note that � is a minimal deformation of �; so, it factors throughG.
Thus by [13, Lem. 3.2] applied to G D G and H DH (under the notation of the lemma),
we find �Š IndQ

K ‰ for a character‰ WH ! T CM;� unramified outside c0p deforming  .
Let �p be the Galois group over K.�/ of the maximal p-abelian extension of K inside
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K.�/.p/ unramified outside p. By p − hK , �p Š O�p ˝Z Zp , and hence W J�pK Š ƒ

canonically via Z�p D O
�
p . We identify the two rings. Since p − ŒK.�/ W K�, there exists a

class field K.p/=K in K.�/.p/ with Gal.K.p/=K/ Š �p by Artin symbol. Define a char-
acterˆ WGK!W J�pK� Dƒ� byˆ.�/D .�/� jK.p/. Thenˆ factors throughH . Since
.ƒ;ˆ/ for the characterˆ WH !ƒ� is a universal pair for the deformation problem of  
unramified outside pc0 over the group H , we have a canonical surjective algebra homo-
morphism ƒ� T CM inducing ‰. By the same argument which proves [32, Cor. 2.5],
this is an isomorphism. We record this fact as

Corollary A.2.2. We have isomorphisms

TC=.�/ Š T=.‚/ D T CM
Š ƒ; where � D ‚2 2 T nCM

C :

Recall G D Gal.K.�/.p/=Q/ andH D Gal.K.�/.p/=K/. Let �A W GK ! GL2.A/ be
a minimal p-ordinary deformation of � for a p-profinite local W -algebra A with residue
field F . The representation �A factors through G by minimality (so hereafter we consider
the deformation problem over G). By p-ordinarity, we have

�AjGp Š
� �A �
0 ıA

�
with .ıA mod mA/ D  

c
,

where mA is the maximal ideal of the local ring A. This gives rise to an exact sequence
�A ,! �A� ıA. Realize sl2.A/ inside theA-linear endomorphism algebra EndA.�A/, and
write FC.�A/ for the subspace of ¹T 2 sl2.A/ j T .�/ D 0º D HomA.ıA; �A/ on which
Ad.�A/ acts by the character �A=ıA (the upper nilpotent Lie subalgebra if �AjGp has
upper triangular form as above). Write Ad.�A/� for the Galois module Ad.�A/ ˝A A_

for the Pontryagin dual A_ of A, where GQ acts on the factor Ad.�A/. Similarly we put
FC.�A/

� WD FC.�A/˝A A
_, which is a p-local Galois module. Then we define

SelQ.Ad.�A// WD ker.H 1.G;Ad.�A/�/! H 1

�
Il ;

Ad.�A/�

FC.�A/�

�
�

Y
ljN

H 1.Il ;Ad.�A/�//

(A.2.3)

for the product of restriction maps to the inertia group Il � G of l . In the Galois group
G, for l − N , Il is trivial (as K.�/.p/=Q is unramified outside Np); so, in the right-hand
side of the above definition, H 1.Il ;Ad.�A/�/ for l − N does not show up. We write M_

for the Pontryagin dual of a module M .
Recall K�1=K which is the maximal subextension of K.�/.p/ p-abelian and anti-

cyclotomic over K, where the word “anti-cyclotomic” means complex conjugation c acts
on � 2 Gal.K�1=K/ by c�c�1 D ��1. Lifting � 2 Gal.KC =K/ to h 2H and restricting h
to K�1, we have an isomorphism �p D Gal.K.p/=K/ Š Gal.K�1=K/ (see [31, p. 636]
and the main text §3). Recall:

Definition A.2.4. Let � W GK ! W � be a character of order prime to p whose image
generates ZpŒ�� in W over Zp . Let Y �1 be the Galois group over K�1.�/ of the max-
imal p-abelian extension of K�1.�/ unramified outside p. Regarding Gal.K.�/=K/
as a subgroup of Gal.K�1.�/=K/ Š Gal.K.�/=K/ � Gal.K�1=K/, define Y �1.�/ WD
Y �1 ˝Zp ŒGal.K.�/=K/�;� Zp.�/: Here Zp.�/ is the ZpŒ��-module free of rank 1 on which
Gal.K.�/=K/ acts by �.
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Corollary A.2.5. We have canonical isomorphisms of T -modules

SelQ.Ad.IndQ
K ˆ// Š .Y

�
1. 

�/˝Zp Œ �� W /
_;

SelQ.Ad.IndQ
K ˆ//

_
Š .‚/=.‚/2 Š T�=�T� Š T nCM=.‚/ Š T nCM

C =.�/;

T nCM
C =.�/ b̋W W

.�/
Š ƒW=.L

�
p . 

�//:

Proof. By the decomposition Ad.IndQ
K ˆ/Š �˚ IndQ

K  
� for �D

�
K=Q� combined with

the functoriality of Greenberg’s Selmer group, we have SelQ.Ad.IndQ
K ˆ//Š SelQ.�/˚

SelQ.IndQ
K  

�/. The first isomorphism is [27, Thm. 5.33], where we get SelQ.IndQ
K  

�/

D Y �1. 
�/_. Note that SelQ.�/ vanishes since p − hK . The second isomorphism fol-

lows from cyclicity over ƒ proven in [32, Thm. B] and Theorem A.2.1. The third iden-
tity (�) follows from the proof of the anti-cyclotomic main conjecture shown by Rubin
and Mazur–Tilouine: charƒW

.Y �1. 
�// D .L�p . 

�// (see [45], [46], [50], [43]) com-
bined with the first two identities.

A.3. Modular Cayley–Hamilton representations

We introduce representations with values in a generalized matrix algebra (GMA) as in
[1], [6] and [53]. We refer to [52, §5.9] for the notion of ordinarity over Q for GMA
representations (not treated in [1] and [6]). Since we have two conjugacy classes of p-
decomposition groups Dp and Dp� , we modify the definition (see below) of ordinarity
depending on each factor p and p�. To define a GMAA-algebra we follow [1, §1.3]. LetA
be a commutative ring andE an A-algebra. We say thatE is a generalized matrix algebra
(GMA) of type .d1; : : : ; dr / if R is equipped with
� a family E D ¹e1; : : : ; erº of orthogonal idempotents with

P
i ei D 1,

� for each i , an A-algebra isomorphism  i W eiEei
�
�!Mdi .A/, such that the trace map

T W R ! A defined by T .x/ WD
P
i Tr. i .eixei // satisfies T .xy/ D T .yx/ for all

x; y 2 E. We call E D ¹ei j  i ; i D 1; : : : ; rº the data of idempotents of E.
In this appendix, we assume that r D 2 and d1 D d2 D 1; so, we can forget about  i as
an A-algebra automorphism of A is unique. Once we have E , we identify eiEei D A and
put B D e1Ee2 and C D e2Ee1. Then a generalized matrix algebra over A is a pair of an
associative A-algebra E and E . It is isomorphic to A˚ B ˚ C ˚ A as an A-module; so,
we write instead .E;E/ D . A B

C A /, which we call a GMA structure. There is an A-linear
map B ˝A C !A such that multiplication inE is given by 2-by-2 matrix product. In this
case, A is called the scalar subring of .E;E/ and .E;E/ is called an A-GMA. A Cayley–
Hamilton representation with coefficients in A and residual representation

�  0

0  
c

�
(with

 at the top) is a homomorphism � WH!E� such that .E;E/ is anA-GMA and such that

in matrix coordinates, � is given by � 7!
� �E
11
.�/ �E

12
.�/

�E
21
.�/ �E

22
.�/

�
with .�11.�/ mod mA/ D  .�/,

.�22.�/mod mA/D  
c
.�/, and �12.�/�21.�/� 0 mod mA. For a given �, if we change
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the set E of idempotents, the matrix expression changes; so, we added the superscript E

to the matrix entries �E
ij to indicate their dependence on E . If E is clear from the context,

we omit the superscript.
InH , we have two conjugacy classes of p-decomposition groups depending on prime

factors of p in K. Fix a decomposition subgroup Dp � H for p and put Dp� for p�. We
define � to be p-ordinary (resp. p�-ordinary) if there is E (resp. E�) such that �E

12.�/D 0

for all � 2 Dp and �E
22.Ip/ D 1 (resp. �E�

21 .�/ D 0 for all � 2 Dp� and �E�

11 .Ip�/ D 1).
We say � is ordinary if it is p- and p�-ordinary at the same time. This definition does not
depend on the choice of Dp and Dp� . For example, if we replace Dp by �Dp�

�1, then
.E; �.�/E�.�/�1/ satisfies the required conditions.

If .E; E/ can be embedded into the matrix algebra M2. zA/ for a complete local W -
algebra zA with residue field F containing A, the Cayley–Hamilton representation � W
H ! E� can be regarded as a representation into GL2. zA/. Since � D IndQ

K  is irre-
ducible over G, we may have an extension z� of the GMA representation � to G. If an
extension z� exists, the extension is a usual representation into GL2. zA/. As usual, we
call z� p-ordinary if z�jGp Š

�
� �
0 ı

�
with unramified ı �  c mod m zA. The ordering of the

residual representation
�  0

0  
c

�
(with  at the top) is fixed; so, plainly, to have compati-

bility of ordinarity of � over H and Q-ordinarity of z� (and to preserve residual order of
the characters  and  

c
), we need to define p�-ordinarity to have a set E� of idempotents

so that �E� jD�p is in the lower triangular form. Indeed, if z�.c/ D
�
0 1
1 0

�
, � is p-ordinary

for E if and only if � is p�-ordinary for the same E by choosing Dp� D cDpc
�1. As we

describe in the following proposition, this phenomenon occurs if we take � WD �T jH for
A D TC and zA D T . Details of the deformation theory of � in the category of represen-
tations over G and in the category of Cayley–Hamilton representations over H will be
discussed in a forthcoming paper [33].

Proposition A.3.1. The Galois representation �D �T jH associated to T restricted toH
is an ordinary Cayley–Hamilton representation with values in the TC-GMA

.E;E D E�/ D
� TC BC
CC TC

�
Š
� TC T�

T� TC

�
with BC ˝TC CC Š T� ˝TC T� ! TC

given by ‚b ˝‚c 7! �bc for � D ‚2 .the product in T /.

Proof. Recall T� WD ¹x 2 T j �.x/ D �xº. Then T� D ‚TC, and ‚ 2 T nCM under
the inclusion T ,! T CM ˚ T nCM; so, ‚ is a zero-divisor in T but is not a zero-divisor
in T nCM. Similarly � 2 T nCM

C . Extend the character  to a function on G just by 0 out-
side H , and decompose G D H t cH . Then we have the following standard realization
of the induced representation:

�.�/ D
�

 .�/  .�c/

 .c�1�/  .c�1�c/

�
:

Then if �.�/ D �1 (, � 62 H ), we have

.�˝ �/.�/ D
�

0 � .�c/

� .c�1�/ 0

�
D j �.�/j�1
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for j WD
�
1 0
0 �1

�
. If �.�/ D 1 (, � 62 GK), �.�/ is diagonal commuting with j ; so,

.�˝ �/.�/ D �.�/ D j �.�/j�1:

Thus we conclude �˝ � D j �j�1.
The deformation functor represented by T is given by

D.A/ WD ¹� W G ! GL2.A/ j � is p-ordinary and .� mod mA/ D �º=�;

where “�” is strict equivalence (i.e., conjugation by 1CM2.mA/). Thus we have we can
let � act on D by

� 7! j.�˝ �/j�1 D �� :

Since j
�
a b
c d

�
j�1 D

�
a �b
�c d

�
and .�T jH mod .‚// D ˆ˚ ˆc is diagonal, we find that

uj.�T ˝ �/.uj /
�1 D ��T with u 2 1 C ‚M2.T /. Write U D uj . Applying � , we get

U � .��T ˝ �/U
�� D �T ; so, we have

U�TU
�1
D U.�T ˝ �/U

�1
˝ � D ��T ˝ � D U

���TU
� :

Thus we have ju�ju D U �U D z 2 Z WD 1C‚T . Since 1C‚M2.T / is p-profinite,
letting � act on 1 C ‚M2.T / by x 7! xz� WD jx�j , we can thus write u D vz��1 2

.1C ‚M2.T //=Z for v 2 1C ‚M2.‚/. Thus replacing �T jH by � WD v�1j�TjvjH ,
we find j�j�1 D �� . In other words, � has values in E D

� TC T�
T� TC

�
, as desired

Since  �jDp ¤ 1 by (H0), we can choose first � 2 � with  .�/ ¤  c.�/ so that
�T .�/ D

�
 .�/ 0
0  c.�/

�
, and we can define the set E of idempotents of E having the GMA

form as above by

e1 D
�T .�/ �  

c.�/

 .�/ �  c.�/
and e2 D

�T .�/ �  .�/

 c.�/ �  .�/
:

Writing E D TC ˚ B ˚ C ˚ TC with B Š C Š T�, we note that B (resp. C ) is
the eigenspace under the conjugation action of �T .�/ with eigenvalue  �.�/ (resp.
 �.�/�1). Thus our expression of �T jH is associated to .E; e1; e2/. By ordinarity of
�T on Gp (inducing Dp), we see �T jH is p-ordinary. Plainly c 2 G interchanges e1
and e2, i.e., �T .c/e1�T .c/ D e2. Thus over Dp� D cDpc, we conclude that �T jH with

values in .E;E/ is also p�-ordinary. Since the residual representation is exactly
�  0

0  
c

�
(with  at the top), the choice of .e2; e1/ is impossible because it violates the residual
order of the characters (the definition of p�-ordinarity requires the lower triangular form
on Dp� to preserve this residual order). Therefore we need to choose E D .e1; e2/ for
p�-ordinary.

Under the normalization as above, we may and do assume that �T .c/ D
�
0 1
1 0

�
.

A.4. Local Iwasawa theory

Let k=Qp (inside Qp) be a Galois extension with p − Œk W Qp�. Write F=k for the
cyclotomic Zp-extension inside Qp . Let � WD Gal.F=k/ D 
Zp and put �n D �p

n
.
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Set Fn WD F �n with p-adic integer ring on. Let L (resp. Ln) be the maximal abelian
p-extension of F (resp. Fn). Write Xn WD Gal.Ln=kn/ and X WD Gal.L=F /. We have
Gal.F=Qp/ D Gal.F=Qp/ ËX . The exact sequence

1! X ! Gal.L=k/! � ! 1

is split just by lifting 
 to an element z
 2Gal.L=k/ taking splitting image z
Zp . Therefore
the commutator subgroup of Gal.L=kn/ is given by .
p

n
� 1/X , and we have the corre-

sponding exact sequence at each level n: 1!X=.
p
n
� 1/X!Gal.LnF=F /!�n! 1:

Let k1=k be the unramified Zp-extension inside Qp with its n-th layer kn, and put
Fn D Fkn. Let L (resp. Ln) be the maximal abelian p-extension of F1 (resp. Fn). Set
X WD Gal.L=F1/. Pick a lift � 2 Gal.L=k/ of the Frobenius element Œp;Qp�

f (for the
residual degree f of k=Qp) generating Gal.k1F=k/ and a lift z
 2 Gal.L=k/ of the gen-
erator 
 of Gal.kQp;1=k0/ D � . The commutator � WD Œ�; z
� acts on X by conjugation,
and .� � 1/x WD Œ�; x�D �x��1x�1 for x 2X is uniquely determined independent of the
choice of 
 and �. DefineL0 �L andL0n �Ln to be the fixed fields of .� � 1/X (i.e., the
fixed fields of � ), which are independent of the choice of z
 and �. Let X 0 D Gal.L0=F1/
and X 0n D Gal.L0n=Fn/.

Proposition A.4.1. Let the notation and the assumptions be as above.

(1) We have a canonical decomposition

X D lim
 �
n

Xn D lim
 �
n

X=.
p
n

� 1/X

Š

´
ZpJGal.F=Qp/K if �p.k/ D ¹1º,
ZpJGal.F=Qp/K˚ Zp.1/ if �p.k/ D �p.Qp/

as ZpJGal.F=Qp/K-modules. Thus for each finite-dimensional Qp-irreducible
abelian representation � of Gal.k=Qp/ with values in GLdim.�/.Zp/ of order prime
to p, writing XŒ�� for the maximal �-isotypical quotient of X , we have

XŒ�� Š

´
W.�/J�K if � ¤ !,
ZpJ�K˚ Zp.1/ if � D !

as Gal.F=Qp/-modules. Here � is the residue field of the subalgebra of Mdim.�/.Zp/
generated by the values of � over Zp , ! is the Teichmüller character and � 2

Gal.F=Qp/ acts on W.�/ via � regarded as having values in W.�/�.

(2) The restriction map X 0 ! X induces an isomorphism of X 0=.� � 1/X 0 onto the
augmentation ideal of ZpJGal.F=Q/K � X .

(3) For the character � W Gal.k=Qp/ ! W.�/ in .1/, the factor X 0Œ�� is a cyclic
W.�/J� � ‡K-module .i.e., it is topologically generated over W.�/J� � ‡K by one
element/.

Note that the subalgebra of Mdim.�/.Zp/ generated by the values of � over Zp is
isomorphic to the Witt vector ring W.�/ with coefficients in its residue field �.
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Proof of Proposition A.4.1. We first prove the assertion (1). The statement of [38,
Thm. 25] assertsX Š ZpJ�KŒkWQp � or ZpJ�KŒkWQp �˚Zp.1/ as ZpJ�K-modules. Write Y
for the maximal ZpJ�K-free quotient of X . Since Gal.k=Qp/ has order prime to p,
Gal.K=Qp/ Š Gal.k=Qp/ Ë � , and its action on Y is determined by its action on
Y0 D Y=.
 � 1/Y . We need to show Y0 Š ZpŒGal.k=Qp/� as Gal.k=Qp/-modules
(which implies Y Š Y0J�K Š ZpJGal.K=QpK). Let Qp;1 � QpŒ�p1 � be the cyclo-
tomic Zp-extension. Writing cM WD lim

 �n
M=pnM for a module M , by class field theory,

Gal.L0K=K/ fits into the following commutative diagram with exact rows and surjective
vertical maps:

Gal.L0K=K/
,!
�����! ck� Nk=Qp

�����! bQ�p
jj

??y Artin rec.

??y a

??y
Gal.L0K=K/ �����!

,!
Gal.L0=k/

�
�����!

Res
Gal.Qp;1=Qp/

where the composite a ı Nk=Qp for the norm map Nk=Qp has image Gal.Qp;1=Qp/ Š

1C pZp Š � .
First suppose that �p.k/ D ¹1º. Then ck� is torsion-free. The isomorphism class

of a torsion-free ZpŒGal.k=Qp/�-module M of finite rank over Zp is determined by
the QpŒGal.k=Qp/�-module M ˝Zp Qp . Since QpŒGal.k=Qp/� is semisimple, we con-
clude ck� Š ZpŒGal.k=Qp/� ˚ � with Gal.k=Qp/ acting on � trivially. Thus Y0 Š
ZpŒGal.k=Qp/� in which the �-isotypical component has rank dim.�/ D rankZp W.�/

over Zp .
Now assume that �p.k/ is non-trivial. Since p − Œk W Qp�, we have �p1.k/ D �p.k/;

so, the torsion part of ck� is cyclic of order p. Let ck�
f

be the maximal torsion-free quotient

of ck�. Then by the same argument as in the case where �p.k/ D ¹1º, we find ck�
f
Š

ZpŒGal.k=Qp/�˚� as ZpŒGal.k=Qp/�-modules. By Iwasawa’s expression,X=.
 � 1/X
Š Z

ŒkWQp �
p ˚ �p.k/ in which �p.k/ is identified with Zp.1/=.
 � 1/Zp.1/. Again we

have .X=.
 � 1/X/=�p.k/ Š ZpŒGal.k=Qp/� as ZpŒGal.k=Qp/�-modules. We have a
commutative diagram with exact rows

Zp.1/=.
 � 1/Zp.1/
,!
�����! X=.
 � 1/X

�
�����! Y=.
 � 1/Y

o

??y jj

??y ??y
�p.k/ �����!

,!
X=.
 � 1/X �����!

�
ZpŒGal.k=Qp/�

of ZpŒGal.k=Qp/�-modules. This shows that Y0 D Y=.
 � 1/Y Š ZpŒGal.k=Qp/� as
ZpŒGal.k=Qp/�-modules, and hence Y Š ZpJGal.F=Qp/K. Therefore the surjective
ZpJGal.F=Qp/K-morphism X � Y splits, and hence X Š Zp.1/ ˚ ZpJGal.K=Qp/K
as desired.
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Now we prove (2). Let k1=kn=k0 be the intermediate n-th layer of the unramified
Zp-extension of k0 (so, Gal.kn=k0/ Š Z=pnZ)). Recall the integer ring on of kn. Let
Xn D Gal.Ln=Fn/. Then we have an exact sequence of ZpŒGal.kn=Q/�-modules

co�n ,!
�����! ck�n �

�����!
v

Zp

o

??y o

??y o

??y
Xn �����!

,!
Gal.Ln=kn/ �����!

�
Gal.k1=kn/

where the map v is induced from the valuation ordp of k normalized so that ordp.p/D 1.
Writing $ for a prime element in on, we have v.$/ D e�1. Then this exact sequence
is split by v.pZp / D Zp D e�1Zp D v.$Zp /; so, ck�n Š Xn ˚ Zp as ZpŒGal.kn=Qp/�-
modules. By this diagram and L0n � k1, we still have Gal.L0n=kn/D X

0
n˚Gal.k1=kn/

with Gal.k1=kn/ Š Zp .
By the same argument as in proving (1), if �p.k/ D �p.Qp/, we have Xn Š

Yn ˚ Zp.1/ as ZpJGal.knQp;1=Qp/K–modules for a unique direct summand Yn. On
Zp.1/, � acts trivially (as �p.Œp;Qp�/ D 1 for the p-adic cyclotomic character �p);
so, Œz
; �� acts trivially on the factor Zp.1/. Hence we still have the decomposition
X 0n D Y 0n ˚ Zp.1/. The restriction map X 0m ! X 0n for m > n induces on Zp.1/ mul-
tiplication by pm�n as � D Œp;Qp�

f acts trivially on �p1.Qp/. Thus passing to the
limit, the factor Zp.1/ disappears. Therefore, by Kummer theory, coker.X 0

Res
��! X/ is

Zp ˚ Zp.1/ if �p.k/ D �p.Qp/ and otherwise Zp; so, by definition, the restriction
map Y 0m ! Y 0n is onto, and its image after passing to the limit is the augmentation
ideal of ZpJGal.F=Qp/K (as we lose the augmentation quotient Zp which corresponds
to the factor Zp in Gal.L0n=kn/). Since ker.X 0 ! X/ is plainly .� � 1/X 0, we find that
X 0=.� � 1/X 0 is isomorphic to the augmentation ideal of ZpJGal.F=Qp/K by (1).

The same argument works well when �p.k/D ¹1º. In this case, the argument is easier
as the factor Zp.1/ does not show up.

We prove (3). Note that ZpJGal.F=Qp/K D
L
� W.��/J�K for � running over all

characters of Gal.k=Q/, where �� is the finite field generated by the values of � mod p
over Fp . Then its augmentation ideal is given by .
 � 1/ZpJ�K˚

L
�¤1W.��/J�K. Thus

X 0Œ��=.� � 1/X 0Œ�� Š W.��/J�K asW.��/J�K-modules by Proposition A.4.1(2). This is
clear if � is non-trivial. If �D 1, we note that .
 � 1/ZpJ�KŠZpJ�K as ZpJ�K-modules.
SoX 0Œ��=.� � 1/X 0Œ�� is cyclic overW.�/J�K. By Nakayama’s lemma, we get the desired
cyclicity of X 0Œ�� over W.�/J� � ‡K.

A.5. Proof of Theorem A.1.2 and Corollary A.1.3

Recall the TC-GMA E D
� TC T�

T� TC

�
given in Proposition A.3.1. Set EnCM D E ˝TC

T nCM
C and ECM D E˝TC T CM

C , and write � W W ŒH�! E, �nCM W W ŒH�! EnCM and
�CM WW ŒH�! ECM for the associated Cayley–Hamilton representations. Pick a prime }
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of K.�/ above p. Let I p (resp. I p� , Dp) be the p-inertia (resp. p�-inertia, p-decomposi-
tion) subgroup of Gal.K.�/=K.�// corresponding to } and }c . Regard Œp;Qp�

f 2 Dp

for the residual degree f of P D } \K.�/, and recall '0 WD �.Œp;Qp�
f / D

�
u�f �

0 uf

�
with uf 2 TC. Put ƒ0 WD ZpJT K � ƒ1 WD W1JT; aK � T for a D u2f � 1, and recall
t D 1C T . We restate Theorem A.1.2 of the introduction in the following way:

Theorem A.5.1. Let the notation be as above. Assume (H0)–(H4). Then we can choose
conjugacy classes of I p and I p� in G and a generator ‚ of the � -different I D
T .� � 1/T with ‚� D �‚ so that

�.I p/ D
®�
a b
0 1

� ˇ̌
a 2 tZp ; b 2 ‚ƒ1

¯
� E�

and
�nCM.I p/ D

®�
a b
0 1

� ˇ̌
a 2 tZp ; b 2 ‚ƒ1

¯
� EnCM;�

and �.I p�/ D J�.I p/J
�1, where J D

�
0 1
1 0

�
for � D �T and �T nCM . Here tZp � ƒ is

embedded in E and EnCM by the structure homomorphism.

We can conjugate � by
�
a 0
0 1

�
for any a 2 T�, and by doing this, ‚ will be replaced

by a‚; so, actually, we can always assume that for any choice of the generator ‚ with
‚� D �‚ of the ideal .‚/, we can arrange �.I p/ (and �.I p�/) as in the corollary.

Proof of Theorem A.5.1. Write simply I D �.I p/ and D D �.Dp/. From the definition
of the ƒ-algebra structure of T and p-ordinarity (e.g., [31, (Gal), p. 604]), we know
I � M.T / \ E and �.I p�/ � JM.T /J�1 \ E for the mirabolic subgroup M.T / WD®�
a b
0 1

� ˇ̌
a 2 T�; b 2 T

¯
. Since Gal.Qab

p =Qp/D Œp;Qp�
bZ ËZ�p for the maximal abelian

extension Qab=Q and the local Artin symbol Œp;Qp�, we find

I �
®�
a b
0 1

� ˇ̌
a 2 tZp ; b 2 ‚TC

¯
and D D '0

Zp Ë I

by the shape of E, and det.�.I p// D T WD tZp � ƒ�0 . Thus we have an extension 1!
U! I ! T ! 1 with U D ker.det.�/ W I ! ƒ�/.

By [31, Lem. 1.4], this extension is split by the action of� for U being an eigenspace
on which � acts by  �; so, we may assume to have a section s W T ,! I identifying T

with
®�
a 0
0 1

� ˇ̌
a 2 T

¯
. Replacing '0 by an element ' 2 '0U, we may assume that ' D�

u�f 0
0 uf

�
commutes with

�
tZp 0
0 1

�
D Gal.Qp;1K.�/=K.�//. Take � 2 Dp such that

�.�/D ' and z
 2Dp with �.z
/D
�
t 0
0 1

�
. For the commutator Œ�; z
�, we have �.Œ�; z
�/D 1

(i.e. it acts on K.�/P trivially; the requirement for the validity of Proposition A.4.1(3)).
The module U is aƒ1-module by the adjoint action of T � 'Zp . Since �CMjI has kernel U,
we see that I D �.I p/ Š �nCM.I p/; so, we only need to prove the assertion for �. If
T nCM
C �U ¨ T� D ‚TC D ‚T nCM

C , we have UT nCM
C � ‚mnCM

C T nCM
C D mnCM

C T� for
the maximal ideal mnCM

C of T nCM
C .

Write P j p for the prime factor in K. �/ corresponding to Ip. We apply Proposi-
tion A.4.1 to the P-adic completion k of K. �/, its cyclotomic Zp-extension F and
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the composite F1 of F and the unramified Zp-extension of k. Thus U is made up of
unipotent matrices, and writing

I1 WD ¹� 2 I p j � jF D 1º D ¹� 2 I p j � jF1 D 1º;

we have U D �.I1/. Therefore we may write �.�/ D
�
1 u.�/
0 1

�
for � 2 I1. Let u WD

u mod mnCM
C T� with values in T�=mnCM

C T�Š F . LetH.ˆ�/ WD ker.ˆ� WH !ƒ�/ for
the universal characterˆ. Since T�=�T�D Y �1. 

�/˝Zp Œ ��W by Corollary A.2.5 and
�TC is the ideal of reducibility in TC of � in the sense of [1, §1.5], this homomorphism
extends to a non-zero homomorphism u W H.ˆ�/ ! F with u.�h��1/ D ˆ�.�/u.h/

unramified outside p over K.ˆ�/ D K.�/K�1. Since H.ˆ�/ WD Gal.K.�/.p/=K.ˆ�//
only ramifies at p, u is unramified at c0c0c . Since I p� is lower triangular contained
in JM.T /J�1, u is unramified everywhere. Let N1 � K.�/.p/ be the fixed field by
ker.u W Gal.K.�/.p/=K.ˆ�//! T�=mnCM

C T�/ and put X WD Gal.N1=K.ˆ�//. Then
N1=K.ˆ

�/ is an everywhere unramified p-abelian extension. Since K.ˆ�/=K. �/ is
a fully p-ramified Zp-extension generated by an element 
 , we find that X=.
 � 1/X is
the Galois group of an everywhere unramified p-abelian extension of K. �/, which is
non-trivial by our assumption. Since p − hK. �/, this is a contradiction. Thus the TC-
span of u.I1/ is F ; so, the TC-span of u.I1/ is equal to T� by Nakayama’s lemma. Thus
TCu.I1/ 6� 0 mod mnCM

C T�; so, we may assume that ‚ 2 u.I1/.
Regard  � as an abelian irreducible Zp-representation acting on W regarded as a

Zp-module. By Proposition A.4.1(3), under the notation there, the Galois group X 0Œ ��
is cyclic overW1J� �‡K (� D tZp ) and surjects onto U. Since the action ofW1J� �‡K
factors through ƒ1, by Proposition A.4.1 (3), U is cyclic over ƒ1; so, we have U Š ƒ1.
Thus we conclude that �.I1/DUD

®�
1 a
0 1

� ˇ̌
a 2‚ƒ1

¯
inside �.H/ (for a suitable choice

of ‚). This shows the desired expression for �.I p/. By the same argument applied to p�,
we see that �.H/ contains JUJ�1, T and JT J�1, and we obtain the form of �.I p�/.

Proof of Corollary A.1.3. By Theorem A.5.1, we have

�P jIp is indecomposable ” .U mod P / ¤ 1 ” P − .‚/:

By Corollary A.2.5, T nCM=.‚/ b̋W W Š ƒW=.L
�
p . 

�//, we conclude that P − .‚/,
P − .L�p . �//. As coker.T b̋W W!T CM b̋W W �T nCM b̋W W/ŠƒW=.L

�
p . 

�//,
we see that

P − .L�p . 
�// ” P 62 Spec.T nCM/ \ Spec.T CM/

as desired.
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