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Abstract. Let T be anm-linear form defined on a product of p̀-spaces and letƒ�Nm. We inves-
tigate the best exponent s such that the sequence of coefficients of T belongs to `s.ƒ/. The cases
ƒ D Nm and ƒ is the diagonal of Nm are already known. We study the intermediate cases using
notions like combinatorial dimension of sets, multiple summing maps and random polynomials.
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1. Introduction

Let T be an m-linear form defined on a product of p̀-spaces. We are interested in the
sequence of its coefficients .T .e.j///j2Nm , where j stands for .j1; : : : ; jm/ and e.j/ for
.ej1 ; : : : ; ejm/. In particular, we are interested in which `s-space this sequence belongs. If
m D 1, the answer is given by the duality of the p̀-spaces. For m � 2, this problem has
attracted the attention of many mathematicians for one century since the seminal work of
Littlewood [19]. For p D .p1; : : : ; pm/ 2 Œ1;C1�m and � 2 R, we set

�p WD .�p1; : : : ; �pm/ and
ˇ̌̌̌
1

p

ˇ̌̌̌
WD

1

p1
C � � � C

1

pm
:

We shall denote Zp D p̀ for 1 � p < C1 and Z1 D c0. The works of [19], [12], [17],
[23] and [14] culminate in the following statement. Assume that j1=pj < 1. Then there
exists a constant Cm;p > 0 such that, for all m-linear forms T W Zp1 � � � � �Zpm ! C,� X

j2Nm

jT .e.j//j
2m

mC1�j2=pj
�mC1�j2=pj

2m

� Cm;pkT k provided
ˇ̌̌̌
1

p

ˇ̌̌̌
�
1

2
; (1)�X

j2Nm

jT .e.j//j
1

1�j1=pj

�1�j1=pj
� Cm;pkT k provided

ˇ̌̌̌
1

p

ˇ̌̌̌
�
1

2
: (2)

Moreover, the exponents in (1) and (2) are optimal.

Frédéric Bayart: Laboratoire de Mathématiques Blaise Pascal UMR 6620 CNRS, Université
Clermont Auvergne, Campus universitaire des Cézeaux, 3 place Vasarely, 63178 Aubière Cedex,
France; frederic.bayart@uca.fr

Mathematics Subject Classification (2020): 46G25, 47H60

https://creativecommons.org/licenses/by/4.0/
mailto:frederic.bayart@uca.fr


F. Bayart 1162

It is also natural to ask what happens if we look at the summability of .T .e.j///j2ƒ for
some subsetƒ �Nm. The most obvious case isƒD Diag.Nm/ WD ¹.j; : : : ; j /I j 2Nº.
Then, from the work of Defant-Voigt, Aron and Globevnik [4] and Zalduendo [25], we
know that, provided j1=pj < 1, for all m-linear forms T W Zp1 � � � � �Zpm ! C,� X

j2Diag.Nm/

jT .e.j//j
1

1�j1=pj
�1�j1=pj

� kT k (3)

(here, the constant may be taken equal to 1). Again, the exponent is optimal. For prod-
ucts of diagonals, namely when ƒ D ƒ1 � � � � � ƒp where each ƒi D Diag.Nmi / and
m1 C � � � C mp D m, the sharp exponent has been obtained in [3] for p D .1; : : : ;1/
and in [1] for the general case. We do not state the precise statement here because it is not
so easy to write it and because we will get a simpler one soon.

In this paper our aim is to get similar inequalities for general subsets ƒ � Nm. The
case pD .1; : : : ;1/ has already been considered by Blei [9] (see also a very nice account
of that work in the book [10]). We consider the other cases. The exponent that we will get
will depend on the size ofƒ, more precisely on its combinatorial dimension. Forƒ�Nm

and n � 0, define

 ƒ.n/ WD max ¹card..A1 � � � � � Am/ \ƒ/I Ai � N; card.Ai / � nº:

The combinatorial dimension of ƒ, denoted by dim.ƒ/, is defined as

dim.ƒ/ WD lim sup
n!C1

log ƒ.n/
logn

D inf ¹s > 0I 9C > 0;  ƒ.n/ � Cn
s for all n 2 Nº:

We will also say that dim.ƒ/ is exact if  ƒ.n/� Cndim.ƒ/ for some C > 0 and all n 2N.
We introduce the Hardy–Littlewood exponent of ƒ of index p as follows: HL.ƒ; p/

is the set of those s � 1 such that there exists C > 0 satisfying, for all m-linear forms
T W Zp1 � � � � �Zpm ! C, �X

j2ƒ

jT .e.j//js
�1=s
� CkT k: (4)

The Hardy–Littlewood exponent HL.ƒ;p/ is the infimum of HL.ƒ;p/.
Our first main theorem now reads:

Theorem 1.1. Let ƒ � Nm be infinite and p 2 Œ1;C1�m with j1=pj < 1. Then

.a/ HL.ƒ;p/�1 �
dim.ƒ/C 1
2 dim.ƒ/

�

ˇ̌̌̌
1

dim.ƒ/p

ˇ̌̌̌
provided

ˇ̌̌̌
1

p

ˇ̌̌̌
<
1

2
:

Moreover, if dim.ƒ/ is exact, then
� dim.ƒ/C1
2 dim.ƒ/ �

ˇ̌
1

dim.�/p

ˇ̌��1 belongs to HL.ƒ;p/.

.b/ HL.ƒ; p/�1 � 1 �
ˇ̌̌̌
1

p

ˇ̌̌̌
provided

ˇ̌̌̌
1

p

ˇ̌̌̌
�
1

2
:

Moreover, .1 � j1=pj/�1 belongs to HL.ƒ;p/.
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We may observe that the two inequalities (a) and (b) coincide if j1=pj D 1=2.
Since dim.Nm/ D m and dim.Diag.Nm// D 1, this result covers (1)–(3). It is not

difficult to see that it also covers the case ƒ D Diag.Nm1/ � � � � � Diag.Nmp / with a
more pleasant-looking result. It should be noticed that case (b) only appears for aesthetic
reasons. Indeed, it is already known, since HL.ƒ; p/�1 � HL.Nm; p/ and the result
follows from (2).

Of course, it is natural to ask whether the inequalities on HL.ƒ; p/ are optimal
with respect to dim.ƒ/. At this level of generality, this cannot be the case except if
p D .1; : : : ;1/. For instance, let m D 2 and p D .p; p/ with p � 2, ƒ1 D Diag.N2/

and ƒ2 D ¹.j; 1/I j 2 Nº. In both cases, dim.ƒ1/ D dim.ƒ2/ D 1 whereas the opti-
mal value of s such that (4) holds for all 2-linear forms T W Zp � Zp ! C is given by
1=s1 D 1 � 2=p for ƒ1 (the optimality is shown in [25]) and by 1=s2 D 1 � 1=p for ƒ2
(we can replace the bilinear T by the linear S.�/ D T .�; e1/).

Thus, the right question seems to be the following: for a fixed d 2 Œ1; m/, does there
existƒ�Nm with dim.ƒ/D d and such that the inequalities of Theorem 1.1 are optimal?
For the sake of simplicity, we will assume that p D .p; : : : ; p/ for some p 2 Œ1;C1�.
Again, in case (b), the result is already known from [25]: the optimality of the exponent
in (3) tells us that HL.Diag.Nm/;p/�1 � 1 � j1=pj. Taking for ƒ0 any subset of Nm of
dimension d and settingƒDƒ0 [Diag.Nm/, we clearly haveHL.ƒ;p/�1 � 1� j1=pj
with dim.ƒ/ D d .

We have been able to show the optimality of part (a) of Theorem 1.1 when the dimen-
sion d is sufficienly large or when m=d is an integer.

Theorem 1.2. Letm � 2 and let d 2 Œ1;m�. There existsƒ�Nm with dim.ƒ/D d such
that, for all p 2 Œ2;C1� with m=p � 1=2,

HL.ƒ;p/�1 D
d C 1

2d
�

ˇ̌̌̌
1

dp

ˇ̌̌̌
in the following cases :

� m is even and d � 3=2;

� m is odd and d � 3=2C 1
2bm=2c

;

� m=d is an integer.

As is usual in this context, the reverse inequality is proved by using a random con-
struction of the multilinear form. Nevertheless, a new difficulty arises: we also have to
find the right subset ƒ of Nm with prescribed dimension. This will be done using an
argument that is partly probabilistic and partly deterministic, starting from the so-called
fractional cartesian products.

The paper is organized as follows. In Section 2, we prove an extension of an inequality
due to Bohnenblust and Hille on sequences indexed by Nm when we restrict summation
to a subset ƒ � Nm. We apply this inequality in Section 3 to the sequence of coefficients
of an m-linear form, using the notion of multiple summing maps. Section 4 is devoted to
the proof of Theorem 1.2. Finally, in Section 5, we discuss some related problems.
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Notations. For positive integers m; n,

M.m; n/ D ¹j D .j1; : : : ; jm/I 1 � j1; : : : ; jm � nº:

If k 2 ¹1; : : : ; mº, jk 2 N and bjk D .j1; : : : ; jk�1; jkC1; : : : ; jm/ 2 Nm�1 are given,
then j D .j1; : : : ; jk ; : : : ; jm/ 2 Nm. If A1; : : : ; Am are sets and k 2 ¹1; : : : ;mº, then cAk
denotes A1 � � � � � Ak�1 � AkC1 � � � � � Am.

For p 2 Œ1;C1�m, B`p denotes the product of the unit balls B`p1 � � � � � B`pm . For

x D .x.1/; : : : ; x.m// 2 B`p , and j 2 Nm, xj stands for the product x.1/j1 � � � x
.m/
jm

. In a
similar way, if x� D .x�.1/; : : : ; x�.m// 2 X�1 � � � � � X

�
m and x D .x.1/; : : : ; x.m// 2

X1 � � � � �Xm, then

x�.x/ D x�.1/.x.1// � � � x�.m/.x.m//:

Finally, for p 2 Œ1;C1�, p� is the conjugate exponent of p.

2. A Blei–Bohnenblust–Hille inequality

In their pioneering work on coefficients of polynomials [12], Bohnenblust and Hille
showed the following inequality: for all sequences u 2 `1.Nm/,� X

j2Nm

ju.j/j
2m
mC1

�mC1
2m

�

mX
kD1

X
jk2N

� X
bjk2Nm�1

ju.j/j2
�1=2

: (5)

In modern developments, this inequality has been overpassed by variants of an inequal-
ity due to Blei which allow better constants (see e.g. [8]). Nevertheless, at our level of
generality, we will need to extend (5) to sequences indexed by a subset of Nm. This was
inspired by [10, Chapter XIII].

Theorem 2.1. Let ƒ � Nm, let d � 1 and let Cƒ � 1 satisfy  ƒ.n/ � Cƒnd for all
n 2 N. Let also q � 1. Then for all a 2 `1.ƒ/ and all 
 2 Œ1; q�,�X

j2ƒ

ja.j/js
�1=s
� Cƒ

mX
kD1

�X
jk2N

� X
bjk2Nm�1

ja.j/jq
�
=q�1=


where
1

s
D

1

d

C
d � 1

dq
:

We shall prove this result by duality. Hence, we need a kind of dual version of it.
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Lemma 2.2. Let ƒ � Nm and let Cƒ � 1 with  ƒ.n/ � Cƒnd for all n 2 N. Let also
� 2 .1;C1/. Then for all p 2 Œ�;d�=.d � 1/�, all u2 p̀.ƒ/ and all n-subsetsA1; : : : ;Am
of N, there is a partition G1; : : : ; Gm of A1 � � � � � Am such that, for all k 2 ¹1; : : : ;mº,� X

jk2Ak

� X
bjk2bAk ju.j/j

�1Gk .j/
�t=��1=t

� Cƒkukp

where
1

t
D
d

p
�
d � 1

�
:

We prove the case p D �d=.d � 1/ following an argument of [10]. The case p D �
is trivial. The general statement will follow by interpolation. However, we have not been
able to use the standard interpolation theorems because the partition designed in the state-
ment depends on the sequence u. The following lemma, first proved in [24, Lemma 5.1]
is the starting point of our study. We formulate it as in [10, Lemma 21]. We recall that a
finite set is called an n-set if its cardinality is n.

Lemma 2.3. Let ' W Nm ! C be such that there exists D > 0 satisfying, for all n 2 N
and all n-sets A1; : : : ; Am � N, X

j2A1�����Am

j'.j/j � Dn:

Then for any n 2 N and any n-sets A1; : : : ; Am � N, there exists a partition G1; : : : ;Gm
of A1 � � � � � Am satisfying, for all k 2 ¹1; : : : ; mº,

max
jk2Ak

X
bjk2bAk j'.j/j1Gk .j/ � D:

Proof of Lemma 2.2. Let p 2 Œ�; d�=.d � 1/�, u 2 B`p.ƒ/, n 2N, A1; : : : ;Am n-subsets
of N and � 2 Œ0; 1� be such that 1=p D .1 � �/.d � 1/=d�C �=�. A small computation
shows that � D �=t , so 1=t D .1� �/=1C �=�. To simplify the notations, we set p0 D
d�=.d � 1/, p1 D �, t0 D 1 and t1 D �. We also define ' D juj�p=p0 . Then, using
Hölder’s inequality with exponents d and d=.d � 1/, we getX

j2A1�����Am

j'.j/j D
X

j2A1�����Am

ju.j/jp.d�1/=d � 1

� card.ƒ \ .A1 � � � � � Am//1=d � C
1=d
ƒ n:

By Lemma 2.3, there exists a cover .G1; : : : ; Gm/ of A1 � � � � � Am satisfying, for all
k 2 ¹1; : : : ; mº,

max
jk2Ak

X
bjk2bAk ju.j/j

�p=p01Gk .j/ � C
1=d
ƒ : (6)
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We now fix k 2 ¹1; : : : ; mº. For q0; q1 2 Œ1;C1�, we shall denote by `q0.`q1/ the space
of sequences .v.j//j2A1�����Am such that if we set V.jk/ D .v.j//bjk2bAk for all jk 2 Ak ,
the sequence .kV.jk/kq1/jk2Ak belongs to `q0 , endowed with the norm

kvk`q0 .`q1 / D
� X
jk2Ak

kV.jk/k
q0
q1

�1=q0
:

Of course, `q0.`q1/ depends on k and on A1 � � � � � Am, but we prefer to avoid cum-
bersome notations. We intend to prove that juj1Gk belongs to `t .`�/ (we extend u on
A1 � � � � � Amnƒ by setting it equal to zero outside ƒ). By duality we fix w in the unit
ball of `t�.`��/ and we have to prove thatˇ̌̌X

j

u.j/w.j/1Gk .j/
ˇ̌̌
� Cƒ: (7)

For <e.z/ 2 Œ0; 1�, we set

1

p.z/
D
1 � z

p0
C

z

p1
;

u.j/.z/ D ju.j/jp=p.z/;

w.j/.z/ D w.j/kW.jk/k
t�.1=t�

0
�1=t�

1
/.��z/

�� :

We finally define
f .z/ D

X
j

u.j/.z/w.j/.z/1Gk .j/;

which is analytic in the open strip 0 < <e.z/ < 1 and bounded and continuous in the
closed strip 0 � <e.z/ � 1 (recall that all the sums are finite). We now observe that, for
all y 2 R,

kw.�/.iy/k
t�
0

`
t�
0
.`�� /

D

X
jk

kW.jk/k
t�
0

�� � kW.jk/k
t�
0
t�.1=t�

0
�1=t�

1
/�

��

D

X
jk

kW.jk/k
t�

�� D kwk
t�

`t� .`�� /
� 1

where we have used �=t�0 � �=t
�
1 D 1=t

�
0 � 1=t

�. Since ju.j/.iy/j D ju.j/jp=p0 , (6) means
that ku.�/.iy/k`t0 .`p/ � C

1=.�d/
ƒ . Hence duality implies that for all y 2 R,

jf .iy/j � C
1=.�d/
ƒ :

In a similar way, we prove that

kw.�/.1C iy/k
t�
1

`
t�
1
.`�� /

D kw.�/.1C iy/k
��

�� D kwk
t�

`t� .`�� /
� 1:
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Moreover since ju.j/.1C iy/j D ju.j/jp=� we know that .u.�/.1C iy// belongs to `�.ƒ/
with ku.�/.1C iy/k� � 1. This yields, for all y 2 R,

jf .1C iy/j � 1:

The three-lines theorem allows us to conclude that jf .�/j � C .1��/=.d�/ƒ � Cƒ, which is
exactly (7).

Proof of Theorem 2.1. Let A1; : : : ; Am be n-subsets of N. Set p D s�, � D q� and let u
in the unit ball of p̀.ƒ \ .A1 � � � � � Am// be such that� X

j2ƒ\A1�����Am

ja.j/js
�1=s
D

X
j2ƒ

a.j/u.j/:

Let G1; : : : ; Gm be the partition of A1 � � � � � Am associated to u given by Lemma 2.2.
Then X

j2ƒ

a.j/u.j/ D
mX
kD1

X
jk2Ak

X
bjk2bAk a.j/u.j/1Gk .j/:

A small computation shows that the three conditions 
 2 Œ1; q�; s 2 Œdq=.d C q � 1/; q�
and p 2 Œ�; d�=.d � 1/� are equivalent. Hence, by Hölder’s inequality and Lemma 2.2,X
j2ƒ

a.j/u.j/ �
mX
kD1

X
jk2Ak

� X
bjk2bAk ja.j/j

q
�1=q� X

bjk2bAk ju.j/j
�1Gk .j/

�1=�
�

mX
kD1

� X
jk2Ak

� X
bjk2bAk ja.j/j

q
�t�=q�1=t�� X

jk2Ak

� X
bjk2bAk ju.j/j

�1Gk .j/
�t=��1=�

� Cƒ

mX
kD1

� X
jk2Ak

� X
bjk2bAk ja.j/j

q
�t�=q�1=t�

where
1

t
D
d

p
�
d � 1

�
:

It is easy to check that t� D 
 , which concludes the proof.

Theorem 2.1 is optimal in a very strong sense.

Proposition 2.4. Let ƒ � Nm, let d � 1 and let C > 0 be such that  ƒ.n/ � Cnd for
infinitely many n 2 N. Let also q � 1 and 
 2 Œ1; q�. The smallest s > 0 such that there
exists D > 0 with�X

j2ƒ

ja.j/js
�1=s
� D

mX
kD1

�X
jk2N

� X
bjk2Nm�1

ja.j/jq
�
=q�1=


(8)
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for all a 2 `1.ƒ/ satisfies
1

s
�

1

d

C
d � 1

dq
: (9)

Proof. Let n be very large and let A1; : : : ; Am be n-subsets of N such that
card.ƒ\ .A1 � � � � �Am//� Cnd . For k D 1; : : : ;m, we write Ak D ¹j1.k/; : : : ; jn.k/º
and we denote by ui .k/ the cardinality of A1 � � � � � Ak�1 � ¹ji .k/º � Ak � � � � � Am.
Let a 2 `1.ƒ/ be such that aj D 1 if j 2 ƒ \ .A1 � � � � � Am/ and aj D 0 otherwise,
so that �X

j2ƒ

ja.j/js
�1=s
� C 1=snd=s : (10)

On the other hand,
mX
kD1

�X
jk2N

� X
bjk2Nm�1

ja.j/jq
�
=q�1=


�

mX
kD1

� nX
iD1

ui .k/

=q
�1=


:

Now elementary considerations show that, for any finite sequence of nonnegative real
numbers u1; : : : ; un satisfying u1 C � � � C un � Cnd , we have� nX

iD1

u

=q
i

�1=

� C 1=
n1=
n.d�1/=q

(the optimal choice being ui D Cnd�1, recall that 
=q < 1). Therefore,
mX
kD1

� nX
iD1

ui .k/

=q
�1=


� mC 1=
n1=
n.d�1/=q : (11)

In view of (10) and (11), (9) is a necessary condition for (8) to hold for all a 2 `1.ƒ/.

3. Lifting summability

Theorem 1.1 has a natural statement in the context of multiple summing maps, more
precisely in the context of ƒ-multiple summing maps, a notion introduced independently
in [7] and in [22]. Let X1; : : : ; Xm, Y be Banach spaces, T 2 L.X1; : : : ; XmI Y /, r 2
Œ1;C1/ and p 2 Œ1;C1�m. We say that T is ƒ-.r;p/-summing if there exists a constant
C > 0 such that for all sequences x.j / � XN

j , 1 � j � m,�X
j2ƒ

kT .x.j//kr
�1=r
� Cwp1.x

.1// � � �wpm.x
.m//

where T .x.j// stands for T .x.1/j1 ; : : : ; x
.m/
jm
/ and !p.x/ stands for the weak `p-norm of

x 2 XN defined by

!p.x/ D sup
kx�k�1

�C1X
jD1

jx�.xj /j
p
�1=p

:
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The least constant C for which the inequality holds is denoted by �ƒr;p.T /. WhenƒDNm

we recover the notion of a multiple .r;p/-summing map and we shall write simply �r;p.T /
instead of �Nm

r;p .T /.
In [6], following the pioneering work of [13], it was studied for which s � 1 an

m-linear map is multiple .s; p/-summing when the restriction of T to each Xk (fixing
the other coordinates) is .rk ; pk/-summing. We do the same now with Nm replaced by
ƒ � Nm. The value of s will depend on the combinatorial dimension of ƒ.

Definition 3.1. Let T 2 L.mX1; : : : ; XmI Y /. We say that T is .r; p/-summing in the
k-th coordinate if, for all x D .x.1/; : : : ; x.k�1/; x.kC1/; : : : ; x.m// 2 cXk , the linear map
T
.k/
x .y/ D T .x.1/; : : : ; x.k�1/; y; x.kC1/; : : : ; x.m// is .r; p/-summing. In that case, we

shall denote

kT .k/kCW.r;p/ WD sup
®
�r;p.T

.k/
x .�//I kx.i/k � 1; i 2 ¹1; : : : ; mº n ¹kº

¯
:

Theorem 3.2. Let T 2 L.mX1; : : : ; XmI Y / with Y a cotype q space and let p; r 2
Œ1;C1/m. Assume that T is .rk ; pk/-summing in the k-th coordinate and that there
exists � � 0 such that 1=rk � 1=pk D � for all k. Set 1=
 D 1C � �

Pm
kD1 1=p

�
k

. Let
finally ƒ � Nm and Cƒ � 1 with  ƒ.n/ � Cƒnd for all n 2 N. If 
 2 .0; q/, then T is
ƒ-.s;p/-summing with

1

s
D
d � 1

dq
C

1

d

: (12)

Proof. We use the results of [6]. In particular, in [6, proof of Theorem 2.1], it is shown
that there exists � > 0 depending only on r and on the cotype q constant of Y such that,
for all sequences x.j / � XN

j , 1 � j � m, with wpj .x
.j // � 1, and all k D 1; : : : ; m,�X

jk2N

� X
bjk2Nm�1

kT .x.j//kq
�
=q�1=


� �

mY
kD1

kT .k/k
1=m

CW.rk ;pk/
:

Then we may apply Theorem 2.1 to get�X
j2ƒ

kT .x.j//ks
�1=s
� �Cƒ

mY
kD1

kT .k/k
1=m

CW.rk ;pk/
:

with
1

s
D
d � 1

dq
C

1

d

:

This exactly means that T is ƒ-.s;p/-summing.

Remark 3.3. If 
 � q, then we know that T is ƒ-.
; p/-summing since this is true for
ƒ D Nm. Observe that if 
 D q, then (12) implies that s D q.

To deduce Theorem 1.1 on the summation of coefficients of multilinear froms, it is
convenient to use the following reformulation (see [21, Corollary 3.20] for the proof of a
similar statement for multiple summability).
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Lemma 3.4. Let p 2 Œ1;C1�m,ƒ � Nm and s � 1. The following assertions are equiv-
alent:

(1) for all T 2 L.mZp1 ; : : : ; Zpm IC/, .T .e.j///j2ƒ belongs to `s.ƒ/;

(2) for all Banach spaces X1; : : : ; Xm and all S 2 L.mX1; : : : ; XmIC/, S is ƒ-.s; q/-
summing where qj D p�j for all 1 � j � m.

We conclude by proving the following corollary, which itself easily implies Theo-
rem 1.1.

Corollary 3.5. Let ƒ � Nm be infinite. Assume that there exist Cƒ > 0 and d � 1 such
that  ƒ.n/ � Cƒnd for all n 2 N. Let also p 2 Œ1;C1�m with j1=pj < 1. Then there
exists a constant Dƒ;p such that, for all m-linear forms T W Zp1 � � � � �Zpm ! C,�X

j2ƒ

jT .e.j//js
�1=s
� Dƒ;pkT k

where 1
s
D

dC1
2d
�
ˇ̌
1
dp

ˇ̌
provided

ˇ̌
1
p

ˇ̌
�

1
2

, and 1
s
D 1 �

ˇ̌
1
p

ˇ̌
provided

ˇ̌
1
p

ˇ̌
�

1
2

.

Proof. As pointed out in the introduction, we only have to consider the case j1=pj � 1=2.
Let X1; : : : ; Xm be Banach spaces and let S 2 L.mX1; : : : ; XmIC/. Then S is .p�

k
; p�
k
/-

summing with respect to the k-th coordinate. Applying Theorem 3.2 with 
 D 1� j1=pj,
we see that S is ƒ-.s;q/-summing with

1

s
D
d � 1

2d
C
1

d
�

ˇ̌̌̌
1

dp

ˇ̌̌̌
D
d C 1

2d
�

ˇ̌̌̌
1

dp

ˇ̌̌̌
and qj D p

�
j :

An application of Lemma 3.4 gives the result.

Our method allows us to extend the results of Defant–Voigt, Aron–Globevnik and
Zalduendo quoted in the introduction. Let us recall that we say that an m-linear map
is absolutely .r; p/-summing if it is Diag.Nm/-.r; p/-summing. Using Lemma 3.4, Zal-
duendo’s theorem may be reformulated by saying that each m-linear form in L.m p̀/ is
absolutely

�
p

p�m
; p�

�
-summing for all p > m. Observe that any linear form p̀ ! C is

.p�; p�/-summing. We get the following abstract extension.

Corollary 3.6. Let X1; : : : ; Xm; Y be Banach spaces with Y of cotype q. Assume that
each linear map Xk ! Y is .r; p/-summing and that 
 2 .0; q/ is defined by

1



D 1C

1

r
�
1

p
�
m

p�
:

Then every m-linear map in L.X1; : : : ; XmIY / is absolutely .
; p/-summing.

Proof. This follows from Theorem 3.2 with d D 1.
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4. Optimality

4.1. General considerations

We begin with a general statement whose proof is a variant of [5, Theorem 3.1]. We recall
that a Young function  is a convex increasing function on RC with limt!1  .t/ D 1

and  .0/ D 0. The Orlicz space L D L .�;A; P / associated to  is defined as the
space of all real valued random variables Z on .�;A; P / such that E. .jZj=c// <1
for some c > 0. Recall that it is a Banach space for the norm

kZk D inf
®
c > 0I E

�
 .jZj=c/

�
� 1

¯
:

We shall use the following Young function  s , with s � 2:

 s.x/ D exp.xs/ � 1:

Proposition 4.1. Let m � 2, ˇ 2 .0; 1/ and s � 2. There exists Cm;ˇ;s > 0 with the
following property: for all m � 1, all Banach spaces X1; : : : ; Xm of dimension n, all
sequences of random variables .�.j//j2Nm defined on .�;A;P /, and all .x.j/�/j2Nm �

X�1 � � � � �X
�
m, setting

T .!; x/ D
X

j2Nm

�.j/.!/x.j/�.x/;

we have

sup
x2BX1�����BXm

jT .!; x/j � Cm;ˇ;sn
1=s sup

x2BX1�����BXm

kT .�; x/k s

for all ! in a set of probability greater than ˇ.

Proof. Fix ! 2 � and let x; y 2 BX1 � � � � � BXm . Then, writing

T .!; x/ � T .!; y/ D

mX
kD1

T .!; y.1/; : : : ; y.k�1/; x.k/ � y.k/; x.kC1/; : : : ; x.m//

we get
jT .!; x/ � T .!; y/j � m"kT .!; �/k

provided kx.i/ � y.i/k � " for all i D 1; : : : ;m. Setting "D 1=.2m/, and since eachXi has
dimension n, we can find a finite "-covering F of BX1 � � � � � BXm with card.F / � Anm,
where the constant Am does not depend on n. Thus, for all ! 2 �,

kT .!; �/k � 2 sup
x2F

jT .!; x/j:
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Now, for R > 0,

P
�

sup
x2F

jT .�; x/j > R
�
�

X
x2F

P .jT .�; x/j > R/

�

X
x2F

P

�
 s

�
T .�; x/

kT .�; x/k s

�
�  s

�
R

kT .�; x/k s

��
�

Anm

 s
�

R
kT.�;x/k s

� � exp.n logAm/

exp
�

Rs

kT.�;x/ks s
� 1

� :
It remains to choose Rs D �kT .�; x/ks sn log.Am/ for a sufficiently large �.

As soon as finite subsets of M.m; n/ satisfying certain properties can be exhibited,
Proposition 4.1 can be used to prove the optimality of our estimation of HL.ƒ;p/.

Proposition 4.2. Let m � 2, d 2 Œ1; m�, � � Œ1;C1� and C > 0. Assume that, for all
N � 1, there exist n � N and a set ƒn � M.m; n/ such that, for all p 2 � , setting
p D .p; : : : ; p/,

 ƒn.s/ � Cs
d for all s � 1I

 ƒn.n/ � C
�1nd I

sup
x2B`p

�X
j2ƒn

jxjj
2
�1=2
� Cnd=2�j1=pj:

Then there exists ƒ � Nm with dim.ƒ/ D d and, for all p 2 � ,

HL.ƒ;p/�1 �
d C 1

2d
�

ˇ̌̌̌
1

dp

ˇ̌̌̌
:

Proof. By induction, it is easy to construct a set ƒ � Nm, a constant C > 0 and an
increasing sequence of integers .n`/ such that
�  ƒ.s/ � Cs

d for all s � 1;
� for all ` � 1, there exist subsets A1; : : : ; Am of N with card.Ai / D n` and

card.ƒ \ .A1 � � � � � Am// � C�1nd` ;

sup
x2B`p

� X
j2ƒ\.A1�����Am/

jxjj
2
�1=2
� Cn

d=2�j1=pj
`

:

Fix `� 1 and setƒ0 Dƒ\ .A1 � � � � �Am/. Consider a sequence .".j//j2ƒ0 of inde-
pendent Bernoulli variables defined on the same probability space .�;A;P /. Applying
Proposition 4.1 with s D 2, �.j/ D ".j/, Xk D p̀.Ak/, and x�j .x/ D xj, we get an m-

linear form T .x/D
P
j2ƒ0

ı.j/xj with jı.j/j D 1 and kT k � Cn1=2Cd=2�j1=pj
`

(we recall
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that the  2-norm of a Rademacher process is comparable to its L2-norm [18]). Pick now
s 2 HL.ƒ;p/. Using this particular T , we get

n
d=s

`
� Cn

1=2Cd=2�j1=pj
`

:

leading to the result.

4.2. Random sets

Proposition 4.2 shows the importance of producing subsets ƒ of Nm with big combina-
torial dimension and such that supx2B`p

P
j2ƒ jxjj

2 is as small as possible. We will partly
construct such sets using a probabilistic argument, which modifies a construction of Blei
and Körner [11], who produce sets with arbitrary combinatorial dimension, to include the
control of supx2B`p

P
j2ƒ jxjj

2. This last property will be ensured using again Proposi-
tion 4.1, but not for a Bernoulli sequence.

We begin with a lemma allowing the modification of a set of precise combinatorial
dimension into a subset of another combinatorial dimension, with additional properties.

Lemma 4.3. Letm� 1, ı 2 Œ1;m�, d 2 Œ1; ı/. There existsD > 0 such that, for all n� 2,
all C > 0, all ƒ0 �M.m; n/, satisfying

 ƒ0.s/ � Cs
ı for all s � 1;  ƒ0.n/ � C

�1nı ;

all ˛; ˇ; 
 � 0 and all p 2 Œ2;C1/m satisfying, with qj D pj =2,

sup
y2B`q

X
j2ƒ0

jyjj � Cn
˛; (13)

sup
y2B`q

�X
j2ƒ0

jyjj
2
�1=2
� Cnˇ ; (14)

sup
y2B`p

X
j2ƒ0

jyjj � Cn

 ; (15)

there exists ƒ �M.m; n/ with

 ƒ.s/ � CDs
d for all s � 1; (16)

 ƒ.n/ � C
�1D�1nd ; (17)

sup
x2B`p

�X
j2ƒ

jxjj
2
�1=2
� CDmax

�
n.d�ıC˛/=2;

n1=4Cˇ=2

.logn/1=4

�
; (18)

sup
x2B`p

X
j2ƒ

jxjj � CDmax
�
nd�ıC
 ;

n1=2C˛=2

.logn/1=2

�
: (19)

Remark 4.4. It will be clear from the proof that if we only assume (13) and (14), we still
get a set ƒ satisfying (16)–(18).
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Proof of Lemma 4.3. Let .�.j//j2ƒ0 be a sequence of independent random variables
defined on .�;A;P / such that, for all j 2 ƒ0,

P .�.j/ D 1/ D nd�ı ; P .�.j/ D 0/ D 1 � nd�ı :

We set ƒ.!/ D ¹j 2 ƒ0I j�.j/j D 1º and we show that, with high probability, ƒ.!/
satisfies (16) and (17). We will need the following elementary result about the binomial
distribution (see for instance [10, Chapter XIII]): if S follows the binomial distribution
with parameters N and p and if k � 2Np, then

P .S � k/ � 2

�
N

k

�
pk : (20)

Let s 2 ¹1; : : : ; nº and letADA1 � � � � �An be an s-hypercube of M.m;n/ (meaning that
card.Ai / D s for all s). Let also k D Bsd for some B � max.2C; 1/ whose precise value
will be fixed later. Observe that k � 2Csınd�ı . Hence (20) with N D card.ƒ0 \A/ and
p D nd�ı implies that

P
� X

j2A\ƒ0

�.j/ � k
�
� 2

�
N

k

�
pk �

2N k

kŠ
n.d�ı/k �

2C ksık

kke�kn.ı�d/k
:

We take the sum over all s-hypercubes of M.m;n/. Since there are
�
n
s

�m such hypercubes,
we get

P
� X

j2A\ƒ0

�.j/ � k for some s-hypercube A
�
�

�
n

s

�m
2C ksık

kke�kn.ı�d/k

�
nms

smse�ms
�

2C ksık

Bksdke�kn.ı�d/k
�
2C kekCms

Bk
�

�
s

n

�.ı�d/k�ms
:

If we choose B � 2CemC2, then

2C kekCms

Bk
� e�kem.s�k/ � e�s

since k � s. On the other hand, if we choose B � .mC 1/=.ı � d/, then .ı � d/k �ms
� s so that �

s

n

�.ı�d/k�ms
�

�
s

n

�s
:

We deduce that

P
� X

j2A\ƒ0

�.j/ � k for some s-hypercube A, s D 1; : : : ; n
�
�

nX
sD1

es
�
s

n

�s
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and this last quantity goes to zero as n!C1. Moreover, since

E
�X

j2ƒ0

�.j/
�
� C�1nınd�ı D C�1nd and Var

�X
j2ƒ0

�.j/
�
� Cnd ;

it follows from Chebyshev’s inequality that, provided B is large enough, we can require
P .
P

j2ƒ0 �.j/ � .BC/
�1nd / to be as small as we want, independently of n. Hence, with

large probability, the random set ƒ.!/ satisfies (16) and (17).
Let us turn to the proof of (18) and (19). We first observe that

sup
x2B`p

X
j2ƒ.!/

jxjj
2
D sup
y2B`q

X
j2ƒ.!/

yj D sup
y2B`q

X
j2ƒ0

�.j/.!/yj:

Set �.j/.!/D �.j/.!/� nd�ı so that .�.j//j2ƒ0 is a family of independent and zero-mean
random variables. ThenX

j2ƒ0

�.j/.!/yj D n
d�ı

X
j2ƒ0

yj C
X
j2ƒ0

�.j/.!/yj:

By Proposition 4.1 with s D 2 and (13) we get, with large probability,

sup
y2B`q

ˇ̌̌X
j2ƒ0

�.j/.!/yj

ˇ̌̌
� Cnd�ıC˛ C Cmn

1=2 sup
y2B`q

kT .�; y/k 2

where T .!; y/ D
P

j2ƒ0 �.j/.!/yj. Now it is well-known that

kT .�; y/k 2 D sup
r�2

kT .�; y/kr

r1=2
:

Moreover, the Lr -norm of a sum of nonsymmetric Bernoulli variables has been estimated
in [20]. With " D nd�ı , Theorem 2.1 of [20] implies that

kT .�; y/kr � D0
p
r kT .�; y/k2 �

8<:
q

1="
log.1="/ if r � log.1="/;

.1="/1=2�1=r if r � log.1="/:

Since

kT .�; y/k22 D
X
j2ƒ0

�
.1 � "/2"C "2.1 � "/

�
jyjj

2
� D1"

X
j2ƒ0

jyjj
2;

it follows from the increase of the map r 7! .1="/1=2�1=r=
p
r on the interval Œ2; log.1="/�

that

kT .�; y/k 2 �
D2p

log.1="/

�X
j2ƒ0

jyjj
2
�1=2
�

D2p
log.1="/

nˇ
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by (14). Hence we get, with large probability,

sup
y2B`q

ˇ̌̌X
j2ƒ0

�.j/.!/yj

ˇ̌̌
� Cnd�ıC˛ C

CD2
p

logn
� n1=2Cˇ ;

which gives in turn (with large probability) (18) forƒD ƒ.!/, by taking the square root.
The proof of (19), again with ƒ D ƒ.!/ and with large probability, is completely similar
and left to the reader.

Let us show now what happens if we apply the previous lemma, starting from ƒ0 D

M.m; n/. From now on, we fix p 2 Œ1;C1� and consider p D .p; : : : ; p/ 2 Œ1;C1�m.

Corollary 4.5. Letm� 2 and let d 2 Œ.mC 1/=2;m�. There existsƒ�Nm with dim.ƒ/
D d such that, for all p 2 Œ2;C1� with m=p � 1=2,

HL.ƒ;p/�1 D
d C 1

2d
�

ˇ̌̌̌
1

dp

ˇ̌̌̌
:

Proof. We apply Lemma 4.3 with p D 4, ƒ0 DM.m; n/, ı D m, ˛ D m � j2=pj, ˇ D
m=2 � j2=pj D 0. Since d � .mC 1/=2, we know that d � ı C ˛ � 1=2. Hence we get
for all n � 1 a set ƒn � M.m; n/ satisfying  ƒn.s/ � Cs

d for all s � 1,  ƒn.n/ �
C�1nd and supx2B`p

.
P

j2ƒn jxjj
2/1=2 � Cnd=2�j1=pj. This last property is also true for

p D C1 (it is a consequence of  ƒn.n/ � Cn
d ). Thus by interpolation, it is true for all

p 2 Œ4;C1�, in particular for all p 2 Œ2m;C1�. We now conclude by applying Propo-
sition 4.2.

To get the full range of d given by Theorem 1.1, we will need to iterate the construc-
tion and to start from sets different from M.m; n/. Observe that in the proof of Corollary
4.5, we applied Lemma 4.3 without the assumption (15) (and thus we did not get the con-
clusion (19)). The full strength of Lemma 4.3 will be needed only when we iterate the
construction.

4.3. Fractional cartesian products

Let l � 1, 1 � k � l and let U D ¹S1; : : : ; Smº be a k-cover of ¹1; : : : ; lº, i.e. each Sj
is a subset of ¹1; : : : ; lº of cardinality k and their union is ¹1; : : : ; lº. The cover is said
to be uniformly q-incident if each j 2 ¹1; : : : ; lº belongs to exactly q different sets in
S1; : : : ; Sm.

If l is fixed and U D ¹S1; : : : ; Smº is a k-cover of ¹1; : : : ; lº, we define

NU
D ¹.…S1.j/; : : : ;…Sm.j//I j 2 Nl

º � Nk
� � � � �Nk .m times/

where …S .j/ D .jk/k2S . We may and will see NU as a subset of Nm by identifying Nk

with N through any bijection. For a single set S , NS will simply denote Ncard.S/. It is
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shown in [10, Theorem 14 and Corollary 16, Chapter XIII] that, provided U is uniformly
incident, there exists C > 0 such that, for all s � 1,

C�1sl=k �  NU .s/ � Cs
l=k :

In particular NU has combinatorial dimension l=k.
We shall need the following variant of the left hand inequality.

Lemma 4.6. Let U D ¹S1; : : : ; Smº be a k-cover of ¹1; : : : ; lº. For all n large enough,
the set ƒ0 D NU \ .¹1; : : : ; nºk/m satisfies  ƒ0.n

k/ � nl :

Proof. Setting, for j D 1; : : : ; m, Aj D ¹1; : : : ; nºk , it suffices to observe that the map
¹1; : : : ; nºl 3 j 7! .…S1.j/; : : : ;…Sm.j// 2 .A1 � � � � � Am/ \NU is a bijection.

To illustrate this part of the work, let us provide an example: S1 D ¹1; 2º, S2 D
¹3; 1º and S3 D ¹2; 3º is a 2-cover of ¹1; 2; 3º which is uniformly 2-incident. Let U D
¹S1; S2; S3º. Then

NU
D ¹..i; j /; .k; i/; .j; k//I .i; j; k/ 2 N3

º � N2
�N2

�N2:

If we fix a bijection � W N2 ! N, NU may be seen as a subset of N3:

NU
D
®�
�.i; j /; �.k; i/; �.j; k/

�
I .i; j; k/ 2 N3

¯
:

With this point of view, NU becomes a subset of N3 with combinatorial dimension 3=2.
We will need a result allowing us to estimate .

P
j2NU jxjj

2/1=2 for all x 2 B`p . This
is provided by the next lemma, where we do not need that the cover is made up of subsets
of the same cardinality (this will be important during the proof). Because of the identi-
fication between NS and N and to avoid the confusion with the product xj, an element
x 2 `1.Ns/ will be denoted .xj /j2NS .

Lemma 4.7. Let l � 1, and let U D ¹S1; : : : ; Smº be a cover of ¹1; : : : ; lº which is
uniformly q-incident. For any x D .x.1/; : : : ; x.m// 2 `1.NS1/ � � � � � `1.NSm/ with
nonnegative entries, X

j2Nl

mY
kD1

x
.k/

…Sk .j/
�

mY
kD1

� X
j2NSk

.x
.k/
j /q

�1=q
:

In our example, this inequality simply says that, for all x; y; z 2 `1.N2/ with non-
negative entries,X

.i;j;k/2N3

xi;jyk;izj;k �
�X
i;j

x2i;j

�1=2�X
i;j

y2i;j

�1=2�X
i;j

z2i;j

�1=2
:
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Proof of Lemma 4.7. We use induction on l . The case l D 1 is easy: reordering the sets
if necessary, we have S1 D � � � D Sq D ¹1º, SqC1 D � � � D Sm D ; and the inequality

X
j2N

qY
kD1

x
.k/
j �

qY
kD1

�X
j2N

.x
.k/
j /q

�1=q
is just Hölder’s inequality. Assume now that the result has been shown up to l � 1 and let
us prove it for l . Reordering the sets Sk if necessary, we may assume that l 2 S1; : : : ; Sq
(thus l … SqC1; : : : ; Sm). We then write

X
j2Nl

mY
kD1

x
.k/

…Sk .j/
D

X
bjl2Nl�1

mY
kDqC1

x
.k/

…Sk .
bjl / X
jl2N

qY
kD1

x
.k/

…Sk .j/

(the notation …Sk .
bjl / is well-defined for k D q C 1; : : : ; m because l … Sk). We then

write X
j2Nl

mY
kD1

x
.k/

…Sk .j/
�

X
bjl2Nl�1

mY
kDqC1

x
.k/

…Sk .
bjl /

qY
kD1

�X
jl2N

.x
.k/

…Sk .j/
/q
�1=q

by Hölder’s inequality. Set Tk D Sk n ¹lº if k 2 ¹1; : : : ; qº, Tk D Sk if k 2 ¹qC 1; : : : ;mº,
y
.k/
j D .

P
jl
.x
.k/
…Sk.j;jl /

/q/1=q if k 2 ¹1; : : : ; qº and j 2 NTk , and y.k/j D x
.k/
j if k 2

¹q C 1; : : : ; mº and j 2 NTk . Then the previous inequality readsX
j2Nl

mY
kD1

x
.k/

…Sk .j/
�

X
j2Nl�1

mY
kD1

y
.k/

…Tk .j/
:

Now, ¹T1; : : : ; Tmº is a uniformly q-incident cover of ¹1; : : : ; l � 1º and the induction
hypothesis leads toX

j2Nl

mY
kD1

x
.k/

…Sk .j/
�

mY
kD1

� X
j2NTk

.y
.k/
j /q

�1=q
�

mY
kD1

� X
j2NSk

.x
.k/
j /q

�1=q
:

In particular the previous lemma implies that if U D ¹S1; : : : ; Smº is a k-cover of
¹1; : : : ; lº which is uniformly q-incident, then the setƒD NU � Nm satisfies dim.ƒ/D
l=k and supx2B`p

P
j2ƒ jxjj

2 <C1 for p D 2q. These sets are good candidates in order
to apply Proposition 4.2. Therefore, it is important to exhibit this kind of sets. This can be
done easily.

Lemma 4.8. Letm � 2 and q 2 ¹1; : : : ;mº. There exists a q-cover U D ¹S1; : : : ; Smº of
¹1; : : : ; mº which is uniformly q-incident.
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Proof. For 1 � k � mq, define xk D r with r 2 ¹1; : : : ; mº and k D r .mod m/. For
j D 1; : : : ; m, let Sj D ¹x.j�1/qC1; : : : ; x.j�1/qCqº. Since each r 2 ¹1; : : : ; mº appears
q times in the sequence x1; : : : ; xmq , ¹S1; : : : ; Smº is a q-cover of ¹1; : : : ; mº which is
uniformly q-incident.

It could be observed that the sets Sj in the previous covering are not necessarily dis-
tinct. For instance, if m is even and q D m=2, then S2jC1 D ¹1; : : : ; m=2º for all j . We
can also think of the sets NU obtained thanks to the previous lemma as a way to gener-
alize Diag.Nm/ to higher dimensions. The set Diag.Nm/ itself corresponds to the case
S1 D � � � D Sm D ¹1; : : : ; mº. We can also observe that our example above corresponds
to the proof of the lemma with m D 3 and q D 2.

As an immediate consequence of this construction, we get the last part of Theorem 1.2.

Corollary 4.9. Let m � 2 and let d 2 Œ1;m� with m=d an integer. There exists ƒ � Nm

with dim.ƒ/ D d such that, for all p 2 Œ2;C1� with m=p � 1=2,

HL.ƒ;p/�1 D
d C 1

2d
�

ˇ̌̌̌
1

dp

ˇ̌̌̌
:

Proof. Let q D m=d and let U be the covering designed in Lemma 4.8. We set ƒ D
NU \M.m; n/, where we have identified Nq and N in the definition of NU . Observe
that for all x 2 B`2q , Lemma 4.7 ensures that�X

j2ƒ

jxjj
2
�1=2
�

mY
kD1

�X
j2N

jx
.k/
j j

2q
�1=2q

� n0 D nd=2�j1=.2q/j:

By interpolation, for all p 2 Œ2q;C1�, in particular for all p 2 Œ2m;C1�, we get

sup
x2B`p

�X
j2ƒ

jxjj
2
�1=2
� nd=2�j1=pj:

We conclude by using Proposition 4.2.

4.4. Mixing the arguments

In this section, we iteratively apply the random methods of Section 4.2 in the fractional
cartesian products NU described in Section 4.3.

Proposition 4.10. Letm�2, p02¹1; : : : ;mº, k�1, and d 2Œ1C.m=p0�1/=2k�1;m=p0�.
There exists C > 0 such that, for all n 2 N, there exists ƒ �M.m; n/ satisfying, for all
p 2 Œ2kp0;C1�,

 ƒ.s/ � Cs
d for all s � 1;  ƒ.n/ � C

�1nd ;

sup
x2B`p

X
j2ƒ

jxjj � Cn
d�j1=pj; (21)

sup
x2B`p

�X
j2ƒ

jxjj
2
�1=2
� Cnd=2�j1=pj: (22)
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Observe that the case p0D 1, kD 2 has already appeared in the proof of Corollary 4.5.

Proof of Proposition 4.10. We fix m � 2, p0 2 ¹1; : : : ; mº and for all k � 1, set dk D
1 C .m=p0 � 1/=2

k�1, pk D 2kp0, ˛k D dk � m=pk , ˇk D dk=2 � m=pk , 
k D
dk �m=pkC1. We use induction on k. For the base case, we observe that d1 Dm=p0 and
thus we only have to consider the case d D d1. We consider the set NU devised in the
proof of Corollary 4.9 for q D p0. Inequality (22) for p D p1 has already been obtained
in that proof, whereas (21) follows in the same vein from Lemma 4.7: for x 2 B`p1

,

X
j2ƒ

jxjj �

mY
kD1

� nX
jD1

jx
.k/
j j

p0
�1=p0

� .n1�p0=p1/m=p0 � nm=p0�m=p1 D n˛1 :

Since these inequalities are clear for p D C1, we obtain their validity for all p 2
Œp1;C1�:

Assume now that the proof has been done until step k. Let n � 1 and let ƒk be the
set obtained at step k for d D dk . Then the assumptions of Lemma 4.3 are satisfied with
ƒ0 D ƒk , p D pkC1, ˛ D ˛k , ˇ D ˇk and 
 D 
k (we apply the induction hypothesis to
pD pk to get (13) and (14) and to pD pkC1 to get (15)). Now, since dkC1D .dk C 1/=2,
for all d 2 ŒdkC1; dk � we get

d � dk C ˛k � dkC1 �
m

pk
�
1

2
C ˇk ;

d � dk C 
k � dkC1 �
m

pkC1
�
1C ˛k

2
:

Therefore, we obtain a set ƒkC1 (depending on d ) satisfying  ƒkC1.s/ � DCs
d for all

s � 1,  ƒkC1.n/ � D
�1C�1nd and

sup
x2B`pkC1

X
j2ƒkC1

jxjj � DCn
d�dkC
k D DCnd�m=pkC1 ;

sup
x2B`pkC1

� X
j2ƒkC1

jxjj
2
�1=2
� DCn.d�dkC˛k/=2 D DCnd=2�m=pkC1 :

For p 2 ŒpkC1;C1� we conclude the proof by interpolation.

Combining Propositions 4.2 and 4.10, we immediately get the following ranges of m,
d and p such that inequality (a) in Theorem 1.1 is optimal.

Corollary 4.11. Letm� 2, p0 2 ¹1; : : : ;mº and k � 1 be such thatm� 2k�1p0. Then for
all d 2 Œ1C .m=p0 � 1/=2k�1;m=p0�, there exists a setƒ � Nm such that dim.ƒ/D d
and, for all p � 2m,

HL.ƒ;p/�1 D
d C 1

2d
�

ˇ̌̌̌
1

dp

ˇ̌̌̌
: (23)
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Observe that the statement of Corollary 4.11 remains true for all k � 1 (without the
assumption m � 2k�1p0) provided we assume p � 2kp0. Therefore, if we only want to
prove the validity of (23) for p in a smaller interval than Œ2m;C1�, then we are allowed
to choose smaller values for d .

We now prove the first two points of Theorem 1.2. Our strategy is to apply
Corollary 4.11 to several values of p0, hoping that the union of the intervals
Œ1C .m=p0 � 1/=2

k�1; m=p0� for p0 2 ¹1; : : : ; mº and m � 2k�1p0 covers a large part
of Œ1;m�.

Proof of Theorem 1.1. We first apply Corollary 4.11 with p0 D 1 (this means that we
start the iteration with M.m; n/). If m D 2 or m D 3, we may only choose k D 1. This
shows that for d 2 Œ3=2; 2� if m D 2, for d 2 Œ2; 3� if m D 3, and for p � 2m, we may
find a setƒ �Nm with dim.ƒ/D d andHL.ƒ;p/�1 D dC1

2d
�
ˇ̌
1
dp

ˇ̌
: This is exactly the

content of Theorem 1.1 for m D 2 or m D 3.
Assume now that m � 4 and let k � 1 be such that 2k�1 � m < 2k . Then

1C
m � 1

2k�1
� 1C

2.m � 1/

m
� 3:

This implies that for all d 2 Œ3; m�, we may find ƒ � Nm with dim.ƒ/ D d and
HL.ƒ;p/�1 D dC1

2d
�
ˇ̌
1
dp

ˇ̌
for all p � 2m.

To allow d become smaller than 3, we will start from a fractional cartesian prod-
uct NU instead of M.m; n/. We write m D 2bm=2c C u, u 2 ¹0; 1º and we apply Corol-
lary 4.11 with p0 D bm=2c and k D 2 so that 2k�1p0 � m < 2kp0. After a small com-
putation, we find that the desired conclusion holds true provided d belongs to

Im D

�
3

2
C

u

2 bm=2c
; 2C

u

bm=2c

�
:

We then write m D 2bm=4c C v, v 2 ¹0; 1; 2; 3º, and we apply Corollary 4.11 for
p0 D bm=4c and k D 3. This time we find that the conclusion holds true for d in

Jm D

�
7

4
C

v

4bm=4c
; 4C

v

bm=4c

�
:

The proof is finished if we are able to prove that

Im [ Jm �

�
3

2
C

u

2 bm=2c
; 3

�
:

This is clear if v D 0 or v D 1, because in these cases the minimal element of Jm is less
than or equal to 2. If v D 2, then u D 0 and we have to verify that

7

4
C

1

2bm=4c
� 2:
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This inequality is true starting from m D 10; unfortunately, it is false for m D 6 where
I6 [ J6 D Œ3=2; 2� [ Œ9=4; 6�. When v D 3, we know that u D 1 and we have to verify
that

7

4
C

3

4bm=4c
� 2C

1

2bm=2c
:

This is true for m � 11, but false when m D 7 where I7 D Œ5=3; 7=3� and J7 D Œ5=2; 7�.
Thus it remains to handle the casesmD 6 andmD 7. We again apply Corollary 4.11,

this time with p0D 2 and kD 2. Then the result holds true for all d inKm withK6D Œ2;3�
and K7 D Œ9=4; 7=2�. The interval Km fills the gap between Im and Jm for m D 6 and
m D 7.

We conclude this section by a result which may be seen as an extension of the Kahane–
Salem–Zygmund strategy to produce multilinear forms with many unimodular coeffi-
cients and small norm. It follows immediately from the arguments given throughout this
work.

Corollary 4.12. Let m � 2, p0 2 ¹1; : : : ; mº, k � 1, d 2 Œ1C .m=p0 � 1/=2k ; m=p0�
and let p � 2kp0. There exists C > 0 such that, for all n � 1, there exist ƒ �M.m; n/

with card.ƒ/ � C�1nd and T D
P

j2ƒ ".j/xj with j".j/j D 1 satisfying

kT kL.m`p/ � Cn
1=2Cd=2�j1=pj:

5. Steiner systems and different norms of multilinear forms

5.1. Steiner systems

In [16], the authors produce multilinear forms (more precisely, polynomials) with
around nm�1 unimodular coefficients and small norm. More precisely, they show that
there exists ƒ � M.m; n/ with card.ƒ/ � C�1nm�1 and T .x/ D

P
j2ƒ ".j/xj with

j".j/j D 1 an m-linear form on p̀ satisfying

kT kL.m`p/ � C.logn/3=pnm=2�m=p for all p � 2: (24)

Their subsetƒ satisfies a very special combinatorial property:ƒ is a partial .m� 1;m;n/
Steiner system, meaning thatƒ is a collection of subsets of ¹1; : : : ; nº of sizem such that
every subset containing m � 1 elements is contained in at most one element of ƒ. They
use this combinatorial property to produce (with a random method) such a multilinear
form with spectrum in ƒ.

Our results improve when p � 4 that of [16] by deleting a logarithmic factor. Indeed,
provided m � 3 (to be sure that m � 1 � .m C 1/=2 but the case m D 2 is easy by
taking for ƒ the diagonal of M.2; n/), Corollary 4.12 gives us a set � �M.m; n/ with
card.ƒ/ � C�1nm�1 and an m-linear form T .x/ D

P
j2ƒ ".j/xj on p̀ , with j".j/j D 1

for all j 2 ƒ, satisfying
kT kL.m`p/ � Cn

m=2�m=p: (25)
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Unfortunately, our method does not give a bound similar to (24) when p 2 Œ2; 4/. In
particular, we do not recover the very interesting fact that for all " > 0, there exists C > 0

such that, for all n, there existƒ�M.m;n/with card.ƒ/� C�1nm�1, T D
P

j2ƒ ".j/xj
with j".j/j D 1 and kT kL.m`2/ � Cn

". We shall explain below why we think we cannot
obtain this by using our arguments.

This leads us to the following problem.

Problem 5.1. Let m � 2 and d 2 Œ1;m�. Define

�mult.m; d/ D
°
p � 1I for all " > 0, there exists C > 0 such that, for all n 2 N,

there exists ƒ �M.m; n/ with card.ƒ/ � C�1nd and

T D
X
j2ƒ

".j/xj with j".j/j D 1 satisfying kT kL.m`p/ � Cn
"
±

and 
mult.m; d/ D sup�mult.m; d/. What is the value of 
mult.m; d/?

The work of [16] shows that 
mult.m;m� 1/� 2 by taking forƒ a partial .m� 1;m;n/
Steiner system whereas 
mult.m; 1/ � m by choosing for ƒ the diagonal of M.m; n/.

Problem 5.1 is related to the following one, which is reminiscent of Lemma 4.7.

Problem 5.2. Let m � 2 and d 2 Œ1; m�. Define 
prod.m; d/ as the supremum of those
p � 1 for which there exists ƒ � Nm with dim.ƒ/ D d and

sup
x2B`p

X
j2ƒ

jxjj < C1: (26)

What is the value of 
prod.m; d/?

It is clear that 
prod.m; d/ � 
mult.m; d/. Moreover, whenm=d D q is an integer, tak-
ing for U a uniformly q-incident q-cover of ¹1; : : : ;mº and setting ƒ D NU , Lemma 4.7
tells us that 
prod.m; d/ � m=d .

Although we do not know the answer to Problem 5.1, we can at least give upper
bounds and lower bounds for 
mult.m; d/ which allow us to settle certain cases.

Proposition 5.3. Let m � 2 and d 2 Œ1;m�. Then


mult.m; d/ � min
�
m � dde C 1;

2m

d C 1

�
:

Moreover, if d is an integer andmD k.d C 1/ for some k 2 N, then 
mult.m; d/D
2m
dC1

:

Corollary 5.4. Let m � 2.

� If d 2 .m � 1;m�, then 
mult.m; d/ D 1.

� If d 2 .m � 2;m � 1�, then 
mult.m; d/ D 2.
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This corollary explains why our method does not seem clever enough to produce
multilinear forms with norm less than n" on p̀ , with at least nd unimodular coefficients
and with an optimal relation between d ,m and p. In particular, the map d 7! 
mult.m; d/

is not continuous atm� 1, a property which seems difficult to capture with a probabilistic
construction.

We shall give a proof of Proposition 5.3 in the next subsection.

5.2. The sup-norm vs norm of the coefficients of multilinear forms

The proof of Proposition 5.3 is linked to the following general problem: given
m; n; p; r , what is the best constant Amp;r .n/ such that, for all m-linear forms T .x/ DP

j2M.m;n/ T .e.j//xj on p̀ , we have jT jr � Amp;r .n/kT kL.m`p/ where

jT jr WD
� X

j2M.m;n/

jT .e.j//jr
�1=r

‹

In particular, we are interested in the growth with respect to n of Amp;r .n/, m; p; r being
kept fixed. The Hardy–Littlewood inequality gives conditions for Amp;r .n/ to be bounded.
So far, the best known estimates of Amp;r .n/ come from [15] (see also [2]).

For two sequences .an/ and .bn/ of real numbers, we will write an � bn if there
exists C > 0 such that an � Cbn for every n, and an �n bn if an � bn and bn � an.

Theorem 5.5 ([15, Theorem 2.1]). Let m � 2 and p; r � 1. Then

(A) Amp;r .n/ � 1 when
�
1
2
�

1
r
�

mC1
2m
�

1
p

�
or
�
1
r
�

1
2

and m
p
� 1 � 1

r

�
.

(B) Amp;r .n/ � n
m=pC1=r�1 when 1

2m
�

1
p
�

1
m

and 1 � m
p
�

1
r
�

1
2

.

(C) Amp;r .n/ � n
m.1=pC1=r�1=2/� 12 when

�
mC1
2m
�

1
r

and 1
p
�

1
2

�
or
�
1
2
�

1
r
�

mC1
2m
�

1
r
C

1
p

and 1
p
�

1
2

�
.

(D) Amp;r .n/ � n
m=rC1=p�1 when 1

2
�

1
p

and 1 � 1
p
�

1
r

.

(E) Amp;r .n/� n.m�1/=r when 1
2
�

1
p
� 1 � 1

r
.

(F) Amp;r .n/ � n
1=r when m�1

p
� 1 � 1

r
and 1

m
�

1
p
�

1
m�1

.

Moreover, the power of n in (E) cannot be improved.

Observe in particular that the situation is completely clear form D 2 (in that case, the
region (F) does not appear). We can now control Amp;r .n/ in some other regions.

Proposition 5.6. Let k � 1 and m � k C 1. Define

Fk.m/ D

²
.p; r/ 2 Œ1;C1�2I

1

m � k C 1
�
1

p
�

1

m � k
and

m � k

p
� 1 �

1

r

³
:

Then Amp;r .n/� nk=r for all .p; r/ 2 Fk.m/.
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Proof. The result is already known for k D 1 (F1.m/ is nothing other than the region .F/
in Theorem 5.5). The other cases are proved by induction. Indeed, let us assume that
the result has been proved until k for all m � k C 1 and for all .p; r/ 2 Fk.m/. Let us
prove it for k C 1. Thus let m � k C 2 and .p; r/ 2 FkC1.m/. Let T 2 L.m p̀/ and for
i D 1; : : : ; n, let Ti 2L.m�1 p̀/ be defined by Ti .x.2/; : : : ; x.m//D T .ei ; x.2/; : : : ; x.m//.
Then X

j2M.m;n/

jT .e.j//jr D
nX
iD1

X
bj12M.m�1;n/

jTi .e.bj1//jr
� C

nX
iD1

nkkTikL.m�1`p/ � Cn
kC1
kT kL.m`p/

where we use the induction hypothesis for the .m � 1/-linear forms Ti , since .p; r/ 2
Fk.m � 1/.

We are now ready for the proof of Proposition 5.3.

Proof of Proposition 5.3. Let m � 2 and d 2 Œ1; m�. We first prove that 
mult.m; d/ �

m � dde C 1.
Let p < 
mult.m; d/ and assume that p > m � dde C 1, so that 1

p
< 1

m�ddeC1
. If

1=p � 1=m, there exists k 2 ¹1; : : : ; dde � 1º such that 1
m�kC1

�
1
p
< 1

m�k
. We then

select a very large value of r so that m�k
p
� 1� 1

r
. Now, let " > 0 be such that kC "r < d .

For any large integer n, one may find ƒ �M.m; n/ with card.ƒ/ � C�1nd and T .x/ DP
j2ƒ ".j/xj with j".j/j D 1 and kT kL.m`p/ � Cn

". Furthermore, jT jr � C�1=rnd=r .
Applying Proposition 5.6, we obtain nd=r � nk=rC", a contradiction.

If we now assume 1=p < 1=m, then we select r � 2 such that m=p < 1 � 1=r and
we get a similar contradiction by using case (A) of Theorem 5.5.

Let us now show that 
mult.m; d/ �
2m
dC1

. Let p < 
mult.m; d/. For all " > 0 and
all n 2 N, we consider ƒ � M.m; n/ with card.ƒ/ � C�1nd and T D

P
j2ƒ ".j/xj,

j".j/j D 1, satisfying kT kL.m`p/ � Cn
". Using Hölder’s inequality, we find that

kT kL.m`2m/ � n
m. 1p�

1
2m /kT kL.m`p/ � Cn

m=p�1=2C":

Now by Theorem 1.1 or by case (A) of Theorem 5.5, for r�1 D 1=2 � ",� X
j2Nm

jT .e.j//jr
�1=r
� CkT kL.m`2m/;

which implies
nd.1=2�"/ � Cnm=p�1=2C":

Letting n!C1 and then "! 0, we get the inequality p � 2m=.d C 1/.
Finally, assume that d is an integer and m D k.d C 1/. We modify the proof of [16,

Theorem 2.5] and we refer to that paper for the details we do not state here.
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Let ƒ0 � M.d C 1; n/ be a partial .d; d C 1; n/ Steiner system with at least nd

coefficients. We define the random m D k.d C 1/-linear form T .!; x/ on `2k by

T .!; x/ D
X
j2ƒ0

".j/x.1/j1 � � � x
.dC1/
jdC1

x
.dC2/
j1

� � � x
.2dC2/
jdC1

� � � x
.kdCk/
jdC1

where .".j//j2ƒ0 is a sequence of independent Bernoulli variables. The work done in [16]
implies that it is sufficient to show that

kT .�; x/ � T .�; y/k2 � C sup
lD1;:::;m

kx.l/ � y.l/k1

for any x; y 2 B`2k . Thus, let us fix x; y 2 B`2k and compute

kT .�; x/ � T .�; y/k2 D
�X

j2ƒ0

ˇ̌̌ mX
uD1

x
.1/
j1
� � � .x

.u/
j � y

.u/
j / � � �y

.m/
jdC1

ˇ̌̌2�1=2
�

mX
uD1

�X
j2ƒ0

jx
.1/
j1
� � � .x

.u/
j � y

.u/
j / � � �y

.m/
jdC1
j
2
�1=2

(in these sums, if l 2 ¹0; : : : ; k � 1º is the single integer such that u belongs to
¹l.d C 1/ C 1; : : : ; l.d C 1/ C d C 1º, then j is linked to u by u D l.d C 1/ C j ).
We shall prove that, for all u 2 ¹1; : : : ; mº,�X

j2ƒ0

jx
.1/
j1
� � � .x

.u/
j � y

.u/
j / � � �y

.m/
jdC1
j
2
�1=2
� kx.u/ � y.u/k1:

To simplify the notations, assume that u D 1. Using Hölder’s inequality, we have�X
j2ƒ0

j.x
.1/
j1
� y

.1/
j1
/y
.2/
j2
� � �y

.m/
jdC1
j
2
�1=2

�

�X
j2ƒ0

jx
.1/
j1
� y

.1/
j1
j
2k
jy
.2/
j2
j
2k
� � � jy

.dC1/
jdC1

j
2k
�1=2k

�

k�1Y
lD1

�X
j2ƒ0

jy
.l.dC1/C1/
j1

� � �y
..lC1/.dC1//
jdC1

j
2k
�1=.2k/

:

Now, it is clear that, for all l D 1; : : : ; k � 1,�X
j2ƒ0

jy
.l.dC1/C1/
j1

� � �y
..lC1/.dC1//
jdC1

j
2k
�1=.2k/

�

� X
j2NdC1

jy
.l.dC1/C1/
j1

� � �y
..lC1/.dC1//
jdC1

j
2k
�1=.2k/

� 1;
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whereas it is explained in [16] why, because ƒ0 is a partial Steiner system and
y.2/; : : : ; y.dC1/ are in `2k ,�X

j2ƒ0

jx
.1/
j1
� y

.1/
j1
j
2k
jy
.2/
j2
j
2k
� � � jy

.dC1/
jdC1

j
2k
�1=2k

� kx.1/ � y.1/k1:

Question 5.7. Is it true that 
mult.m; d/ belongs to N for all m; d?
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National Research Agency ANR (project Front).
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