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Abstract. We establish localC 1;˛-regularity for some ˛2.0;1/ andC˛-regularity for any ˛2.0;1/
of local minimizers of the functional

v 7!

ˆ
�
'.x; jDvj/ dx;

where ' satisfies a .p;q/-growth condition. Establishing such a regularity theory with sharp, general
conditions has been an open problem since the 1980s. In contrast to previous results, we formulate
the continuity requirement on ' in terms of a single condition for the map .x; t/ 7! '.x; t/, rather
than separately in the x- and t -directions. Thus we can obtain regularity results for functionals
without assuming that the gap q=p between the upper and lower growth bounds is close to 1.
Moreover, for '.x; t/ with particular structure, including p-, Orlicz-, p.x/- and double phase-
growth, our single condition implies known, essentially optimal, regularity conditions. Hence, we
handle regularity theory for the above functional in a universal way.

Keywords. Maximal regularity, non-autonomous functional, variable exponent, double phase,
non-standard growth, minimizer, Hölder continuity, generalized Orlicz space, Musielak–Orlicz
space

1. Introduction

The calculus of variations is a classical and still active topic in mathematics which is con-
nected not only to other mathematical fields (partial differential equations, geometry, . . .)
and but also to applications (physics, engineering, economy, . . .). Research on regularity
of minimizers of the functional

v 7! F .v;�/ WD

ˆ
�

F.x;Dv/ dx
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has been a major topic in the calculus of variations and PDEs. If F depends only on
the gradient, i.e. F.x; z/ � F.z/, F is called an autonomous functional. The simplest
non-linear model case is the p-power function

F.z/ D jzjp; 1 < p <1:

The corresponding Euler–Lagrange equation is the p-Laplace equation div.jDujp�2Du/
D 0, and the maximal regularity of weak solutions of p-Laplace equations is C 1;˛ for
some ˛ 2 .0; 1/ depending only on p and the dimension n. We refer to [1, 32, 40, 58,
62, 78–80, 82, 83] for classical results on C 1;˛-regularity for equations and systems of
p-Laplacian type.

On the other hand, if F depends on both the space variable and the gradient, F is
called a non-autonomous functional, and this has been a central topic in contemporary
regularity theory. The main approach to such minimization problems is due to Giaquinta
and Giusti [47, 48]. It is based on the following p-type growth conditions:8̂̂̂<̂

ˆ̂:
z 7! F.x; z/ is C 2;
�jzjp � F.x; z/ � L.1C jzjp/;

�.�2 C jzj/.p�2/=2j�j2 � Fzz.x; z/� � � � L.�
2 C jzj2/.p�2/=2j�j2;

jF.x; z/ � F.y; z/j � !.jx � yj/.1C jzjp/:

This essentially corresponds to the perturbed case a.x/jzjp with the same p-type growth
assumed at all points. Lieberman [60] extended this to the case where jzjp is replaced
by '.jzj/. However, such structure conditions fail to accommodate many kinds of energy
functionals since the variability in the x- and z-directions are treated separately.

The need to treat the x- and z-directions separately leads Mingione to conclude in
his influential survey that “regularity results should be chased [in more general cases] by
looking at special classes of functionals and thinking of relevant model examples, thereby
limiting the degree of generality one wants to achieve” [71, p. 405]. In this spirit, the
most significant non-autonomous functionals in the literature have so-called Uhlenbeck
structure, i.e. F depends on t WD jzj instead of z,

F.x; z/ D '.x; jzj/ D '.x; t/;

and are the following:
I. Perturbed Orlicz: a.x/ .t/, where 0 < � � a.�/ � L and  0.t/ � t 00.t/.

II. Variable exponent: tp.x/, where 1 < p� � p.�/ � pC <1.
III. Double phase: tp C a.x/tq , where 1 < p � q and a.�/ � 0.

These models were first studied by Zhikov [85,86] in the 1980’s in relation to Lavrent’ev’s
phenomenon and have been considered in hundreds of papers since [71, 75]. In keeping
with Mingione’s thesis, regularity results for these cases have been established in indepen-
dent, idiosyncratic ways (cf. Section 2). Moreover, various variants and borderline cases
have been investigated, such as:

IV. Perturbed variable exponent: tp.x/ log.e C t /, e.g. [44, 59, 72, 74].
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V. Orlicz variable exponent: Œ .t/�p.x/ or  .tp.x//, e.g. [21, 45].
VI. Degenerate double phase: tp C a.x/tp log.e C t /, e.g. [9, 16].

VII. Orlicz double phase:  .t/C a.x/�.t/, e.g. [17].
VIII. Triple phase: tp C a.x/tq C b.x/t r , e.g. [31, 43].

IX. Double variable exponent: tp.x/ C tq.x/, e.g. [22, 77, 84].
X. Variable exponent double phase tp.x/ C a.x/tq.x/, e.g. [61, 76].

In this paper, we establish a general regularity theory for non-autonomous function-
als with Uhlenbeck structure based on a single condition involving both the x- and t -
directions. Specifically, we prove maximal local regularity properties, i.e. C 1;˛-regularity
for some ˛ 2 .0; 1/ and C ˛-regularity for any ˛ 2 .0; 1/. We consider a convex function
' W � � Œ0;1/! Œ0;1/ satisfying the following “vanishing A1” variant of (A1) (see
Definitions 3.4 and 4.1 below):
(VA1) There exists a non-decreasing continuous function ! W Œ0;1/ ! Œ0; 1� with

!.0/ D 0 such that for any small ball Br b �,

'CBr .t/ � .1C !.r//'
�
Br
.t/ for all t > 0 satisfying '�Br .t/ 2 Œ!.r/; jBr j

�1�;

where 'CBr .t/ and '�Br .t/ are the supremum and infimum of '.�; t / in Br , respectively. Let
us point out that (VA1) is optimal for Theorem 1.1 in the following sense: For any � < 1
assume that (VA1) is replaced by

'CBr .t/ � .1C !.r//'
�
Br
.t/ for all t > 0 satisfying '�Br .t/ 2 Œ!.r/; jBr j

�� �:

Then the conclusions of the theorem do not hold, as is shown by examples in [71] already
in the double phase case (cf. Corollary 8.6); see also [6,13]. Furthermore, 1C !.r/ in the
inequality from (VA1) ensures the continuity of the function, which is necessary already
in the perturbed linear case (cf. Corollary 8.1 and Remarks 1.3 and 1.4).

Theorem 1.1. Let ' 2 ˆw.�/, '.x; �/ 2 C 1.Œ0;1// for every x 2 � with @t' satisfying
(A0), (Inc)p�1 and (Dec)q�1 for some 1 < p � q .see Definition 3.1/ and let u 2W 1;'

loc .�/

be a local minimizer of the '-energy
ˆ
�

'.x; jruj/ dx: (1.2)

(1) If ' satisfies (VA1), then u 2 C ˛loc.�/ for any ˛ 2 .0; 1/.

(2) If ' satisfies (VA1) and !.r/ � crˇ for some c; ˇ > 0, then u 2 C 1;˛loc .�/ for some
˛ 2 .0; 1/. Here ˛ depends only on n; p; q; L and ˇ, where L � 1 is from (A0).

Remark 1.3. In this paper, we consider '.x; t/ continuous in x. It is clear that we can-
not remove the assumption limr!0 !.r/ D 0 from (VA1) and still obtain C ˛-regularity
for all ˛ 2 .0; 1/. However, continuity is not strictly speaking necessary, as it is known
for '.x; t/ D a.x/ .t/ with a locally VMO (vanishing mean oscillation) that the corre-
sponding minimizer is in C ˛loc for any ˛ 2 .0; 1/, in fact, in W 1;p

loc for any p > 1. It seems
that for this result the special multiplicative structure is important.
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Remark 1.4. If we consider solutions of the general linear elliptic equation div.A.x/Du/
D 0, whereA.x/ is a bounded and uniformly elliptic n� nmatrix, then the continuity ofA
does not imply that the function is Lipschitz or its derivative is continuous [56, Proposi-
tions 1.5 and 1.6]. Therefore, we cannot expect to remove the assumption !.r/ � crˇ

from (VA1) and still obtain C 1;˛-regularity.

We shall introduce notation, assumptions and properties of generalized ˆ-functions
and related spaces later in Section 3. Recall that local minimizer means that u satisfies

ˆ
�0
'.x; jruj/ dx �

ˆ
�0
'.x; jrvj/ dx

for every v 2 W 1;'.�0/ with u � v 2 W 1;'
0 .�0/ and �0 b �.

In fact, we will generalize (VA1) to a weaker version, (wVA1), which covers not
only (VA1) but its borderline cases (see Remark 4.2) as well as the PDE case (see
Remark 4.3), and under this condition we will prove C ˛- and C 1;˛-regularity (see Theo-
rems 7.2 and 7.4). As far as we know, these theorems cover all previously known results
(and several new ones) of C ˛- or C 1;˛-regularity for the functionals I–X (see Section 8)
with the exception of VMO coefficients (Remark 1.3).

Even in the case of autonomous functionals (i.e. '.x; t/ � '.t/), our results provide
slight extensions to the state-of-the-art. Up to now, maximal regularity for autonomous
functionals has been established assuming ' 2 C 1.Œ0;1// \ C 2..0;1//. However, in
this paper we only assume ' 2 C 1.Œ0;1//, that is, we do not assume that ' is twice
differentiable. For instance, '.t/ WD

´ t
0

min ¹s; s2ºds (cf. [5]) is covered by our result but
is not C 2.

Let us conclude the introduction by outlining the approach of the paper and pointing
out the main difficulties and innovations.

The first difficulty for a reasonable regularity theory is to find a well-designed condi-
tion for general '. The regularity conditions on ' for the types I–III seem unconnected to
one another, since in these cases, the behaviors of ' with respect to x and t can be inves-
tigated separately. Recently, on the other hand, the C ˛-continuity with some small ˛ > 0
for (quasi-)minimizers of the general non-autonomous functional has been established
under the so-called (A1) condition [13, 54, 55]:

'CBr .t/ � L'
�
Br
.t/ for all t > 0 satisfying '�Br .t/ 2 Œ1; jBr j

�1�: (1.5)

From this, it is natural to requireL! 1 as r! 0 for higher regularity. Additionally, small
values t � 1 were previously lumped into an additive constant using decay at infinity.
A more precise estimate, on the other hand, requires the previous condition to be extended
from Œ1; jBr j

�1� to Œ!.r/; jBr j�1�.
The main difficulty is to find a suitably regular auxiliary autonomous function Q'.t/ for

the perturbation technique in which one approximates the minimizer with the solution to a
related but simpler minimization problem. In order for the perturbation argument to work
under the assumption (VA1), the autonomous function Q'.t/ should satisfy the following
requirements:
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(1) Q' 2 C 1.Œ0;1// \ C 2..0;1// and t Q'00.t/ � Q'0.t/.
(2) For a given Br with small r 2 .0; 1/, Q'.t/ is sufficiently close in some sense to '.x; t/

for all .x; t/ 2 Br � Œt1; t2�, where t1 WD .'�Br /
�1.!.r// and t2 WD .'�Br /

�1.jBr j
�1/.

(3) �0.x; t/ WD '.x; Q'�1.t// satisfies (A0), (aInc)1, (aDec)q=p and (A1).
The construction of such Q' is quite non-trivial, since the property (3) is not satisfied in
general for either Q'.t/D '.y; t/with any choice of y 2Br or Q'.t/D '�Br .t/ (the expected
choices based on previous research). Note that for type II (variable exponent) or type
III (double phase), one can simply take Q'.t/ D tpr or Q'.t/ D tp C ar tq , where pr WD
infBr p.�/ and ar WD infBr a.�/, so this provides no guidance for the general case: in these
special cases t 7! '.x; Q'�1.t// satisfies (aInc)1 since a single point captures the slowest
growth for all values of t , whereas in general the slowest growth may occur at different
locations for different t .

The requirements (1)–(3) above are crucially used in our comparison step. Let v be
a minimizer of an autonomous functional with Q'-energy in Br satisfying v D u on @Br .
Then by (1) and known regularity results for Orlicz growth, we find that v is locally C 1;˛0
for some ˛0 2 .0;1/ (Lemma 4.12). Moreover, from (3) we can deduce a global non-linear
Calderón–Zygmund type estimate in the generalized Orlicz space L� with � D �1C�00 for
some �0 > 0 (Lemma 4.15), which implies that Dv 2 L'.Br / and so, with this v, we
can use the minimizing property of u. Note that this approach is new even for the double
phase problem, type III.

The Calderón–Zygmund type estimates (Lemma 4.15) in generalized Orlicz space L�

for the norm will be obtained by an extrapolation argument [29] and in this process (A1)
for � suffices. However, we need a mean integral version of Calderón–Zygmund type
estimate that is stable under change of size of the underlying domain and here (A1) for
� is not enough. We overcome this problem by replacing �.x; t/ with �.x; t/C tp1 for
suitable p1 > 1 along with delicate analysis. Note that �.x; t/C tp1 satisfies a stronger
assumption than (A1). As a consequence, there is “C1” in the mean integral version of
estimate (4.17).

We construct our approximation Q' and derive the comparison estimate for ' and Q' in
Section 5. In Proposition 5.12 we show that our approximation satisfies the assumptions
in (3) above, and in this step a new framework for generalized Orlicz spaces from [51]
is rather crucial. Then a comparison argument along with (2) and a higher integrability
result for Du imply that Du is sufficiently close to Dv in the mean oscillation sense
(Corollary 6.3).

We present proofs of some regularity results for autonomous problems in Appen-
dices A and B. We start this article with an overview of regularity theory in the .p; q/-
growth case (Section 2) and with notation and background (Section 3).

Remark 1.6. Constructing a suitable Q' is the main problem also in extending this
approach to the case without Uhlenbeck structure, i.e. energy functionals depending on
the derivative Du, not just its norm. Namely, an approximation Q' W � �Rn ! R affords
us much less room to operate in than Q' W�� Œ0;1/!R. Indeed, it is not even clear how
to state the appropriate assumptions in this case. In addition, the main tools from [51]
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concern only the isotropic case '.x; jDuj/. Therefore, the regularity of the anisotropic
minimization problem

´
'.x;Du/ dx remains a question for future research.

Remark 1.7. The vectorial case, i.e. u W � ! RN with N > 1, is also an interesting
issue. The main difficulty in this case is the following: in order that the local minimizer
of the regular autonomous functional with Orlicz function Q' D Q'.t/ have C 1;˛-regularity,
Q' should apparently satisfy not only t Q'00.t/� Q'0.t/ but also a Hölder type vanishing con-
dition on Q'00 (see [35, Assumption 2.2]). It is unclear whether (VA1) or some modification
implies the additional condition on Q'. This is also a future research topic.

2. Overview of regularity for .p; q/-growth and special cases

An alternative extension to the approach of Giaquinta and Giusti is to consider different
upper and lower growth rates, and replace the exponent on the right-hand side by q > p.
This leads to so-called .p; q/-growth functionals, for instance with assumptions8̂̂̂<̂

ˆ̂:
z 7! F.x; z/ is C 2;
�jzjp � F.x; z/ � L.1C jzjq/;

�.1C jzj/.p�2/=2j�j2 � Fzz.x; z/� � � � L.1C jzj
2/.q�2/=2j�j2;

jF.x; z/ � F.y; z/j � !.jx � yj/.1C jzjq/:

This case was introduced and systematically studied by Marcellini [63–67]. Several other
researchers also contributed to the theory [11,38,71]. For instance, Marcellini [64] started
by showing that that every minimizer in W 1;q

loc .�/ has locally bounded gradient provided
2 � p � q and

q

p
� 1C

2

n � 2
when n > 2

(the proof uses PDE techniques and entails several additional assumptions, which are not
presented here; see also a recent improvement in [12]). Note, however, that W 1;q

loc .�/ is
already higher integrability, so this is not a natural assumption in this context and was
addressed in [64, Section 3]. Later, Esposito, Leonetti and Mingione [39] showed that
every minimizer in W 1;p

loc .�/ also belongs to W 1;q
loc .�/, but only when

q=p � 1C ˇ=n for ! 2 C ˇ :

Furthermore, they provide an example showing that if the latter condition does not hold,
then a minimizer inW 1;p

loc .�/ need not belong toW 1;q
loc .�/ so the Lavrent’ev phenomenon

occurs.
It seems that .p; q/-growth is the most general class of non-autonomous functionals

in the calculus of variations. Regularity theory, including C ˛- and C 1;˛-regularity, in this
general class is not easily obtained from classical regularity theory for functionals with
standard p-growth (see for instance [71]). Furthermore, there are no general results in the
.p; q/-case which cover the special cases I–X, so in that sense the theory is incomplete.
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We note that some recent papers [13,23,24,54,55,81] deal with the calculus of variations
in generalized Orlicz spaces, but these papers do not cover higher regularity.

Indeed, the C ˛- and C 1;˛-regularity theories for type I–III functionals have been
proved in independent ways. For I, ' is nothing but an autonomous functional with coeffi-
cient, and so regularity results can be obtained by using a standard perturbation argument.
On the other hand, II and III are quite different from I, since they are potentially non-
uniformly elliptic problems. Formally, we can rewrite the energy functions as

II: jDujp.x/�p
�

jDujp
�

and III: .1C a.x/jDujq�p/jDujp:

Here, jDujp.x/�p
�

and 1C a.x/jDujq�p blow up or vanish when jDuj does. Therefore,
by identifying a.x/ in I with jDujp.x/�p

�

or 1C a.x/jDujq�p , we see that a is neither
bounded nor far away from the zero. Let us briefly introduce regularity results for the
above types. Let u be a minimizer of the '-energy (1.2) with ' being one of I–III. Then
the following is known:

For type I, i.e. '.x; t/D a.x/ .t/, suppose a is continuous with modulus of continu-
ity !a. Then

lim
r!0C

!a.r/ D 0 H) u 2 C ˛ for any ˛ 2 .0; 1/;

!a.r/ . rˇ for some ˇ > 0 H) u 2 C 1;˛ for some ˛ 2 .0; 1/
(2.1)

(see for instance [71] and references therein).
For type II, i.e. '.x; t/ D tp.x/, suppose p is continuous with modulus of continu-

ity !p . Then

lim
r!0C

!p.r/ ln 1
r
D 0 H) u 2 C ˛ for any ˛ 2 .0; 1/;

!p.r/ . rˇ for some ˇ > 0 H) u 2 C 1;˛ for some ˛ 2 .0; 1/:
(2.2)

For these results, we refer to a series of papers of Acerbi, Coscia and Mingione [2, 3, 28];
see also [4, 18, 41, 42].

For type III, i.e. '.x; t/ D tp C a.x/tq , suppose a 2 C 0;ˇ for some ˇ 2 .0; 1�. Then

q=p � 1C ˇ=n H) u 2 C 1;˛ for some ˛ 2 .0; 1/: (2.3)

For this result, we refer to a series of papers of Baroni, Colombo and Mingione [10, 26];
see also [8, 15, 25, 27, 73]. Note that no independent condition implies C ˛-regularity.
In other words, we cannot ensure even C ˛-regularity for u if q=p > 1C ˇ=n. We also
mention that theC 1;˛-regularity for type III was first proved under the following condition
instead of (2.3):

q=p < 1C ˇ=n H) u 2 C 1;˛ for some ˛ 2 .0; 1/ (see [26]); (2.4)

and later it was extended to the borderline case q=p D 1C ˇ=n in [10] (see also [30]).
As mentioned in the introduction, our general results cover all of these special cases.

Specifically, Theorem 1.1(1) implies (2.1)1 and (2.2)1 and Theorem 1.1(2) implies (2.1)2,
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(2.2)2 and (2.4). We notice that Theorem 1.1(2) does not imply (2.3). In fact, (VA1) holds
when '.x; t/ D tp C a.x/tq with a.�/ 2 C 0;ˇ if and only if the strict inequality q=p <
1C ˇ=n holds. This gap will be filled by Theorem 7.4; this is one main reason why we
consider the slightly weaker assumption (wVA1).

Furthermore, many other, previously unstudied cases can also be covered: see, e.g.
Corollary 8.3, and Section 8 more generally. Originally, the double phase model was intro-
duced to model the situation when two phases (the p-growth and the q-growth phases)
mix. Since only the larger exponent affects the nature of the problem, this was simplified
in the form tp C a.x/tq that we have seen. However, we can also consider a variant which
is more closely related to the original motivation:

'.x; t/ D .1 � a.x//tp C a.x/tq; where 1 < p � q; a.�/ W �! Œ0; 1�: (2.5)

Now a indicates the relative amount of material at a point from the q-phase. Such func-
tionals have been treated by Eleuteri–Marcellini–Mascolo [36–38]. More generally, we
can also deal with general double phase problems of the type

'.x; t/ D a.x/ .t/C b.x/�.t/;

where a.�/; b.�/ � 0 satisfy � � a.�/ C b.�/ � L and  0; � 0 satisfy (A0), (Inc)p�1 and
(Dec)q�1, which includes the following examples:

tp C a.x/tq; a.x/tp C tq; a.x/tp C b.x/tq; and  .t/C a.x/ .t/ ln.e C t /:

We present conditions for the above functions to satisfy (wVA1) or (VA1) in Corollar-
ies 8.4 and 8.6, so that C ˛- and C 1;˛-regularity results for (2.5) are obtained as special
cases. We note that the second example a.x/tp C tq can be understood as a functional
with standard q-growth and hence q=p has no upper bound to obtain the regularity results.
Here, we explain the regularity results for this functional as a special case of double phase
problems. In addition, in the same spirit, one could consider functionals with infinitely
many phases such that

'.x; t/D

1X
iD1

ai .x/t
pi ; where 1 < p � pi � q; ai .�/� 0 and 0 < � �

1X
iD1

ai .�/�L;

which satisfies the fundamental assumption of Theorem 1.1.

3. Generalized Orlicz spaces

Notation and assumptions

For x0 2 Rn and r > 0, Br .x0/ is the ball in Rn with radius r and center x0. We write
Br D Br .x0/ when the center is clear or unimportant. For an integrable function f in
U � Rn, we define .f /U to be the average of f in U in the integral sense, that is,
.f /U WD

ffl
U
f dx WD jU j�1

´
U
f dx.
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We say that f W Œ0;1/! Œ0;1/ is almost increasing or almost decreasing if there
existsL� 1 such that for any 0< t < s <1, f .t/�Lf .s/ or f .s/�Lf .t/, respectively.
In particular, if L D 1 we say f is non-decreasing or non-increasing.

We refer to [51] for more details about basics of ˆ-functions and generalized Orlicz
spaces. For ' W � � Œ0;1/! Œ0;1/ and Br � �, we write

'CBr .t/ WD sup
x2Br

'.x; t/ and '�Br .t/ WD inf
x2Br

'.x; t/:

If the map t 7! '.x; t/ is non-decreasing for every x 2 �, then the (left-continuous)
inverse function with respect to t is defined by

'�1.x; t/ WD inf ¹� � 0 W '.x; �/ � tº:

If ' is strictly increasing and continuous in t , then this is just the normal inverse function.

Definition 3.1. Let ' W � � Œ0;1/ ! Œ0;1/ and  > 0. We define some conditions
related to regularity with respect to the t -variable.
(aInc) The map t 7! '.x; t/=t is almost increasing with constant L � 1 uniformly in

x 2 �.
(Inc) The map t 7! '.x; t/=t is non-decreasing for every x 2 �.

(aDec) The map t 7! '.x; t/=t is almost decreasing with constant L � 1 uniformly in
x 2 �.

(Dec) The map t 7! '.x; t/=t is non-increasing for every x 2 �.
(A0) There exists L � 1 such that L�1 � '.x; 1/ � L for every x 2 �.

Note that this version of (A0) is slightly stronger than the one used in [51], but they are
equivalent under the doubling assumption (aDec). Let 0 < c � 1 � C <1. If ' satisfies
(aInc) with constant L � 1, then

'.x; ct/ � Lc'.x; t/ and L�1C '.x; t/ � '.x; C t/ for all .x; t/ 2 � � Œ0;1/:

On the other hand, if ' satisfies (aDec) with constant L � 1, then

L�1c'.x; t/ � '.x; ct/ and '.x; C t/ � LC '.x; t/ for all .x; t/ 2 � � Œ0;1/:

Remark 3.2. If ' satisfies (aInc) or (aDec) for some  > 0, then so do '�Br and 'CBr
for any Br � �.

Remark 3.3. Suppose that '.x; �/ 2 C 1.Œ0;1// for each x 2 � and that  > 0. Then
� ' satisfies (Inc) if and only if '.x; t/ � t'0.x; t/ for all x 2 � and t 2 Œ0;1/;
� ' satisfies (Dec) if and only if '.x; t/ � t'0.x; t/ for all x 2 � and t 2 Œ0;1/.
These conclusions are obtained by differentiating the function t 7! '.x; t/=t .
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For functions f; g W U ! R with U � Rn, f . g or f � g (in U ) mean that there
exists C � 1 such that f .y/ � Cg.y/ or C�1f .y/ � g.y/ � Cf .y/, respectively, for all
y 2 U . In particular, in this paper we shall use these symbols when the relevant constants
C depend only on n and the constants from the fundamental conditions (aInc) , (aDec) ,
(Inc) , (Dec) and (A0). By following this, for instance, (A0) can be written as '.�; 1/� 1
in�. We use some results from papers with a weaker notion of equivalence, f ' g (inU ),
which means that there exists C � 1 such that f .C�1y/ � g.y/ � f .Cy/ for all y 2 U .
However, if (aDec) holds, then' and� are equivalent and furthermore the constants can
be moved inside and outside of ' as observed above.

Basic properties of generalized '-functions and related function spaces

We next introduce classes of ˆ-functions. Let L0.�/ be the set of measurable functions
on �.

Definition 3.4. Let ' W � � Œ0;1/! Œ0;1�. We call ' a .generalized/ ˆ-prefunction if
x 7! '.x; jf .x/j/ is measurable for every f 2 L0.�/, and t 7! '.x; t/ is non-decreasing
for every x 2 � and satisfies '.x; 0/ D limt!0C '.x; t/ D 0 and limt!1 '.x; t/ D 1

for every x 2 �. A prefunction ' is a
(1) .generalized weak/ ˆ-function, denoted ' 2 ˆw.�/, if it satisfies (aInc)1;
(2) .generalized/ convexˆ-function, denoted ' 2ˆc.�/, if t 7! '.x; t/ is left-continuous

and convex for every x 2 �.
If ' is independent of x, then we write ' 2 ˆw or ' 2 ˆc without “.�/”. In what follows
we omit the words “generalized” and “weak” from the parentheses.

We note that convexity implies (Inc)1 so that ˆc.�/ � ˆw.�/. For ' 2 ˆw.�/, the
generalized Orlicz space (also known as the Musielak–Orlicz space) is defined by

L'.�/ WD ¹f 2 L0.�/ W kf kL'.�/ <1º

with the (Luxemburg) norm

kf kL'.�/ WD inf ¹� > 0 W %'.f =�/ � 1º; where %'.f / WD

ˆ
�

'.x; jf .x/j/ dx:

We denote byW 1;'.�/ the set of f 2L'.�/ such that @1f; : : : ;@nf 2L'.�/, where @if
is the weak derivative of f in the xi -direction, with the norm kf kW 1;'.�/ WD kf kL'.�/CP
i k@if kL'.�/. Note that if ' satisfies (aDec)q for some q � 1, then f 2 L'.�/ if and

only if %'.f / <1, and if ' satisfies (A0), (aInc)p and (aDec)q for some 1 < p � q, then
L'.�/ andW 1;'.�/ are reflexive Banach spaces. In addition we denote byW 1;'

0 .�/ the
closure of C10 .�/ in W 1;'.�/. For more information about the generalized Orlicz and
Orlicz–Sobolev spaces, we refer to the monographs [51, 69] and also [34, Chapter 2].

For ' W Œ0;1/! Œ0;1/, we define the conjugate function by

'�.x; t/ WD sup
s�0

.st � '.x; s//:



Maximal regularity for local minimizers of non-autonomous functionals 1295

By definition, we have the following Young inequality:

ts � '.x; t/C '�.x; s/ for all s; t � 0:

If ' 2 ˆc.�/, then .'�/� D ' [34, Theorem 2.2.6].
We state some properties of ˆ-functions, for which we refer to [51, Chapter 2].

Proposition 3.5. Let ' be a ˆ-prefunction.

(1) If ' satisfies (aInc)1, then there exists  2 ˆc.�/ such that ' '  .

(2) If ' satisfies (aDec)1, then there exists  2 ˆc.�/ such that ' �  �1. Note that
 �1.x; �/ is concave.

(3) Let p; q 2 .1;1/. Then ' satisfies (aInc)p or (aDec)q if and only if '� satisfies
(aDec)p=.p�1/ or (aInc)q=.q�1/, respectively.

(4) Let ' 2 ˆw.�/ and  � 1. Then ' satisfies (aInc) or (aDec) if and only if '�1

satisfies (aDec)1= or (aInc)1= , respectively.

(5) If ' satisfies (aInc)p and (aDec)q , then for any s; t � 0 and � 2 .0; 1/,

ts � '.x; �1=pt /C '�.x; ��1=ps/ . �'.x; t/C ��1=p�1'�.x; s/

and

ts � '.x; ��1=q
0

t /C '�.x; �1=q
0

s/ . ��.q�1/'.x; t/C �'�.x; s/:

If ' 2 ˆc.�/, then there exists '0 D '0.x; t/, which is non-decreasing and right-
continuous, such that

'.x; t/ D

ˆ t

0

'0.x; s/ ds:

Such '0 is called the right-derivative of '. Note that this derivative was denoted by @t'
in the introduction.

We next collect some results about the derivative '0. For (4), we give a simple direct
proof, since earlier proofs of the inequality used additional assumptions.

Proposition 3.6. Let  > 0 and suppose that ' 2 ˆc.�/ with derivative '0.

(1) If '0 satisfies (aInc) , (aDec) , (Inc) or (Dec) , then ' satisfies (aInc)C1,
(aDec)C1, (Inc)C1 or (Dec)C1, respectively, with the same constant L � 1.

(2) If '0 satisfies (aDec) with constant L, then '.x; t/ � t'0.x; t/, more precisely

t'0.x; t/

2C1L
� '.x; t/ � t'0.x; t/ for .x; t/ 2 � � Œ0;1/:

(3) If '0 satisfies (A0) and (aDec) with constant L � 1, then ' also satisfies (A0), with
constant depending on L and  .

(4) '�.x; '0.x; t// � t'0.x; t/.
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Proof. We start with (1) and suppose that '0 satisfies (aInc) . Fix 0 < t < s <1 and set
a WD s=t > 1. Then (aInc) of '0 implies that

'.x; t/

tC1
D

1

tC1

ˆ t

0

'0.x; �/ d�

�
L

tC1

ˆ t

0

'0.x; a�/

a
d�
Q�Da�
D

L

.at/C1

ˆ at

0

'0.x; Q�/ d Q� D L
'.x; s/

sC1
;

which means ' satisfies (aInc)C1. In the same way we can also prove that (aDec) of '0

implies (aDec)C1 of '. The claims regarding (Inc) and (Dec) follow when L D 1.
We next prove (2). Since '0 is non-decreasing, it follows that

t
2
'0
�
x; t

2

�
�

ˆ t

0

'0.x; �/ d�„ ƒ‚ …
D'.x;t/

� t'0.x; t/:

By the (aDec) condition of '0, we have '0.x; t=2/ � L�12�'0.x; t/, which implies
'.x; t/ � t'0.x; t/.

Then, we prove (3). By (2) and (A0) of '0 it follows that '.�; 1/ � 1 � '0.�; 1/ � 1, so
' satisfies (A0).

Finally, we prove (4). Since ' is convex, '.x; s/ � '.x; t/C k.s � t /, where k WD
'0.x; t/ is the slope. Then from the definition of the conjugate function we have

'�.x; '0.x; t// D sup
s�0

.sk � '.x; s// � sup
s�0

.sk � '.x; t/ � k.s � t //

D tk � '.x; t/ � t'0.x; t/:

We end this subsection with some properties of C 1-regular ˆ-functions. Note that
Proposition 3.8(2) below is proved for C 2-functions in [33, Lemma 3] – here we provide a
more elementary proof which is based on a reduction to the same claim for the function tp ,
that is,

.jxjp�2x � jyjp�2y/ � .x � y/ � .jxj C jyj/p�2jx � yj2 for p > 1: (3.7)

While versions of this claim are commonly known, we have not found this precise for-
mulation in the literature. Rather than providing a proof of (3.7), we just invoke [33,
Lemma 3], since tp is certainly a C 2-function.

Proposition 3.8. Let ' 2 ˆc \ C
1.Œ0;1// with '0 satisfying (Inc)p�1 and (Dec)q�1 for

some 1 < p � q. Then for � 2 .0;1/ and x; y 2 Rn the following hold:

(1)
'0.jxj C jyj/

jxj C jyj
jx � yj2 �

�
'0.jxj/

jxj
x �

'0.jyj/

jyj
y

�
� .x � y/;

(2)
'0.jxj C jyj/

jxj C jyj
jx � yj2 . '.jxj/ � '.jyj/ �

'0.jyj/

jyj
y � .x � y/;
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(3) '.jx � yj/ . �Œ'.jxj/C '.jyj/�C ��1
'0.jxj C jyj/

jxj C jyj
jx � yj2.

If additionally ' 2 C 2..0;1//, then t'00.t/ � '0.t/ and '0.jxjCjyj/
jxjCjyj

can be replaced by
'00.jxj C jyj/.

Proof. When ' 2 C 2..0;1//, the inequalities t'00.t/� '0.t/ are direct consequences of
Remark 3.3 and Proposition 3.6(1). This also implies '

0.jxjCjyj/
jxjCjyj

� '00.jxj C jyj/.
For (1), we may assume without loss of generality that jxj � jyj. By (Inc)p�1 and

(Dec)q�1, �
jyj

jxj

�q�1
'0.jxj/ � '0.jyj/ �

�
jyj

jxj

�p�1
'0.jxj/:

Thus there exists  2 Œp � 1; q � 1� such that '0.jyj/ D
�
jyj
jxj

�
'0.jxj/. Hence�

'0.jxj/

jxj
x �

'0.jyj/

jyj
y

�
� .x � y/ D

'0.jxj/

jxj

�
jxj�1x � jyj�1y

�
� .x � y/:

We use (3.7) with  C 1 in place of p. Furthermore, jxj � jyj implies jxj C jyj � jxj,
and so�
'0.jxj/

jxj
x�

'0.jyj/

jyj
y

�
�.x�y/�

'0.jxj/

jxj
.jxjCjyj/�1jx�yj2�

'0.jxjCjyj/

jxjCjyj
jx�yj2:

We next prove (2). Denote � WD x�y
jx�yj

and zs WD y C �s. Then

'.jxj/ � '.jyj/ D

ˆ jx�yj
0

'0.jzsj/
zs

jzsj
� � ds:

Furthermore, since x � y D �jx � yj, we have

'.jxj/ � '.jyj/ �
'0.jyj/

jyj
y � .x � y/ D

 jx�yj
0

�
'0.jzsj/

jzsj
zs �

'0.jyj/

jyj
y

�
� .x � y/ ds

�

 jx�yj
0

'0.jzsj C jyj/

jzsj C jyj
jx � yjs ds;

where the second step follows from (1) since x � y D jx�yj
s
.zs � y/. When s � 3

4
jx � yj,

jzsj C jxj � jxj C jyj and (2) follows.
We finally prove (3). By the inequality ab � 1

2
.a2 C b2/, we find that

jx � yj � 1
2
�.jxj C jyj/C 1

2
��1.jxj C jyj/�1jx � yj2:

Therefore, since '0 is non-decreasing and jx � yj � jxj C jyj, we find by t'0.t/ � '.t/
that

'.jx � yj/ . '0.jxj C jyj/jx � yj

� �'0.jxj C jyj/.jxj C jyj/C ��1'0.jxj C jyj/.jxj C jyj/�1jx � yj2

� �Œ'.jxj/C '.jyj/�C ��1
'0.jxj C jyj/

jxj C jyj
jx � yj2:
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4. Preliminary regularity results

Assumptions for higher regularity

Here we introduce the new assumptions that are used to obtain C ˛-regularity for any
˛ 2 .0; 1/ or C 1;˛-regularity for some ˛ 2 .0; 1/ of local minimizers of (1.2). We also
restate the definition of (VA1) from the introduction, so that it can be more easily com-
pared with its weaker variant, (wVA1).

In the next definition, we have several conditions which are assumed to hold “for any
small ball”; this means that the condition holds for all r < r0 for some r0 > 0.

Definition 4.1. Let ' 2 ˆw.�/. We define some conditions related to regularity with
respect to the x-variable.

(A1) There exists L � 1 such that for any Br b � with jBr j < 1,

'CBr .t/ � L'
�
Br
.t/ for all t > 0 with '�Br .t/ 2 Œ1; jBr j

�1�:

(VA1) There exists a non-decreasing continuous function ! W Œ0;1/ ! Œ0; 1� with
!.0/ D 0 such that for any small Br b �,

'CBr .t/ � .1C !.r//'
�
Br
.t/ for all t > 0 with '�Br .t/ 2 Œ!.r/; jBr j

�1�:

(wVA1) For any " > 0, there exists a non-decreasing continuous function ! D !" W Œ0;1/
! Œ0; 1� with !.0/ D 0 such that for any small ball Br b �,

'CBr .t/ � .1C !.r//'
�
Br
.t/C !.r/ for all t > 0 with '�Br .t/ 2 Œ!.r/; jBr j

�1C"�:

Intuitively, (A1) is a jump condition that restricts the amount that ' can jump between
nearby points, whereas (VA1) and (wVA1) are continuity conditions that imply continuity
with respect to the x-variable.

Remark 4.2. We see that (VA1) implies (wVA1), which in turn implies (A1). Assump-
tion (VA1) is easier to understand but we emphasize that (wVA1) covers an interesting
borderline case which has arisen in the double phase case: see Corollary 8.6.

Remark 4.3. Finally, we would like to explain why we adapt the methodology of the
calculus of variations, instead of one of partial differential equations, since indeed u is a
minimizer of (1.2) if and only if it is a weak solution to

div
�
'0.x; jDuj/

jDuj
Du

�
D 0 in �

(see [53]). In the comparison step in our approach, we take advantage of the minimizing
property of u. If we would instead use the PDE approach, to the best of our understanding,
the main assumption (VA1) would be replaced by the assumption

.'0/CBr .t/ � .1C !.r//.'
0/�Br .t/ for all t > 0 satisfying '�Br .t/ 2 Œ!.r/; jBr j

�1�:
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Compared with (VA1), ' is replaced by '0 in the inequality. Since small values are not
covered in this assumption or (VA1), these two assumptions are not comparable, i.e. one
may hold but not the other, in either direction. However, if ' satisfies the basic assumption
in Theorem 1.1 (this is always assumed in our main theorems), we show that (wVA1)
is implied by this assumption: for any " > 0, any small Br b �, any t > 0 satisfying
'�Br .t/ 2 Œ!.r/; jBr j

�1C"� � Œ!.r/; jBr j
�1� and any x; y 2 Br ,

'.x; t/ D

ˆ t

0

'0.x; s/ ds

� .1C !.r//

ˆ t

.'�
Br
/�1.!.r//

.'0/�Br .s/ ds C

ˆ .'�
Br
/�1.!.r//

0

'0.x; s/ ds

� .1C !.r//

ˆ t

0

'0.y; s/ ds C '.x; .'�Br /
�1.!.r///

� .1C !.r//'.y; t/C c!.r/p=q :

Thus (wVA1) holds with the function c!.r/p=q . Moreover, we could also consider a
(wVA1)-type assumption with '0 instead of ', but the same argument shows that this
also implies (wVA1).

We note that such difference between regularity assumptions for the minimizer and
the PDE problem does not appear in types I–III. This also shows that regularity theory for
general '.x; t/ cannot be understood easily by just mixing the ones for types I–III.

Higher integrability and reverse Hölder type inequality

We prove higher integrability of minimizers of (1.2) and, as a corollary, a reverse Hölder
type inequality. In this subsection we assume (A1).

The following higher integrability result appears as [52, Theorem 1.1] in the case
ı D 1. From the proof in that article, one can derive the stated dependence on ı with
the help of the (aDec)q assumption; alternatively, one can use that result and a covering
argument.

Lemma 4.4 (Higher integrability). Let ' 2 ˆw.�/ satisfy (A0), (A1), (aInc)p and
(aDec)q with constantL� 1 and 1 < p � q. If u 2W 1;'

loc .�/ is a local minimizer of (1.2),
then there exist �0 D �0.n; p; q; L/ > 0, c1 D c1.n; p; q; L/ � 1 and �1 D �1.�0; n; q/
such that� 

Br

'.x; jDuj/1C�0 dx

� 1
1C�0

� c1ı
��1

� 
B.1Cı/r

'.x; jDuj/ dx C 1

�
(4.5)

for any B2r b � with kDukL'.B2r / � 1 and ı 2 .0; 1�.

Remark 4.6. Fix �0 b �. Since
´
�0
'.x; jDuj/ dx <1, there exists R > 0 such that

ˆ
Br

'.x; jDuj/ dx � 1 .or equivalently kDukL'.Br / � 1/
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for Br � �0 with r � R. In view of the previous lemma, this means that '.�; jDuj/ 2
L
1C�0
loc .�/.

The next lemma contains reverse Hölder type estimates for Du.

Lemma 4.7. Let ' 2ˆw.�/ satisfy (A0), (A1), (aInc)p and (aDec)q with constant L � 1
and 1 < p � q. Suppose that u 2 W 1;'

loc .�/ is a local minimizer of (1.2) and B2r b �

with kDukL'.B2r / � 1. There exist �0 D �0.n; p; q; L/ and, for every t 2 .0; 1�, ct D
c.n; p; q; L; t/ > 0 such that� 

Br

'.x; jDuj/1C�0 dx

� 1
1C�0

� ct

�� 
B2r

'.x; jDuj/t dx

�1=t
C 1

�
(4.8)

and c D c.n; p; q; L/ � 1 such that

 
Br

'.x; jDuj/ dx �

� 
Br

'.x; jDuj/1C�0 dx

� 1
1C�0

� c

�
'�B2r

� 
B2r

jDuj dx

�
C 1

�
:

Proof. We start with the first inequality. In (4.5) we split ' D '�'1�� with � 2 .0; 1/ and
use Hölder’s inequality with exponents 1C�0

�
and 1C�0

1C�0��
and Young’s inequality with

exponents 1
�

and 1
1��

:

� 
Br

'.x; jDuj/1C�0 dx

� 1
1C�0

� c1

�
ı��1

� 
B.1Cı/r

'.x; jDuj/1C�0 dx

� �
1C�0

� 
B2r

'.x; jDuj/t dx

� 1��
t

C 1

�
�
1

2

� 
B.1Cı/r

'.x; jDuj/1C�0 dx

� 1
1C�0

C c2ı
�
�1
1��

� 
B2r

'.x; jDuj/t dx

�1=t
C c1

where we have set t WD .1C�0/.1��/
1C�0��

. Now we see from a standard iteration lemma (e.g.
[55, Lemma 4.2]) that the first claim holds.

We move on to the second claim. The first inequality directly follows from Hölder’s
inequality, hence we prove the second inequality. Taking t D 1=q in (4.8), we see that� 

Br

'.x; jDuj/1C�0 dx

� 1
1C�0

� c1=q

�� 
B2r

'CB2r .jDuj/
1=q dx

�q
C 1

�
:

We notice that the map t 7! Œ'CB2r .t/�
1=q satisfies (aDec)1, since 'CB2r satisfies (aDec)q .

Therefore, by Jensen’s inequality and Proposition 3.5(2), we have� 
Br

'.x; jDuj/1C�0 dx

� 1
1C�0

� c

�
'CB2r

� 
B2r

jDuj dx

�
C 1

�
(4.9)
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for some c D c.c1; q; L/ � 1. In addition, sinceˆ
B2r

'�B2r .jDuj/ dx �

ˆ
B2r

'.x; jDuj/ dx � 1 .” kDukL'.B2r / � 1/;

it follows by Jensen’s inequality that '�B2r .
ffl
B2r
jDujdx/. jB2r j�1. If also the inequality

'�B2r .
ffl
B2r
jDuj dx/ � 1 holds, then (A1) implies that

'CB2r

� 
B2r

jDuj dx

�
� L'�B2r

� 
B2r

jDuj dx

�
;

whereas in the case '�B2r .
ffl
B2r
jDuj dx/ � 1, (A0) gives an upper bound of c for the

right-hand side of (4.9).

Regularity results for the autonomous case

In this subsection, we consider ' 2 ˆc \ C
1.Œ0;1// \ C 2..0;1// with '0 satisfying

(Inc)p�1 and (Dec)q�1 for some 1<p� q. Fix v0 2W 1;'.Br / and let v 2 v0CW
1;'
0 .Br /

be a solution of the minimization problem

min
w2v0CW

1;'
0

.Br /

ˆ
Br

'.jDwj/ dx; (4.10)

or equivalently a weak solution to´
div
�
'0.jDvj/
jDvj

Dv
�
D 0 in Br ;

v D v0 on @Br :
(4.11)

We start with the C 1;˛-regularity in the autonomous case, with appropriate estimates.

Lemma 4.12. Let ' 2 ˆc \ C
1.Œ0;1// \ C 2..0;1// with '0 satisfying (Inc)p�1 and

(Dec)q�1 for some 1 < p � q. If v 2W 1;'.Br / is a minimizer of (4.10) or a weak solution
to (4.11), then Dv 2 C ˛0loc .Br ;R

n/ for some ˛0 2 .0; 1/ with the following estimates: for
any B�.x0/ � Br ,

sup
B�=2.x0/

jDvj � c

 
B�.x0/

jDvj dx; (4.13)

and for any � 2 .0; 1/, 
B��.x0/

jDv � .Dv/B��.x0/j dx � c�
˛0

 
B�.x0/

jDvj dx: (4.14)

Here ˛0 2 .0; 1/ and c > 0 depend only on n, p and q.

The previous lemma is expected from [60]. In particular, we refer to [7] for the case
p� 2. However, we cannot find any result treating the case p < 2with the above estimates
in the literature. Hence, we give a proof of the above lemma in Appendix A. We also note
that (Inc)p�1 and (Dec)q�1 for '0 are equivalent to t'00.t/ � '0.t/ by Remark 3.3, since
we assume ' 2 C 2..0;1//.
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We next state Calderón–Zygmund type estimates in Br with non-zero boundary data.

Lemma 4.15 (Calderón–Zygmund estimates). Let ' 2 ˆc \ C
1.Œ0;1// \ C 2..0;1//

with '0 satisfying (Inc)p�1 and (Dec)q�1 for some 1 < p � q, and jBr j � 1. If
v 2 W 1;'.Br / is a minimizer of (4.10) or a weak solution to (4.11), then there exists
c D c.n; p; q; p1; q1; L/ > 0 such that

k'.jDvj/kL� .Br / � c k'.jDv0j/kL� .Br / (4.16)

for any � 2ˆw.Br / satisfying (A0), (A1), (aInc)p1 and (aDec)q1 with constantL� 1 and
1 < p1 � q1.

Moreover, fix � > 0 and assume that
´
Br
�.x; '.jDv0j// dx � �. Then there exists

c D c.n; p; q; p1; q1; L/ > 0 such that
 
Br

�.x; '.jDvj// dx � c
�
�q1=p1�1 C 1

�� 
Br

�.x; '.jDv0j// dx C 1

�
: (4.17)

Proof. In view of known results about gradient estimates for equations of p-Laplacian
type or (4.11) (see for instance [14,20,70]), it is expected that for any 1 < s <1 and any
Muckenhoupt weight w 2 As ,ˆ

Br

'.jDvj/sw.x/ dx � c

ˆ
Br

'.jDv0j/
sw.x/ dx; (4.18)

where c > 0 depends only on n; p; q; s and Œw�As (see Appendix B for the definition of
the Muckenhoupt class As). We outline the proof of (4.18) in Appendix B.

We may assume that k'.jDv0j/kL� .Br / <1, since otherwise (4.16) is trivial. Then
k'.jDv0j/kLp1 .Br / < 1 by (aInc)p1 of � and so k'.jDvj/kLp1 .Br / < 1 by (4.18)
with s D p1. We define �j .x; t/ WD min ¹�.x; t/; jtp1º, j > 0, and conclude that
k'.jDvj/k

L
�j .Br /

< 1. Since '.jDvj/ 2 L�j .Br /, extrapolation for the generalized
Orlicz functions (see [51, Corollary 5.3.4]) gives

k'.jDvj/k
L
�j .Br /

. k'.jDv0j/kL�j .Br / � k'.jDv0j/kL� .Br /:

We note that in the statement of [51, Corollary 5.3.4], ' is also assumed to satisfy the
so-called (A2) condition, which is however not needed if the domain � is bounded [51,
Lemma 4.2.3], and in our case, � D Br . Finally, (4.16) follows from this by monotone
convergence: k'.jDvj/kL� .Br / D limj!1 k'.jDvj/kL�j .Br / [51, Lemma 3.1.4].

We next prove the second claim, inequality (4.17). If
´
Br
�.x; '.jDv0j// dx � 1, then

it follows from (4.16) by [51, Lemma 3.2.10] that
ˆ
Br

�.x; '.jDvj// dx � c

�ˆ
Br

�.x; '.jDv0j// dx

�q1=p1
� c�q1=p1�1

ˆ
Br

�.x; '.jDv0j// dx;

which implies (4.17).
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Now, we suppose that
´
Br
�.x; '.jDv0j// dx < 1. We assume first that the (A1)

inequality holds also in Œ0; 1�, i.e., for some L1 � 1,

�CB�.t/ � L1�
�
B�
.t/ for all t > 0 satisfying ��B�.t/ 2 Œ0; jB�j

�1�; (4.19)

whenever B� � Br . Define �˙.t/ WD �˙Br .t/,

M WD .��/�1
�ˆ

Br

�.x; '.jDv0j// dx

�
and N�.x; t/ WD

�.x;Mt/

��.M/
:

Note that ��.M/ 2 Œ0; 1�. Then N� also satisfies (aInc)p1 and (aDec)q1 , with the same
constants as � . We next prove that N� satisfies (A0). It is clear that N��.1/D 1. On the other
hand, since ��.M/ 2 Œ0;1�, we see by (4.19) withB� DBr that N�C.1/D �C.M/=��.M/

� L1. Finally, we show that N� satisfies (A1). Let B� � Br and consider t > 0 such that
N��B�.t/ 2 Œ1; jB�j

�1�. Then ��B�.Mt/ D N��B�.t/�
�.M/ � jB�j

�1. Therefore, in view of
(4.19), we have

N�CB�.t/ D
�CB�.Mt/

��.M/
�
L1�

�
B�
.Mt/

��.M/
D L1 N�

�
B�
.t/

so that N� satisfies the (A1) condition with constant L1.
Let m WD '�1.M/ and set

Nv WD
v

m
; Nv0 WD

v0

m
; and N'.t/ WD

'.mt/

M
:

Then N'0.t/ D '0.mt/m
M

and Nv 2 W 1; N'.Br / is a weak solution to

div
�
N'0.jD Nvj/

jD Nvj
D Nv

�
D 0 in Br with Nv D Nv0 on @Br :

Note that N'0 also satisfies (Inc)p�1 and (Dec)q�1 with the same constant as '0. In addition,
by the definitions of N� , N' and M ,

ˆ
Br

N�.x; N'.jD Nv0j// dx D
1

��.M/

ˆ
Br

�.x; '.jDv0j// dx � 1

H) k N'.jD Nv0j/kL N� .Br /
� 1:

Therefore, applying (4.16) to .�; '; v; v0/ D . N�; N'; Nv; Nv0/, we have

k N'.jD Nvj//k
L N� .Br /

� ck N'.jD Nv0j/kL N� .Br /
� c

for some c D c.n; p; q; p1; q1; L1/ � 1. Finally, this implies that

1

��.M/

ˆ
Br

�.x; '.jDvj// dx D

ˆ
Br

N�.x; N'.jD Nvj// dx � c
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for some c D c.n; p; q; p1; q1; L1/ � 1. In view of the definition of M , we have
ˆ
Br

�.x; '.jDvj// dx � c

ˆ
Br

�.x; '.jDv0j// dx (4.20)

in the case when (4.19) holds. Note that (4.20) is stronger than (4.17), but requires the
stronger assumption (4.19).

We return to the case that � satisfies (A1) with normal range and define

Q�.x; t/ WD �.x; t/C tp1 :

It is easy to check that Q� satisfies (A0), (aInc)p1 , (aDec)q1 and �.x; t/ � Q�.x; t/ .
�.x; t/ C 1. Let us show that Q� satisfies (4.19). Fix B� � Br and t � 0 satisfying
Q��B�.t/ 2 Œ0; jB�j

�1�. Then

��B�.t/ D
Q��B�.t/ � t

p1 � jB�j
�1:

If ��B�.t/ � 1, then (A1) for � implies that

Q�CB�.t/ D �
C

B�
.t/C tp1 � L��B�.t/C t

p1 � L.��B�.t/C t
p1/ D L Q��B�.t/:

On the other hand, if ��B�.t/ � 1, by (A0), (aInc)p1 and (aDec)q1 for � we have

t . 1 and then �CB�.t/ � tp1 � ��B�.t/. Hence Q� satisfies (4.19). Finally, since´
Br
Q�.x; '.jDv0j// dx � c.1 C jBr j/ � Qc, applying the result (4.20) for the function

Qc�1 Q�.x; t/, we obtain
ˆ
Br

�.x; '.jDvj// dx �

ˆ
Br

Q�.x; '.jDvj// dx � c

ˆ
Br

Q�.x; '.jDv0j// dx

� c

ˆ
Br

Œ�.x; '.jDv0j//C 1� dx;

which completes the proof of (4.17).

5. Comparison results without continuity assumption

Assume that ' 2 ˆc.�/ \ C
1.Œ0;1// satisfies a stronger version of (A1): there exists

L � 1 and a non-decreasing continuous function ! W Œ0;1/! Œ0; 1� with !.0/ D 0 such
that for any small Br b �,

'CBr .t/ � L'
�
Br
.t/ for all t > 0 with '�Br .t/ 2 Œ!.r/; jBr j

�1�: (5.1)

Note that this condition is implied by (wVA1) with L D 3 and ! D !" for any fixed ".
Further, we assume that '0 satisfies (A0) with the same constantL� 1, as well as (Inc)p�1
and (Dec)q�1 for some 1 < p � q.
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We fix �0 b � and consider B2r D B2r .x0/ � �0 with r > 0 satisfying

r �
1

2
; !.2r/�

1

L
; jB2r j �min

²
1

2L
;2
�
2.1C�0/

�0

�ˆ
�0
'.x; jDuj/1C�0 dx

�� 2C�0�0

³
;

(5.2)

where �0 2 .0; 1/ is given in Lemma 4.4. Note that '.�; jDuj/ 2 L1C�0loc .�/ (see
Remark 4.6). Hence from Hölder’s inequality and (5.2) we have

ˆ
B2r

'.x; jDuj/1C�0=2 dx � jB2r j

� 
B2r

'.x; jDuj/1C�0 dx

� 1C�0=2
1C�0

�
1

2
; (5.3)

so thatˆ
B2r

'.x; jDuj/ dx �

ˆ
B2r

'.x; jDuj/1C�0=2 dx C jB2r j �
1

2
C
1

2
D 1: (5.4)

Therefore, we can take advantage of the results in Lemmas 4.4 and 4.7. For convenience,
we write '˙.t/ WD '˙B2r .t/.

Construction of a regularized Orlicz function

We construct a regularized function Q' 2 C 1.Œ0;1// \ C 2..0;1// with t Q'00.t/ � Q'0.t/,
which is independent of the x variable and sufficiently close to '.x0; t / in a suitable
range of t . This procedure is quite delicate since we want improved differentiability, and
moreover we want to find Q' satisfying in particular the assumptions of Proposition 5.12
below. The challenge lies in ensuring that '.x; Q'�1.t// satisfies (aInc)1 and (aDec) with
some  > 1 for small and large values of t , as we only have the comparison property when
t is in some range Œt1; t2�. We approach this problem by requiring p-growth for small and
large values of t . This is counter-intuitive, because it means that the resulting function is
neither a lower nor an upper bound of the original function, in contrast to estimates used
in previous articles.

We first define

B WD B2r D B2r .x0/; t1 WD .'
�/�1.!.2r// and t2 WD .'

�/�1.jBj�1/: (5.5)

Note that it follows from !.2r/; jB2r j � L
�1 in (5.2) and (A0) of ' that t1 � 1 � t2. Let

 B.t/ WD

8̂<̂
:
a1.t=t1/

p�1 if 0 � t < t1;
'0.x0; t / if t1 � t � t2;
a2.t=t2/

p�1 if t2 < t <1;
(5.6)

where the constants a1 WD '0.x0; t1/ and a2 WD '0.x0; t2/ are chosen so that  B is con-
tinuous. We then define

'B.t/ WD

ˆ t

0

 B.s/ ds:
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Note that these functions depend on B via the center point x0 as well as the values t1
and t2.

When t 2 Œt1; t2�, the coincidence of derivatives implies that

'B.t/ � '.x0; t / D 'B.t1/ � '.x0; t1/ D
1
p
t1'
0.x0; t1/ � '.x0; t1/

and so, using the facts that 1
q
t1'
0.x0; t1/� '.x0; t1/�

1
p
t1'
0.x0; t1/ by (Inc)p and (Dec)q

as well as (5.1), we find that

0 � 'B.t/ � '.x0; t / � .q=p � 1/'.x0; t1/ � '
�.t1/ D !.2r/ for all t 2 Œt1; t2�:

(5.7)

Fix � 2 C10 .R/ with � � 0, supp � � .0; 1/ and k�k1 D 1. We define

Q'.t/ WD

ˆ 1
0

'B.t�/�r .� � 1/ d� D

ˆ 1
0

'B.s/�rt .s � t / ds where �r .t/ WD
1
r
�
�
t
r

�
I

(5.8)
the second expression is valid for t > 0. From the second formula, we see that Q' 2
C1..0;1//.

For the next proof, we recall the following elementary inequalities which follow from
the mean value theorem for s 7! .1C s/ on Œ0; 1�: for  > 0 and 0 < s � 1,

1Cmin ¹1; 2�1º s � .1C s/ � 1Cmax ¹1; 2�1º s: (5.9)

For the functions defined above, we have the following properties.

Proposition 5.10. Let Q' be from (5.8). Then:

(1) 'B.t/ � Q'.t/ � .1 C cr/'B.t/ � c'B.t/ for all t > 0 with c > 0 depending only
on q. Furthermore,

0 � Q'.t/ � '.x0; t / � c.r'
�.t/C !.2r// � c'�.t/ for all t 2 Œt1; t2�:

(2) Q' 2 C 1.Œ0;1// and it satisfies (A0), (Inc)p and (Dec)q while Q'0 satisfies (A0),
(Inc)p�1 and (Dec)q�1. In particular, Q'0.t/ � t Q'00.t/ for all t > 0.

(3) Q'.t/ � c'.x; t/ for all .x; t/ 2 B � Œ1;1/, and so Q'.t/ � c.'.x; t/ C 1/ for all
.x; t/ 2 B � Œ0;1/.

Here, the constants c > 0 depend only on n, p, q and L.

Proof. It follows from the construction that  B satisfies (Inc)p�1, (Dec)q�1 and (A0). By
Proposition 3.6, ' and 'B satisfy (Inc)p , (Dec)q and (A0).

(1) We note that �r .� � 1/ is only non-zero when � � 1 2 Œ0; r�. As 'B is increasing
and � � 0, we obtain

Q'.t/ D

ˆ 1
0

'B.t�/�r .� � 1/ d� �

ˆ 1Cr

1

'B..1C r/t/�r .� � 1/ d� D 'B..1C r/t/
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since k�rk1 D 1. Similarly, we obtain Q'.t/ � 'B.t/. In addition, by (Dec)q for 'B and
(5.9), we have

Q'.t/ � 'B..1C r/t/ � .1C r/
q'B.t/ � .1C 2

q�1qr/'B.t/ for all t � 0:

By this inequality and (5.7), we estimate

Q'.t/ � '.x0; t / � .1C 2
q�1qr/'B.t/ � 'B.t/C c!.2r/ D 2

q�1qr'B.t/C c!.2r/

. r'�.t/C !.2r/

for all t 2 Œt1; t2�, where we have also used (5.7) and (5.1) to estimate 'B in the last step.
In addition, we know that !.2r/ D '�.t1/ � '�.t/ for all t 2 Œt1; t2�. The lower bound
follows from Q'.t/ � 'B.t/ � '.x0; t /.

(2) The claims for Q'0 will be derived from the equality

Q'0.t/ D

ˆ 1
0

� B.t�/�r .� � 1/ d� for t � 0; (5.11)

which is obtained by differentiating under the integral sign. The continuity of  B implies
that Q'0 2 C.Œ0;1// and so Q' 2 C 1.Œ0;1//. As in (1), since the support of �r is in Œ0; r�,
k�rk1 D 1, and since  B is increasing and satisfies (Dec)q�1, we see that

 B.t/ � Q'
0.t/ � .1C r/ B..1C r/t/ � .1C r/

q B.t/ � 2
q B.t/ for all t > 0;

that is,  B � Q'0. Hence Q'0.1/ �  B.1/ D '0.x0; 1/, which implies that Q'0 satisfies (A0).
From the expression for Q'0, we also see, since  B satisfies (Inc)p�1, that

Q'0.�t/D

ˆ 1
0

� B.�t�/�r .� � 1/d� � �
p�1

ˆ 1
0

� B.t�/�r .� � 1/d� D �
p�1
Q'0.t/

for � � 1 and t > 0. This yields (Inc)p�1 for Q'0. Similarly we prove that Q'0 satisfies
(Dec)q�1. The properties for Q' follow by Proposition 3.6.

(3) Fix x 2 B . When t 2 Œ1; t2�, we see by (1) and (5.1) that Q'.t/ . '�.t/ � '.x; t/.
For t � t2, we observe that

 B.t/ D '
0.x0; t2/

�
t

t2

�p�1
� '0.x; t2/

�
t

t2

�p�1
� '0.x; t/;

since '0.x0; t2/� '.x0; t2/=t2� '.x; t2/=t2� '0.x; t2/ by (5.1) and '0 satisfies (Inc)p�1.
Then

'B.t/ D 'B.t2/C

ˆ t

t2

 B.�/ d� . '.x; t2/C

ˆ t

t2

'0.x; �/ d� D '.x; t/:

The next result shows the strength of the approach with (aInc) and (aDec), since it
would be difficult to construct an approximating function to guarantee (Inc) and (Dec).
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Proposition 5.12. For Q' defined in (5.8) and any � 2 .0; 1/, set

�.x; t/ WD Œ'.x; Q'�1.t//�1C� :

Then � 2 ˆw.Br / satisfies (A0), (aInc)1C� , (aDec)q.1C�/=p and (A1). Here the constants
depend only on n, p, q and L . from the assumptions on '/ and are independent of � .

Proof. That � 2 ˆw.Br / is clear once we show (aInc)1. As ' and Q' satisfy (A0), so
does � . Now we prove that � satisfies (aInc)1C� , which holds if t 7! '.x; Q'�1.t// satisfies
(aInc)1. Let t > s > 0, Q'.�/ D t and Q'.�/ D s. Then

L
'.x; Q'�1.t//

t
�
'.x; Q'�1.s//

s
” L

'.x; �/

Q'.�/
�
'.x; &/

Q'.&/
:

By Proposition 5.10 and Remark 3.3, we have Q'.t/ � 'B.t/, '.x; t/ � t'0.x; t/ and
'B.t/ � t B.t/ for all .x; t/ 2 B � .0;1/. Therefore, it suffices to show that the
function t 7! '0.x; t/= B.t/ is almost increasing. Let t1 and t2 be from (5.5). Then
by the definition of  B in (5.6) we see that t 7! '0.x; t/= B.t/ is non-decreasing on
.0; t1�[ Œt2;1/, since '0 satisfies (Inc)p�1. By (5.1) together with t'0.x; t/� '.x; t/, we
have '0.x; t/= B.t/ � 1 in Œt1; t2�. Therefore, we see that t 7! '0.x; t/= B.t/ is almost
increasing. The property (aDec)q.1C�/=p is proved analogously.

Finally, we show that � satisfies (A1). Let B� � Br , and assume ��B�.t/ 2 Œ1; jB�j
�1�.

Then
'�B�. Q'

�1.t// D ��B�.t/
1=.1C�/

2 Œ1; jB�j
�1=.1C�/� � Œ1; jB�j

�1�:

Therefore, (A1) for ' implies that

�CB�.t/ D Œ'
C

B�
. Q'�1.t//�1C� � ŒL'�B�. Q'

�1.t//�1C� � L2��B�.t/

and so � satisfies (A1).

Comparison estimates

Let Q' W Œ0;1/! Œ0;1/ be the function constructed in the previous subsection. We then
consider the minimizer v 2 W 1; Q'.Br / ofˆ

Br

Q'.jDvj/ dx with v D u on @Br ; (5.13)

where u 2 W 1;'
loc .�/ is a minimizer of (1.2), and derive a comparison estimate between

the gradients of u and v. We note from Proposition 5.10(3) that u 2 W 1; Q'.Br /, so it is an
appropriate boundary-value function and thus there exists a unique minimizer of (5.13).
The minimizer v is also a weak solution to

div
�
Q'0.jDvj/

jDvj
Dv

�
D 0 in Br with v D u on @Br : (5.14)

Before stating the main comparison result, we observe the following reverse Hölder type
estimate for Du and Calderón–Zygmund type estimate for the problem (5.13).
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Lemma 5.15. Let u 2 W 1;'
loc .�/ be a local minimizer of (1.2) and v 2 W 1; Q'.Br / be the

minimizer of (5.13), where B2r b � with r > 0 satisfying (5.2) and Q' is defined in (5.8).
Then � 

Br

'.x; jDuj/1C�0 dx

� 1
1C�0

� c

�
Q'

� 
B2r

jDuj dx

�
C 1

�
(5.16)

and  
Br

'.x; jDvj/ dx �

� 
Br

'.x; jDvj/1C�0=2 dx

� 1
1C�0=2

� c

� 
Br

'.x; jDuj/1C�0=2 dx C 1

� 1
1C�0=2

: (5.17)

Moreover,  
Br

jDvj dx � c

� 
B2r

jDuj dx C 1

�
: (5.18)

Here the constants c � 1 depend on n, p, q and L.

Proof. We first prove (5.16). We note that u satisfies the reverse Hölder inequality (4.5)
for some c1 D c1.n; p; q; L/ � 1. Then by Lemma 4.7, we have� 

Br

'.x; jDuj/1C�0 dx

� 1
1C�0

. '�
� 

B2r

jDuj dx

�
C 1

� '.x0; t0/C 1;

where t0 WD
ffl
B2r
jDujdx. This and (A0) imply that (5.16) holds when t0� 1; we therefore

assume that t0 � 1. By Jensen’s inequality and (5.4),

1 � t0 . .'�/�1
� 

B2r

'�.jDuj/ dx

�
� .'�/�1.jB2r j

�1/ D t2;

where t2 is defined in (5.5). Therefore, it follows from Proposition 5.10(1) that� 
Br

'.x; jDuj/1C�0 dx

� 1
1C�0

. '.x0; t0/ . Q'.t0/ D Q'
� 

B2r

jDuj dx

�
:

As for (5.17), we only prove the second inequality, since the first inequality directly
follows from Hölder’s inequality. Let � 2 ˆw.Br / be from Proposition 5.12 with � D
�0=2. By the proposition, we may apply Lemma 4.15 with v0 D u and � D 1 (see (5.3))
to conclude that 

Br

'.x; jDvj/1C�0=2 dx D

 
Br

�.x; Q'.jDvj// dx .
 
Br

Œ�.x; Q'.jDuj//C 1� dx

�

 
Br

Œ'.x; jDuj/C 1�1C�0=2 dx:
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By Jensen’s inequality, Proposition 5.10(3), (5.17) and (5.16),

Q'

� 
Br

jDvjdx

�
�

 
Br

Q'.jDvj/dx .
 
Br

Œ'.x; jDvj/C 1�dx . Q'
� 

B2r

jDujdx

�
C 1:

Then (5.18) follows when we apply Q'�1 to both sides and use (aDec)q to move “C1”
inside Q'.

6. Comparison results with continuity assumption

Assume that ' 2 ˆc.�/\C
1.Œ0;1// satisfies (wVA1), in addition to the assumptions at

the beginning of the previous section, i.e. (A0) with constant L � 1, as well as (Inc)p�1
and (Dec)q�1 for some 1 < p � q. At this stage, we fix

"0 WD
�0

2.2C �0/
(6.1)

where �0 2 .0; 1/ is determined in Lemma 4.4. We will use (wVA1) for " D "0, which
fixes ! in that condition. We take r so small that (5.2) holds for this !. Now we derive a
gradient comparison estimate between u and v.

Lemma 6.2. Let u 2 W 1;'
loc .�/ be a local minimizer of (1.2) and v 2 W 1; Q'.Br / be a

minimizer of (5.13), where B2r b � with r > 0 satisfying (5.2) and Q' is defined in (5.8).
Then there exist  D .n; p; q; L/ 2 .0; 1/ and c D c.n; p; q; L/ � 1 such that 
Br

Q'00.jDuj C jDvj/jDu �Dvj2 dx � c.!.2r/p=q C r /

�
Q'

� 
B2r

jDuj dx

�
C 1

�
:

Proof. By Proposition 5.10(3) and Lemma 5.15, we see that u 2 W 1; Q'.Br / and v 2
W 1;'.Br /. By Proposition 3.8(2),

Q'00.jDuj C jDvj/jDu �Dvj2 . Q'.jDuj/ � Q'.jDvj/ �
Q'0.jDvj/

jDvj
Dv � .Du �Dv/:

Since u � v 2 W 1; Q'
0 .Br / and v is a weak solution to (5.14),

 
Br

Q'00.jDuj C jDvj/jDu �Dvj2 dx

.
 
Br

Œ Q'.jDuj/ � Q'.jDvj/� dx �

 
Br

Q'0.jDvj/
Dv

jDvj
� .Du �Dv/ dx„ ƒ‚ …

D0 by (5.14)

D

 
Br

®
Œ Q'.jDuj/�'.x; jDuj/�CŒ'.x; jDuj/�'.x; jDvj/�CŒ'.x; jDvj/� Q'.jDvj/�

¯
dx

�

 
Br

Œ Q'.jDuj/ � '.x; jDuj/� dx„ ƒ‚ …
DWI1

C

 
Br

Œ'.x; jDvj/ � Q'.jDvj/� dx„ ƒ‚ …
DWI2

I
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in the last step we have used
ffl
Br
Œ'.x; jDuj/� '.x; jDvj/� dx � 0 since u is a minimizer

of (1.2). We shall estimate I2. We split Br into three regions E1, E2 and E3 defined by

E1 WD Br \ ¹'
�.jDvj/ � !.2r/º;

E2 WD Br \ ¹!.2r/ < '
�.jDvj/ � jB2r j

�1C"0º;

E3 WD Br \ ¹jB2r j
�1C"0 < '�.jDvj/º:

In the set E1, (Dec)q and (A0) for ' imply that jDvj . !.2r/1=q . Therefore by (Inc)p
and (A0) for ' and Q',

 
Br

ˇ̌
'.x; jDvj/ � Q'.jDvj/

ˇ̌
�E1 dx . !.2r/p=q

 
Br

�E1 dx � !.2r/
p=q :

In the set E3, Proposition 5.10(3) and the fact that 1 < jB2r j1�"0'�.jDvj/ imply thatˇ̌
'.x; jDvj/ � Q'.jDvj/

ˇ̌
. '.x; jDvj/C 1 . '.x; jDvj/

� ŒjB2r j
1�"0'�.jDvj/��0=2'.x; jDvj/

. rn.1�"0/�0=2'.x; jDvj/1C�0=2:

Integrating this inequality over E3 and using (6.1), we find that
 
Br

ˇ̌
'.jx;Dvj/ � Q'.jDvj/

ˇ̌
�E3 dx

. r
n.4C�0/�0
4.2C�0/

� 
Br

'.x; jDvj/1C�0=2 dx

��0=2C�0C 2
2C�0

:

On the one hand, by (5.17) and (5.16), we have� 
Br

'.x; jDvj/1C�0=2 dx

� 2
2C�0

. Q'
� 

B2r

jDuj dx

�
C 1:

On the other hand, by (5.3),� 
Br

'.x; jDvj/1C�0=2 dx

� �0
2C�0

� jBr j
�

�0
2C�0 . r

�
4n�0

4.2C�0/ :

Therefore, combining the previous three inequalities, we have

 
Br

ˇ̌
'.jx;Dvj/ � Q'.jDvj/

ˇ̌
�E3 dx . r

n�2
0

4.2C�0/

�
Q'

� 
B2r

jDuj dx

�
C 1

�
:

Recall that t1 and t2 are defined in (5.5). In the set E2, we observe that

!.2r/ < '�.jDvj/ � jB2r j
�1C"0 < jB2r j

�1 and so t1 < jDvj < t2:
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Hence it follows from (wVA1) and Proposition 5.10(1) thatˇ̌
'.x; jDvj/ � Q'.jDvj/

ˇ̌
�
ˇ̌
'.x; jDvj/ � '.x0; jDvj/

ˇ̌
C
ˇ̌
'.x0; jDvj/ � Q'.jDvj/

ˇ̌
. .r C !.r//'�.jDvj/C !.2r/:

Therefore, applying (5.17) and (5.16), we have 
Br

ˇ̌
'.jx;Dvj/ � Q'.jDvj/

ˇ̌
�E2 dx . .r C !.2r//

�
Q'

� 
B2r

jDuj dx

�
C 1

�
:

We have shown that

jI2j �

 
Br

ˇ̌
'.x; jDvj/ � Q'.jDvj/

ˇ̌
dx

.
�
!.2r/p=q C r

n�2
0

4.2C�0/ C r
��
Q'

� 
B2r

jDuj dx

�
C 1

�
:

The estimate for I1 is analogous, with sets Ei defined with Du instead of Dv.

The following corollary is the key to the regularity results in the next section. Indeed,
once we have the estimate from the corollary, the main results follow using standard
methods.

Corollary 6.3. Under the assumptions of Lemma 6.2, we have 
Br

jDu �Dvj dx � c
�
!.r/

p

2q2 C r1
�� 

B2r

jDuj dx C 1

�
for some 1 D 1.n; p; q; L/ 2 .0; 1/ and c D c.n; p; q; L/ � 1.

Proof. Sete!.r/ WD !.r/p=q C r with  from Lemma 6.2 and note that Q!.�/ � 2. Apply-
ing Proposition 3.8(3) with � D e!.r/1=2, Proposition 5.10(3) and Lemmas 6.2 and 5.15,
we find that 
Br

Q'.jDu �Dvj/ dx

. e!.r/1=2  
Br

Œ Q'.jDuj/C Q'.jDvj/� dxCe!.r/�1=2  
Br

Q'00.jDujCjDvj/jDu�Dvj2 dx

. e!.r/1=2  
Br

Œ'.x; jDuj/C '.x; jDvj/C 1� dx Ce!.r/1=2� Q'� 
B2r

jDuj dx

�
C 1

�
. e!.r/1=2� Q'� 

B2r

jDuj dx

�
C 1

�
:

Therefore, by Jensen’s inequality and (Dec)q for Q', we have

Q'

� 
Br

jDu �Dvj dx

�
�

 
Br

Q'.jDu �Dvj/ dx . Q'
�e!.r/ 12q� 

B2r

jDuj dx C 1

��
:

The claim follows, since Q' is strictly increasing.



Maximal regularity for local minimizers of non-autonomous functionals 1313

7. Proofs of main results

In this section, we prove the main theorems. Before starting the proof we introduce a basic
iteration lemma. We refer to [46, Lemma 2.1 in Chapter III].

Lemma 7.1. Let f W Œ0; r0�! Œ0;1/ be a non-decreasing function. Suppose that for all
0 < � � r � r0,

f .�/ � C..�=r/n C "/f .r/C Crn

with a positive constant C . Then for any � 2 .0; n/, there exist "1; c > 0 depending only
on n, C and � such that if " < "1, then

f .�/ � c.�=r/n�� .f .r/C rn�� /:

In the next results, we denote by! the function from (wVA1) for "D "0 (see the begin-
ning of Section 6). Likewise, we denote byL� 1 the constant from (A0). Now let us state
and prove our main results. For iteration techniques used in the proof, we refer to [2, 10].

Theorem 7.2. Let ' 2 ˆc.�/ \ C
1.Œ0;1// with '0 satisfying (A0), (Inc)p�1 and

(Dec)q�1 for some 1 < p � q and let u 2 W 1;'
loc .�/ be a local minimizer of (1.2). If

' satisfies (wVA1), then u 2 C ˛loc.�/ for any ˛ 2 .0; 1/.

Proof. Let r0 2 .0; 1/ be a sufficiently small positive number which will be determined
later. We fix �0 b � and assume that (5.2) holds r D r0 > 0. For any B2r � �0 with
0 < 2r � r0, let v 2 W 1; Q'.Br / be the minimizer of (5.13) with Q' determined in (5.8).
When � 2 .0; r=2/, applying Corollary 6.3 with !0.r/ WD !.r/p=.2q

2/ C r1 , (4.13) and
(5.18), we haveˆ

B�

jDuj dx �

ˆ
Br

jDu �Dvj dx C

ˆ
B�

jDvj dx

. !0.2r/

ˆ
B2r

ŒjDuj C 1� dx C �n sup
Br=2

jDvj

� !0.r0/

ˆ
B2r

ŒjDuj C 1� dx C �n
 
Br

jDvj dx

.
��

�

r

�n
C !0.r0/

�ˆ
B2r

jDuj dx C rn:

Moreover, if r=2 � � � 2r , the above estimate is obvious since then 1=2 � �=r .
Let f .�/ WD

´
B�
jDuj dx, fix � 2 .0; n/ and choose r0 so small that

!0.r0/ D !.r0/
1
2q C r

1
0 � "1;

where "1 is from Lemma 7.1. Then, applying the lemma and using (5.4) with 2r D r0, we
have the following Morrey type estimate:ˆ
B�

jDuj dx .
�
�

r0

�n���ˆ
Br0

jDuj dx C rn��0

�
for all B� � �0 with � 2 .0; r0�

(7.3)
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with implicit constant c D c.n; p; q; L; �/ � 1. We note that in (7.3), � 2 .0; r0� and
B���

0 are arbitrary and the implicit constant is universal. Therefore, by taking � D 1�˛
for each ˛ 2 .0; 1/ in (7.3), we have u 2 C ˛loc.�

0/ by a Morrey type embedding (see for
instance [46, Chapter 3, Theorem 1.1]). More precisely, we obtain

Œu�C˛.Br0=2/
. r1�˛0

 
Br0

jDuj dx C 1:

Next we prove the second main theorem, C 1;˛-regularity.

Theorem 7.4. Let ' 2 ˆc.�/ \ C
1.Œ0;1// with '0 satisfying (A0), (Inc)p�1 and

(Dec)q�1 for some 1 < p � q and let u 2 W 1;'
loc .�/ be a minimizer of (1.2). If ' sat-

isfies (wVA1) with

!.r/ . rˇ for all r 2 .0; 1� and for some ˇ 2 .0; 1/;

then u 2 C 1;˛loc .�/ for some ˛ 2 .0; 1/. Here ˛ depends only on n, p, q, L and ˇ.

Proof. Fix �0 b �. We first notice from (7.3) that for any � 2 .0; n/,
 
B2r

jDuj dx � c�r
�� for all B2r � �0 with 2r 2 .0; r0�;

where r0 > 0 is from the proof of Theorem 7.2 and c� � 1 depends on n, p, q,L, r0 and � .
Consider sufficiently small 2r < r0, which will be determined later. Let v 2W 1; Q'.Br / be
a minimizer of (5.13) with Q' determined in (5.8). Then for 0 < � < r=2, applying (4.14)
with B�.x0/ D Br=2 and � D 2�=r , Corollary 6.3 with !.r/ . rˇ and (5.18), we have

 
B�

jDu � .Du/�j dx � 2

 
B�

jDu � .Dv/�j dx

� 2

 
B�

jDu �Dvj dx C 2

 
B�

jDv � .Dv/�j dx

.
�
r

�

�n  
Br

jDu �Dvj dx C

�
�

r

�˛0  
Br=2

jDvj dx

.
�
r0
�
r

�

�n
C

�
�

r

�˛0�� 
B2r

jDuj dx C 1

�
� c�r

��

�
r0
�
r

�

�n
C

�
�

r

�˛0�
;

where 0 WD min
®
pˇ

2q2
; 1

¯
. Finally, we choose � WD r1C0=.2n/ and � WD ˛00

4n
. Suppose

that 2r � min ¹r0; 4�2n=0º. Then � < r=2 and for the concentric balls B� � B2r � �0

we have  
B�

jDu � .Du/�j dx . c�r
0=2�� C r� � 2c�r

�
D 2c��

�
1C0=.2n/ :
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This implies that Du 2 C ˛loc.�
0/ with ˛ D ˛00

4nC20
by a Campanato type embedding (see

for instance [46, Chapter 3]). Since �0 b � is arbitrary, we have the conclusion. The
last inequality also yields an estimate for the seminorm ŒDu�C˛.Br0=2/

; however, once we
unravel the dependence on c� , it is a somewhat complicated formula.

Remark 7.5. By following the proofs, one can see that we use the condition (wVA1) only
for fixed " D "0 determined in (6.1). Therefore, in Theorems 7.2 and 7.4, the condition
(wVA1) can be replaced with the combination of (A1) and (wVA1) with fixed " > 0,
where " is sufficiently small and depends on n, p, q and L.

8. Examples of special structures

In this section, we show that our results include previous regularity results for special
structures presented in the introduction. We provide details only for some cases, as the
remaining ones can be handled by similar techniques. We denote by C! continuous func-
tions with modulus of continuity !.

Corollary 8.1 (Perturbed autonomous case). Let a W�! Œ�;ƒ� for some 0 < � �ƒ, and
let  2 ˆc \ C

1.Œ0;1// with  0 satisfying (Inc)p�1 and (aDec)q�1 for some 1 < p � q.
Define '.x; t/ WD a.x/ .t/. Then ' satisfies (VA1), with !.r/ � !a.2r/, if and only if
a 2 C!a .

Proof. For any Br � �,

'CBr .t/ D a
C

Br
 .t/ D

�
1C

aCBr � a
�
Br

a�Br

�
'�Br .t/:

Since a�Br 2 Œ�;ƒ�, we obtain

'CBr .t/ � '
�
Br
.t/

'�Br .t/
� aCBr � a

�
Br
;

and so the claim follows.

Corollary 8.2 (Variable exponent case). Let p W �! Œp1; p2� for some 1 < p1 � p2.
Define '.x; t/ WD tp.x/. Then ' satisfies (VA1) if and only if there exists !p with

lim
r!0

!p.r/ ln 1
r
D 0 and p 2 C!p :

Moreover, ' satisfies (VA1) with !.r/ . rˇ for some ˇ > 0 if and only if

!p.r/ . r
Q̌

for some Q̌ > 0:

Proof. Fix Br � � with jBr j � 1 and set p˙ D p˙Br . Then we have '�Br .t/ D t
p� and

'CBr .t/ D t
pC for t � 1 as well as '�Br .t/ D t

p� and 'CBr .t/ D t
pC for t < 1.



P. Hästö, J. Ok 1316

Let us derive an equivalent form of the inequality in condition (VA1). We may con-
sider the range ŒjBr j; jBr j�1� in the condition, since it turns out that this choice of lower
bound entails no additional restrictions in the variable exponent case. When t � 1, we
have

'CBr .t/ � '
�
Br
.t/ D .tp

C�p�
� 1/tp

�

D .tp
C�p�

� 1/'�Br .t/:

When t � 1, the exponents pC and p� are interchanged. Since we consider the range

t 2
�
.'�/�1Br .jBr j/; .'

�/�1Br .jBr j
�1/

�
D
�
jBr j

1=pC ; jBr j
�1=p�

�
;

we obtain

sup
t2ŒjBr j1=p

C
;jBr j�1=p

�
�

'CBr .t/ � '
�
Br
.t/

'�Br .t/
D jBr j

p��pC

p� � 1:

Suppose that p 2 C!p . By the mean value theorem, ex � 1 � exx. Thus

jBr j
p��pC

p� � 1 � jBr j
�!p.2r/ � 1 � en!p.2r/ ln.1=r/

� 1

� nen!p.2r/ ln.1=r/!p.2r/ ln 1
r
DW !.r/

and the inequality from (VA1) holds with this !. Moreover, if limr!0 !p.r/ ln 1
r
D 0,

then ! tends to zero, hence we obtain (VA1). If !p.r/ . tˇ , then ! is of order ˇ � " for
any ".

Suppose next that ' satisfies (VA1) with a function !. Then, for r � 1=2,

jBr j
p��pC

p� � 1 � !.r/

hence

pC � p� � �
p� log.1C !.r//

log jBr j
.
p2 log.1C !.r//

n log 1
r

DW !p.2r/:

Then !p.2r/ log 1
r
� log.1C!.r//! 0. If !.r/� r Q̌ , then !p.2r/� log.1C r Q̌/= log 1

r

. rˇ .

Rădulescu and colleagues [22, 77, 84] have considered a functional with model case
'.x; t/ D tp.x/ C tq.x/, which they call “double phase” (it is different from the double
phase functional of Zhikov, considered below). To the best of our knowledge, this is the
first regularity result for this functional.

Corollary 8.3 (Rădulescu’s double phase). Let p;q W�! Œp1;p2� for some 1 < p1 � p2
and '.x; t/ D tp.x/ C tq.x/. Then ' satisfies (VA1) if there exist !m and !M with

lim
r!0

!m.r/D 0; min ¹p;qº 2C!m ; lim
r!0

!M .r/ ln 1
r
D 0 and max ¹p;qº 2C!M :

In addition, ' satisfies (VA1) with !.r/ � rˇ for some ˇ > 0 if

lim
r!0

!m.r/r
� Q̌
D 0 and lim

r!0
!M .r/r

� Q̌
D 0 for some Q̌ > 0:
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This result can be proved with the same methods as Corollary 8.2; the details are left
to the interested reader. Note that the regularity required of the minimum is lower than
the regularity required of the maximum. This is due to the fact that we only require the
inequality of (VA1) in the range Œ!.r/; 1� where the minimum determines ', whereas the
maximum is used in the range Œ1; jBr j�.

We now consider double phase problems in the sense of Zhikov and Mingione.

Corollary 8.4 (Double phase case). Let a 2 C!a.�/ and b 2 C!b .�/ be non-negative
with 0 < � � a.�/C b.�/ � ƒ for some 0 < � � ƒ, and  ; � 2 ˆc \ C

1.Œ0;1// with
 0; � 0 satisfying (A0), and (Inc)p�1 and (Dec)q�1 for some 1 < p � q. Suppose that �= 
is almost increasing. Define

'.x; t/ WD a.x/ .t/C b.x/�.t/

and, for " 2 Œ0; 1/,

!".r/ WD !a.r/C !b.r/r
n.1�"/�

�
 �1.r�n.1�"//

�
:

If !" is bounded with limr!0!".r/D 0 when " > 0, then ' satisfies (wVA1) with ! �!".

Proof. Fix Br � � so small that !a.2r/; !b.2r/ � �=2. Set a˙ WD a˙Br , b˙ WD b˙Br and
'˙.t/ WD '˙Br .t/: For 0 � " < 1, suppose t 2 .0; t2/ with t2 WD .'�/�1.jBr j�1C"/.

We first consider t > 1. Assume first that b� � �=4. Then '�.t/ & �.t/ &  .t/ and
so

'C.t/ � '�.t/ � .aC � a�/ .t/C .bC � b�/�.t/

. .!a.r/C !b.r//'
�.t/:

We note that the case b� < �=4 and a� < �=4 cannot occur, since a C b � � and
!a.2r/; !b.2r/ � �=2.

Next, we consider t > 1 and a� � �=4. Then '�.t/ &  .t/. Note that '.x; t/ �
max ¹a.x/ .t/; b.x/�.t/º and that by the continuity of the functions a and b, there exists
xt 2 Br such that '�.t/ D '.xt ; t /. Using these and that �= is almost increasing, we
have

�.t/

'�.t/
� min

²
�.t/

a.xt / .t/
;

1

b.xt /

³
. min

²
�.t2/

a.xt / .t2/
;

�.t2/

b.xt /�.t2/

³
.

�.t2/

'�.t2/
:

Since  .t/
'�.t/

�
4
�

and  .t2/ . a.xt2/ .t2/ . '�.t2/ � r
�n.1�"/, we conclude that

'C.t/ � '�.t/

'�.t/
� .aC � a�/

 .t/

'�.t/
C .bC � b�/

�.t/

'�.t/

. !a.2r/C !b.2r/
�.t2/

'�.t2/

. !a.r/C !b.r/r
n.1�"/�. �1.r�n.1�"///:
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We note that the factor multiplying !b.r/ in the last expression is greater than c > 0

depending on the parameters, so it can absorb theC!b.r/ from the other cases to give !"
in the statement of the result.

The necessary inequality has been established for all cases when t > 1. We next con-
sider t � 1. By (A0) for  and � ,

'C.t/ � '�.t/ � .aC � a�/ .t/C .bC � b�/�.t/ . !a.r/C !b.r/:

We use this as the additive term “C!.r/” in the definition of (wVA1) to cover small t .
This concludes the proof of (wVA1).

Remark 8.5. In the previous proof, we used the additive error “C!.r/” for (wVA1) to
handle the case t � 1. If a � 1, then this is not needed, and we also have the following
conclusion: if !0 is bounded with limr!0 !0.r/ D 0, then ' satisfies (VA1).

Suppose that �.t/ D  .t/ ln.e C t / and a � 1 in Corollary 8.4. Then we have

�
�
 �1.r�n.1�"//

�
D r�n.1�"/ ln

�
e C  �1.r�n.1�"//

�
� r�n.1�"/ ln.e C 1=r/

since  satisfies (Inc)p and (Dec)q . We see that the degenerate double phase functional
satisfies (VA1) if b is vanishing log-Hölder continuous.

From Corollary 8.4, we obtain sharp regularity conditions for ' satisfying particular
structures of double phase with power functions.

Corollary 8.6. Let 1 < p � q, ˇ 2 .0; 1�, and a 2 C!a and b 2 C 0;ˇ be non-negative.
Define " WD ˇ � n.q � p/.1 � "/=p, " � 0.

(1) Let '.x; t/ D tp C b.x/tq .
If q=p < 1C ˇ=n, then ' satisfies (VA1) with !.r/ � r0 .
If q=p � 1C ˇ=n, then ' satisfies (wVA1) with !.r/ � r" .

(2) Let '.x; t/ D a.x/tp C tq . Then ' satisfies (wVA1) with !.r/ � !a.r/.

(3) Let a.x/tp C b.x/tq with � � aC b �ƒ. If q=p � 1C ˇ=n, then ' satisfies (wVA1)
with !.r/ � r" C !a.r/.

Appendix A. C 1;˛-Regularity for autonomous problems

In this section, we prove Lemma 4.12. We follow the ideas in [35,58]. In fact, it is almost
enough to replace the map t 7! tp by the map t 7! '.t/ in the proof in [58]. However,
for completeness, we present the proof. Suppose ' 2 C 1.Œ0;1// \ C 2..0;1// and '0

satisfies (Inc)p�1 and (Dec)q�1 for some 1 < p � q. We first consider the following non-
degenerate problem for " > 0:

div
�
'".jDu"j/

jDu"j
Du"

�
D 0 in �; where '".t/ WD

ˆ t

0

'0."C s/s

"C s
ds; (A.1)
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which is the Euler–Lagrange equation of the minimization problem

min
w

ˆ
�

'".jDwj/ dx: (A.2)

(In Lemma 4.12, � D Br .) By the definition of '" we have

'0".t/

t
D
'0."C t /

"C t
; so that lim

t!0C

'0".t/

t
D
'0."/

"
> 0:

Hence (A.1) is non-degenerate. We emphasize that all hidden constants in� and . in this
appendix depend only on n, p and q, but are independent of ". We observe by the first
equality above and (Inc)p�1 and (Dec)q�1 of '0 that

'00" .t/ D
'0."C t /

"C t

�
1C

�
'00."C t /

."C t /'0."C t /
� 1

�
t

"C t

�
�
'0".t/

t

�
1C .p � 2/

t

"C t

�
� min ¹1; p � 1º

'0".t/

t
(A.3)

and

'00" .t/ �
'0".t/

t

�
1C .q � 2/

t

"C t

�
� max ¹1; q � 1º

'0".t/

t
: (A.4)

Therefore, '0" satisfies (Inc)min ¹1;p�1º and (Dec)max ¹1;q�1º, which implies that

t'00" .t/ � '
0
".t/; t'0".t/ � '".t/;

'".t/

t2
�
'0".t/

t
D
'0."C t /

"C t
: (A.5)

In view of [35], in particular Lemmas 5.7 and 5.8, we find that u" 2 W
2;2

loc .�/ and
'".jDu"j/ 2 W

1;2
loc .�/ if " > 0 and that for any B2� b � and " � 0,

sup
B�

'".jDu"j/ .
 
B2�

'".jDu"j/ dx: (A.6)

Here u0 D u and '0 D '.
Fix " > 0 and B2� b �. From now on, for convenience, we shall simply write

u D u" and v D '".jDuj/ D '".jDu"j/: (A.7)

We first notice from (A.1) and u 2 W 2;2
loc .�/ that

div
�
'0".jDuj/

jDuj
Du

�
D div

�
'0."C jDuj/

"C jDuj
Du

�
D

nX
i;jD1

aijuxixj D 0 a.e. in �;

where aij D aij .Du/, bij D bij .Du/,

aij .z/ WD
'0."C jzj/

"C jzj
bij .z/ D

'0".jzj/

jzj
bij .z/
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and

bij .z/ WD

�
'00."C jzj/."C jzj/

'0."C jzj/
� 1

�
zizj

."C jzj/jzj
C ıij

for z 2 Rn (ıij is the Kronecker delta). As in (A.3) and (A.4) along with the fact thatP
i;j zizj�i�j D .z � �/

2, we conclude that

min ¹1;p � 1º j�j2 �
nX

i;jD1

bij .z/�i�j � max ¹1; q � 1º j�j2 for all z; � 2 Rn: (A.8)

Consider the weak form of (A.1) and a unit vector � 2 Sn�1. We see that

0 D �

ˆ
�

'0".jDuj/

jDuj
Du �D.��/ dx D

ˆ
�

1X
iD1

�
'0".jDuj/

jDuj
uxi

�
�

�xi dx

D

ˆ
�

1X
i;jD1

aijuxj ��xi dx

for any � 2 C10 .�/, where the subscript � indicates directional derivatives. Thus we have
shown that

nX
i;jD1

.aiju�xj /xi D 0 (A.9)

in the weak sense. In addition, by the definition of v in (A.7), we have

vxj D
'0".jDuj/

jDuj

nX
kD1

uxkuxkxj ;

so that bij vxj D
Pn
kD1 aijuxkxj uxk . We conclude, with (A.9) for the second equality,

that

�

ˆ
B�

nX
i;jD1

bij vxj �xi dx D �

nX
kD1

ˆ
B�

nX
i;jD1

aijuxkxj .uxk�/xi dx

C

ˆ
B�

nX
i;j;kD1

aijuxkxj uxkxi � dx

D

ˆ
B�

nX
i;j;kD1

aijuxkxj uxkxi � dx

for all � 2 C10 .B�/ with B� b �. Therefore, we have

Lv WD

nX
i;jD1

.bij vxi /xj D

nX
i;j;kD1

aijuxkxj uxkxi DW g (A.10)
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in the weak sense. Moreover, by (A.8) with � D D.uxk / and (A.5), we have

g �
'".jDuj/

jDuj2
jD2uj2; (A.11)

where jD2uj2 WD
P
i;j .uxixj /

2. In the same way as in [58, Lemma 1] with vD '".jDuj/,
and v�1=p replaced by Œ'�1" .v/��1 D jDuj�1, we deduce that for any B4� b �r ,

 
B�

g1Cı dx .
� 

B4�

g dx

�1Cı
: (A.12)

Next, set

v0 WD v D '".jDuj/ and vk WD
v

'�1" .v/
uxk D

'".jDuj/

jDuj
uxk ; k D 1; : : : ; n:

Then

v0;xj D vxj D
'0".jDuj/Duxj �Du

jDuj
; (A.13)

and, for k D 1; : : : ; n,

vk;xj D
v

'�1" .v/
uxkxj C

�
1 �

v

'�1" .v/'0".'
�1
" .v//

�
vxj

'�1" .v/
uxk

D
'".jDuj/

jDuj
uxkxj C

�
1 �

'".jDuj/

jDuj'0".jDuj/

�
'0".jDuj/Duxj �Du

jDuj2
uxk :

Here we note from (Inc)min ¹2;pº and (Dec)max ¹2;qº for '" that

0 < 1 �
1

min ¹2; pº
� 1 �

'".jDuj/

jDuj'0".jDuj/„ ƒ‚ …
DWA.jDuj/

� 1 �
1

max ¹2; qº
< 1:

Then the previous expression for the partial derivatives implies that vk 2 W
1;2

loc .�/ since
u 2 W

2;2
loc .�/, v D '".jDuj/ 2 W

1;2
loc .�/ and Du 2 L1loc.�/. Moreover,

nX
kD1

jDvkj
2
D

nX
k;jD1

v2k;xj

D
'".jDuj/

2

jDuj2
jD2uj2 C A.jDuj/2

'0".jDuj/
2

jDuj4

nX
k;jD1

.Duxj �Du/
2u2xk

C 2A.jDuj/
'".jDuj/'

0
".jDuj/

jDuj3

nX
jD1

h
Duxj �Du

nX
kD1

uxkxj uxk

i
:



P. Hästö, J. Ok 1322

Since A.jDuj/ � 1 and
P
k;j .Duxj � Du/

2u2xk � jDuj
4jD2uj2, and since we have

Duxj �Du
P
k uxkxj uxk D .Duxj �Du/

2 � 0, we obtain

gv �
'".jDuj/

2

jDuj2
jD2uj2 �

nX
kD1

jDvkj
2 .

'".jDuj/
2

jDuj2
jD2uj2 � gv: (A.14)

Using the expression for the partial derivative vk;xj and (A.9), we see that for kD 1; : : : ;n,

Lvk D

nX
i;jD1

.bij vk;xj /xi

D

nX
i;j;lD1

�
aijuxlxj

�
jDujvılk

'0".jDuj/jDuj
C
uxkuxl
jDuj

�
jDujvuxkuxl
'0".jDuj/jDuj

3

��
xi

D
'0".jDuj/

jDuj

nX
i;j;lD1

bijuxlxj

�
uxkuxl
jDuj

C
vılk

'0".jDuj/
�

vuxkuxl
'0".jDuj/jDuj

2

�
xi

DW gk (A.15)

in the weak sense for test functions in C10 .B�/. Note that gk depends on first and sec-
ond partial derivatives of u. We use the estimates juxj j � jDuj and juxixj j � jD

2uj to
conclude thatˇ̌̌̌�

uxkuxl
jDuj

�
xi

ˇ̌̌̌
D

ˇ̌̌̌
uxkxiuxl C uxkuxlxi

jDuj
�
uxkuxl

Pn
mD1 uxmxi

jDuj2

ˇ̌̌̌
. jD2uj:

Similarly, using also t'0".t/ � '".t/ from (A.5), we estimate the other multipliers of
bijuxlxj by jD2uj as well. Since bij � 1 by (A.8), we conclude by (A.11) that

jgkj .
ˇ̌̌̌
'0".jDuj/

jDuj

nX
i;j;lD1

bijuxlxj jD
2uj

ˇ̌̌̌
.
'0".jDuj/

jDuj
jD2uj2 � g: (A.16)

From now on, fixB32s b�. For kD 0;1; : : : ;n, let hk 2W 1;2.Bs/ be a weak solution
to

Lhk D .bijhk;xj /xi D 0 in Bs; hk D vk on @Bs;

and let
wk D hk � vk 2 W

1;2
0 .Bs/:

Then, by De Giorgi’s theory for linear equations (see for instance [49, Theorem 7.7]), for
any concentric balls B� � Bs with 0 < � � s we have

 
B�

jDhkj
2 dx .

�
�

s

�ˇ�2  
Bs

jDhkj
2 dx .

�
�

s

�ˇ�2  
Bs

jDvkj
2 dx (A.17)
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for some ˇ D ˇ.n; p; q/ 2 .0; 2/. In addition, by (A.8) and Lhk D 0, and by (A.10),
(A.15) and (A.16),

ˆ
Bs

jDwkj
2 dx .

ˆ
Bs

nX
i;jD1

bij .hk � vk/xjwk;xi dx

D �

ˆ
Bs

nX
i;jD1

bij vk;xjwk;xi dx D

ˆ
Bs

gkwk dx .
ˆ
Bs

gjwkj dx:

Here we interpret g0 WD g. (Note that wk 62 C10 .B�/, but we can use wk as a test function
by an approximation argument.)

Hence applying Hölder’s inequality and (A.12) we find that

 
Bs

jDwkj
2 dx .

� 
B4s

g dx

�� 
Bs

jwkj
1C1=ı dx

� 1
1C1=ı

:

Furthermore, the same arguments used to prove [58, (3.8) and (3.13)] (here we need
(A.13) and (A.14)) yield

 
B4s

g dx .
1

M.4s/

nX
kD0

 
B8s

jDvkj
2 dx; where M.�/ WD sup

B�

v;

and

1

M.4s/

� 
Bs

jwkj
1C1=ı

� 1
1Cı

� c

�
1 �

M.�/

M.8s/

� 1
1Cı

for all � 2 .0; s�:

Therefore, combining the last three estimates and (A.17) we see that, for � 2 .0; s�,

nX
kD0

ˆ
B�

jDvkj
2 dx .

��
�

s

�n�2Cˇ
C

�
1 �

M.�/

M.8s/

� 1
1Cı

� nX
kD0

ˆ
B8s

jDvkj
2 dx:

Finally, by a standard iteration argument as in [58, p. 857] and by Poincaré’s inequality,
we can find ˇ1 2 .0; ˇ/ such that

nX
kD0

 
B�

jvk � .vk/B� j
2 dx . �2

nX
kD0

 
B�

jDvkj
2 dx .

�
�

s

�ˇ1
M.4s/2

for any � 2 .0; s�. With the definition of vk , this implies that, for any x; y 2 Bs ,ˇ̌̌̌
'".jDu.x/j/

jDu.x/j
uxk .x/ �

'".jDu.y/j/

jDu.y/j
uxk .y/

ˇ̌̌̌
D jvk.x/ � vk.y/j

.
�
jx � yj

s

�ˇ1=2
M.8s/:
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We use Proposition 3.8(1) with '" in place of '0 to conclude thatˇ̌̌̌
'".jz1j/

jz1j
z1 �

'".jz2j/

jz2j
z2

ˇ̌̌̌
&
'".jz1j C jz2j/

jz1j C jz2j
jz1 � z2j � '".jz1 � z2j/

where we have used jz1j C jz2j � jz1 � z2j and (Inc)1 for '" in the last step. Applying
this in the previous estimate with z1 D Du.x/ and z2 D Du.y/, we find that

'".jDu.x/ �Du.y/j/ .
�
jx � yj

s

�ˇ1=2
M.8s/:

We now undo the convention of omitting " from (A.7) for the final part. Inserting
(A.6) with the definition of M.�/ into the above estimate, we deduce that

'".jDu".x/ �Du".y/j/ .
�
jx � yj

s

�ˇ1=2  
B16s

'".jDu"j/ dx:

At this point, we restrict our attention to the case � D B32s and consider minimizers u"
of (A.2) with the boundary value restriction w 2 uCW 1;'"

0 .B32s/. We apply '�1" to both
sides and use (Dec)max ¹2;qº for '" to get

jDu".x/ �Du".y/j .
�
jx � yj

s

�˛0
'�1"

� 
B16s

'".jDuj/ dx

�
for some ˛0 2 .0;1/. Letting "! 0, we can remove " in the above estimate as in [35, proof
of Lemma 4.9]. Finally, by the same argument as in the proof of Lemma 4.7 with (A.6) and
Jensen’s inequality for the concave function equivalent to '1=q (see Proposition 3.5(2))
we also see that

 
B16s

'.jDuj/ dx .
� 

B32s

'.jDuj/1=q dx

�q
. '

� 
B32s

jDuj dx

�
: (A.18)

These imply, for any x; y 2 Bs and B32s b �, that

jDu.x/ �Du.y/j � c

�
jx � yj

s

�˛0  
B32s

jDuj dx;

which shows (4.14). In addition, from (A.6) and (A.18), we also have (4.13).

Appendix B. Weighted estimate for autonomous problems

In this appendix, we discuss the global weighted estimate (4.18). For global regularity
estimates, the regularity of the boundary of the domain is a delicate issue. In particular,
the Reifenberg flat condition is considered sharp for Calderón–Zygmund type estimates
for problems in divergence form. Hence we shall give a result for domains satisfying
this condition. We say that a bounded domain � is .ı; R/-Reifenberg flat for some small



Maximal regularity for local minimizers of non-autonomous functionals 1325

ı 2 .0; 1/ and R > 0 if for any y 2 @� and r 2 .0;R� there exists an isometric coordinate
system with origin at y, say .x1; : : : ; xn/, such that in this coordinate system,

Br .0/ \ ¹xn > ırº � � \ Br .0/ � Br .0/ \ ¹xn > �ırº:

Note that a domain with Lipschitz boundary with Lipschitz seminorm ı 2 .0; 1/ is .ı;R/-
Reifenberg flat for some R > 0 and that the ball Br is .ı; 2ır/-Reifenberg flat for any
ı 2 .0; 1=2/.

For 1� s �1, letAs be the Muckenhoupt class. In particular, for 1< s <1, a weight
w (i.e., w 2 L1loc.R

n/ and w � 0) is an As-weight, w 2 As , if

Œw�As WD sup
B�Rn

� 
B

w dx

�� 
B

w�
1
s�1 dx

�s�1
<1:

For the properties of the As class, we refer to [50].

Theorem B.1. Let ' 2 ˆc \ C
1.Œ0;1// \ C 2..0;1// with '0 satisfying (Inc)p�1 and

(Dec)q�1 for some 1 < p � q <1, and let w 2 As for some s 2 .1;1/. There exists
a small ı D ı.n; p; q; s; Œw�As / 2 .0; 1/ such that if � is .ı; R/-Reifenberg flat for some
R > 0, v0 2 W 1;'.�/ satisfies '.jDv0j/ 2 Lsw.�/ and v 2 W 1;'.�/ is a weak solution
to

div
�
'0.jDvj/

jDvj
Dv

�
D 0 in � with v D v0 on @�; (B.2)

then ˆ
�

'.jDvj/s w dx � c

ˆ
�

'.jDv0j/
s w dx

for some c D c.n; p; q; s; Œw�As ; diam.�/=R/ > 0. In particular, letting� D Br we have
(4.18), since Br is .ı; 2ır/-Reifenberg flat.

Remark B.3. In Theorem B.1, ı is decreasing as a function of Œw�As [70, Remark 2.2].
Moreover, we can also see by analyzing the proof that the constant c is increasing in Œw�As
and in diam.�/=R when the other is constant. Therefore, when � D Br , the constant c
is increasing in Œw�As , since diam.�/=R D 1=.2ı/.

Sketch of the proof of Theorem B.1. For the p-Laplacian case, that is, '.t/ D tp , the
weighted estimate has been proved in [70] (see also [20]) for the equation

div.jDvjp�2Dv/ D div.jF jp�2F / in � with v D 0 on @�:

Specifically, in [70], it has been shown that for the above equation,ˆ
�

jDvjpsw dx � c

ˆ
�

jF jpsw dx

for any w 2 As and any F 2 Lpsw .�;Rn/. Moreover, it turns out that this result with-
out a weight (i.e., w � 1) is naturally extended [14] to the equation involving a general
function ',

div
�
'0.jDvj/

jDvj
Dv

�
D div

�
'0.jF j/

jF j
F

�
in � with v D 0 on @�: (B.4)
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Therefore, proceeding as in [70] with minor modification, one can prove that for the equa-
tion (B.4), ˆ

�

'.jDvj/sw dx � c

ˆ
�

'.jF j/sw dx

for any w 2 As and any F 2 L'.�;Rn/ satisfying '.jF j/ 2 Lsw.�/.
In this theorem, we consider non-zero boundary data v0. However, the gradient of v0

can be handled in much the same way as for F in the results mentioned above. Hence, by
the same argument as in [70], replacing tp by '.t/ and changing boundary comparison
estimates from [70, Lemma 4.6] to Lemmas B.5 and B.11 below, we obtain the desired
estimate.

For the rest of the paper, we suppose the assumptions of Theorem B.1 hold. We
consider our problem (B.2) on a local region near the boundary of �. Define �r .x/ WD
�\Br .x/, Br WDBr .0/,�r D�r .0/, BCr WDBr \ ¹xn > 0º and B�r WDBr \ ¹xn < 0º.
Then we consider our equation in the region �5r with 5r < R and

BC5r � �5r � B5r \ ¹xn > �10ırº:

Here, ı 2 .0; 1/ and R > 0 come from the .ı; R/-Reifenberg flat condition of � and so
ı has to be determined later and R is given. Note that in view of the scaling invariance
property of (B.2) (see for instance the proof of Lemma 4.15), we may let r D 1 and
consider assumption (B.7) below.

We first compare our equation (B.2) with an equation having zero boundary values on
@� in a local region near the boundary.

Lemma B.5. For v0 2 W 1;'.�/ let v 2 W 1;'
0 .�/ be a weak solution to (B.2). For any

" > 0 there exists a small ı 2 .0; 1/ depending on n, p, q and " such that if � is .ı; 5/-
Reifenberg flat and

BC5 � �5 � B5 \ ¹xn > �10ıº; (B.6) 
�5

'.jDvj/ dx � 1 and
 
�5

'.jDv0j/ dx � ı; (B.7)

then for the weak solution w 2 W 1;'.�5/ to

div
�
'0.jDwj/

jDwj
Dw

�
D 0 in �5 and w D v � v0 on @�5; (B.8)

we have  
�5

'.jDwj/ dx � c and
 
�5

'.jDv �Dwj/ dx � ": (B.9)

Here, c > 0 depends on p and q, but is independent of ".

Proof. Since w � v C v0 2 W
1;'
0 .�5/, by (B.8) and (B.2) we have

ˆ
�5

'0.jDwj/

jDwj
Dw �D.w � v C v0/ dx D 0 D

ˆ
�5

'0.jDvj/

jDvj
Dv �D.w � v C v0/ dx:

(B.10)
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In view of '.t/� t'0.t/ and Propositions 3.5(5) and 3.6(4), the first equality above implies
that  

�5

'.jDwj/ dx �

 
�5

'0.jDwj/jDv �Dv0j dx

�

 
�5

�
1
2
'.jDwj/ dx C c'.jDv �Dv0j/

�
dx

for some c D c.p; q/ > 0. By (B.7), we obtain the first estimate in (B.9).
We next prove the second estimate in (B.9). By Proposition 3.8(1), (B.10) and Propo-

sitions 3.5(5) and 3.6(4) we find that for �1 2 .0; 1/,

 
�5

'0.jDwj C jDvj/

jDwj C jDvj
jDw �Dvj2 dx

.
 
�5

�
'0.jDwj/

jDwj
Dw �

'0.jDvj/

jDvj
Dv

�
�D.w � v/ dx

.
 
�5

.'0.jDwj/C '0.jDvj//jDv0j dx

. �1

 
�5

Œ'.jDwj/C '.jDvj/� dx C
1

�
q�1
1

 
�5

'.jDv0j/ dx:

Moreover, by Proposition 3.8(3), for any �2 2 .0; 1/,

'.jDw �Dvj/ � �2.'.Dw/C '.Dv//C �
�1
2

'0.jDwj C jDvj/

jDwj C jDvj
jDw �Dvj2:

Combining the above two estimates we have
 
�5

'.jDw �Dvj/ dx . �2

 
�5

Œ'.Dw/C '.Dv/� dx

C
�1

�2

 
�5

Œ'.jDwj/C '.jDvj/� dx

C
1

�2�
q�1
1

 
�5

'.jDv0j/ dx:

Finally, applying (B.7) and the first estimate in (B.9) and choosing sufficiently small �1,
�2 and ı depending n, p, q on ", we get the second estimate in (B.9).

We also notice that the weak solution w to (B.8) has value zero on @�5 \ B5. We
next compare (B.8), which assumes zero boundary values on @�5 \B5, with an equation
defined in BC2 with zero boundary values on B2 \ ¹xn D 0º:A similar result can be found
in [14, Lemma 3.6]. The proof of that lemma employs a compactness argument. Here we
give a more direct approach which clearly shows the dependence on ı.
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Lemma B.11. Let � D �.xn/ 2 C
1.R/ with � D 0 if xn � 0, � D 1 if xn � ı and

j�0j � 2=ı. For any " > 0 there exists a small ı > 0 depending on n, p, q and " such
that, under the assumptions of the above lemma, if w0 is the weak solution to

div
�
'0.jDw0j/

jDw0j
Dw0

�
D 0 in BC2 and w0 D �w on @BC2 ;

then  
B
C

2

'.jDw0j/ dx � c and
 
B
C

2

'.jDw �Dw0j/ dx � ": (B.12)

Moreover,

k'.jDw0j/kL1.�1/ D k'.jDw0j/kL1.BC
1
/
� c

 
B
C

2

'.jDw0j/ dx � c; (B.13)

where we extend w0 by zero to B�2 . Here the constants c depend on n, p and q, but are
independent of ".

Proof. We follow the technique of [57, Lemma 2.5] (see also [19, Lemma 2.5]). Clearly,
.ı; R/-Reifenberg flat domains with ı 2 .0; 1=2/ satisfy the measure density condition
jBr j4

�n � j�r .x/j � jBr j and 4�njBr j � jBr .x/ n�r .x/j for all x 2 @� and r 2 .0;R�.
One can show as in [72, Theorem 3.9] that, for equation (B.8), there exists � D �.n;p; q/
2 .0; 1/ such that '.jDwj/ 2 L1C�loc .B5/ (we extend w by 0 in B5 n�5) and� 

�3

'.jDwj/1C� dx

� 1
1C�

.
 
�4

'.jDwj/ dx:

Then by Hölder’s inequality with (B.6), we observe that

ˆ
�3\¹xn�ıº

'.jDwj/ dx . ı
�
1C�

�ˆ
�3

'.jDwj/1C� dx

� 1
1C�

. ı
�
1C�

ˆ
�4

'.jDwj/ dx:

(B.14)

In addition, using the fact thatw� 0 inB4 n�4 andw is absolutely continuous on almost
all lines parallel to the coordinate axes, as well as Jensen’s inequality, we find that
ˆ
�2\¹xn�ıº

'.jD�j jwj/ dx .
ˆ
�2\¹xn�ıº

'

�
1

ı

ˇ̌̌̌ˆ xn

�8ı

Dnw.x
0; y/ dy

ˇ̌̌̌�
dx

.
ˆ
�2\¹xn�ıº

'

� ı

�8ı

jDnw.x
0; y/j dy

�
dx

.
ˆ
¹jx0j�2º�¹�10ı<xn�ıº

 ı

�8ı

'.jDnw.x
0; y/j/ dy dx0 dxn

.
ˆ
�3\¹.x0;y/Wy�ıº

'.jDw.x0; y/j/ dx0 dy: (B.15)
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In the last inequality above, we have used the facts that ¹jx0j � 2º \ ¹jxnj � 2º � B3 and
Dw � 0 in B3 n�3.

Since w0 � �w 2 W
1;'
0 .BC2 / and w0 is a minimizer, using also (B.15) we find thatˆ

B
C

2

'.jDw0j/ dx �

ˆ
B
C

2

'.jD.�w/j/ dx

.
ˆ
B
C

2

'.jDwj/ dx C

ˆ
B
C

2
\¹xn�ıº

'.jD�j jwj/ dx

.
ˆ
�3

'.jDwj/ dx; (B.16)

which together with (B.6) and (B.9) yields the first estimate in (B.12).
We next derive the second estimate in (B.12). Sincew0��w2W

1;'
0 .BC2 /\W

1;'
0 .�2/

we have ˆ
B
C

2

�
'0.jDw0j/

jDw0j
Dw0 �

'0.jDwj/

jDwj
Dw

�
�D.w0 � �w/ dx D 0;

which together with Propositions 3.5(5) and 3.6(4) implies that for any �1 2 .0; 1/,
ˆ
B
C

2

�
'0.jDw0j/

jDw0j
Dw0 �

'0.jDwj/

jDwj
Dw

�
�D.w0 � w/ dx

D

ˆ
B
C

2
\¹xn�ıº

�
'0.jDw0j/

jDw0j
Dw0 �

'0.jDwj/

jDwj
Dw

�
�D.�w � w/ dx

�

ˆ
B
C

2
\¹xn�ıº

.'0.jDw0j/C '
0.jDwj//.jD�j jwj C jDwj/ dx

. �1

ˆ
B
C

2
\¹xn�ıº

Œ'.jDw0j/C '.jDwj/� dx

C
1

�
q�1
1

ˆ
B
C

2
\¹xn�ıº

Œ'.jD�j jwj/C '.jDwj/� dx:

Applying Proposition 3.8(3) and (B.14)–(B.16), we see that for any �2 2 .0; 1/,ˆ
B
C

2

'.jDw0 �Dwj/ dx .
�
�2 C

�1

�2

� ˆ
�3

'.jDwj/ dx C
ı

�
1C�

�2�
q�1
1

ˆ
�4

'.jDwj/ dx:

Therefore, using the first estimate of (B.9) and taking sufficiently small �1, �2 and ı
depending on n, p, q and ", we have the second estimate in (B.12).

Let Qw0 2 W 1;'.B2/ be an even extension of w0 so that Qw0.x/ D w0.x/ if x 2 BC2
and Qw0.x1; : : : ; xn�1; xn/ D w0.x1; : : : ; xn�1;�xn/ if .x1; : : : ; xn/ 2 B�2 . Note that Qw0
is well defined since w0 D 0 on Br \ ¹xn D 0º. Moreover Qw0 is a weak solution to

div
�
'0.jD Qw0j/

jD Qw0j
D Qw0

�
D 0 in B2

(see for instance [68, Theorem 3.4]). Therefore, (B.13) follows from Lemma 4.12.
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