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Abstract. Let G be a finite connected graph, and let T be a spanning tree of G chosen uniformly at
random. The work of Kirchhoff on electrical networks can be used to show that the events e1 2 T
and e2 2 T are negatively correlated for any distinct edges e1 and e2. What can be said for such
events when the underlying matroid is not necessarily graphic? We use Hodge theory for matroids
to bound the correlation between the events e 2 B, where B is a randomly chosen basis of a matroid.
As an application, we prove Mason’s conjecture that the number of k-element independent sets of
a matroid forms an ultra-log-concave sequence in k.
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1. Introduction and results

Let G be a finite connected graph, and let w D .we/ be a set of positive weights on the
edges e of G. Randomly pick a spanning tree T of G so that the probability of selecting
an individual tree t is proportional to the product of the weights of its edges:

P .T D t / /
Y
e2t

we:

The work of Kirchhoff on electrical networks can be used to show that, for any distinct
edges i and j , the events i 2 T and j 2 T are negatively correlated:

P .T contains i j T contains j / � P .T contains i/:

Equivalently, for any distinct edges i and j , we have

P .i 2 T; j 2 T/ P .i … T; j … T/ � P .i 2 T; j … T/ P .i … T; j 2 T/:

We refer to [24] and [20, Chapter 4] for modern expositions.

June Huh: Princeton University, Princeton, NJ, USA; huh@princeton.edu, and Korea Institute for
Advanced Study, Dongdaemun-gu, Seoul 130-722, Republic of Korea; junehuh@kias.re.kr
Benjamin Schröter: Department of Mathematics, KTH Royal Institute of Technology, Stockholm,
Sweden; schrot@kth.se
Botong Wang: University of Wisconsin-Madison, Madison, WI, USA; wang@math.wisc.edu

Mathematics Subject Classification (2020): 05B35, 05A20

https://creativecommons.org/licenses/by/4.0/
mailto:huh@princeton.edu
mailto:junehuh@kias.re.kr
mailto:schrot@kth.se
mailto:wang@math.wisc.edu


J. Huh, B. Schröter, B. Wang 1336

Let E be a finite set. A matroid on E is a nonempty collection of subsets of E, called
bases of the matroid, that satisfies the exchange property:
� For any bases b1; b2 and e1 2 b1 n b2, there is e2 2 b2 n b1 such that .b1 n e1/ [ e2 is

a basis.
An independent set is a subset of a basis, a dependent set is a subset of E that is not
independent, a circuit is a minimal dependent set, the rank of a subset of E is the cardi-
nality of any one of its maximal independent subsets, and a flat is a subset of E that is
maximal for its rank. The rank of a matroid is the cardinality of any one of its bases. For
any unexplained matroid terms and facts, we refer to Oxley’s book [23]. The collection of
spanning trees of a connected graph is the best-known example of a matroid.

Let M be a matroid onE, and fix a setw D .we/ of positive weights on the elements e
of E. Randomly pick a basis B of the matroid so that the probability of selecting an
individual basis b is proportional to the product of the weights of its elements:

P .B D b/ /
Y
e2b

we:

In this more general setup, for any distinct i and j in E, do we still have the negative
correlation

P .i 2 B; j 2 B/ P .i … B; j … B/ � P .i 2 B; j … B/ P .i … B; j 2 B/‹

The answer is “yes” if the matroid is regular [7], if the matroid is representable over F3
and F4 [3], if the cardinality of E is at most 7, or if the rank of M is at most 3 [28].
Examples below show that distinct elements of E can define positively correlated events
for more general matroids.

Example 1. Let S be the 2-dimensional skeleton of the 5-dimensional simplex. A span-
ning tree of S is a maximal subset of the twenty triangles in S that does not contain any
2-cycle over F2. Choose one such B uniformly at random. Then, for any two disjoint
triangles in S, say i D 123 and j D 456 in Figure 1A, we have

P .i 2 B; j 2 B/ P .i … B; j … B/ D
11664

46608
�
11664

46608
' 0:06263;

P .i 2 B; j … B/ P .i … B; j 2 B/ D
11640

46608
�
11640

46608
' 0:06237:

This example was found by Andrew Newman.
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Fig. 1. Positive correlation in matroids.
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Example 2. Let G be the graph in Figure 1B. Consider the collection of all forests in G
with exactly six edges, and choose one such B uniformly at random. Then, for the edges
labelled i and j in Figure 1B, we have

P .i 2 B; j 2 B/ P .i … B; j … B/ D
80

384
�
80

384
' 0:04340;

P .i 2 B; j … B/ P .i … B; j 2 B/ D
32

384
�
192

384
' 0:04167:

This example, attributed to Paul Seymour, Peter Winkler, and Madhu Sudan, is discussed
in [7, Section 2].

Example 3. Let A1; A2; A3; A4 be the four finite sets shown in Figure 1C. A system of
distinct representatives is a set ¹x1; x2; x3; x4º of size four such that xk 2 Ak for all k.
Choose one such B uniformly at random. Then, for the elements labelled i and j in
Figure 1C, we have

P .i 2 B; j 2 B/ P .i … B; j … B/ D
33

309
�
126

309
' 0:04355;

P .i 2 B; j … B/ P .i … B; j 2 B/ D
36

309
�
114

309
' 0:04298:

This example is from [4, Section 5].1

Example 4. Let i and j be distinct elements of a 24-element set E, and let V be the set
of blocks of the Steiner system S.5; 8; 24/ that contain exactly one of i and j . Consider
the collection of all 6-element subsets of E not contained in any member of V . If we
choose one such B uniformly at random, we have

P .i 2 B; j 2 B/ P .i … B; j … B/ D
7315

124740
�
72149

124740
' 0:03391;

P .i 2 B; j … B/ P .i … B; j 2 B/ D
22638

124740
�
22638

124740
' 0:03293:

This example, due to Mark Jerrum, shows that a paving matroid need not have the nega-
tively correlation property [13, Section 4].

In Section 3, we use the Hodge theory for matroids in [1, 12] to bound the correlation
between the events e 2 B.

Theorem 5. For any distinct elements i and j in a matroid M of positive rank d ,

P .i 2 B; j 2 B/ P .i … B; j … B/ � 2
�
1 �

1

d

�
P .i 2 B; j … B/ P .i … B; j 2 B/:

1The proof of [4, Proposition 5.9] needs a small correction. In the notation of that paper, the
numbers should be Le D 69, Lf D 147, Lef D 33, Lef D 309.
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Theorem 5 implies the covariance bound

Cov.B contains i ;B contains j / < P .B contains i/ P .B contains j /:

Compare the notion of approximate independence in [16, Section 4].
An element e of a rank d matroid M is a loop if it is contained in no basis of M,

a coloop if it is contained in every basis of M, and free if it is not a coloop and every
circuit of M containing e has cardinality d C 1. For example, the elements labelled j in
matroids of Examples 2 and 3 are free. In Section 4, we remove the factor 2 in Theorem 5
when both i and j are free.

Theorem 6. For any distinct free elements i and j in a matroid M of positive rank d ,

P .i 2 B; j 2 B/ P .i … B; j … B/ �
�
1 �

1

d

�
P .i 2 B; j … B/ P .i … B; j 2 B/:

Can we replace the constant 2 in Theorem 5 by a smaller number? To any matroid M,
we associate a nonnegative real number ˛.M/ defined by

˛.M/ D sup ¹P .i 2 B; j 2 B/ P .i … B; j … B/=P .i 2 B; j … B/ P .i … B; j 2 B/º;

where the supremum is over all distinct non-loop non-coloop elements i and j in M and
all sets of positive weights w on the elements of M. When every element of M is either a
loop or a coloop, we set ˛.M/ D 0. It is straightforward to check that if M? is the dual
matroid of M and M is a minor of another matroid N, then

˛.M/ D ˛.M?/ and ˛.M/ � ˛.N/:

In addition, if M1 and M2 have an element that is neither a loop nor a coloop, then

˛.M1 ˚M2/ D max ¹˛.M1/; ˛.M2/; 1º:

We define the correlation constant ˛F of a field F to be the real number

˛F D sup ¹˛.M/º;

where the supremum is over all matroids M representable over F . The correlation con-
stant of matroids, denoted ˛Mat, is defined in the same way by taking the supremum over
all matroids. As we can place any number of new elements in parallel to existing elements
in any matroid, the values of ˛F and ˛Mat remain unchanged if we only consider matroids
with constant weights.

In Section 5, we construct explicit examples to produce a lower bound of ˛F for any
field F .

Theorem 7. The correlation constant of any field F satisfies 8=7 � ˛F � ˛Mat � 2.
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What is the correlation constant of F2? What is the correlation constant of C? Does
˛F depend on F? What is the correlation constant ˛Mat? The first question may be the
most tractable one, as the only minor-minimal binary matroid with ˛.M/ larger than 1 is
the matroid represented over F2 by the matrix2664

1 0 0 0 0 1 1 1

0 1 0 0 1 0 1 1

0 0 1 0 1 1 0 1

0 0 0 1 1 1 1 1

3775 :
This matroid, labelled S8 in Oxley’s list [23, Appendix], was first found by Seymour and
Welsh to have positively correlated pair of elements [27]. See [4] for a proof of the asser-
tion on S8. We conjecture, although without much evidence, that the correlation constant
of F2 is 8=7. We know no matroid M with ˛.M/ larger than 8=7.

The initial motivation for our paper comes from the work of Mason [22], who offered
the following three conjectures of increasing strength. Several other authors studied cor-
relations in matroid theory partly in pursuit of these conjectures [2, 17, 18, 27, 29].

Conjecture 8. For any n-element matroid N and any positive integer k,
(1) Ik.N/2 � Ik�1.N/IkC1.N/;
(2) Ik.N/2 � kC1

k
Ik�1.N/IkC1.N/;

(3) Ik.N/2 � kC1
k

n�kC1
n�k

Ik�1.N/IkC1.N/;
where Ik.N/ is the number of k-element independent sets of N.

Conjecture 8(1) was proved in [1]. Conjecture 8(3) is known to hold when n is at
most 11 or k is at most 5 [18]. We refer to [6, 9, 11, 19, 21, 25, 30] for other partial results
on Conjecture 8.

Conjecture 8(2) follows from the special case of Theorem 6 when the weight w is
constant.

Corollary 9. Conjecture 8(2) holds.

The implication is based on two standard constructions [23, Chapter 7]. First, we use
the truncation of N to reduce Conjecture 8(2) to the case k D d � 1, where d is the rank
of N. Next, we construct the free extension M of N by adding two new free elements i
and j . If we pick a basis B of M uniformly at random, then

P .i 2B; j 2B/ P .i …B; j …B/D
Id�2.N/ �Id .N/

.Id�2.N/C2Id�1.N/CId .N//2
;

P .i 2B; j …B/ P .i …B; j 2B/D
Id�1.N/ �Id�1.N/

.Id�2.N/C2Id�1.N/CId .N//2
:

Now Conjecture 8(2) for N is Theorem 6 for i and j in M.
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Conjecture 8(2) implies an entropy bound that cannot be deduced from Conjec-
ture 8(1). Recall that the Shannon entropy H.X/ of a discrete random variable X is, by
definition,

H.X/ D �
X
k

P .X D k/ log P .X D k/;

where the logarithm is to base 2 and the sum is over all values of X with nonzero proba-
bility. For a rank d matroid M, let IM be the size of an independent set drawn uniformly
at random from the collection of all independent sets of M. For any d , uniform matroids
of rank d show that

inf
rk.M/Dd

H.IM/ D 0;

where the infimum is over all matroids of rank d . We show that, asymptotically, the
entropy of IM is at most half of the obvious upper bound logd given by Jensen’s inequal-
ity.

Corollary 10. Uniform random independent sets of matroids satisfy

lim
d!1

�
sup

rk.M/Dd
H.IM/=log d

�
D
1

2
;

where the supremum is over all matroids of rank d .

Corollary 10 is based on a result of Johnson [14, Theorem 2.5], who showed that
the Poisson distribution maximizes entropy in the class of ultra log-concave distributions.
Recall that a random variable X taking its values in N is said to have the Poisson distri-
bution with parameter � if

P .X D k/ D
�ke��

kŠ
for all k 2 N.

Combined with Conjecture 8(2), Johnson’s result implies that

H.IM/ � H.P.�//;

where P.�/ is the Poisson distribution with parameter � D E.IM/. Using known bounds
for the entropy of Poisson distributions from information theory [5, Theorem 8.6.5], we
get

H.IM/ �
1

2
log
�
2�e

�
d C

1

12

��
:

In general, an upper bound of the entropy of a random variable X implies a concentration
of X [15, Chapter 22]. The above bound of H.IM/, for example, gives the following.

Corollary 11. For any matroid M of rank d , there is k such that

P .IM D k/ >
1

5
p
d
:

Clearly, Corollaries 10 and 11 cannot be deduced from Conjecture 8(1) alone.
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2. Hodge theory for matroids

We review the results of [12] and [1] that will be used to prove Theorems 5 and 6. For our
purposes, we may assume that matroids do not have any loops. In the rest of this paper,
we fix a positive integer n and work with loopless matroids on finite sets

E D ¹1; : : : ; nº and E D ¹0; 1; : : : ; nº:

We say that two subsets S1 and S2 of E are incomparable if S1 ª S2 and S2 ª S1. Our
notations will be consistent with those of [12, Section 2].

Let M be a loopless matroid on E of rank d C 1, and let L be the lattice of flats
of M. Introduce variables xF , one for each nonempty proper flat F of M, and consider
the polynomial ring

S.M/ D RŒxF �F¤;; F¤E;F 2L:

The Chow ring A.M/ is the quotient of S.M/ by the ideal generated by the linear formsX
e12F

xF �
X
e22F

xF ;

one for each pair of distinct elements e1 and e2 of E, and the quadratic monomials

xF 1
xF 2

;

one for each pair of incomparable nonempty proper flats F 1 and F 2 of M. We denote the
degree q component of A.M/ by Aq.M/.

Definition 12. A real-valued function c on 2E is said to be strictly submodular if c; D 0,
cE D 0, and, for any pair of incomparable subsets I1; I2 � E, we have

cI1
C cI2

> cI1 \ I2
C cI1 [ I2

:

A strictly submodular function c defines an element L.c/ D
P
F cF xF in A1.M/. We

refer to L.c/ as the element of A1.M/ attached to the function c.

Note that strictly submodular functions on 2E exist. For example, we have the function

cI D .number of elements in I /.number of elements not in I /:

We may now state the hard Lefschetz theorem and the Hodge–Riemann relations
for matroids [1, Theorem 1.4]. The function “deg” in Theorem 13 is the isomorphism
Ad .M/' R constructed in [1, Section 5.3]. This isomorphism is uniquely determined by
its property

deg.xF 1
xF 2
� � � xF d

/ D 1

for any chain of nonempty proper flats F 1 ¨ F 2 ¨ � � � ¨ F d in M.
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Theorem 13. Let L 2 A1.M/ be attached to a strictly submodular function on 2E .

(1) (Hard Lefschetz theorem) For every nonnegative integer q � d=2, multiplication by
L defines an isomorphism

Aq.M/! Ad�q.M/; � 7! Ld�2q �:

(2) (Hodge–Riemann relations) For every nonnegative integer q � d=2, multiplication
by L defines a symmetric bilinear form

Aq.M/ � Aq.M/! R; .�1; �2/ 7! .�1/q deg.�1�2Ld�2q/;

that is positive definite on the kernel of Ld�2qC1.

Theorems 5 and 6, as well as other applications of the Hodge–Riemann relations in
combinatorics surveyed in [10], only use the special case q � 1. It will be interesting to
find applications of the Hodge–Riemann relations for q > 1.

3. Proof of Theorem 5

Let M be a rank d loopless matroid on E. Let M be the matroid on E obtained from M
by adding 0 as a coloop, the direct sum of M and the rank 1 matroid on ¹0º. For every e
in E, we define an element

ye D
X

02F ; e…F

xF ;

where the sum is over all flats F of M that contain 0 and do not contain e. The linear
relations in A.M/ show that we may equivalently define ye by summing over all flats F
of M that contain e and do not contain 0. The quadratic relations in A.M/ show that, for
any nonempty proper flat F of M containing exactly one of e and 0,

xF � ye D 0:

In what follows, relations of the above kind will be called xy-relations. The xy-relations
imply that, for example, ye � ye is zero for any e in E.

Lemma 14. For any dependent set J of M, we haveY
e2J

ye D 0:

Proof. We may suppose that J is a circuit of M. Choose a maximal independent set I
of M in J , an element f in I , and an element g in J n I . Since .I n f / [ g is a basis
of J , the set of flats of M containing .I n f / [ 0 and not containing f is equal to the set
of flats of M containing .I n f /[ 0 and not containing g. Therefore, by the xy-relations,Y

e2I

ye D yf
Y
e2Inf

ye D yg
Y
e2Inf

ye:

Since the square of yg is zero, this gives
Q
e2J ye D

Q
e2I ye

Q
e2JnI ye D 0.
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Lemma 15. For any d -element subset B of E, we have

deg
�Y
e2B

ye

�
D

²
1 if B is a basis of M,
0 if B is not a basis of M.

Proof. Without loss of generality, we may suppose that B D ¹1; : : : ; dº. We consider the
flats

F k D the smallest flat of M containing 0; 1; : : : ; k � 1; for k D 1; : : : ; d C 1:

If B is a basis of M, then F k is the only flat of M containing 0; 1; : : : ; k � 1, not contain-
ing k, and comparable to F kC1. Thus the xy-relations imply that

y1 � � �yd�2yd�1yd D .y1 � � �yd�2yd�1/xF d

D .y1 � � �yd�2/xF d�1
xF d
D � � � D xF 1

� � � xF d�2
xF d�1

xF d
:

If B is not a basis of M, then it contains a dependent set of M, and so
Q
e2B ye D 0 by

Lemma 14.

Lemma 16. Let e be an element of E, and let c.e/ be the real-valued function on 2E

defined by

c.e/I D

²
1 if I contains 0 and does not contain e,
0 if I contains e or does not contain 0.

Then c.e/; D 0, c.e/E D 0, and, for any subsets I1; I2 of E,

c.e/I1
C c.e/I2

� c.e/I1\I2
C c.e/I1[I2

:

The submodular inequality of Lemma 16 is straightforward to check. In fact,

c.e/I1
C c.e/I2

� c.e/I1\I2
� c.e/I1[I2

D

8<:1 if 0 is in I1 n I2 and e is in I2 n I1,
1 if 0 is in I2 n I1 and e is in I1 n I2,
0 otherwise.

We are ready to prove Theorem 5. The equality holds in Theorem 5 when d D 1.
Suppose from now on that d � 2. Let w D .we/ be the given set of positive weights
on E. For distinct elements i and j in E, define

Lij D Lij .w/ D
X

e¤i; e¤j

weye;

where the sum is over all elements of E other than i and j . Lemma 15 shows that

deg.Ldij / D dŠ
� X
B2Bij

Y
e2B

we

�
;
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where Bij is the set of bases of M not containing i and not containing j . Similarly,

deg.yiLd�1ij / D .d � 1/Š
� X
B2B

j

i

Y
e2B

we

�
;

where B
j
i is the set of bases of M containing i and not containing j , and

deg.yiyjLd�2ij / D .d � 2/Š
� X
B2Bij

Y
e2B

we

�
:

where Bij is the set of bases of M containing i and containing j . Theorem 5 obviously
holds if Bij or Bij is empty. We suppose from now on that Bij and Bij are nonempty.

Let L be any element of A1.M/ attached to a strictly submodular function on 2E . By
Lemma 16, Theorem 13 applies to the element Lij C �L for any positive real number �. By
the Hodge–Riemann relations for q � 1, any matrix representing the symmetric bilinear
form

A1.M/ � A1.M/! R; .�1; �2/ 7! deg
�
�1�2.Lij C �L/d�2

�
;

must have exactly one positive eigenvalue. Thus, by continuity, any matrix representing
the symmetric bilinear form

A1.M/ � A1.M/! R; .a1; a2/ 7! deg.�1�2Ld�2ij /;

has at most one positive eigenvalue. Now consider the symmetric matrix

Hij D

264 0 deg.yi yj Ld�2ij / deg.yi LijLd�2ij /

deg.yi yj Ld�2ij / 0 deg.yj LijLd�2ij /

deg.yi LijLd�2ij / deg.yj LijLd�2ij / deg.LijLijLd�2ij /

375 :
Cauchy’s eigenvalue interlacing theorem shows that Hij has at most one positive eigen-
value as well. On the other hand, Hij has at least one positive eigenvalue, because its
lower-right diagonal entry is positive. A straightforward computation reveals that the
determinant of Hij is a positive multiple of

2

�
1 �

1

d

�� X
B2B

j

i

Y
e2B

we

�� X
B2Bi

j

Y
e2B

we

�
�

� X
B2Bij

Y
e2B

we

�� X
B2Bij

Y
e2B

we

�
:

The determinant must be nonnegative by the condition on the eigenvalues of Hij , and
hence

P .i 2 B; j 2 B/ P .i … B; j … B/ � 2
�
1 �

1

d

�
P .i 2 B; j … B/ P .i … B; j 2 B/:

This completes the proof of Theorem 5.
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4. Proof of Theorem 6

Let i and j be distinct free elements in a rank d matroid Y, and let Z be the deletion of i
and j from Y. We prove Theorem 6 for i and j in Y. When d D 1, no basis of Y contains
both i and j , and equality holds in Theorem 6. Suppose from now on that d � 2.

Write Bij , Bi
j , B

j
i , Bij for the sets of bases containing and/or not containing i; j ,

and Im for the collection of m-element independent sets. Since i and j are free, we have
natural bijections

Id .Z/ ' Bij .Y/; Id�1.Z/ ' B
j
i .Y/ ' Bi

j .Y/; Id�2.Z/ ' Bij .Y/:

If the rank of Z is less than d , Theorem 6 clearly holds for Y, as the left hand side of the
inequality is zero. If the rank of Z is d , Theorem 6 for Y is equivalent to the following
inequality for ZDM. The inequality applied to the constant weightw and all the repeated
truncations of M implies Corollary 9.

Proposition 17. For any matroid M of rank d � 2 and any set w D .we/ of positive
weights, � X

I2Id�1

Y
e2I

we

�2
�

d

d � 1

� X
I2Id�2

Y
e2I

we

��X
I2Id

Y
e2I

we

�
;

where Im D Im.M/ is the collection of m-element independent sets of M.

The proof of Proposition 17 is similar to that of Theorem 5. We define an element

˛ D
X
02F

xF ;

where the sum is over all proper flats F of M containing 0. The linear relations in A.M/
show that we may equivalently define ˛ by summing over all flats F of M containing e,
for any e in E. The main ingredient of the proof is the following extension of Lemma 15.

Lemma 18. For any m-element subset I of E, we have

deg
�
˛d�m

Y
e2I

ye

�
D

²
1 if I is independent in M,
0 if I is dependent in M.

Proof. We use descending induction on m. The case m D d is Lemma 15, and the case
of dependent I is Lemma 14. For the induction step, suppose without loss of generality
that ¹1; : : : ; dº is a basis of M. It is enough to show that

.y1 � � �ym�1/ym˛
d�m
D .y1 � � �ym�1/˛

d�mC1:

By the xy-relations, the difference of the right hand side and the left hand side is

.y1 � � �ym�1/
�X
G

xG

�
˛d�m;
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where the sum is over all proper flats G of M containing 0; 1; : : : ; m. For any such G, we
claim

xG ˛
d�m
D 0:

To see this, use the linear relations in A.M/ to write

xG˛
d�m
D xG

� X
FmC1

xFmC1

�
: : :
�X
F d

xF d

�
;

where the k-th sum is over all proper flats FmCk of M containingmC k. Since ¹1; : : : ; dº
is a basis of M, no proper flat of M contains ¹0; 1; : : : ; dº, and hence the right hand side
is zero by the quadratic relations in A.M/.

We are now ready to prove Proposition 17. Define another element

L0 D L0.w/ D
X
e2E

weye;

where the sum is over all elements e in E. By Lemma 18, for any nonnegative integer
m � d ,

deg.˛d�mLm0 / D mŠ
�X
I2Im

Y
e2I

we

�
;

where Im is the collection of m-element independent sets of M.
Let L be any element of A1.M/ attached to a strictly submodular function on 2E . By

Lemma 16, Theorem 13 applies to the element L0C �L for any positive real number �. By
the Hodge–Riemann relations for q � 1, any matrix representing the symmetric bilinear
form

A1.M/ � A1.M/! R; .�1; �2/ 7! deg
�
�1�2.L0 C �L/d�2

�
;

must have exactly one positive eigenvalue. Thus any matrix representing the symmetric
bilinear form

A1.M/ � A1.M/! R; .a1; a2/ 7! deg.�1�2Ld�20 /;

has at most one positive eigenvalue. Now consider the symmetric matrix

H0 D
�

deg.˛˛Ld�20 / deg.˛L0Ld�20 /

deg.˛L0Ld�20 / deg.L0L0Ld�20 /

�
:

Cauchy’s eigenvalue interlacing theorem shows that H0 has at most one positive eigen-
value. On the other hand, H0 has at least one positive eigenvalue, because its lower-right
diagonal entry is positive. The determinant of H0 is a positive multiple of

d

d � 1

�X
I2Id

Y
e2I

we

�� X
I2Id�2

Y
e2I

we

�
�

� X
I2Id�1

Y
e2I

we

�2
;

which must be nonpositive by the condition on the eigenvalues of H0.
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5. Proof of Theorem 7

The upper bound follows from Theorem 5. We construct explicit vector configurations
over F to show the lower bound 8=7.

Fix a prime number p and an integer d � 2. Consider the d -dimensional vector
space Fdp over the field with p elements, and let e1; : : : ; ed be the standard basis vec-
tors of Fdp .

Definition 19. Let Md
p be the rank d matroid represented by the vectors e1, e2C � � � C ed ,

and
1e1 C e2; 2e1 C e2; � � � pe1 C e2;
1e1 C e3; 2e1 C e3; � � � pe1 C e3;

:::
:::

: : :
:::

1e1 C ed ; 2e1 C ed ; � � � pe1 C ed :

We write i for the vector e1 and j for the vector e2 C � � � C ed .

The matroid M4
2 is isomorphic to the matroid S8 mentioned in the introduction. For

any d , the matroid Md
2 is the self-dual matroid obtained from the binary spike Zd in

Oxley’s list by deleting any element other than the tip [23, Appendix].2 For any p, the
matroid Md

p has a spike-like structure in that it has a “tip” i and “legs”

Lm D ¹e1; 1e1 C em; 2e1 C em; : : : ; pe1 C emº for m D 2; : : : ; d :

For general spikes and their role in structural matroid theory, see [23, Chapter 14]. As
before, we write Bij , Bi

j , B
j
i , Bij for the sets of bases of MDMd

p containing and/or not
containing i; j .

(1) The contraction M=i=j is the uniform matroid Ud�2;d�1 with each element replaced
by p parallel copies. Any basis of the contraction is disjoint from one of the parallel
classes and contains exactly one point from each of the remaining parallel classes.
Therefore,

jBij .M/j D .d � 1/
�
p

1

�d�2
:

(2) The deletion M n i n j is represented by the p-point lines L2 n e1, : : :, Ld n e1 in Fdp .
Any basis of the deletion must contain exactly two points from one of the lines and
one point from each of the remaining lines. Therefore,

jBij .M/j D .d � 1/
�
p

2

��
p

1

�d�2
:

2According to Geelen [8], “it all goes wrong for spikes.” The spike Zd was first used by Sey-
mour to demonstrate that an independence oracle algorithm for testing whether a matroid is binary
cannot run in polynomial time relative to the size of the ground set [26].
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(3) The contraction-deletion M=i n j is the boolean matroid Ud�1;d�1 with each element
replaced by p parallel copies. Any basis of the contraction-deletion contains exactly
one element from each parallel class. Therefore,

jB
j
i .M/j D

�
p

1

�d�1
:

It remains to compute the number of bases of M not containing i and containing j .
There are two types of such bases, corresponding to the two terms in the right hand side
of

jBi
j .M/j D .p

d�1
� pd�2/C .d � 1/.d � 2/

�
p

2

��
p

1

�d�3
:

A basis of the first type contains exactly one point from each of the p-point lines
L2 n e1; : : : ;Ld n e1. The determinant formula

det

2666664
0 k2 k3 � � � kd
1 1 0 � � � 0

1 0 1 � � � 0
:::

:::
:::

: : :
:::

1 0 0 � � � 1

3777775 D �k2 � k3 � � � � � kd
shows that there are exactly pd�1 � pd�2 such bases. A basis of the second type contains
exactly two points from one of the lines, no point from another, and one point from each
of the remaining lines. It is clear that any basis in Bi

j must be of one of the two types.
Combining the four numbers, we obtain a ratio that depends only on d and not on p:

jBij .M/j jBij .M/j
jBi
j .M/j jB

i
j .M/j

D
d2 � 2d C 1

d2 � 3d C 4
:

The maximum of the ratio is 8=7, achieved when d D 5. This proves Theorem 7 when
the field F has characteristic p.

For fields of characteristic zero, let i and j be distinct elements of a finite set A1.
Let A2; : : : ; Ad be a family of .mC 1/-element subsets of A1 n i whose union is A1 n i
and whose pairwise intersection is ¹j º. We extend the transversal matroid construction in
Example 3 as follows.

Definition 20. The matroid Ndm is the transversal matroid of the family A1; : : : ; Ad .

The matroid N62 is isomorphic to the truncated graphic matroid in Example 2. By
definition, bases of N D Ndm are the systems of distinct representatives of A1; : : : ; Ad .
For m D p, the matroids Md

p and Ndm share three of the four minors obtained by deleting
and/or contracting i; j .
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For any m, we have

jBij .N/j D .d � 1/
�
m

1

�d�2
; jBij .N/j D .d � 1/

�
m

2

��
m

1

�d�2
;

jB
j
i .N/j D

�
m

1

�d�1
:

There are two types of bases of N not containing i and containing j , corresponding to the
two terms in the right hand side of

jBi
j .N/j D m

d�1
C .d � 1/.d � 2/

�
m

2

��
m

1

�d�3
:

A basis of the first type contains exactly one element from each of the sets A2 n j; : : : ;
Ad n j . A basis of the second type contains exactly two points from one of the setsAk n j ,
no point from another Ak n j , and one point from each of the remaining Ak n j .

Combining the four numbers and taking the limit m!1, we obtain the same ratio
as before:

lim
m!1

jBij .N/j jBij .N/j
jBi
j .N/j jB

i
j .N/j

D
d2 � 2d C 1

d2 � 3d C 4
:

Since transversal matroids are representable over any infinite field [23, Chapter 11], this
proves Theorem 7 when F has characteristic 0. In fact, for any positive integer p D m,
the set of vectors in Definition 19 viewed as elements of Qd represents Ndm.

6. Proofs of Corollaries 10 and 11

Let IM be the size of an independent set drawn uniformly at random from the collection of
all independent sets of a rank d matroid M. As discussed in the introduction, Corollary 9
and [14, Theorem 2.5] together imply

H.IM/ �
1

2
log
�
2�e

�
E.IM/C

1

12

��
�
1

2
log
�
2�e

�
d C

1

12

��
:

Corollary 11 follows from the upper bound of H.IM/ and the easy implication

H.X/ � log t H) max
k

P .X D k/ � 1=t :

Corollary 10 follows from the upper bound of H.IM/ and the estimate

1

2
log
�
�

2
d

�
� log

2d�
d
d=2

� � dX
kD0

�
d
k

�
2d

log
2d�
d
k

� � sup
rk.M/Dd

H.IM/:
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The first inequality follows from Stirling’s approximation, the second from
�
d
k

�
�
�
d
d=2

�
,

and the third is witnessed by the rank d boolean matroid.
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