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Abstract. We show that the Gurarij space G has extremely amenable automorphism group. This
answers a question of Melleray and Tsankov. We also compute the universal minimal flow of the
automorphism group of the Poulsen simplex [P and we prove that it consists of the canonical action
on P itself. This answers a question of Conley and Toérnquist. We show that the pointwise stabilizer
of any closed proper face of P is extremely amenable. Similarly, the pointwise stabilizer of any
closed proper biface of the unit ball of the dual of the Gurarij space (the Lusky simplex) is extremely
amenable.

These results are obtained via several Kechris—Pestov—Todorcevic correspondences, by estab-
lishing the approximate Ramsey property for several classes of finite-dimensional Banach spaces
and function systems and their versions with distinguished contractions. This is the first direct
application of the Kechris—Pestov—Todorcevic correspondence in the setting of metric structures.
The fundamental combinatorial principle that underpins the proofs is the Dual Ramsey Theorem of
Graham and Rothschild.
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1. Introduction

Given a topological group G, a compact G-space or G-flow is a compact Hausdorff
space X endowed with a continuous action of G. Such a G-flow X is called minimal when
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every orbit is dense. There is a natural notion of morphism between G-flows, given by a
G-equivariant continuous map (factor). A minimal G-flow is universal if it factors onto
any minimal G-flow. It is a classical fact that any topological group G admits a unique (up
to isomorphism of G-flows) universal minimal flow, usually denoted by M(G) [16,29].
For any locally compact non-compact Polish group G, the universal minimal G-flow is
non-metrizable. At the opposite end, non-locally-compact topological groups often have
metrizable universal minimal flows, or even reduced to a single point. A topological group
for which M(G) is a singleton is called extremely amenable. (Amenability of G is equiv-
alent to the assertion that every compact G-space has an invariant Borel measure. Thus
any extremely amenable group is in particular amenable.)

The universal minimal flow has been explicitly computed for a number of topological
groups, typically given as automorphism groups of naturally arising mathematical struc-
tures. Examples of extremely amenable Polish groups include the group of order automor-
phisms of Q [49], the group of unitary operators on the separable infinite-dimensional
Hilbert space [27], the automorphism group of the hyperfinite II; factor and of infinite
type UHF C *-algebras [14, 18], or the isometry group of the Urysohn space [50]. Ex-
amples of non-trivial metrizable universal minimal flows include the universal minimal
flow of the group of orientation preserving homeomorphisms of the circle, which is equiv-
ariantly homeomorphic to the circle itself [49], the universal minimal flow of the group
S of permutations of N, which can be identified with the space of linear orders on N
[20], and the universal minimal flow of the homeomorphism group Homeo(2V) of the
Cantor set 2, which can be seen as the canonical action of Homeo(2Y) on the space of
maximal chains of closed subsets of 2N [21,31,54].

There are essentially two known ways to establish extreme amenability of a given
topological group. The first method involves the phenomenon of concentration of mea-
sure, and can be applied to topological groups that admit an increasing sequence of
compact subgroups with a dense union [27,51, Chapter 4]. The second method applies to
automorphism groups of discrete ultrahomogeneous structures or, more generally, approx-
imately ultrahomogeneous metric structures [51, Chapter 6]. A metric structure is approx-
imately ultrahomogeneous if any partial isomorphism between finitely generated sub-
structures is the pointwise limit of maps that are restrictions of automorphisms. It is worth
noting that any Polish group can be realized as the automorphism group of an approxi-
mately ultrahomogeneous metric structure [43, Theorem 6]. For the automorphism group
Aut(M) of an approximately ultrahomogeneous structure M, extreme amenability is
equivalent to the approximate Ramsey property of the class of finitely generated sub-
structures of M. This criterion is known as the Kechris—Pestov—Todorcevic (KPT) cor-
respondence, first established in [31] for discrete structures, and recently generalized to
the metric setting in [45]. The discrete KPT correspondence has been extensively used in
the last decade. In this paper the KPT correspondence is directly used for the first time to
obtain new natural extreme amenability results.

In all the known examples of computations of metrizable universal minimal flows, the
argument hinges on extreme amenability of a suitable subgroup and the following result
due to Nguyen Van Thé [48] based on previous work of Pestov [49]. Suppose that G is a
topological group with an extremely amenable closed subgroup H. If the completion X
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of the homogeneous space G/H endowed with the quotient of the right uniformity on G
is a minimal compact G-space, then X is the universal minimal flow of G. It was recently
shown in [10, 44] that whenever the universal minimal flow of G is metrizable, it can be
realized as the completion of G/H for a suitable closed subgroup H of G.

In this paper we compute the universal minimal flows of the automorphism groups
of structures coming from functional analysis and Choquet theory: the Gurarij space
G and the Poulsen simplex [P. Recall that the Gurarij space is the unique separable
approximately ultrahomogeneous Banach space that contains £.° for every n € N [39],
while P is the unique non-trivial metrizable Choquet simplex with dense extreme bound-
ary [36]. The group Aut(G) of surjective linear isometries of the Gurarij space is shown
to be extremely amenable by establishing the approximate Ramsey property of the class
of finite-dimensional Banach spaces. This answers a question of Melleray and Tsankov
from [45]. Similarly, the stabilizer Aut,(IP) of an extreme point p of P is proven to be
extremely amenable by establishing the approximate Ramsey property of the class of Cho-
quet simplices with a distinguished point. It is then deduced from this that the universal
minimal flow of Aut(PP) is IP itself, endowed with the canonical action of Aut(P?). This
answers Question 4.4 from [13]. More generally, we prove that for any closed face F' of
P, the pointwise stabilizer Autg (P) is extremely amenable. The analogous result holds
in the Banach space setting as well. A Lazar simplex is a compact absolutely convex set
that arises as the unit ball of the dual of a Lindenstrauss space. The Lusky simplex L is
the Lazar simplex that arises in this fashion from the Gurarij space. The group Aut(G)
can be identified with the group Aut(L) of symmetric affine homeomorphisms of L. It
is proven in [37, Theorem 1.2] that I plays the same role among Lazar simplices as the
Poulsen simplex plays in the class of Choquet simplices, where closed faces are replaced
with closed bifaces. We prove that, for any closed proper biface H of L, the correspond-
ing pointwise stabilizer Auty (L) is extremely amenable. In the particular case when H
is the trivial biface, this recovers the extreme amenability of Aut(G).

Recall that a function system is a closed subspace V' of the space C(T') of continuous
C-valued functions on some compact Hausdorff space T containing the function con-
stantly equal to 1 and such that if / € V then the function f* defined by f*(t) = f(r)
also belongs to V. In particular, when K is a compact convex set, the space A(K) of
continuous complex-valued affine functions on K is a function system, and in fact any
function system V' € C(T') arises in this way from a suitable compact convex set K.
Precisely, K is the compact convex set of states of V, that is, the contractive functionals
on V that are unital, i.e. map the unit of C(T) to 1 [1, Theorem II.1.8]. Furthermore,
the map K — A(K) is a contravariant isomorphism of categories from the category of
compact convex sets and continuous affine maps to the category of function systems and
unital linear contractions (Kadison correspondence). A metrizable compact convex set K
is a simplex if and only if A(K) is a separable Lindenstrauss space, which means that
the identity map of A(K) is the pointwise limit of a sequence of unital completely con-
tractive maps that factor through finite-dimensional (abelian) C *-algebras. The function
system A(P) corresponding to the Poulsen simplex is the unique separable approximately
ultrahomogeneous function system that contains unital copies of £3° for n € N [37, The-
orem 1.1]. The automorphism group Aut(A(IP)) can be identified with the group of affine
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homeomorphisms of PP. The Poulsen simplex P is then equivariantly homeomorphic to
the state space of A(P).

The main tool to establish the results mentioned above will be the Dual Ramsey The-
orem of Graham and Rothschild [26]. This is a powerful pigeonhole principle known to
imply many other results, such as the Hales—Jewett theorem and the Ramsey theorem. It
can be seen to be equivalent to a factorization result for colorings of Boolean matrices,
which implies the celebrated Graham-Leeb—Rothschild theorem on Grassmannians over
a finite field [25]. In fact, it is shown in [5, 6] that this is again a particular case of a
factorization result for colorings of matrices over a finite field, stating that the coloring of
matrices only depends on the invertible matrix needed to transform a given matrix into one
in reduced column echelon form. In [6] we provide factorization theorems for colorings
of matrices and Grassmannians over the real or complex numbers, and we prove in par-
ticular that colorings of matrices depend only on the canonical norm that a given matrix
determines, while colorings of Grassmannians are determined by the Banach—-Mazur type
of the given subspace.

The paper is organized as follows. We start in Subsection 2.1 by recalling some basic
concepts such as extreme amenability. In Subsection 2.2 we recall and introduce different
versions of ultrahomogeneity and Ramsey properties for Banach spaces, and we prove
a version of the KPT correspondence in this setting (Theorem 2.12). In Subsection 2.3
we prove the approximate Ramsey property (ARP) of the class {£{Z },. This has as a
consequence the extreme amenability of the group of isometries of the Gurarij space. In
Subsection 2.4 we prove the (ARP) of the class of polyhedral finite-dimensional spaces,
and the class of all finite-dimensional Banach spaces. Using this, in Subsection 2.5 we
give a direct proof of the (ARP) for the class of finite metric spaces. This provides a new
proof of extreme amenability of the isometry group of the Urysohn space [50]. Subsec-
tion 2.6 studies closed bifaces of Lusky simplices. We prove that the group stabilizers
of closed proper bifaces of the Lazar simplex are extremely amenable. This is done by
establishing the corresponding (ARP) and a (KPT)-correspondence, introduced in §2.6.1.
In Section 3 we study Choquet simplices (with a distinguished face), and we prove that
the pointwise stabilizer of any closed proper face of the Poulsen simplex is extremely
amenable. We conclude in Subsection 3.4 where we prove that the universal minimal
flow of the group of affine homeomorphisms of the Poulsen simplex PP is the canonical
action on P.

2. The Ramsey property of Banach spaces

The goal of this section is to introduce different notions of “Ramsey property” for several
classes of structures. We show that in the setting we are interested in, such notions are
equivalent to each other. We furthermore establish an analogue of the Kechris—Pestov—
Todorcevic correspondence. We then establish the (stable) Ramsey property for the class
of Banach spaces {£Z },. From this, we infer that that the group of isometries of the
Gurarij space is extremely amenable.
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2.1. Colorings and extreme amenability

We introduce some terminology to be used in the following. A metric coloring of a
pseudo-metric space M is a 1-Lipschitz map from M to a metric space (K, dx). A met-
ric coloring with target space (K, dg) will also be called a K-coloring. Following [45],
a continuous coloring is a metric coloring whose target space is the closed unit interval
[0, 1]. A compact coloring is a metric coloring whose target space is a compact metric
space. For a subset X of a compact metric space (K, dg) and ¢ > 0, the e-fattening K, is
the set of elements of K at distance at most ¢ from some element of X .

The oscillation oscg(c) of a compact coloring ¢ : M — (K, dg) on a subset F of
M is the supremum of dg (c(y), c(y’)) where y, y' range within F. If oscg (¢) < ¢, then
we say that ¢ e-stabilizes on F, or that F is e-monochromatic for c. A finite coloring of
M is a function from M to a finite set X. When the target space is a natural number r
(identified with {0, 1,...,r — 1}), we will say that ¢ is an r-coloring. A subset F' of M
is monochromatic for ¢ if c¢(p) = c(q) for all p,q € F, and e-monochromatic for c if
there exists x € X such that for every p € F there is ¢ € M such that ¢(g) = x and
dy (p,q) < e. If F is e-monochromatic, then we also say that ¢ e-stabilizes on F.

Given a Polish group G and a continuous action G ~ M of G on a metric space
(M, dpr), we write [p]¢ for the closure of the G-orbit of p € M, and M // G for the space
of closures of G-orbits of M. Since G acts by isometries, the formula

d.m ([, [q]) == inf{dm (5.9) : p € [p), G € [q]}

defines the quotient pseudometric induced by the quotient map 7wy, : M — M// G, and
since we consider closures of orbits, c,l\G, M 1s a metric. It is easy to see that JG, M 1S
complete when djs is complete.

When M is endowed with an action of a Polish group G we say that M is a metric
G-space. A compact coloring ¢ : (M, dp) — (K, dg) is finitely G-factorizable when
there is a K-coloring ¢ : M//G — K defined on the space M//G of closed G-orbits
of M such that for every ¢ > 0 and every compact subset ' € M there is some g € G
such that dx (c(p),¢([p]g)) < e for every p € g - F, where [p]g is the closed G-orbit
of p. Similarly, c is finitely oscillation stable [51, Definition 1.1.8] if for every compact
subset F of M and ¢ > 0 there exists g € G such that ¢ e-stabilizes on g - F. We say that
the action of G on M is finitely oscillation stable if every continuous coloring of M is
finitely oscillation stable [51, Definition 1.1.11].

Given a compact metric space (K, dg), we let Lip((M, dy), (K, dg)) be the col-
lection of all K-colorings of M; with the topology of pointwise convergence, it is a
compact space, which is metrizable when (M, dps) is separable. A continuous action
G ~ (M, dypr) induces a natural continuous action G ~, Lip((M, dpr), (K, dk)), defined
by setting (g - ¢)(p) :=c(g™" - p) forall ¢ € Lip((M,dy), (K,dg))and p € M.

Lemma 2.1. Suppose that G is a Polish group, and that M is a metric G-space. Let ¥ be
a C-directed family of compact subsets of M whose union is M. The following assertions
are equivalent:

(1) Every compact coloring of M is finitely G -factorizable.
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(2) Forevery F € ¥, every compact metric space K and every ¢ > 0 thereisan H € ¥
such that for every coloring ¢ : H — K there is a coloring¢ : Hj/G — K and g € G
such that gF € H and dg(c(p),¢([plg)) < e forevery p € g- F.

Proof. Suppose that (1) holds but not (2). Fix a counterexample K, ¥, M, ¢ > 0 and
F € ¥ and for each H € ¥ containing F fix a bad coloring cy : H — K. For each
V e &, let (V) be the collection of those W € ¥ containing V. Choose a non-principal
ultrafilter U on ¥ containing each (V). This is possible since & is C-directed. Define
cu : M — K by declaring cq(p) := U-lim cy (p). This is well defined because there
is H € ¥ suchthat p € H.Let¢ : M//G — K be the corresponding factorization, and
let g be such that dg (¢([p]g), cu(p)) < ¢/2 forevery p € g- F. Choose H € ¥ such
that p- F € H and dg(cg(p), cu(p)) < &/2 for every p € g - F. Then the restriction
¢ : HJ/G — K disproves that cg is a bad color. Suppose now that (2) holds but not (1).
This means that there is some ¢ : M — K that cannot be finitely G-factorized, so we
fix the corresponding ¢ > 0. For every F' € ¥ we use (2) for it, K, and for £/2 to find
the corresponding Hr € ¥, and then we apply the property of it to the restriction c :
H — Ktofindep : H//G — K. Now define ¢ : M//G — K as the U-limit of (ef)F.
Since ¢ does not finitely G-factorize ¢ there must be a bad compact A witnessing this.
Without loss of generality we may assume that A is a finite set. Let F' € ¥ be such that
AC F,andlet H € {V € (F) : dx(C([plg).ev([plg)) < ¢e/2forevery p € F} € U.
Let g € G be such that dg (c¢(p),eq ([plg)) < &/2 forevery p € g - F, and consequently
dx(c(p),¢([plg)) < eforevery p € g - A, contradicting the defining property of 4. m

Recall that a topological group G is called extremely amenable if every continuous
action of G on a compact Hausdorff space has a fixed point. The following characteriza-
tion of extreme amenability will be used extensively in this paper.

Proposition 2.2. Suppose that G is a Polish group. The following assertions are equiva-
lent:

(1) G is extremely amenable.

(2) For every left-invariant compatible metric dg on G, the left translation of G on
(G, dg) is finitely oscillation stable.

(3) Every compact coloring of a metric G-space is finitely G -factorizable.

(4) Let M be a metric G-space, and let ¥ be a C-directed family of compact subsets of
M whose union is M. For every F € ¥, every compact metric space K and every
& > 0there isan H € ¥ such that for every coloring c : H — K there is a coloring
¢C:H//G — K and g € G such that gF C H and dg(c(p),c([plg)) < & for every
peg-F.

Proof. The equivalence of (1) and (2) can be found in [51, Theorem 2.1.11]. The impli-
cation (3)=(2) is immediate, since the orbit space G// G is one point. We now establish
(1)=(3): Fix a 1-Lipschitz ¢ : (M, dy) — (K, dk). Let L be the closure of the G-orbit
of ¢ in Lip((M, du), (K, dx)). By the extreme amenability of G, there is coo € L
such that G - oo = {Coo}, S0 We can define ¢ : MG — K by ¢([plg) := coo(p).
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It is clear that ¢ is 1-Lipschitz. Given a compact subset F of M, let g € G be such

that max,er dx(coo(p), c(g - p)) < &. If x € F, then dx(c(g - x), ¢([g - x]g)) =
dg(c(g - x),co0(x)) < &. The equivalence of (3) and (4) follows from Lemma 2.1. |

2.2. The Ramsey property and the KPT correspondence for Banach spaces

In this section, we provide a characterization of extreme amenability of the isometry group
of a Banach space (endowed with the topology of pointwise convergence). This can be
seen as an analogue in this context of the Kechris—Pestov—Todorcevic from [31]. A more
general KPT correspondence for arbitrary metric structures is the topic of [45].

We introduce some basic terminology on Banach spaces. Let F be R or C. Given
n € Nand 1 < p < oo, let £, be the normed space (F", || - [[) where [[(aj)j<nllp =
(Zj<n |aj|1”)1/1’J is the p-norm; similarly, let £, = (F”, || - |[o0) Where [[(a})j<nllco 1=
max; <y |a;j|. Given a Banach space (X, || - ||), let Ball(X) :={x € X : |x| <1} and
Sph(X) :={x € X : ||x|| = 1} be the unit ball and the unit sphere of X. Recall that
given Banach spaces X, Y, a contraction T : X — Y is a bounded linear mapping
T : X — Y such that |T| := max|x)<1 |[T(x)|| < 1. Given § > 0, let Embs(X, Y)
be the space of contractions 7 : X — Y such that ||Tx]| > |x||/(1 + §), endowed
with the norm metric, d(7,U) := |T — U|| := max|y<1 ||T(x) — U(x)||; when § = 0,
Emb(X,Y) := Emby(X, Y) is the space of isometric embeddings from X into Y. Dually,
when X and Y are finite-dimensional, a quotient map T : X — Y is alinear mapping such
that 7'(Ball(X)) = Ball(Y). The space of those quotient maps is denoted by Quo(X, Y).
It is well-known that 7 € Emb(X, Y) if and only if the dual operator 7* : Y* — X*
is a quotient map, and this assignment is an isometry. Finally, given a Banach space E,
let Iso(E) be the group of surjective isometries of E, endowed with the strong opera-
tor topology (SOT), and observe that Iso(E) acts continuously on Embs (X, E) by left
composition, g-7 :=goT.

In particular, suppose that X is a finite-dimensional subspace of E. Given a finite-
dimensional subspace Y of E containing X we can canonically identify Emb(X, Y') with
the collection of those isometric embeddings T : X — E such thatIm7 C Y, so in this
way Emb(X, E) = | ycycr Emb(X,Y), where each Emb(X, Y) is a compact subset
of Emb(X, E). Suppose that Iso(E) is extremely amenable. By applying Proposition 2.2
we find that given such an X C Y, a compact metric (K, dx) and & > 0 we can find a
finite-dimensional subspace Z of E such that for every coloring ¢ : Emb(X, Zy) - K
there is g € Iso(E) such that

there is a coloring ¢ : Emb(X, Zy)// Iso(E) — K with

d ,C 2.
Jepmax k(c(goy).c([ylsor)) < &/

(2.1)

We consider on Lip(Emb(X, Zy), K) the compatible metric defined for K-colorings c;
and ¢ by d(cy, ¢2) := maxyepmn(x,z,) Ak (c1(y), c2(y)). Since Lip(Emb(X, Zy), K)
is compact, we can find a finite £/2-dense subset D of it, and for each ¢ € D we
choose some g. € Iso(E) witnessing (2.1). Let Z be a finite-dimensional subspace
of E containing ¥ and | J,cp &Y. Then for every coloring ¢ : Emb(X, Z) — K there
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are g € Iso(E) and ¢ : Emb(X, Z)// Iso(E) — K with the property that g¥ € Z and
di (c(goy).c([glior))) < € for every y € Emb(X, Y). This means in particular that the
oscillation of ¢ in g o Emb(X, Y) is determined by the diameter of Emb(X, E)// Iso(E).
Recall that an action G ~, M of a group G on a metric space (M, d) is e-transitive, for
some ¢ > 0, when the diameter of M // G is at most &, that is, for all x, y € M there is
g € Gsuchthatd(g-x,y) <e.G ~ M is approximately transitive when it is e-transitive
for every ¢ > 0, or equivalently, when M // G consists of one point.

Definition 2.3. A Banach space E is called approximately ultrahomogeneous when for
every finite-dimensional subspace X of E the action Iso(E) ~, Emb(X, E) is approxi-
mately transitive.

Hence, we obtain the following.

Corollary 2.4. Suppose that E is approximately ultrahomogeneous and Iso(E) is
extremely amenable. Then for any finite-dimensional subspaces X C Y of E and every
compact metric space (K, dg) there is a finite-dimensional subspace Z of E contain-
ing Y such that every coloring ¢ : Emb(X, Z) — K e-stabilizes in some set of the form
y o Emb(X,Y). [

Up to now the list of known approximately ultrahomogeneous (real or complex)
Banach spaces includes:

e Hilbert spaces (indeed, they are ultrahomogeneous, i.e. the algebraic quotients
Emb(X, E)/G are singletons);

o the Lebesgue spaces L,[0, 1] when p ¢ 2N, as proved by W. Lusky [41];
o the Gurarij space G.

The original characterization of the Gurarij space considered by Gurarij [28] and Lusky
[39,40,42] is as the unique separable Banach space with the following extension property:
for all finite-dimensional Banach spaces £ C F, any linear contraction ¢ : E — G, and
& > 0, there exists an extension ¢ : F — G satisfying ||@|| < 1 + &. The fact that such a
space is indeed approximately ultrahomogeneous in the sense of Definition 2.3 is proved
by I. Ben Yaacov [8].

The isometry groups (endowed with the strong operator topology) of the Banach
spaces in the list above have very special topological dynamical properties. The groups
Iso(L,(0, 1)) are extremely amenable for every 1 < p < oo, which was proved in the
case of p = 2 by M. Gromov and V. D. Milman [27] and for p # 2 by T. Giordano and
V. Pestov [18]. Both cases use the method of concentration of measure. In this paper we
prove the following.

Theorem 2.5. The group of isometries of the Gurarij space endowed with the strong
operator topology is extremely amenable.

Our proof is not based on concentration of measure, but on a combinatorial property,
the approximate Ramsey property, that characterizes the extreme amenability of certain
isometry groups. With a similar approach, this has been extended in [5] to the context of
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operator spaces. We now introduce several variants of the Ramsey property for Banach
spaces.

Definition 2.6 (Approximate Ramsey property). Let ¥ be a family of finite-dimensional
Banach spaces.

(a) F has the approximate Ramsey property (ARP) if for any X,Y € ¥ and ¢ > 0
there exists Z € ¥ such that any continuous coloring of Emb(X, Z) e-stabilizes on
y o Emb(X, Y) for some y € Emb(Y, Z).

(b) F has the compact approximate Ramsey property when forany X,Y € ¥, e > 0and
any compact metric space (K, dk) there exists Z € ¥ such that any K-coloring of
Emb(X, Z) e-stabilizes on y o Emb(X, Y) for some y € Emb(Y, Z).

(c) F has the discrete approximate Ramsey property when for any X,Y € ¥,r € N and
& > 0 there is some Z € ¥ such that any r-coloring of Emb(X, Z) e-stabilizes on
y o Emb(X, Y) for some y € Emb(Y, Z).

So, rephrasing Corollary 2.4, if E is an approximately ultrahomogeneous Banach
space whose isometry group is extremely amenable, then the class Age(E) of finite-
dimensional subspaces of E has the approximate Ramsey property. Conversely, we will
see in Theorem 2.12 that in fact the (ARP) of Age(E) characterizes the extreme amenabil-
ity of Iso(FE) for approximately ultrahomogeneous spaces E. Now we show that the
different versions of the Ramsey property are in fact equivalent.

Proposition 2.7. The following are equivalent for a class ¥ of finite-dimensional Banach
spaces:

(1) F satisfies the (ARP).
(2) F satisfies the compact (ARP).
(3) F satisfies the discrete (ARP).

Proof. The compact (ARP) obviously implies the (ARP). Suppose that & satisfies the
(ARP), and let us prove that ¥ satisfies the discrete (ARP). This is done by induction
on r € N. The case r = 1 is trivial. Suppose that we have shown that ¥ satisfies the
discrete (ARP) for r-colorings. Consider X, Y € ¥ and & > 0. Then by the inductive
hypothesis, there is Zo € ¥ such that every r-coloring of Emb(X, Zg) e-stabilizes on
y o Emb(X,Y) for some y € Emb(Y, Zy). Since by assumption ¥ satisfies the continuous
(ARP), there is Z € ¥ such that every continuous coloring of Emb(X, Z) &/2-stabilizes
on y o Emb(X, Z,) for some y € Emb(Zg, Z). We claim that Z witnesses that ¥ satisfies
the discrete (ARP) for (r 4 1)-colorings. Indeed, suppose that ¢ is an (r + 1)-coloring of
Emb(X, Z). Define f :Emb(X, Z) — [0, 1] by f(¢) := %d(gb,c_l(r)). This is a continu-
ous coloring, so by the choice of Z there exists y € Emb(Zy, Z) such that f ¢/2-stabilizes
on y o Emb(X, Zy). Now, if there is some ¢ € Emb(X, Z¢) such that c(y o ¢) = r, then
y o Emb(X, Zy) € (c™'(r))e, so choosing an arbitrary y € Emb(Y, Z¢) we find that ¢
e-stabilizes on y o y o Emb(X, Y). Otherwise, (y o Emb(X, Z¢)) N ¢~ 1(r) = @, so defin-
ing ¢(¢) := c(y o ¢) for ¢ € Emb(X, Zy) gives an r-coloring of Emb(X, Zy). By the
choice of Zj there exists y € Emb(Y, Z) such that ¢ e-stabilizes on ¥ o Emb(X, Y).
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Therefore ¢ e-stabilizes on y o ¥ o Emb(X, Y'). This concludes the proof that the contin-
uous (ARP) implies the discrete (ARP).

Finally, the discrete (ARP) implies the compact (ARP). In fact, given & > 0 and a com-
pact metric space K, one can find a finite e-dense subset D C K. Thus if Z € ¥ witnesses
the discrete (ARP) for X, Y, ¢ and D, then given a 1-Lipschitz f : Emb(X, Z) — K we
can define a coloring ¢ : Emb(X, Z) — D C K such that dg(c(¢), f(¢)) < & for every
¢ € Emb(X, Z). In this way, if ¢ e-stabilizes on y o Emb(X, Y), then f 3¢ -stabilizes on
y o Emb(X,Y). |

We are going to see that when E is approximately ultrahomogeneous, the extreme
amenability of Iso(E) is equivalent to the (ARP) of Age(E) and, in fact, also to a stronger
version of the Ramsey property for a rich subfamily of Age(E). To state this property we
recall that for k-dimensional Banach spaces X, Y, the Banach—Mazur (pseudo)distance is
defined by

dpm(X,Y) = log(min{||T|| NT7Y : T : X — Y is a linear isomorphism}).

Definition 2.8. Given a family & of finite-dimensional Banach spaces, let [¥] be the
class of all separable Banach spaces E such that ¥ C Age(E) and every finite-dimen-
sional subspace of E is the dgy-limit of a sequence of subspaces of elements of ¥ .

For example, the spaces cg, C[0, 1] or the Gurarij space are in the class [{£Z_},],
where each {7 is the (real or complex) vector space F” endowed with the sup norm,
l(ai,....an)lleo := max; |a;|. In general [{£%,},] is the class of separable Lindenstrauss
spaces. In what follows, by a modulus of stability we mean a function @ : [0, oo[ — [0, oo[
that is increasing and continuous at zero with value zero.

Definition 2.9 (Fraissé properties). Let £ be a separable Banach space, and let ¥ be a
family of finite-dimensional spaces.

(a) E has the stable homogeneity property with respect to ¥ with modulus of stability
w if Emb(X, E) is non-empty for every X € ¥ andif forall X € ¥,6 > 0,¢& > 0,
the canonical action Iso(E) ~, Embg (X, E) is (w (§) + &)-transitive.

(b) E is astable Fraissé Banach space with modulus of stability 7o when E has the stable
homogeneity property with respect to Age(F).

(¢) F has the stable amalgamation property (SAP) with modulus @ when for all X, Y, Z
€eF,e>0,6>0,y € Embs(X,Y) and n € Embs(X, Z) there are V € ¥, [ €
Emb(Y, V) and J € Emb(Z, V) suchthat ||l oy — J on| < @ (§) + &.

(d) F is a stable amalgamation class with modulus o when it has the (SAP) with mod-
ulus @ and the joint embedding property (JEP), that is, for all X,Y € F there is
Z € ¥ such that Emb(X, Z), Emb(Y, Z) are non-empty.

(e) F is a stable Fraissé class with modulus wr when ¥ is a stable amalgamation class

with modulus @ and it is hereditary, that is, if X € & and Emb(Y, X) # @, then
YefZ.
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It is easy to see that if ¥ satisfies the (SAP) and it has a least element with respect
to inclusion, then ¥ has the (JEP), and consequently F is a stable amalgamation class.
Using the fact that {{2_}, is a stable amalgamation class with modulus @ (8) = § (see
Proposition 2.18), it is proved in [37, §6.1] that the Gurarij space is a stable Fraissé Banach
space with modulus @ (§) = §. In fact, this approximate ultrahomogeneity is a direct
consequence of the fact that the Gurarij space is the “generic” direct limit of the class of
all finite-dimensional Banach spaces, an instance of the following Fraissé correspondence
for Banach spaces (see for instance [37, §2.6], [17, §2.1]).

Proposition 2.10. Suppose that ¥ is a class of finite-dimensional Banach spaces, and E
is a separable Banach space.

(a) If E is a Fraissé space with modulus @, then Age(E) is a stable Fraissé class with
modulus .

(b) If ¥ is a stable amalgamation class with modulus @, then there is a unique separable
E € [F] that has the stable homogeneity property with respect to ¥ with modulus .
This space is called the Fraissé limit of ¥ and denoted by FLim ¥ . |

Consequently, the class of all finite-dimensional Banach spaces is stable with modu-
lus &. The classes {KZ},, for 1 < p < oo are also stable amalgamation classes: The case
p = oo is rather easy (see Proposition 2.18), as well as the case p = 2, where one can
use the polar decomposition; for 1 < p < oo, p # 2, one can use a result of G. Schecht-
man [53] on approximation of §-embeddings by isometric embeddings. Also, it is proved
in [17] that for p # 4,6,8, ..., the class Age(L,(0, 1)) has a weaker form of stable
approximate ultrahomogeneity, namely one that may depend on dimension. Several other
examples of Fraissé classes of structures in functional analysis are studied in [37].

As mentioned before, we will see that for an approximately ultrahomogeneous
space E, the (ARP) of its age is equivalent to the extreme amenability of the isome-
try group of E. Furthermore, when E = [¥] for some stable amalgamation class ¥,
a stronger form of the (ARP) of ¥ is also equivalent to the extreme amenability of the
isometry group of E.

Definition 2.11. A class ¥ of finite-dimensional Banach spaces has the stable approxi-
mate Ramsey property (SRP) with stability modulus @ if forany X,Y € ¥,e>0,§ >0
there exists Z € ¥ such that every 1-Lipschitz mapping ¢ : Embs(X, Z) — [0,2(1 + §)]
(@ (8) + ¢)-stabilizes on y o Embg (X, Y) for some y € Emb(Y, Z).

The compact (SRP) and discrete (SRP) are defined like the (ARP), by replacing con-
tinuous colorings with compact and finite colorings, respectively.

Theorem 2.12 (KPT correspondence for Banach spaces). Let E be an approximately
ultrahomogeneous Banach space. Then the following are equivalent:

(1) Iso(E) is extremely amenable.

(2) Age(E) has the approximate Ramsey property.

(3) Forany X,Y € Age(E), every ¢ > 0 and every continuous coloring ¢ of Emb(X, E)
there is g € Iso(E) such that Osc(c g o Emb(X,Y)) <e.
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If in addition ¥ has the stable amalgamation property with E € [ and ¥ < Age(E),
that is, every space in ¥ can be isometrically embedded into E, then (1)—(3) above are
also equivalent to

(4) F satisfies the (SRP).

The equivalence of (1) and (2) is a particular instance a more general characterization
of extreme amenability in terms of an approximate Ramsey property when Banach spaces
are regarded as metric structures [9] as in [23, Appendix B] or [37, §8.1]. Before we give
a proof of the correspondence, we compare these Ramsey properties.

Proposition 2.13. Suppose that ¥ is a class of finite-dimensional spaces with the joint
embedding embedding property, that is, for any X,Y € ¥ there is Z € ¥ such that
Emb(X, Z),Emb(Y, Z) # @. Then the following assertions are equivalent:

(1) F satisfies the (ARP) and the (SAP) with modulus @.
(2) F satisfies the (SRP) with modulus w.

(3) F satisfies the discrete (SRP) with modulus @.

(4) F satisfies the compact (SRP) with modulus @.

Proof. Trivially, the compact (SRP) with modulus @ implies the discrete (SRP) with
modulus @, and a simple modification of the proof of Proposition 2.7 shows that the
discrete (SRP) with modulus @ implies the (SRP) with modulus . Trivially, the (SRP)
with modulus z implies the (ARP). In addition, we have the following

Claim 2.13.1. If ¥ has the (SRP) with modulus @ then ¥ has the (SAP) with modu-
lus @.

Proof of Claim. Fix X,Y,Z €% ,¢>0,>0andy € Embs(X,Y) and 5 € Embs(X, Z).
Find V € ¥ such that Emb(X, V), Emb(Y, V) and Emb(Z, V') are non-empty. Find
W € ¥ witnessing the (SRP) for initial parameters X,V € ¥, ¢, §. We claim that
W also witnesses the (SAP) for y, n, ¢ and §. Choose Oy in Emb(Y, V) and 6z in
Emb(Z, V). Let I € Emb(V, W) be such that Osc(c|{ o Embg(X, V)) < w(8) + &,
where ¢ : Embg (X, W) — [0, 2 + §] is defined by c(§) := d(§, Emb(V, W) o 8y o y).
Since ¢(I 0o By oy) =0, d(I 0 0z o n, Emb(V, W) o Oy o y) < w(§) + &, there is
J € Emb(V, W) suchthat | o0z on—J oby oy| < @w(§) + ¢, as desired. L]

Suppose that ¥ has the (ARP) and the (SAP) with modulus @; we will prove that ¥
has the compact (SRP). The next claim is not difficult to prove.

Claim 2.13.2. ¥ has the (SAP) with modulus @ if and only if for any X,Y € ¥,6 > 0
and & > 0 there exist Z € ¥ and I € Emb(Y, Z) such that for all ¢, € Embg(X,Y)
there is J € Emb(Y, Z) such that | o¢p — J o || < @ (8) + &. |

Fix X,Y € ¥, §,¢e > 0 and a compact metric space K. We use the previous claim
to find Yy € ¥ such that for any ¢, ¥ € Embg(X, Y) there are i, j € Emb(Y, Yy) such
that ||i o p — j o Y|l < w(8) + &. We consider the space £ := Lip(Embgs (X, Y), K)
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of 1-Lipschitz maps from Embg(X, Y) to K as a compact metric space, endowed
with the metric d( f, g) := sup{dx (f(¢), g(¢)) : ¢ € Embs(X, Y)}. By Proposition 2.7,
F satisfies the compact (ARP). Thus there exists Z € ¥ such that every £-coloring
of Emb(Y, Z) e-stabilizes on y o Emb(Y, Yy) for some y € Emb(Yy, Z). We claim
that Z works, so let ¢ : Embg(X, Z) — K be 1-Lipschitz. We can define a coloring
¢ : Emb(Y, Z) — &£ by setting, for £ € Emb(Y, Z), ¢(§) : Embs(X,Y) — K, ¢ —
c(& o ¢). By the choice of Z, there exists y € Emb(Yp, Z) such that ¢ ¢-stabilizes on
y o Emb(Y, Yy). Choose an arbitrary ¢ € Emb(Y, Yy). We claim that ¢ (@ (§) + 3e¢)-
stabilizes on y o o o Embg (X, Y). Let ¢, y € Embs(X, Y). By the choice of Yy there are
i,j € Emb(Y,Yp) suchthat|i o¢p— j o Y| < w(8) +&. Since dg (C(y 00),c(y oi)) <¢
and dg(¢(7 0 0),¢(y o j)) < ¢, it follows that dg(c(y o 0 0o @), c(y oi o ¢)) < &,
dg(c(yooo),c(yojoy)) <e. Furthermore, from |i op — j o ¥|| < w(§) + &
and the fact that ¢ is 1-Lipschitz we deduce that dx(c(y o 0 o ¢),c(y cp o ¥)) <
@ (8) + 3e. |

Proof of Theorem 2.12. Corollary 2.4 gives that (1) implies (2). Let us prove the converse.
Suppose that Age(E) has the (ARP). Let (X,), be an increasing sequence of finite-
dimensional subspaces of E whose union is dense in E, and let d be the metric on Iso(E)
defined by d(g, h) := >, 27" | g1 Xy — h Xn|. Observe that d is a left-invariant
compatible metric on Iso(E). In order to prove the extreme amenability of Iso(E) we
prove (2) in Proposition 2.2 for the distance d, that is, that the left translation of Iso(£) on
(Iso(E), d) is finitely oscillation stable. We fix a 1-Lipschitz mapping ¢ : Iso(E) — [0, 1],
a finite subset F C Iso(E) and ¢ > 0. Let n be such that 2"2¢ > 1 and let Y € E be
a finite-dimensional subspace of E such that X, U UgeF gXy) CY. LetYCZCE
be a finite-dimensional space witnessing the (ARP) of Age(FE) for the parameters X, Y
and /8. For each y € Emb(X,,, Z) we choose g, € Iso(E) such that ||y — g, [ X, | <¢&/8,
and now we define the (discrete) coloring ¢ : Emb(X,,, Z) — {1,...,2" T by &(y) :== j
when j is the first integer i such that c(gy) € J;, where J; := [(i — 1)/2"*1 i/2n+1].
There are § € Emb(Y, Z) and j € {1,...,2""!} such that £ o Emb(X,,,Y) C (¢ (j))e/s-
Choose & € Iso(E) such that |§ — h}Y || < e/16. We claim that Osc(cMh - F) < e:
given go, g1 € F, there are fy, f1 € Iso(E) such that (j — 1)/2" "1 < ¢(fo). c(f1) <
Jj/2'*! and such that [|§ o go! Xn — fol Xull, 1§ 0 g11Xn — fi}Xall < &/4. Hence
d(hogo, fo),d(ho gy, f1) < 7e/16, and since c is 1-Lipschitz,

le(hogo) —c(hogi)| =d(hogo. fo) +c(fo) —c(f)l +d(hogi fi) <e

(2) and (3) are equivalent by Claim 2.13.2, under the hypothesis that E is approximately
ultrahomogeneous.

Suppose that & is a family such that ¥ < Age(E), E € [¥] and suppose that it sat-
isfies the stable amalgamation property. We suppose first that (2) holds, that is, Age(E)
has the (ARP), and we prove (4): By Propositions 2.13 and 2.7, it suffices to show that
F satisfies the discrete (ARP). Fix X, Y in ¥, r € N, and ¢ > 0. We know by the
hypothesis and Proposition 2.7 that Age(E) satisfies the discrete (ARP). Thus, we can
find Zy € Age(E) containing a copy of Y and such that every r-coloring of Emb(X, Z;)
has an e-monochromatic subset of the form y o Emb(X, Y') for some y € Emb(Y, Zj).
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Let § < ¢ be such that @w(§) < ¢. Pick Z; € ¥ for which there exists an §-embedding
0:Zy— Z,.Bythe (SAP) of ¥ wecanfind Z € ¥ and I € Emb(Z1, Z) such that for
every ¢ € Embg (X, Z1) there is ¢ € Emb(X, Z) such that ||/ o ¢ — ¢|| < &, and similarly
for the elements of Embg (Y, Z1).

We claim that Z witnesses the discrete (ARP) for the given X, Y, ¢, r. Fix a coloring
¢ :Emb(X, Z) — r. Define b : Emb(X, Zy) — r by choosing for each ¢ € Emb(X, Z)
an element ¢ € Emb(X, Z) such that ||/ 0§ o ¢ — ¢| < ¢ and declaring b(¢) := c(¢).
By the choice of Z, from the discrete (ARP) of Age(E), there exist « € Emb(Y, Zy)
and j < r such that « o Emb(X,Y) € (b7'(j))s. Let @ € Emb(Y, Z) be such that
|1 06 oa—al <e Weclaim that & o Emb(X,Y) C (¢7!(j))3.: Fix ¢ € Emb(X,Y).
Let 0 € Emb(X, Zg) be such that b(0) = j and d.,(x © ¢, 0) < &. By definition, we can
find & € Emb(X, Z) such that c(6) = j and |/ c 8 o 0 — 7| < &. Then

|@op—0| <|l@op—IToBonop|+]|IohBoaop—IoBoc|+|lcboo—5]| <3e.

Finally, suppose that (4) holds, that is, ¥ has the stable approximate Ramsey property
with modulus w, and let us prove (3): Let #£ be the collection of subspaces of E that are
isometric to some element of ¥ . Obviously, £ also has the (ARP). Fix X, Y € Age(E)
and & > 0. We consider 0 < § < 1 such that @ (§) < ¢ and Xy € FE such that there is
6 € Embg (X, Xp). Choose also a finite e-dense subset D of Emb(X, Y), and for each
y € D some g, € Iso(E) such that ||g, } X — y|| < &. Letnow X; € FE be such that for
every y € D there is 7 € Embs(Xo, X1) such that | g, } Xo — || < €. Let Yy € £ and
t € Emb(X1, Yp) be such that ¢ o Embg (X, X1) € (Emb(Xg, Yy)).. We now apply the
(ARP) of FE to Xy, Yy and £/2 to find the corresponding Z € ¥ . Fix a continuous color-
ing ¢ : Emb(X, E) — [0, 1], and we define a continuous coloring e¢ : Emb(Xy, Z) — [0, 1]
as follows: Fix a non-principal ultrafilter U on N. Given y € Emb(Xy, Z) we choose a
sequence (gy )y in Iso(E) such that ||g, 1 Xo — y|| <1/2". Lete(y) := U-lim (c(gn | X)).
It is easy to see that e is (1 + §)-Lipschitz. There is some y € Emb(Yy, Z) such that
Osc((e/(1 4+ 6)) My o Embg(Xg, Yo)) < /2, hence Osc(e 'y o Embg(Xy, Yp)) < e. Let
h € Iso(E) be such that ||#} X1 —y o] <e.

We claim that Osc(h o Emb(X, Y)) < 23e: Fix yo, y1 € D. Then /gy, I X — v,
< e for j =0, 1. Choose no, 71 € Embs(Xo, X1) such that [|g,, } Xo — n;|| < & for
j =0, 1. Choose £, &1 € Emb(Xy, Yp) such that [|§; —ton;|| <&, j =0,1. Then
le(y o &) —e(y 0 &1)| < e. Choose fy, f1 € Iso(E) suchthat [e(y o ;) —c(f; 1 X)| <e¢
and || fj 1 Xo —y 0 §;|| < efor j =0,1. Then

lc(hoyo) —c(hoy)| < hoyo— fol XI+ lhoyr— /il X| + 3¢
< folX —hogy I X[ +/ilX —hogy X[+ 3¢
= (L +8)([Ifol Xo = h o gy, [ Xoll 4 [[f1 1 Xo = h o gy, [ Xol) + 5¢
=@+l /ol Xo—yoboll + I /11 Xo —y o &ill +6¢) + 56 <2le. m

Since D is e-dense, it follows from the previous inequality that Osc(h o Emb(X, Y))
< 23e.
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2.3. The approximate Ramsey property of {{% }n

The content of this part is the proof of the approximate Ramsey property of the fam-
ily {€}», and consequently of the class of all finite-dimensional Banach spaces, over
F = R, C. Our proof is based on the Dual Ramsey Theorem (DRT) of R. L. Gra-
ham and B. L. Rothschild [26]. For convenience, we present its formulation in terms of
rigid surjections between finite linear orderings. Given two linear orderings (R, <g) and
(S, <s), a surjective map f : R — S is called a rigid surjection when ming f~!(sq) <
ming f~!(s;) for all s9,s; € S such that so <g s1. Let Epi(R, S) be the collection of
rigid surjections from R to S.

Theorem 2.14 ((DRT) [26]). For any finite linear orderings R and S such that |R| < |S|
and every r € N there exists an integer n > |S| such that, considering n naturally ordered,
every r-coloring of Epi(n, R) has a monochromatic set of the form Epi(S, R) oy :=
{o oy :0 €Epi(S, R)} for some y € Epi(n, S).

We prove the following.
Theorem 2.15. The class {{% }nen satisfies the (SRP) with modulus @ (8) = 8.

The KPT correspondence in Theorem 2.12 and Proposition 2.13 yield the announced
result and a corollary.

Theorem 2.5. The group of isometries of the Gurarij space endowed with the strong
operator topology is extremely amenable. ]

Corollary 2.16. The class of finite-dimensional Banach spaces satisfies the (SRP) with
modulus w (§) = 6.

We will give a direct proof of the (ARP) of the class of all finite-dimensional Banach
spaces later. Coming back to Theorem 2.15, by means of Proposition 2.13 we need to
prove that {£2_} satisfies the stable amalgamation property with modulus §, and that it has
the (ARP). Observe that a linear map y : £4, — £ is a §-isometric embedding if and only
if its dual operator y* : £ — €9 satisfies y*(Ball(¢7)) C Ball(¢%) C y*((1 + §) Ball(¢7)).
When ¢ = 1 such an operator o : {] — Ef satisfying o (Ball({])) = Ball(Zf) is called
a quotient map. A simple argument using extreme points shows that this is equivalent
to saying that {u;}; <4 € S'(F) - {o(u;)}j<n, where S'(F) :={a € F : |a] = 1}, and
where u; is the j™ unit vector whose only non-zero coordinate is 1 and it is on the j®
position. Let Quo(£7, Kf) be the metric space of quotients. Finally, observe that the dual
functor Emb(Zgo, L) 2y = y* € Quo(fy, E‘f) is an isometric bijection. This means that
the (ARP) of {£%}, is equivalent to the assertion of the following lemma.

Lemma 2.17. Foranyd,m € N and & > 0 there is some n € N such that every continuous
coloring of Quo(£?, E‘li) g-stabilizes on Quo({7', E‘li) o g for some g € Quo({%, {T).

Lemma 2.17 will be proved later using the Dual Ramsey Theorem.

Proposition 2.18. {{7_}, is a stable amalgamation class with modulus §.



D. BartoSova, J. Lopez-Abad, M. Lupini, B. Mbombo 1368

Proof. Suppose that y : egfo — {7 and n : zg‘o — {7 are §-isometric embeddings. This
means that the dual operators y* : £7" — K‘f and n* : £} — Kf satisfy y*(Ball({T")) <
Ball(£4) € y*((1 + 8) Ball(£)), and n*(Ball(£?)) < Ball(¢4) € n*((1 + &) Ball(¢")).
We define o : €' — ¢ and 7 : £7"" — {7 as follows. For each j < m, choose y; € {7
with 1 < |ly;|| <1+ & such that n*(y;) = y*(u;), and for k < n choose x; € {T" with
1 < |lxk|l <14 & such that y*(xx) = n*(ux) Now for each j < m, let o(u;) := u;
and t(u;) 1= y;/|y;ll, and for k < n, let 6 (Um4k) := Xk /|| xk || and T(up4x) 1= ug.
Then clearly we have o (Ball(¢7""")) = Ball(¢”*) and t(Ball(¢?**t')) = Ball(¢”) and
”7/*00'—7]*0T|Ie11n+n’((11 <. [

Our proof of the (ARP) of {£2}, crucially uses the Dual Ramsey Theorem. The case
d = 1 was first proved by Gowers [24], indirectly, as it follows easily via a compactness
argument from the oscillation stability of the space co. We start by presenting a simple
proof of this result for positive embeddings in the real case. Given integers k and n,
let FIN (n) be the collection of all mappings from n into k + 1 = {0,1,...,k —1,k}
with range including k. Let T : FINg (n) — FINg_1(n) be the fetris operation defined
pointwise for f € FINg (n) by T(f)(i) := max{ f(i) — 1, 0}. Given disjointly supported
Jo,..., fi—1 in FIN; (n), the combinatorial space ( f;); <; is the collection of all combina-
tions ), _; Tk=Ji (f;) where (j;)i<; € FINg(]).

Proposition 2.19 (Gowers). For any k, m and every r there is some n such that every
r-coloring of FINy (n) has a monochromatic set of the form { f;)i<m for some disjointly
supported sequence ( f;)i<m in FINg(n).

In what follows, let GR(d, m, r) be the minimal 7 so that (DRT) holds for the param-
etersd, mand r.

Proof of Proposition 2.19. Fix k, m and r. We claim that n = GR(k + 1,km + 1, 1)
works. Fix an r-coloring ¢ of FINg(n). We consider kK + 1, mk 4+ 1, and n canon-
ically ordered. For a subset A of n, we let 14 be the indicator function of A. Let
® : Epi(n, k + 1) — FINg(n) be defined by ®(0) := > ;i - 1,-1(;). By the Ramsey
property of n there is some rigid surjection ¢ : n — mk + 1 such that ¢ o ® is constant
on Epi(mk + 1,k + 1) o o with value 7. For each j < m, let

fi= D0 i LGy,
1<i<k
Then c is constant on (f;);j<m. To see this, given f =) ;_,. = (fi)j<m we
define 0 : mk +1 —- k + 1 by 6(0) := 0 and o(lk + i) := max {i — k + jj, 0} for
[ <mand 1 <i <k. Then for 0 < iy one has mino~(ip) = kly + (ip + k — Jio)
where [p = min{l <m : iy < j;}, so o is arigid surjection. It is not difficult to see that
®P(oop)= f,s0c(f)=T. [

Proof of Lemma 2.17. We start from the following simple fact.

Claim 2.19.1. There is a finite e-dense subset D of Ball(ﬂ‘li) containing {uj}j<q such
that for every non-zero x € Ball(ff) thereisy € Dwith ||y —x|1 <eand ||yl < ||x]|1.
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Proof of Claim. Let D be a finite £/2-dense subset of the unit sphere of Zf containing
{uj}j<d,andlet0 = Ay <--- < Ap_1 =1 be such that maxo<j<p—2(Aj41 —A;) <&/2.
Then O := Uk<p Ak - D satisfies what we want. ]

Fix such an e-dense set O, and let < be any linear ordering of O such that if || x||;
< |l¥|l1 then x < y. Let emb(d, m) be the collection of all 1-1 mappings f : d — m,
and let S be a finite e-dense subset of S!(F). For each (£, 0) € emb(d, m) x S%, let
hrg Z‘li — £ be the linear map obtained by setting /9 (u;) := 0; - ur(;). Then clearly
hy.g is an isometric embedding from £¢ into £7.

Claim 2.19.2. For every T € Quo({T', Zf) there is a pair (f,0) € emb(d, m) x S? such
that |T o hyg — Idl‘]" ”E‘f,l‘]’ <e

Proof of Claim. For each k < d choose f(k) < m such that T'(usx)) = axux where
lag| = 1. Clearly d > k +— f(k) is an injection from d into m. For each k < d, let
Or € S besuch that |1/ay — 0| < ¢, and let 8 := (). Then

IT ohype—1dgallga o =max|[T ohyp(ur) —uglln = max [T (Gkusr)) — vkl
1 ‘14 k<d k<d

=max ||agOxur —u < max|agb; — 1| <. [
k<d||kk k k||1_k<d|kk | <

Let A := D x emb(d, m) x S be ordered by the lexicographical ordering induced
from D ordered by <, and emb(d, m) x S¢ ordered arbitrarily. We claim that n =
GR(|D|, |Al, r) works. Indeed, let ¢ be an r-coloring of Quo(£?, Z‘li). We define an
injection @ : Epi(n, D) — Quo({7, K‘f) by assigning to each o € Epi(n, D) the oper-
ator 7 := ®(0) : £} — K‘li such that for each £ < n one has T'(ug) := o(&). Equivalently
the £M column vector of the matrix corresponding to ®(o) in the respective unit bases
is 0 (). It is easily verified that T is always a quotient map. It follows by the Dual Ram-
sey Theorem applied to the coloring ¢ := ¢ o ® that there is yo € Epi(n, A) such that

¢ is constant on Epi(A, D) o yo with value ro < r.

Let R € Quo({7, £T") be the quotient such that, for every & < n, one has R(ug) = hrg(v),
where (v, f, 0) = yo(§). The proof is finished once we establish the following.

Claim 2.19.3. Forevery T € Quo({7", ﬁ‘f) there exists ¢ € Epi(A, D) such that
||CI>(¢ ° 7/0) —To R”etf’(cll <e.

Proof of Claim. Fix T € Quo({7, Z‘li), and use Claim 2.19.2 to choose (f, 6) in

emb(d, m) x S such that ||T o hj:,é — Idecli ||[clz’eclz < &. Now we define ¢ : A — D as

follows. Fix (v, f,0) € A.

(i) If T(hyg(v)) = 0, then we set ¢ (v, f,0) := 0.

(ii) Suppose that T'(hrg(v)) # 0;if (f,0) = (f 6), then we set ¢ (v, f,0) := v; other-
wise, we set ¢ (v, f,0) := w where w € O is such that | T'(hre(v)) —w|¢, <eand
lwliv < IT(hge@)1-
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We see that ¢ : A — D is arigid surjection. First, min¢ =1 (0) = (0, fo,6o), where ( fo, 6p)
is the minimum of emb(d, m) x S¢. Now suppose that v € D is a non-zero vector. We
prove that min ¢! (v) = (v, f 0): Suppose that ¢ (u, f,0) = v and (f, 0) # (f, 0).
By the definition of ¢, [v]ls <[|T(hre)lv = [T llgm ga - (770 Oll1 = [lufl1, because
T is a contraction and /g is an isometric embedding. Hence, v < u, and since in A
we are considering the lexicographic ordering, (v, /., 0) < (u, f, 8). Since obviously
¢(v, f,0) = v, we find that min ¢~ (v) = (v, f, §). Hence, if 0 # v < w, then
min ¢~ (v) < ming ! (w).

Finally, we estimate ||®(¢ o yo) — T o R||e,11,((11 = maxz<, ||P(P o yo)(ug) —
T(R(ug))||5¢lz,. Fix £ < n, and suppose that yo(§) = (v, f, ). Then by definition,
(P(¢ 0 y0))(ug) = P (vo(§)), and T(R(ug)) = T'(hy6(v)). Now we have:

(@ If T(hge(v)) =0, then 0 = ¢(v, f,0) = P(p o yo)(ug) and 0 = T(hyg(v)) =

T(R(ug)).

(b) If T(hre(v)) # 0 and (f,0) = (f, ), then ®(¢ o yo)(ug) = ¢ (v, f,6) = v while

T(R(ug)) = T(hge(v)) = wissuchthat [w —v|; < e.

(©) If T'(hfge(v)) #Oand (f,0) # (f.6),then ®(¢ o Yo)(ug) = ¢ (v, f,0) = wis chosen
such that e > [[w — T'(hrg (V) |1 = |lw — T(R(ug))|1- u

2.4. (ARP) of polyhedral spaces and finite-dimensional spaces

We give an explicit proof of the approximate Ramsey property of the class of finite-
dimensional polyhedral spaces. This is done by using injective envelopes of polyhedral
spaces, and then by reducing colorings of polyhedral spaces to colorings of £7_-spaces.
We also use this to explicitly prove the (ARP) of the class of all finite-dimensional Banach
spaces. In this way, knowing the number of extreme points of the dual unit ball of given
spaces, one can estimate upper bounds of the corresponding Ramsey numbers. For sim-
plicity, we present the proof in the case of real Banach spaces. Thus, all the Banach spaces
are assumed to be real in this section.

Definition 2.20. A finite-dimensional space F is called polyhedral when its unit ball
Ball(F) is a polyhedron, i.e., the set d.(Ball(F)) of extreme points of Ball(F) is finite.

The spaces £, and {7 are polyhedral. In fact, a finite-dimensional space is polyhedral
if and only if its dual ball is polyhedral. It follows from this, a separation argument, and
the Milman theorem, that a finite-dimensional space F' is polyhedral if and only if there
is a finite set A € Sph(F*) such that ||x|| = maxse4 f(x) for every x € F. Also, every
subspace of a polyhedral space is polyhedral, and every finite-dimensional polyhedral
space embeds into £ for some n € N.

Definition 2.21 (Polyhedral spaces). Given an integer d, let Pol; be the class of all
polyhedral spaces F such that #d,(Bf+) = 2d. Givend,m € N, r € N and ¢ > 0, let
Npe1(d, m, 1, &) be the minimal integer n > m such that for every F' € Poly and G € Pol,,,
every r-coloring of Emb(F, £7) has an e-monochromatic set of the form 7 o Emb(F, G)
for some 7" € Emb(G, £%,).
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Definition 2.22 (Injective envelope of a polyhedral space). The injective envelope of a
polyhedral space F is a pair (ng, Ur), where nf is an integer and W € Emb(F, £2f)
is such that for every isometric embedding 7" : F — {7 there is an isometric embedding
U : 68 — {" suchthat T = U o Wp.

Proposition 2.23. ny,(d,m,r, &) = ne(d,m,r,¢).

Proof. Firstof all, Zk € Poly, so nyei(d,m,r,€) > Noo(d,m, 1, €). Fix now an r-coloring ¢
OHMMFE)deBm@dﬂ)armmﬁmMMUeﬁm@d@)WCW)
c(U oWp). Let Te Emb(£7,¢" ) and 7 < r be such that

T o Emb(£% . 07) € (& HF))s. (2.2)

Let T := T o Wg. We claim that T o Emb(F,G) C (¢c"'{7})e. Let U € Emb(F, G), and
let W e Emb(ﬁd £7.) be such that Wg o U = W o Wf. From the inclusion in (2.2) there
mmmb’eEmMWiZm)mwhmmCUQ-rMMHV ToW| <eLetV:=VoWp.
Then ¢(V o W) = ¢(V) = 7, while

[V-—ToU|=|VoWp—ToWgoU|=|Volr—ToWolWg|
<|IV-ToW|<e. .

2.4.1. Approximate Ramsey property for finite-dimensional normed spaces. We give an
explicit, constructive proof of approximate Ramsey property of arbitrary finite-dimen-
sional normed spaces. The proof is based on the approximate Ramsey property of
polyhedral spaces and the well known fact that the finite-dimensional polyhedral spaces
are dense in the class of finite-dimensional normed spaces with respect to the Banach—
Mazur distance. In fact, we have the following.

Proposition 2.24. Suppose that dim X = k. For every 0 < ¢ < 1 there is a polyhedral
space Xo € Poly such that dgv(X, Xo) < &, where d < (2 + 3¢)/¢)k.

Proof. Let § := e(1 + &)~ '. Let D C Sph(X*) be a finite §-dense subset of Sy« of car-
dinality < (1 + 2871k = ((2 + 3¢)/e)* (see for example [46, Lemma 2.6]). On X we
define the polyhedral norm N(x) := maxrep | f(x)|. It follows that X := (X, N) € Poly
with d < #D, and dBM(X, X()) <e. u

Definition 2.25. Given X of finite dimension and 6 > 1, let Embgy (X, Y') be the collection
of all 1-1 mappings T : X — Y suchthat I < ||T|, |7~ || and [|T| - |77} < 6.

Let X = (X;)i<n be a sequence of Banach spaces. We say that a pair (¥, J) of a
Banach space Y and J € Emb(X,,,Y) is (6, t)-correcting for X (1 < 6 < ) when every
X; isometrically embeds into Y, and for every j < n and every y € &mbyg(X;, X,,) there
exists [, € Emb(X;,Y)suchthat|Joy — I, || <7 —1.

Proposition 2.26. Every finite sequence of finite-dimensional spaces (X;)i<n and every
1 < 8 <t hasa (8, v)-correcting pair (Y, J). Moreover, if each X is polyhedral, then Y
can be taken polyhedral.
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Proof. The proof is by induction on n > 1. Suppose first that n = 1. A simple inductive
argument, where the case #V = 1 is proved by Kubis and Solecki [33, Lemma 2.1], gives
the following.

Claim 2.26.1. Suppose that N C Embg(Xg, X1) is finite. Then there exist a finite-dimen-
sional space Y and ® € Emb(Xy,Y) such that for every T € N there is I € Emb(Xy,Y)
suchthat |I —®oT| <60 —1.

Let N be a finite (r — 6)-net of Embg(Xy, X1). Then the pair (X, I') obtained by
applying Claim 2.26.1 to N is (8, 7)-correcting for (Xo, X1). Now suppose that n > 1.
Find a (0, 7)-correcting pair (Yo, ®¢) for (X;)7_;. Let N be a finite (z — 6)-net of
&mbg (X, X;). Let (Y, ®;1) be a pair obtained by applying Claim 2.26.1 to ®¢ o N.
It can be easily verified that (Y, ®; o ®g) is a (8, r)-correcting pair for (X;);<p. ]

Theorem 2.27. The class FdBa of all finite-dimensional Banach spaces has the (SRP).

Proof. We know that FdBa is a stable Fraissé class, so we only have to prove that it
satisfies the discrete (ARP). Fix finite-dimensional spaces F, G, r € N, ¢ > 0, and set
8 :=¢/5. Let Fy € Poly, G be polyhedral, and let & : F — Fy and &g : G — Gy
be surjective isomorphisms such that | ®r || = |®¢| =1 and ||<I>1_,1 Il ||(D51 | <14¢/5.
Notice that d can be taken such that d < ((10 + 3¢) /)%™ F  Let

(1) (Ho,B®p) bea (1 + ¢/5,1 + &/4)-correcting pair for (Fy, Gg) with Hy € Pol,,, and

let

(ii) (H,©;1)bea (1l +¢/5,1+ g/4)-correcting pair for the triple (F, G, £%) where n :=

npol(d9 m,r, 8/4)

We claim that H works. Fix ¢ : Emb(F, H) — r. Let ¢ : Emb(Fp, {%,) — r be the
induced coloring defined for y € Emb(Fy, £7)) by choosing I, € Emb(F, H) such that
|7, —®1 0y o ®F| < e/4 and declaring ¢(y) := c¢(I,). By the Ramsey property of n,
there exist 0 € Emb(Ho, {”,) and 7 < r such that o o Emb(Fy, Ho) C (¢~ '{F})¢/a. Let
S € Emb(G, H) be such that

IS —©®10000g0 Dg| < e/4. (2.3)
Claim 2.27.1. S o Emb(F,G) C (c™'(7))s.

Proof of Claim. Fix T € Emb(F, G). We can choose © € Emb(Fy, Hy) such that
[t —BpodgoTo q>1—71 || < &/4,because g o T o <I>I_,1 € Emby4./5(Fy, Go). Let now
y € Emb(Fp, £%,) be such that ¢(y) =7 and |y — o o 7| < &/4. Then ¢(I,) =7 and
IS oT —1I,]| < e. It follows from (2.3) and the fact that ||7'|| = 1 that

[SoT —®10000g0dgoT| <e/b

This is the diagram:
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Consequently, |[So T — I, || <e. L]

2.5. Finite metric spaces

Recall that the Urysohn space U is the unique (up to isometry) ultrahomogeneous uni-
versal separable complete metric space. Pestov proved in [50] that the group Iso(U) of
surjective isometries of U is extremely amenable, using the method of concentration of
measure. There is also a version of the (KPT) correspondence for Iso(U), which gives as
a consequence the (ARP) of finite metric spaces.

Theorem 2.28. For any finite metric spaces M and N, r € N and & > 0 there exists a
finite metric space P such that every r-coloring emb(M, P) has an e-monochromatic set
of the form o o emb(M, N) for some o € emb(N, P).

In the previous statement emb(M, P) is the collection of all isometric embed-
dings from (M, dps) into (N, dy), endowed with the uniform metric d(o, 7) :=
maxyepm dn(0(x), 7(x)). Later, NeSetril established the (exact) Ramsey property of finite
ordered metric spaces [47], that is, for any finite ordered metric spaces X and Y and every
r € N there exists a finite ordered metric space Z such that for every r-coloring of the set
()Z()< of order isometric copies of X in Z there exists an order isometric copy Yy of Y in

Z such that (l;?)  is monochromatic. This gives another proof of the extreme amenability
of Iso(U). We present here a third proof, which uses the approximate Ramsey property
of the class of finite-dimensional polyhedral spaces.

Recall that a pointed metric space (X, d, p) is a metric space (X, d) with a distin-
guished point p € X. Given two pointed metric spaces (M, p) and (N, q), let emby(M, N)
be the set of pointed isometric embeddings, that is, all isometric embeddings from M
into N sending p to g. Recall that when X and Y are normed spaces, we use Emb(X, Y')
to denote linear isometric embeddings.

Definition 2.29. Given a pointed metric space (M, d, p), let Lip,(M, p) be the Banach
space of all Lipschitz maps f : M — R with f(p) = 0 endowed with the Lipschitz norm,

|f(x) = fOI

171 sup {0 =T

:x;éyGX}.
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Let ¥ (M, p) be the (Lipschitz) free space over the pointed metric space (M, p) defined
as the closed linear span of the molecules {8x — 8p}xenm in the dual space Lipy (M, p)*,
where §, for x € X denotes the evaluation functional at x. It turns out that F (M, p)* is
isometric to Lipy (M, p).

It is well-known that Lip,(M, p) does not depend, isometrically, on the choice of
the point p, so the corresponding predual will be denoted by 5 (M). The space ¥ (M)
is also known as the Arens—Eells space. More information on Arens—Eells spaces can
be found in [55, §2.2]. It is easy to see that the mapping M > x + 6, € F (M) is an
isometric embedding. Given finite metric spaces M and N such that M isometrically
embeds into N, let Moo := M U {poo}, Noo := N U {¢o} be one-point extensions of M
and N with the distance d(poo, X) = d(Goo, ) := miny4eny d(z,t) forall z € M and
y € N. Clearly M and N, are metric spaces.

Proposition 2.30. Suppose that M and N are metric spaces. Then every isomet-
ric embedding 0 : M — N extends to a unique linear isometric embedding Ty :
F (Moo, Poo) = F (Noos oo)- |

The proof is a straightforward use of a standard duality argument, the McShane—
Whitney Extension Theorem for Lipschitz functions [55, Theorem 1.5.6], and the fact
that §,,, = 0in F (Mwo, poo) and 84, = 0in F (Neo, Poo)-

Proposition 2.31. If M is a finite metric space, then ¥ (M) is a finite-dimensional poly-
hedral space.

Proof. Observe that for all x # y in M, py,, 1= (6x —8,)/d(x, y) has norm 1 in
Lipy(M) since clearly ||x,y|| < 1, and the mapping dx(¢) := d(x,t) foreach t € M
is 1-Lipschitz and px,, (dx) = 1. It follows from the definition of the Lipschitz norm that
the convex hull of {ftx y}x=£y in M 1S equal to Bg (pr). [ ]

Lemma 2.32. Suppose that M and N are finite metric spaces, r € N, and ¢ > 0. Let
0 := diam(N). Then there exists n € N such that every r-coloring of emb(M, g - Byn_)
has an e-monochromatic set of the form o o emb(M, N) for some o € emb(N, ¢ - Byn ).

Proof. Fix finite pointed metric spaces (M, p), (N, q), r and ¢ > 0. We assume that
M isometrically embeds into N since otherwise the statement above is trivially true.
Let d, m be such that ¥ (M) € Poly and ¥ (Nuo) € Pol,,. Then n := nyqi(d, m, r, &o)
for g9 = &/diam(M) works. Fix a coloring ¢ : emb(M, ¢ - Bgn ) — r. Define ¢ :
Emb(¥ (M), £%,) — r by ¢(y) := c(oy), where o), : M — oBall({%,) is defined by
0y (x) := y(8x) forevery x € M. This is well defined since |8 || = [|8x — 8p|| <d(x, p) <
diam(M) < diam(N), where the last inequality holds since Emb(M, N) # @. Let
@ € Emb(F (No), £%,) and 7 < r be such that & o Emb(F (Moo), F (Noo)) € (€71(F))eq -
Let T : N — oBall(£)) be the embedding defined by 7(x) = &(8x). We claim that
7 works. In fact, T o emb(M, N) € (c~!(7)),. Let o € emb(M, N). Then there exists
a unique extension Y5 € Emb(F (Mu), F (Noo)). Let v € Emb(F (M), £5,) be such
that () = 7 and ||y — @ o y5| < &o. Then oy (x) := ¥ (8x) for every x € M satisfies
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c(oy) =7 and

d(oy.7o0) = max [y(8x) — &(Bocx) oo = 1V (Ex) — & (yo(8x)lleo
< godiam(M) = e. |

Proof of Theorem 2.28. This is a consequence of Lemma 2.32, via a compactness argu-
ment. Fix M, N, r and ¢ > 0. Let n be obtained from M, N, r and ¢/3 by applying
Lemma 2.32. Let ¢ := diam(/N). Since M and N are finite and gBall(£%,) is compact,
there exists P C gBall(£%,) finite such that

emb(M, oBall({5.)) € (emb(M, P)),/3 and emb(N, oBall(€5,)) € (emb(N, P)),/3.

We claim that (P, do) works. To see this, let ¢ : emb(P, A) — r. Define ¢ :
emb(M, oBall({%,)) — r by ¢(y) := c(0,) where 0, € emb(M, A) is chosen such that
d(y,o0y,) < &/3. By the property of n, there are y € emb(N, oBall(¢Z,)) and 7 < r such
that y o emb(M, N) € (¢7'(F))¢/3. Let 7 € emb(N, P) be such that d(y, y) < &/3. It
takes a simple computation to see that ¥ o emb(M, N) C (¢~ (r))e. ]

2.6. The closed bifaces of the Lusky simplex and R-Banach spaces

There is a natural correspondence between Banach spaces and those compact spaces
which are absolutely convex. In the real case, by a compact absolutely convex set we
mean a compact subset of a locally convex topological real vector space that is closed
under absolutely convex combinations of the form pux + Ay for A, u € R such that
|A] + || < 1. Any compact absolutely convex set K has a canonical involution o map-
ping x to —x. A real-valued continuous function f on K is symmetric if f oo = —f.
Similarly, a continuous affine function between compact absolutely convex sets is sym-
metric if it commutes with the given involutions. So, given a Banach space X, the unit
ball Ball(X *) of the dual space of X is a compact absolutely convex set when endowed
with the w*-topology. Any compact absolutely convex set K is of this form, where X
is the Banach space A, (K) of real-valued symmetric affine continuous functions on K
endowed with the supremum norm. Each contraction 7 : X — Y induces a symmetric
affine continuous function T* : By — Byx=, and vice versa, a given symmetric affine
continuous function £ : K — L induces a contraction § 1 Ag (L) — Ay (K) by compo-
sition. Furthermore, such a correspondence is functorial, and induces an equivalence of
categories. The following definition has been introduced in [37, §6.1].

Definition 2.33. A Lazar simplex is any compact absolutely convex set that is affinely
homeomorphic to the unit ball of the dual of a Lindenstrauss space.

Lazar simplices have been internally characterized by A. J. Lazar [34] in terms of a
uniqueness assertion for boundary representing measures, reminiscent of the analogous
characterization of Choquet simplices due to Choquet [1, §11.3]; see also Subsection 3.1
below. The Lazar simplex corresponding to the Gurarij space is denoted by IL and called
the Lusky simplex in [37, §6.1]. It is proved in [37,39,42] that IL plays the same role in
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the category of metrizable Lazar simplices as the Poulsen simplex P plays in the category
of metrizable Choquet simplices (see Section 3). Recall that a closed subset H of a Lazar
simplex is a biface or essential face if it is the absolutely convex hull of a (not necessar-
ily closed) face [35]. This is equivalent to the linear span of H inside A, (K)* being a
w*-closed L-ideal [2,3]. Here are some properties of IL:

e The Lusky simplex is the unique non-trivial metrizable Lazar simplex with dense
extreme boundary (Lusky [39]).

e The Lusky simplex is universal among metrizable Lazar simplices, in the sense that any
metrizable Lazar simplex is symmetrically affinely homeomorphic to a closed biface
of L (Lusky [42]).

e The Lusky simplex is homogeneous: any symmetric affine homeomorphism between
proper closed bifaces of IL extends to a symmetric affine homeomorphism of I (Lupini
[37, §6.1]).

Our intention is to prove the following:

Theorem 2.34. Suppose that H is a closed biface of the Lusky simplex L. Then the group
Auty (IL) of symmetric affine homeomorphisms o of L such that a(p) = p for every
p € H is extremely amenable.

Remark 2.35. A similar result holds for complex Banach spaces. In this setting, one
considers compact convex sets endowed with a continuous action of the circle group T
(compact convex circled sets). The compact convex circled sets corresponding to complex
Lindenstrauss spaces (Effros simplices) have been characterized by Effros [15]. Again, the
unit ball of the dual space of the complex Gurarij space has canonical uniqueness, univer-
sality, and homogeneity properties within the class of Effros simplices [37, §6.2]. Here
one considers the natural complex analog of the notion of a closed biface (circled face).
The same argument as above shows that, in the complex case, the pointwise stabilizer of
any closed circled face of Ball(G*) is extremely amenable.

Observe that in the particular case when H is the trivial biface {0}, such a statement
recovers extreme amenability of the group of surjective linear isometries of G. Observe
also that given a closed biface H of a Lazar simplex L, we find that g € Autg (L) if and
only if g € Iso;(Ay (L)), where i : H — L is the inclusion map and where, in general,
given Banach spaces X and Y and an operator o : X — Y, we denote by Isos (X), we
denote the subgroup of isometries g of X such that 0 o g = o. This motivates our study
of such pairs (X, 0).

Definition 2.36 (R-Banach space). Given a Lindenstrauss space R, an R-Banach space
is a couple X := (X, o) where 0 : X — R is a linear contraction, called an R-functional.

In this category, given R-spaces Xy := (Xo, 09), X1 := (X1,01) and & > 0, let
Embg (Xy, X1) be the collection of §-isometric embeddings y : Xo — X; such that
lloy oy — 0p|| <6, and in particular, let Aut(X) = Iso,(X) be the space of surjective
isometries such that 0 o g = 0. We write (Xo,0¢9) C (X1,01) if Xo € X; and 01 | X¢ = 0p.

The following result is established in [37, Section 5].
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Theorem 2.37. Given a separable Lindenstrauss space R there exists an onto contraction
Qr : G — R such that the R-Banach space G := (G, QR) is

(1) universal for separable R-Banach spaces, that is, Emb(X, (G, QR)) # @ for every
such space X;

(2) a stable Fraissé R-Banach space with modulus of stability w (§) = 26, that is, for
every finite-dimensional R-space X := (X, o) C (G, QR), every § > 0 and every
y € Embs (X, (G, QR)) there is an isometry g € Isoq , (G) such that ||g ' X — y|| < 26.

One can consider the similar category for an arbitrary separable Banach space R,
not necessarily a Lindenstrauss space, and obtain a Fraissé limit (G(R), Qg) with the
corresponding properties (1) and (2) but since R is 1-complemented in G(R), this space
is Gurarij only when R is Lindenstrauss (see [11, Theorem 6.5]). Note that a classical
result of Wojtaszczyk [56] asserts that the separable Lindenstrauss spaces are precisely
the separable Banach spaces that are isometric to the range of a contractive projection on
the Gurarij space G. The R-functional Q2 is called the generic contractive R-functional
on G. The name is justified by the fact that the Iso(G)-orbit of 2 is a dense G4 subset of
the space of contractive R-functionals on G. The universality and homogeneity properties
of I can be seen as consequences of the following result, established in [37, §6.1] using
the theory of M -ideals in Banach spaces developed by Alfsen and Effros [2, 3], and the
Choi—Effros lifting theorem from [12].

Proposition 2.38. Suppose that R is a separable Lindenstrauss space. A contraction s :
G — R belongs to the Iso(G)-orbit of Qg if and only if s is a non-trivial facial quotient,
that is, kers # 0, and s* is an isometric embedding such that s*(Ball(R*)) is a closed
biface of Ball(G™*).

In particular, suppose that H is a proper closed biface of L, i : H — L is the canon-
ical inclusion and we canonically identify G and A, (IL). Then i As(L) — Ax(H) is
a non-trivial facial quotient, hence ie Iso(G) - 4, (#)- This implies that Isox(G) =
Iso@, (4, (G), and Theorem 2.34 can be rephrased as follows.

Theorem 2.39. The stabilizer of the generic contractive R-functional on the Gurarij
space is extremely amenable for any separable Lindenstrauss Banach space R.

When R = {0}, we recover the extreme amenability of Iso(G). In fact, the proof of this
extension is based on the approximate Ramsey property of finite-dimensional R-Banach
spaces, by means of the KPT correspondence. The corresponding non-commutative ver-
sion of the previous theorem is established in [5, 7].

2.6.1. KPT correspondence and (ARP) of R-Banach spaces. We give a proof of The-
orem 2.34. By the correspondence between the categories of Lazar simplices and that
of R-Banach spaces, Theorem 2.34 is equivalent to the fact that Aut(Gg) is extremely
amenable, which will be proved by means of a KPT correspondence and an appropriate
approximate Ramsey property. Given an R-space X = (X, 5), let Age(X) be the collection
of pairs (F, s F), where F € Age(X). Given a family ¥ of finite-dimensional R-Banach
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spaces, let [¥] be the collection of all separable R-Banach spaces X such that for every
F € Age(X) and every § > 0 there is some G € ¥ such that Embg (F, G) # 0.

Theorem 2.40 (KPT correspondence for stable Fraissé R-Banach spaces). Suppose that
E = (E, Q) is an approximately ultrahomogeneous R-Banach space. Then the following
are equivalent:

(1) Aut(E) is extremely amenable.

(2) Age(E) satisfies the (ARP), that is, for any X, Y € Age(E) and ¢ > 0 there is
Z € Age(E) such that every continuous coloring of Emb(X, Z) e-stabilizes on
y o Emb(X,Y) for some y € Emb(Y, Z).

Suppose that ¥ is a family such that ¥ < Age(E), E € [F]. Then (1)—(3) are equivalent

to

(3) F satisfies the stably approximate Ramsey property (SRP) with modulus @ (§), that
is, for any X, Y € ¥, ¢ > 0 and § > 0 there is Z € ¥ such that every contin-
uous coloring of Embg(X, Z) (w (§) + &)-stabilizes on y o Embg(X,Y) for some
y € Emb(Y, Z).

The proof of Theorem 2.40 is a straightforward modification of that of Theorem 2.12;
we leave its details to the reader.

Theorem 2.41. The following classes have the (SRP) with modulus of stability 25

(a) For every k € N, the class of K’;O-Banach spaces (X, s) where X = L7 for some
n e N.

(b) For every separable Lindenstrauss space R, the class of all finite-dimensional R-
Banach spaces.

Proof. As for the case of Banach spaces in Proposition 2.13, a class of R-finite-
dimensional spaces has the (SRP) with modulus = if and only if it satisfies the (ARP)
and it has the corresponding stable amalgamation property with modulus @ .

‘We now handle case (a).

Claim 2.41.1. The family ¥ of Z’;o-spaces of the form (£, s) for some n has the stable
amalgamation property with modulus 26.

Proof of Claim. Fix Z];O-spaces X= (ﬁgo, $), Y= {2, t)yand Z = ({2 ,u), § > 0, and
y € Embg(X,Y) and n € Embg (X, Z). Let I € Emb(£7,£7-t") and J € Emb({%,, £7t")
be such that ||/ oy — J on| < 3§ (see Proposition 2.18). Then Iy := (I,¢) : £ —
etk and Jo i= (J,u) 1 0% — 05Tk satisfies Ty € Emb(Y, (C25+K 1)), Jo €
Emb(Z, (€K, 7)) and [[Ig o y = Jo o nl| = max{||[I oy — J on|,[lt oy —u o n]}

< 28, where 7 : 757k s gk s the projection 7((a;); <m4n+k) = (a;)"nTE=1

j=m-+n u

We prove now the (ARP) of & . Fix E’;o—spaces X:= (@g‘o, s)and Y := ({7, u), and
g€ > 0. Let n € N witness the (ARP) of {{__}, for the initial parameters d, m, and .
Letr : K;’jk — K’go be the canonical second projection 7 ((@;); <n+k) := (aj);’:,’f_l. We
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claim that Z := (zgjk, 7)) works: Indeed, suppose that ¢ : Emb(X, Z) — [0, 1] is a con-
tinuous coloring. Let ¢ : Emb(ﬁgo, £%.) — [0, 1] be defined for y € Embs (zg’o, £z.) by
c(y) := c(y, s). Observe that ¢ is 1-Lipschitz, so there is I € Emb({Z, {2 )
such that Osc(¢]] o Emb(ﬁgo, 7)) < e Let J := (I,t) € Emb(Y, Z). Notice
that given y € Emb(X, Y), we have J oy = (I oy,t oy) = (I oy, s). Hence,
Osc(c]J o Emb(X,Y)) < Osc(C} o Emb(tZ,,¢m)) < e.

For (b), fix a Lindenstrauss space R, and choose an increasing sequence (Rj), of
subspaces whose union is dense in R and such that each R, is isometric to £7 .

Let ¥ be the class of R-Banach spaces (X, s) where X is isometric to some Ego and
such that Ims C |, Ry It follows easily from (a) that ¥ has the (SRP) with modulus 24.
We know from Theorem 2.37 that Gg = (G, QR) is a stable Fraissé R-Banach space
such that age(G g) consists of all finite-dimensional R-Banach spaces. On the other hand,
Gpr € [F], so it follows from (a) and the KPT correspondence in Theorem 2.40 that
age(G ) satisfies the (SRP) with modulus 26. [

Theorem 2.41 and the characterization of extreme amenability in Theorem 2.40 give
the previously announced result.

Theorem 2.39. The stabilizer of the generic contractive R-functional on the Gurarij
space is extremely amenable for any separable Lindenstrauss Banach space R. ]

3. The Ramsey property of Choquet simplices and function systems

The main goal of this section is to establish the approximate (dual) Ramsey property for
Choquet simplices with a distinguished point. We will then apply this to compute the uni-
versal minimal flow of the automorphism group of the Poulsen simplex P. We will prove
that the minimal compact Aut(IP)-space is the Poulsen simplex P itself endowed with the
canonical action of Aut(IP), answering [13, Question 4.4] (the fact that such an action is
minimal is a result of Glasner [19]). This will be done by studying function systems with
a distinguished unital positive map to a fixed separable Lindenstrauss function system R.
Similarly to the case of Banach spaces (§2.6), we will also consider function systems
X with a distinguished state, a unital linear contraction s : X — R where R is a fixed
separable Lindenstrauss function system.

3.1. Choquet simplices and function systems

Recall that a compact convex set K is a compact convex subset of some locally convex
topological vector space. In a compact convex set one can define in the usual way the
notion of convex combination. The extreme boundary 0, K of K is the set of extreme
points of K, that is, points that cannot be written in a non-trivial way as a convex com-
bination of points of K. When K is metrizable the boundary d, K is a G subset. In this
case, a boundary measure on K is a Borel probability measure on K that vanishes off
the boundary of K. Choquet’s representation theorem asserts that any point in a compact
convex set can be realized as the barycenter of a boundary measure on K (representing
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measure). A compact convex set K where every point has a unique representing measure
is called a Choquet simplex. In particular, any standard finite-dimensional simplex A,, for
n € N is a Choquet simplex.

The class of standard finite-dimensional simplices A, for n € N naturally forms a
projective Fraissé class in the sense of [30]; see [32]. The corresponding Fraissé limit is
the Poulsen simplex P. Initially constructed by Poulsen [52], P is a non-trivial metriz-
able Choquet simplex with dense extreme boundary. It was later shown in [36] that there
exists a unique non-trivial metrizable Choquet simplex with this property up to affine
homeomorphism. Furthermore P is universal among metrizable Choquet simplices, in the
sense that any metrizable Choquet simplex is affinely homeomorphic to a closed proper
face of P. Also, the Poulsen simplex is ultrahomogeneous: any affine homeomorphism
between closed proper faces of P extends to an affine homeomorphism of P.

The Poulsen simplex P can also be studied from the perspective of direct Fraissé
theory by considering the natural dual category to compact convex sets. For a compact
convex set K, let A(K) be the space of complex-valued continuous affine functions on K.
This is a closed subspace of the space C(K) of complex-valued continuous functions
on K, endowed with the supremum norm. Furthermore, A(K) contains a distinguished
element, its unit, that corresponds to the constant function equal to 1. In general, recall that
a function system is a closed subspace V of C(T') for some compact Hausdorff space T
containing the function constantly equal to 1 and such that if € V' then the function f™*
defined by f*(¢) := f(¢) also belongs to V. So, A(K) is a function system, and in fact
any function system V' C C(T') arises in this way from a suitable compact convex set K.
Precisely, K is the compact convex set of states of V, that is, the contractive functionals
on V that are unital, i.e., map the unit of C(T") to 1.

As mentioned in the introduction, the assignment K — A(K) establishes a contravari-
ant equivalence of categories from the category of compact convex sets and continuous
affine maps to the category of function systems and unital contractive linear maps. The
finite-dimensional function systems that are injective in such category are precisely the
function systems A(A,) = {5 corresponding to the standard finite-dimensional sim-
plices A, . The function systems that correspond to Choquet simplices are precisely those
that are Lindenstrauss as Banach spaces, or equivalently, the function systems whose
identity map is the pointwise limit of unital contractive linear maps that factor through
finite-dimensional injective function systems.

The function systems approach has been adopted in the work of Conley and Térnquist
[13], and independently in [37,38], where it is shown that the class of finite-dimensional
function systems is a Fraissé class. Its limit can be identified with the function sys-
tem A(IP) corresponding to the Poulsen simplex, which we will call the Poulsen system.
The model-theoretic properties of A(IP) and their non-commutative analogues have been
studied in [22].

Suppose that X is a function system. Recall that a state on X is a unital contractive
linear map from X to C. More generally, if R is any separable Lindenstrauss function sys-
tem, we call a unital contractive linear map from X to R an R-state on X. Let UC(X, R)
be the space of R-states on X. It is a Polish space endowed with a canonical continuous
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action of Aut(X). An R-function system is a pair X = (X, sx) consisting of a function sys-
tem X and an R-state sy on X. In the following, we regard UC(X, R) as an Aut(X)-space
with respect to the canonical action Aut(X) ~, UC(X, R) given by (a,s) > s oa™ L.

Given R-function systems X = (X, sy) and Y = (¥, sy), and § > 0, let Embg (X, Y)
be the collection of unital §-isometric embeddings y : X — Y such that ||sy o y —sx|lx,r
< 4. Given an R-function system X = (X, sx), let Age(X) be the collection of all finite-
dimensional R-function subsystems Y = (Y, sy) of X, thatis, ¥ € X and sy = sy |'Y.
Given a class ¥ of R-function systems, let [¥] be the class of all separable R-function
systems X = (X, sy) such that for every Y and every § > O there is Z € ¥ such that
Embg(Y,Z) # @. Let Aut(X, sy) be the stabilizer of sy € UC(X, R) in Aut(X). Given
a family # of function systems, let AR be the collection of R-function systems (X, sx)
where X € #A.

The following result is established in [37, §6.3].

Proposition 3.1. Let R be a separable Lindenstrauss function system. Then the class
FdBaR of finite-dimensional R-function systems is a stable Fraissé class with stability
modulus @ (§) = 26 and A(P)g := (A(P), QR) is its Fraissé limit, that is, AP)g is a
stable Fraissé R-function system such that Age(A(P)g) = FdBaR.

As in the case of operator spaces, the R-state 2g as in Proposition 3.1 is called the
generic R-state on A(IP). This is the unique R-state on A(IP) whose Aut(A(P))-orbit is a
dense Gy subset of the space UC(A(P), R). The elements of the Aut(A(IP))-orbit of Q2 g
can be characterized as follows (see [37, §6.3]).

Proposition 3.2. Suppose that R is a separable Lindenstrauss function system. A uni-
tal quotient map s : A(P) — R belongs to the Aut(A(IP))-orbit of Qg if and only if s
is a unital facial quotient, i.e., s is unital and s* is an isometric embedding such that
s*(Ball(R*)) is a closed proper face of P.

Our intention is to prove the following

Theorem 3.3. For every metrizable Choquet simplex F the stabilizer Aut(A(P)4(r)) of
the generic A(F)-state Q4(F) on the Poulsen system A(IP) is extremely amenable.

3.2. Approximate Ramsey property and extreme amenability

The following result provides a correspondence between extreme amenability and Ram-
sey properties in the context of R-function systems. The proof is analogous to the one for
Banach spaces, and is left to the reader.

Theorem 3.4 (KPT correspondence for (aUH) and stable Fraissé R-function systems).
Suppose that X = (X, Q) is an approximately ultrahomogeneous R-function system. Then
the following are equivalent:

(1) Aut(X) is extremely amenable.
(2) Age(X) has the approximate Ramsey property.
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If in addition ¥ is a family that has the stable amalgamation property such that E € [¥]
and ¥ < Age(X), that is, every R-function system in ¥ can be isometrically R-embedded
into E, then the previous are equivalent to

(3) F satisfies the (SRP).

Theorem 3.5. Suppose that (Ry)y is a sequence of function subsystems of R, each Ry
isometric to Zk , and with a dense union. The following classes of R-function systems
have the (SRP) with modulus 28

(1) Forevery k € N, the class of Ry-function systems (R, ®oo Ry, 7y )) where T,
R, ® Rx — Ry is the canonical second projection.

W)

(2) For every k € N, the class of Ry-function systems (X, s) where X is isometric to
some (7.

(3) The class Br of R-function systems (X, s) where X is isometric to some L% and
s: X — U Rk
(4) The class of all R-function systems.

To prove this theorem we will use (and prove) the (ARP) of the class {{2 }, with
respect to positive embeddings. Its proof is similar to that of Lemma 2.17. We present the
details for the reader’s convenience. Let Emb™ (eg’o, £%.) be the space of positive isometric
embeddings from Kgo into £”,. Dually, let Quo™ (£7, E‘l") be the space of corresponding
positive quotient mappings.

Lemma 3.6. Foreveryd,m,r € N, and & > 0 there is some n such that every r-coloring
of Emb™ (Kd £%.) has an e-monochromatic set of the form y o Emb™ (Ed Ls,) for some
yo Emb+(zd o).

We write Ball™ (Z’f ) and Sph™ (K’f ) for the positive part of the unit ball and of the
unit sphere of @’1‘ . Recall that a linear map y : Ego — {7 is unital if and only if its
dual y* : {] — Zf is trace-preserving, that is, Trg (y*((a;)j<n)) = Trn((aj)j<n), where
Trr((aj)j<k) = Zj <k a; is the canonical trace. When in addition y (equiv. y*) is a con-
traction, then y and y* must be positive. Thus y is a unital isometric embedding if and
only if y* is a trace-preserving quotient mapping, or equivalently if each y*(u;) belongs
to Sph™ ((‘11) and {1 }; <g S {y*(u;)};<n. Given R-function systems (ﬁgo,s) and (€2_,1),
let Quo((£7,t*), (€4, 5*)) be the space of trace-preserving quotients o : 0 — E‘f such that
0 ot* = s*. Before proving Lemma 3.6, we use it.

Proof of Theorem 3.5. All the four classes considered have the stable amalgamation prop-
erty with modulus 24: For the first three ones, the proof of Claim 2.41.1 can be easily
adjusted to give the desired property, and for the last class, as mentioned above, the proof
can be found in [37, §6.3]. So, we have to prove that in addition all those classes have
the (ARP).

For (1), we consider the equivalent class, and easy to work with, { (ﬁgo"’k, Ty }n> Where

n,(,k) et k — 02 Poo K’;o — e’;o is the second projection. We prove the dual approximate

Ramsey statement for the corresponding dual class: Write X, for (£2 k, n,Sk)), and X7 :=
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(4 tk (n,sk))*). Notice that given d and m, we have o € Quo(Xj,, X%) exactly when o
is a trace-preserving quotient such that o' (u,+;) = u44; forall j < k. We prove that for
alld,m,r € N and ¢ > 0 there is some n such that every r-coloring of Quo(X};, XZ,) has
an e-monochromatic set of the form Quo(Xj,, X*) o ¢ for some ¢ € Quo(Xj, X},). Fix
parameters d,m, r and .

We claim that the number n obtained by applying Lemma3.6tod +k —1,m+k —1,
r,6 = 0, and ¢ works. Suppose that ¢ : Quo(X}, X:}) — r. We define the auxiliary col-
oring ¢ : Quo™ (¢£7, Ei”kil) — 1 by declaring ¢(0) := ¢(5), where 6 € Quo(Xj;, X%)
is such that 6(uj) = ig(o(u;)) + (1 — lo(u;)||1)ug4k—1, for ig : K’f+d—1 — £(1k+d
being the canonical embedding iy ((a;)j<k+d—1) := (do. ..., Ak+a—2, 0). Notice that
llo —nll < |6 — 7|l <2|lo —n||. By the choice of r, and the dual version of Lemma 3.6,
we can find o € Quo™ (€7, €"*=1) and 7 < r such that Quo™ (¢ TF1 ¢dHh=1y 6
C (€71(F))e. Let 0 € Quo(X}, X¥) be defined linearly for j < n by o(uj) :=
im(0(u;)) + (1 — o)1) um—1. We claim that Quo(XZ%, X%) 08 € ¢! (F)zs. To
see this, fix o € Quo(Xj,, X%). Let o : K'{’"’k—l — Kﬁ”‘k—l, a(ag, ..., Amik—2) =
w(o(ag, ... ,amtk—2,0)), where w(bg,...,bgik—2,bg4+x-1) = (bo,- .., bg+k—2). It fol-
lows that ¢ € Quo™ (¢"+%=1 ¢9+k=1) and ¢ 3 9 = 6 0 §. Let 7 € Quo™ (£7, £4++=1)
be such that ||c o 0 — n|| < & and c¢(7) = 7. Then |0 5 o — 7| < 2¢, or equivalently
llooo—nl < 2e.

For (2), we prove the (ARP) of the equivalent class of K’;o-function systems ({2, s)
for some n € N. Fix X = (Zgo, 5), Y= (Z,t),r € N and ¢ > 0, We apply the (ARP)
in (1) to these parameters to find the corresponding 7. We claim that X,, = (€75, n,gk))
works. Let ¢ : Emb(X, X,;) — r, and let ¢ : Emb(Xy, X;,) — r be defined by ¢(y) :=
c(y oi), where i € Emb(X, Xy) is defined by i (x) := (x, s(x)). Let y € Emb(X,,, X,,)
and 7 < r be such that y o Emb(Xy, X)) € (67'(F))s. Let yp := y o j € Emb(Y, X,,)
where j € Emb(Y,X,,)is j(») := (y,2(y)). Then yo o Emb(X,Y) C (¢~ !(7))e, because
given n € Emb(X,Y), if we define no € Emb(Xy, X;,,) by no(x, y) = (n(x), y), then we
have ngoi = jon,hence ypon=7yo jon=(yong)oi,andconsequently c(ypon) =
(y o no).

(3) follows trivially from (2); and (4) follows from (3) and from

Claim 3.6.1. For every finite-dimensional R-function system X and every § there is some
Y € Bpg such that Embg(X,Y) # 0.

Proof of Claim. Since a function space is a unital closed subspace of some function
system, it follows for example from the existence of partitions of unity that for every
finite-dimensional function system X and every § there is some n and some unital §-
embedding y : X — €2 . If in addition s : X — R is a unital contraction, then there must
be some k and some unital contraction ¢ : X — Ry such that ||s — ]| < 8. Since ¢X, is
an injective function system, we can find a unital contraction u : £7, — €X_ such that
|l oy —t| <8, and consequently y € Emb,s((X,s), (5, u)). |

This ends the proof of Theorem 3.5.
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Proof of Lemma 3.6. The proof of the dual form of this statement is that of Lemma 2.17
with the natural modifications that we sketch: Fix d, m, r and ¢. First, fix a finite e-dense
subset D of Ball* (£¢) containing {1, };<4 such that for every non-zero x € Ball* (£4)
thereis y € O such that ||y — x||; < eand ||y]|; < ||x|1. Let emb(d, m) be the collection
of 1-1 mappings from d into m, and for each such mapping f, let i : E‘f — (" be the
positive isometry sending u; to us(;y. Observe that for each positive quotient mapping
o € Quot(¢™, Kf) there is some f € emb(d, m) such that o o hy = Idegf‘ Let A :=
D x emb(d,m). We linearly order D by < in such a way that if || x||; < ||y|1,then x < y,
we order emb(d, m) arbitrarily, and then we consider A lexicographically ordered. Then
n := GR(|D|, |Al, r) works. Given ¢ : Quo™ (£, 6‘1") — r one defines ¢ : Epi(n, D) — r
by ¢(0) := ¢(P(0)) where ®(0)(u;) := o (j) for j <n.Leto € Epi(n, A) and 7 < r be
such that Epi(A, D) o ¢ is monochromatic with color 7. Let e € Quo™ (€7, £'™) be linearly
defined by e(u;) := hys(v), where (v, f) = o(j). Then it can be shown as in the proof
of Lemma 2.17 that for every T € Quo™ (¢, Zjl ) there is some o € Epi(A, D) such that
[®(0 00) — T oe| < &, and consequently Quo™ (£, Z‘li) oe C (c71(j))e. |

Theorem 3.5 and the (KPT) correspondence in Theorem 3.4 yield

Proof of Theorem 3.3. We rephrase (1) of Theorem 3.5 geometrically. We identify the n-
dimensional standard simplex A, with the state space S(£%F!) C €)1, Let Epi(A,, Ay)
be the space of surjective continuous affine maps from A, to A; endowed with the met-
ricd(¢, V) := sup,ea, I9(p) — W(p)||e€1. We also let Epi, (A, Ag) be the subspace of
¢ € Epi(A,, Ag) such that ¢(u,) = ug. One can (isometrically) identify Epi(A,, Ag)
isometrically with the space of trace-preserving quotients from £ onto E‘li , and the space
Epiy(An, Ag) with Quo((€F, n,sl)), (4, 71,,(1))). The following statement is therefore
equivalent to Theorem 3.5 for k = 1 and isometric embeddings.

Corollary 3.7. For any d, m,r € N and & > 0 there exists n € N such that for
any r-coloring of the space Epiy(An, Ag) there exists y € Epiy(Apn, Ap) such that
Epig(Am, Ag) o y is e-monochromatic. |

3.3. Closed faces of the Poulsen simplex

Theorem 3.3 can be restated geometrically in terms of a property of the Poulsen simplex.
The Poulsen simplex P has the following universality and homogeneity property for faces:
any metrizable Choquet simplex is affinely homeomorphic to a closed proper face of P,
and any affine homeomorphism between closed proper faces of P extends to an affine
homeomorphism of P [36, Theorems 2.3 and 2.5]. This can be seen as a consequence of
the following geometric version of Proposition 3.2.

Proposition 3.8. Let F' be a metrizable Choquet simplex, and let s : A(P) — A(F) be a
unital quotient. The following assertions are equivalent:

(1) s belongs to the Aut(IP)-orbit of the generic A(F)-state Q4(r).
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(2) There is a closed proper face F of P affinely homeomorphic to F such that s is the
restriction map A(P) — A(F), f — f|z.

In particular, the Aut(IP)-orbit of the generic state Qg : A(P) — R is the set of extreme
points of P.

Hence, Theorem 3.3 can be reformulated as follows.

Theorem 3.9. Suppose that F is a closed proper face of the Poulsen simplex P. Then the
pointwise stabilizer of F with respect to the canonical action Aut(P) ~, P is extremely
amenable. ]

3.4. The universal minimal flows of P

Using Theorem 3.9 we can compute the universal minimal flow of the affine homeomor-
phism group Aut(P) of the Poulsen simplex.

Theorem 3.10. The universal minimal flow of Aut(P) is the canonical action
Aut(P) ~ P.

Proof. The action Aut(P) ~, P is minimal by a result of Glasner [19]. This can be seen
directly using the homogeneity property of A(PP) and the fact that for any ¢ > 0 and
d € N there exists m € N such that for any state s on ¢4, and ¢ on {”. there exists a unital
linear isometry ¢ : €4 — £ such that ||t o ¢ — s|| < &. Consider the generic state Qg
on A(PP). We know from Proposition 3.8 that the state Qg is an extreme point of P,
whose Aut(PP)-orbit is dense. The stabilizer Aut(A(P)r) of Qg is extremely amenable
by Theorem 3.3. The canonical Aut(PP)-equivariant map from the quotient Aut(IP)-space
Aut(P)//Aut(A(P)Rr) to P is a uniform equivalence. This follows from the homogeneity
property of A(P)R as the Fraissé limit of the class of finite-dimensional function systems
with a distinguished state; see also [37, §5.4]. This allows one to conclude via a standard
argument—see [44, Theorem 1.2]—that the action Aut(IP) ~, P is the universal minimal
compact Aut(IP)-space. |

The universal minimal flows for the non-commutative versions of the Poulsen simplex
have been computed in [5, 7]. It has recently been proved in [10] that the situation in
Theorem 3.10 is typical. Whenever G is a Polish group whose universal compact G-
space M(G) is metrizable, there exists a closed extremely amenable subgroup H of G
such that the completion of the homogeneous quotient G-space G/H is G-equivariantly
homeomorphic to M(G).
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