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Abstract. We study the problem of stopping a Brownian motion at a given distribution � while
optimizing a reward function that depends on the (possibly randomized) stopping time and the
Brownian motion. Our first result establishes that the set T .�/ of stopping times embedding � is
weakly dense in the set R.�/ of randomized embeddings. In particular, the optimal Skorokhod
embedding problem over T .�/ has the same value as the relaxed one over R.�/ when the reward
function is semicontinuous, which parallels a fundamental result about Monge maps and Kan-
torovich couplings in optimal transport. A second part studies the dual optimization in the sense
of linear programming. While existence of a dual solution failed in previous formulations, we
introduce a relaxation of the dual problem that exploits a novel compactness property and yields
existence of solutions as well as absence of a duality gap, even for irregular reward functions.
This leads to a monotonicity principle which complements the key theorem of Beiglböck, Cox and
Huesmann [Optimal transport and Skorokhod embedding, Invent. Math. 208, 327–400 (2017)]. We
show that these results can be applied to characterize the geometry of optimal embeddings through
a variational condition.
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1. Introduction

Given a centered and suitably integrable probability distribution � and a Brownian
motion B , the Skorokhod embedding problem [79] consists in finding a stopping time �
which embeds �, that is, B� has distribution �. A number of solutions exist and we denote
the set of all such � by T .�/. Examples include the classical Root [77] and Rost [78]
embeddings; see [71] for a survey of various solutions. The optimal Skorokhod embed-
ding problem is to maximize (or minimize) the expectation EŒG� � over � 2 T .�/, where
Gt DG..Bs/s�t ; t / is an adapted functional. For instance, the Root embedding minimizes
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EŒ�2� and the Rost embedding maximizes it [78]. Some early works related to optimal
Skorokhod embeddings are [16,47,53,61]. More recently, connections to numerous ques-
tions in probability, analysis and finance as well as extensions such as the multi-marginal
case [7, 24, 42] have emerged and led to substantial activity; we refer to [48] for a survey
with many more references.

A perspective pioneered by [6] is to see Skorokhod embeddings along the lines of
optimal transport theory: optimal stopping times are analogues of Monge solutions to
an optimal transport problem between the Wiener measure and �. A more general for-
mulation of the embedding problem allows for a randomized stopping time; this can
be interpreted as using an enlarged filtration or allowing for an external randomization
(see Definition 2.1). The corresponding set is denoted R.�/ and gives rise to a relaxed
formulation of the optimal Skorokhod embedding problem. Continuing the analogy, ran-
domized stopping times correspond to transports in the sense of Kantorovich. We refer to
[4, 74, 75, 83, 84] for background on optimal transport.

In the existing literature on the optimal Skorokhod embedding problem, a number
of optimal embeddings have been found for specific reward functionals G, e.g. in [23,
47, 50–52]. In these examples, optimal embeddings are often unique and belong to the
class T .�/ of stopping times even if one allows for randomized stopping times a pri-
ori. On the other hand, results concerning the general structure of the optimal Skorokhod
embedding problem such as [6, 41, 42] use the formulation with randomized stopping
times. Thus, an obvious—but not previously addressed—question is how to bridge this
gap: when can the supremum value over randomized stopping times be achieved with
stopping times? More generally, can randomized stopping times be approximated by stop-
ping times in a suitable sense?

The analogy to classical optimal transport theory is apparent. While the Kantorovich
relaxation is crucial to develop the theory, most examples of specific interest lead to trans-
port maps in the sense of Monge. For instance, Brenier’s theorem states that the optimal
transport for the quadratic cost (or reward, after changing the sign) is given by the gradient
of a convex function if the first marginal measure is absolutely continuous (or, more gen-
erally, regular [62]). When the first marginal is atomless, it was shown in [3] that Monge
transports form a dense subset of Kantorovich couplings and that the values of the Monge
and Kantorovich transport problems agree for bounded continuous reward functions. This
result was extended to unbounded continuous functions in [73]; see also [59] for a survey
of related density properties.

In the first part of this paper, we provide comparable results for the optimal Skorokhod
embedding problem. In Theorem 2.3 we show that the optimal embedding problems
over T .�/ and R.�/ have the same value whenever the reward functional G is lower
semicontinuous in time. This assertion can fail when G is not lower semicontinuous
(Example 2.4), and that failure highlights a contrast with classical approximation results
for randomized stopping times that hold without regularity conditions [5, 27, 34, 37]:
the constraint given by the fixed embedding target � is not compatible with the clas-
sical results and techniques. In Theorem 3.1 we establish the more general result that
T .�/ � R.�/ is dense for weak convergence. Our proof is constructive and gives insight
into why the first result can fail whenG is irregular. In a nutshell, the idea is to use a short
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initial segment of the Brownian path as a randomization device for the rest of the problem.
In fact, we show that for randomized stopping times � 2 R.�/ and reward functions G
that do not depend on an initial segment of the paths (in a sense to be made precise), the
expectation of G stopped at � can be exactly replicated by a stopping time � 2 T .�/,
without any need for approximation (cf. Proposition 3.9). These ideas seem to be novel in
the literature.

The optimal Skorokhod embedding problem over R.�/ is a linear programming prob-
lem with constraints and thus has a dual programming problem. Formally, the domain of
the dual problem is the set of all pairs .M; / where M is a martingale with M0 D 0 and
 W R! R is a function such that Mt C  .Bt / � Gt for t � 0. The dual problem then
consists in minimizing �. / WD

R
 d� over all such pairs .M; /. More specifically, [6]

uses martingalesM that satisfy a quadratic growth condition relative toB and functions 
that are continuous and satisfy a growth condition, or [42] works with similar functions  
and supermartingales M . Such a dual problem has been used in numerous examples to
help determine specific optimal Skorokhod embeddings, e.g. in [22,23,25,44,47,50,51].
Moreover, it plays a vital role in [6] (see also [41]) in deriving a general monotonicity
principle that describes the barriers representing optimal Skorokhod embeddings through
their hitting times. While dual solutions have been found in those specific examples, it
has been observed in [6] that the dual problem fails to have a solution in general, that is,
the minimum is not attained. We refer to the survey [48] for further references.

The second part of this paper introduces a novel relaxation of the dual problem and
establishes the existence of its solution as well as the absence of a duality gap. Both
of these results are obtained without continuity conditions for G, thus paralleling the
generality of Kellerer’s theorem [58] in optimal transport and improving the results on the
absence of a duality gap in [6, 42]. There are no previous existence results in our setting.
We can mention [39] for a PDE approach with attainment in a different dual problem. Here
the reward G is given by the integral of a continuous, finite-dimensional Lagrangian with
exponential decay and the marginals are absolutely continuous with compact support.
Remarkably, [39] allows for multidimensional Brownian motion.

Even if G is continuous and bounded, our main issue is the lack of compactness for
the martingale component. Broadly speaking, for a given minimizing sequence .M n; n/

the functions  n may have large positive values, so that the inequality M n
t C  

n.Bt / �

�kG�k1 does not immediately result in a lower bound for M n. On the other hand, the
limit of a sequence of continuous-time (super)martingales may fail to be a supermartin-
gale in the absence of a lower bound. A crucial feature of our relaxation is to work with
local martingales that have uniform lower bounds on sets where the Brownian motion is
bounded and bounded away from the extremes of the support of �. It turns out that on
such sets we can obtain enough compactness, while preserving the “weak” side of the
duality. Less surprisingly, our functions  are merely in L1.�/ rather than continuous.
We provide counterexamples showing that our positive results on duality can fail if one
were to insist on true (super)martingales or continuous functions (see Section 7).

An analogous duality result was obtained in [12] (see also [11]) for the so-called mar-
tingale optimal transport problem in a single period. The main compactness issue sketched
above does not arise in that setting; basically, limits of martingales remain martingales
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in the discrete-time setting. A softer part of our proof does overlap with [12], namely
the use of capacity theory to generalize from continuous to measurable reward function-
als. Martingale optimal transport refers to a transport problem where the transports are
constrained to be martingales. Originally motivated by model uncertainty in financial
applications [47], a rich literature has emerged around this subject; see [48, 71, 82] for
surveys and, e.g., [1, 8, 9, 15, 18, 19, 28, 35, 38, 40, 54, 67, 69, 70, 85] for models in dis-
crete time and [10, 14, 20, 23, 32, 33, 36, 44–46, 49, 56, 66, 68, 80, 81] for continuous time.
Many of these works exploit connections with the Skorokhod embedding problem. In par-
ticular, the optimal Skorokhod embedding problem can be related, by a time change, to
the continuous-time martingale transport between two marginals. While a duality theory
with dual existence has been elusive for the latter transport problem, the arguments in
the present paper are expected to lead to such a result since the compactness issues are
similar. This will be investigated in future work.

Our results on duality allow us to derive a monotonicity principle in the spirit of [12],
under an integrability condition on G. Namely, there exists a universal support � that
characterizes all optimal embeddings: � 2 R.�/ is optimal if and only if �.�/ D 1. This
complements the monotonicity principle of [6] which gives a geometric condition on the
support that is necessary for optimality, but not sufficient. By contrast, our result yields
a necessary and sufficient condition. However, the geometry of the support is merely
described in a weaker form, through the construction of � as the set where a dual opti-
mizer equals the reward functional (we exemplify in Section 6 how this can be utilized to
obtain more specific geometric statements). It is an interesting question for future research
how to unify these results, though the answer does not seem to be within reach with
present concepts and knowledge. It is noteworthy that the integrability condition is crucial
for any monotonicity principle to hold; indeed, we provide a surprising example showing
that for general G, the optimality of embeddings cannot be characterized in terms of the
support. This contrasts with cyclical monotonicity properties in classical optimal trans-
port [84] as well as the result of [12] which suggest that optimality of transports can be
characterized by their geometry in great generality.

In Section 6 we illustrate how our result on dual existence can be exceptionally useful
to describe the geometry of optimal Skorokhod embeddings in a concrete case. Namely,
we specialize to a particular class of convex-concave reward functions Gt D g.t/ which
give rise to embeddings that can be represented as hitting times of sets consisting of
both a left and a right barrier in the .t; x/-plane. This class of “cave” embeddings with
a double boundary, unifying the ones of Root and Rost, was introduced in [6]. In con-
trast to Root’s and Rost’s, such barriers are not determined by � alone but depend on
the details of the function g, and the arguments in [6] do not lead to a characterization
of the optimal barriers. We provide such a characterization through a variational condi-
tion, very much inspired by [22] which studies a different class of reward functions. The
condition is related to the principle of smooth fit for free boundary problems, and thus
it is no surprise that the proof of sufficiency for optimality takes the form of a verifica-
tion argument. In [22], the proof of necessity is an impressive tour de force through a
discretization that is carried out in a separate paper [21]. On the strength of our result
on dual existence, we can provide a much more direct proof. First, we show that when
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the reward function is Markovian (that is, a deterministic function of time and current
state), the abstract martingale M in the dual can be replaced by a function of two vari-
ables. Then, we can apply relatively soft probabilistic arguments to derive the variational
characterization. Importantly, our proof reveals that similar conditions should extend to
much more general classes of embeddings, and also suggests that regularity results for the
stopping boundaries can be obtained through the dual maximizer. These aspects will be
investigated in separate work.

The remainder of this paper is organized as follows. Section 2 details the optimal
Skorokhod embedding problem and states the equality of the formulations with random-
ized and nonrandomized stopping times for regular reward functions. The proof is given
in Section 3 where it is shown more generally how randomized stopping times can be
approximated by nonrandomized ones. Section 4 introduces the relaxed dual problem and
provides the existence of a solution. The absence of a duality gap is proved in Section 5
where we also state the monotonicity principle. In Section 6 we discuss cave embeddings
and characterize the optimal barriers by exploiting our abstract results. Counterexamples
regarding the formulation of the dual problem and the monotonicity principle are gath-
ered in Section 7. For simplicity of exposition, we use a second moment condition on
� throughout the paper. Appendix A explains how this can be replaced by a finite first
moment without much effort.

2. The primal problem

Let C0.I / be the set of continuous real-valued functions ! D .!t /t2I with !0 D 0, for
any interval 0 2 I � R. We denote by S the space of stopped continuous paths, that is,
pairs .!; t/with t 2RC and ! 2 C0.Œ0; t �/. The set S is a Polish space under the topology
induced by the metric

d..f; s/; .g; t// D jt � sj _ sup
u�0

jfu^s � gu^t j:

We note that any .!; t/ 2 C0.RC/ � RC projects to an element .!jŒ0;t�; t / of S . Con-
versely, we can embed S in C0.RC/ � RC, say by continuing any stopped path in a
constant fashion. This identification will sometimes be used implicitly.

We fix a reward functionG W S! Œ0;1�. Any suchG can be seen as an “adapted” pro-
cess (in the sense of Galmarino’s test) on the canonical space C0.RC/ in that Gt .!/ WD
G.!; t/ depends only on !jŒ0;t�. If G is Borel measurable, it can be identified with an
optional process on C0.RC/ when the latter is equipped with the (raw) canonical filtra-
tion F D .Ft /t�0 generated by the coordinate-mapping processB , i.e., Ft D �.Bs; s � t /

whereBt .!/D!t for .!; t/2C0.RC/�RC. Conversely, any adapted (optional) process
induces a function (Borel function) on S . We recall that with respect to F , any measur-
able adapted process is already optional (and even predictable) and refer to [30, Nos.
IV.94–103, pp. 145–152] or [6, Section 3] for further background on path spaces and their
filtrations.

We equip C0.RC/ with the Wiener measure W so that B is a standard Brownian
motion with initial distribution B0 � ı0. In what follows, probabilistic notions generally
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refer to the Wiener measure and the canonical filtration unless a different context is given.
All metric spaces are equipped with their Borel � -fields, (in)equalities of processes are
to be understood up to evanescence (meaning that the projection of the exceptional set is
W -null) and (in)equalities of random variables are in the almost-sure sense.

Consider a centered distribution � on R with finite second moment (but see
Appendix A for a generalization to finite first moment). Let T be the set of all a.s. finite
F -stopping times and let T .�/ be the subset of all � 2 T such thatEŒ�� <1 and B� � �.
The set T .�/ is nonempty; a number of classical embeddings � 2 T .�/ can be found
in [71]. The optimal Skorokhod embedding problem with respect to stopping times is

ST .G/ D sup
�2T .�/

EŒG� �:

Here and below, outer integrals are used whenever the integrand is not measurable. The
optimal Skorokhod embedding problem is often discussed with respect to randomized
stopping times, defined as follows.

Definition 2.1. A probability measure � on C0.RC/ �RC with disintegration �.d!; dt/
D W .d!/�!.dt/ is a randomized stopping time if �!.RC/ D 1 for almost all ! and
! 7! �!.Œ0; t �/ is Ft -measurable for all t � 0. We denote the set of randomized stopping
times by R.

We emphasize that our randomized stopping times are defined to stop in finite time.
We can embed T in R in a canonical way: � is mapped to the randomized stopping time
�� with kernel ��! WD ı�.!/. The image of T under this embedding is denoted by RT ; we
will refer to its elements as nonrandomized stopping times. We note the analogy between
R and Kantorovich transports on the one hand versus RT and Monge transports on the
other.

Definition 2.2. The set R.�/ consists of all randomized stopping times � 2 R such that
�.t/ <1 and � ı B�1 D �. We write RT .�/ for the subset of nonrandomized stopping
times.

Here t is the projection given by t.!; t/ D t and the two conditions correspond to
a finite first moment and the marginal constraint �. In particular, if � D �� represents a
stopping time, then �.t/ D EŒ�� and � ı B�1 is the law of B� . The optimal Skorokhod
embedding problem is then given by

S.G/ D sup
�2R.�/

�.G/

where again �.G/ WD
R
G d�. More briefly, we will also call it the primal problem.

It is an obvious question, not previously addressed in the literature, to give a general
condition under which the two formulations of the optimal Skorokhod embedding prob-
lem have the same value. The answer we provide is: whenever the reward function G has
sufficiently regular paths.
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Theorem 2.3. LetG W C0.RC/�RC! Œ0;1/ be Borel and adapted, and let t 7!Gt .!/

be lower semicontinuous for all ! 2 C0.RC/. Then

sup
�2R.�/

�.G/ D sup
�2T .�/

EŒG� �:

The proof is stated in the next section; it is a consequence of Theorem 3.1 below and
the proof of the latter will also help to understand where and how the regularity of G
comes into play. Theorem 2.3 should be contrasted with results in unconstrained optimal
stopping where value functions over stopping times and randomized stopping times agree
for general measurable reward functions; see e.g. [43, Theorem 2.1]. In particular, the
following (well-known) example shows that lower semicontinuity of G is an important
assumption in Theorem 2.3: the nonstandard constraint given by the marginal � markedly
changes the character of the question, as will be discussed in more detail in Section 3.

Example 2.4. Let � have an atom of mass a 2 .0;1/ at the origin and letG be the bounded
upper semicontinuous function G.!; s/ D 1¹0º.s/. Then

sup
�2R.�/

�.G/ D a > 0 D sup
�2T .�/

EŒG� �:

Indeed, any � 2 T satisfies W ¹� D 0º 2 ¹0; 1º by the Blumenthal 0-1 law. Hence, any
� 2 T .�/ must be strictly positive a.s., which entails that EŒG� � D 0. On the other hand,
we can find � 2 R.�/ with �.¹0º/ D a and any such � attains the supremum.

3. Approximation of randomized stopping times with fixed marginal

The main aim of this section is a density result with respect to the weak topology on
C0.RC/ � RC (induced by the continuous bounded functions on that space, as usual).
We recall that RT .�/ is the embedding of T .�/ in R.

Theorem 3.1. Let � be a centered probability on R with finite second moment. Then
RT .�/ � R.�/ is dense for the topology of weak convergence.

Again, this should be compared with classical results on the convergence of (convex
combinations of) stopping times to randomized ones, such as [5,27,34,37]. Such approx-
imations may not, in general, respect the constraint given by the marginal �. In fact, in
contrast to the unconstrained setting, the extreme points of R.�/ are not necessarily con-
tained in RT .�/ (a counterexample can be deduced from [6, Example 6.19]).

Proof of Theorem 2.3. When G is bounded, the claim is a direct consequence of Theo-
rem 3.1 and the characterization of weak convergence in [55, Corollary 2.9 and Proposi-
tion 2.11]. (The main point of [55] is that since we are dealing with measures that all have
the same first marginal W , weak convergence implies convergence under bounded test
functions that are continuous in t but merely measurable in !.) The result for general G
now follows by monotone approximation.



M. Beiglböck, M. Nutz, F. Stebegg 8

Our proof of Theorem 3.1, presented in the remainder of this section, is construc-
tive and gives direct insight into why a singularity at the origin (as in Example 2.4) is
an obstruction. One result to be established as part of the proof is that for randomized
stopping times � and reward functions G that do not depend on an initial segment of the
paths (in a sense to be made precise), the expectation �.G/ can be exactly replicated by a
stopping time � 2 T .�/, without any need for approximation (see Proposition 3.9).

3.1. Proof of Theorem 3.1

Our first aim is to formalize and show that any � 2R.�/ can be approximated by random-
ized stopping times that do not stop right after time 0. We denote by j � j the Euclidean
norm in any dimension.

Definition 3.2. Let � > 0 and �� D inf ¹t W j.t; !t /j � �º. We say that a randomized
stopping time � is bounded away from 0 with lower bound � > 0 if

�!.Œ��.!/;1// D 1 for almost all ! 2 C0.RC/:

The set of all such � is denoted R� . We also set RC D
S
�>0 R�; any � 2 RC is called

bounded away from 0. Finally, R�.�/ WD R� \R.�/ and RC.�/ WD RC \R.�/.

The terminology of lower bound is convenient but slightly abusive: intuitively, � 2R�

above means that � happens after time �� (but the time �� is not bounded away from zero
in the usual sense). Some more notation will be useful.

Definition 3.3. Let !;!0 2 C0.RC/, t 2 RC, � 2 T and � 2 R.

(i) The path of ! and !0 glued at time t is

.! ˚t !
0/.s/ WD !.s ^ t /C !0.s � t _ 0/; s � 0:

(ii) The path of ! after time t is

!t 7!.s/ WD !.t C s/ � !.t/; s � 0:

(iii) The randomized stopping time � shifted by � , denoted � ˚ �, is defined by its kernel

.� ˚ �/!.Œ0; t �/ WD 1�.!/<t�!�.!/7!.Œ0; t � �.!/�/; t � 0:

The definition in (iii) can be understood as the randomized stopping time � applied
to the Brownian motion started at .�; B� /. For instance, if � D t0 is deterministic and
� D �� corresponds to a nonrandomized stopping time � > 0, then � ˚ � corresponds to
the stopping time .t0 ˚ �/.!/ D t0 C �.!t0 7!/:

Lemma 3.4. For 0 < � < 1, define

�0�.!/ WD inf ¹t W j!t j D �º; ��.!/ WD inf ¹t � �0�.!/ W j!t j 2 ¹0;
p
�ºº:

For almost all ! 2 C0.RC/, we have
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(i) ��.!/! 0 as �! 0,

(ii) d..!��.!/ 7!; t /; .!; t//! 0 as �! 0, for all t � 0.

Proof. We show that (i) and (ii) hold on the set I of all paths ! 2 C0.RC/ that are not
initially constant, i.e., !jŒ0;"� 6� 0 for all " > 0. Notice that W .I / D 1.

(i) If ! 2 C0.RC/ is such that ��.!/ does not converge to 0, we can find " > 0

and a sequence �n ! 0 such that ��n.!/ � � for all n. In particular, this implies that
sups�� j!.s/j �

p
�n for all n and therefore !jŒ0;"� � 0, that is, ! … I .

(ii) Fix ! 2 I and t > 0. Let � > 0 be small enough so that ��.!/ < t and consider
some 0 < s < t . For s � ��.!/ we clearly have

j!��.!/ 7!.s/ � !.s/j � sup
u�2��.!/

3j!.u/j;

whereas for ��.!/ < s � t we have

j!��.!/ 7!.s/ � !.s/j �
p
�C sup

s�t
j!.��.!/C s/ � !.s/j:

Combining these two inequalities, we obtain

sup
s�t
j!��.!/ 7!.s/ � !.s/j � sup

u�2��.!/

3j!.u/j C
p
�C sup

s�t
j!.��.!/C s/ � !.s/j:

Since ! is uniformly continuous on compact intervals, the right-hand side tends to 0when
��.!/! 0, and the latter holds by (i) as �! 0.

Remark 3.5. If G 2 Cb.C0.RC/ � RC/ and � 2 R, then �.G/ D �.G.B�^t ; t// by the
adaptedness property of � 2 R. As a result, the weak convergence on R is also induced
by the subset of adapted functions G which, in turn, can be identified with Cb.S/.

We can now show that any � 2 R.�/ can be approximated with embeddings that are
bounded away from 0—except in the trivial case � D ı0 where the assertion clearly fails.

Proposition 3.6. Let � ¤ ı0. Then RC.�/ is weakly dense in R.�/.

Proof. As �¤ ı0, its potential function x 7! u�.x/ WD
R
jx � yj�.dy/ satisfies u�.0/ > 0,

and then by continuity of u� we even have miny2Œ�p�;p�� u�.y/ �
p
� for � > 0 small

enough. This shows that
�� WD

1
2
.ı�
p
� C ı

p
�/ �c �

where �c denotes the convex order. As a result, for � > 0 small enough we can embed �
in a Brownian motion with initial distribution �� by a stopping time �� with EŒ��� <1.
(See [71] for the relevant background.)

Given � 2R.�/, let �� be as in Lemma 3.4 and define a family of randomized stopping
times �� 2 R via their disintegration,

��! WD 1¹!.��.!//D0º.�� ˚ �/! C 1¹j!.��.!//jDp�º.�� ˚ ��/! :
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Then we have �� 2R�.�/ by construction. Next, we show that �� ! � weakly as �! 0.
Let G W C0.RC/ �RC ! R be bounded, continuous and adapted. Then

�.G/ D

Z
C0.RC/

Z
RC

G.!; s/ �!.ds/W .d!/

D

Z
C0.RC/

�Z
C0.RC/

Z
RC

G.!; s/ �!.ds/W .d!/

�
W .d!0/:

Using the stationarity and independence of Brownian increments, we can similarly write
the expectation ��.G/ asZ
C0.RC/

�
1!0.��.!0//D0

Z
C0.RC/

Z
RC

G.!0 ˚��.!0/ !; s C ��.!
0// �!.ds/W .d!/

C 1!0.��.!0//¤0
Z
C0.RC/�RC

G.!0 ˚��.!0/ !; s C ��.!
0// ��.d!; ds/

�
W .d!0/:

Therefore,

j�.G/ � ��.G/j

�

Z
C0.RC/

�Z
C0.RC/

Z
RC

jG.!; s/ �G.!0 ˚��.!0/ !; s C ��.!
0//j

� �!.ds/W .d!/

�
W .d!0/C 2kGk1W ¹!0 W !0.��.!

0// ¤ 0º:

We note that W ¹!0 W !0.��.!0// ¤ 0º D
p
�! 0 as a consequence of the martingale

property.
On the other hand, Lemma 3.4 implies that ��.!0/! 0 for all !0 outside a nullset,

and for such !0 the second part of that lemma and the continuity of G imply that

jG.!; s/ �G.!0 ˚��.!0/ !; s C ��.!
0//j ! 0

for all !. By bounded convergence, we conclude that j��.G/ � �.G/j ! 0 for �! 0 as
desired.

For brevity, let us write Cb for the set of bounded continuous functions on
C0.RC/ � RC. Next, we introduce the subset of test functions which are independent
of the initial segment of the path, or more precisely, their value depends on the path !
before time �� only through the level !��.!/ at that time.

Definition 3.7. Given � > 0, we write C �
b

for the set of all G 2 Cb with the property that
if !;!0 2 C0.RC/ satisfy

��.!/ D ��.!
0/ DW t0 and !jŒt0;1/ D !

0
jŒt0;1/; then G.!; t/ D G.!0; t /

for all t � 0. We set CC
b
WD
S
�>0 C

�

b
.
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This definition is chosen so that the monotonicity property

C
�

b
� C

�0

b
for � � �0 (3.1)

holds. In particular, CC
b

is the increasing limit of C �
b

as �! 0.

Lemma 3.8. The weak topology on R.�/ induced by CC
b

coincides with the usual weak
topology.

Proof. Let G 2 Cb; then Gk.!; t/ WD G.!�1=k.!/ 7!; t / defines a function belonging to
C
1=k

b
� CC

b
. We have d..!�1=k.!/ 7!; t /; .!; t//! 0 as in Lemma 3.4, and since .Gk/

is uniformly bounded this implies that �.Gk/! �.G/ for all � 2 R.�/. As a result, CC
b

separates the points of R.�/, i.e., the induced weak topology T C is Hausdorff. Since
R.�/ is compact in the usual weak topology T (see for instance [6, Theorem 3.14])
and T C � T , this already implies the result. Indeed, the identity map from T to T C is
continuous and maps compacts to compacts, hence is a homeomorphism.

A key insight is that for G 2 CC
b

, the expectation under a randomized stopping time
that is suitably bounded away from zero is (exactly) replicated by a nonrandomized stop-
ping time. In particular, the necessity for approximation when G 2 Cb can be attributed
to the initial portion of the paths.

Proposition 3.9. Let � > 0 and � 2 R�.�/. Then there exists a nonrandomized stopping
time N� 2 R�.�/ such that N�.G/ D �.G/ for all G 2 C �

b
.

Before giving the proof, let us show how to combine the above results to conclude
Theorem 3.1.

Proof of Theorem 3.1. The case � D ı0 is trivial; we assume that � ¤ ı0. Fix � 2 R.�/;
then by Proposition 3.6 we can find �n 2R1=n.�/ such that �n! �. Next, we use Proposi-
tion 3.9 to find corresponding nonrandomized stopping times N�n 2R1=n.�/. LetG 2 CC

b
.

ThenG 2 C �
b

for some � > 0 and for all n� 1=�we deduce by (3.1) that N�n.G/D �n.G/.
In particular, Lemma 3.8 implies that . N�n/ and .�n/ have the same weak limit, that is,
N�n ! �.

3.2. Proof of Proposition 3.9

The basic idea for this proof is to use the initial segments of the paths as a randomization
device which, since we are only testing with G 2 C �

b
, does not affect the evaluation of G.

We first state two auxiliary results.
Let � be the Lebesgue measure on Œ0; 1�. We consider the product space NC0.RC/ WD

C0.RC/ � Œ0; 1� equipped with the product � -field NF D F ˝ B.Œ0; 1�/, the product
measure NW D W ˝ � and the product filtration NF . Let NB be the process defined by
t 7! NBt .!; u/ D !t for .!; u/ 2 NC0.RC/; note that NB is a Brownian motion under NW .
The following is well known (see for instance the proof of [6, Theorem 3.8] and the sub-
sequent lemma).
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Lemma 3.10. Let � 2 R have disintegration � D W .d!/�!.ds/. There exists an NF -
stopping time � such that

�.!; u/ D inf ¹t � 0 W �!.Œ0; t �/ � uº for a.e. .!; u/ 2 NC0.RC/ (3.2)

and NW ı . NB; �/�1 D �, that is, E NW ŒG. NB; �/� D �.G/ for every G 2 Cb .

The second auxiliary result concerns the “internal” randomization device that will be
used in lieu of the external randomization .Œ0; 1�; �/ as in the preceding lemma. This is
somewhat involved because the randomization needs to be implemented conditionally on
the level B��.!/—indeed, G 2 C �

b
is independent of how a path reached this level at

time ��.!/, but of course not of the level itself.
Fix � � 0. We note that the level h.!/ WD B��.!/ of a path ! at the (almost surely

finite) time �� satisfies h.!/ 2 .�
p
�;
p
�/. Moreover,

��.!/ D
p
�2 � h.!/2

depends on ! only through h D h.!/. Given h 2 R, we introduce the set

Ch WD ¹! 2 C0.RC/ W ��.!/ <1; B��.!/ D hºI

we think of Ch as a set of initial segments of paths (since the path after �� will not be
used). Given f 2 Ch and ! 2 C0.RC/, we set

f ˚ ! WD f ˚��.f / !

for brevity. We also denote by Wh the conditional law of B given B�� D h. That is, Wh

is a stochastic kernel on .�
p
�;
p
�/ � C0.RC/ such that

W ŒA j B�� D h� DWh.A/ DWh.A \ Ch/

for h 2 .�
p
�;
p
�/ and A 2 B.C0.RC//. In particular,

W .A/ D

Z
R

Wh.A/�.dh/; � WD Law.B��/:

Lemma 3.11. The measure Wh is atomless for all h 2 .�
p
�;
p
�/.

Proof. Consider the map ˆ W C0.RC/ ! C0.RC/ given by ˆ.!/ D !��.!/ 7!. By the
stationarity and independence of Brownian increments, the pushforward Wh ıˆ

�1 is the
Wiener measure and in particular atomless. As a consequence, Wh is atomless, for if Wh

had an atom then any pushforward would also have an atom.

Lemma 3.12. Let .Py.dz// be a stochastic kernel .Y;Y/� .Z;B.Z//! Œ0; 1� whereZ
is a Polish space and .Y;Y/ is a measurable space. If Py is atomless for all y 2 Y , there
exists a jointly measurable map .y; z/ 7! �y.z/ 2 Œ0; 1� such that Py ı ��1y D � for all
y 2 Y .
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Proof. Recall that any two Polish spaces of uncountable cardinality are homeomorphic
as Borel spaces [72, Theorem 2.12, p. 14]. As atomless measures can exist only on
uncountable spaces, we deduce that there is a Borel homeomorphism ˆ W .Z;B.Z//!

.Œ0; 1�;B.Œ0; 1�//. Consider Qy D Py ı ˆ
�1; then .Qy/ are atomless probability mea-

sures, i.e., their c.d.f.’s Fy.x/ WDQy..�1; x�/ are continuous in x. By construction, they
are also measurable in y. In particular, as Carathéodory functions, they are jointly mea-
surable in .x; y/ [2, Lemma 4.51, p. 153]. Finally, recall that if F is the c.d.f. of a random
variableX with continuous distribution, then F.X/� �. As a result, �y DFy ıˆ satisfies
the requirement of the lemma.

Combining the preceding two lemmas, we obtain the following.

Corollary 3.13. There exists a jointly Borel measurable map

C0.RC/ � .�
p
�;
p
�/! Œ0; 1�; .!; h/ 7! �h.!/;

such that Wh ı �
�1
h
D � for each h.

We can now provide the proof of the proposition.

Proof of Proposition 3.9. Let � D W .d!/�!.ds/ be a disintegration of the given ran-
domized stopping time � 2 R�.�/ and define N� DW .d!/ N�!.ds/ through

N�f˚! WD

Z
Ch.f /

�g˚!Wh.f /.dg/; f; ! 2 C0.RC/:

Clearly N�f˚! depends on f only through h.f /. We show below that N� 2 R�.�/

and N�.G/ D �.G/ for all G 2 C �
b

. Admitting this for the moment, it remains
to construct a nonrandomized stopping time with the same law as N� . Following
Lemma 3.10, we can associate a stopping time .!; u/ 7! �.!; u/ on the probability
space .C0.RC/ � Œ0; 1�;W ˝ �/ with N�, and we can choose a version of � such that
�.f ˚ !; u/ depends on f only through h.f /. Finally, let �h be as in Lemma 3.13.
Then by construction, �.!/ WD �.!; �h.!/.!// is a stopping time on C0.RC/ such that
W ı .B; �/�1 D NW ı . NB; �/�1 D N�. Thus, its embedding �� 2 RT is the required non-
randomized stopping time.

It remains to verify that N� 2 R�.�/ and N�.G/ D �.G/ for all G 2 C �
b

. Let f 2 Ch
and ! 2 C0.RC/; then N�f˚! is adapted and concentrated on Œ��.f /;1/) since �g˚! has
these properties for all g 2 Ch (recall that �� is constant on Ch). This shows that N� 2R� .
Next, let G 2 C �

b
. Then N�.G/ is equal toZ

C0.RC/

Z
RC

G.!; s/ N�!.ds/W .d!/

D

Z
R

Z
C0.RC/

Z
Ch

Z
RC

G.f ˚ !; s/ N�f˚!.ds/Wh.df /W .d!/�.dh/

D

Z
R

Z
C0.RC/

Z
Ch

Z
Ch

Z
RC

G.f ˚ !; s/ �g˚!.ds/Wh.dg/Wh.df /W .d!/�.dh/
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D

Z
R

Z
C0.RC/

Z
Ch

Z
Ch

Z
RC

G.g ˚ !; s/ �g˚!.ds/Wh.dg/Wh.df /W .d!/�.dh/

D

Z
C0.RC/

Z
RC

G.!; s/ �!.ds/W .d!/ D �.G/:

This also implies that N�.t/D �.t/ <1, since t ^ n 2C
�

b
for all n 2N. Finally, to see that

� and N� embed the same distribution �, we show that N�.�.B//D �.�.B// for � 2 Cb.R/.
Indeed, consider G WD �.Bt_��/ 2 C

�

b
(recall that adaptedness was not required). Since

we already know that �; N� 2 R� , we have �.�.B// D �.G/ D N�.G/ D N�.�.B// and the
proof is complete.

4. The dual problem

We first introduce the domain of the dual problem. To that end, recall that � is a centered
distribution on R with finite second moment and let J � R be the smallest convex set
with �.J / D 1. Thus, a boundary point of J is contained in J if and only if it is an atom
of �. We fix1 an increasing sequence .Kn/ of compact intervals 0 2 Kn � J whose union
is J and let

Tn D inf ¹t � 0 W Bt 2 @Knº

be the first hitting time of the boundary @Kn. Recall that probabilistic notions are under-
stood with respect to the canonical space C0.RC/ and that S can be embedded in
C0.RC/ � R. We fix a (not necessarily measurable) function G W S ! Œ0;1� and intro-
duce the following.

Definition 4.1. Let D.G/ be the set of all pairs .M; /where the Borel function W J !
R[ ¹1º is in L1.�/ andM is a (continuous) local .W ;F/-martingale withM0 D 0 such
that

M C  .B/ � G on
[
n

Œ0; Tn� (up to evanescence)

and M�^Tn is bounded below for all n. The dual problem is

I.G/ D inf
.M; /2D.G/

�. /:

The continuity ofM refers to its paths being a.s. continuous. We recall that Brownian
local martingales always admit continuous versions and assume implicitly that all local
martingales are continuous in what follows. We also note that

S
nŒ0; Tn� D RC � � if

J D R. In Section 7 it will be shown that the value of the dual problem I.G/ can change
if M is restricted to true martingales or if  is restricted to continuous functions. As the
relaxations in Definition 4.1 are novel, we detail some technical observations.

1The results below do not depend on the choice ofKn. When � has bounded support with atoms
at both endpoints, we can simply take Kn D J for all n.
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Remark 4.2. Setting T D lim Tn D inf ¹t � 0 W Bt 2 @J º, we have
S
nŒ0; Tn� D Œ0; T �

if J is closed and
S
nŒ0; Tn� D Œ0; T / if J is open, but in general either of the inclusions

Œ0; T / �
S
nŒ0; Tn� � Œ0; T � can be strict and the value of I.G/ can change if

S
nŒ0; Tn�

is replaced by Œ0; T / in Definition 4.1. One can, however, replace
S
nŒ0; Tn� by Œ0; T �

without altering the value of I.G/, since given .M;  / 2 D.G/ we may extend  by
setting  D 1 on @J n J without affecting �. /. (We have nevertheless found it less
confusing to write

S
nŒ0; Tn� everywhere.)

Remark 4.3. Suppose that G is Borel measurable; i.e., G can be seen as an optional pro-
cess. Then the inequality M C  .B/ � G on

S
nŒ0; Tn� up to evanescence is equivalent

to the almost-sure inequality M� C  .B� / � G� for all stopping times � with � � Tn
for some n. This follows from the optional cross-section theorem [30, Theorem IV.84,
p. 137].

Remark 4.4. Using Fatou’s lemma, boundedness from below of M�^Tn implies that for
all stopping times � � � � Tn, the random variables M� ; M� are integrable and satisfy
the optional sampling property EŒM� jF� � �M� .

Lemma 4.5. Let .M; / 2 D.G/. We have

(i) W ¹� � Tnº ! 1 and M C  .B/ � G on Œ0; �� for all � 2 T .�/;

(ii) M C  .B/ � G �-a.s. for all � 2 R.�/.

Proof. (i) Let � 2 T .�/; in particular, EŒ�� <1. Since B�^� is a uniformly integrable
martingale and B� is supported on J , we have W ¹� � Tnº ! 1 and hence Œ0; �� �S
nŒ0; Tn�. In particular, M C  .B/ � G on Œ0; �� up to evanescence.

(ii) Consider the stopping time � associated with � on the extended space NC0.RC/ (see
Lemma 3.10). As NW ı . NB;�/�1 D �, we can deduce the claim by applying the arguments
for (i) to � and NB .

Lemma 4.6. Let .M;  / 2 D.0/ and write  �� for the convex envelope on J . Then
.M; ��/ 2 D.0/, i.e.,

M C  ��.B/ � 0 on
[
n

Œ0; Tn�; (4.1)

and in particular  ��.0/ � 0.

Proof. We first observe that for x 2 J ,

 ��.x/ D inf
®

b
aCb

 .x � a/C a
aCb

 .x C b/ W a; b 2 RC; Œx � a; x C b� � J
¯

where the sum is understood as  .x/ if a D b D 0. Suppose that (4.1) fails. Then by the
optional cross-section theorem there exist n � 1 and a stopping time � � Tn such that

W ¹M� C  
��.B� / < 0º > 0:
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By the above formula for  ��.x/ and a measurable selection argument, it follows that
there exist m � n and F� -measurable random variables a; b � 0 with ŒB� � a; B� C b�
� Km such that

W
®
M� C

b
aCb

 .B� � a/C
a
aCb

 .B� C b/ < 0
¯
> 0: (4.2)

Let � D inf ¹t � � W Bt � B� … .�a; b/º and note that � � Tm. Then optional sampling
(see Remark 4.4) implies

M� C
b
aCb

 .B� � a/C
a
aCb

 .B� C b/ � EŒM� C  .B� / jF� �:

But .M;  / 2 D.0/ implies that M� C  .B� / � 0, and now a contradiction to (4.2)
ensues. In particular, ��.0/� 0. Hence, the convex function �� is bounded from below
by a linear function and from above by  , so that  �� 2 L1.�/.

The following normalization will be used repeatedly below.

Remark 4.7. Let .M;  / 2 D.G/ and c 2 R. Define M 0 D M C cB and  0.x/ D
 .x/� cx. Then .M 0; 0/ 2D.G/ sinceM 0C 0.B/DM C .B/ andB is a bounded
martingale on Œ0; Tn� with B0 D 0.

Using this with the (left, say) derivative c WD @� ��.0/ and recalling that  ��.0/ � 0
by Lemma 4.6, we see that any .M; / 2 D.G/ can be normalized so that  �� � 0 and
hence also  � 0.

Next, we establish the key inequality for the “weak” duality and in particular that our
definition of the dual domain is rigid enough despite the relaxations.

Lemma 4.8. Let .M; / 2 D.0/. We have

(i) EŒM� � � 0 for all � 2 T .�/;

(ii) �.M/ � 0 for all � 2 R.�/.

Proof. (i) We prove the claim for any stopping time � such that B�^� is uniformly
integrable, EŒ .B� /� < 1 and Œ0; �� �

S
nŒ0; Tn�; in particular, these are satisfied for

� 2 T .�/. Indeed, by Remark 4.7, we can assume without loss of generality that  � 0
and then 0 �  �� �  . Since  �� is convex and  ��.B� / is integrable, it follows that
 ��.B�^� / is a nonnegative uniformly integrable submartingale, hence of class (D). On
the other hand, Lemma 4.6 yields M � � ��.B/ on Œ0; ��, so we conclude that M��^� is
of class (D). Fatou’s lemma (in its version with a uniformly integrable lower bound) now
implies that EŒM� � � 0.

(ii) Let � 2 R.�/ and let � be the stopping time associated with � on the extended
space NC0.RC/ (see Lemma 3.10). Then � 2 R.�/ implies that � is an embedding of �
into NB and the argument of (i) applied to NC0.RC/ yields �.M/ D E

NW ŒM. NB/�� � 0.

Definition 4.1 is tailored to imply the following closedness property; it will be used
to derive the absence of a duality gap in the next section and immediately implies the
existence of a dual optimizer.
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Proposition 4.9. Consider Gk ; G W S ! Œ0;1� and .M k ;  k/ 2 D.Gk/ for k � 1.
Assume that Gk ! G pointwise and supk �. k/ <1. Then there exists .M; / 2D.G/

such that �. / � lim inf �. k/.

Proof. Let c D sup �. k/. By passing to a subsequence we may assume that lim �. k/

exists. By Remark 4.7, we may normalize  k so that  ��
k
� 0.

As  k �  ��k � 0, Komlos’ lemma (see [29, Lemma A1.1 and the subsequent
remark]) allows us to find convex combinations �k of . k ;  kC1; : : : / which converge
�-a.s. Let  WD lim sup�n and note that

0 � �. / D �.lim inf�n/ � lim �.�k/ D lim �. k/

by Fatou’s lemma. After replacing Mk with the corresponding convex combinations, we
may assume that �k D  k .

We have 0 � �. ��
k
/ � �. k/ � c. As in the proof of [12, Proposition 5.5], this

implies a uniform (in k) bound for the Lipschitz constant of  ��
k

on each compact subset
of J , and hence a uniform bound 0 �  ��

k
� cn onKn, independent of k. By Lemma 4.6,

it follows that
M k
� � ��k .B/ � �cn on Œ0; Tn�:

This guarantees that .M k/ admit a limiting supermartingale Z in a suitable sense. More
precisely, [26, Theorem 2.7] and a diagonal argument show that after taking suitable con-
vex combinations N k of .M k ;M kC1; : : : /, there exists an optional2 process Z which is
a strong supermartingale (as defined in [31, Appendix I]) on Œ0; Tn� for all n and

N k
� ! Z� in probability

for any stopping time � such that � � Tn for some n. We may assume that N k DM k . As
Z0 D 0, the process Z admits a Mertens decomposition Z DM � A where A is nonde-
creasing, M is a local martingale and A0 DM0 D 0 (see [31, Appendix I.20, p. 414]).

It remains to show that .M;  / 2 D.G/. Set H D lim supk.M
k C  k.B//; then H

is optional and H � G on
S
nŒ0; Tn� up to evanescence. Thus, it suffices to show that

.M; / 2 D.H/. Indeed, we have

M� � Z� � �cn and M� C  .B� / � Z� C  .B� / � H�

for all � � Tn. AsH is optional, we conclude that .M; / 2D.H/ by using Remark 4.3.

Applying Proposition 4.9 to a constant sequence, we deduce that dual existence holds
for general reward functions, in contrast to previous formulations of the dual problem [6,
42] where existence can fail even for more regular reward functions.

2To be completely precise, [26] assumes the usual conditions for the filtration. We can, for
instance, apply their result in the W -augmented filtration Fa and then pass back to F at the end of
this paragraph: the local martingaleM is necessarily continuous and hence Fa-predictable, but then
we can choose an F -predictable version (up to evanescence) of M by applying [31, Appendix I.7,
p. 399].
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Corollary 4.10. Let G W S ! Œ0;1�. If I.G/ < 1, then there exists a dual optimizer
.M; / 2 D.G/.

5. Duality

In this section we combine the closedness result of Proposition 4.9 with capacity theory
and facts about optimal Skorokhod embeddings to establish the absence of a duality gap.
We first state the weak duality.

Lemma 5.1. Let G W S ! Œ0;1�. Then S.G/ � I.G/.

Proof. We need to show that �. / � �.G/ whenever .M;  / 2 D.G/ and � 2 R.�/.
Indeed, by Lemma 4.5 we have M C  .B/ � G �-a.s. Taking expectations under � and
recalling that �.M/ � 0 by Lemma 4.8, the claim follows by the monotonicity of the
(outer) integral.

Next, we state a duality result for semicontinuous functions. The following is a con-
sequence of [6, Theorem 1.2] as well as of [42, Theorem 2.4] after noting that their dual
domain is a subset of ours. We provide a sketch of proof for the convenience of the reader.

Proposition 5.2. Let G W S ! R be bounded and upper semicontinuous. Then S.G/
D I.G/.

Sketch of proof. The inequality S.G/ � I.G/ holds by Lemma 5.1. We sketch an argu-
ment for the reverse inequality following [42] (and refer to the latter for details). The key
idea is to dualize the constraint � and use the Fenchel–Moreau theorem. Indeed, let V be
the set of all centered probability measures � with finite first moment, equipped with the
1-Wasserstein metric. One verifies that if �n ! � in V and �n 2 R.�n/, then there exists
� 2R.�/ which is a weak limit of a subsequence .�nk /. Let � 2 V and let S.�/D S.G; �/
be the corresponding primal problem. Taking �n 2 R.�n/ to be a .1=n/-optimizer for the
primal problem S.�n/, i.e.,

�n.G/ � sup
�02R.�n/

� 0.G/ � 1=n;

it follows that S.�/ � �.G/ � lim sup S.�n/: In brief, � 7! S.�/ is upper semicontinuous
on V , and clearly it is also concave and finite-valued. The space V can be seen as a closed
convex subspace of a Hausdorff locally convex vector space V of signed measures and
� 7! S.�/ can be extended to V by assigning the value �1 outside of V . The topological
dual is V � D C1, the space of continuous functions  W R! R with linear growth. The
Fenchel–Moreau theorem then shows that S.�/ is equal to its biconjugate,

S.�/ D S��.�/ D inf
 2C1

h
sup
�02V

S.�0/ � �0. /
i
C �. /: (5.1)

Let us fix  2 C1 and focus on the inner optimization,

sup
�02V

S.�0/ � �0. / D sup
�02V

sup
�2R.�0/

�.G �  .B//:
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Seeing the functional Y WD G �  .B/ as the reward function of an optimal stopping
problem, one can check that

v0. / WD sup
�02V

sup
�2R.�0/

�.Y / D sup
�2R

�.Y / D sup
�2T

EŒY� �

is simply the value function of the associated standard optimal stopping problem. In
particular, v0 D v0. / is the initial value of the associated Snell envelope Z, i.e., the
minimal supermartingale dominating Y . We write its Doob–Meyer decomposition as
Z D v0 CM � A where M is a local martingale, A is increasing and A0 D M0 D 0.
Then

v0 CM � Y or equivalently v0 CM C  .B/ � G:

Since  has linear growth and G is bounded, v0 CM C  .B/ � G implies that M�^Tn
is bounded below for all n. As a result, .M; N / 2 D.G/ for the function N WD v0 C  .
Since this holds for all  2 C1, (5.1) yields

S.�/ D S��.�/ D inf
 2C1

Œv0. /C �. /� � inf
. N ;M/2D.G/

�. N / D I.G/

as desired.

On the strength of the closedness property in Proposition 4.9, we can use capacity
theory to extend the duality to measurable functions. Let Œ0;1�S be the set of all functions
G W S ! Œ0;1�, let USAC be the sublattice of upper semianalytic3 functions and let U

be the sublattice of bounded upper semicontinuous functions; note that U is stable with
respect to countable infima. A mapping C W Œ0;1�S ! Œ0;1� is called a U-capacity if
it is monotone, sequentially continuous upwards on Œ0;1�S and sequentially continuous
downwards on U.

Lemma 5.3. The mapping S W Œ0;1�S ! Œ0;1� is a U-capacity.

Proof. As �.t/ D
R
x2 d� for all � 2 R.�/, the set R.�/ is a nonempty compact space

of probability measures on S ; see for instance [6, Theorem 3.14]. This implies that the
associated sublinear map G 7! sup�2R.�/ �.G/ � S.G/ is a capacity. Indeed, continuity
upwards is immediate by commuting two suprema. LetGn 2U decrease toG 2U. Then
there are �n 2 R.�/ such that �n.Gn/ � S.Gn/ � 1=n. After passing to a subsequence,
�n ! � weakly for some � 2 R.�/. Then S.G/ D limm �.Gm/ and for each m we have
�.Gm/ � lim supn �n.Gm/ � S.Gm/; thus S.G/ � lim supm S.Gm/. The reverse holds by
monotonicity.

Lemma 5.4. The mapping I W Œ0;1�S ! Œ0;1� is a U-capacity.

3The function G is called upper semianalytic if the sets ¹G � cº are analytic for all c 2 R,
where a subset of S is called analytic if it is the image of a Borel subset of a Polish space under
a Borel mapping. Any Borel function is upper semianalytic and any upper semianalytic function is
universally measurable. See, e.g., [13, Chapter 7] for background.
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Proof. As ID S on U by Proposition 5.2, Lemma 5.3 already shows that I is sequentially
continuous downwards on U. Let G;Gn 2 Œ0;1�S be such that Gn increases to G point-
wise; we need to show that I.Gn/! I.G/. It is clear that I is monotone; in particular,
I.G/ � lim sup I.Gn/, and I.Gn/! I.G/ if supn I.Gn/ D1.

Hence, we only need to show I.G/ � lim inf I.Gn/ under the condition that
supn I.Gn/ < 1. Indeed, by the definition of I.Gn/ there exist .M n;  n/ 2 D.Gn/

with �. n/ � I.Gn/ C 1=n: Proposition 4.9 then yields .M;  / 2 D.G/ with �. / �
lim infŒI.Gn/C 1=n�; showing that I.G/ � lim inf I.Gn/.

We can now prove the main duality result. (Recall that dual attainment was already
stated in Corollary 4.10, without measurability assumptions.)

Theorem 5.5. Let G W S ! Œ0;1� be upper semianalytic. Then there is no duality gap:
S.G/ D I.G/ 2 Œ0;1�.

Proof. In view of Lemma 5.3, Choquet’s capacitability theorem (see for instance [58,
Proposition 2.11]) shows that

S.G/ D sup¹S.G0/ W G0 2 U; G0 � Gº; G 2 USAC :

By Lemma 5.4, the analogue holds for I, and hence the fact that S D I on U by Proposi-
tion 5.2 already implies that S D I on USAC.

We deduce the following characterization of primal and dual optimizers.

Corollary 5.6. LetG W S ! Œ0;1� be upper semianalytic and suppose S.G/ <1. Given
.M; / 2 D.G/ and � 2 R.�/, the following are equivalent:

(i) .M; / is optimal for I.G/ and � is optimal for S.G/,
(ii) M C  .B/ D G �-a.s. and �.M/ D 0,

(iii) M C  .B/ D G �-a.s. and �.M/ � 0.

Proof. Theorem 5.5 shows that

�. .B// D �. / � I.G/ D S.G/ � �.G/:

Given (iii), we have �. .B// � �.G/ and thus the above must be equalities, that is,
(i) holds. Given (i), these are again all equalities and then (ii) follows after recalling that
M C .B/�G �-a.s. and �.M/� 0 (see Lemmas 4.5 and 4.8). The implication from (ii)
to (iii) is trivial.

Remark 5.7. The lower bound on G in our main duality results can be relaxed to the
following condition: there exist  2 L1.�/ and a local martingale M which is bounded
on Œ0; Tn� for all n such that

G � �M �  .B/:

Indeed, the stated results can then be applied to G0 WD G CM C  .B/ � 0 to derive the
corresponding assertions for G.
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Next, we provide a monotonicity principle in the spirit of [12, Corollary 7.8] which
provides a universal support � characterizing all optimal embeddings, under an integrabil-
ity condition on G. As mentioned in the Introduction, this complements the monotonicity
principle of [6] which gives a geometric condition on the support that is necessary for
optimality, but not sufficient. The following condition is necessary and sufficient. How-
ever, the geometry of � is merely described in a weaker form, through the construction
via a suitable dual optimizer in (5.2). We will exemplify in Section 6 how to exploit
such a description. For the statement, note that while � 2 R is defined as a measure
on C0.RC/ � RC, it naturally induces a measure on S : for � 2 B.S/, we set �.�/ D
�¹.!; t/ 2 C0.RC/ �RC W .!jŒ0;t�; t / 2 �º.

Corollary 5.8. Let G W S ! Œ0;1� be Borel and of class (D). There exists a Borel set
� � S such that a randomized stopping time � 2 R.�/ is optimal for S.G/ if and only if
it is concentrated on � , i.e., �.�/ D 1.

Proof. SinceG is of class (D), there exists a class (D) martingaleN such thatG �N (see
[31, Appendix I.24, p. 419]). In particular, �.G/ � �.N /D N0 for all � 2R.�/, showing
that S.G/ <1. Let .M 0; /2D.G/ be a dual optimizer as guaranteed by Corollary 4.10,
normalized so that  � 0. Define

M DM 01Œ0;�� CN 1Œ�;1/ where � D inf ¹t � 0 WM 0t D Ntº:

Then .M; / 2D.G/ is again a dual optimizer and asMC is of class (D), Fatou’s lemma
(in its version with a uniformly integrable bound) yields �.M/ � 0 for any � 2R. We set

� WD ¹M C  .B/ D Gº � S I (5.2)

then the equivalence of (i) and (iii) in Corollary 5.6 shows that � 2R.�/ is optimal if and
only if �.�/ D 1.

In the above proof, the integrability of G is used to infer that there exists a dual opti-
mizer .M;  / such that �.M/ D 0 for all � 2 R.�/. We will see in Section 7.3 that this
need not hold when G is not of class (D), even if S.G/ <1. More surprisingly, Corol-
lary 5.8 and even the very essence of the monotonicity principle may fail: the optimality
of an optimal embedding cannot be described through its support in that case.

6. Optimal cave embeddings

In this section, we consider an optimal Skorokhod embedding problem introduced in [6]
where the (unique) optimal embedding is the hitting time of a set that is cave-shaped, that
is, consists of a left and a right barrier. There are typically infinitely many such caves
that embed a given distribution �, leading to the question of how to characterize the opti-
mal one. Our main purpose here is to exemplify how our result on dual existence can
be useful in deriving a variational characterization. The characterization itself is similar
to the one provided by Cox and Kinsley [22] for a different class of reward functions.
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However, thanks to dual existence, our argument here is much more direct than the one
of Cox and Kinsley who develop a discretization approach [21] in order to reduce to
finite-dimensional linear programming problems and obtain their result through tedious
and delicate limiting arguments. More importantly, the proof given here suggests that the
variational condition holds for much more general classes of embeddings, an issue to be
addressed in future work.

We first fix some terminology (see also [6, 22, 71]). Let .RC � R/� D .RC � R/ n
¹.0; 0/º be the punctured half-plane. Following Root’s embedding, a right barrier is a
closed set R � .RC � R/� which is closed to the right, that is, .s; x/ 2 R and t � s
imply .t; x/ 2 R. Such a barrier is characterized by a function x 7! r.x/ 2 Œ0;1� which
traces its left boundary,

r.x/ D inf ¹t � 0 W .t; x/ 2 Rº; inf; WD C1:

Similarly, in the spirit of Rost, a left barrier L is a closed subset of .RC � R/� which is
closed to the left. It is characterized by a function x 7! l.x/ 2 ¹�1º [ Œ0;1/ where we
now set

l.x/ D sup ¹t � 0 W .t; x/ 2 Lº; sup; WD �1:

Note that we use the value �1 for gaps in the left barrier.

Definition 6.1. Given tp 2 RC, a cave barrier with parting tp is a set L [ R where
L � Œ0; tp� �R is a left barrier and R � Œtp;1/ �R is a right barrier.

Clearly, a cave barrier L[R is characterized by two functions l � tp � r . We denote
by D the (open) complement .RC � R/� n .L [R/ and refer to D as the continuation
region of the cave barrier (or just as the cave, when there is no ambiguity). Let � D
inf ¹t � 0 W .t; Bt / … Dº be the first exit time of D. This is the minimum of the two
stopping times

�l D inf ¹t � 0 W Bt 2 Lº 2 Œ0; tp� [ ¹1º;

�r D inf ¹tp � t < �l W Bt 2 Rº 2 Œtp;1�:

Similarly, if � D Law.B� / is the measure embedded by the cave barrier, then � D �l C �r
is decomposed into the subprobabilities corresponding to mass absorbed at the left and
right barrier; or more precisely, �l D Law.B�l / and �r D Law.B�r / with the convention
that B1 is valued in an external cemetery state and the laws are restricted to R.

Two different cave barriers may have the same hitting time. First, consider a left bar-
rier L with corresponding function l . If l has a “sink” on .0;1/, say, then .t; Bt / cannot
hit that part of the boundary since the time coordinate always runs forward (see Figure 1).
If we replace l by the increasing envelope of x 7! l.x/ on .0;1/ and its decreasing enve-
lope on .�1; 0/, the new barrier has the same hitting time. We call L monotone if l is
already equal to this envelope. Note that given L, there exists a minimal monotone left
barrier containing L. Next, consider a cave barrier and note that .t; Bt / can only hit the
boundary of the component of D that contains .0; 0/. Thus, we say that the cave is con-
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Fig. 1. (a) The dark area is added to the left barrier L to make it monotone. (b) Example of
Remark 6.2.

nected ifD is. For brevity we say that a cave barrier is regular if L is monotone andD is
connected, and note that every cave barrier has a minimal regular cave barrier containing
it. This notion is important due to the following fact: the first hitting times of two regular
caves are a.s. equal if and only if the caves are equal. We omit the details and refer instead
to [71, p. 365] and the end of the proof of [6, Theorem 2.4] for analogous and detailed
discussions.

It is also useful to note that an interval of constancy of l corresponds to an interval
where �l has no mass. On the other hand, �r has no mass on an interval where r D 1.
Finally, an atom in � is generated by a horizontal portion in the boundary of L or R; that
is, a discontinuity of l or r .

Remark 6.2. Cave embeddings for a given distribution � are trivially nonunique because
any cave can be regularized without changing the embedded distribution. However, in
contrast to Root and Rost embeddings, cave embeddings are nonunique even if this regu-
larity is imposed.

In essence, this ambiguity arises because a given “piece” of � can be absorbed either
by the left or the right boundary. A simple example can be generated by taking � D
.ı�2C ı�1C ı1C ı2/=4, so that the left and right barriers are (the envelope of) horizontal
spikes at these four locations (see Figure 1). One can shorten the spikes on the right at
˙1 and suitably enlarge the ones on the left, thus changing �l and �r without altering the
embedded distribution � D �l C �r .

Next, we turn to optimal Skorokhod embeddings for a reward functionGt D g.t/ that
is deterministic and depends only on the time variable. More specifically, we assume the
following.

Assumption 6.3. The reward function Gt D g.t/ is given by a bounded, Lipschitz con-
tinuous function g W RC ! R of time such that for some tp � 0, g is differentiable on
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.tp;1/ and4

g is strictly convex and strictly decreasing on .0; tp/;
g is strictly concave and strictly increasing on .tp;1/:

We also define g.1/ as the obvious limit. Such reward functions give rise to cave
embeddings as follows.

Proposition 6.4. Suppose that �.¹0º/ D 0 and that g satisfies Assumption 6.3. There
exists an optimal stopping time � 2 T .�/, that is,EŒg.�/�D sup�2R.�/ �.g.t//. Moreover,
� is the unique optimizer within R.�/ and given by the first hitting time of a regular cave
barrier with parting tp . The cave is unique among all regular caves. Finally,P ¹� D tºD 0
for all t 2 Œ0; tp�.

Proof. The first two assertions are stated in [6, Theorem 2.5] which is itself a direct
consequence of the monotonicity principle in [6, Theorem 1.3]. The latter states that if
� 2 T .�/ is optimal, then .B�^� ; �/ 2 � W -a.s. for a Borel set � � S satisfying

SG \ .�< � �/ D ;; (6.1)

where �< � S is defined by

�< D ¹.f 0; t 0/ 2 S W t 0 < t and f 0 D f on Œ0; t 0� for some .f; t/ 2 �º

and SG is the set of so-called stop-go pairs [6, Definition 1.4]. In the present setting, due
to the convexity and monotonicity properties of g,

SG D ¹..f; t/; .f 0; t 0// 2 S � S W f .t/ D f 0.t 0/; t 0 < t � tp or tp � t < t 0º: (6.2)

(In [6] there are further assumptions on g which are, however, not used in the proofs.)
[6, Theorem 2.5] also states that every optimal � 2 R.�/ is the hitting time of a cave,
and that implies uniqueness of � similarly to [60]. Indeed, if �1 and �2 are optimizers
we can define a randomized stopping time � 0 by independently picking �1 or �2 with
probability 1=2. But then � 0 is optimal and it follows that � 0 is nonrandomized and thus
�1 D �2 a.s. The uniqueness of the cave holds because regular caves are in one-to-one
correspondence with their hitting times, as noted above.

For t < tp we have P ¹� D tº D 0 since the left barrier cannot give rise to an atom
in � . To see that P ¹� D tpº D 0, consider a measurable set � � S with P ¹.B�^� ; �/ 2 �º
D 1 and suppose that P ¹� D tpº > 0. Then tp > 0 and � must contain a path f which
is stopped at tp and satisfies x WD f .tp/ 2 .xmin; xmax/. Thus, l.x/ < tp , and we have
.t 0; x/ 2 D for all l.x/ < t 0 < tp . It follows that there exists a stopped path .f 0; t 0/ 2 �<

with f 0.t 0/ D x and t 0 < tp , but then .f; tp/ and .f 0; t 0/ form a stop-go pair by (6.2) and
now (6.1) yields a contradiction.

4The decrease/increase can be replaced by: @Cg.s/ < g0.t/ for all 0 � s < tp < t .
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The previous proposition leaves open how to characterize the functions l; r corre-
sponding to the optimal barrier. Intuitively, the nonuniqueness of caves embedding �
stems from the fact that a given piece of � can be absorbed at either of the two barriers.
However, transferring mass from one to the other changes the reward EŒg.�/�, and that is
the basis of a variational characterization. Consider an optimal cave for g at a point x 2R
where both barriers absorb mass, or more precisely, x 2 supp �l \ supp �r . Intuitively,
deforming l and r locally around x corresponds to transferring mass from one boundary
to the other, and if the cave is optimal, the derivative corresponding to this variation should
vanish. Of course we cannot absorb a negative mass, so that if x 2 supp �l n supp �r or
vice versa, only one-sided variations are possible. Thus, the precise statement in Theo-
rem 6.5 below will consist of inequality conditions for each of the supports, amounting to
an equality only on the intersection.

It seems difficult to find a tractable parametrization for all variations of a cave that
preserve the embedded distributions. Instead, we shall utilize the dual problem; a for-
mal derivation runs as follows. Consider for simplicity the case x 2 supp�l \ supp�r and
recall that the dual problem admits a solution .M; /. Since g is Markovian (a function of
time and state), one may expect that the martingale M can also be chosen of the Marko-
vian form Mt D m.t; Bt /. Moreover, the dual solution satisfies M� C  .B� / D g.�/

where � is the exit time of D, which roughly translates to m.t; x/ D g.t/ �  .x/ for
t 2 ¹l.x/; r.x/º. Assuming a smooth fit at the boundary, formally taking derivatives yields
@tm.t; x/ D g0.t/ for t 2 ¹l.x/; r.x/º. Since M is a martingale, m is a solution of the
heat equation and then so is @tm. A version of the Feynman–Kac formula now yields
@tm.t; x/ D Et;x Œg

0.�/� for l.x/ � t � r.x/. Thus, the difference

g.r.x// � g.l.x// D m.r.x/; x/C  .x/ �m.l.x/; x/ �  .x/

D m.r.x/; x/ �m.l.x/; x/

can be expressed as
R r.x/
l.x/

@tm.t; x/ dt D
R r.x/
l.x/

Et;x Œg
0.�/� dt . The identity

g.r.x// � g.l.x// D

Z r.x/

l.x/

Et;x Œg
0.�/� dt

no longer refers to the dual solution. As mentioned above, this equation needs to be weak-
ened to an inequality if x is not in the support of both measures �l ; �r .

In what follows we assume throughout that � is a centered distribution with finite
second moment and �.¹0º/ D 0. Some technical aspects of the proof depend on whether
� has atoms at the endpoints of its support. We focus on the case where � has atoms at two
endpoints: � is concentrated on a compact interval J D Œxmin; xmax� with �.xmin/ > 0 and
�.xmax/ > 0. It is worth noting that given these properties of �, the regular caves under
discussion satisfy l.x/ D tp D r.x/ at the two endpoints and the necessary jumps of l
and r imply horizontal portions of @D along ¹x D xminº and ¹x D xmaxº; flat portions
of floor and ceiling containing tp , so to speak. While D is of bounded height, it can be
unbounded to the right since r.x/ D1 is a possible value.

In the following result we use the right derivative @Cg, but the same holds for the left
derivative.
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Theorem 6.5. Let D be a regular cave with parting tp embedding � and let l; r be the
functions delimiting D. Then � D inf ¹t � 0 W .t; Bt / … Dº is the unique optimizer for g
in R.�/ if and only ifZ r.x/

l.x/

Et;x Œ@
Cg.�/� dt � g.r.x// � g.l.x// for x 2 supp �l ;Z r.x/

l.x/

Et;x Œ@
Cg.�/� dt � g.r.x// � g.l.x// for x 2 supp �r ;

where Et;x Œ@Cg.�/� WD EŒ@Cg.�t;x/� for �t;x WD inf ¹s � t W .s; x C Bs�t / … Dº.

We use our setup for the dual problem from Section 4 with

Tn D T WD inf ¹t � 0 W Bt 2 @J º; n � 1:

Since in this setting we are not interested in the dual martingale M beyond time T , we
redefine D.G/ slightly in the sense that M is only defined up to T . Clearly, this does not
affect the previous results, as one can trivially extend M beyond T in a constant fashion
to retrieve a dual element in the previous sense.

Next, we consider the optimal cave D and focus on the necessity of the variational
condition. The first step in our proof is to construct the function m.t; x/. Importantly, we
represent m through an optimal stopping problem that will be used to derive the crucial
relationship for @tm. We write I for the interior of J , that is, I D .xmin; xmax/.

Proposition 6.6. There exists a dual optimizer .M; / 2 D.G/ with Mt D m.t; Bt / on
Œ0; �� for a universally measurable functionm WRC � J !R[ ¹�1º which isC1 onD.
Moreover, m can be taken to be the value function of the optimal stopping problem with
reward g.t/ �  .x/.

Proof. Let . QM; / 2 D.G/ be any dual optimizer (see Corollary 4.10). By Remark 4.7
we may assume that  � 0. Let TT D ¹� 2 T W � � T º and consider the optimal stopping
problem

sup
�2TT

EŒG � �; G
 
t WD g

 .t; Bt /; g .t; x/ WD g.t/ �  .x/: (6.3)

Below, it will be useful to see this as a Markovian optimal stopping problem in the sense
of Mertens (we use the completed Brownian filtration throughout this proof). Indeed,
setting Yt D .t; Bt / we can define a process NY as the process Y with absorption on the
complement of RC � I in RC �R. Then (6.3) is equivalent to an infinite-horizon optimal
stopping problem for the right-continuous Markov process NY .

Next, we show that we can truncate G from below without changing the value
of (6.3). Since g is bounded we may assume that g � 0. Then g.t/� .x/ � � .x/ and
the value of sup�2TT

EŒ� .B� /� with initial condition Bt D x 2 I is given by � ��.x/,



Fine properties of the optimal Skorokhod embedding problem 27

where  �� � 0 is the convex hull of  on the interval J . Thus, the value of the optimal
stopping problem

sup
�2TT

EŒ NG � �;
NG
 
t WD Ng

 .t; Bt /; Ng .t; x/ WD .g.t/ �  .x// _ .� ��.x// (6.4)

is the same as (6.3). We have �. ��/ � �. / <1 by the definition of D.G/ and due
to the assumed form of � this implies that  �� is finite at the endpoints of the compact
interval J ; that is, �� is a bounded function and thus Ng .t;x/ is bounded from below. As
a result, the reward function NG in (6.4) is of class (D) and optional (but not necessarily
right-continuous), putting us in the setting of [34, 63, 64].

Consider the Snell envelope S of (6.4) as in [63, Theorem T4] or [34]; that is, S is the
minimal strong supermartingale satisfying S � NG on Œ0; T �, and S has the property that
S0 D EŒS0� D sup�2TT

EŒ NG
 
� �. (We use the symbol S as in the cited references; there

should be no possibility of confusion with the space of stopped paths.) Noting that NG is
bounded, it follows that S�^T is bounded. As . QM; / 2 D.G/, the local martingale QM is
another supermartingale satisfying QM � G � NG , so that S � QM by minimality and in
particular S0 � QM0 D 0. On the other hand, let � be the primal optimizer. Then

S0 � EŒ NG
 
� � � EŒG� �  .B� /� D EŒG� � � �. / D 0

since � 2 TT and there is no duality gap (see Theorem 5.5). As a result, S0 D 0 and � is
an optimal stopping time for (6.4) and (6.3). In particular, S is a martingale on Œ0; ��.

The strong supermartingale S has a Mertens decomposition

S DM � A

whereM is a local martingale,M�^T is of class (D), A is a predictable increasing process
and M0 D A0 D 0 [31, Appendix I.20, p. 414]. We observe that .M;  / 2 D.G/ is a
dual optimizer. Indeed, the defining property of the Snell envelope shows thatMt � St �

Gt �  .Bt / on Œ0; T � and M is uniformly bounded from below on Œ0; T � since Mt �

St � � 
��.Bt / as above. Finally, the optimality property depends only on  .

The optimal stopping problem (6.4) is of a Markovian form as considered in [34, 64].
More precisely, [34, Theorem 3.4] or [64, Theorem 3] show that the Snell envelope
is given by St D v.t; Bt / where v is a universally measurable function, the smallest
supermedian-valued function exceeding Ng (as defined in [64, below Theorem 1]), and
that v coincides with the value function of the optimal stopping problem in the Marko-
vian sense. Since S is a martingale on Œ0; ��, we haveM D S D v.t;B/ on Œ0; �� and thus
m WD v satisfies m.t; Bt / DMt on Œ0; ��.

The smoothness of m on D follows from the martingale property of v on D that
is implied by the optimal stopping problem. Indeed, for .t; x/ 2 D, consider an open
rectangle R around .t; x/ whose closure is contained inD. Then vjR is smooth as it is the
convolution with a smooth kernel, namely, v.t; x/ is the convolution of vj@R with the exit
distribution of .t; B/ when B is started at .t; x/.
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We can observe that the preceding arguments extend to more general functions g.t; x/
with a spatial dependence.

The following result connects @tm and @Cg without going through a delicate smooth
fit condition as in the sketch above. Instead, it exploits the representation of m through
optimal stopping, and that is crucial in view of the barrier being nonsmooth (for gen-
eral �).

Lemma 6.7. Let x 2 I . Then

@tm.t; x/ D Et;x Œ@
Cg.�/� D Et;x Œ@

�g.�/� for l.x/ < t < r.x/:

Proof. Let x 2 I and l.x/ < t < t1 < r.x/. Following the proof of Proposition 6.6,m.t;x/
is the value function of the stopping problem started at .t; x/ and the first exit time �
from D is optimal. Define a stopping time �1 for the initial condition .t1; x/ as the first
exit time of the region D1 WD D C ¹.t1 � t; 0/º, that is, the region D translated to the
right by t1 � t . Then Et1;x Œ .B�1/� D Et;x Œ .B� /� and hence

m.t1; x/ �m.t; x/ � Et1;x Œg.�1/ �  .B�1/� �Et;x Œg.�/ �  .B� /�

D Et1;x Œg.�1/� �Et;x Œg.�/�

D Et;x Œg.� C t1 � t /� �Et;x Œg.�/�

D Et;x Œg.� C h/ � g.�/�

where h D jt1 � t j. Similarly, the condition t1 < t yields m.t; x/ � m.t � h; x/ �
Et;x Œg.�/ � g.� � h/�. Recall that m is differentiable. Dividing by h and letting h # 0,
dominated convergence yields

@tm.t; x/ � Et;x Œ@
�g.�/� � Et;x Œ@

Cg.�/� � @tm.t; x/

where the middle inequality holds due to @�g � @Cg (see Assumption 6.3). The claim
follows. We remark that Et;x Œ@�g.�/�D Et;x Œ@Cg.�/� can also be deduced directly from
the properties of � in Proposition 6.4.

Proof of Theorem 6.5, necessity. LetD be optimal. For x 2 ¹xmin; xmaxº the result is triv-
ial as l.x/ D r.x/. Given the properties of l; r and g, it then suffices to show thatZ r.x/

l.x/

Et;x Œ@
Cg.�/� dt � g.r.x// � g.l.x// for �l -a.e. x 2 I;Z r.x/

l.x/

Et;x Œ@
Cg.�/� dt � g.r.x// � g.l.x// for �r -a.e. x 2 I:

Let x 2 I and l.x/� l � r � r.x/with r <1. In view of Lemma 6.7 and the fundamental
theorem of calculus,Z r

l

Et;x Œ@
Cg.�/� dt D

Z r

l

@tm.t; x/ dt D m.r; x/ �m.l; x/:
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By the construction ofm we havem.t; x/ � g.t; x/� .x/ onD, while for t D l.x/ this
inequality holds with equality for �l -a.e. x, and for t D r.x/ it holds with equality for
�r -a.e. x. Focusing on the first case, we deduce that �l -a.e.Z rn

l.x/

Et;x Œ@
Cg.�/� dt � g.rn/ � g.l.x//

for a sequence rn " r.x/, and the claim follows after recalling that g is continuous on
Œ0;1� and Et;x Œ@Cg.�/� � 0 for t � tp . The �r -a.e. inequality follows similarly.

Proof of Theorem 6.5, sufficiency. We only provide a sketch of the argument; the details
are similar to the proof of [22, Theorem 4.1]. Suppose that the stated inequalities hold
for l; r . Our goal is to construct a pair .M;  / 2 D.G/ such that M� C  .B� / D g.�/

and EŒM� � � 0 for the exit time � defined by D; this will imply the optimality of � by
Corollary 5.6. For notational convenience, let

h.t; x/ D Et;x Œ@
Cg.�/�; �.x/ D g.l.x// � g.r.x//C

Z r.x/

l.x/

h.s; x/ ds:

As a first step, we consider the function

H.t; x/ D g.r.x// �

Z r.x/

t

h.s; x/ ds C �.x/C

and show that

g.t/ � H.t; x/ for t � 0; x 2 J; (6.5)
g.l.x// D H.l.x/; x/ for x 2 supp �l ; (6.6)
g.r.x// D H.r.x/; x/ for x 2 supp �r : (6.7)

Indeed, (6.5) follows directly from the definitions. For t � tp we see that g0.t/ is decreas-
ing and hence

g.t/ D g.r.x// �

Z r.x/

t

@Cg.s/ ds � g.r.x// �

Z r.x/

t

h.s; x/ ds C �.x/C D H.t; x/;

whereas for 0 � t < tp we have @Cg.s/ � @Cg.u/ for t � s � u and hence

g.t/ D g.l.x//C

Z t

l.x/

@Cg.s/ ds � g.l.x//C

Z t

l.x/

h.s; x/ ds � H.t; x/:

Moreover, the assumption in Theorem 6.5 states that �.x/ � 0 for x 2 supp �l and
�.x/ � 0 for x 2 supp �r . This yields (6.6) and (6.7).

The rest of the proof consists in showing that H.t; Bt / D Mt C  .Bt / on Œ0; ��
and H.t; Bt / � Mt C  .Bt / on Œ0; T � for a local martingale M with M0 D 0 which
is bounded below and a function  2 L1.�/. Once that is achieved, (6.5)–(6.7) show that
.M; / 2 D.G/ have the desired properties.
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To obtain the decomposition we consider the function Nm.t; x/ WD g.r.x// �R r.x/
t

h.s; x/ ds. One can show as in [22] that Nm.t; Bt / is a submartingale on Œ0; ��
and conclude that there is a unique increasing predictable process A on Œ0; �� such that
Nm.t;Bt /�At is a martingale on Œ0; ��. One can further show that A agrees with a contin-

uous additive functional on Œ0; �� such that Nm.t; Bt / � At is well defined on Œ0; T � and a
supermartingale. Using a representation result for additive functionals, one can therefore
write At D z.Bt / � z.B0/ �

R t
0
z0�.Bs/ dBs for a convex function z and conclude that

Nm.t; Bt / � z.Bt / is still a martingale on Œ0; �� and a supermartingale on Œ0; T �. We can
choose z such that z � z.0/ D Nm.0; 0/.

Set  .x/ D z.x/C �.x/C, so that

H.t; x/ D Nm.t; x/ � z.x/C  .x/:

Moreover, let M be the martingale part of the supermartingale Nm.t; Bt / � z.Bt /. To
see that .M;  / is indeed a dual element, we show that Nm and z are bounded. Then it
follows that z.x/C �.x/C is bounded (as � is bounded under our assumptions) and that
Nm.t; x/� z.x/, and henceM , is bounded from below. Indeed, boundedness of Nm follows

from the identity

Nm.t; x/ D g.r.x// �

Z tp

t

h.s; x/1s<tp ds �
Z r.x/

tp

h.s; x/1s>t ds:

The first two terms are trivially bounded. For the last term, observe that on the domain
of integration we have 0 � h.s; x/ � @Cg.s/, which implies boundedness. Next, suppose
that z is unbounded. Then we must have z.xmin/DC1 or z.xmax/DC1 as z is convex
and bounded from below. Note that B� D xmin and B� D xmax with positive probability,
but EŒ Nm.�; B� / � z.B� /� D m.0; 0/ � z.0/ D 0 by the martingale property. Therefore,
z must be bounded and the proof is complete.

7. Counterexamples

In this section we demonstrate that relaxing the regularity in the dual domain is necessary
to achieve a complete duality theory for general reward functions. It is also shown that the
monotonicity principle fails without an integrability condition.

7.1. Local martingale property of M

We construct an example showing that it is crucial to use local martingales M rather than
true martingales as in previous works. More precisely, we construct a continuous reward
function G such that for a wide class of marginals �, any dual optimizer .M; / 2 D.G/

fails to have the true martingale property; in fact, EŒMt � > 0 for all t > 0.
Let � be a centered distribution which is equivalent to the Lebesgue measure on R

and satisfies �.f / <1, where

f .x/ D exp.x4/: (7.1)
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We note that J DR and hence
S
nŒ0;Tn�DC0.RC/�RC in Definition 4.1. An important

ingredient for our reward function is the process

Lt WD exp
�
B4t � 2

Z t

0

.3B2s C 4B
6
s / ds

�
; t � 0; (7.2)

which can also be written as the stochastic exponential Lt D Et .
R �
0
4B3s dBs/. We are

grateful to Johannes Ruf for indicating this remarkably simple example of a strict local
martingale to us.

Lemma 7.1 (J. Ruf). The stochastic exponential Lt D Et .
R �
0
4B3s dBs/ is a positive local

martingale with EŒLt � < 1 for all t > 0. In particular, L is not a martingale on Œ0; t � for
any t 2 .0;1/.

We defer the proof to the end of this subsection. As our payoff function, we then
choose

G D 1 � LC f .B/I

note that G is a continuous function on S . Moreover, it follows directly from (7.1)
and (7.2) that f .Bt / � Lt and hence G � 1. As L � 0 and f 2 L1.�/, a particu-
larly simple dual element is .M;  / WD .0; 1C f / 2 D.G/; therefore, D.G/ ¤ ; and
I.G/ � 1C �.f / <1, so that the conditions of our main results in Sections 4 and 5 are
all satisfied. This dual element features a true martingale; however, it is not optimal.

Proposition 7.2. (i) .M; /WD.1�L;f /2D.G/ is optimal for the dual problem I.G/.
Moreover, any � 2 R.�/ is optimal for S.G/.

(ii) If .M;  / 2 D.G/ is any optimizer for I.G/, then EŒMt � > 0 for all t > 0, so that
M cannot be a martingale.

Proof. (i) Let � 2T .�/ and .M; / WD .1�L;f /2D.G/. It is clear thatM C .B/DG
�-a.s., and �.M/ � 0 as L is a nonnegative supermartingale with L0 D 0. The claim now
follows from Corollary 5.6.

(ii) Let .M; / 2 D.G/. We first prove that there exists c 2 R such that

 .x/C cx � f .x/; x 2 R: (7.3)

Indeed, let a;b � 0 and � D inf ¹t � 0 WBt … .�a;b/º. Note that the local martingaleL�^�
is bounded and hence a uniformly integrable martingale. On the other hand, as � � Tn
for n large enough, M�^� must be bounded below (Definition 4.1) and hence a super-
martingale. In particular, EŒL� � D 1 and EŒM� � � 0, so that M� C  .B� / � G� D

1 � L� C f .B� / implies
EŒ .B� /� � EŒf .B� /�:

As a; b were arbitrary, this implies as in the proof of Lemma 4.6 that the convex hull
satisfies . � f /��.0/ � 0. Taking c D @�. � f /��.0/, we have . N � f /�� � 0 for
N .x/ D  .x/C cx and the claim follows.
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In view of (7.3) and Remark 4.7 we may assume that  � f . If .M;  / is optimal,
then �. / D I.G/ D �.f / by (i) and it follows that  D f �-a.s. and hence Lebesgue-
a.e. But nowM C .B/ � 1�LC f .B/ impliesMt � 1�Lt W -a.s. and in particular
EŒMt � � 1 �EŒLt � for all t > 0, so EŒMt � > 0 by Lemma 7.1.

Proof of Lemma 7.1. (i) We first provide an auxiliary result. LetW be a Brownian motion
on a filtered probability space with measure Q. Then the SDE

dXt D 4X
3
t dt C dWt ; X0 D 0;

has a unique strong solution X up to its explosion time � and Q¹� < T º > 0 for all
T 2 .0;1/. Indeed, existence and uniqueness of X follow from the local Lipschitz con-
tinuity of the coefficients (see, e.g., [76, Exercise 2.10, p. 383]). The scale function of X
is p.x/ D

R x
0
e�2y

4
dy and the speed measure is m.dx/ D 2e2x

4
dx. Thus

v.x/ WD

Z x

0

.p.x/ � p.y//m.dy/ D

Z x

0

Z x

y

e2.y
4�z4/ dz dy

and in particular v.1/ WD limx!1 v.x/ is given byZ 1
0

Z 1
0

e2.y
4�.yCu/4/ dudy D

Z 1
0

Z 1
0

e�2.u
4C4u3yC6u2y2�4uy3/ dudy:

Comparison with a Gaussian integral shows that this quantity is finite. In view of the
symmetry v.x/D v.�x/, the same holds for v.�1/. Thus, Feller’s test implies that both
boundaries ˙1 are limit points of X in finite time with positive probability; in fact, the
explosion time � even satisfies � <1 Q-a.s. by [57, Proposition 5.5.32, p. 350]. Using
the homogeneity of X , this already implies that Q¹� < T º > 0 for all T 2 .0;1/; see,
e.g., [17, Theorem 1.1] for an elegant argument.

(ii) We can now prove the lemma. As an exponential of a continuous local martingale,
it is clear that L is a local martingale and strictly positive, hence a supermartingale. Let
T 2 .0;1/ and suppose for contradiction that EŒLT � D 1, or equivalently, that L is
a martingale on Œ0; T �. Then we can introduce the equivalent probability Q on FT via
dQ=dW D LT and Girsanov’s theorem shows that the processWt WD Bt � 4

R t
0
B3s ds is

aQ-Brownian motion on Œ0; T �. Moreover, B satisfies dBt D 4B3t dt C dWt and B0 D 0
under Q. As shown in (i), this implies that Q¹� < T º > 0 for the explosion time � of B ,
contradicting that the Brownian motion B under W is nonexplosive.

7.2. Regularity of  

The following example shows that a duality gap can arise if the functions  in the dual
domain D.G/ are required to be continuous. The rewardG D 1Q.t/ was previously used
in [42] to illustrate that their duality result can fail when the reward function is irregular
in time. In our framework, duality holds by Theorem 5.5. Nevertheless, it is instructive to
detail the optimizers as this highlights the mechanics of our definitions.
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Example 7.3. Let G D 1Q.t/ and � D .ı�1 C ı1/=2.
(i) We have S.G/ D I.G/ D 0, a primal optimizer is given by the stopping time � D

inf ¹t � 0 W jBt j D 1º and a dual optimizer is given by M � 0 and  D 1.�1;1/.
To see this, let �;M;  be as above and note that J D Œ�1; 1�. We choose Kn D J

and thus T WD Tn D � for all n. We claim that  .B/ � G on Œ0; T � up to evanescence.
Indeed,  .B/ D 1 on Œ0; T /, thus ¹ .B/ < Gº is contained in the graph of T and of
course also in ¹G D 1º. But since T has a continuous distribution, W ¹T 2 Qº D 0 and
hence ŒT �\ ¹GD 1º D ¹T 2Qº �RC is indeed negligible up to evanescence. As a result,
.M;  / 2 D.G/. In view of �. / D 0 and EŒG� � D 0, the optimality of .M;  / and �
now follows from Corollary 5.6.

(ii) If the dual domain is restricted to continuous functions  , a duality gap arises:
the dual problem over continuous  has value 1 instead of 0. Indeed, let .M; / 2D.G/

be such that  is continuous. We claim that there exists c 2 R such that  .x/ � 1C cx
for all x 2 Œ�1; 1�; in particular, this will imply that �. / � 1. Let � < T be a stopping
time, let � 0n D inf ¹t � � W t 2 2�nNº be the usual dyadic approximation � 0n # � and let
�n D �

0
n ^ T . Then we have

M�n C  .B�n/ � G�n D 1 on ¹�n < T º

since �n has rational values on ¹�n < T º. As W ¹�n < T º! 1, the continuity of andM
shows that M� C  .B� / � 1 and hence EŒ .B� /� � 1. Since this holds in particular
for the hitting time � of any set ¹�a; bº where �1 < �a � 0 � b < 1, it follows that
 ��.0/ � 0 where  �� is the convex hull on .�1; 1/. Let c D @� ��.0/. Then using
again the continuity it follows that  .x/ � 1C cx for all x 2 Œ�1; 1�, as claimed.

7.3. Monotonicity principle

In this section we show that the monotonicity principle of Corollary 5.8 does not hold
without an integrability condition. Indeed, we have the following.

Proposition 7.4. There exist a Borel function G W S ! Œ0;1/, a centered distribution �
on R with all moments finite and S.G/<1, and randomized stopping times �1; �22R.�/

which are equivalent as measures on S , such that �1 is optimal for S.G/ and �2 is not
optimal for S.G/.

As �1.�/ D 1 is equivalent to �2.�/ D 1, for any Borel set � � S , it follows that
optimality of � 2 R.�/ cannot be determined by its support.

We start with some preliminary results that will be used in the construction. Recall
that � 2R is defined as a measure on C0.RC/ �RC and induces a measure on B.S/ via
�.�/ WD �¹.!; t/ 2 C0.RC/�RC W .!jŒ0;t�; t / 2 �º; in fact, � is completely characterized
by the latter. A product measure W ˝ � on C0.RC/ �RC induces a measure on S in the
same fashion. In what follows, we set f .x/ D exp.x4/ and denote by L the strict local
martingale defined in (7.2).

Lemma 7.5. There exists O� int 2R such that O� int.f .B//C O� int.t/ <1 and O� int�W ˝ �
on S , where � is the Lebesgue measure.



M. Beiglböck, M. Nutz, F. Stebegg 34

Proof. For n � 1 we define �n D inf ¹t W jBt j � nº and

Sn D
°
.!; t/ 2 S W sup

s�t
j!sj < n

±
D ¹.!; t/ 2 S W t < �n.!/º:

We first construct �n 2 R such that

�nŒ0; �n� D 1 and �n �W ˝ � on Sn: (7.4)

Consider the adapted, increasing process An defined by

Ant WD 1 � e
�t1t<�n I

it is strictly increasing and differentiable up to �n and then jumps to the value 1. Thus, the
kernel

�n!.dt/ D dA
n
t .!/ D e

�t1t<�n.!/ dt C e��
n.!/ı�n.!/.dt/

defines a randomized stopping time via �n DW .d!/�n!.dt/ which satisfies (7.4).
Clearly (7.4) implies �n.f .B// � exp.n4/ and �n.t/ � EŒ�n� D n2 � exp.n4/. Let

.an/n�1 be a sequence in .0; 1/ such that
P
n�1 an D 1 and

P
n�1 an exp.n4/ <1. We

define
� WD

X
n�1

an�
n
I

then � 2R satisfies �n.f .B// <1 and �n.t/ <1. Since every stopped path is bounded,
we have

S
n�1 S

n D S and thus (7.4) implies � �W ˝ � on S as desired.

Lemma 7.6. Let � D inf ¹t W t2 C B2t D 1º. There exists an F� -measurable Bernoulli
random variable X independent of B� .

Proof. Define � 0 D inf ¹t W t2 C B2t D 1=2º. Then B� 0 is F� -measurable and its condi-
tional distribution given B� is atomless. In particular, there exists a conditional median
m.x/ given B� D x, that is, P ŒB� 0 � m.x/ jB� D x� D 1=2. By construction, X WD
1B�0�m.B� / has a Bernoulli distribution and is independent of B� .

Lemma 7.7. We have �.L/� 1 for all � 2R. If � embeds a distribution � with �.f / <1,
then �.L/ D 1.

Proof. As L is a positive local martingale with L0 D 1, we have �.L/ � 1 by Fatou’s
lemma. Suppose that � 2 R.�/ where �.f / <1 and recall that 0 � Lt � f .Bt /. As f
is convex, f .Bt / is a positive submartingale up to � and hence of class (D), where we
may use the representation of � as nonrandomized stopping time in the enlarged filtration
(see Lemma 3.10) to apply the standard results of stochastic analysis. This implies that L
is a martingale of class (D) up to � and in particular �.L/ D 1.

Proof of Proposition 7.4. Let G � 0 be the payoff defined by

Gt D 1t>�;XD0 C Lt�� .B� 7!/1t>�;XD1
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where � D inf ¹t W t2 CB2t D 1º, the random variable X is as in Lemma 7.6 and, with the
notation of Definition 3.3,

Lt�� .B
� 7!/ D exp

�
.Bt � B� /

4
� 2

Z t

�

�
3.Bs � B� /

2
C 4.Bs � B� /

6
�
ds

�
:

Let � int D � ˚ O� int be the randomized stopping time obtained by shifting O� int of
Lemma 7.5 by � (see Definition 3.3); that is, if O� int D W .d!/ O� int

! .ds/, then � int D

W .d!/� int
! .ds/ where

� int
! Œ0; t � D 1�.!/<t O� int

!��!�.!/
Œ0; t � �.!/�:

Using Lemma 7.7, we then have � int.G/ D O� int.L/ D 1.
Next, let O�exp be an exponential random time, defined by its kernel O�exp

! .ds/D e�s ds.
As EŒLt � < 1 for t > 0 by Lemma 7.1, we have O�exp.L/ D

R1
0
e�tEŒLt � dt < 1. More-

over, O�exp is clearly equivalent to W ˝ � on S , so that O�exp� O� int. The reverse is not true,
but if we set

O�avg
D . O�exp

C O� int/=2;

then O�avg is equivalent to O� int on S and we also have O�avg.L/ < 1.
Define �avg D � ˚ O�avg. Then �avg and � int already have properties close to the desired

ones, but they do not embed the same distribution yet. To achieve that, we randomly mix
the two stopping times using X . Indeed, we define the randomized stopping times �1

and �2 through their kernels

�1! WD �
avg
! 1X.!/D0 C � int

! 1X.!/D1; �2! WD �
avg
! 1X.!/D1 C � int

! 1X.!/D0:

Then
�1.G/ D 1

2
O�avg.1/C 1

2
O� int.L/ D 1;

whereas
�2.G/ D 1

2
O�avg.L/C 1

2
O� int.1/ < 1:

By construction, �1 and �2 are equivalent on S and embed the same distribution �. The
integrability properties of O�exp and O� int entail that � has all moments (even some exponen-
tial moments) and that �1.t/ D �2.t/ <1.

Appendix A. Extension to finite first moment

In the body of this article we have assumed that the embedded measure � has a finite sec-
ond moment, but the results can be extended to the case of a finite first moment by using
well-known facts, at the expense of a slightly more convoluted definition. The crucial
observation is that under the second moment condition, EŒ�� <1 for � 2 T .�/ is equiv-
alent to � being minimal (or uniformly integrable), and minimality can still be used in the
first moment case. For a randomized stopping time, the simplest definition is obtained by
referring to its stopping time representation in a larger filtration.
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For the remainder of this section, � is a centered distribution on R with finite first
moment.

Definition A.1. Let � be a finite stopping time such thatB� � �. Then � is called minimal
if there exists no smaller embedding, that is, whenever � is another stopping time such
that B� � � and � � � a.s., then � D � a.s. We denote by T .�/ the set of all such � .

Let � be a randomized stopping time such that � ıB�1 D � and let � be the associated
NF -stopping time (see Lemma 3.10). Then � is called minimal if � is minimal in the above
sense. We denote by R.�/ the set of all such �.

We can now state the announced extension.

Remark A.2. The results in Sections 3–5 continue to hold under the first moment condi-
tion.

Proof. The modifications are as follows. (i) In the proof of Lemma 3.8 we used the fact
that R.�/ is weakly compact. This still holds in the present setting [6, Section 7.1].
(ii) A stopping time � is minimal if and only if B�^� is uniformly integrable [65, The-
orem 3]. Thus, in the proofs of Lemmas 4.5 and 4.8, we can use directly that B�^� is
uniformly integrable instead of deriving this from EŒ�� < 1. (iii) Proposition 5.2 still
holds, e.g., by [6, Theorem 7.2 and Example 7.2.1]. (iii) The proof of Lemma 5.3 again
used the weak compactness of R.�/; cf. (i). The other proofs did not use directly the
assumption that � has finite second moment.

Acknowledgments. The authors thank two anonymous referees for their detailed comments.
MN is grateful to Alex Cox and Johannes Ruf for helpful discussions regarding Sections 6

and 7.1, respectively.

Funding. Research of MB was supported by FWF Grant Y-782.
Research of MN was supported by an Alfred P. Sloan Fellowship and NSF Grants DMS-

1512900 and DMS-1812661.

References

[1] Acciaio, B., Beiglböck, M., Penkner, F., Schachermayer, W.: A model-free version of the
fundamental theorem of asset pricing and the super-replication theorem. Math. Finance 26,
233–251 (2016) Zbl 1378.91129 MR 3481303

[2] Aliprantis, C. D., Border, K. C.: Infinite Dimensional Analysis. 3rd ed., Springer, Berlin
(2006) Zbl 1156.46001 MR 2378491

[3] Ambrosio, L.: Lecture notes on optimal transport problems. In: Mathematical Aspects of
Evolving Interfaces (Funchal, 2000), Lecture Notes in Math. 1812, Springer, Berlin, 1–52
(2003) Zbl 1047.35001 MR 2011032

[4] Ambrosio, L., Gigli, N.: A user’s guide to optimal transport. In: Modelling and Optimisation
of Flows on Networks, Lecture Notes in Math. 2062, Springer, Heidelberg, 1–155 (2013)
MR 3050280

[5] Baxter, J. R., Chacon, R. V.: Compactness of stopping times. Z. Wahrsch. Verw. Gebiete 40,
169–181 (1977) Zbl 0349.60048 MR 517871

https://zbmath.org/?q=an:1378.91129&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3481303
https://zbmath.org/?q=an:1156.46001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2378491
https://zbmath.org/?q=an:1047.35001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2011032
https://mathscinet.ams.org/mathscinet-getitem?mr=3050280
https://zbmath.org/?q=an:0349.60048&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=517871


Fine properties of the optimal Skorokhod embedding problem 37

[6] Beiglböck, M., Cox, A. M. G., Huesmann, M.: Optimal transport and Skorokhod embedding.
Invent. Math. 208, 327–400 (2017) Zbl 371.60072 MR 3639595

[7] Beiglböck, M., Cox, A. M. G., Huesmann, M.: The geometry of multi-marginal Skorokhod
embedding. Probab. Theory Related Fields 176, 1045–1096 (2020) Zbl 07191239
MR 4087489

[8] Beiglböck, M., Henry-Labordère, P., Penkner, F.: Model-independent bounds for option
prices—a mass transport approach. Finance Stoch. 17, 477–501 (2013) Zbl 1277.91162
MR 3066985

[9] Beiglböck, M., Henry-Labordère, P., Touzi, N.: Monotone martingale transport plans and Sko-
rokhod embedding. Stochastic Process. Appl. 127, 3005–3013 (2017) Zbl 1372.60059
MR 3682121

[10] Beiglböck, M., Huesmann, M., Stebegg, F.: Root to Kellerer. In: Séminaire de probabilités
XLVIII, Lecture Notes in Math. 2168, Springer, Berlin, 1–12 (2016) Zbl 1370.60083
MR 3618124

[11] Beiglböck, M., Lim, T., Obłój, J.: Dual attainment for the martingale transport problem.
Bernoulli 25, 1640–1658 (2019) Zbl 07066234 MR 3961225

[12] Beiglböck, M., Nutz, M., Touzi, N.: Complete duality for martingale optimal transport on the
line. Ann. Probab. 45, 3038–3074 (2017) Zbl 1417.60032 MR 3706738

[13] Bertsekas, D. P., Shreve, S. E.: Stochastic Optimal Control. Math. Sci. Engrg. 139, Academic
Press, New York (1978) Zbl 0471.93002 MR 511544

[14] Biagini, S., Bouchard, B., Kardaras, C., Nutz, M.: Robust fundamental theorem for continuous
processes. Math. Finance 27, 963–987 (2017) Zbl 1411.91543 MR 3705159

[15] Bouchard, B., Nutz, M.: Arbitrage and duality in nondominated discrete-time models. Ann.
Appl. Probab. 25, 823–859 (2015) Zbl 1322.60045 MR 3313756

[16] Brown, H., Hobson, D., Rogers, L. C. G.: Robust hedging of barrier options. Math. Finance
11, 285–314 (2001) Zbl 1047.91024 MR 1839367

[17] Bruggeman, C., Ruf, J.: A one-dimensional diffusion hits points fast. Electron. Comm. Probab.
21, art. 22, 7 pp. (2016) Zbl 1338.60197 MR 3485391

[18] Burzoni, M., Frittelli, M., Maggis, M.: Model-free superhedging duality. Ann. Appl. Probab.
27, 1452–1477 (2017) Zbl 1370.60004 MR 3678476

[19] Cheridito, P., Kupper, M., Tangpi, L.: Representation of increasing convex functionals with
countably additive measures. arXiv:1502.05763 (2015)

[20] Cox, A. M. G., Hou, Z., Obłój, J.: Robust pricing and hedging under trading restrictions and
the emergence of local martingale models. Finance Stoch. 20, 669–704 (2016)
Zbl 1369.91175 MR 3519165

[21] Cox, A. M. G., Kinsley, S. M.: Discretisation and duality of optimal Skorokhod embedding
problems. Stochastic Process. Appl. 129, 2376–2405 (2019) Zbl 07074613 MR 3958436

[22] Cox, A. M. G., Kinsley, S. M.: Robust hedging of options on a leveraged exchange traded
fund. Ann. Appl. Probab. 29, 531–576 (2019) Zbl 1409.60064 MR 3910011

[23] Cox, A. M. G., Obłój, J.: Robust pricing and hedging of double no-touch options. Finance
Stoch. 15, 573–605 (2011) Zbl 1303.91171 MR 2833100

[24] Cox, A. M. G., Obłój, J., Touzi, N.: The Root solution to the multi-marginal embedding prob-
lem: an optimal stopping and time-reversal approach. Probab. Theory Related Fields 173,
211–259 (2019) Zbl 07030871 MR 3916107

https://zbmath.org/?q=an:371.60072&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3639595
https://zbmath.org/?q=an:07191239&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4087489
https://zbmath.org/?q=an: 1277.91162&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3066985
https://zbmath.org/?q=an:1372.60059&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3682121
https://zbmath.org/?q=an:1370.60083&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3618124
https://zbmath.org/?q=an:07066234&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3961225
https://zbmath.org/?q=an:1417.60032&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3706738
https://zbmath.org/?q=an:0471.93002&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=511544
https://zbmath.org/?q=an:1411.91543&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3705159
https://zbmath.org/?q=an:1322.60045&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3313756
https://zbmath.org/?q=an:1047.91024&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1839367
https://zbmath.org/?q=an:1338.60197&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3485391
https://zbmath.org/?q=an:1370.60004&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3678476
https://arxiv.org/abs/1502.05763
https://zbmath.org/?q=an:1369.91175&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3519165
https://zbmath.org/?q=an:07074613&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3958436
https://zbmath.org/?q=an:1409.60064&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3910011
https://zbmath.org/?q=an:1303.91171&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2833100
https://zbmath.org/?q=an:07030871&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3916107


M. Beiglböck, M. Nutz, F. Stebegg 38

[25] Cox, A. M. G., Wang, J.: Root’s barrier: construction, optimality and applications to variance
options. Ann. Appl. Probab. 23, 859–894 (2013) Zbl 1266.91101 MR 3076672

[26] Czichowsky, C., Schachermayer, W.: Strong supermartingales and limits of nonnegative mar-
tingales. Ann. Probab. 44, 171–205 (2016) Zbl 1339.60045 MR 3456335

[27] Dalang, R. C.: Sur l’arrêt optimal de processus à temps multidimensionnel continu. In: Sem-
inar on Probability, XVIII, Lecture Notes in Math. 1059, Springer, Berlin, 379–390 (1984)
Zbl 0537.60035 MR 770972

[28] De Marco, S., Henry-Labordère, P.: Linking vanillas and VIX options: a constrained martin-
gale optimal transport problem. SIAM J. Financial Math. 6, 1171–1194 (2015)
Zbl 1386.91138 MR 3432145

[29] Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pric-
ing. Math. Ann. 300, 463–520 (1994) Zbl 0865.90014 MR 1304434

[30] Dellacherie, C., Meyer, P.-A.: Probabilities and Potential. North-Holland Math. Stud. 29,
North-Holland, Amsterdam (1978) Zbl 0494.60001 MR 521810

[31] Dellacherie, C., Meyer, P.-A.: Probabilities and Potential. B. North-Holland Math. Stud. 72,
North-Holland, Amsterdam (1982) Zbl 0494.60001 MR 745449

[32] Dolinsky, Y., Soner, H. M.: Martingale optimal transport and robust hedging in continuous
time. Probab. Theory Related Fields 160, 391–427 (2014) Zbl 1305.91215 MR 3256817

[33] Dolinsky, Y., Soner, H. M.: Martingale optimal transport in the Skorokhod space. Stochastic
Process. Appl. 125, 3893–3931 (2015) Zbl 1337.91092 MR 3373308

[34] El Karoui, N., Lepeltier, J.-P., Millet, A.: A probabilistic approach to the reduite in optimal
stopping. Probab. Math. Statist. 13, 97–121 (1992) Zbl 0777.60034 MR 1199792

[35] Fahim, A., Huang, Y.-J.: Model-independent superhedging under portfolio constraints.
Finance Stoch. 20, 51–81 (2016) Zbl 1391.91156 MR 3441286

[36] Galichon, A., Henry-Labordère, P., Touzi, N.: A stochastic control approach to no-arbitrage
bounds given marginals, with an application to lookback options. Ann. Appl. Probab. 24, 312–
336 (2014) Zbl 1285.49012 MR 3161649

[37] Ghoussoub, N.: An integral representation of randomized probabilities and its applications. In:
Seminar on Probability, XVI, Lecture Notes in Math. 920, Springer, Berlin, 519–543 (1982)
Zbl 0493.60005 MR 658713

[38] Ghoussoub, N., Kim, Y.-H., Lim, T.: Structure of optimal martingale transport plans in general
dimensions. Ann. Probab. 47, 109–164 (2019) Zbl 1447.60070 MR 3909967

[39] Ghoussoub, N., Kim, Y.-H., Palmer, A. Z.: PDE methods for optimal Skorokhod embeddings.
Calc. Var. Partial Differential Equations 58, art. 113, 31 pp. (2019) Zbl 1416.49019
MR 3959935

[40] Gozlan, N., Roberto, C., Samson, P.-M., Tetali, P.: Kantorovich duality for general transport
costs and applications. J. Funct. Anal. 273, 3327–3405 (2017) Zbl 1406.60032
MR 3706606

[41] Guo, G., Tan, X., Touzi, N.: On the monotonicity principle of optimal Skorokhod embedding
problem. SIAM J. Control Optim. 54, 2478–2489 (2016) Zbl 1348.60066 MR 3549873

[42] Guo, G., Tan, X., Touzi, N.: Optimal Skorokhod embedding under finitely many marginal
constraints. SIAM J. Control Optim. 54, 2174–2201 (2016) Zbl 1351.60048 MR 3539889

[43] Gyöngy, I., Šiška, D.: On randomized stopping. Bernoulli 14, 352–361 (2008)
Zbl 1157.60316 MR 2544091

https://zbmath.org/?q=an:1266.91101&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3076672
https://zbmath.org/?q=an:1339.60045&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3456335
https://zbmath.org/?q=an:0537.60035&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=770972
https://zbmath.org/?q=an:1386.91138&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3432145
https://zbmath.org/?q=an:0865.90014&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1304434
https://zbmath.org/?q=an:0494.60001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=521810
https://zbmath.org/?q=an:0494.60001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=745449
https://zbmath.org/?q=an:1305.91215&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3256817
https://zbmath.org/?q=an:1337.91092&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3373308
https://zbmath.org/?q=an:0777.60034&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1199792
https://zbmath.org/?q=an:1391.91156&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3441286
https://zbmath.org/?q=an:1285.49012&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3161649
https://zbmath.org/?q=an:0493.60005&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=658713
https://zbmath.org/?q=an:1447.60070&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3909967
https://zbmath.org/?q=an:1416.49019&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3959935
https://zbmath.org/?q=an:1406.60032&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3706606
https://zbmath.org/?q=an:1348.60066&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3549873
https://zbmath.org/?q=an:1351.60048&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3539889
https://zbmath.org/?q=an:1157.60316&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2544091


Fine properties of the optimal Skorokhod embedding problem 39

[44] Henry-Labordère, P., Obłój, J., Spoida, P., Touzi, N.: The maximum maximum of a martingale
with given n marginals. Ann. Appl. Probab. 26, 1–44 (2016) Zbl 1337.60078
MR 3449312

[45] Henry-Labordère, P., Tan, X., Touzi, N.: An explicit martingale version of the one-dimensional
Brenier’s theorem with full marginals constraint. Stochastic Process. Appl. 126, 2800–2834
(2016) Zbl 1346.60058 MR 3522302

[46] Hirsch, F., Profeta, C., Roynette, B., Yor, M.: Peacocks and Associated Martingales, with
Explicit Constructions. Bocconi & Springer Ser. 3, Springer, Milan, and Bocconi Univ. Press,
Milan (2011) Zbl 1227.60001 MR 2808243

[47] Hobson, D.: Robust hedging of the lookback option. Finance Stoch. 2, 329–347 (1998)
Zbl 0907.90023

[48] Hobson, D.: The Skorokhod embedding problem and model-independent bounds for option
prices. In: Paris-Princeton Lectures on Mathematical Finance 2010, Lecture Notes in Math.
2003, Springer, Berlin, 267–318 (2011) Zbl 1214.91113 MR 2762363

[49] Hobson, D.: Mimicking martingales. Ann. Appl. Probab. 26, 2273–2303 (2016)
Zbl 1352.60061 MR 3543897

[50] Hobson, D., Klimmek, M.: Model-independent hedging strategies for variance swaps. Finance
Stoch. 16, 611–649 (2012) Zbl 1262.91134 MR 2972236

[51] Hobson, D., Klimmek, M.: Robust price bounds for the forward starting straddle. Finance
Stoch. 19, 189–214 (2015) Zbl 1396.91735 MR 3292129

[52] Hobson, D., Neuberger, A.: Robust bounds for forward start options. Math. Finance 22, 31–56
(2012) Zbl 1278.91162 MR 2881879

[53] Hobson, D. G., Pedersen, J. L.: The minimum maximum of a continuous martingale with
given initial and terminal laws. Ann. Probab. 30, 978–999 (2002) Zbl 1016.60047
MR 1906424

[54] Huesmann, M., Stebegg, F.: Monotonicity preserving transformations of MOT and SEP.
Stochastic Process. Appl. 128, 1114–1134 (2018) Zbl 1391.60095 MR 3769657

[55] Jacod, J., Mémin, J.: Sur un type de convergence intermédiaire entre la convergence en loi et la
convergence en probabilité. In: Seminar on Probability, XV (Strasbourg, 1979/1980), Lecture
Notes in Math. 850, Springer, Berlin, 529–546 (1981) Zbl 0458.60016 MR 622586

[56] Källblad, S., Tan, X., Touzi, N.: Optimal Skorokhod embedding given full marginals and
Azéma–Yor peacocks. Ann. Appl. Probab. 27, 686–719 (2017) Zbl 1370.60075
MR 3655851

[57] Karatzas, I., Shreve, S. E.: Brownian Motion and Stochastic Calculus. 2nd ed., Grad. Texts in
Math. 113, Springer, New York (1991) Zbl 0734.60060 MR 1121940

[58] Kellerer, H. G.: Duality theorems for marginal problems. Z. Wahrsch. Verw. Gebiete 67, 399–
432 (1984) Zbl 0535.60002 MR 761565

[59] Lacker, D.: Dense sets of joint distributions appearing in filtration enlargements, stochastic
control, and causal optimal transport. arXiv:1805.03185 (2018)

[60] Loynes, R. M.: Stopping times on Brownian motion: Some properties of Root’s construction.
Z. Wahrsch. Verw. Gebiete 16, 211–218 (1970) Zbl 0193.45701 MR 292170

[61] Madan, D. B., Yor, M.: Making Markov martingales meet marginals: with explicit construc-
tions. Bernoulli 8, 509–536 (2002) Zbl 1009.60037 MR 1914701

[62] McCann, R. J.: Existence and uniqueness of monotone measure-preserving maps. Duke Math.
J. 80, 309–323 (1995) Zbl 0873.28009 MR 1369395

https://zbmath.org/?q=an:1337.60078&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3449312
https://zbmath.org/?q=an:1346.60058&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3522302
https://zbmath.org/?q=an:1227.60001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2808243
https://zbmath.org/?q=an:0907.90023&format=complete
https://zbmath.org/?q=an:1214.91113&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2762363
https://zbmath.org/?q=an:1352.60061&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3543897
https://zbmath.org/?q=an:1262.91134&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2972236
https://zbmath.org/?q=an:1396.91735&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3292129
https://zbmath.org/?q=an:1278.91162&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2881879
https://zbmath.org/?q=an:1016.60047&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1906424
https://zbmath.org/?q=an:1391.60095&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3769657
https://zbmath.org/?q=an:0458.60016&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=622586
https://zbmath.org/?q=an:1370.60075&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3655851
https://zbmath.org/?q=an:0734.60060&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1121940
https://zbmath.org/?q=an:0535.60002&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=761565
https://arxiv.org/abs/1805.03185
https://zbmath.org/?q=an:0193.45701&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=292170
https://zbmath.org/?q=an:1009.60037&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1914701
https://zbmath.org/?q=an:0873.28009&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1369395


M. Beiglböck, M. Nutz, F. Stebegg 40

[63] Mertens, J.-F.: Théorie des processus stochastiques généraux; applications aux surmartingales.
Z. Wahrsch. Verw. Gebiete 22, 45–68 (1972) Zbl 0236.60033 MR 0346895

[64] Mertens, J.-F.: Strongly supermedian functions and optimal stopping. Z. Wahrsch. Verw. Ge-
biete 26, 119–139 (1973) Zbl 0297.60038 MR 0346896

[65] Monroe, I.: On embedding right continuous martingales in Brownian motion. Ann. Math.
Statist. 43, 1293–1311 (1972) Zbl 0267.60050 MR 343354

[66] Neufeld, A., Nutz, M.: Superreplication under volatility uncertainty for measurable claims.
Electron. J. Probab. 18, art. 48, 14 pp. (2013) Zbl 1282.91360 MR 3048120

[67] Nutz, M.: Superreplication under model uncertainty in discrete time. Finance Stoch. 18, 791–
803 (2014) Zbl 1312.60049 MR 3255751

[68] Nutz, M.: Robust superhedging with jumps and diffusion. Stochastic Process. Appl. 125,
4543–4555 (2015) Zbl 1326.60120 MR 3406595

[69] Nutz, M., Stebegg, F.: Canonical supermartingale couplings. Ann. Probab. 46, 3351–3398
(2018) Zbl 1435.60030 MR 3857858

[70] Nutz, M., Stebegg, F., Tan, X.: Multiperiod martingale transport. Stochastic Process. Appl.
130, 1568–1615 (2020) Zbl 1444.60033 MR 4058283

[71] Obłój, J.: The Skorokhod embedding problem and its offspring. Probab. Surv. 1, 321–390
(2004) Zbl 1189.60088 MR 2068476

[72] Parthasarathy, K. R.: Probability Measures on Metric Spaces. Academic Press, New York
(1967) Zbl 0153.19101 MR 0226684

[73] Pratelli, A.: On the equality between Monge’s infimum and Kantorovich’s minimum in opti-
mal mass transportation. Ann. Inst. H. Poincaré Probab. Statist. 43, 1–13 (2007)
Zbl 1121.49036 MR 2288266

[74] Rachev, S. T., Rüschendorf, L.: Mass Transportation Problems. Vol. I, Springer, New York
(1998) Zbl 0990.60500 MR 1619170

[75] Rachev, S. T., Rüschendorf, L.: Mass Transportation Problems. Vol. II, Springer, New York
(1998) Zbl 0990.60500 MR 1619171

[76] Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. 3rd ed., Grundlehren
Math. Wiss. 293, Springer, Berlin (1999) Zbl 0917.60006 MR 1725357

[77] Root, D. H.: The existence of certain stopping times on Brownian motion. Ann. Math. Statist.
40, 715–718 (1969) Zbl 0174.21902 MR 238394

[78] Rost, H.: Skorokhod stopping times of minimal variance. In: Séminaire de Probabilités, X
(Strasbourg, 1974/1975), Lecture Notes in Math. 511, 194–208 (1976) Zbl 0339.60042
MR 0445600

[79] Skorokhod, A. V.: Studies in the Theory of Random Processes. Addison-Wesley, Reading,
MA (1965) Zbl 0146.37701 MR 0185620

[80] Stebegg, F.: Model-independent pricing of Asian options via optimal martingale transport.
arXiv:1412.1429 (2014)

[81] Tan, X., Touzi, N.: Optimal transportation under controlled stochastic dynamics. Ann. Probab.
41, 3201–3240 (2013) Zbl 1283.60097 MR 3127880

[82] Touzi, N.: Martingale inequalities, optimal martingale transport, and robust superhedging. In:
Congrès SMAI 2013, ESAIM Proc. Surveys 45, EDP Sci., Les Ulis, 32–47 (2014)
Zbl 1356.60069 MR 3451815

[83] Villani, C.: Topics in Optimal Transportation. Grad. Stud. Math. 58, Amer. Math. Soc., Prov-
idence, RI (2003) Zbl 1106.90001 MR 1964483

https://zbmath.org/?q=an:0236.60033&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=0346895
https://zbmath.org/?q=an:0297.60038&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=0346896
https://zbmath.org/?q=an:0267.60050&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=343354
https://zbmath.org/?q=an:1282.91360&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3048120
https://zbmath.org/?q=an:1312.60049&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3255751
https://zbmath.org/?q=an:1326.60120&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3406595
https://zbmath.org/?q=an:1435.60030&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3857858
https://zbmath.org/?q=an:1444.60033&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=4058283
https://zbmath.org/?q=an:1189.60088&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2068476
https://zbmath.org/?q=an:0153.19101&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=0226684
https://zbmath.org/?q=an:1121.49036&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2288266
https://zbmath.org/?q=an:0990.60500&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1619170
https://zbmath.org/?q=an:0990.60500&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1619171
https://zbmath.org/?q=an:0917.60006&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1725357
https://zbmath.org/?q=an:0174.21902&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=238394
https://zbmath.org/?q=an:0339.60042&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=0445600
https://zbmath.org/?q=an:0146.37701&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=0185620
https://arxiv.org/abs/1412.1429
https://zbmath.org/?q=an:1283.60097&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3127880
https://zbmath.org/?q=an:1356.60069&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3451815
https://zbmath.org/?q=an:1106.90001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1964483


Fine properties of the optimal Skorokhod embedding problem 41

[84] Villani, C.: Optimal Transport. Grundlehren Math, Wiss. 338, Springer, Berlin (2009)
Zbl 1156.53003 MR 2459454

[85] Zaev, D. A.: On the Monge–Kantorovich problem with additional linear constraints. Mat.
Zametki 98, 664–683 (2015) (in Russian); English transl.: Math. Notes 98, 725–741 (2015)
Zbl 1336.49056 MR 3438523

https://zbmath.org/?q=an:1156.53003&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2459454
https://zbmath.org/?q=an:1336.49056&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3438523

	1. Introduction
	2. The primal problem
	3. Approximation of randomized stopping times with fixed marginal
	3.1. Proof of Theorem 3.1
	3.2. Proof of Proposition 3.9

	4. The dual problem
	5. Duality
	6. Optimal cave embeddings
	7. Counterexamples
	7.1. Local martingale property of M
	7.2. Regularity of ψ
	7.3. Monotonicity principle

	A. Extension to finite first moment
	References

