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Abstract. Treedepth is a minor-monotone graph invariant in the family of “width measures” that
includes treewidth and pathwidth. The characterization and approximation of these invariants in
terms of excluded minors has been a topic of interest in the study of sparse graphs. A celebrated
result of Chekuri and Chuzhoy (2014) shows that treewidth is polynomially approximated by the
largest k � k grid minor in a graph. In this paper, we give an analogous polynomial approximation
of treedepth via three distinct obstructions: grids, balanced binary trees, and paths. Namely, we
show that there is a constant c such that every graph with treedepth �.kc/ has at least one of the
following minors (each of treedepth at least k):
� a k � k grid,
� a complete binary tree of height k, or

� a path of order 2k .
Moreover, given a graph G we can, in randomized polynomial time, find an embedding of one of
these minors or conclude that treedepth ofG is at mostO.kc/. This result has applications in various
settings where bounded treedepth plays a role. In particular, we describe one application in finite
model theory, an improved homomorphism preservation theorem over finite structures [Rossman,
2017], which was the original motivation for our investigation of treedepth.
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1. Introduction

The treedepth of a graphG is defined as the minimum height of a rooted forest F with the
same set of vertices such that any two adjacent vertices in G have an ancestor-descendant
relationship in F . This well-studied graph invariant arises in many settings and has several
equivalent characterizations: it appears in the literature as vertex ranking number [35],
ordered chromatic number [21] and minimum elimination tree height [29], before being
systematically studied as treedepth by Ossona de Mendes and Nešetřil [26]. Bounded
treedepth graphs play an important role in areas such as the theory of sparse graph classes
[27, 28], parameterized complexity theory [12, 17, 30], and finite model theory [33].
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Treedepth (td for short) belongs to a family of decomposition-based “width measures”
that includes treewidth (tw) and pathwidth (pw). (See Section 3 for definitions.) Roughly
speaking, whereas tw and pw measure how far a graph is from being a tree or path, td
measures how far a graph is from being a star (a connected graph with at most one vertex
of degree> 1); in particular, graphs with twD 1, pwD 2 and tdD 2 are precisely unions
of trees, paths and stars. These three invariants are related by inequalities

tw.G/C 1 � pw.G/C 1 � td.G/ � .tw.G/C 1/ � log jV.G/j: (1)

Treedepth is also tied to the length (number of vertices) of the longest path in G, denoted
lp.G/:

log.lp.G/C 1/ � td.G/ � lp.G/ (2)

where log.�/ is the base-2 logarithm. (See [27, Chapter 6] for proofs of (1) and (2).)
Invariants td, tw, pw and lp are all minor-monotone, that is, non-decreasing under

the graph minor relation. Recall that a graph H is a minor of G, denoted H � G, if
H can be obtained from G by a sequence of vertex deletions, edge deletions and edge
contractions. A graph invariant f W ¹graphsº ! N is minor-monotone if f .H/ � f .G/
for all H � G. Equivalently, f is minor-monotone if the class ¹G W f .G/ � kº is minor-
closed for all k 2N, where a class C is minor-closed ifG 2 C ) H 2 C for allH � G.
By the Robertson–Seymour Graph Minor Theorem [31], every minor-closed class C is
characterized by a finite set F of obstructions (also known as excluded or forbidden
minors) with the property that

G 2 C ” .8F 2 F /.F 6� G/

for all graphs G. Moreover, the obstruction set F is unique up to isomorphism of its
elements subject to minimality (i.e.,F 6�F 0 for all distinctF;F 0 2F ). A minor-monotone
graph invariant f is thus characterized by the sequence .F1;F2; : : : / of finite minimal
obstruction sets Fk for the classes ¹G W f .G/ � kº.

Characterizing the minimal obstruction sets Fk for minor-monotone invariants is a
longstanding question in graph theory (see [1, 9]). Minimal obstructions for treedepth
specifically have been studied by multiple sets of authors [4,5,16,18]. A complete classi-
fication of minimal obstructions for treedepth � k remains elusive even for small values
of k (less than 5). The number of minimal obstructions is a doubly exponential func-
tion of k [16], while the minimal obstructions themselves may have exponentially many
vertices [11]. The situation is similar for treewidth and many other minor-monotone
invariants such as genus. This severely limits the usefulness of minimal obstruction sets
in applications such as parameterized algorithms on bounded treedepth graphs.

On the other hand, there are many applications where a reasonable approximation of
invariants like treedepth or treewidth serves a good enough purpose. This raises the ques-
tion whether a given minor-monotone invariant admits a polynomial approximation in
terms of a “nice” (uniformly described and easily recognizable) sequence of non-minimal
obstruction sets. A breakthrough result of Chekuri and Chuzhoy [10] gives precisely
such an approximation of treewidth (resolving a longstanding conjecture in graph minor
theory).
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Theorem 1.1 (Polynomial Grid Minor Theorem for Treewidth [10]). There is an absolute
constant c such that every graph with treewidth �.kc/ has a k � k grid minor.

Since the k � k grid has treewidth k, Theorem 1.1 establishes that the treewidth of a
graph is polynomially approximated by the size of its largest grid minor. (Prior to [10],
treewidth was known to be exponential in the size of the largest grid minor.) In this paper,
we give an analogous polynomial excluded-minor approximation of treedepth in terms of
three distinct obstructions: grids, complete binary trees, and paths.

Theorem 1.2 (Polynomial Grid/Tree/Path Minor Theorem for Treedepth). There is an
absolute constant c such that every graph with treedepth �.kc/ has one or more of the
following minors:

� a k � k grid,

� a complete binary tree of height k, or

� a path of order 2k .

Since each of the above graphs has treedepth at least k, the largest such obstruction
gives a polynomial approximation of td.G/. Moreover, all three obstructions in Theo-
rem 1.2 are necessary for a polynomial approximation of treedepth. (The longest path
alone gives an exponential approximation of treedepth by (2).) Theorem 1.2 follows from
combining Theorem 1.1 with the following result, which is the technical main theorem of
this paper.

Theorem 1.3 (Main Theorem). Every graph with treedepth �.k5 log2k/ satisfies one or
more of the following conditions:

� G has treewidth at least k,

� G contains a subdivision of a complete binary tree of height k, or

� G contains a path of order 2k .

Due to the constructive nature of the proofs, we also obtain algorithmic versions of
Theorems 1.2 and 1.3 (Corollaries 7.1 and 7.3).

Outline of the paper. Section 2 contains a discussion of related work. Section 3 states
the basic definitions of width measures tw, pw and td, as well as graph minors and
minor-monotonicity of graph invariants. Section 4 gives some simple lemmas on tree
decompositions. Section 5 gives additional lemmas on rooted trees, including a proof of
Theorem 1.3 in the case where G is a tree. Section 6 gives the full proof of Theorem 1.3.
Section 7 describes algorithmic versions of our main results. Finally, Section 8 discusses
applications of Theorem 1.3 in circuit complexity and finite model theory.

2. Related work and applications

The results of this paper have interesting applications in complexity theory and logic, as
well as the theory of sparse graphs. Theorem 1.3 was used by Kush and Rossman [24] to
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lower bound the AC0 circuit complexity of the subgraph isomorphism problem in terms
of the treedepth of pattern graph. This result has a further application in finite model the-
ory: a polynomial-rank homomorphism preservation theorem over finite structures [33].
These results were in fact the original motivation for the study of excluded-minor approx-
imations of treedepth initiated in this paper.

Another application is found in recent work of Kun, O’Brien, Pilipczuk and Sullivan
[23] on linear colorings, defined as functions ˛ W V.G/! Z such that every path in G
contains a vertex with a unique color. (This notion generalizes centered colorings, which
arise in the theory of bounded expansion graph classes [26].) Our excluded-minor approx-
imation of treedepth is used in [23] to show that any linear coloring of a graph G requires
�.td.G/"/ colors for an absolute constant " > 0.

2.1. Improved bound in Theorem 1.3

Following the initial conference publication of this paper [22], the bound of Theorem 1.3
was improved from �.k5 log2k/ to �.k3/ by Czerwiński, Nadara and Pilipczuk [14]. It
remains an open problem to further improve the bound of Theorem 1.3 to �.kc/ for any
c < 3; examples in [14] show that the optimal constant c is at least 2. The key lemma
from their paper qualitatively improves the results in Section 5 of this paper on excluded
minors of trees.

Lemma 2.1 ([14]). Every tree of treedepth k contains a subcubic .maximum degree 3/
subtree of treedepth �.k/.

Czerwiński, Nadara and Pilipczuk also combine Lemma 2.1 with the machinery in
Section 6 of this paper to show the following algorithmic result.

Theorem 2.2 ([14]). Given a graphG, one can in polynomial time compute a rooted tree
of height

O.td.G/ � tw.G/ log3=2 tw.G//

whose closure contains G.

2.2. Excluded-minor approximation of pathwidth

In the conference version [22], we conjectured that treewidth and complete binary tree
minors (i.e., the first two cases in Theorem 1.3) give a polynomial approximation of path-
width:

Conjecture 2.3. There is an absolute constant c such that every graph with pathwidth
�.kc/ has treewidth at least k, or contains a subdivision of a complete binary tree of
height k.

We are pleased to report that this conjecture is now a theorem of Groenland, Joret,
Nadara and Walczak [19], who moreover obtain the optimal constant c D 2. Their result,
together with Theorems 1.1 and 1.2, completes a satisfying three-way excluded-minor
approximation of the parameters tw, pw and td.
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Corollary 2.4. WritingGk for the k � k grid,Bk for the complete binary tree of height k,
and Pk for the path of order k, there is an absolute constant " > 0 such that

excludes Gk as a minor) tw � k ) excludes Gk" as a minor,
excludes Gk , Bk as minors) pw � k) excludes Gk" , Bk" as minors,

excludes Gk , Bk , P2k as minors) td � k ) excludes Gk" , Bk" , P2k" as minors.

The optimal constant " in Corollary 2.4 can be shown to be at least 1=11� o.1/, using
the bounds in [14, 19] along with the best known constant c D 9C o.1/ in Theorem 1.1
due to Chuzhoy and Tan [13].

3. Preliminaries

Let ND¹0;1;2; : : :º; for n2N, let Œn�D¹1; : : : ;nº; and let log.�/ be the base-2 logarithm.
All graphs in this paper are finite simple graphs. Formally, a graph is a pair G D

.V .G/; E.G// where E.G/ �
�

V.G/
2

�
. A tree is a connected acyclic graph. A rooted tree

is a tree with a designated root. A tree is subcubic if it has maximum degree at most 3;
for rooted trees, we also require that the root has degree at most 2 (i.e., a rooted tree is
subcubic if every node has at most two children). Examples of subcubic (rooted) trees
include paths and binary trees.

Definition 3.1 (Tree decompositions, treewidth, pathwidth).
� A tree decomposition of a graph G is a pair .T;W/ where T is a tree and W D

¹Wtºt2V.T / is a family of sets Wt � V.G/ such that
–
S

t2V.T /Wt D V.G/, and every edge of G has both ends in some Wt ,
– if t; t 0; t 00 2 V.T / and t 0 lies on the path in T between t and t 00, thenWt \Wt 00 �Wt 0 .
� The width of a tree decomposition .T;W/ is defined as maxt2V.T / jWt j � 1.
� The treewidth of G, denoted tw.G/, is the minimum width of a tree decomposition

for G.
� The pathwidth of G, denoted pw.G/, is the minimum width of a tree decomposition
.T;W/ for G such that T is a path.

Definition 3.2 (Rooted trees). A rooted tree is a tree T with a designated root vertex.
The height of T is the maximum number of vertices on a root-to-leaf path. We use the
following notation:

� EE.T / is the set of ordered pairs xy such that x is a child of y in T . (We write xy
instead of .x; y/ and think of this pair as a directed edge.)
� <T is the partial order on V.T / defined by x <T y iff x is a proper descendent of y;

we write x �T y iff x <T y or x D y; for W � V.T /, we write W �T x iff w �T x

for all w 2 W .
� The closure of T , denoted Clos.T /, is the graph with vertex set V.T / and edge set
¹¹x; yº W x <T y or y <T xº. (In other words, two vertices are joined by an edge in
Clos.T / iff they lie on a common branch in T .)
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Definition 3.3 (Treedepth). The treedepth of a connected graph G, denoted td.G/, is the
minimum height of a rooted tree T such that G � Clos.T /. The treedepth of a discon-
nected graph is the maximum treedepth of its connected components.

For general graphs G, treedepth is the minimum height of a rooted forest F such that
G � Clos.F / (where Clos.F / is defined similarly to Clos.T /).1

Definition 3.4 (Graph minors and minor-monotonicity).
� A graph F is a minor of G, denoted F � G, if F is isomorphic to a graph that can be

obtained from G by a sequence of edge deletions and edge contractions.
� A graph invariant f W ¹graphsº !N is minor-monotone if f .F /� f .G/ for all graphs
F � G.

Width measures tw, pw and td are easily shown to be minor-monotone, as is the
invariant lp (the order of the longest path).

4. Lemmas on tree decompositions

Our first lemma bounds the treedepth of a graph G in terms of the width of one of its tree
decomposition .T;W/ and the treedepth of T . This lemma may be considered folklore; it
is implicit in proofs of the inequality td.G/ � .tw.G/C 1/ log jV.G/j [7, 27]. We could
not find a proof in the literature, so we include one for completeness.

Lemma 4.1. If .T;W/ is a width-w tree decomposition of a graph G, then

td.G/ � .w C 1/ � td.T /:

Proof. Suppose .T;W/ is a width-w tree decomposition of the graph G. We will con-
struct a rooted tree R of height at most .w C 1/ � td.T / such that G � Clos.R/. (The
construction is illustrated in Figure 1. The tree decomposition .T;W/ in that example
happens to be a path.)

By definition of treedepth, there exists a rooted tree S such that T � Clos.S/ and
td.T / D height.S/. Without loss of generality, we may assume that V.S/ D V.T / (by
deleting any vertices of V.S/ n V.T /).

Recall that W is a family ¹Wtºt2V.T / where Wt � V.G/. For each t 2 V.T /, define
the set Ut � Wt by Ut WD Wt n

S
u W t <S u Wu: Let U WD ¹Utºt2V.T / and note that U

forms a partition of V.G/ (where some of the sets Ut may be empty).
For each t 2 V.T /, fix an arbitrary linear order <t on Ut . Define a partial order <?

on V.G/ by

x <? y
def
”

� _
t2V.T /

x; y 2 Ut and x <t y
�

or
� _

t;u2V.T /W t<S u

x 2 Ut and y 2 Uu

�
:

1Elsewhere in the literature, rooted forests F satisfying G � Clos.F / are called treedepth
decompositions of G. We avoid this terminology in this paper, to avoid confusion with the more
common notion of tree decompositions.
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That is, we have x <? y iff either x; y belong to the same set Ut and x <t y, or x; y
belong to distinct Ut ; Uu respectively where t <S u.

It is easy to see that<? is equivalent to<R for a unique rootedR with V.R/D V.G/.
(This follows from the observation that <? is a partial order on V.G/; it has a unique
maximal element (namely, the <t -maximal element of Ut (D Wt ) where t D root.S/);
and for every x 2 V.G/, the set ¹y W x <? yº is totally ordered by <?.) Note that

td.G/ � height.R/ � max
t2V.T /

jWt j � height.S/ D .w C 1/ � td.T /:

To complete the proof, it remains to establish that G � Clos.R/. Consider an edge
¹x;yº2E.G/. By definition of .T;W/ being a tree decomposition ofG, the set ¹t2V.T / W
¹x; yº � Wtº is non-empty; let p be any <S -maximal element in this set. Consider the
set ¹u 2 V.T / W p �S u and ¹x; yº \Wt ¤ ;º; let q be the unique <S -maximal element
in this set. There are now two cases to consider:
� Assume p D q. Then x; y 2 Up . We can assume that x <p y. Then we have x <R y

and hence ¹x; yº 2 E.Clos.R//.
� Assume p ¤ q. Then j¹x; yº \ Wqj D 1. We can assume that ¹x; yº \ Wq D ¹yº.

Then we have x 2 Up and y 2 Uq and p <S q. It follows that x <R y and hence
¹x; yº 2 E.Clos.R//.

Since ¹x; yº 2 E.Clos.R// in both cases, we conclude that G � Clos.R/.
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Fig. 1. From left to right: G, .T;W/, .S;U/, R.

We next introduce a normal form for tree decompositions of connected graphs, which
witnesses tight upper bounds for both treewidth and treedepth (as shown in Lemmas 4.5
and 4.6).
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Definition 4.2 (Greedy rooted tree decomposition).
� A greedy rooted tree decomposition of a connected graph G is a rooted tree T with the

following properties:
(i) V.T / D V.G/,

(ii) G � Clos.T /,

(iii) for every child-parent pair xy 2 EE.T /, there exists w �T x with ¹w; yº 2 E.G/.
(Given properties (i) and (ii), property (iii) is equivalent to the following: for every
x 2 V.T /, the induced subgraph of G on ¹w W w �T xº is connected.)
� For each x 2 V.G/, we define the set BagT;G.x/ � V.G/ by

BagT;G.x/

WD ¹xº [
®
y W there exists w such that w �T x <T y and ¹w; yº 2 E.G/

¯
:

� The width of T with respect to G is defined by maxx2V.G/ jBagT;G.x/j � 1.

Remark 4.3. Our notion of greedy rooted tree decompositions is defined only for con-
nected graphs for simplicity. However, Definition 4.2 extends naturally to general graphs
by considering rooted forests instead of rooted trees.

The same notion appears at least twice in the literature: in [12] under the name good
treedepth decomposition and in [8] under the name reduced separation forest. An even
“greedier” class of tree decompositions appears in [17] under the name minimal rooted
trees. Every minimal rooted tree for a connected graphG (in the sense of [17]) is a greedy
rooted tree decomposition ofG (in our sense), but not conversely. (The notion of minimal
rooted trees would not work for our purposes, as Lemma 4.6 is false with respect to this
more restrictive class of tree decompositions.)

The following three lemmas establish the key properties of greedy rooted tree decom-
positions. (These properties are also noted in [8, 12].) The first lemma establishes that
greedy rooted tree decompositions are, in fact, tree decompositions in the sense of Defi-
nition 3.1.

Lemma 4.4. If T is a greedy rooted tree decomposition of a connected graph G, then T
together with ¹BagT;G.x/ºx2V.G/ is a tree decomposition of G.

Proof. Straightforward from definitions.

The next two lemmas show that height-optimal (resp. width-optimal) greedy rooted
tree decomposition witness the treedepth (resp. treewidth) of connected graphs.

Lemma 4.5. Every connected graph G has a greedy rooted tree decomposition of
height td.G/.

Proof. By definition of treedepth, there exists a rooted tree T of height td.G/ such that
G � Clos.T /. We may assume that V.T / D V.G/ (by contracting an edge of T incident
with each vertex of V.T / n V.G/). Thus, T satisfies conditions (i) and (ii) of Defini-
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tion 4.2. If T satisfies condition (iii), then we are done. So we assume that T violates
condition (iii).

Consider any child-parent pair xy 2 EE.T / witnessing the violation of condition (iii),
that is, y is the parent of x in T and there is no edge in G between y and any element
of ¹w W w �T xº. Note that y cannot be the root of T (since it would then follow from
G � Clos.T / that G is disconnected). Let z be the parent of y in T . Let T 0 be the rooted
tree obtained from T by removing the edge ¹x; yº and adding the edge ¹x; zº. Note the
following:
� T 0 satisfies conditions (i) and (ii) (that is, V.T 0/ D V.G/ and G � Clos.T 0/).
� height.T 0/ � height.T /.
� width.T 0; G/ � width.T;G/.
� We have �.T 0/ < �.T /where � W ¹rooted treesº!N is the potential function �.S/ WDP

v2V.S/ depthS .v/ where depthS .v/ is the distance between v and the root of S . This
is clear, since V.T 0/ D V.T / and

depthT 0.v/ D

´
depthT .v/ � 1 if v �T x;

depthT .v/ otherwise.

It follows that finitely many operations T 7! T 0 transform T into a greedy rooted tree
decomposition of G of at most the same height and width. In particular, the height is at
most td.T /, which proves the lemma.

Lemma 4.6. Every connected graph G has a greedy rooted tree decomposition of width
tw.G/.

Proof. By definition of treewidth, there exists a tree decomposition .T;W/ of G of width
tw.G/. We may assume that Wt is nonempty for all t 2 V.T /. We now make T into a
rooted tree by arbitrarily fixing a choice of root.T / 2 V.T /. Without increasing width, if
jWroot.T /j D ¹v1; : : : ; vkº where k � 2, then replace root.T / by a path on fresh vertices
t1; : : : ; tk where Wti D ¹v1; : : : ; viº; if jWs n Wt j D k � 2 for some st 2 EE.T /, then
replace the edge ¹s; tº in T by a path of length k � 1 with appropriate sets Wu at the
newly created vertices u. Then the tree decomposition .T;W/ is such that
� jWroot.T /j D 1,

� jWs nWt j D 1 for all every child-parent pair st 2 EE.T /.
We may now identify V.T / with V.G/ by identifying root.T / with the unique element of
Wroot.T / and identifying each non-root t with the unique element of Wt nWu where u is
the parent of t .

Thus identified, the rooted tree T now satisfies conditions (i) and (ii) of Definition 4.2,
that is, V.T /D V.G/ andG � Clos.T /. Moreover, we have width.T;G/� width.T;W/.
Finally, we repeat the same operation T 7! T 0 as in the proof of Lemma 4.5 until T
satisfies condition (iii) with respect toG. Since this operation does not increase width, we
obtain a greedy rooted tree decomposition ofG of width at most tw.G/, which proves the
lemma.
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5. Lemmas on rooted trees

In this section, we show that every tree with treedepth k, as well as every subcubic tree
with 2k vertices, contains a path of length 2�.

p
k/ or a subdivision of a complete binary

tree of height �.
p
k/ (Lemmas 5.11 and 5.13).

Definition 5.1 (Rooted trees Pk and Bh).
� For k � 1, let Pk denote the path of order k rooted at one of its endpoints.
� For h � 1, let Bh denote the rooted complete binary tree of height h (with 2h � 1

vertices).
Note that P1 and B1 are both the rooted trees of size 1 (i.e., isolated roots).

We next introduce useful notation for describing the structure of rooted trees.

Definition 5.2 (Rooted tree-building operations � and hi).
� For rooted trees S and T , let S � T denote the rooted tree formed by taking the dis-

joint union of S and T and identifying the two roots. (For example, P2 � � � � � P2 is
a star rooted at its central vertex.) This operation is associative and commutative with
identity element P1. For a sequence of rooted trees T1; : : : ; Tm (m 2 N), we adopt the
convention that T1 � � � � � Tm D P1 if m D 0.
� For a rooted tree T , let hT i denote the rooted tree obtained from T by creating a new

root � and placing an edge between � and the old root of T .
� For a sequence of rooted trees T1; : : : ; Tm (m � 1), let

hT1; : : : ; Tmi WD hT1 � hT2 � : : : hTm�1 � hTmii : : :ii:

That is, hT1; : : : ; Tmi is the rooted tree obtained by identifying the root of Ti with the
i th vertex from the root on the rooted path PmC1.

These operations on rooted trees are illustrated in Figure 2 below.

T1 � � � � � Tm

TmT1

T2

hT1i � � � � � hTmi

TmT1

T2

hT1; : : : ; Tmi

T1 T2 Tm

Fig. 2

Note that P1 D B1 D hi and for k; h � 2,

Pk D hPk�1i D hP1; : : : ; P1„ ƒ‚ …
k�1 times

i and Bh D hBh�1i � hBh�1i:
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To prove the main lemmas of this section, we analyze the topological minor relation
on rooted trees.

Definition 5.3 (Topological minors). For rooted trees S and T , we say that S is a topo-
logical minor of T (denoted S �top T ) if some subdivision of S is isomorphic to a rooted
subtree of T .

Note that S �top T implies deg.root.S// � deg.root.T //; and S �top T also implies
S � T (that is, S is a minor of T as undirected graphs). However, the converse does not
hold: for example, if the root of S has degree � 2, then S 6�top hSi (whereas T � hT i
holds for all trees T ). Another observation we will use: hSi �top T implies hSi �top hT i

(by further subdividing the edge from the root of hSi).

Lemma 5.4. Every rooted tree T has a decomposition of the form hT1i � � � � � hTli for
rooted trees T1; : : : ; Tl unique up to ordering. Further, for all rooted trees S , we have

hSi �top T ” 9i 2 Œl �; hSi �top hTi i:

Proof. Straightforward from definitions. Here l is the degree of root.T / and T1; : : : ; Tl

are the subtrees rooted at the children of root.T / (see Figure 2). Note that l D 0 in this
decomposition if, and only if, T is an isolated root.

The next lemmas characterize the structure of rooted trees T that omit binary trees
hBhi as topological minors. We first consider rooted trees hT iwhere the root has degree 1.

Lemma 5.5. If T is a rooted tree such that hBhi 6�top hT i, then there exist m � 1 and
rooted trees S1; : : : ; Sm such that T D S1 � hS2; : : : ; Smi and hBh�1i 6�top Si for all
i 2 Œm�.

Proof. Assume hBhi 6�top T and note that this implies h � 2 (since B1 �top T ). We argue
by induction on jV.T /j. In the base case T D P1, the conclusion of the lemma is satisfied
with m WD 1 and S1 WD T .

For the induction step, assume jV.T /j � 2 and let T D hT1i � � � � � hTli be the
decomposition given by Lemma 5.4. We claim that there is at most one i 2 Œl � such that
hBh�1i �top hTi i; otherwise, we would have Bh D hBh�1i � hBh�1i �top T , from which
it follows that hBhi �top hT i (contradicting our assumption).

We now consider two cases depending whether there are zero or one indices i 2 Œl �
such that hBh�1i �top hTi i. If hBh�1i 6�top hTi i for all i 2 Œl �, then we have hBh�1i 6�top T

by Lemma 5.4. In this case, the conclusion of the lemma is satisfied with m WD 1 and
S1 WD T .

Finally, consider the case that there exists a unique i 2 Œl � such that hBh�1i �top hTi i;
without loss of generality, assume i D l . Let S1 WD hT1i � � � � � hTl�1i and T 0 WD Tl .
We have hBh�1i 6�top S1 by Lemma 5.4. Now note that jV.T /j � 1 C jV.T 0/j (since
hT 0i is a proper subtree of T ) and hBhi 6�top hT

0i (since hBhi 6�top hT i). By the induction
hypothesis applied to T 0, there exist S2; : : : ;Sm (m� 2) such that T 0 D S2 � hS3; : : : ;Smi

and hBh�1i 6�top Si for all i 2 ¹2; : : : ; mº. We are now done, since T D S1 � hT
0i D

S1 � hS2; : : : ; Smi.
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Lemma 5.6. If T is a rooted tree such that hBhi 6�top T , then there exist m � 0 and
l1; : : : ; lm � 1 and rooted trees Si;j (i 2 Œm�, j 2 Œli �) such that

T D hS1;1; : : : ; S1;l1
i � � � � � hSm;1; : : : ; Sm;lm

i

and hBh�1i 6�top Si;j for all i 2 Œm� and j 2 Œli �.

Proof. Assume hBhi 6�top T . Let T D hT1i � � � � � hTmi be the decomposition given by
Lemma 5.4, where hBhi 6�top hTi i for all i 2 Œm�. By Lemma 5.5, there exist rooted trees
Si;1; : : : ; Si;li

such that Ti D Si;1 � hSi;2; : : : ; Si;li
i and hBh�1i 6�top Si;j for all j 2 Œli �.

Finally, we have hTi i D hSi;1; : : : ; Si;li
i, which gives the desired formula for T .

5.1. Treedepth bounds

The next lemmas give bounds on the treedepth of (unrooted) trees T . These lemmas play
a key role in the proof of Theorem 1.3 in Section 6.

Lemma 5.7 ([26, 27]). For all k; h � 1, we have

td.Pk/ D dlog.k C 1/e and td.Bh/ D h:

Note that the embedding P15 � Clos.B4/, which witnesses the bound td.P15/ � 4, is
depicted in Figure 1.

Lemma 5.8. For all m � 0 and rooted trees T1; : : : ; Tm,

td.T1 � � � � � Tm/ � max ¹td.T1/; : : : ; td.Tm/º C 1:

Proof. Let tdrooted.T / denote the minimum height of a rooted tree T 0 such that
root.T 0/ D root.T / and E.T / � E.clos.T 0//. It is easy to see that td.T / � tdrooted.T /

and tdrooted.T1 � � � � � Tm/ D max¹td.T1/; : : : ; td.Tm/º C 1.

Lemma 5.9. For all m � 0 and rooted trees T1; : : : ; Tm,

td.hT1; : : : ; Tmi/ � dlog.mC 2/e Cmax ¹td.T1/; : : : ; td.Tm/º:

Proof. For each i 2 Œm�, fix a rooted tree T 0i of height td.Ti / with E.Ti / � E.clos.T 0i //.
Invoking Lemma 5.7, let T 00 be a rooted tree of height dlog.mC 2/e such thatE.PmC1/�

E.clos.T 00//. Label the vertices of PmC1 as v0; : : : ; vm with v0 being the root. Let T 0 be
the rooted tree, with root v0, obtained from the disjoint union of T 00; : : : ; T

0
m by identifying

the vertices vi and root.T 0i / for each i 2 Œm�. Note that E.hT1; : : : ; Tmi/ � E.clos.T 0//
and

height.T 0/ � height.T 00/C max
i2Œm�

height.T 0i / D dlog.mC 2/e C max
i2Œm�

td.Ti /:

Lemma 5.10. For every rooted tree T and h� 0 and k � 1, if hBhi 6�top T and Pk 6�top T ,
then

td.T / � h � .dlog.k C 1/e C 1/:
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Proof. The lemma is proved by induction on h. The base case h D 0 is vacuous, since
hB0i D P1 is a rooted minor of every rooted tree. For the induction step, let h � 1 and
assume hBhi 6�top T and Pk 6�top T . By Lemma 5.6, there exist m � 0 and l1; : : : ; lm � 1
and rooted trees Si;j (i 2 Œm�, j 2 Œli �) such that

T D hS1;1; : : : ; S1;l1
i � � � � � hSm;1; : : : ; Sm;lm

i

and hBh�1i 6�top Si;j for all i 2 Œm� and j 2 Œli �. We also clearly have li < k and Pk 6�top

Si;j for all i 2 Œm� and j 2 Œli �. By the induction hypothesis,

td.Si;j / � .h � 1/ � dlog.k C 1/e:

By Lemma 5.9, we have

td.hSi;1; : : : ; Si;li
i/ � dlog.li C 2/e Cmax ¹td.Si;1/; : : : ; td.Si;li

/º

� dlog.k C 1/e C .h � 1/ � .dlog.k C 1/e C 1/
D h � .dlog.k C 1/e C 1/ � 1:

Finally, by Lemma 5.8,

td.T / � max ¹td.hS1;1; : : : ; S1;l1
i/; : : : ; td.hSm;1; : : : ; Sm;lm

i/º C 1

� h � .dlog.k C 1/e C 1/:

Lemma 5.11. Every rooted tree with treedepth � d contains a subcubic rooted subtree
.i.e., every vertex has at most two children/ of order � 2

p
d�2.

Proof. We prove the contrapositive. Suppose T is a rooted tree that does not contain a
subcubic rooted subtree of order � 2

p
d�2. In particular, T does not have hBhi or Pk as a

rooted minor where h D d
p
d � 2e and k D 2h. By Lemma 5.10, it follows that

td.T / � h � .dlog.k C 1/e C 1/ � .
p
d � 1/.dlog.2

p
d�1
C 1/e C 1/ < d:

5.2. Bounded-degree graphs that omit Pk and Bh minors

The final two lemmas of this section bound the size of bounded-degree graphs that omit
Pk and Bh minors.

Lemma 5.12. Let h; k; c � 1 and suppose T is a rooted tree such that hBhi 6�top T and
Pk 6�top T and every vertex of T has at most c children. Then jV.T /j � .ck/h�1.

Proof. The lemma is proved by induction on h. In the base case h D 1, the assumption
hB1i 6�top T implies that T is an isolated root (since hB1i D P2). Therefore jV.T /j D 1D
.ck/h�1.

For the induction step, suppose that h � 2. Again by Lemma 5.6, there exist m � 0
and l1; : : : ; lm � 1 and rooted trees Si;j (i 2 Œm�, j 2 Œlm�) with the property that T D
hS1;1; : : : ;S1;l1

i � � � � � hSm;1; : : : ;Sm;lm
i and hBh�1i 6�top Si;j for all i 2 Œm� and j 2 Œlm�.
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Note that m � c and li � k � 1 and Pk�1 6�top Si;j for all i 2 Œm� and j 2 Œli �. By the
induction hypothesis, we have jV.Si;j /j � .c.k � 1//

h�2 for all i and j . Therefore,

jV.T /j D 1C

mX
iD1

liX
jD1

jV.Si;j /j

� 1C c.k � 1/.c.k � 1//h�2
D 1C .c.k � 1//h�1

� .ck/h�1:

Lemma 5.13. Let h; c � 1 and suppose G is a connected graph with maximum degree
� c C 1 such that Bh 6� G and Pch 6� G. Then jV.G/j � ch2

.

Proof. Let F be any spanning tree ofG rooted at any of its leaves. SinceG has maximum
degree c C 1, every node of F has at most c children. The assumption that Pch 6� G and
Bh 6� G implies that Pch 6�top T and hBhi 6�top F . Therefore, by Lemma 5.12,

jV.G/j D jV.F /j � .chC1/h�1
� ch2

:

6. Proof of Theorem 1.3

We now prove our main result, Theorem 1.3. The following is an equivalent rephrasing:

Theorem 6.1. Every graph G with treewidth < k contains a path of order 2h or a subdi-
vision of Bh where h D �..td.G/=k/1=4=

p
log k/.

Theorem 1.3 follows immediately: If G is a graph such that tw.G/ < k and
td.G/�Ck5 log2k (for a sufficiently large constantC ), then by Theorem 6.1,G contains
a path of order 2k or a subdivision of Bk .

Proof of Theorem 6.1. It suffices to prove the conclusion for connected graphs. Let G be
any connected graph with treewidth < k.

We will construct four trees T � S and F � Q where
� T is a greedy rooted tree decomposition of G of width tw.G/,

� S is a subcubic rooted subtree of T of size 2�.
p

td.G/=k/,
� F is a spanning tree of G, and
� Q is a subtree of F such that V.Q/ � V.S/ and maximum-degree.Q/ � k C 1.
It follows by Lemma 5.13 that Q contains a path of order .tw.G/ C 1/h (� 2h) or a
subdivision of Bh where h is the largest integer such that jV.Q/j > .tw.G/ C 1/h2

(D 2h2 log.tw.G/C1/). On the other hand, jV.Q/j is at least 2�.
p

td.G/=k/ (because
V.Q/ � V.S/). Therefore, h D �..td.G/=k/1=4=

p
log k/. Since Q � G, we conclude

that G contains a path of order 2h or a subdivision of Bh.

We proceed with the construction of trees T;S;F;Q in three steps. Various definitions
will be stated as items (a), (b), (c), etc.
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Step 1: The greedy rooted tree decomposition T and rooted subtree S � T

(a) By Lemma 4.6,G has a greedy rooted tree decomposition T of width tw.G/. Fix any
such T . Note V.T / D V.G/ (by Definition 4.2(i)) and td.T / � td.G/=.tw.G/C 1/
� td.G/=k (by Lemma 4.1).

(b) By Lemma 5.11, T has a subcubic rooted subtree S with at least 2
p

td.T /�2

(� 2
p

td.G/=k�2) vertices. Fix any such S .
(c) Let V D V.T / (D V.G/) and V 0 D V n ¹root.T /º, and let U D V.S/ and U 0 D

V.S/ n ¹root.S/º. (Note that U � V and U 0 � V 0, since root.S/ D root.T / by defi-
nition of rooted subtree.)

Step 2: The spanning tree F � G
(d) For each x 2 V 0, letbx denote the parent of x in T .
(e) By Definition 4.2(iii), for each x 2 V 0, there exists a vertex

b
x 2 V 0 such that

b
x �T x

and ¹
b
x;bxº 2 E.G/. Fix a choice of

b
x for each x.

(f) Let F be the spanning subgraph of G with edge set E.F / D ¹¹bx;bxº W x 2 V 0º.
Claim 1. For all x 2 V , the induced subgraph of F on ¹v W v�T xº is a tree. In particular,
F itself is a spanning tree of G.

I Straightforward induction starting from the leaves of T . JClaim 1

Claim 2. For all x 2 V 0, if .p0; p1; : : : ; p`/ is the path in F from p0 D bx to p` D x,
then p1 D

b
x and p1; : : : ; p` �T x.

I Since F induces a tree on the set ¹v W v �T xº, the path in F from
b
x to x stays within

this set. Since F includes the edge ¹bx;bxº, the claim follows. JClaim 2

Step 3: The subtree Q � F

(g) For each x 2 U , let Qx be the minimum subtree of F that includes all vertices in the
set ¹u W u �S xº.

(h) Let Q (D Qroot.S/) be the minimum subtree of F such that U � V.Q/.
(i) For each x 2 U 0,

– let x? be first vertex on the path in F from bx to x such that x? 2 V.Qx/ (this is
well-defined since x 2 V.Qx/),

– let Px be the path in F betweenbx and x?.
(Note that x? �T x by Claim 2, but not necessarily x? �S x.)

Claim 3. The tree Q is the union of edge-disjoint paths: E.Q/ D
F

x2U 0 E.Px/. More-
over, for all distinct x ¤ y 2U 0, the paths Px and Py have no interior vertices in common
.i.e., the sets V.Px/ n ¹bx; x?º and V.Py/ n ¹by; y?º are disjoint/.

I Straightforward from definitions. JClaim 3
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Claim 4. For all q 2 V.Q/, we have degQ.q/ � j¹x 2 U
0 W q D x?ºj C 2:

I Consider any q 2 V.Q/. By Claim 3, we have E.Q/ D
F

x2U 0 E.Px/ and hence

degQ.q/ D
X

x2U 0

degPx
.q/ D 2�j¹x 2 U 0 W degPx

.q/ D 2ºj C j¹x 2 U 0 W degPx
.q/ D 1ºj

D 2�j¹x 2 U 0 W degPx
.q/ D 2ºj

C j¹x 2 U 0 W q Dbxºj C j¹x 2 U 0 W q D x?
ºj:

We now consider two cases depending whether or not q 2 U .
� Suppose q 2 U . Then ¹x 2 U 0 W degPx

.q/ D 2º is empty by definition of Px . Also,
j¹x 2 U 0 W q Dbxºj � 2 since S is a subcubic rooted tree (i.e., q is the parent of at most
two vertices of S ). Therefore, degQ.q/ � j¹x 2 U

0 W q D x?ºj C 2 as required.
� Suppose q … U . Then ¹x 2 U 0 W q D bxº is empty, since bx 2 U for all x 2 U 0 (this

follows from S being a rooted subtree of T ). Also, j¹x 2 U 0 W degPx
.q/ D 2ºj � 1

since no vertex q is an interior vertex of Px for more than one x 2 U 0 by Claim 3.
Therefore, degQ.q/ � j¹x 2 U

0 W q D x?ºj C 2 as required. JClaim 4

Claim 5. For all q 2 V.Q/, we have j¹x 2 U 0 W q D x?ºj � jBagT;G.q/j � 1 � tw.G/.

I Recall the tree decomposition ofG induced by T (Definition 4.2). The bags of this tree
decomposition are given by

BagT;G.x/ D ¹xº [
®
y W there exists w such that w �T x <T y and ¹w; yº 2 E.G/

¯
:

For each x 2 U 0, we have x? �T x <T bx. As only one endpoint of Px is �T x,
it follows that Px contains an edge ¹bw; bwº for some w 2 V 0 such that

b
w �T x? andbw 6�T x?. It follows that

b
w �T x? �T w <T bw. Since ¹bw;bwº 2 E.Px/ � E.G/, we

have bw 2 BagT;G.x
?/ n ¹x?º.

Fix a choice of wx 2 V
0 for each x 2 U 0 (satisfying ¹bwx ;

b
wxº 2 E.Px/ and

b
wx �T

x? �T wx <T

b
wx). Now consider any q 2 V.Q/. Suppose x ¤ y 2 U 0 are such that q D

x? D y?. We claim that bwx ¤ bwy . To see why, assume for contradiction that bwx D bwy .
Then wx and wy are siblings. Since q �T wx and q �T wy , it follows that wx D wy . But
this means that ¹bwx ;

b
wxº is an edge of bothPx andPy , contradicting the edge-disjointness

of these paths by Claim 3.
This argument shows that x 7! bwx is a one-to-one map from ¹x 2 U 0 W q D x?º

to BagT;G.q/ n ¹qº. Therefore, j¹x 2 U 0 W q D x?ºj � jBagT;G.q/j � 1. Finally, we
have jBagT;G.q/j � 1 � tw.G/ by our choice of T , which satisfies width.T; G/ D
maxx2V jBagT;G.q/j � 1 D tw.G/. JClaim 5

Claims 4 and 5 together imply that Q has maximum degree at most tw.G/ C 2
(� k C 1). We also have jV.Q/j � 2

p
td.G/=k�2, since V.Q/ contains W D V.S/. By

Lemma 5.13, we are able to conclude that Q (and hence G) contains a path of length 2h

or a subdivision of Bh where h D �..td.G/=k/1=4=
p

log k/.
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7. Algorithmic results

In this section, we describe the algorithmic versions of our main results. From the con-
structive nature of the proof of Theorem 6.1, we have the following

Corollary 7.1 (Algorithmic version of Theorem 6.1). There is a polynomial-time algo-
rithm which, given a graph G and a width < k tree decomposition of G, outputs a minor
embedding of P2h or Bh where h D �..td.G/=k/1=4=

p
log k/.

Results of Bodlaender et al. [6, 7] give a polynomial-time algorithm which, given
a graph G, outputs a tree decomposition of G of width O.tw.G/2/. (This is actu-
ally a combination of two polynomial-time approximation algorithms for treewidth:
an O.log n/-approximation for arbitrary n-vertex graphs and 5-approximation when
tw.G/ � logn [7].) Combining this algorithm with Corollary 7.2, we get

Corollary 7.2. There is a polynomial-time algorithm which, given a graph G, outputs a
minor embedding of P2h or Bh where h D �.td.G/1=4=

p
tw.G/ log.tw.G/C 1//.

To obtain the algorithmic version of Theorem 1.2, we combine Corollary 7.2 with
the randomized polynomial-time algorithm of Chekuri and Chuzhoy [10] which, given a
graph G, outputs a minor embedding of the k � k grid where k D tw.G/�.1/.

Corollary 7.3 (Algorithmic version of Theorem 1.2). There is an absolute constant c > 0
and a randomized polynomial-time algorithm which, given a graph G, outputs a minor
embedding of one of the following graphs where k D �.td.G/c/:
� a k � k grid,
� a complete binary tree of height k, or
� a path of order 2k .

The algorithm of Corollary 7.3 finds a k � k grid minor via the Chekuri–Chuzhoy
algorithm and a P2h or Bh minor via Corollary 7.2. It outputs the grid minor if k > h and
the P2h or Bh minor otherwise.

8. Applications

In this section we briefly describe applications of our results in complexity theory and
logic that were the original motivation for our investigation of excluded-minor approx-
imations of treedepth. For details, the reader is referred to Kush and Rossman [24] and
Rossman [33] where these results first appeared.

8.1. The AC0 formula size of subgraph isomorphism

For a fixed graph G, the COLORED G-SUBGRAPH ISOMORPHISM problem, denoted
SUB.G/ for short, is the following: Given an n-vertex graph H and a vertex-coloring
V.H/! V.G/, doesH contain a properly colored subgraph isomorphic toG (i.e., a sub-
graph that maps isomorphically toG under the coloring map)? Straightforward (folklore)
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upper bounds show that this problem is solvable by Boolean formulas of size O.ntd.G//,
as well by Boolean circuits of size O.ntw.G/C1/ and non-deterministic branching pro-
grams of size O.npw.G/C1/. (Similar upper bounds for the harder uncolored version
of G-SUBGRAPH ISOMORPHISM problem are known by the “color-coding” technique
of [3].) Moreover, these upper bounds can be implemented in constant depth (for a con-
stant depending onG) by so-called AC0 formulas and circuits with unbounded fan-in AND
and OR gates in addition to NOT gates. A nearly matching lower bound on the constant-
depth AC0 formula complexity of SUB.G/ was recently proved in [24].

Theorem 8.1 ([24]). There is an absolute constant " > 0 such that for all graphs G,
constant-depth AC0 formulas solving SUB.G/ require size n�.td.G/"/.

The proof of Theorem 8.1 crucially relies on Theorem 1.3, as we will explain. It was
observed by Li, Razborov and Rossman [25] that the complexity of SUB.G/ is a minor-
monotone function of G.

Lemma 8.2 ([25]). If F is a minor of G, then SUB.F / reduces to SUB.G/ via a mono-
tone projection .a mapping of variables of SUB.F / to variables of SUB.G/ or constant/.
Consequently, if SUB.F / is not solvable by AC0 formulas of a given size and depth, then
neither is SUB.G/.

The core of Theorem 8.1 consists of three lower bounds, corresponding to the three
cases of Theorem 6.1:
� Constant-depth AC0 formulas solving SUB.G/ require size n�.tw.G/= log tw.G// for all

graphs G [25]. (In fact, this lower bound is proved more generally for AC0 circuits.)
� Constant-depth AC0 formulas solving SUB.P2k / require size n�.k/ for all k [34].
� Constant-depth AC0 formulas solving SUB.Bk/ require size n�.k/ for all k [24].
Theorem 8.1 follows immediately from these three lower bounds, together with Lem-
ma 8.2 and Theorem 1.3. Quantitatively, a lower bound n�.. td.G/= log td.G/ /1=3/ in Theorem
8.1 can be shown using the improved �.k3/ bound in Theorem 1.3 due to Czerwiński,
Nadara and Pilipczuk [14].

8.2. Polynomial-rank homomorphism preservation theorem on finite structures

Theorem 8.1 has a further corollary in finite model theory (the study of logical definability
on finite structures). Before stating this result, we first recall some basic definitions of
first-order logic. Fix an arbitrary relational vocabulary, that is, a set of relation symbols
each associated with a positive integer “arity”. (Without loss of generality, it suffices to
consider the vocabulary with just a single binary relation symbol; by standard arguments,
everything we will say extends to general vocabularies that may also include constant and
function symbols.)

A structure A consists of a set A, called the universe of A, together with an interpre-
tation RA � Ar for each r-ary relation symbol R. A homomorphism from structure A to
structure B is a function f WA!B with .a1; : : : ; ar / 2R

A) .f .a1/; : : : ; f .ar // 2R
B

for each r-ary relation symbol R and r-tuple .a1; : : : ; ar / 2 A
r .
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First-order formulas are logical expressions built up from atomic formulas x D y and
Rx1 : : : xr and negated atomic formulas x ¤ y and :Rx1 : : : xr via connectives ' ^  
and ' _  and quantifiers 8x ' and 9x ', where variables x; y; z, etc. range over the
universe of a structure. (Note that under this definition, negations occur only at the level of
atomic formulas, while quantifiers are not necessarily arranged at the front of a formula.)
Quantifier-rank is defined as the maximum nesting depth of quantifiers. For example, the
formula 9x ..8y Rxy/ _ .9z :Rzx// has quantifier-rank 2.

Let ' be a first-order formula without free variables. Notation A ˆ ' indicates that
A satisfies '. We say that ' is preserved under homomorphisms [on finite structures] if
Aˆ ')Bˆ ' for all [finite] structures A and B such that there exists a homomorphism
A! B. Finally, we say that ' is:
� existential if it contains no universal quantifiers (i.e., no occurrences of 8);
� positive if it contains no negated atomic formulas (i.e., no occurrences of¤ or :);
� existential-positive if it is both existential and positive.

We are ready to state the corollary in finite model theory which was the original moti-
vation for the results of this paper.

Theorem 8.3 (Polynomial-Rank Homomorphism Preservation Theorem on Finite Struc-
tures [33]). Let ' be a first-order formula of quantifier-rank k that is preserved under
homomorphisms on finite structures. Then ' is logically equivalent on finite structures
to an existential-positive formula  of quantifier-rank kO.1/ .at most O.k1="/ where
" � 1=3 � o.1/ is the constant of Theorem 8.1).

If we remove “on finite structures” from this statement, we get the original Homomor-
phism Preservation Theorem from classical model theory (where the quantifier-rank of  
can be shown to be at most k). This is a close relative of the Łoś–Tarski (resp. Lyndon)
Preservation Theorems, which state that first-order formulas preserved under injective
(resp. surjective) homomorphisms are logically equivalent to existential (resp. positive)
formulas. All three preservation theorems were originally proved using the compactness
property of first-order logic, which fails when restricted to finite structures. As one might
expect, the Łoś–Tarski and Lyndon Preservation Theorems also fail on finite structures
[2, 20]. In contrast, the Homomorphism Preservation Theorem was shown in [32] to sur-
vive on finite structures, however with a non-elementary bound on the quantifier-rank of
 (eventually greater than any finite tower of exponentials, 2k , 22k

, etc.). The polynomial
bound kO.1/ in Theorem 8.3 was obtained in [33] as a consequence of Theorem 8.1, as
we explain next following a few key definitions.

Definition 8.4 (Gaifman graph, hom-preserved classes, model checking problem).
� The Gaifman graph of a structure A, denoted G.A/, is the simple graph with vertex

set A and edges between all pairs of vertices that appear together in a tuple of a relation
of A.
� Notation A! B (resp. A ,! B) indicates the existence of a homomorphism (resp.

injective homomorphism) from A to B.
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� A class of finite structures C is hom-closed if .A 2 C and A! B/) B 2 C for all
finite structures A and B.
� For such a class C , we say that A 2 C is a minimal element if A ,! B for all B 2 C

such that B ! A.
� The MODEL CHECKING problem for C , denoted MC.C / for short, is: Given a finite

structure A, determine whether or not A 2 C .

The following lemma relates first-order definability and existential-positive defin-
ability of hom-closed classes with the AC0 formula complexity of the associated model
checking problem. Parts (1), (2), (3) all have elementary proofs; see references [15,32,33]
for details.

Lemma 8.5. Let C be a class of finite structures.

(1) If C is definable on finite structures by a first-order formula of quantifier-rank k,
then MC.C / is solvable on structures of size n by AC0 formulas of size O.nk/ and
depth O.k/ [15].

(2) C is definable on finite structures by an existential-positive formula of quantifier-
rank k if, and only if, C is hom-closed and td.G.A// � k for every minimal element
A 2 C [32].

(3) If C is hom-closed, then for every minimal element A 2 C , there is a reduction from
SUB.G.A// to MC.C / via linear-size AC0 formulas [33].

Theorem 8.3 is a direct consequence of Theorem 8.1 and the three parts of Lemma
8.5. To see why, suppose ' is a first-order formula of quantifier-rank k that is preserved
under homomorphisms on finite structures. Let C be the hom-closed class of finite models
of ', and consider any minimal element A 2 C . By Theorem 8.1, SUB.G.A// requires
constant-depth AC0 formula size n�.td.G.A//"/. Therefore, by Lemma 8.5(3), we get the
same lower bound for MC.C /. On the other hand, by Lemma 8.5(1), MC.C / has constant-
depth AC0 formulas of size nO.k/. It follows that td.G.A// D O.k1="/. Since A is
an arbitrary minimal element of C , the “if” direction of Lemma 8.5(2) implies that C
is definable on finite structures by an existential-positive formula  of quantifier-rank
O.k1="/. Finally, ' and  are logically equivalence on finite structures, since they both
define the class C .
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