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Abstract. Let � be a Hecke–Maass cusp form for SL.3;Z/ and f be a holomorphic (or Maass)
Hecke cusp form for SL.2;Z/. In this paper we prove the subconvex bound

L.1=2C i t; � � f /��;f;" .1C jt j/
3=2�1=51C":

Keywords. Subconvexity, Rankin–Selberg L-functions, GL.3/ Maass forms

1. Introduction

For � a Hecke–Maass cusp form for SL.3;Z/, and f a holomorphic Hecke cusp form for
SL.2;Z/ the associated Rankin–Selberg L-series is given by

L.s; � � f / D

1XX
n;rD1

��.n; r/�f .n/

.nr2/s

in the half-plane � > 1. (Here �� and �f are the normalized Fourier coefficients of the
forms.) This series extends to an entire function and satisfies a functional equation of
Riemann type,


.s; �/L.s; � � f / D ik
.1 � s; N�/L.1 � s; N� � f /;

with a gamma factor of degree 6,
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where k is the weight of the holomorphic form f , and ˛i are the Langlands parameters
of the form � . (This functional equation can be worked out using the template given in
[4, p. 315].) This class of Rankin–Selberg L-functions plays a crucial role in arithmetic
quantum chaos as their central critical values appear in Watson’s formula for the period
integrals arising from Weyl’s equidistribution criterion (see [10, Lectures 4 and 5] and also
the survey [19]). Hence it is important to understand the size of these functions inside the
critical strip. As a first step, in this paper we study the growth of this function on the
central line s D 1=2C i t for any given pair of forms .�; f /. A standard consequence of
the functional equation is the easy convexity bound

L.1=2C i t; � � f /��;f;" .1C jt j/
3=2C";

for any " > 0, where the implied constant depends on the forms and ". The Lindelöf
hypothesis predicts that such a bound holds with any positive exponent in place of 3=2C".
But even breaking the convexity barrier is hard and has remained open so far. The purpose
of this paper is to prove the following subconvex bound.

Theorem 1. Let � be a Hecke–Maass cusp form for SL.3;Z/, and f a holomorphic
Hecke cusp form for SL.2;Z/. Then

L.1=2C i t; � � f /��;f;" .1C jt j/
3=2�1=51C":

Let us mention that we have not tried to obtain the best possible exponent, as our goal
here is to describe a method that works in the current scenario which was beyond existing
technology. Subconvex bounds in the t -aspect are known for L-functions of degree up
to 3 over the field of rationals. The pioneering work of Weyl [20] yields the famous bound
for the Riemann zeta function

�.1=2C i t/� t1=6C";

an analogue of which in the case of degree 2 was established by Good [4],

L.1=2C i t; f /� t1=3C":

Though a bound of the same strength is not yet known for degree 3 L-functions, a sub-
convex bound in this case was established in [17]:

L.1=2C i t; �/� t3=4�1=16C":

Similar bounds are also known for the Rankin–Selberg L-function L.s; f � g/ for two
GL.2/ forms f and g (see e.g. [11]).1 The t -aspect subconvexity for genuine GL.4/
L-functions remains an important open problem. Our method of proving Theorem 1 fol-
lows the template given in [17] and is based on the separation of oscillation technique (as

1Of course, Michel–Venkatesh [11] does far more than just t -aspect, but the author is not aware
of any work which specifically addresses the t -aspect subconvexity problem for such L-functions.
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introduced in [15]). The key reason for a similar argument to be effective here – a much
more complicated case of degree 6 L-function – is the curious fact that the character sumX?

a mod q

S. Na; nI q/e

�
Nam

q

�
(1)

essentially boils down to the additive character qe.� Nmn=q/. In other words, the GL.3/,
GL.2/ Voronoi summations together transform the Ramanujan sumsX?

a mod q

e

�
a.n �m/

q

�
;

arising in the delta method, to additive characters with respect to the GL.3/ variable (see
Section 2.3). Hence we save more by applying the Poisson summation after Cauchy’s
inequality. This is the vital structural input in this paper, and is very specific to Rankin–
Selberg convolutions of the type GL.n/ �GL.n� 1/. This is the main input of this paper
which goes far beyond [17], and opens the door for tackling the subconvexity problem for
higher rank groups. (One can compare this with the more obvious, yet vital, observation
that the GL.2/Voronoi summation transforms the Kloosterman sum into Ramanujan sum.
This has been crucial in reducing the subconvexity problem to shifted convolution sum
problem in several GL.2/ scenarios; see e.g. [2, Section 6].)

The same feature helps us to prove a subconvex bound for these L-functions in the
GL.2/ spectral aspect (thereby extending the main result of Li [9] to non-self-dual set-
ting). Also the same technique coupled with the ‘transfer of mass’ trick introduced in [18]
settles the subconvexity problem for twists of the above L-function by Dirichlet charac-
ters. These will appear in follow up papers. Let us also note that our argument works for
Maass forms f , after mild alterations. In fact the argument can be extended to Rankin–
Selberg convolutions of general GL.3/ and general GL.2/ automorphic forms over Q.
The cuspidality condition on � and f can also be removed. Thus, replacing � or f or
both by suitable Eisenstein series one gets subconvex bounds in t -aspect for GL.1/, GL.2/
and GL.3/ L-functions at one stroke. Needless to say, the exponents turn out to be much
worse than what are already available in the literature.

The main technical heart of [17] was the analysis of integral transforms. In this paper
we give a simpler analysis of these integrals. This is very much desired as the technique
of [17] leads to the Weyl bound in the case of GL.2/ and GL.1/ L-functions (see [1]),
and now perhaps with this simplification one can go further.

2. The set-up

Let ��.n;m/ denote the normalised Fourier coefficients of the form � (see [3, Chapter 6])
and let �f .n/ denote the normalised Fourier coefficients of the form f (see [6]). Suppose
t > 2. Then taking a smooth dyadic subdivision of the approximate functional equation



Ritabrata Munshi 1546

(see [6, Theorem 5.3, Proposition 5.4] and [7, Section 3]) we get

L.1=2C i t; � � f /� t" sup
N�t3C"

jS.N /j

N 1=2
C t�2018 (2)

where N D 2˛=2 with ˛ D Œ�1;1/ \ Z, and S.N / is a sum of type

S.N / WD

1XX
n;rD1

��.n; r/�f .n/.nr
2/�itV

�
nr2

N

�
for some smooth function V supported in Œ1; 2� and satisfying V .j /.x/�j 1. Note that the
error term O.t�2018/ takes into account the negligible contribution of the tail, i.e. those
terms with nr2 larger than the square root of the conductor of the L-function.

Remark 1 (Notation). In this paper the notation ˛ � A will mean that for any " > 0,
there is a constant c such that j˛j � cAt". The dependence of the constant on � , f and ",
when occurring, will be ignored.

Using the Ramanujan bounds on average (see [13])XX
n2
1
n2�x

j��.n1; n2/j
2
� x1C" and

X
n�x

j�f .n/j
2
� x1C"; (3)

we get S.N /� N , and consequently (using the above convention)

L.1=2C i t; � � f /� sup
t3��<N�t3C"

jS.N /j

N 1=2
C t .3��/=2:

We set

Sr .M/ WD

1X
nD1

��.n; r/�f .n/n
�itV

�
n

M

�
:

Then

S.N /

N 1=2
�

X
r�N1=2

jSr .N=r
2/j

N 1=2
�

X
r�t�

jSr .N=r
2/j

N 1=2
C

X
r>t�

jSr .N=r
2/j

N 1=2
:

Employing (3) we getX
r>t�

jSr .N=r
2/j

N 1=2
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1

N 1=2

X
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Also for t3�� < N � t3C" we find thatX
r�t�

jSr .N=r
2/j

N 1=2
�

X
r�t�

1

r
sup

t3��

r2
�M� t

3C"

r2

jSr .M/j

M 1=2
� sup

r�t�
sup

t3��

r2
�M� t

3C"

r2

jSr .M/j

M 1=2
:

Plugging these bounds in (2) we conclude that

L.1=2C i t; � � f /� sup
r�t�

sup
t3��

r2
�N� t

3C"

r2

jSr .N /j

N 1=2
C t .3��/=2: (4)

Hence to establish subconvexity we need to show cancellation in the sum Sr .N / for N
roughly of size t3 and r small. We can and shall further normalize V , for convenience, so
that

R
V.y/ dy D 1.

2.1. The delta method

There are three oscillatory factors contributing to the sum Sr .N /. Our method is based on
separating these oscillations using the circle method. In the present situation we will use
a version of the delta method of Duke, Friedlander and Iwaniec.2 More specifically, we
will use the expansion (20.157) given in Chapter 20 of [6]. Let ı W Z! ¹0; 1º be defined
by

ı.n/ D

´
1 if n D 0;
0 otherwise:

We seek a Fourier expansion which matches with ı in the range Œ�2M; 2M�. For this we
pick Q D 2M 1=2. Then we have

ı.n/ D
1

Q

X
1�q�Q

1

q

X?

a mod q

e

�
na

q

�Z
R
g.q; x/e

�
nx

qQ

�
dx (5)

for n 2 Z \ Œ�2M; 2M� (and e.z/ D e2�iz). The ? on the sum indicates that the sum
over a is restricted by the condition .a; q/ D 1. The function g is the only part in the
formula which is not explicitly given. We only need the following three properties (see
[6, (20.158) and (20.159)], and [5, Lemma 15])

g.q; x/ D 1CO

�
Q

q

�
q

Q
C jxj

�A�
; g.q; x/� jxj�A for any A > 1;

xj
@j

@xj
g.q; x/� logQmin

²
Q

q
;
1

jxj

³ (6)

2The choice is guided by the curious observation about the character sum (1). This phenomenon
is absent in Kloosterman’s version of circle method, however it is present in the GL.2/ ı-method in
a different guise.
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for j � 1. In particular the second property implies that the effective range of the integral
in (5) is Œ�M "; M "�. Also it follows that if q � Q1�" and x � Q�", then g.q; x/ can
be replaced by 1 at a cost of a negligible error term. In the complementary range we have
xjg.j /.q; x/� Q". Finally, by Parseval and Cauchy we getZ

.jg.q; x/j C jg.q; x/j2/ dx � Q";

i.e. g.q; x/ has average size 1 in the L1 and L2 sense.

2.2. Separation of oscillation

We apply (5) directly to Sr .N / as a device to separate the oscillations of �.n; r/ and
�f .n/n

�it . This by itself does not suffice, and as in [16] and [17] we need a ‘conductor
lowering mechanism’. For this purpose we introduce an extra integral, namely

Sr .N / D
1

K

Z
R
V

�
v

K

� 1XX
n;mD1
nDm

��.n; r/�f .m/m
�it

�
n

m

�iv
V

�
n

N

�
U

�
m

N

�
dv;

where t" < K < t1�" is a parameter which will be chosen optimally later, and U is a
smooth function supported in Œ1=2; 5=2�, with U.x/ D 1 for x 2 Œ1; 2� and U .j / �j 1.
For n;m � N , the integral

1

K

Z
R
V

�
v

K

��
n

m

�iv
dv

is negligibly small (i.e. OA.t�A/ for any A > 0) if jn � mj � Nt"=K. Hence we can
apply (5) with

Q D t"
�
N

K

�1=2
(7)

and we find that up to a negligible error term, Sr .N / is given by

1

QK

Z
R
W.x/
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1�q�Q
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q
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�
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�
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�
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�
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N

�
dv dx; (8)

where W is a smooth bump function with support Œ�t"; t"�.
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2.3. Sketch of proof

We end this section with a brief sketch of the proof. For simplicity let us focus on the
generic case, i.e.N D t3, r D 1 and q �QD t3=2=K1=2, so that the main object of study
is given byZ

v�K

X
q�Q

X?

a mod q

X
n�N

��.n; 1/e

�
an

q

�
niv

X
m�N

�f .m/e

�
�
am

q

�
m�i.tCv/ dv:

Our aim is to save N plus a ‘little more’. First we apply the Voronoi summation formulae
to both the m and n sums. In the GL.2/ (resp. GL.3/) Voronoi we save .NK/1=2=t (resp.
N 1=4=K3=4) and the dual length becomes m? � t2=K (resp. n? � K3=2N 1=2). Also we
save
p
Q in the a sum and

p
K in the v integral. Hence in total we have saved N=t , and

it remains to save t plus a little extra in a sum of the formX
q�Q

X
n�K3=2N1=2

��.1; n/
X

m�t2=K

�f .m/CI

where I is an integral transform which oscillates like niK with respect to n, and the
character sum is given by

C D
X?

a mod q

S. Na; nI q/e

�
Nam

q

�
Ý qe

�
�
Nmn

q

�
:

Here Ý means that the left hand side essentially reduces to the right hand side. Next
applying the Cauchy inequality we arrive atX

n�K3=2N1=2

ˇ̌̌̌X
q�Q

X
m�t2=K

�f .m/e

�
�
Nmn

q

�
I

ˇ̌̌̌2
(9)

where we seek to save t2 plus extra. Opening the absolute value square we apply the
Poisson summation formula on the sum over n. We save enough in the zero frequency
(diagonal contribution) if t2Q=K > t2, i.e. if K < t . On the other hand, we save enough
in the non-zero frequencies if K3=2N 1=2=K1=2 > t2, which boils down to K > t1=2.

Remark 2. Notice that since the character sum boils down to an additive character we
are saving more than usual. In the general case, one would have a character sum modulo q
in place of the additive character inside the absolute value in (9), and hence after applying
Poisson in the next step one would obtain a more complicated character sum. Hence in the
general case, we would only hope to save square root of the modulus in the character sum.
Consequently, in the non-zero frequencies we would have saved K3=2N 1=2=.QK1=2/ (in
place of K3=2N 1=2=K1=2), which would be larger than t2 only if we had K > t4=3. This
would contradict the upper bound K < t .
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3. Voronoi summation formulae

3.1. GL.2/ Voronoi

Consider the sum over m in (8). The Voronoi summation formula (see [6, Section 4.5])
transforms this sum into

N 1�i.tCv/

q

1X
mD1

�f .m/e

�
Nam

q

�Z 1
0

U.y/y�i.tCv/e

�
�
Nxy

qQ

�
Jk�1

�
4�
p
mNy

q

�
dy

where k is the weight of the form f . Extracting the oscillation of the J -Bessel function
(see [7, Section 4])

Jr .2�x/ D e.x/Wr .x/C e.�x/ NWr .x/;

with

xj
dj

dxj
Wr .x/�j 1=

p
x;

we see that the above sum is essentially given by a sum of two terms of the form

N 3=4�i.tCv/

q1=2

1X
mD1

�f .m/

m1=4
e

�
Nam

q

�Z 1
0

U.y/y�i.tCv/e

�
�
Nxy

qQ
˙
2
p
mNy

q

�
dy: (10)

(Notice the slight abuse of notation: the weight functionU in (10) is different from the one
in the previous expression.) By repeated integration by parts it follows that the integral is
negligibly small if

m� t"
�
t2q2

N
CK

�
DWM0:

In the complementary range the size of the integral is given by the second derivative
bound. However we need a more precise analysis of the integral based on the stationary
phase expansion, which will be taken up later, e.g. in Lemma 5. At this point we note that
if Nx=.qQ� t1�"/ then m � .qt/2=N , otherwise the integral is negligibly small.

3.2. GL.3/ Voronoi

Next we apply the GL.3/ Voronoi summation (of Miller–Schmid [12]) to the sum over
n in (8). A similar sum occurred in [17]. The only difference is that there we had r D 1,
while here r is allowed to take small values r � t� . This only introduces certain cos-
metic complications. Let ¹˛i W i D 1; 2; 3º be the Langlands parameters for N� . Let g be a
compactly supported smooth function on .0;1/. We define, for ` D 0; 1,


`.s/ WD
��3s�3=2

2

3Y
iD1

�
�
1CsC˛iC`

2

�
�
�
�s�˛iC`

2

� ;



Subconvexity for GL.3/ � GL.2/ L-functions 1551

set 
˙.s/ D 
0.s/� i
1.s/ and let

G˙.y/ D
1

2�i

Z
.�/

y�s
˙.s/ Qg.�s/ ds;

where � > �1Cmax ¹�Re.˛1/;�Re.˛2/;�Re.˛3/º and Qg is the Mellin transform of g.
The GL.3/ Voronoi summation formula (see [9] and [17]) is given by

1X
nD1

��.n; r/e

�
an

q

�
g.n/

D q
X
˙

X
n1jqr

1X
n2D1

��.n1; n2/

n1n2
S.r Na;˙n2I qr=n1/G˙

�
n21n2

q3r

�
: (11)

In the present case we have g.n/ D e.nx=.qQ//nivV.n=N/. Next we need to extract the
oscillation of the integral transform as in the case of GL.2/ above. To this end we employ
Lemma 6.1 of [8], which gives an explicit expansion of the integral transform together
with a bound for the error term,

G˙.y/ D y

Z 1
0

g.z/

KX
jD1

cj;˙e.3.zy/
1=3/C dj;˙e.�3.zy/

1=3/

.zy/j=3
dz CO..yN/.5�K/=3/;

where cj;˙, dj;˙ are constants depending on the Langlands parameters of the form � .
(The proof is based on standard properties of the Mellin transform and exploits well-
known relations between the gamma function and the Bessel function. In particular, in the
proof, the error term is estimated trivially by shifting the contour integral and using the
trivial bound j Qg.�s/j � N�� in terms of the support of g.) This expansion can be used
in our context for the range

n21n2N

q3r
� t"; (12)

where we are able to replace the expression in (11) essentially by

N 2=3Civ

qr2=3

X
˙

X
n1jqr

n
1=3
1

1X
n2D1

��.n1; n2/

n
1=3
2

S.r Na;˙n2I qr=n1/

�

Z 1
0

V.z/zive

�
Nxz

qQ
˙
3.Nn21n2z/

1=3

qr1=3

�
dz: (13)

Next by repeated integration by parts we see that the integral is negligibly small if

n21n2 � t"
�
.qK/3r

N
CK3=2N 1=2rx3

�
DW N0:

We now substitute (10) in place of the third line and (13) in place of the second line of (8),
to get the object of focus.
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3.3. Error term

Consider the range complementary to (12). In this case we move the contour in the defi-
nition of G˙ to the left up to � D �5=2 passing through the poles given by

1C s C ˛i C `

2
D 0; i.e. s D �1 � ` � ˛i :

The second derivative bound yields

Qg.�s/ D

Z 1
0

e

�
xz

qQ

�
ziv�sV

�
z

N

�
dz
z
� N��

r
qQ

Nx
:

To the gamma factor we use Stirling, which ensures absolute convergence of the integral
over the contour � D �5=2. Consequently, we get the bound

G˙

�
n21n2

q3r

�
�

�
n21n2N

q3r

�5=2r
qQ

Nx

C

X
`D0;1

3X
iD1

�
n21n2N

q3r

�1C`CRe.˛i /
r
qQ

Nx
:

The first term accounts for the integral over � D �5=2 and the second term accounts for
the contribution of the poles. Now since 1C `C Re.˛i / > 1=2, and since we are in the
range complementary to (12), i.e. n21n2N=.q

3r/� t", it follows that

G˙

�
n21n2

q3r

�
�

�
n21n2Q

q2rx

�1=2
:

Plugging this bound in (11), and using the Weil bound for Kloosterman sums, and the
Ramanujan bound on average (3), we find that the expression in (11) is bounded by

q2
p
Qr

p
Nx

:

(We can ignore the
p
x in the denominator as the integral over x in (5) balances this

up.) Comparing with the left hand side of (11) we see that in this case GL.3/ Voronoi
saved N 3=2=.q2

p
Qr/. Returning to our analysis in Section 3.1, and using the second

derivative bound for the oscillating integral in (10) we see that the GL.2/ Voronoi savedp
N=M0. As we will see later we will have square root cancellation in the complete sum

over a mod q. So in the present case we are able to save N 2=.q3=2
p
M0Qr/ over the

trivial bound in (8), and consequently the total contribution of the terms in the range
complementary to (12) to (8) is bounded by

Q2
p
r

�
tQ
p
N
C
p
K

�
�
p
r

�
tN

K3=2
C

N
p
K

�
: (14)
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4. Reduction of integrals

4.1. Simplifying the integrals

We have transformed the sum in (8) into a new object with four integralsZ
R
W.x/g.q; x/

Z
R
V

�
v

K

� Z 1
0

U.y/y�i.tCv/
Z 1
0

V.z/ziv

� e

�
Nx.z � y/

qQ
˙
2
p
mNy

q
˙
3.Nn21n2z/

1=3

qr1=3

�
dy dz dv dx; (15)

which we need to simplify. Consider the integral over x which is given byZ
R
W.x/g.q; x/e

�
Nx.z � y/

qQ

�
dx:

First consider the case where q � Q1�". Break the integral over x into two parts using a
smooth partition of unity. In the first part we haveZ

R
U.x/g.q; x/e

�
Nx.z � y/

qQ

�
dx;

where U is supported in Œ�Q�"; Q�"�, and satisfies U .j / �j Q
"j . In this range we can

replace g.q; x/ by 1 up to a negligible error term (see (6)). Then by repeated integration
by parts we see that the integral is negligibly small unless jz � yj � t"q=.QK/. In the
remaining part we have Z

R
V.x/g.q; x/e

�
Nx.z � y/

qQ

�
dx;

with V supported in Œ�Q";�Q�"=2� [ ŒQ�"=2;Q"� and satisfying V .j / �j Q
"j . Now

using (6) and by repeated integration by parts we see that the integral is negligibly small
unless jz � yj � t"q=.QK/. It remains to consider the case where q � Q1�". Here the
derivatives of g.q; x/ can be large for x near 0. However, in this case we can use the v
integral to conclude that jz � yj � t"=K � t"q=.QK/. Note that the x integral (or the v
integral) is used only to get the above restriction on z, where we effectively save QK=q
(roughlyK) in the length of z, which is equivalent to ‘square root’ saving in both x (or v)
and z integral. (Of course we cannot expect to save in both x and v integrals.) Next writing
z D y C u with juj � t"q=.QK/ we arrive at the y integral

I.m; n21n2; q/ WD

Z 1
0

U.y/y�ite

�
˙
2
p
mNy

q
˙
3.Nn21n2.y C u//

1=3

qr1=3

�
dy: (16)

Observe that .z=y/iv D .1Cu=y/iv D eiv log.1Cu=y/, which is not oscillating as a function
of y, and hence can be absorbed (as elsewhere in this paper) in the weight function U .
Thus we have reduced the four-fold integral in (15) to

q

QK
�K � w.q/ �

Z 1
0

U.y/y�ite

�
˙
2
p
mNy

q
˙
3.Nn21n2.y C u//

1=3

qr1=3

�
dy;
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with the understanding that one needs to take supremum over juj � C=.QK/ at the end
when the sum over q is restricted to the dyadic block C � q < 2C (i.e. q � C ). One will
notice that our analysis below is uniform with respect to u in the given range. Note that
the factor q=.QK/ (resp. K) in front of the integral reflects the length of the u integral
(resp. v integral). Also the weight w.q/� 1 comes from the integralZ

W.x/g.q; x/e

�
nux

qQ

�
dx:

4.2. Size of the integral I.: : : /

Suppose K D t1�� for some � > 0. Then we claim that essentially I.: : : /� t�1=2. We
will prove that the bound holds in the L2-sense.

Lemma 1. Let
L D

Z
W.w/jI.m;N0w

3; q/j2 dw

where W is a bump function. Then

L� min ¹1=t; qr1=3=.NN0/1=3º:

Proof. To prove this assertion we make the change of variable z D y1=2, so that the phase
function in (16) reduces to

P D �
t

�
log z ˙

2
p
mN z

q
˙
3.NN0.z

2 C u//1=3w

qr1=3
:

Then

P 00 D
t

�z2
�
2.NN0/

1=3w

3qr1=3z4=3
C smaller order terms:

By the second derivative bound one gets

I.: : : /� min ¹1=t1=2; q1=2r1=6=.NN0/1=6º;

except possibly when 3.NN0/1=3w=.qr1=3/� t . In this special case opening the absolute
value square we arrive at

L�

“
U.y1/U.y2/

ˇ̌̌̌Z
W.w/e

�
3w.NN0/

1=3

qr1=3
..y1Cu/

1=3
�.y2Cu/

1=3/

�
dw
ˇ̌̌̌
dy1 dy2

�

“
jy1�y2j�1=t

U.y1/U.y2/ dy1 dy2Ct�2018�1=t�qr1=3=.NN0/1=3:

The lemma follows.
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5. Cauchy and Poisson

5.1. Cauchy inequality

Substituting (10) and (13) to (8), and using (7), we find that the expression in (8) essen-
tially reduces to

N 5=12

r2=3

X
1�q�Q

w.q/

q3=2

X?

a mod q

X
˙

X
n1jqr

n
1=3
1

X
n2�N0=n

2
1

��.n1; n2/

n
1=3
2

S.r Na;˙n2I qr=n1/

�

X
m�M0

�f .m/

m1=4
e

�
Nam

q

�
I.m; n21n2; q/:

The weights w.q/� 1 will not be of any concern as we will see below. Splitting the sum
over q into dyadic blocks q � C , and writing q D q1q2 with q1 j .n1r/1, .n1r; q2/ D 1,
we see that the contribution of the C -block to the above sum is dominated by

N 5=12

r2=3C 3=2

X
˙

X
n1

.n1;r/
�C

n
1=3
1

X
n1

.n1;r/
jq1j.n1r/1

X
n2�N0=n

2
1

j��.n1; n2/j

n
1=3
2

�

ˇ̌̌̌ X
q2�C=q1

w.q1q2/
X

m�M0

�f .m/

m1=4
C.: : : /I.m; n21n2; q/

ˇ̌̌̌
; (17)

where the character sum C.: : : / is given byX?

a mod q

S.r Na;˙n2I qr=n1/e

�
Nam

q

�
D

X
d jq

d�

�
q

d

� X?

˛ mod qr=n1
n1˛��m mod d

e.˙
N̨n2

qr=n1
/:

To analyse the sum in (17) further we break the sum over m into dyadic blocks. Then
applying Cauchy’s inequality and using the Ramanujan bound on average we see that the
expression in (17) is dominated by

sup
M1�M0

N 5=12

r2=3C 3=2

X
˙

X
n1

.n1;r/
�C

n
1=3
1 ‚1=2

X
n1

.n1;r/
jq1j.n1r/1

�1=2 (18)

where

‚ D
X

n2�N0=n
2
1

j��.n1; n2/j
2

n
2=3
2

; (19)

� D
X

n2�N0=n
2
1

ˇ̌̌̌ X
q2�C=q1

w.q1q2/
X
m�M1

�f .m/

m1=4
C.: : : /I.m; n21n2; q/

ˇ̌̌̌2
; (20)

with

M1 �M0 D t
"

�
K C

C 2t2

N

�
; N0 D t

"

�
.CK/3r

N
CK3=2N 1=2rx3

�
: (21)
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5.2. Poisson summation

Smoothing out the outer sum in (20) with an appropriate bump function and opening the
absolute value square we get

��
XX

q2;q
0
2
�C=q1

w.q1q2/w.q1q
0
2/

XX
m;m0�M1

�f .m/�f .m
0/

.mm0/1=4

�

X
n22Z

C.: : : /C.: : : / I.m; n21n2; q/I.m
0; n21n2; q

0/W

�
n2n

2
1

N0

�
where q0 D q1q

0
2. Next we apply the Poisson summation formula (see [6, (4.25)]) to

the sum over n2 with modulus q1q2q02r=n1. After a standard change of variables in the
Fourier transform, and a simple evaluation of the character sum, we arrive at

��
N0

n21M
1=2
1

XX
q2;q
0
2
�C=q1

XX
m;m0�M1

X
n22Z

jCj jI j; (22)

where

C D
XX
d jq
d 0jq0

dd 0�

�
q

d

�
�

�
q0

d 0

� X?

˛ mod qr=n1
n1˛��m mod d

X?

˛0 mod q0r=n1
n1˛
0��m0 mod d 0

N̨q0
2
� N̨ 0q2�n2 mod q2q02q1r=n1

1;

I D

Z
W.w/I.m;N0w; q/I.m0; N0w; q0/e

�
�

N0n2w

n1q2q
0
2q1r

�
dw:

(Note that since we are considering the case of f holomorphic, we can simple use the
Deligne bound for the Fourier coefficients �f .m/. For Maass forms one needs to apply
the Ramanujan bound on average after a suitable application of the Cauchy inequality at
the end.) By repeated integration by parts we see that the integral is negligibly small if

jn2j � t"
CN 1=3r2=3n1

q1N
2=3
0

DW N2: (23)

In the complementary range Lemma 1 yields a bound for the integral I .

5.3. The zero frequency

The zero frequency n2 D 0 has to be treated differently. Let �0 denote the contribution
of the zero frequency to �, and let †0 be its contribution to (18).

Lemma 2. We have

�0 �
N0M

1=2
1 C 2r

n21q1
min

²
1

t
;
C r1=3

.NN0/1=3

³
.C CM1/; †0 � r1=2N 1=2t3=2��=2;

where K D t1�� .
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Proof. In the case n2 D 0 it follows from the congruence conditions in the definition of C
that q2 D q02 and ˛ D ˛0. So the character sum is bounded as

C�
XX
d;d 0jq

dd 0
X?

˛ mod qr=n1
n1˛��m mod d
n1˛��m

0 mod d 0

1�
XX
d;d 0jq

.d;d 0/j.m�m0/

dd 0
qr

Œd; d 0�
;

and hence we get (using Lemma 1)

�0 �
N0

n21M
1=2
1 Y

X
q2�C=q1

qr
XX
d;d 0jq

.d; d 0/
XX
m;m0�M1
.d;d 0/jm�m0

1

�
N0

n21M
1=2
1 Y

X
q2�C=q1

qr
XX
d;d 0jq

.M1.d; d
0/CM 2

1 /;

where Y D max ¹t; .NN0/1=3=.C r1=3/º. Trivially handling the remaining sums we get
the first part of the lemma.

This bound when substituted in place of � in (18) yields

sup
M1�M0

N 5=12

r2=3C 3=2

X
˙

X
n1

.n1;r/
�C

n
1=3
1 ‚1=2

X
n1

.n1;r/
jq1j.n1r/1

.N0r/
1=2M

1=4
1 C

n1.q1Y /1=2
.
p
C C

p
M1/:

(24)

Substituting the expression for M0 in place of M1, using the trivial bound N0 �

K3=2N 1=2r , and replacing the range for n1 by the longer range n1 � Cr , one arrives
at

N 2=3K3=4r1=3

Y 1=2

�
1C

K1=2

C 1=2
C
C 1=2t

N 1=2

��
K1=4 C

.C t/1=2

N 1=4

� X
n1�Cr

.r; n1/
1=2

n
7=6
1

‚1=2:

To the last sum we apply Cauchy to getX
n1�Cr

.r; n1/
1=2

n
7=6
1

‚1=2 �

� X
n1�Cr

.r; n1/

n1

�1=2�XX
n2
1
n2�N0

j��.n1; n2/j
2

.n21n2/
2=3

�1=2
� N

1=6
0

(25)

where in the last sum we applied (3) and partial summation. It follows that the expression
in (24) is bounded by

N 3=4Kr1=2

Y 1=2

�
1C

K1=2

C 1=2
C
C 1=2t

N 1=2

��
K1=4 C

.C t/1=2

N 1=4

�
: (26)

Here if we substitute
p
N=K (resp. t ) in place of C (resp. Y ) and use the fact that

K D t1�� , then we get O.r1=2N 1=2t3=2��=2/ as the final bound on (18). This takes care
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of all the terms in (26) except the single term which has C 1=2 in the denominator. For this
term we substitute .NN0/1=3=.C r1=3/ in place of Y . Hence, this particular term of (26)
is bounded by

N 3=4Kr1=2

..NN0/1=3=Cr1=3/1=2
K3=4

C 1=2
�

N 7=12K7=4r2=3

N
1=6
0

�
K3=2.Nr/1=2

jxj1=2
:

(In the last inequality we have used (21).) The integral over x takes care of the x1=2 in the
denominator, and we see that the total contribution of this term to (18) is dominated by
O.r1=2N 1=2t3=2�3�=2/. The lemma follows.

6. Analysis of non-zero frequencies

6.1. The character sum

Our next lemma gives a bound for C.

Lemma 3. We have

C�
q21r.n1; m

0/

n1

XX
d2j.q2;q

0
2
n1Cmn2/

d 0
2
j.q0
2
;q2n1Cm

0n2/

d2d
0
2:

Proof. The ‘character sum’ C can be dominated by a product of two sums, C� C1C2,
where

C1 D
XX
d1;d

0
1
jq1

d1d
0
1

X?

˛ mod q1r=n1
n1˛��m mod d1

X?

˛0 mod q1r=n1
n1˛
0��m0 mod d 0

1

N̨q0
2
� N̨ 0q2�n2 mod q1r=n1

1;

C2 D
XX
d2jq2
d 0
2
jq0
2

d2d
0
2

X?

˛ mod q2
n1˛��m mod d2

X?

˛0 mod q0
2

n1˛
0��m0 mod d 0

2

N̨q0
2
� N̨ 0q2�n2 mod q2q02

1:

In the second sum, since .n1; q2q
0
2/ D 1, we get ˛ � �m Nn1 mod d2 and ˛0 �

�m0 Nn1 mod d 02. Then using the congruence modulo q2q02 we are able to conclude that

C2 �
XX

d2j.q2;q
0
2
n1Cmn2/

d 0
2
j.q0
2
;q2n1Cm

0n2/

d2d
0
2:

In the first sum C1 the congruence condition determines ˛ uniquely in terms of ˛0, and
hence

C1 �
XX
d1;d

0
1
jq1

d1d
0
1

X?

˛0 mod q1r=n1
n1˛
0��m0 mod d 0

1

1�
XX
d1;d

0
1
jq1

d1d
0
1

q1r.m
0; n1/

n1d
0
1

�
q21r.m

0; n1/

n1
:

This completes the proof of the lemma.
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We now substitute these bounds in (22). Writing q2d2 in place of q2 and q02d
0
2 in place

of q02 we find that the contribution of the non-zero frequencies to � is

�¤0 �
N0q

2
1r

n31M
1=2
1

XX
d2;d

0
2

d2d
0
2

XX
q2�C=.q1d2/
q0
2
�C=.q1d

0
2
/

XX
m;m0�M1

X
n22Z�¹0º

q0
2
d 0
2
n1Cmn2�0 mod d2

q2d2n1Cm
0n2�0 mod d 0

2

.m0; n1/jI j: (27)

We denote by †¤0 the term we get by substituting this for � in (18).

6.2. The case of small modulus

In this section we will consider the case where q � C � t1C". Recall that I � 1=t and
n2 ¤ 0. Also note that while writing the bounds we will be using the convention from
Remark 1.

Lemma 4. The contribution of q � C � t1C" and n2 ¤ 0 to (18) is bounded by

†¤0; small � r1=2t3��=2:

Proof. We use the congruences to count the number of .m;m0/ in (27). We haveX
m0�M1

q2d2n1Cm
0n2�0 mod d 0

2

.m0; n1/�
X
ıjn1

ı
X

m0�M1=ı

q2d2 Nın1Cm
0n2�0 mod d 0

2

1� .d 02; n2/

�
n1 C

M1

d 02

�
:

Recall that .d 02; n1/ D 1. Counting the number of m in a similar fashion we see that the
number of pairs .m;m0/ is dominated by

O
�
.d2; q

0
2d
0
2n1/.d

0
2; n2/.1CM1=d2/.n1 CM1=d

0
2/
�
:

It follows that the contribution of this to �¤0 is dominated by

N0q
2
1r

n31M
1=2
1 t

XX
d2;d

0
2

d2d
0
2

XX
q2�C=.q1d2/
q0
2
�C=.q1d

0
2
/

X
1�n2�N2

.d2;q
0
2d
0
2n1/.d

0
2;n2/

�
1C

M1

d2

��
n1C

M1

d 02

�
:

Summing over n2 and q2 we arrive at

N0q1rCN2

n31M
1=2
1 t

XX
d2;d

0
2

d 02

X
q0
2
�C=.q1d

0
2
/

.d2; q
0
2d
0
2n1/

�
1C

M1

d2

��
n1 C

M1

d 02

�
:

Next summing over d2 we get

N0q1rCN2

n31M
1=2
1 t

X
d 0
2

d 02

X
q0
2
�C=.q1d

0
2
/

�
C

q1
CM1

��
n1 C

M1

d 02

�
:



Ritabrata Munshi 1560

Handling the remaining sums we get

r

n31

�
N0N2C

4n1

M
1=2
1 tq21

C
N0N2C

3M
1=2
1 n1

tq1
C
N0N2C

2M
3=2
1

t

�
: (28)

Using (21) and (23) we get

N0N2 �
rn1

q1
.NK/1=2C: (29)

Let us first consider the third term of the expression (28). Substituting this bound for
� in (18) we get

sup
M1�M0

N 5=12

r2=3C 3=2

X
˙

X
n1

.n1;r/
�C

n
1=3
1 ‚1=2

X
n1

.n1;r/
jq1j.n1r/1

r

n1q
1=2
1

.NK/1=4C 3=2M
3=4
1

t1=2
;

which reduces to (using (25) and the trivial bound M0 � t4=N , as C � t )

K1=4t5=2r1=3

N 1=12

X
n1

.n1;r/
�C

.n1; r/
1=2

n
7=6
1

‚1=2 �
K1=4t5=2r1=3N

1=6
0

N 1=12

� K1=2t5=2r1=2 � r1=2t3��=2:

The contribution of the second term in (28) to (18) is given by

sup
M1�M0

N 5=12

r2=3C 3=2

X
˙

X
n1

.n1;r/
�C

n
1=3
1 ‚1=2

X
n1

.n1;r/
jq1j.n1r/1

r

q1n
1=2
1

.NK/1=4C 2M
1=4
1

t1=2
;

and again using the bounds M1 �M0 � t4=N , C � t , we arrive at

N 5=12K1=4t r1=3
X
n1

.n1;r/
�C

.n1; r/

n
7=6
1

‚1=2 � N 5=12K1=4t r5=6
X
n1

.n1;r/
�C

.n1; r/
1=2

n
7=6
1

‚1=2:

This is smaller than the bound obtained for the third term asN � t3C"=r2. Next consider
the contribution of the first term of (28). We will get a satisfactory bound for this term
in two cases. As the first case suppose M1 � Cn

1=4
1 =q1. Then the first term of (28) is

dominated by

r

n31

N0N2C
4n1

M
1=2
1 tq21

�
r2

n
7=8
1 q

5=2
1

.NK/1=2C 9=2

t
;
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which when substituted for � in (18) yields

N 2=3.Kt/1=4r1=3
X

n1�Cr

n
1=3�7=16
1 ‚1=2

X
n1

.n1;r/
jq1j.n1r/1

1

q
5=4
1

� N 2=3.Kt/1=4r1=3
X

n1�Cr

.n1; r/
5=4

n
7=6C3=16
1

‚1=2:

This is dominated by

N 2=3.Kt/1=4r1=3C9=16
X

n1�Cr

.n1; r/
1=2

n
7=6
1

‚1=2 � N 3=4K1=2t1=4r1=2r9=16 � t3��=2:

In the second case we suppose M1 � .tC /
2=N . Then

r

n31

N0N2C
4n1

M
1=2
1 tq21

�
r2

n1q
3
1

NK1=2C 4

t2
;

which when substituted for � in (18) yields

N 11=12K1=4r1=3

t1=2

X
n1�Cr

n
�1=6
1 ‚1=2

X
n1

.n1;r/
jq1j.n1r/1

1

q
3=2
1

�
N 11=12K1=4r1=3

t1=2

X
n1�Cr

.n1; r/
3=2

n
5=3
1

‚1=2:

This is dominated by

N 11=12K1=4r1=3r1=2

t1=2

X
n1�Cr

.n1; r/
1=2

n
7=6
1

‚1=2 �
NK1=2r1=2r1=2

t1=2
� t3��=2:

It remains to analyze the range whereM1�Cn
1=4
1 =q1 andM1 is not of size .tC /2=N .

Then according to the comment at the end of Section 3.1 one has Nx=.CQ/� t1�", and
hence N0 � N 2rx3=Q3 � .C t/3r=N . In this case we adopt a different strategy for
counting. (Let d2 � D � D0 � d 02.) We have

q2d2n1 Cm
0n2 � Cn1=q1 CM1N2 � Cn1=q1 CNn

5=4
1 =.q21 t

2/:

Using the congruence relations in (27) we write

q2d2n1 Cm
0n2 D �d

0
2h with h� Cn1=.q1D

0/CNn
5=4
1 =.q21 t

2D0/ DW H:
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With this we transform (27) to

N0q
2
1r

n31M
1=2
1

XX
d2;d

0
2

d2d
0
2

XX
h�H

q0
2
�C=.q1d

0
2
/

XX
m;m0�M1

X
n22Z�¹0º

q0
2
d 0
2
n1Cmn2�0 mod d2

hd 0
2
Cm0n2�0 mod d2

.m0; n1/jI j: (30)

The first congruence gives the number of m, which is O..n2; d2/.1 CM1=D//. Using
the second congruence we either count the number of d 02, which turns out to be
O..d2; h/D

0=D/ for h¤ 0, or count d2, which turns out to beO.t"/ for hD 0. It follows
that (30) is dominated by

N0q
2
1r

n31M
1=2
1 t

X
d2�D

D02
XX
h�H

q0
2
�C=.q1D

0/

X
m0�M1

X
0<n2�N2

.n2; d2/.h; d2/.m
0; n1/

�
1C

M1

D

�
:

(Observe that this also takes care of the hD 0 case.) First summing over n2, and then over
m0 and d2, we arrive at

N0q
2
1r

n31M
1=2
1 t

M1N2DD
02

XX
h�H

q0
2
�C=.q1D

0/

�
1C

M1

D

�
;

which is dominated by

N0r

n31M
1=2
1 t

M1N2C

�
Cn1 C

Nn
3=2
1

q1t2

�
.D CM1/�

N0N2C
5=2r

n
3=2
1 q

3=2
1

�
.NK/1=2C 7=2r2

q
5=2
1 n

1=2
1

:

(31)

To get the middle inequality we substitute D� C=q1, M1� Cn
1=4
1 =q1 and C � t1C",

and use the fact that Nr2� t3, q1 � n1=r . (Also observe that H � n1� 1.) When the
above bound is substituted in place of � in (18) we get

N 5=12

r2=3C 3=2

X
˙

X
n1

.n1;r/
�C

n
1=3
1 ‚1=2

X
n1

.n1;r/
jq1j.n1r/1

.NK/1=4C 7=4r

q
5=4
1 n

1=4
1

;

which is dominated by

N 2=3.Kt/1=4r1=3C3=4
X

n1�Cr

.n1; r/
1=2

n
7=6
1

‚1=2 � t3��=2:

The lemma follows.
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6.3. The generic case

It now remains to tackle the case where C � t1C" and n2 ¤ 0.

Lemma 5. The contribution of q � C � t1C" and n2 ¤ 0 to (18) is bounded by

†¤0; generic � N 1=2t3=2�1=6C3�=4:

Proof. In this case we need a better bound for I . To this end we seek to apply the station-
ary phase analysis to the integral I.: : : / in (16), namelyZ 1

0

U.y/e

�
�
t

2�
logy ˙ A

p
y ˙ B.y C u/1=3

�
dy;

where A D 2
p
mN=q and B D 3.Nn21n2/

1=3=.qr1=3/. Since C � t1C", from (10) we
deduce that we have A with a plus sign and that A � t . From (13) we conclude that
B � t1��=2. (Otherwise the integrals in (10) and (13) are negligibly small.) Hence the
stationary point, which is a solution of

�
t

2�y
C

A

2
p
y
˙

B

3.y C u/2=3
D 0;

can be found using Newton’s method. We can write the stationary point as y0 C y1 C
y2 C � � � with yi � .B=t/i . Explicit calculation yields

y0 D

�
t

�A

�2
; y1 D �

4�B

3t

�
t

�A

�8=3
;

and in general yk D fk.A=t/.B=t/
k for some function fk � 1. It follows that

I.m; n21n2; q/ is essentially given by

1

t1=2
y�it0 e

�
Bg1.A/C B

2g2.A/CO

�
B3

t2

��
where g1.A/ D �t2=3=.3.�A/2=3/ � 1 and g2.A/ � 1=t . Also note that we have
B � .NN0/

1=3=.qr1=3/. It follows that the integral I is given by

1

t

Z
W.y/e

�
.Bg1.A/ � B

0g1.A
0//C .B2g2.A/ � B

02g2.A
0//CO

�
NN0

C 3rt2

��
� e

�
�

N0n2y

n1q2q
0
2q1r

�
dy

where

B D
3.NN0y/

1=3

qr1=3
; B 0 D

3.NN0y/
1=3

q0r1=3
:
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Since n2 ¤ 0 we get


 WD
N0n2

n1q2q
0
2q1r

�
N0

.n1; r/C 2r
� t"

NN0

C 3rt2
(32)

because C � t1C" and Nr2 � t3. Making the change of variable y D z3 we write the
integral as

1

t

Z
V.z/e.f .z// dz

where

f .z/ D ˛z C ˇz2 � 
z3 CH.z/ with zj
@j

@zj
H.z/�

NN0

C 3rt2
:

(Note that the leading term involving B and B 0 is quadratic in z.) Let

g.z/ D f 00.z/ D 2ˇ � 6
z CH 00.z/:

Then because of (32) we have g0.z/ � 
 , which implies that g is monotonic. Also by
the mean value theorem the length of the interval where g.z/ � 
2=3 turns out to be
O.
�1=3/. Over this interval we use the trivial bound for the integral. In the complemen-
tary range, since g.z/ D f 00.z/� 
2=3, we use the second derivative bound. It follows
that

I �
1

t
1=3
�

1

t

�
n1q2q

0
2q1r

N0n2

�1=3
�

Cr1=3t2=3

t .NN0/1=3
:

In our bounds for � (see (28) and (31)), we had the factor N0N2 which boils down to
C.NN0/

1=3r2=3=.n1q1/ by substituting the value of N2. Now when we incorporate the
new bound for the integral, this factor is replaced by C 2t2=3r=.n1q1/. In other words, the
bound in (29) is replaced by

r

n1q1
.C t2=3/C �

r

n1q1
.NK/1=2C � t��1=3

(as K D t1�� and C � .N=K/1=2). Hence we save t1=3�� in our estimate for �. Taking
this into account and substituting C � .N=K/1=2 (in place of C � t ), and accordingly
M0 � t2=K, in place of the corresponding bounds in the proof of Lemma 4, we get
Lemma 5.

6.4. Conclusion

We now put together the bounds from Lemmas 2, 4, and 5 and the bound for the error
term in (14) to get

Sr .N /

N 1=2t3=2
� t�1=2C3�=2 C r1=2

t3=2��=2

N 1=2
C t�1=6C3�=4;
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where t3��=r2 < N < t3=r2. It follows that

Sr .N /

N 1=2t3=2
� t�1=2C3�=2 C t2���=2 C t�1=6C3�=4

for r� t� . Hence (for subconvexity) we need at least 1=3 > �> 4� , and consequently the
last term dominates the first. Equating the last two terms we find that the optimal choice
for � is given by � D 8�=5C 2=15. Plugging this in (4) we get

L.1=2C i t; � � f /� t3=2C6�=5�1=15 C t3=2��=2;

and with the optimal choice � D 2=51 we obtain the bound given in Theorem 1.
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