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Abstract. Let � (respectively �0) be a unitary cuspidal automorphic representation of GLm
(respectively GLm0 ) over Q. We prove log-free zero density estimates for Rankin–Selberg L-
functions of the formL.s;� ��0/, where � varies in a given family and �0 is fixed. These estimates
are unconditional in many cases of interest; they hold in full generality assuming an average form
of the generalized Ramanujan conjecture. We consider applications of these estimates related to
mass equidistribution for Hecke–Maaß forms, the rarity of Landau–Siegel zeros of Rankin–Selberg
L-functions, the Chebotarev density theorem, and `-torsion in class groups of number fields.
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1. Introduction and statement of the main results

The generalized Riemann hypothesis (GRH) for Dirichlet L-functions implies that if a
and q � 1 are coprime integers, then there exists a prime1 p� .q logq/2 such that p � a
.mod q/. Linnik [47] unconditionally proved that the least such prime is O.qA/, where
A > 0 is an absolute and effective constant; up to the quality of A, Linnik’s result is com-
mensurate with what GRH predicts. Linnik’s proof developed powerful results for the
distribution of zeros of Dirichlet L-functions near the point s D 1, including a log-free
zero density estimate. In this paper, we prove a flexible log-free zero density estimate
for families of L-functions and consider the arithmetic consequences of such an esti-
mate in several different settings. We use this estimate to study mass equidistribution for
Hecke–Maaß forms, the rarity of Landau–Siegel zeros for Rankin–Selberg L-functions,
the Chebotarev density theorem, and `-torsion in class groups of number fields.

In the spirit of Linnik’s original result, Kowalski and Michel [39, Theorem 5] proved
a log-free zero density estimate for general families of automorphic L-functions in the
conductor aspect. To describe their result, let AQ be the ring of adeles over Q, let d � 1
be a fixed integer, and let A.d/ be the set of cuspidal automorphic representations of
GLd .AQ/ with unitary central character. We implicitly assume that the central charac-
ter of each � 2 A.d/ is trivial on the positive reals so that A.d/ is discrete. For each
� 2 A.d/, let

L.s; �/ D
X
n�1

a�.n/

ns
D

Y
p

dY
jD1

.1 � j̨;�.p/p
�s/�1

be the standard L-function associated to � , where p runs through the primes. Consider a
finite set S.q/ of distinct cuspidal automorphic representations � 2 A.d/ such that:
(1) There exists some ı > 0 (depending at most on d ) such that for each � 2 S.q/, each

1 � j � d , and each prime p, we have the bound j j̨;�.p/j � p1=4�ı .
(2) There exists a constantA> 0 such that for all � 2 S.q/, the conductor of � isO.qA/.
(3) There exists a constant M > 0 such that #S.q/� qM .
(4) Each � 2 S.q/ has the same component �1 at the infinite place of Q.

1We write f DO.g/ or f � g to mean that jf j � cjgj for some absolute and effective constant
c > 0. For a parameter �, we write f D O�.g/ to mean that c might depend on � in an effective
manner. We write f � g to mean that f D O.g/ and g D O.f /, and similarly for f �� g and
f �� g.
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Note that the generalized Ramanujan conjecture (GRC) predicts that j j̨;�.p/j � 1 for all
primes p; this has been verified in a small number of special cases. Define

N�.�; T / WD #¹� D ˇ C i W � � ˇ; j j � T; L.�; �/ D 0º:

With these conventions and hypotheses, Kowalski and Michel prove that there exists a
constant c D c.A; ı;M/ > M and a constant B > 0 (depending on S.q/ but not q) such
that X

�2S.q/

N�.�; T /� T Bqc
1��
2��1 ; 3=4 < � � 1; T � 2: (1.1)

If � � 1 �M=c and T is sufficiently small with respect to q, then (1.1) tells us that at
most a vanishingly small proportion of low-lying zeros of the L-functions L.s; �/ with
� 2 S.q/ lie near sD 1. In many problems, such a result can serve as a powerful substitute
for GRH. Until now, (1.1) appears to be the most flexible and robust zero density estimate
for studying zeros of automorphic L-functions near s D 1.

For a pair of cuspidal automorphic representations � 2 A.d/ and �0 2 A.d0/, con-
sider the associated Rankin–Selberg L-function

L.s; � � �0/ D
X
n�1

a���0.n/

ns
D

Y
p

dY
jD1

d0Y
j0D1

.1 � j̨;j0;���0.p/p
�s/�1;

where

¹ j̨;j0;���0.p/W 1 � j � d; 1 � j0 � d0º

D ¹ j̨;�.p/ j̨0;�0.p/W 1 � j � d; 1 � j0 � d0º (1.2)

for all except finitely many primes p. In this paper, we establish log-free zero density
estimates for families of Rankin–Selberg L-functions L.s; � � �0/, where � varies and
�0 is fixed. In order to make this precise, we let AD

S
d�1A.d/ and F �A. We define

Fm WD ¹� 2 F W� 2 F \A.d/) d � mº; Fm.Q/ WD ¹� 2 FmWC.�/ �Qº; (1.3)

where C.�/ is the analytic conductor of � (see (3.3) for the definition). We require an
average version of GRC.

Hypothesis 1.1. Let � 2 A.d/. If " > 0, thenY
p

1X
rD0

max1�j�d j j̨;�.p/j2r

pr.1C"/
�d;" C.�/

":

Remark 1.2. Indeed, if � satisfies GRC, then Hypothesis 1.1 follows with lots to spare.
Brumley [7, Theorem 1 and Corollary 2] proved that each � 2 A.d/ satisfies Hypothe-
sis 1.1 when d � 4 and gave sufficient conditions (strictly weaker than assuming GRC)
under which � may satisfy Hypothesis 1.1 when d � 5.
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Theorem 1.3. Let �0 2A.m0/, and letQ;T � 1. Let Fm.Q/ be as in (1.3), and suppose
that �0 and each � 2 Fm.Q/ satisfy Hypothesis 1.1. If 1=2 � � � 1, thenX

�2Fm.Q/

N���0.�; T /�m;m0 .C.�0/QT /
108.m0m/

4.1��/:

Remark 1.4. If 1 2 A.1/ is the trivial representation, whose L-function is the Riemann
zeta function �.s/, then L.s; � � 1/ D L.s; �/ and Theorem 1.3 immediately recovers
(1.1) when �0 D 1 (up to the quality of the coefficient of 1� � ) with the added benefit of
improved dependence on T . Theorem 1.3 is new for all other choices of �0, even if one
assumes GRC in full.

Remark 1.5. We have made no attempt to optimize the exponent, but there is ample
room for improvement (especially if one assumes GRC). Obtaining a strong numerical
exponent was a key component of the work of Thorner and Zaman [64, Theorem 3.2].

Our proof of Theorem 1.3 in fact produces the upper boundX
�2Fm.Q/

N���0.�; T /�m;m0 .C.�0/QT #Fm.Q//
2:05�107.m0m/

3.1��/ (1.4)

(see (6.3)). However, (1.4) only becomes meaningful when there exists a constant cm > 0
(depending only on m) such that #Fm.Q/�F ;m Q

cm . The situation is the same as in
(1.1), which is why Kowalski and Michel assume the bound #S.q/� qM . A standard
calculation for Dirichlet characters reveals that #F1.Q/�Q2, and the existence of some
suitable cm > 0 for m � 2 follows from work of Michel and Venkatesh [51, Section
2.6.5]. We expect that Fm.Q/ �F ;m Q

mC1 for all m � 1; Brumley and Milićević [8,
Theorems 1.1 and 1.2] proved this claim (and much more) when m D 2. For m � 3,
Brumley and Milićević prove the claim when each � 2 Fm.Q/ corresponds to a GLm
Hecke–Maaß newform. We prove an unconditional bound on #Fm.Q/ with an explicit
exponent.

Theorem 1.6. For all " > 0, we have the bound #Fm.Q/�";m Q
2mC".

The truth of Theorem 1.6 follows immediately from Theorem A.1, which we prove in
Appendix A. The bound in Theorem 1.6 together with (1.4) produces Theorem 1.3.

The estimate in Theorem 1.3 improves noticeably if there exists a primitive real
Dirichlet character � .mod q/ such that L.s; �/ has a real zero close to s D 1.

Theorem 1.7. LetQ;T � 1 and 1=2� � � 1. Let � .mod q/ be a primitive real Dirichlet
character such that q � Q and L.s; �/ has a real zero ˇ� 2 .1=2; 1/. Let �0 2 A.m0/,
and assume that L.ˇ�; �0 � .z�0 ˝ �// D 0. Let

N ����0.�; T /

D

´
N���0.�; T / if � ¤ z�0˝�,
#¹� D ˇC i ¤ ˇ�W � � ˇ; j j � T; L.�; �0�.z�0˝�// D 0º if � D z�0˝�.
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If �0 and each � 2 Fm.Q/ satisfy Hypothesis 1.1, thenX
�2Fm.Q/

N ����0.�; T /

�m;m0 min¹1; .1 � ˇ�/ log.C.�0/QT /º � .C.�0/QT /10
8.m0m/

4.1��/:

Moreover, there exists an effectively computable constant cm;m0 > 0 such that if
.1 � ˇ�/ log.C.�0/Q/ � cm;m0 , then

¹� 2 Fm.Q/WL.ˇ�; � � �0/ D 0º [ ¹z�0 ˝ �º D ¹z�0 ˝ �º:

Remark 1.8. When m0 D 1, the hypothesis that L.ˇ�; �0 � .z�0 ˝ �// D 0 reduces to
L.ˇ�; �/ D 0, which is true by definition. If m0 � 2, then L.s; �0 � .z�0 ˝ �//=L.s; �/
is expected to be entire for all primitive Dirichlet characters �, which is far stronger than
what Theorem 1.7 requires. This is known when m0 D 2 by work of Gelbart and Jacquet
[24] and when m0 D 3 or 4 by work of Yang [70, Corollary 3]. For any m0 � 2, the
conjectured automorphy of the adjoint square lift from GLm0 to GLm2

0
�1 implies that

L.s; �0 � .z�0 ˝ �//=L.s; �/ is entire for all primitive Dirichlet characters.

Remark 1.9. When �0 D 1 andmD 1, in which case Fm.Q/ is a set of primitive Dirich-
let characters with conductor at most Q, Theorem 1.7 was proved in a less explicit form
by Bombieri [5, §6]. Bombieri’s ideas were extended to Hecke characters over a given
number field by Weiss [69, Theorem 4.3].

Page’s theorem [13, Chapter 14] tells us that there exists an absolute and effective con-
stant c1 > 0 such that for everyQ� 3, there exists at most one modulus q 2 .Q=2;Q� and
at most one primitive real character � .mod q/ such that L.s; �/ has a real zero ˇ� with
the property that ˇ� > 1� c1=log q. Moreover, such a zero ˇ�, which we call a Landau–
Siegel zero, must be simple. If a primitive real character � .mod q/ with q 2 .Q=2;Q�
has an associated Landau–Siegel zero ˇ�, then Theorem 1.7 improves on Theorem 1.3.
While it is well-known that Landau–Siegel zeros associated to real characters repel the
zeros of Dirichlet L-functions from the line Re.s/ D 1, Theorem 1.7 appears to be the
first explicit instance in the literature where Landau–Siegel zeros associated to real char-
acters repel zeros of high-degree L-functions. This adds to the growing literature on
interesting consequences of the existence of Landau–Siegel zeros of DirichletL-functions
[12, 14, 18–20, 22, 26].

Overview of the proof

Our proof of Theorem 1.3, which is noticeably different from that of (1.1), descends
naturally from Gallagher’s approach to log-free zero density estimates for Dirichlet L-
functions [23]. Much like the classical approach to zero-free regions for L-functions, if
L.s; � � �0/ has a zero �0 such that j�0 � .1C i t/j � " for some small " > 0, then high
derivatives of �L

0

L
.s; � � �0/ near s D 1C "C i t will be large; this is made quantita-

tive via the lower bound for power sums due to Sós and Turán [59]. Moreover, one can
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show that if these high derivatives are large, then the mean value of a certain Dirichlet
polynomial of the shape

P.t; � � �0/ D
X

A<p<B

a���0.p/ logp
p1Cit

must also be large when t is close to Im.�0/. A new “pre-sifted” large sieve inequality
(Proposition 5.1) in the spirit of Duke and Kowalski [15, Theorem 4] shows that the mean
value of P.t; � � �0/ cannot be too large for too many � 2 Fm.Q/ simultaneously;
Theorem 1.3 follows from the interplay between the upper and lower bounds for the high
derivatives. The coefficients of P.t; � � �0/ are supported on large unramified primes, in
which case a���0.p/ D a�.p/a�0.p/ by means of (1.2); this decisive identity facilitates
the averaging over � 2 Fm.Q/ while �0 is fixed. We prove Theorem 1.7 similarly by
simultaneously considering the twistsL.s;� ��0/ andL.s;� � .�0˝�// and exploiting
the fact that if � is a real primitive Dirichlet character with a Landau–Siegel zero, then
� behaves like the Möbius function. This approach contrasts with the method of proof
for (1.1), which uses mollification to detect zeros and a mean value theorem involving
Selberg’s pseudo-characters to show that the aggregate contribution from the zeros of
each L-function is small. It is unclear to the authors how one would modify the proof of
(1.1) to incorporate a twist by �0 while maintaining a log-free estimate.

In [61, Corollary 2.6], Soundararajan and the second author establish the first uncon-
ditional log-free zero density estimate for each Rankin–Selberg L-function L.s; � � �0/
with an application to the weak subconvexity problem. The proof of [61, Corollary 2.6]
relies on the same method of detecting zeros that we use here. Unfortunately, the means
by which the proofs in [61] avoid appealing to a weak form of GRC (such as Hypoth-
esis 1.1) appears to be incompatible with the process of averaging over � 2 Fm.Q/. In
particular, Hypothesis 1.1 appears to be indispensable in the proof of Proposition 5.1
unless #Fm.Q/ D 1, which is precisely the case considered in [61].2

2. Arithmetic applications

2.1. Subconvexity and mass equidistribution

Let f be a Hecke–Maaß newform for the congruence subgroup �0.qf / � SL2.Z/ with
Laplace eigenvalue �f and trivial central character. Define

G .Q/ D ¹f : qf squarefree, �f qf � Qº: (2.1)

Let f0 denote a fixed Hecke–Maaß newform, and consider the L-functions L.s; f � f /
andL.s;f � f � f0/ as f 2 G .Q/ varies. Since qf is squarefree, the conductor of f � f
is q2

f
.

2Note added in proof: A year after the initial submission of this paper, the second and third
authors unconditionally proved Proposition 5.1 in a stronger form using different ideas. This leads
to a proof of Theorem 1.3 when �0 D 1 that requires no unproven hypotheses. See [66].
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The generalized Lindelöf hypothesis (which follows from GRH) predicts that for all
" > 0 and all f 2 G .Q/, we have the bounds

L.1=2C i t; f � f /�" ..jt j C 1/
4�f q

2
f /
";

L.1=2; f � f � f0/�" .�
4
f0
q4f0�

2
f q

4
f /
":

The so-called convexity bounds

L.1=2C i t; f � f /� ..jt j C 1/4�f q
2
f /
1=4;

L.1=2; f � f � f0/� .�4f0q
4
f0
�2f q

4
f /
1=4

(2.2)

follow from the work of Heath-Brown [27]. For fixed ı 2 .0; 1=4/, subconvexity bounds
of the shape

L.1=2C i t; f � f /� .jt j C 1/.�f q
2
f /
1=4�ı ;

L.1=2; f � f � f0/� .�4f0q
4
f0
�2f q

4
f /
1=4�ı

(2.3)

are not yet known; obtaining bounds of these sorts is a very active area of research which
has some spectacular partial results (see [33], for instance).

A standard calculation involving the classical large sieve [32, Theorem 7.13] and
the approximate functional equation for Dirichlet L-functions shows that if Q is large,
then for all except at most a density zero subset of the moduli q � Q, we have the
bound L.1=2; �/�" q

" for all primitive Dirichlet characters � .mod q/ (see [32, The-
orem 7.34]). Similarly, a sufficiently strong large sieve for automorphic forms combined
with the approximate functional equation will show that there exists a constant ı > 0 such
that (2.3) holds for almost all f 2 G .Q/. As of now, the best candidate for such a large
sieve is that of Duke and Kowalski [15, Theorem 4], but this large sieve combined with
the approximate functional equation is not strong enough to deduce (2.3) for almost all
f 2 G .Q/ with any fixed ı > 0, even under GRC. However, a straightforward application
of Theorem 1.3 yields such an average result.

Theorem 2.1. Let " > 0, and let G .Q/ be as in (2.1). For all except at most Of0.Q
"/

of the Hecke–Maaß forms f 2 G .Q/, the bounds in (2.3) hold simultaneously with
ı D 10�20".

Remark 2.2. It follows from work of Brumley and Milićević [8] that #G .Q/�Q2. Thus
the exceptional set in Theorem 2.1 is quite small.

Our interest in (2.3) is motivated by the quantum unique ergodicity conjecture. Lin-
denstrauss [46] and Soundararajan [60] proved that as f traverses the Hecke-Mass forms
with qf D 1 and �f !1, the L2 mass of f equidistributes in �0.1/ nH with respect to
the standard hyperbolic measure. This affirmatively resolved the quantum unique ergod-
icity conjecture of Rudnick and Sarnak [58] for the modular surface. More specifically,
let

�f .�/ D

Z
�0.qf /nH

jf .z/j2�.z/
dx dy

y2
; �.�/ D

Z
�0.1/nH

�.z/
dx dy

y2
; (2.4)
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where � is a bounded measurable function on �0.1/ n H. It is now known that as f
traverses the Hecke–Maaß forms with qf D 1 and eigenvalue �f !1,

Df .�/ WD
�f .�/

�f .1/
�
�.�/

�.1/
D o�.1/: (2.5)

Unfortunately, the methods in [46, 60] do not yield any information about the rate of
convergence in (2.5). See [30,53,55] for an unconditional proof of a version of (2.5) with
an effective rate of convergence as f traverses the holomorphic cuspdial newforms of
weight kf and level qf with kf qf !1; this proof relies heavily on the fact that GRC is
known for such newforms. For work in the direction of establishing (2.5) for Hecke–Maaß
forms in qf -aspect when qf is large and prime, see [54].

We consider the problem of proving that for all except at most a density zero subset of
f 2 G .Q/, one has (2.5) with a power-saving rate of convergence in the hybrid qf and �f
aspects. When f traverses the even Hecke–Maaß forms with qf D 1, this follows from
Zhao’s computation of the quantum variance of the modular surface [72], which builds
on work of Luo and Sarnak [49]. It is unclear to the authors whether one can adapt the
proofs for the problem considered here.

It follows from work of Nelson [53] that for f 2 G .Q/ (given by (2.1)), subconvexity
bounds of the form (2.3) imply the bound

Df .�/�� .�f q
2
f /
�ıCo.1/: (2.6)

(See [53, Remarks 1.4 and 1.7, and Section 4].) Thus the next result follows immediately
from Theorem 2.1 and the remark that follows it.

Corollary 2.3. Fix " > 0, and let G .Q/ be as in (2.1). For all except at most O�.Q"/ of
the Hecke–Maaß forms f 2 G .Q/, the bound (2.6) holds with ı D 10�21".

Remark 2.4. By appealing to the extension of Watson’s formula proved by Nelson,
Pitale, and Saha [55] and the calculations in [15, p. 11], one can extend the definition
of G .Q/ to allow qf to be any integer at the cost of allowing the exceptional set to be of
size O�.Q1=2C"/ in Corollary 2.3. The proof is entirely analogous.

2.2. Rarity of Landau–Siegel zeros

Let Fm.Q/ be as in (1.3), and let � 2 Fm.Q/ \A.d/. While GRH predicts that L.s; �/
has no zero in the region Re.s/ > 1=2, at present we know that L.s; �/ has at most one
zero in the region

Re.s/ � 1 �
c2

d4 log.C.�/.jIm.s/j C 3//
(2.7)

(see [32, Theorem 5.10]). If L.s; �/ has a zero in this region, then � is self-dual (so the
Dirichlet coefficients of L.s; �/ are real), and the zero must be simple and real. We call
such a zero a Landau–Siegel zero. Hoffstein and Ramakrishnan [29, Theorem A] proved
that such Landau–Siegel zeros are quite rare. In particular, for some suitable effective
constant c.m/ > 0, there is at most one � 2 Fm.Q/ such that L.s; �/ has a real zero ˇ
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satisfying ˇ > 1� c.m/=logQ. This generalizes Page’s theorem for Dirichlet characters.
Moreover, it is known by the work of Hoffstein and Ramakrishnan [29, Theorem A] and
Banks [2] that ifmD 2 or 3, then no � 2 Fm.Q/ has anL-function possessing a Landau–
Siegel zero.

The situation for Rankin–Selberg L-functions is much more difficult. Currently, an
unconditional zero-free region (with at most one exceptional zero) roughly of the shape
(2.7) exists forL.s;� � �0/when at least one of � and �0 is self-dual [31, Theorem A.1].
In Lemma 4.5 below, we extend [29, Theorem A] to the context of Rankin–Selberg
L-functions. Using Theorems 1.3 and 1.7 and Lemma 4.5, we show that with very few
exceptions, the L-functions in the set ¹L.s; � � �0/W� 2 Fm.Q/º have a much stronger
zero-free region than what is provided by the usual approaches; moreover, there is no
constraint on whether � or �0 are self-dual.

Theorem 2.5. Assume the above notation. Let A � 1, and let � D �.A;Q;T;Fm/ be the
set of all � 2 Fm.Q/ such that L.s; � � �0/ has a zero in the region

s D � C i t; jt j � T; � � 1 �
A

2 � 108.m0m/4 log.C.�0/Q.T C 2//
: (2.8)

(i) Under the notation and hypotheses of Theorem 1.3, j� j D Om;m0.e
A/.

(ii) Under the notation and hypotheses of Theorem 1.7,

j� � ¹z�0 ˝ �ºj D Om;m0.e
A min ¹1; .1 � ˇ�/ log.C.�0/QT /º/:

Remark 2.6. Suppose that � 2Fm.Q/�¹z�0º. By setting T DQ andAD" log.C.�0/Q/
for some small fixed " > 0, it follows readily from Theorem 2.5(i) that apart from at most
a few exceptional � in Fm.Q/, one can obtain strong approximations for L.1; � � �0/
as a short Euler product. See [11, 25, 42] for further discussion and applications of such
approximations.

Let � .mod q/ be a primitive real character such that L.s;�/ has a zero ˇ� 2 .1=2; 1/,
and define �� WD .1 � ˇ�/ log q. Suppose that q � C.�0/QT � qB for some B � 1, in
which case �� � .1� ˇ�/ log.C.�0/QT /. Then Theorem 2.5(ii) implies j� � ¹z�0 ˝ �ºj
D O.BeA��/. If A and B are constant and ˇ� is a Landau–Siegel zero of L.s; �/,
then �� D o.1/ as q ! 1. Thus j� � ¹z�0 ˝ �ºj D 0 when q is sufficiently large. So
under the hypotheses of Theorem 1.7 and the existence of a suitable sequence of prim-
itive real characters �i .mod qi / with ��i ! 0 as qi ! 1, the only Rankin–Selberg
L-functions in the set ¹L.s; � � �0/W � 2 Fmº which have a zero in the region (2.8)
are of the form L.s; �0 � .z�0 ˝ �i // (and in this case, Corollary 4.6 below shows that
the Landau–Siegel zero associated to �0 � .z�0 ˝ �/ is precisely ˇ�i ). In other words,
Landau–Siegel zeros associated to quadratic characters repel all other Landau–Siegel
zeros associated to Rankin–Selberg convolutions. This provides an interesting compan-
ion to another result of Hoffstein and Ramakrishnan [29, Theorem B], which roughly
states that if all Rankin–Selberg L-functions factor into products of L-functions of cus-
pidal automorphic representations (as predicted by Langlands), then the only primitive
L-functions over Q which could possibly admit a Landau–Siegel zero are those associ-
ated to primitive real Dirichlet characters.
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2.3. The Chebotarev density theorem in families

Let K be a number field of degree n D ŒK W Q� with DK D jdisc.K=Q/j and Galois
closure zK over Q. Let G be isomorphic to the Galois group of zK=Q, and let C be a
conjugacy class of Gal. zK=Q/. Define

�C .x; zK=Q/ WD #
²
p � xWp − D zK ;

�
zK=Q

p

�
D C

³
;

where the Artin symbol
� zK=Q
p

�
denotes the conjugacy class of Frobenius automorphisms

attached to the prime ideals of zK which lie over p. The Chebotarev density theorem states

EC .x; zK=Q/ WD

ˇ̌̌̌
�C .x; zK=Q/ �

jC j

jGj
�.x/

ˇ̌̌̌
D o

�
jC j

jGj

x

log x

�
as x !1;

where �.x/ is the number of rational primes up to x. It follows from the work of Lagarias
and Odlyzko [41, Theorem 1.1] that GRH for the Dedekind zeta function � zK.s/ implies

EC .x; zK=Q/�
jC j

jGj
x1=2 log.D zKx

jGj/ for x � .logD zK/
2.log logD zK/

4: (2.9)

Unconditionally, refining a result of Lagarias and Odlyzko [41], it follows from work of
Murty [52, Section 4] that

EC .x; zK=Q/

�
jC j

jGj

�
xˇ1

log x
C

x

exp.c3.log x/1=2jGj�1=2/

�
for x �jGj ec4.logD zK /

2=jGj; (2.10)

where ˇ1 is a potential Landau–Siegel zero of � zK.s/. Recent work of the authors [65]
shows that for any A > 1, there exists B D B.A/ > 1 such that

EC .x; zK=Q/�A

jC j

jGj

�
xˇ1

log x
C

x

.log x/A

�
for x �jGj;A D

B log logD zK
zK

: (2.11)

For large x, (2.10) remains the strongest upper bound for EC and it is nontrivial in the
absence of a Landau–Siegel zero. On the other hand, (2.11) exhibits a weaker estimate
but for much smaller values of x. Nonetheless, even when ignoring the Landau–Siegel
zero, both (2.10) and (2.11) fall far short of exhibiting nontrivial bounds for values of x
commensurate in size with (2.9). Even establishing such bounds for x � Do.1/

zK
would be

extremely desirable.
Substantial progress has recently been made by Pierce, Turnage-Butterbaugh, and

Wood [56] when K varies in certain families. They show that the ranges of x in (2.10)
and (2.11) can be significantly improved for most K. We briefly summarize their results.
Let G 2 ¹Cm; Dp; S3; S4; A4º, where Cm is the cyclic group of order m � 2, Sm is the
symmetric group acting on m � 2 elements, Dp is the dihedral group of order 2p with p
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an odd prime, and A4 is the alternating group acting on four elements. Let F .X/ D

F .X IG; n;RG/ equal the set of number fields K given by

¹KWDK � X; ŒK W Q� D n; Gal. zK=Q/ Š G; K satisfies RGº; (2.12)

where

RGD

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

K is totally ramified if GDCn,

K has square-free absolute discriminant if GDSn,

every prime p that ramifies tamely in K has its inertia group generated by an
element in the conjugacy class of reflections if GDDn for a prime n�3,

every prime p that ramifies tamely in K has inertia group
generated by an element in either ¹.1 2 3/; .1 3 4/; .1 4 2/; .2 4 3/º
or ¹.1 3 2/; .1 4 3/; .1 2 4/; .2 3 4/º if nD4 and GDA4.

(2.13)

As demonstrated in [56], there exists some constant a D a.G;n/ 2 .0; 1� such that, for all
choices of G, n, and RG under consideration, #F .X/�G;n X

a.
With this setup in mind, let A � 2 and � > 0. Pierce, Turnage-Butterbaugh, and Wood

[56, Theorem 1.4] proved that there exist effective constants ˛ D ˛.�; A; G; n/ > 0 and
" D ".G; n/ > 0 such that for all fields K 2 F .X/ with at most OG;n.X�"#F .X//

exceptions, one has

EC .x; zK=Q/

�A

8̂̂̂̂
<̂
ˆ̂̂:
jC j

jGj

x

.log x/A
if e˛.log logD zK /

5=3C�

� x �jGj e
c4.logD zK /

2=jGj;

jC j

jGj

x

exp
�
c3
� logx
jGj

�1=2� if x �jGj ec4.logD zK /
2=jGj.

(2.14)

Notice that (2.14) eliminates the Landau–Siegel zero and, most importantly, goes beyond
the range of x in (2.11). (We have only collected their unconditional results; see [56,
Section 2] for a discussion regarding degree n Sn- and An-fields with n � 5.)

The proofs in [56] rely decisively on (1.1), and the T -dependence in (1.1) inhibits
their proof from achieving a result that is more commensurate with what GRH predicts
in (2.9). Using Theorems 1.3 and 8.5, we improve both the range of x and quality of the
error term in (2.14). In particular, we obtain a range much closer to what GRH predicts
with a power savings error term for small values of x.

Theorem 2.7. LetG be one of the groups in (2.13). Let C �G be a conjugacy class, and
let F .X/ D F .X IG; n; RG/ be as in (2.12). There exist small positive constants � D
�.G;n/ and "D ".G;n/ such that, for all fieldsK 2F .X/with at mostOG;n.X�"F .X//
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exceptions,ˇ̌̌̌
�C .x; zK=Q/ �

jC j

jGj
�.x/

ˇ̌̌̌

�

8̂̂̂<̂
ˆ̂:
jC j

jGj
x1�� if .logD zK/

2=� � x < D
1=.24�/

zK
,

jC j

jGj

x

exp.c3.log x/1=2jGj�1=2/
if x � D1=.24�/

zK
.

Remark 2.8. For a more uniform version of the error term in Theorem 2.7, see (8.15).

2.4. Landau–Siegel zeros and torsion in class groups

Let us continue with the notation of Section 2.3. Let ClK denote the ideal class group of a
number field K. It is widely believed that if ` is a positive integer, then the `-torsion sub-
group ClK Œ`� is of sizeO";n;`.D"

K/ for all " > 0. This bound is known to hold when nD 2
and `� 2 (due to Gauss) and when ` is prime andK is an `-extension of a given base field
[38, Theorem 1.5]. The trivial bound isO";`;n.D

1=2C"
K /, which follows from Minkowski’s

bound for the order of the entire group. Ellenberg and Venkatesh [16, Lemma 2.3 and
Proposition 3.1] proved that if, for any " > 0, one has

#
®
p � D

1
2`.n�1/

� "4

K Wp − DK and splits completely in K
¯
�";n D

1
2`.n�1/

� "2

K ; (2.15)

then
jClK Œ`�j �";n;` D

1
2�

1
2`.n�1/

C"

K : (2.16)

Since primes that split completely in zK also split completely in K, the hypothesis (2.15)
follows easily from (2.9), which is a consequence of GRH for � zK.s/. It is a straightfor-
ward consequence of (2.14) that for any positive integer `, all except at most a density
zero subset of the fields K 2 F .X IG; n; RG/ satisfy (2.15), and hence (2.16), uncondi-
tionally. This provides the first nontrivial upper bounds for jClK Œ`�j, for all integers `� 1,
applicable to infinite families of fields of arbitrarily large degree. This elegant application
of (2.14) in [56] was achieved by exhibiting large zero-free regions for � zK.s/ for most
fields K in a certain families. See also [68] for additional instances in which (2.16) can
be improved pointwise.

We proceed in a complementary direction using Theorem 1.7. If the Dedekind zeta
function of a quadratic subfield Q.

p
d/ has a Landau–Siegel zero, then Theorem 1.7

implies that certain number fields K, whose Galois closure does not contain Q.
p
d/ as a

subfield, possess GRH-quality bounds on `-torsion in their class groups.

Theorem 2.9. LetK=Q be a number field of degree n with Galois closure zK over Q. Let
` � 1 be a positive integer and " > 0 be arbitrary. Let � be the real Dirichlet character
modulo a fundamental discriminant d . Assume the following:

(i) � zK.s/ is the L-function of an automorphic representation of GLŒ zKWQ�.AQ/.
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(ii) Q.
p
d/ \ zK D Q and logDK �n;";` log jd j.

(iii) The Dirichlet L-function L.s; �/ has a real zero ˇ� D 1 � ��=log d with �� suffi-
ciently small, depending only on n, "; and `.

Then

jClK Œ`�j �";n;` D
1
2�

1
2`.n�1/

C"

K :

Remark 2.10. In essence, the extra repulsion of zeros from the line Re.s/ D 1 induced
by the presence of ˇ� is barely sufficient to alleviate the need for the averaging process
in [56]. This gives Theorem 2.9 the benefit of being a result for individual fields at the
cost of assuming the existence of ˇ�.

3. Properties of L-functions

We recall some standard facts about L-functions arising from cuspidal automorphic rep-
resentations and their Rankin–Selberg convolutions. Much of the material we present here
can be found in [6, Section 1]. We refer the reader there for a more detailed overview.

3.1. Standard L-functions

Let d � 1 be an integer, let A denote the ring of adeles over Q, and let A.d/ be the set of
all cuspidal automorphic representations of GLd .A/. We consider each �D˝v �v 2A.d/

to be normalized so that � has a unitary central character that is normalized to be trivial
on the positive reals. The tensor product ranges over all places of Q. At a nonarchimedean
place corresponding with a prime p (resp. at the archimedean place), we write �p (resp.
�1) instead of �v . We write z� 2 A.d/ for the representation which is contragredient to
� .

Let � D ˝v �v 2 A.d/, and let N� denote the conductor of � . The standard L-
function L.s; �/ associated to � is of the form

L.s; �/ D
Y
p

L.s; �p/ D
X
n�1

a�.n/

ns
:

The Euler product and Dirichlet series converge absolutely when Re.s/ > 1. For each p,
the local factor L.s; �p/ is given in the form

L.s; �p/ D

dY
jD1

�
1 �

j̨;�.p/

ps

��1
D 1C

1X
jD1

a�.p
j /

pjs

for suitable complex numbers j̨;�.p/. With this convention, we have j̨;�.p/ ¤ 0 for
all j whenever p −N� , and it might be the case that j̨;�.p/D 0 for some j when p jN� .
At the archimedean place of Q, there are d complex Langlands parameters ��.j / from
which we define

L.s; �1/ D �
�ds=2

dY
jD1

�

�
s C ��.j /

2

�
:
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By the work of Rudnick and Sarnak [58, Proposition A.1] and Blomer and Brumley
[4, Corollary 1], we know that there exists a constant

ıd 2

�
0;
1

2
�

1

d2 C 1

�
(3.1)

such that
j j̨;�.p/j � p

ıd and Re.��.j // � �ıd (3.2)

for all j and p. The generalized Selberg eigenvalue conjecture and GRC assert that ıd D 0
for all d � 1. For each p,

¹ j̨;z�.p/º D ¹ j̨;�.p/º; ¹�z�.j /º D ¹��.j /º:

Let r� denote the order of the pole ofL.s;�/ at sD 1 and �� be the residue ofL.s;�/
at s D 1. The completed L-function

ƒ.s; �/ D .s.s � 1//r�N s=2
� L.s; �/L.s; �1/

is an entire function of order 1, and there exists a complex number W.�/ of modulus 1
such that for all s 2 C,

ƒ.s; �/ D W.�/ƒ.1 � s; z�/:

The trivial zeros of L.s; �/ are the poles of sr�L.s; �1/. Since ƒ.s; �/ is entire of
order 1, it has an Hadamard factorization

ƒ.s; �/ D ea�Cb�s
Y
�

�
1 �

s

�

�
es=�;

where � runs through the nontrivial zeros of L.s; �/. These satisfy 0 < Re.�/ < 1.
Finally, we define the analytic conductor of � to be

C.�; t/ D N�

dY
jD1

.1C ji t C ��.j /j/; C.�/ D C.�; 0/: (3.3)

3.2. Rankin–Selberg L-functions

Let � D ˝v �v 2 A.d/ and � 0 D ˝v �
0
v 2 A.d 0/. The Rankin–Selberg L-function

L.s; � � � 0/ associated to � and � 0 is of the form

L.s; � � � 0/ D
Y
p

L.s; �p � �
0
p/ D

X
n�1

a��� 0.n/

ns
:

The Euler product and Dirichlet series converge absolutely when Re.s/ > 1. For each p,
the local factor L.s; �p � � 0p/ is given in the form

L.s; �p � �
0
p/ D

dY
jD1

d 0Y
j 0D1

.1 � j̨;j 0;��� 0.p/p
�s/�1
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for suitable complex numbers j̨;j 0;��� 0.p/. With ıd as in (3.1), we have the pointwise
bound

j j̨;j 0;��� 0.p/j � p
ıdCıd 0 � p1�

1
d 0d : (3.4)

If p − N�N� 0 , then we have the equality of sets

¹ j̨;j 0;��� 0.p/º D ¹ j̨;�.p/ j̨ 0;� 0.p/º: (3.5)

Rudnick and Sarnak [58, Appendix A.2] proved that a��z�.n/ � 0 for all n � 1.
At the archimedean place of Q, there are d 0d complex Langlands parameters

���� 0.j; j
0/ from which we define

L.s; �1 � �
0
1/ D �

�d 0ds=2

dY
jD1

d 0Y
j 0D1

�

�
s C ���� 0.j; j

0/

2

�
:

These parameters satisfy

¹�z��z� 0.j; j
0/º D ¹���� 0.j; j 0/º

and satisfy the pointwise bound

Re.���� 0.j; j 0// � �ıd � ıd 0 � �1C .d 0d/�1: (3.6)

Define

r��� 0 WD � ord
sD1

L.s; � � � 0/; ���� 0 WD Res
sD1

L.s; � � � 0/:

By our normalization for � and � 0, we know that r��� 0 D 1 if and only if � D z� 0;
otherwise, r��� 0 D 0 and hence ���� 0 D 0. The function

ƒ.s; � � � 0/ D .s.s � 1//r���0N
s=2
��� 0L.s; � � �

0/L.s; �1 � �
0
1/

is entire of order 1, and there exists a complex numberW.� � � 0/ of modulus 1 such that
ƒ.s; � � � 0/ satisfies the functional equation

ƒ.s; � � � 0/ D W.� � � 0/ƒ.1 � s; z� � z� 0/:

The trivial zeros ofL.s;��� 0/ are the poles of sr���0L.s;�1�� 01/. Sinceƒ.s;��� 0/
is entire of order 1, it has an Hadamard factorization

ƒ.s; � � � 0/ D ea���0Cb���0 s
Y
�

�
1 �

s

�

�
es=�;

where � runs through the nontrivial zeros of L.s; � � � 0/. These satisfy 0 < Re.�/ < 1.
As with L.s; �/, we define the analytic conductor of � ˝ � 0 to be

C.� � � 0; t / D N��� 0

dY
jD1

d 0Y
j 0D1

.1C ji t C ���� 0.j; j
0/j/; C.� � � 0/ D C.� � � 0; 0/:

It will be important to be able to decouple the dependencies of C.� � � 0; t / on � , � 0,
and t . To this end, we have the combined work of Bushnell and Henniart [9, Theorem 1]
and Brumley [31, Lemma A.2] which yields

C.� � � 0; t /� C.� � � 0/.1C jt j/d
0d ; C.� � � 0/ � eO.d

0d/C.�/d
0

C.� 0/d : (3.7)
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4. Detecting zeros of L-functions

Let ƒ.n/ be the von Mangoldt function, and define the numbers

���� 0.n/ D

´Pd
jD1

Pd 0

j 0D1 j̨;j 0;��� 0.p/
k if n D pk for a prime p;

0 otherwise,
(4.1)

so that

�
L0

L
.s; � � � 0/ D

X
n�1

���� 0.n/ƒ.n/

ns
:

It follows from the definition of ���� 0.n/ that if gcd.n;N�N� 0/ D 1, then

���� 0.n/ D ��.n/�� 0.n/:

In particular, if gcd.n; N�/ D 1, then j��.n/j2 D ���z�.n/. During the proof of [58,
Lemma A.1], it is shown that ���z�.n/ � 0 for all n � 1. Brumley [61, Appendix] proved
that regardless of whether gcd.n;N�N� 0/ > 1, we always have the inequality

j���� 0.n/j �
p
���z�.n/�� 0�z� 0.n/ �

���z�.n/C �� 0�z� 0.n/

2
: (4.2)

If � is a primitive Dirichlet character modulo q, then �� is the trivial character modulo q,
hence

j���.� 0˝�/.n/j �

q
���z�.n/�.� 0˝�/�.z� 0˝�/.n/ �

���z�.n/C �� 0�z� 0.n/

2
: (4.3)

The proof of Theorem 1.3 will use the following result on the detection of zeros near
the line Re.s/ D 1.

Proposition 4.1. Let Q; T � 3, and let � 2 R satisfy j� j � T . Let � 2 Fm.Q/ and
�0 2 A.m0/; suppose that both � and �0 satisfy Hypothesis 1.1. Let � .mod q/ be a real
primitive Dirichlet character. Let

1

log.C.�0/QT /
� � �

1

107.m0m/2
(4.4)

and
K � 8000.m0m/

3� log.C.�0/QT /COm0;m.1/ (4.5)

with a sufficiently large implied constant. There exists an effectively computable constant
cm;m0 2 .0; 1=4/ such that the following is true.

Define

e� WD

´
1 if q > 1 and L.s; �/ has a real zero ˇ� � 1 � cm;m0�,
0 if q D 1:

(4.6)

If e� D 1, then assume that L.ˇ�; �0 � .z�0 ˝ �// D 0. If L.s; � � �0/ has a zero �0
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.with �0 ¤ ˇ� when e� D 1/ satisfying j�0 � .1C i�/j � �, then

1� .200/4K
�
�3
Z A2

A1

ˇ̌̌̌ X
A1<p�u

����0.p/.1C e��.p/p
ˇ��1/ logp

p1Ci�

ˇ̌̌̌2
du

u

C r���01.�/min
²
1;
1 � ˇ�

�

³�
;

where
A1 WD exp.K=.300�//; A2 WD exp.40K=�/ (4.7)

and

1.�/ WD

´
1 if j� j < 200�,
0 if j� j � 200�,

(4.8)

and min ¹1; .1 � ˇ�/=�º is identified as 1 when e� D 0.

When �;�0 2 A.1/ and �0 is trivial, Proposition 4.1 reduces to a result of Weiss [69,
Proposition 4.2]; we follow Weiss’s proof with the modifications which follow [44,61] to
allow for more general choices of � and �0. Relative to the ideas in [44,61,69], there are
three novelties here. First, we exploit the existence of an exceptional zero of a Dirichlet
L-function in the zero-detection process for L.s; � � �0/, which generalizes [69, Propo-
sition 4.2]. Second, we use Hypothesis 1.1 for both � and �0 instead of assuming that at
least one of � and �0 satisfies GRC as in [44] so that, unlike the approach in [61], the
Dirichlet polynomial can be supported on primes. Third, much like [61, Section 4], the
proof here makes explicit some of the effective constants in [44, 69].

4.1. Preliminary estimates

Lemma 4.2. Let � 2Fm.Q/, let �0 2A.m0/, and let � be a primitive Dirichlet character
modulo q. If � > 0, thenX

n�1

j���.�0˝�/.n/jƒ.n/

n1C�
�
1

�
C
m0m

2
log.C.�0/Q/CO..m0m/2/:

Proof. Suppose � 2 A.d/ \ Fm.Q/. It follows from (4.3) and the discussion in [61]
which follows Lemma 2.3 thatX
n�1

j���.�0˝�/.n/jƒ.n/

n1C�
�
1

�
C
1

4
logC.� � z�/C

1

4
logC.�0 � z�0/CO..dm0/2/;

The desired result follows from (3.7), the bound C.�/ � Q, and the bound d � m.

Lemma 4.3. Let � 2Fm.Q/, let �0 2A.m0/, and let � be a primitive Dirichlet character
modulo q � Q. Let n.�I s/ denote the number of zeros � of L.s; � � .�0 ˝ �// with
js � �j � �. For all Re.s/ � 1 and all 0 < � < 1=2, we have the bound

n.�I s/ � 20.mm0/
2� log.C.�0/Q/C 5m0m� log.jIm.s/j C 2/CO..m0m/2/:
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Proof. It suffices to prove the result for n.�I 1C i t/ because n.�I 1C i t/ � n.�I � C i t/
for any � � 1. For � 2 A.d/ \ Fm.Q/, it follows from [61, Lemma 3.1] that for such s,

n.�I s/ � 10dm0� logC.� � .�0 ˝ �//C 5dm0� log.jIm.s/j C 2/CO..dm0/2/:

The result now follows from (3.7).

Lemma 4.4. If � 2 A.d/ satisfies Hypothesis 1.1, y > C.�/, and � is as in (4.4), thenX
n2Œy;y12000�
n composite

���z�.n/ƒ.n/

n1C�
�d y

� 1

2.d2C1/
��
.logy/3: (4.9)

Proof. We first bound the contribution to the sum in (4.9) from the n which share a prime
factor withN� separately. Note thatO.logy/ primes divideN� as y > C.�/�N� . Thus
by (3.4) and (4.1) applied to the ramified prime, we haveX
n2Œy;y12000�
n composite
.n;N� />1

���z�.n/ƒ.n/

n1C�
� d2.logy/

X
2�r�20000 logy

X
y1=r�p�y12000=r

pjN�

p
�r 2

d2C1
�r�

� d2.logy/2
X

2�r�20000 logy

y
� 2

d2C1
��
� d2y

� 2

d2C1
��
.logy/3:

If p − N� , then ���z�.pr / D j��.pr /j2. From (4.1), we see that

j��.p
r /j2 � d2 max

1�j�d
j j̨;�.p/j

2r :

Define
p̌ D p

�1 max
1�j�d

j j̨;�.p/j
2:

Note that p̌ � p
�2=.d2C1/ by (3.2). Thus the contribution to the sum in (4.9) arising from

the integers n which are coprime to N� is

� d2.logy/
1X
rD2

X
y1=r�p�y12000=r

ˇrpp
�r�

� d2.logy/
X

2�R�20000 logy

X
y1=R<p�y12000=R

1X
rDR

ˇrpp
�r�:

Subject to Hypothesis 1.1, we will prove that

SR WD
X

y1=R<p�y12000=R

1X
rDR

ˇrpp
�r�
�d y

� 1

2.d2C1/
��
.logy/ (4.10)

uniformly for all 2 � R � 20000 logy, which suffices to prove the lemma.
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The inner sum is geometric, so

SR D
X

y1=R<p�y12000=R

. p̌p
��/R

1 � p̌p��
� y

� 1

d2C1
��

X
y1=R<p�y12000=R

p̌

1 � p̌p��
:

We decompose the sum according to whether p is greater than 2d
2

(in which case
1 � p̌p

�� � 1=2) or not. The contribution from the latter range to the sum is Od .1/,
so we have

SR � y
� 1

d2C1
��
�
2

X
y1=R<p�y12000=R

p̌ COd .1/
�

� y
� 1

d2C1
��
�
2y

1

2.d2C1/

X
y1=R<p�y12000=R

p̌p
� 1

12000.d2C1/ COd .1/
�
: (4.11)

Note that x � 2 log.x C 1/ for all 0 � x � 5=2. Thus, since 0 � p̌p
� 1

12000.d2C1/ � 1 for
all p, the final sum in (4.11) is bounded by

2
X

y1=R<p�y12000=R

log
�
1C p̌p

� 1

12000.d2C1/
�
� 2

X
p

log
� 1X
rD0

ˇrpp
� r

12000.d2C1/

�
D 2 log

�Y
p

1X
rD0

max1�j�d j j̨;�.p/j2r

p
r.1C 1

12000.d2C1/
/

�
:

The above display is�d logy by Hypothesis 1.1, which yields (4.10).

We record an analogue of [29, Theorem A] for Rankin–Selberg L-functions.

Lemma 4.5. Let �0 2A.m0/, and let Hm1.R/�
S
d�m1

A.d/ be a set of cuspidal auto-
morphic representations of dimension at most m1 having analytic conductor at most R.
There exists an effectively computable constant cm1;m0 2 .0; 1=4/ such that for at most
one � 2 Hm1.R/, L.s; � � �0/ has a real zero in the interval

1 �
cm1;m0

log.C.�0/R/
� s < 1: (4.12)

Proof. Suppose to the contrary that there exist distinct �; � 0 2 Hm1.R/ such that
L.s;� ��0/ andL.s;� 0˝�0/ have a real zero in the region (4.12). Consider the isobaric
(noncuspidal) representation … D �0 � z� � z� 0 and the L-function

L.s;… � z…/ D L.s; � � z�/L.s; � 0 � z� 0/L.s; �0 � z�0/L.s; � � �0/L.s; �
0
� �0/

� L.s; z� � � 0/L.s; z� � z�0/L.s; z�
0
� z�0/L.s; � � z�

0/:

By [29, Lemma a], the Dirichlet coefficients of �L
0

L
.s;… � z…/ are real and nonnegative.

Proceeding as in [32, Lemma 5.9], we find that if the order of the pole at s D 1 of the
L.s;…� z…/ is r , then L.s;…� z…/ has at most r real zeros in the region (4.12) for some
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suitable cm1;m0 > 0. (We have implicitly used (3.7) to bound the analytic conductors for
the factors of L.s;… � z…/.)

If �;� 0 ¤ z�0, then r D 3. IfL.s;� � �0/ has a real zero in the interval (4.12), then by
the functional equation and complex conjugation, so does L.s; z� � z�0/. This applies also
to L.s; � 0 � �0/ and L.s; z� 0 � z�0/. Thus L.s;… � z…/ has at least four zeros in (4.12),
a contradiction. If either � D z�0 or � 0D z�0, then by a similar argument, we find that r D 5
while L.s;… � z…/ has at least six real zeros in (4.12). Again, we reach a contradiction.
Since this handles all permissible possibilities, the proof is complete.

Corollary 4.6. Let Q � 3, �0 2 A.m0/, and � .mod q/ be a primitive quadratic
character such that q � Q and L.s; �/ has a real zero ˇ� 2 .1=2; 1/. Suppose that
L.ˇ�; �0 � .z�0 ˝ �// D 0. There exists an effectively computable constant cm;m0 in
.0; 1=4/ .the same as in Proposition 4.1/ such that if .1� ˇ�/ log.C.�0/Q/ � cm;m0 and
� 2Fm.Q/[ ¹z�0˝ �º, thenL.ˇ�;� ��0/D 0 if and only if � D z�0˝ �, in which case
ˇ� is a simple zero. In other words, if � 2 Fm.Q/ and .1 � ˇ�/ log.C.�0/Q/ � cm;m0 ,
then

ord
sDˇ�

L.s; � � �0/ D r��.�0˝�/:

Proof. By Lemma 4.5 with m1 D max ¹m;m0º, R D max ¹Q;C.�0/º, and Hm1.R/ D

Fm.Q/[ ¹z�0˝ �º, there exists an effectively computable constant cm;m0 2 .0;1=4/ such
that at most one � 2 Fm.Q/[ ¹z�0 ˝ �º has the property that L.s; � � �0/ has a zero in
the region

1 �
cm;m0

log.C.�0/Q/
� s < 1: (4.13)

If .1 � ˇ�/ log.C.�0/Q/ � cm;m0 , then ˇ� lies in the interval (4.13). Since we have
assumed that L.ˇ1; �0 � .z�0 ˝ �// D 0, it remains to show that ˇ� is a simple zero of
L.s; �0 � .z�0 ˝ �//.

To prove this, we modify our approach in Lemma 4.5 with a different choice of …,
namely … D � � � ˝ � � � ˝ �. We have the identity

L.s;… � z…/ D L.s; �0 � z�0/
5L.s; �0 � .z�0 ˝ �//

4;

which uses the hypothesis that � is quadratic. By [29, Lemma a], the Dirichlet coefficients
of �L

0

L
.s/ are real and nonnegative. Proceeding as in [32, Lemma 5.9], we find that L.s/

has at most five real zeros in the interval (4.13) since L.s/ has a pole of order 5 at s D 1.
However, since L.s; �0 � .z�0 ˝ �// occurs as a factor of L.s/ with multiplicity 4, we
achieve a contradiction unless ˇ� is simple.

4.2. A lower bound for high derivatives

Let � 2A.d/\Fm.Q/ and �0 2A.m0/, and let � .mod q/ be a primitive real Dirichlet
character with q � Q. Suppose that L.s; � � �0/ has a zero �0 such that j�0 � .1C i�/j
� �, where � 2 R, j� j � T , and

1

log.C.�0/QT /
� � �

1

107.m0m/2
: (4.14)
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Let s D 1C �C i� . Let � .mod q/ be a primitive real Dirichlet character with q �Q,
let e� be as in (4.6), and define

F.z/ WD
L0

L
.z;� � �0/C e�

L0

L
.zC 1� ˇ�;� � .�0˝ �//; Gk.z/ WD

.�1/k

kŠ
F .k/.z/:

We proceed as in [61, (4.2)] or [69, Lemma 4.2] (see also [32, Proposition 5.7]) and find
that Gk.s/ equalsX
L.�;���0/D0
js��j�200�

1

.s��/kC1
C

X
L.�0;��.�0˝�//D0
js��0j�200�

e�

.sC1�ˇ���0/kC1

�
r���0

.s�1/kC1
�
r��.�0˝�/e�

.s�ˇ�/kC1
CO

�
.m0m/

2�.log.C.���0//Clog.C.��.�0˝�////
.200�/k

�
:

We isolate the contribution from ˇ�, if it exists, using Corollary 4.6 along with the facts
thatL.s;� � .�0˝�//DL.s; .� ˝�/��0/ and r.�˝�/�.�0˝�/D r���0 . Consequently,

Gk.s/ D
X
�¤ˇ�

L.�;���0/D0
js��j�200�

1

.s � �/kC1
C

X
�0¤ˇ�

L.�0;��.�0˝�//D0
js��j�200�

e�

.s C 1 � ˇ� � �0/kC1

C
e�ordsDˇ�L.s; � � �0/

.s � ˇ�/kC1
C
e�ordsDˇ�L.s; .� ˝ �/ � �0/

.s C 1 � 2ˇ�/kC1
�

r���0
.s � 1/kC1

�
r��.�0˝�/e�

.s � ˇ�/kC1
CO

�
.m0m/

3� log.C.�0/QT /
.200�/k

�
D

X
�¤ˇ�

L.�;���0/D0
js��j�200�

1

.s � �/kC1
C

X
�0¤ˇ�

L.�0;��.�0˝�//D0
js��j�200�

e�

.s C 1 � ˇ� � �0/kC1

C r���0

�
e�

.s C 1 � 2ˇ�/kC1
�

1

.s � 1/kC1

�
CO

�
.m0m/

3� log.C.�0/QT /
.200�/k

�
: (4.15)

We have used (3.7) to bound the analytic conductors in the O-term.
Lemma 4.3 implies that our two sums over zeros have, in total, at most K terms for

any

K � 8000.m0m/
3� log.C.�0/QT /CO..m0m/2/: (4.16)

Just like [44,61,69], we rely on the following diophantine result due to Sós and Turán [59].

Lemma 4.7. Let z1; : : : ; z� 2 C. If K � �, then there exists an integer k 2 ŒK; 2K� such
that jzk1 C � � � C z

k
mj �

�
1
50
jz1j

�k .
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IfL.z;� ��0/ has a zero �0 (not equal to ˇ� if e�D 1) satisfying j�0 � .1C i�/j � �,
then by Lemma 4.7, we can bound the zero contribution to (4.15) from below as follows:ˇ̌̌̌ X

�¤ˇ�
js��j�200�

1

.s � �/kC1
C

X
�0¤ˇ�

js��0j�200�

e�

.s C 1 � ˇ� � �0/kC1

ˇ̌̌̌
�

�
1

50js � �0j

�kC1

�
1

.100�/kC1
:

Therefore, if the implied constant in (4.16) is sufficiently large, then for some k 2 ŒK;2K�,

�kC1
ˇ̌̌̌
Gk.s/ � r���0

�
e�

.s C 1 � 2ˇ�/kC1
�

1

.s � 1/kC1

�ˇ̌̌̌
�

1

.100/kC1
�O

�
.m0m/

3�2 log.C.�0/QT /
.200/k

�
�

3

4.100/kC1
: (4.17)

It follows from a calculation identical to [69, pp. 80–81] that

�k
ˇ̌̌̌

e�

.sC1�2ˇ�/kC1
�

1

.s�1/kC1

ˇ̌̌̌
�

1

4.100/kC1
C1.�/min ¹1; 2kC4..1�ˇ�/=�/1=2º;

where 1.�/ is given by (4.8) and we identify min ¹1; 2kC4..1 � ˇ�/=�/1=2º as 1 when
e� D 0. In summary, we conclude that

�kC1jGk.s/j C r���01.�/min ¹1; 2kC4..1 � ˇ�/=�/1=2º �
1

2.100/kC1
: (4.18)

4.3. An upper bound for high derivatives

We proceed to bound jGk.s/j from above. Since � > 0, we can use the absolute conver-
gence of the Dirichlet series which defines F.s/ to directly compute

�kC1jGk.s/j D �

ˇ̌̌̌X
n�1

.����0.n/C e����.�0˝�/.n/n
ˇ��1/ƒ.n/

n1Ci�
jk.� logn/

ˇ̌̌̌
; (4.19)

where jk.u/ WD .kŠ/�1uke�u. Let A1 and A2 be as in (4.7). Suppressing summands, we
write the right hand side of (4.19) as

�
X
n�1

D �
� X
n…ŒA1;A2�

C

X
n2ŒA1;A2�
n composite

C

X
p2ŒA1;A2�

�
: (4.20)

First, we bound the contribution from n … ŒA1; A2�. Since kŠ � .k=e/k , we find from
a small numerical calculation [61, proof of Lemma 4.3] that

jk.� logn/ � .110/�kn��=2 if n … ŒA1; A2�. (4.21)
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By (4.21),ˇ̌̌
�

X
n…ŒA1;A2�

ˇ̌̌
� �.110/�k

X
n�1

.j����0.n/j C je����.�0˝�/.n/j/ƒ.n/

n1C�=2
:

By Lemma 4.2, the above display is� �.110/�k.��1C .m0m/
2 log.C.�0/QT //. Using

(4.16), we see that the contribution from n … ŒA1; A2� is Om0;m.k.110/
�k/.

Second, we bound the contribution from the composite n2ŒA1;A2�. As .logu/k�kŠu
for all k � 1 and u � 1, we find that

jk.� logn/ D
.� logn/k

kŠn�
D

1

n�
.110/�k

.logn110�/k

kŠ
�

1

n�
.110/�kn110�:

This estimate and (4.3) imply thatˇ̌̌
�

X
n2ŒA1;A2�
n composite

ˇ̌̌
� �.110/�k

X
n2ŒA1;A

12000
1

�
n composite

.j����0.n/j C je����.�0˝�/.n/j/ƒ.n/

n1C�
n110�

� �.110/�k
X

n2ŒA1;A
12000
1

�
n composite

.���z�.n/C ��0�z�0.n//ƒ.n/

n1C�
n110�

� �.110/�kA
1320000�
1

X
n2ŒA1;A

12000
1

�
n composite

.���z�.n/C ��0�z�0.n//ƒ.n/

n1C�
:

By Lemma 4.4 and (4.14), the above display is

�d;m0 �.110/
�kA

1320000�� 1

2..dm0/
2C1/

��

1 .logA1/2�d;m0 �.110/
�k
�m;m0 k.110/

�k :

Finally, we estimate the contribution from the primes p 2 ŒA1; A2�. Summation by
parts gives us the identity

�
X

p2ŒA1;A2�

D jk.� logA2/�
X

p2ŒA1;A2�

.����0.p/C e����.�0˝�/.p/p
ˇ��1/ƒ.p/

p1Ci�

� �2
Z A2

A1

j 0k.� logu/
X

p2ŒA1;u�

.����0.p/C e����.�0˝�/.p/p
ˇ��1/ƒ.p/

p1Ci�
du

u
: (4.22)

Much like the above calculations, we use Lemma 4.2 to deduce that the sum over
p 2 ŒA1; A2� in (4.22) is

� �.110/�kA
��=2
2

X
n<A2

.j����0.n/j C je����.�0˝�/.n/j/ƒ.n/

n
�

k

.110/k
:
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Since ˇ̌̌̌
d

du
jk.u/

ˇ̌̌̌
D jjk�1.u/ � jk.u/j � jk�1.u/C jk.u/ � 1;

we find thatˇ̌̌
�

X
p2ŒA1;A2�

ˇ̌̌
� �2

Z A2

A1

ˇ̌̌̌ X
p2ŒA1;u�

.����0.p/C e����.�0˝�/.p/p
ˇ��1/ƒ.p/

p1Ci�

ˇ̌̌̌
du

u

CO

�
k

.110/k

�
:

IfK satisfies (4.16), then the condition p 2 ŒA1;A2� implies that p −N�N�0q. There-
fore, by (3.5) and (4.1),

.����0.p/C e����.�0˝�/.p/p
ˇ��1/ƒ.p/ D ����0.p/.1C e��.p/p

ˇ��1/ logp:

We collect our estimates for the three sums in (4.20) to find that for all k 2 ŒK;2K�withK
satisfying (4.5),

�kC1jGk.s/j � �
2

Z A2

A1

ˇ̌̌̌ X
A1<p�u

����0.p/ logp
p1Ci�

.1C e��.p/p
ˇ��1/

ˇ̌̌̌
du

u

COm0;m

�
k

.110/k

�
: (4.23)

4.4. Proof of Proposition 4.1

We enlarge K according to (4.5), which we are free to do. If k 2 ŒK; 2K� and the implied
constant in (4.5) is sufficiently large, then Om;m0.k.110/

�k/ � 1
4
.100/�k�1. Therefore,

it follows from (4.18) and (4.23) that if L.s; � � �0/ has a zero �0 (not equal to ˇ� when
e� D 1) which satisfies j�0 � .1C i�/j � �, then with K satisfying (4.5), we have the
bound

1 � 4.100/2KC1�2
Z A2

A1

ˇ̌̌̌ X
A1<p�u

����0.p/ logp
p1Ci�

.1C e��.p/p
ˇ��1/

ˇ̌̌̌
du

u

C 4r���0.100/
2KC11.�/min ¹1; 16 � 22K..1 � ˇ�/=�/1=2º:

We square both sides and apply the Cauchy–Schwarz inequality to obtain the bound

1� .100/4K�4
�Z A2

A1

du

u

��Z A2

A1

ˇ̌̌̌ X
A1<p�u

����0.p/ logp
p1Ci�

.1C e��.p/p
ˇ��1/

ˇ̌̌̌2
du

u

�
C r���0.100/

4K1.�/min ¹1; 24K��1.1 � ˇ�/º:

Since
R A2
A1

u�1du� K=�, Proposition 4.1 follows.
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5. A new large sieve inequality

To apply Proposition 4.1 in our proof of Theorems 1.3 and 1.7, we must show that as
� 2 Fm.Q/ varies, the integral in Proposition 4.1 is small on average. To prove this, we
modify the large sieve for Dirichlet coefficients of automorphic representations due to
Duke and Kowalski [15, Theorem 4]. As observed by Brumley [7], one can adjust their
proof to show that if each � 2 Fm.Q/ satisfies Hypothesis 1.1 and Q;x � 2, thenX
�2Fm.Q/

ˇ̌̌X
n�x

a�.n/b.n/
ˇ̌̌2
�";m .Qx/

".x CQ
m

m2C1 x
1� 1

m2C1 #Fm.Q//
X
n�x

jb.n/j2;

(5.1)

where b.n/ is any complex-valued function supported on the integers. We require two
modifications to (5.1). First, we need to take sums over n in intervals of length x=T ,
where T is arbitrarily large. Second, we need a variant of (5.1) which applies with more
sensitivity to sequences b.n/ supported on the primes.

We establish a “pre-sifted” large sieve inequality over short intervals for families of
automorphic representations which satisfy Hypothesis 1.1. We anticipate that this will
be useful in contexts beyond this paper. Since much stronger results are available when
m D 1 (see [23, Theorem 4]), we assume that m � 2 throughout this section.

Proposition 5.1. Let b.n/ be a complex-valued function supported on the integers, and
suppose that each � 2Fm.Q/ .see (1.3)/ satisfies Hypothesis 1.1. If Q� 3, T � 1, x > 0,
and z �m Q

6m with a sufficiently large implied constant, then for every " > 0,X
�2Fm.Q/

ˇ̌̌ X
x<p�xe1=T

p>z

a�.p/b.p/
ˇ̌̌2

�";m

�
x

T log z
CQ

3
2mT

3
4 x

1� 1

m2
C 1

m4 z2C" #Fm.Q/

� X
x<p�xe1=T

p>z

jb.p/j2:

5.1. The naïve Rankin–Selberg L-function

Let � 2 A.d/ and � 0 2 A.d 0/. For each prime p − N�N� 0 , define

LRS .s; �p � �
0
p/ D 1C

1X
jD1

a�.p
j /a� 0.p

j /

pjs
: (5.2)

We call the Dirichlet series

LRS .s; � � � 0/ WD
X
n�1

.n;N�N�0 /D1

a�.n/a� 0.n/

ns
D

Y
p−N�N�0

LRS .s; �p � �
0
p/ (5.3)

the naïve Rankin–Selberg L-function. We access the Dirichlet coefficients of
LRS .s; � � � 0/ by relating LRS .s; � � � 0/ to L.s; � � � 0/. The next result is due to
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Brumley (see [7, proof of Corollary 3]), which improves upon [15, Proposition 2] by the
insertion of the second order average estimate of Hypothesis 1.1.

Lemma 5.2 (Brumley). Suppose that �; � 0 2 Fm.Q/ satisfy Hypothesis 1.1. For each
prime p, define H.s; �p � � 0p/ by the equality

LRS .s; �p � �
0
p/ D L.s; �p � �

0
p/H.s; �p � �

0
p/:

For all " > 0, the Euler product

H.s; � � � 0/ WD
Y

p−N�N�0

H.s; �p � �
0
p/

converges absolutely for Re.s/ > 1 � .m2 C 1/�1. This yields the factorization

LRS .s; � � � 0/ D L.s; � � � 0/H.s; � � � 0/
Y

pjN�N�0

L.s; �p � �
0
p/
�1

in the region Re.s/ > 1� .m2C 1/�1. Furthermore,H.s;� �� 0/�";mQ
" in this region.

5.2. Preliminary estimates

Let �; � 0 2 Fm.Q/ satisfy Hypothesis 1.1. Define

gRSd .s; � � z� 0/ WD
Y
pjd

.1 � LRS .s; �p � z�
0
p/
�1/; (5.4)

and let d � 1 be a square-free integer such that3 .d;N�N� 0/ D 1. Consider the Dirichlet
series

LRSd .s; � � z� 0/ WD
X
n�1
d jn

.n;N�N�0 /D1

a�.n/a� 0.n/

ns
D LRS .s; � � z� 0/gRSd .s; � � z� 0/:

A bound for gRS
d
.s; � � z� 0/ follows readily from (3.4).

Lemma 5.3. Let d � 1 be square-free and �; � 0 2 Fm.Q/ satisfy Hypothesis 1.1. In the
region � > 1 � .m2 C 1/�1, we have

gRSd .s; � � z� 0/�";m d
":

If d � 2, then 0 � gRS
d
.1; � � z�/ < 1.

Proof. The fact that 0 � gRS
d
.1; � � z�/ < 1 for d � 2 follows immediately from (5.2).

The bound (3.4) yields jLRS .s; �p � z� 0p/
�1j �m 1 for Re.s/ > 1 � .m2 C 1/�1. The

3This is an abuse of notation since we have already used d for the dimension of � , but this
abuse is limited in its appearance and does not compromise the exposition.
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lemma now follows from the well-known bound !.n/� .log logn/�1 logn, where !.n/
is the number of distinct prime factors of n.

We require some uniform estimates for LRS
d
.s; � � z� 0/.

Lemma 5.4. Let s D � C i t , let �;� 0 2 Fm.Q/, and let " > 0. For any squarefree integer
d � 1 coprime to N�N� 0 and any � � 1 � 1

m2
C

1
m4

, we have the uniform bound

j.� � 1/r.��z�
0/LRSd .s; � � z� 0/j �";m d

"Q
3
2m .1C jt j/3=4:

Proof. First, we establish the bound

j.� � 1/r��z�0L.s; � � z� 0/j

�"0;m .Q
2m.1C jt j/m

2

/max ¹ 12 .1��/;0ºC"0 ; 1=2 � � � 3; (5.5)

for every "0 > 0. By the work of Li [45, Theorem 2], we know that there exists a constant
cm > 0 (depending at most on m) such that

.� � 1/r��z�0 jL.�; � � z� 0/j � exp
�
cm

logC.� � z� 0/
log logC.� � z� 0/

�
�"0;m C.� � z�

0/"0 ; 1 � � � 3: (5.6)

By replacing z� 0 with z� 0 ˝ jdetjit in the proof of (5.6) (which does not change the proof
substantially), we obtain

j.� � 1/r��z�0L.� C i t; � � z� 0/j �"0;m C.� � z�
0; t /"0 ; 1 � � � 3: (5.7)

The refined convexity bound for L-functions proved by Heath-Brown [27] yields

jL.1=2C i t; � � z� 0/j �m jL.3=2C i t; � � z�
0/j2C.� � z� 0; t /1=4: (5.8)

Hence, by (5.7),

jL.1=2C i t; � � � 0/j �"0;m C.� � �
0; t /1=4C"0 : (5.9)

Thus (5.5) follows from (3.7), (5.7), (5.9), and the Phragmén–Lindelöf principle.
We see from (3.4) and the bound !.n/� .log log n/�1 log n that for every "0 > 0,

one has the boundY
pjN�N�0

jL.s; �p � z�
0
p/
�1
j �"1;m Q

"0 ; Re.s/ > 1 � .m2 C 1/�1:

Therefore, by (3.7) and (5.5), we have

j.� � 1/r��z�0LRS .s; � � z� 0/j

��;m .Q
2m.1C jt j/m

2

/max ¹ 12 .1��/;0ºC2"0 ; 1 � .m2 C 1/�1 < � � 3:
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Once we choose

� � 1 �
1

m2
C

1

m4
> 1 � .m2 C 1/�1 and "0 D .8m

2/�1 C .4m4/�1;

the lemma follows from the above estimate, Lemma 5.2, and Lemma 5.3.

Fix a smooth function � whose support is a compact subset of .�2; 2/. Let

b�.s/ D Z 1
�1

�.y/esy dy:

Thusb�.s/ is entire, and integrating by parts several times yields the bound

b�.s/��;k

e2jRe.s/j

jsjk
(5.10)

for any integer k � 0. Let T � 1; by Fourier inversion, for any c > 0, one has the identity

�.T log x/ D
1

2�iT

Z cCi1

c�i1

b�.s=T /x�sds:
Lemma 5.5. Let �;� 0 2Fm.Q/ withm� 2. Let x > 0, T � 1, and d � 1 be a square-free
integer which is coprime to N�N� 0 . Define

R.�; � 0/ D ���z� 0H.1; � � z�
0/

Y
pjN�N�0

LRS .1; �p � z�
0
p/
�1: (5.11)

(1) If � is as above, thenˇ̌̌̌ X
n�1
d jn

.n;N�N�0 /D1

a�.n/a� 0.n/�

�
T log

n

x

�
�R.�; � 0/x

b�.1=T /
T

gRSd .1; � � z� 0/

ˇ̌̌̌

�";m;� d
"Q

3
2mT 3=4x

1� 1

m2
C 1

m4 :

(2) If
z �m Q

6m

with a sufficiently large implied constant, thenX
n�z

.n;N� /D1

ja�.n/j
2

n
�
R.�; �/

20
log z C

1

2
:

(3) R.�; � 0/ > 0 when � D � 0 and R.�; � 0/ D 0 otherwise.

Proof. For (1), the quantity we want to estimate equals, by Lemma 5.2,

1

2�iT

Z 1� 1

m2
C 1

m4
Ci1

1� 1

m2
C 1

m4
�i1

LRSd .s; � � z� 0/b�.s=T /xsds:
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By Lemma 5.4 and (5.10), the above integral is

�";m

x
1� 1

m2
C 1

m4 d "Q
3
2m

T

Z 1
�1

ˇ̌̌̌b��1 � 1
m2
C

1
m4
C i t

T

�ˇ̌̌̌
.1C jt j/3=4dt

�";m;�

x
1� 1

m2
C 1

m4 d "Q
3
2m

T

Z 1
�1

min
²
1;

T 2

.jt j C 2/2

³
.1C jt j/3=4 dt

�";m;� d
"Q

3
2mT 3=4x

1� 1

m2
C 1

m4 :

We proceed to (2). Let

�.t/ D

²
exp.16C t�1.t C 1=2/�1/ if t 2 .�1=2; 0/,
0 otherwise,

which is a smooth pointwise lower bound for the indicator function of the interval
Œ�1=2; 0�. Observe that if z � 4, then by Lemmas 5.2 and 5.4, and (5.10),X

n�1
.n;N� /D1

ja�.n/j
2

n
�

�
log

n

z

�
�R.�; �/b�.0/

D
1

2�i

Z � 1

m2
C 1

m4
Ci1

� 1

m2
C 1

m4
�i1

LRSd .s C 1; � � z�/b�.s/zsds �m Q
3
2m z

� 1

m2
C 1

m4 :

The intervals Œ2�j e�1=2z; 2�j z� and Œ2�j�1e�1=2z; 2�j�1z� are disjoint for all integers
0 � j �

log z
log4 , soX
n�z

.n;N� /D1

ja�.n/j
2

n
� 1C

X
j�

logz
log4

X
n�1

.n;N� /D1

ja�.n/j
2

n
�

�
log

n

z=2j

�

D 1C

�
log z
log 4

�
R.�; �/b�.0/COm.Q 3

2m z
.� 1

m2
C 1

m4
/=2
/:

Sinceb�.0/ � 1=10, the result follows once z �m Q
6m.

For (3), note that ���z� 0 > 0 if and only if � D � 0, and ���z� 0 D 0 otherwise. From
(5.2) and the fact that a�.n/D az�.n/, we have

Q
pjN�

LRS .1;�p � z�p/
�1 > 0. It remains

to show that H.1; � � z�/ > 0. To see this, note that the estimate over composite n in
Lemma 4.4 implies that as x !1,

log x �
X

n2Œx;2x�

���z�.n/ƒ.n/

n
D

X
p2Œx;2x�

a��z�.p/ logp
p

C

X
n2Œx;2x�
n composite

���z�.n/ƒ.n/

n

�

X
p2Œx;2x�

a��z�.p/ logp
p

:
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By partial summation, the sum
P
p a��z�.p/=p diverges, hence

P
p ja�.p/j

2=p

diverges. Consequently,
P
n ja�.n/j

2=n diverges, in which case Lemma 5.2 implies
that LRS .s; � � z�/ has a positive residue at s D 1. Since the same is true for
L.s; � � z�/

Q
p−N�

L.s; �p � z�p/
�1, the holomorphy of H.s; � � z�/ on the line

Re.s/ D 1 implies that H.1; � � z�/ > 0.

5.3. Proof of Proposition 5.1

We begin by constructing Selberg sieve weights for each � 2 Fm.Q/. Define

g�.d/ WD gd .1; � � z�/; P�.z/ WD
Y

p<z;p−N�
g� .p/¤0

p; D�.z/ WD ¹d W d � z; d jP�.z/º;

where gd .1; � � z�/ is given by (5.4). Let ��.d/ be a real-valued function satisfying

��.1/ D 1, ��.d/ D 0 unless d 2 D�.z/, j��.d/j � 1 for all d: (5.12)

Our requirements (5.12) for ��.d/ imply that if the least prime dividing n is greater
than z, then the condition d jn implies that either d D 1 or ��.d/ D 0.

For a given integer q, let 1q.n/ be the indicator function of the integers n such that
.n; q/ D 1. Consider the linear operator A defined by the mapping

.b.n//n2.x;xe1=T � 7!
� X
n2.x;xe1=T �

a�.n/1N� .n/
h X
d j.n;P� .z//

��.d/
i
b.n/

�
�2Fm.Q/

:

It suffices to consider b.n/ normalized so that
P
n2.x;xe1=T � jb.n/j

2 D 1. By duality, the
square of the operator norm of A equals the square of the operator norm of the adjoint
operator A�, namely

C.Fm;Q;T;x;z/WD sup
kˇk2D1

X
n2.x;xe1=T �

ˇ̌̌ X
�2Fm.Q/

a�.n/1N� .n/
h X
d j.n;P� .z//

��.d/
i
ˇ.�/

ˇ̌̌2
;

(5.13)
Here, the supremum ranges over the functions ˇWFm.Q/! C such that

kˇk22 D
X

�2Fm.Q/

jˇ.�/j2 D 1:

Since
P
d j.p;P� .z//

��.d/ D 1 for all p such that p > z, Proposition 5.1 follows from

C.Fm;Q; T; x; z/�m

x

T log z
CQ

3
2mT 3=4x

1� 1

m2
C 1

m4 z2C" #Fm.Q/; z �m Q
6m:

(5.14)
We proceed to prove (5.14).

Fix a compactly supported, infinitely differentiable function � such that �.t/ � 1 for
t 2 Œ0; 1� and �.t/ � 0 otherwise. Then �

�
T log n

x

�
is a nonnegative upper bound for
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the indicator function of the interval .x; xe1=T �. Thus (5.13) is bounded above by the
supremum over all ˇ with kˇk2 D 1 ofX

n�1

ˇ̌̌ X
�2Fm.Q/

a�.n/1N� .n/
h X
d j.n;P� .z//

��.d/
i
ˇ.�/

ˇ̌̌2
�

�
T log

n

x

�
: (5.15)

We expand the square and swap the order of summation so that (5.15) equalsX
�;� 02Fm.Q/

ˇ.�/ˇ.� 0/

� X
.n;N�N�0 /D1

a�.n/az� 0.n/
h X
d j.n;P� .z//

��.d/
i

�

h X
d j.n;P�0 .z//

�� 0.d/
i
�

�
T log

n

x

��
D

X
�;� 02Fm.Q/

ˇ.�/ˇ.� 0/

�

X
d2D� .z/
d 02D�0 .z/

��.d/�� 0.d
0/

� X
Œd;d 0�jn

.n;N�N�0 /D1

a�.n/az� 0.n/�

�
T log

n

x

��
: (5.16)

We use Lemma 5.5 and (5.12) to conclude that (5.16) equals

x
b�.1=T /
T

X
�2Fm.Q/

jˇ.�/j2R.�; �/
X

d;d 02D� .z/

��.d/��.d
0/g�.Œd; d

0�/

COm;"

�
Q

3
2mT 3=4x

1� 1

m2
C 1

m4

X
�;� 02Fm.Q/

jˇ.�/ˇ.� 0/j
X

d2D� .z/
d 02D�0 .z/

j��.d/�� 0.d
0/jŒd; d 0�"=2

�

D x
b�.1=T /
T

X
�2Fm.Q/

jˇ.�/j2R.�; �/
X

d;d 02D� .z/

��.d/��.d
0/g�.Œd; d

0�/

COm;"

�
Q

3
2mT 3=4x

1� 1

m2
C 1

m4 z2C"
X

�;� 02Fm.Q/

jˇ.�/ˇ.� 0/j
�
: (5.17)

By proceeding as in the formulation of the Selberg sieve in [21, Theorem 7.1], we find
that for each � 2 Fm.Q/, there exists a choice of ��.d/ satisfying (5.12) such thatX

d;d 02D� .z/

��.d/��.d
0/g.Œd1; d2�/ D

X
d�z2

d jP� .z/

Y
pjd

g�.p/

1 � g�.p/

�

� X
n�z

.n;N� /D1

ja�.n/j
2

n

��1
:
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Hence (5.17) is

� x
b�.1=T /
T

X
�2Fm.Q/

jˇ.�/j2
R.�; �/P

n�z; .n;N� /D1
ja� .n/j2

n

COm;"

�
Q

3
2mT 3=4x

1� 1

m2
C 1

m4 z2C"
X

�;� 02Fm.Q/

jˇ.�/ˇ.� 0/j
�
: (5.18)

Since kˇk2 D 1, the inequality of arithmetic and geometric means implies that (5.18)
equals

x
b�.1=T /
T

X
�2Fm.Q/

jˇ.�/j2
R.�; �/P

n�z; .n;N� /D1
ja� .n/j2

n

COm;".Q
3
2mT 3=4x

1� 1

m2
C 1

m4 z2C" #Fm.Q//: (5.19)

By Lemma 5.5, the fact that R.�; �/ > 0, and the upper bound b�.1=T /� 1 from
(5.10), we find that if z �m Q

6m with a sufficiently large implied constant, then

R.�; �/P
n�z; .n;N� /D1

ja� .n/j2

n

�
R.�; �/

R.�; �/
log z
20
C

1
2

�
1

log z
:

This establishes the bound (5.14), which concludes the proof of Proposition 5.1.

5.4. Mean values of Dirichlet polynomials

Using Proposition 5.1, we bound the mean value of the Dirichlet polynomial appearing as
the integrand in Proposition 4.1.

Proposition 5.6. Suppose that each Fm.Q/ satisfies Hypothesis 1.1, and let �0 2A.m0/.
Let Q � 3, T � 1, and y � cm.C.�0/QT #Fm.Q//

32.m0m/
3
, where cm > 0 is a suffi-

ciently large constant depending at most on m. For any u 2 Œy; y12000�,

X
�2Fm.Q/

Z T

�T

ˇ̌̌̌ X
y<p�u

����0.p/ logp
p1Cit

.1C e��.p/p
ˇ��1/

ˇ̌̌̌2
dt

�m

X
y<p�u

��0�z�0.p/.1C e��.p/p
ˇ��1/2 logp

p
:

Proof. A result of Gallagher [23, Theorem 1] states that for any sequence of complex
numbers an and any T � 1, we haveZ T

�T

ˇ̌̌X
n�1

ann
�it
ˇ̌̌2
dt � T 2

Z 1
0

ˇ̌̌ X
x<n�xe1=T

an

ˇ̌̌2 dx
x
:
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Assume z � cmQ6m with cm sufficiently large. If b.n/ is as in Proposition 5.1, then the
above result with an D b.n/a�.n/ yields the boundX
�2Fm.Q/

Z T

�T

ˇ̌̌X
p>z

a�.p/b.p/p
�it
ˇ̌̌2
dt� T 2

Z 1
0

X
�2Fm.Q/

ˇ̌̌ X
x<p�xe1=T

p>z

a�.p/b.p/
ˇ̌̌2 dx
x
:

We apply Proposition 5.1 and bound the right hand side of the above display by

�";m T
2

Z 1
0

�
x

T log z
CQ

3
2mT 3=4x

1� 1

m2
C 1

m4 z2C" #Fm.Q/

� X
x<p�xe1=T

p>z

jb.p/j2
dx

x

�";m

X
p>z

jb.p/j2p

�
1

log z
C p

� 1

m2
C 1

m4Q
2
3mT

7
4 z2C" #Fm.Q/

�
�m

1

log z

X
p>z

jb.p/j2p.1C p
� 1

m2
C 1

m4Q
2
3mT

7
4 z3 #Fm.Q//:

Choose y such that y � cm.C.�0/QT #Fm.Q//
32.m0m/

3
and z D y1=.5m

2/, and choose
b.p/ to be supported on the primes p > y. Then the above display is

�m .1CQ
3
2mT 7=4y

� 1

m2
C 1

m4 z3 #Fm.Q//
1

log z

X
p>y

jb.p/j2p:

By our assumptions on y and z, we have z � cmQ6m. It follows thatX
�2Fm.Q/

Z T

�T

ˇ̌̌X
p>y

b.p/a�.p/p
�it
ˇ̌̌2
dt �m

1

logy

X
p>y

jb.p/j2p: (5.20)

Now, select

b.p/ D

´
a�0.p/.1C e��.p/p

ˇ��1/
logp
p

if y < p � u,
0 otherwise.

Since y > C.�/C.�0/ for any � 2 Fm.Q/, we see by (3.5) that

a�.p/a�0.p/ D ����0.p/; ja�0.p/j
2
D ��0�z�0.p/

for every p > y. Therefore, we may conclude from (5.20) that if u 2 Œy; y12000�, thenX
�2Fm.Q/

Z T

�T

ˇ̌̌̌ X
y<p�u

����0.p/ logp
p1Cit

.1C e��.p/p
ˇ��1/

ˇ̌̌̌2
dt

�m

1

logy

X
y<p�u

��0�z�0.p/.1C e��.p/p
ˇ��1/2.logp/2

p

�m

X
y<p�u

��0�z�0.p/.1C e��.p/p
ˇ��1/2 logp

p
;

as desired.
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6. Proofs of Theorems 1.3 and 1.7 and the rarity of Landau–Siegel zeros

We now begin the proofs of Theorems 1.3 and 1.7, both of which use Propositions 4.1
and 5.6. Theorem 2.5 will follow as a straightforward consequence of Theorems 1.3
and 1.7. The proofs of Theorems 1.3 and 1.7 run parallel for the most part and deviate
only at the very end.

Let � satisfy (4.4), and let � 2 R satisfy j� j � T . In order to simultaneously satisfy
Propositions 4.1 and 5.6, we choose

K D 240000.m0m/
3� log.C.�0/qQT #Fm.Q//COm0;m.1/; (6.1)

where the implied constant is sufficiently large. Lemma 4.3 implies that there are
� .m0m/

2 log.C.�0/QT / zeros of L.s; � � �0/ satisfying j� � .1 C i�/j � �. Thus
if L.s; � � �0/ has a zero �0 (not equal to ˇ� if e� D 1) such that j�0 � .1C i�/j � �,
then by Proposition 4.1,

#¹� D ˇ C i Wˇ � 1 � �=2; j � � j � �=2º
.m0m/2� log.C.�0/QT /

� .200/4K
�
�3
Z A2

A1

ˇ̌̌̌ X
A1<p�u

����0.p/ logp
p1Ci�

.1C e��.p/p
ˇ��1/

ˇ̌̌̌2
du

u

C r���01.�/min
²
1;
1 � ˇ�

�

³�
;

where A1 and A2 are as in (4.7). (The zero ˇ� is not counted on the left hand side when
e� D 1.) We integrate both sides over j� j � T and use the bound

.m0m/
2� log.C.�0/QT /� K

to conclude that N���0.1 � �=2; T / (excluding ˇ� when e� D 1) is

� .201/4K
�
�2
Z T

�T

Z A2

A1

ˇ̌̌̌ X
A1�p�u

����0.p/ logp
p1Ci�

.1C e��.p/p
ˇ��1/

ˇ̌̌̌2
dud�

u

C r���0 min
²
1;
1 � ˇ�

�

³�
:

We now sum over � 2 Fm.Q/. Since r���0 D 1 for at most one � 2 Fm.Q/, it follows
from Proposition 5.6 thatX
�2Fm.Q/

N���0.1 � �=2; T /

�m .201/
4K

�

�
�2
Z A2

A1

X
A1<p�u

��0�z�0.p/.1C e��.p/p
ˇ��1/2 logp

p

du

u
Cmin

²
1;
1 � ˇ�

�

³�
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�m .201/
4K

�

�
�2 log

A2

A1

X
A1<p�A2

��0�z�0.p/.1Ce��.p/p
ˇ��1/2 logp

p
Cmin

²
1;
1�ˇ�

�

³�
�m;m0 .202/

4K

�
�

X
A1<p�A2

��0�z�0.p/.1Ce��.p/p
ˇ��1/2 logp

p
Cmin

²
1;
1�ˇ�

�

³�
(6.2)

where we identify min ¹1; .1 � ˇ�/=�º with 1 when e� D 0 and omit ˇ� from the count
when e� D 1.

Proof of Theorem 1.3. Let q D 1, so 1C e��.p/pˇ��1 D 1 and min ¹1; .1 � ˇ�/=�º D 1.
It follows from Lemma 4.2 (with � D 1=logA2) thatX

A1<p�A2

��0�z�0.p/ logp
p

�m0

K

�
:

It follows that (6.2) is�m;m0 .203/
4K . Unraveling our choice ofK in (6.1) and choosing

� D 1 � �=2, we find thatX
�2Fm.Q/

N���0.�; T /�m0;m .C.�0/QT #Fm.Q//
2:05�107.m0m/

3.1��/ (6.3)

when 1 � 1
2�107.m0m/2

� � � 1 � 1
2 log.C.�0/QT /

. If � > 1 � 1
2 log.C.�0/QT /

, then we still
achieve (6.3) by the boundX

�2Fm.Q/

N���0.�; T / �
X

�2Fm.Q/

N���0

�
1 �

1

2 log.C.�0/QT /
; T

�
and Theorem 1.6. If � � 1 � 1

2�107.m0m/2
, then our result is trivial since N���0.1=2; T /

�m0;m T log.C.�0/QT / for each � 2 Fm.Q/ (see [32, Theorem 5.8]). Once we invoke
Theorem 1.6 to bound #Fm.Q/, we have proved Theorem 1.3 in all cases.

Proof of Theorem 1.7. Let � .mod q/ be a primitive quadratic nontrivial character modulo
q � Q such that L.s; �/ has a real zero ˇ� 2 .1=2; 1/. Since Theorem 1.7 follows from
Theorem 1.3 when .1 � ˇ�/ log.C.�0/QT / > cm;m0 , we may assume without loss of
generality that .1 � ˇ�/ log.C.�0/QT / � cm;m0 (with cm;m0 as in Corollary 4.6), in
which case e� D 1 and min ¹1; .1 � ˇ�/=�º D .1 � ˇ�/=�. We will prove thatX

A1<p�A2

��0�z�0.p/.1C �.p/p
ˇ��1/2 logp

p
�

K2

�
�
1 � ˇ�

�
: (6.4)

Once we insert (6.4) into (6.2), the proof proceeds just as for Theorem 1.3. (The verifica-
tion that our estimate is trivial for � � 1� 1

2�107.m0m/2
uses the bound 1� ˇ��Q�1=2.)

Our proof of (6.4) is a modification of an idea due to Bombieri [5, §6].
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To prove (6.4), we begin with an application of Taylor’s theorem:

.1C �.p/pˇ��1/2 � 1C �.p/C .1 � ˇ�/ logp:

Therefore, by Lemma 4.2, (6.4) is

�

X
A1<p�A2

��0�z�0.p/.1C �.p// logp
p

C .1 � ˇ�/
X

A1<p�A2

��0�z�0.p/.logp/2

p

�m;m0

K

�

� X
A1<p�A2

��0�z�0.p/.1C �.p//

p
C .1 � ˇ�/

X
A1<p�A2

��0�z�0.p/ logp
p

�
�m;m0

K

�

� X
A1<p�A2

��0�z�0.p/.1C �.p//

p
C
K

�
.1 � ˇ�/

�
:

Thus the bound (6.4) follows from the boundX
A1<p�A2

��0�z�0.p/.1C �.p//

p
�m;m0

K

�
.1 � ˇ�/; (6.5)

which we will now prove.
Recall that 1 is the trivial representation in A.1/, and set … WD �0 � .z�0 ˝ .1 � �//.

Note that L.s; …/ D L.s; �0 � z�0/L.s; �0 � .z�0 ˝ �//, and for all p 2 .A1; A2�, we
have a….p/D ��0�z�0.p/.1C �.p//. It is important that L.s;…/ has a pole of order 1 at
s D 1, and

�… WD Res
sD1

L.s;…/�m0

1

.C.�0/q/
11m2

0

(6.6)

per (3.7) and [43, Theorem A.1]. We restate our goal in (6.5) asX
A1<p�A2

a….p/

p
�m;m0

K

�
.1 � ˇ�/: (6.7)

The function a….n/ is multiplicative, and it is also nonnegative.4 Since every integer
n 2 Œ1; A1� is coprime to every prime p 2 .A1; A2�, it follows that�X

n�A1

a….n/

n

�� X
A1<p�A2

a….p/

p

�
D

X
A1<p�A2
n�A1

a….np/

np
�

X
A1�n�A1A2

a….n/

n
:

Let �… denote the residue at s D 1 for L.s; …/. The bound (6.7), and hence (6.4) and
Theorem 1.7, follows from the two boundsX

A1�n�A1A2

a….n/

n
�m;m0 �…

K

�
;

X
n�A1

a….n/

n
�m;m0

�…

1 � ˇ�
: (6.8)

4This follows from [1, Proposition 6.9] and [29, Lemma a].
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The first bound in (6.8) follows from a straightforward contour integral estimate:

X
A1�n�A1A2

a….n/

n
�

1X
nD1

a….n/

n
.e
� n
A1A2 � e

� 2nA1 /

D
1

2�i

Z 3Ci1

3�i1

L.s C 1;…/..A1A2/
s
� .A1=2/

s/�.s/ ds

D �… log.2A2/C
Z �1=2Ci1
�1=2�i1

L.s C 1;…/..A1A2/
s
� .A1=2/

s/�.s/ ds:

By (3.7), (5.9), (6.1), and (4.7), we have the convexity bound

jL.1=2C i t;…/jA
�1=2
1 �m;m0 .qC.�0//

�15m3
0.3C jt j/m

2
0
=2: (6.9)

The integral is then�m;m0 .qC.�0//
�15m3

0 , which is majorized by �… log.2A2/ because
of (6.6). The first bound in (6.8) now follows since log.2A2/�m;m0 K=�.

Our proof of the second bound in (6.8) uses the fact that if 1�n�A1 and ˇ�2.1=2;1/,
then A1=n � .A1=n/ˇ� :

X
n�A1

a….n/

n
�

X
n�A1

a….n/

nˇ�
A
ˇ��1

1 �

X
n�A1

a….n/

nˇ�
A
ˇ��1

1

�
1 �

n

A1

�3m2
0

D
1

2�i

Z 3Ci1

3�i1

L.s C ˇ�;…/
A
sCˇ��1

1

s.s C 1/ � � � .s C 3m20/
ds:

We push the contour to the line Re.s/D 1=2� ˇ�, picking up residues at s D 1� ˇ� and
s D 0:

�…

.1 � ˇ�/
Q3m2

0

jD1.1 � ˇ� C j /

C
A
ˇ��1

1

.3m20/Š
L.ˇ�;…/

C

Z 1=2�ˇ�Ci1

1=2�ˇ��i1

L.s C ˇ�;…/
A
sCˇ��1

1

s.s C 1/ � � � .s C 3m20/
:

Our hypothesis that L.ˇ�; �0 � .z�0 ˝ �// D 0 implies that L.ˇ�; …/ D 0. We invoke
(6.9) to bound the integral. Since ˇ� 2 .1=2; 1/, it follows thatX

n�A1

a….n/

n
�m;m0

�…

1 � ˇ�
COm;m0..qC.�0//

�15m3
0/:

Since the contribution from �… dominates the second term by (6.6), the second bound in
(6.8) follows.

Proof of Theorem 2.5. Part (1) (resp. (2)) follows from Theorem 1.3 (resp. Theorem 1.7
and Corollary 4.6) by choosing � D 1 � A

108.m0m/4 log.C.�0/QT /
.
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7. Subconvexity and mass equidistribution

Proof of Theorem 2.1. Recall the notation and setup of Section 2.1, especially the defini-
tion of G .Q/ in (2.1). To each f 2 G .Q/, there corresponds a cuspidal automorphic rep-
resentation �f 2 A.2/ with trivial central character. Let F denote the set of all such �f ,
and define F2.Q/ according to (1.3). Since L.s; f / D L.s; �f /, it suffices for us to work
with F2.Q/ instead of G .Q/. We denote by �0 2 A.2/ the representation corresponding
to f0.

Given � 2F2.Q/, let Ad2� 2A.3/ denote the adjoint square lift of � ; thenC.Ad2�/
� �f q

2
f
� Q2. If � 2 F2.Q/ and �0 2 A.2/, then it follows from the uniform bound

j j̨;�.p/j; j j̨;�0.p/j � p
7=64 that both L.3=2C i t;Ad2 �/ and L.3=2;Ad2 � � �0/ are

defined by absolutely convergent sums which are bounded independently of � and �0.
(The bound j j̨;�.p/j � p7=64 was proved by Kim and Sarnak [36, Appendix] when p is
unramified; the ramified case was handled by Blomer and Brumley [3].) Theorem 1.1 of
[61], together with (3.7), now implies that for any 0 � ı < 1=2, we have the bounds

log jL.1=2;Ad2 � � �0/j

�

�
1

4
�

ı

109

�
log.C.Ad2 � � �0//C

ı

107
NAd2 ���0

.1 � ı; 6/CO.1/

�

�
1

4
�

ı

109

�
log.�2f q

4
f �

3
f0
q3f0/C

ı

107
NAd2 ���0

.1 � ı; 6/CO.1/ (7.1)

and

log jL.1=2;Ad2 �/j �
�
1

4
�

ı

109

�
log.C.Ad2 �//C

ı

107
NAd2 �.1 � ı; 6/CO.1/:

The effect of replacing 1=2 with 1=2C i t is that we add i t to the Langlands parameters
�Sym2 f .j /. After an application of (3.7), the net effect on the above bound is

log jL.1=2C i t;Ad2 �/j

�

�
1

4
�

ı

109

�
log.�f q2f .6C jt j/

3/C
ı

107
NAd2 �.1 � ı; jt j C 6/CO.1/: (7.2)

Note that the bound

jL.1=2C i t;Ad2 �/j � .jt j C 1/.�f q
2
f /
1=4�ı

follows immediately from (2.2) when jt j C 1 � �4ı=3
f

q
8ı=3

f
. Also, the convexity bound

L.1=2; �0/� �
1=4

f0
q
1=4

f0

follows from work of Heath-Brown [27]. Therefore, whenever we can prove the bound

L.1=2;Ad2 � � �0/� .�3f0q
3
f0
�2f q

4
f /

1
4�

"=259200000000

109 ;
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it follows that

L.1=2; f � f � f0/ D L.1=2; �0/L.1=2;Ad2 � � �0/� .�4f0q
4
f0
�2f q

4
f /

1
4�

"

1021 :

Consequently, by (7.1) and (7.2), we find for " 2 .0; 1/ that the size of the exceptional set
in Theorem 2.1 is

�

X
�2F2.Q/

NAd2 �˝�0

�
1 �

"

259200000000
; 6

�
C

X
�2F2.Q/

NAd2 �

�
1 �

"

259200000000
;QC 6

�
:

By the definition of G .Q/, each � 2 F2.Q/ has squarefree conductor and trivial cen-
tral character; it then follows from work of Ramakrishnan [57, Theorem 4.2 and Corol-
lary 4.3] that if �; � 0 2 F2.Q/ and Ad2 � D Ad2 � 0, then � 0 D � . Therefore, if we
let G3.Q

2/ be the image of F2.Q/ in A.3/ under the adjoint square lift, then the map
Ad2WF2.Q/ ! G3.Q

2/ is bijective. The size of the exceptional set in Theorem 2.1 is
now

�

X
�2G3.Q2/

N�˝�0

�
1�

"

259200000000
; 6

�
C

X
�2G3.Q2/

N�

�
1�

"

259200000000
;QC6

�
:

By Theorem 1.3, this is

� .Q2/10
8�.3�2/4� "

259200000000 C .Q2
�Q/10

8�.3�1/4� "
259200000000 � Q";

as desired.

8. The Chebotarev density theorem in families

The goal of this section is to prove Theorem 2.7. Let L=Q be a Galois extension of
number fields. We begin by establishing a flexible variant of the Chebotarev density the-
orem. Given any zero-free region for the Dedekind zeta function �L.s/, we would like to
compute an asymptotic expression for �C .x; L=Q/ with an error term depending on the
zero-free region in an explicit form.

Proposition 8.1. Let L=Q be a Galois extension of number fields with Galois group G.
Let �W Œ3;1/! .0;1/ be a function such that �L.s/=�Q.s/ ¤ 0 in the region Re.s/ >
1 ��.jIm.s/j C 3/. Define

�.x/ D inf
t�3
Œ�.t/ log x C log t �: (8.1)

Let C be a conjugacy class of G, and suppose there exists an abelian subgroup H of G
such that H \ C is nonempty and �LH .s/=�Q.s/ is entire, where LH is the subfield of L
fixed by H . For x � .logDL/4,ˇ̌̌̌

�C .x; L=Q/ �
jC j

jGj
�.x/

ˇ̌̌̌
�
jC j

jGj

xe�
1
8�.x/

log x
logDL C

jC j

jGj

x3=4

log x
:
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Remark 8.2. The existence of this abelian subgroup H is a mild condition for our pur-
poses. In the special case C D ¹1º, one can takeH D ¹1º and this follows unconditionally
from the Aramata–Brauer theorem as LH D L is Galois over Q. For an arbitrary conju-
gacy class C , one can takeH D hgi to be the cyclic subgroup generated by some element
g 2 C , in which case this assumption follows easily from the strong Artin conjecture
for �L.s/ over Q. The strong Artin conjecture is known for all examples under consider-
ation in Theorem 2.7.

Remark 8.3. An analogous result holds for any Galois extension L=F with �.x/

replaced by the number of prime ideals of F up to x and �Q.s/ replaced by �F .s/. We
restrict to F D Q for simplicity and with Theorem 2.7 in mind.

Proof of Proposition 8.1. For the proof, we will borrow heavily from results recorded
in [65] and will therefore remain consistent with the notation therein. Let g 2 H \ C be
arbitrary and set CH D ¹gº. Let K D LH be the fixed field of L by H . Select f . � / D
f . � I x; `; "/ in [65, Lemma 2.2] with

" D min ¹1=8; 8e��.x/=4º C x�1=4; ` D 2: (8.2)

Note that 0 � f .t/ � 1 for all t 2 R, f .t/ is supported in
�
1
2
�

"
logx ; 1 C

"
logx

�
and

f .t/ D 1 for t 2 Œ1=2; 1�. Its Laplace transform F.z/ D
R1
0
f .t/e�zt dt is entire and

satisfies many properties recorded in [65, Lemma 2.2]. Consider the weighted prime sum
z CH .x; f / D

z CH .x; L=L
H If / given by [65, (2.13)], or equivalently

z CH .xIf / D
jCH j

jH j

X
�2bH �.CH /

log x
2�i

Z 2Ci1

2�i1

�
L0

L
.s; �;L=LH /F.�s log x/ ds;

where � runs over all the (Hecke) characters of the dual group bH . By [65, Lemma 4.3],
the bound " � x�1=4 from (8.2), and the bounds nL � logDL � x1=4, it follows that

jH j

jCH j

z CH .xIf /

log x
D F.� logx/�

X
�2bH �.CH /

X
��

F.��� logx/CO
�
x1=2

log x

�
; (8.3)

where �� runs over all nontrivial zeros of the Hecke L-functions L.s; �;L=LH /. Note

�L.s/ D �K.s/
Y
�2bH
�¤1

L.s; �;L=LH /

and, by assumption, �K.s/=�Q.s/ is entire. Therefore, in (8.3), the zeros of �Q.s/ only
contribute to the zeros of the Hecke L-function associated to the trivial character � D 1.
From these observations, it follows that

F.� logx/�
X
�2bH �.CH /

X
��

F.��� logx/D S.x/CO
� X

�
�L
�Q
.�/D0

jF.�� logx/j
�
; (8.4)
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where
S.x/ D F.� log x/ �

X
�

�Q.�/D0

F.�� log x/:

By standard arguments using Mellin inversion, one can verify that

.log x/S.x/ D
X
n�1

ƒ.n/f

�
logn
log x

�
C .log x/F.0/

�
log x
2�i

Z �1=2Ci1
�1=2�i1

�
�0Q

�Q
.s/F.�s log x/ ds: (8.5)

By [65, Lemma 2.2(iv)], jF.0/j � 1. From the properties of f described immediately
following (8.2) and the prime number theorem,X

n�1

ƒ.n/f

�
logn
log x

�
D

X
n�x

ƒ.n/CO."x C x1=2/:

For Re.s/ D �1=2, we have that

�
�0Q

�Q
.s/� log.jIm.s/j C 3/; .log x/jF.�s log x/j � "�2x�1=4 � x1=4;

which follow from [65, Lemmas 2.2(vi) and 2.6] and (8.2). Combining all of these obser-
vations with (8.5) and noting "� e��.x/=4 C x�1=4 by (8.2), it follows that

.log x/S.x/ D
X
n�x

ƒ.n/CO.xe��.x/=4 C x3=4/: (8.6)

All that remains is to consider the error term in (8.4). By [65, Lemma 4.4] and the assump-
tion logDL � x1=4, the zeros � with j�j � 1=4 have negligible contribution; namely,X

�
�L
�Q
.�/D0

jF.�� log x/j D
X
j�j�1=4
�L
�Q
.�/D0

jF.�� log x/j CO.x1=2/ for x � 3:

Write � D ˇC i for each nontrivial zero �. By (8.1), one can see that x
�.1�ˇ/

j jC3
� e��.x/.

Thus, [65, Lemma 2.2(iv)] and (8.2) imply that, for j�j � 1=4,

.log x/jF.�� log x/j �
xˇ

j j C 3
�

"�2

.j j C 3/2
� xe��.x/ �

e�.x/=2

.j j C 3/3
:

Summing over all such zeros, it follows thatX
j�j�1=4
�L
�Q
.�/D0

jF.�� log x/j �
xe��.x/=2

log x

X
�L
�Q
.�/D0

1

.j j C 3/3
:
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Applying a standard estimate for the zeros of the Dedekind zeta function [65, Lemma 2.5]
and Minkowski’s bound nL � logDL, we see that the above expression is

�
xe��.x/=2

log x

1X
TD1

X
�L
�Q
.�/D0

T�1�j j<T

logDL C nL log.T C 3/
T 3

�
xe��.x/=2 logDL

log x
: (8.7)

Substituting (8.7), (8.6), and (8.4) into (8.3), we conclude that

jH j

jCH j
z CH .xIf / D

X
n�x

ƒ.n/CO.xe��.x/=4 logDL C x3=4/ for x � .logDL/4.

Via [65, Lemma 2.3], we may replace z CH .xI f / by the usual prime counting func-
tion  CH .x/ given by [65, (2.1)] at the cost of O."x C x1=2/. From (8.2), this cost is
absorbed into the existing error term in the above expression. By partial summation (see
[65, Lemma 2.1 and (5.3)]), it therefore follows that

jH j

jCH j
�CH .x/ D �.x/CO

�
.logDL/

x

log x
sup

p
x�y�x

e��.y/=4 C
x3=4

log x
C logDL

�
:

By (8.1), one can verify that �.y/ is an increasing function of y and also �.x1=2/� 1
2
�.x/.

With these observations and the assumption logDL � x1=4, we conclude that

�CH .x/ D
jCH j

jH j
�.x/CO

�
jCH j

jH j

x

log x
e��.x/=8 logDL C

jCH j

jH j

x3=4

log x

�
:

Proposition 8.1 now follows by an application of [65, Lemma 5.2] from class field theory.
To absorb the arising secondary error term, we again use nL � logDL � x1=4.

First, we record a classical zero-free region for �L.s/ [40, Lemma 2.3].

Lemma 8.4. The Dedekind zeta function �L.s/ has at most one zero in the region

Re.s/ > 1 �
c5

logDL C nL log.jIm.s/j C 3/
:

If the exceptional zero exists, then it must be both real and simple.

Assuming a strong zero-free region for the Dedekind zeta function, we arrive at a
natural form of the Chebotarev density theorem.

Theorem 8.5. Let L=Q be a Galois extension of number fields with Galois group G and
L¤Q. Let C be a conjugacy class of G satisfying the hypotheses of Proposition 8.1. Let
0 < ı � 1=2 and T � .logDL/24 be arbitrary. Assume �L.s/=�Q.s/ has no zeros in the
region

Re.s/ > 1 � ı; jIm.s/j � T: (8.8)
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For x � .logDL/16=ı ,ˇ̌̌̌
�C .x; L=Q/ �

jC j

jGj
�.x/

ˇ̌̌̌
�
jC j

jGj

x

log x

�
x�ı=8 C T �1=24e�

1
24

p
c5.logx/=nL C T �1=24e

� 1
24

c5 logx
logDL

�
:

Proof. By Proposition 8.1 and Lemma 8.4, it remains to compute �.x/ for

�.t/ D

´
ı; 3 � t � T;

c5.logDL C nL log t /�1; t > T:

Define �.x/ D min ¹�1.x/; �2.x/º, where

�1.x/ D inf
3�t�T

.ı log x C log t / and �2.x/ D inf
t�T

�
c5 log x

logDL C nL log t
C log t

�
:

If �.x/ D �1.x/, then �.x/ � ı log x. Otherwise, we may assume �.x/ D �2.x/. Argu-
ing as in [65, Lemma 4.6], the expression c5 logx

logDLCnLu
C u is positive for u � 0 and is

globally minimized in this interval at u D max ¹0; u0º where u0 D .c5 log x/1=2=n1=2L �

.logDL/=nL. Therefore,

�.x/ D �2.x/ � min
²
c5 log x
logDL

;

s
c5 log x
nL

³
:

Since one always has the lower bound �2.x/ � logT � 24 log logDL, we see in all cases
that

e��.x/=8 � e��1.x/=8 C e��2.x/=8 � x�ı=8 C e��2.x/=24T �1=24.logDL/�1

� .logDL/�1
�
x�ı=16 C T �1=24e

�
c5 logx
24 logDL C T �1=24e�

1
24

p
c5.logx/=nL

�
because x � .logDL/16=ı . This estimate, along with Proposition 8.1 and Lemma 8.4,
yields the result.

We conclude this section with the proof of Theorem 2.7.

Proof of Theorem 2.7. Let F .X/DF .X IG;n;RG/ be given by (2.12). LetK 2F .X/

and recall zK=Q is the Galois closure of K over Q. For Re.s/ > 1,

� zK.s/ D �Q.s/
Y
�¤1

L.s; �; zK=Q/dim�; (8.9)

where � runs over the nontrivial irreducible Artin representations of G. In all cases under
consideration, the strong Artin conjecture is known to hold for all nontrivial Artin rep-
resentations � of G. That is, L.s; �; zK=Q/ D L.s; �/ for some cuspidal automorphic
representation � D �� of GLd .AQ/ with d equal to the degree of �. Observe that d is
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bounded by m, where m D m.G/ is the maximum degree of the irreducible representa-
tions of G. The map

� 7! �� (8.10)

has image A .X/ D A .X IG; n;RG/, the set of automorphic representations � obtained
this way from F .X/.

LetM.X/DM.X IG;n;RG/ be the maximum size of the fibres of the map in (8.10).
As shown in [56],

M.X/ � max
F¤Q

#¹K 2 F .X/WQ � F � zKº; (8.11)

where the maximum runs over all number fields F ¤ Q. Since our notation differs from
theirs, we explain (8.11) for the sake of clarity. Fix some � 2 A .X/. By a result of
Klüners and Nicolae [37, Theorem 5] refined by Pierce, Turnage-Butterbaugh and Wood
[56, Lemma 7.4], it follows that5 L.s; �1; zK1=Q/ D L.s; �2; zK2=Q/ D L.s; �/ if and
only if zKker.�1/

1 D zK
ker.�2/
2 D F for some number field F . Note that F ¤ Q since the

representations �1; �2 are nontrivial. Hence, the size of the fibre above � 2 A .X/ in
(8.10) equals #¹K 2 F .X/WQ � F � zKº for some number field F ¤ Q, implicitly
depending on � . This implies (8.11).

In light of (8.11), it follows from [56, Proposition 7.9] and [56, Theorem 7.1] that
there exists a sufficiently small " D ".n;G/ > 0 such that

M.X/�n;G;" X
�2" #F .X/: (8.12)

This result is one of the key innovations of [56].
Now, we verify the assumptions of Theorem 1.3 with �0 2A.1/ taken to be the trivial

representation. Take m D m.G/ to be the maximum degree of the irreducible represen-
tations of G, Q D X jGj=2, and Fm.Q/ D A .X/. By (8.9) and (8.10), each � 2 Fm.Q/

satisfies
deg.�/ � m and C.�/ � D zK for some K 2 F .X/:

Since D zK � D
jGj=2
K � X jGj=2 D Q for any K 2 F .X/, we indeed have C.�/ � Q for

every � 2Fm.Q/. Moreover, � 2Fm.Q/ satisfies GRC (and hence Hypothesis 1.1) since
it corresponds to an Artin representation via (8.10). Thus, by Theorem 1.3, it follows thatX

�2A .X/

N�.1 � ı; T /�n;G .X
jGj=2T /10

8m4ı (8.13)

uniformly for T � 1 and 0 < ı < 1=2. For " 2 .0; 1/ arbitrary, select

T D Q.logQ/24; ı D
"

109jGjm4
:

5Here we crucially use the fact that the base field is Q.
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Thus, by (8.13) and our definition of Q D X jGj=2, for all except at most On;G;".X"/
automorphic representations � 2A .X/, the L-function L.s;�/ is zero-free in the region

Re.s/ > 1 � ı; jIm.s/j � Q.logQ/24: (8.14)

Each exceptional � corresponds to at most M.X/ exceptional fields K 2 F .X/. Throw-
ing out all of these exceptional fields, it follows by (8.12) that � zK.s/=�Q.s/ is zero-free
in the region (8.14) for all K 2 F .X/ with at most On;G;".X�" #F .X// exceptions.

Now, let K 2 F .X/ be a nonexceptional field. By Theorem 8.5, we haveˇ̌̌̌
�C .x; zK=Q/ �

jC j

jGj
�.x/

ˇ̌̌̌
�
jC j

jGj

x

log x
E.x/ for x � .logD zK/

16=ı , (8.15)

where

E.x/ D x�ı=8 CD
�1=24

zK
exp

�
�
1

24

�
c5 log x
jGj

�1=2�
CD

�1=24

zK
exp

�
�
1

24

c5 log x
logD zK

�
:

Note we used D zK � Q to express E.x/ in terms of D zK instead of Q. Choose � D ı=8.
For .logD zK/

2=� � x � D
1=.24�/

zK
, one can directly verify that E.x/� x�ı=8 D x�� . If

.24�/�1 logD zK � log x � c�15 jGj.logD zK/
2 then one can verify that

E.x/� D
�1=24

zK
� e�

1
24

p
c5.logx/=jGj:

Finally, if log x � c�15 jGj.logD zK/
2 then one can verify that

E.x/� e�
1
24

p
c5.logx/=jGj

C e
�

c5 logx
24 logD zK � e�

1
24

p
c5.logx/=jGj:

This completes the proof of Theorem 2.7.

9. Landau–Siegel zeros and torsion in class groups

This section is dedicated to the proof of Theorem 2.9. The first ingredient is a lemma
due to Ellenberg–Venkatesh [16, Lemma 2.3]. It establishes a connection between the
existence of small split primes and bounds for the class group.

Lemma 9.1 (Ellenberg–Venkatesh). LetK=Q be a number field of degree n and let `� 1
be a positive integer. Set 0 < ı < 1

2`.n�1/
and suppose there exist M rational primes

p � Dı
K which are unramified and split completely in K. For any " > 0,

jClK Œ`�j �";`;n D
1=2C"
K M�1:

To make use of Lemma 9.1, we require a proposition relating low-lying zero-free
regions to the existence of small primes with a given splitting behaviour.
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Proposition 9.2. Let L=Q be a Galois extension of number fields and let 0 < " < ı=2 be
arbitrary. Suppose �L.s/ has no zeros in the region

Re.s/ > 1 �
Hı;"

logDL
; jIm.s/j � 1; (9.1)

where Hı;" � 1 is sufficiently large. Then, for any conjugacy class C � G ,

�C .D
ı
L; L=Q/ �

"

8ı

jC j

jGj
Dı�"
L COı;"

�
jC j

jGj
Dı�"
L .logDL/�3

�
:

Proof. This essentially follows from the arguments found in [71]. We will outline the
proof here and borrow heavily from [71], so we will remain as consistent as possible with
the notation therein. In particular, set L D logDL. Select f as in [71, Lemma 2.6] with
` D 2; B D ı; and A D "=4. Then:
� 0 � f .t/ � A�1 D 4"�1 for all t 2 R.
� The support of f is contained in ŒB � 2`A;B� D Œı � "; ı�.
� The Laplace transform F.z/ D

R1
0
f .t/e�zt dt is entire and given by

F.z/ D e�.B�2`A/z
�
1 � e�Az

Az

�2`
D e�.ı�"/z

�
1 � e�"z=4

"z=4

�4
:

� For s D � C i t 2 R with � < 1 and t 2 R, we have

jF..1 � s/L /j �" e
�.ı�"/.1��/L min ¹1; j.1 � s/L j�4º:

Furthermore, F.0/ D 1.
We will use these properties frequently and often without mention. Define

S D
X
p prime
p−DL

logp
p

f

�
logp
L

�
1C .p/;

where, for primes p unramified in L, 1C .p/ D 1 if
�
L=Q
p

�
D C and 0 otherwise. By the

properties of f , one can verify that

S �
ıL

e.ı�"/L
� 4"�1 �

X
p�Dı

L
p−DL

1C .p/ � .4ı"�1D�ıC"L logDL/ � �C .Dı
L; L=Q/: (9.2)

Now, from the proof of [71, Lemma 4.1], we have

L �1S D
X
 

 .C/
1

2�i

Z 2Ci1

2�i1

�
L0

L
.s;  ;L=Q/F..1 � s/L / ds

COı;".L
2e�ıL =4/;
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where  runs over the irreducible Artin characters of Gal.L=Q/. Using standard class
field theory arguments (see [71, Section 4.2]), one can shift the contour as in [71, Lemma
4.2] with T? D 1. This yields

jGj

jC j
L �1S D 1COı;"

� X
jIm.�/j�1

jF..1 � �/L /j CL �3
�
; (9.3)

where � runs over all nontrivial zeros of �L.s/ satisfying jIm.�/j � 1. We apply
[71, Lemma 4.3] (with J D 1; T1 D 1; and R1 D Hı;" in their notation) to deduce thatX

jIm.�/j�1

jF..1 � �/L /j D
X

jIm.�/j�1

Re.�/>1�
Hı;"

logDL

jF..1 � �/L /j COı;".e
�ıHı;"=2/:

By assumption (9.1), the remaining sum over zeros is empty. Combining these estimates
with (9.3) implies that

S D
jC j

jGj
.logDL/

�
1COı;".e

�ıHı;"=2 C .logDL/�3/
�

�
1

2

jC j

jGj
.logDL/

�
1COı;"..logDL/�3/

�
;

since Hı;" is sufficiently large. Substituting this lower bound into (9.2) yields the result.

LetK be a number field, let nD ŒK WQ�, and let zK be the Galois closure ofK over Q.
Our application of Proposition 9.2 assumes that � zK.s/ is the L-function associated to a
(noncuspidal) automorphic representation … of GLm.AQ/, where m D Œ zK W Q� � nŠ. By
a result of Langlands along with strong multiplicity one, there exists an integer 1� r �m,
integers 1 � mj � m and 1 � dj � m such that

Pr
jD1mj D m and �j 2 A.mj / occurs

as a cuspidal constituent of … with multiplicity dj . Consequently,

� zK.s/ D

rY
jD1

L.s; �j /
dj : (9.4)

This gives a factorization of � zK.s/ into irreducible L-functions (see [50, Remark 1.1]).

Lemma 9.3. Let K=Q be a number field of degree n with Galois closure zK over Q. Let
` � 1 be a positive integer, and let " > 0 be arbitrary. Let � be a real primitive Dirichlet
character modulo a fundamental discriminant d . Assume the following:

(i) � zK.s/ is the L-function of an isobaric automorphic representation … of the group
GLŒ zKWQ�.AQ/.

(ii) Q.
p
d/ \ zK D Q.

(iii) The Dirichlet L-function L.s; �/ has a real zero ˇ� D 1 � ��=log jd j with �� suffi-
ciently small, depending on n.

Then � ¤ �j for all 1 � j � r in (9.4).
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Proof. Suppose to the contrary that � D �1 in (9.4), in which case jd j � D zK � D
nŠ=2
K .

By [41, Section 8], there exists an effectively computable constant cn > 0 such that � zK.s/
has at most one real simple zero in the interval

s � 1 �
cn

logDK
: (9.5)

Similarly, if �� is sufficiently small, then by results in [13, Chapter 14], ˇ� is a real
simple zero of L.s; �/. Since � is a cuspidal constituent of … by hypothesis, it follows
that � zK.s/=L.s; �/ is holomorphic on C � ¹1º. In particular, if �� < cn (which can be
guaranteed by item (iii)), then the sole real simple zero of � zK.s/ in the interval (9.5)
is ˇ�.

A result of Stark [62, Theorem 3] implies that zK contains a quadratic subfieldM such
that ˇ� is a real simple zero of �M .s/. Define �0 .mod d 0/ to be the primitive quadratic
character whose Dirichlet L-function equals �M .s/=�.s/. Since M is a subfield of zK, we
have jd 0j � D zK � D

nŠ=2
K .

Note that L.s; �/ and L.s; �0/ both have ˇ� as a real simple zero, and ˇ� lies in the
interval (9.5). Since jd j; jd 0j � DnŠ=2

K , a theorem of Page [13, Chapter 14] implies that
� D �0 once cn (hence ��) is made sufficiently small in terms of n (which is permissible
by (iii)). ThusM DQ.

p
d/, so Q.

p
d/ is a subfield of zK. This contradicts item (ii) in the

statement of the lemma, so � cannot appear as a cuspidal constituent of…, as desired.

Proof of Theorem 2.9. Recall that K is a number field of degree n whose Galois closure
over Q is zK, and let m D Œ zK W Q� � nŠ. By assumption, there exists a (noncuspidal)
automorphic representation GLm.AQ/whoseL-function � zK.s/DL.s;…/. Thus we may
assume the existence of a factorization of the form (9.4). Clearly, L.s;…/ satisfies GRC.
Our hypotheses and Lemma 9.3 ensure that �j ¤ � for all 1 � j � r in (9.4). Let

Q D max ¹D zK ; 2dº; 0 < " <
1

4`.n � 1/
; ı D

�
1

2`.n � 1/
� "

�
logDK
logD zK

;

and letHı;" � 1 be sufficiently large. From the estimateDjGj=nK �D zK �D
jGj=2
K , one can

see that ı < 1 and ı is bounded away from zero uniformly in terms of n; `; and ". Thus,
when a quantity depends on ı (such as Hı;"), we may replace this dependence with n; `;
and ". In particular, we may treat ı as independent of DK and D zK .

Recall that ˇ� D 1 � ��=log q. We apply Theorem 1.7 with �0 trivial, Fm.Q/ D

¹�j W 1 � j � rº, T D 1, and � D 1 �Hı;"=logD zK . Since z�0 ˝ � D � 62 Fm.Q/, The-
orem 1.7 implies that

N�.1 �Hı;"=logD zK ; 1/�n ..1 � ˇ�/ logQ/Q108m4Hı;"=logD zK �n;`;" ��;

where we have used the assumed bounds logQ �n;";` logD zK �n;";` log d and m � nŠ.
As �� is sufficiently small depending only on n; `; ", it follows that � zK.s/ has no zeros
in the region Re.s/ > 1 �Hı;"=logD zK and jIm.s/j � 1. Thus, by Proposition 9.2, there
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are�";n;` D
ı�"
zK
DD

1
2`.n�1/

�2"

K rational primes p �Dı
zK
DD

1
2`.n�1/

�"

K which split com-

pletely in zK, provided DK is sufficiently large depending on ", n; and `. The result now
follows from Lemma 9.1 after rescaling " appropriately.

Appendix A. Explicit upper bound on the universal family for GLn

LetF be a number field of degree d over Q and discriminantD and let n� 1 be an integer.
Let Acusp denote the set of unitary cuspidal automorphic representations � of GLn.AF /,
with normalized central character, ordered by analytic conductor C.�/. We recall that
C.�/DN�K� , whereN� DNorm.q�f /2N is the arithmetic conductor (the norm of the
Jacquet–Piatetski-Shapiro–Shalika conductor of �f ), andK� the archimedean conductor,
as in (3.3).

For Q � 1, let
F .Q/ D ¹� 2 AcuspWC.�/ � Qº:

We present an argument, due to Venkatesh [67] and based on results in [6], to deduce a
polynomial upper bound on the cardinality jF .Q/j. We can in fact make this polynomial
bound explicit, using subsequent refinements of loc. cit., as in the following

Theorem A.1. We have, for all fixed " > 0, jF .Q/j �d;n;" .DQ/
"Dn2Q2n.

Remark A.2. As we consider d and n as being fixed, we shall henceforth systematically
suppress the dependence of implied constants on n and d in the notation.

Remark A.3. The expected value of the exponent of Q in Theorem A.1 is nC 1, and
indeed this was shown (with an asymptotic) in [8], with one caveat: for n � 3 the authors
restrict to the subfamily of F .Q/ consisting of Maass forms. This restriction is fortunate,
in a way, since it provides an occasion for this appendix, which has sat for a long time
in a drawer (or inbox) and whose methods are quite different. While Theorem A.1 says
nothing about existence, and the upper bound is not sharp, we believe that the proof itself
is of sufficient interest to merit circulation.

Remark A.4. The results of [8] make no claim of uniformity in the number field F . The
upper bound in Theorem A.1 is, however, uniform in D, making this perhaps the most
novel aspect of the result.

Remark A.5. In our definition of the analytic conductor, we have not included a factor
of the discriminant, as some authors do (including Iwaniec and Sarnak [33]). For them,
the analytic conductor of � would be CIS.�/ D DnN�K� , and the analytic conductor
of the Rankin–Selberg L-function L.s; � � � 0/ would be of the form CIS.� � �

0I s/ D

Dn2N��� 0K��� 0.s/ rather than our N��� 0K��� 0.s/; see §A.2.4. Note that one can
deduce Theorem A.1 for either definition from the other, by a simple scaling argument.
One reason for our convention is that the Bushnell–Henniart bounds [9] for the Rankin–
Selberg conductor on GLm � GLn would yield (if blindly applied to the definition of
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Iwaniec–Sarnak) the lossy Dmn � D2mn in the discriminant aspect. This could be cor-
rected by writing CIS.� � �

0/�D�mnCIS.�/
nCIS.�

0/m, but we have preferred to avoid
this.

The proof of Theorem A.1 combines two ingredients: Rankin–Selberg theory and
sphere packing bounds in large dimensions. It is natural to ask what effect assuming stan-
dard conjectures on these L-functions would have on the quality of the resulting bound.
For example, a similar argument to the one we present here was used in [17] to count
`-adic sheaves of bounded complexity. In that article, Deligne’s proof of the Riemann
hypothesis over finite fields is used to show that certain trace functions form a quasi-
orthogonal system with small enough angular separation to deduce a polynomial upper
bound. We show that the exponent 2n can be improved to nC 1 under standard conjec-
tures, demonstrating the strength of the method of proof.

Theorem A.6. Assume the generalized Ramanujan conjecture and the generalized Rie-
mann hypothesis for Rankin–Selberg L-functions. Then, for all fixed " > 0,

jF .Q/j �" .DQ/
"Dn2=2QnC1:

Remark A.7. Note that, by the results in [8], the exponent ofQ in Theorem A.6 is sharp,
up to the ". Moreover, theD dependence here and that of the main term of the asymptotic
given in [8] are in agreement.

Remark A.8. The method of proof of Theorems A.1 and A.6 is sensitive to any loss of
information incurred in the application of the Bushnell–Henniart bounds [9]. Recall that
the main result in loc. cit. provides upper bounds for the Rankin–Selberg Artin exponent
Ar.�v � z� 0v/ at finite places v in terms the standard Artin exponents Ar.�v/ and Ar.z� 0v/,
and the integers n;n0, where �v and � 0v are smooth irreducible representations of GLn.Fv/
and GLn0.Fv/, respectively.

While the bounds in loc. cit. are sharp in general, we apply them under additional
hypotheses on �v and � 0v . Namely, in the course of the proof, we assume that
(1) the dimensions n D n0 are the same,
(2) the Artin exponents a D Ar.�/ D Ar.� 0/ are the same,
(3) the central characters are the same, say equal to �.
Under (1) and (2) above, Theorem 1 in [9] establishes the sharp bound Ar.�v � z� 0v/ �
.2n � 1/a. In Theorem B.1 of Appendix B, Bushnell and Henniart show that, under the
additional assumption of (3), this bound can be improved to Ar.�v � z� 0v/ � .2n � 2/a.

This improved bound is an ingredient in the explicit exponents given in Theorems
A.1 and A.6. Without this improvement, the unconditional bound in Theorem A.1 would
have an additional factor of Q, and the conditional bound in Theorem A.6 would have an
additional factor of Q1=2.

Remark A.9. The method of proof of Theorems A.1 and A.6 requires fixing certain
representation-theoretic data, of combinatorial nature. This data encodes the dimensional
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blocks of the inducing supercuspidal representations in the Bernstein–Zelevinsky classi-
fication, as well as the partition of these blocks according to the underlying twist equiva-
lence classes. See §A.2 for more details. After bounding the size of the subfamily associ-
ated with such data, one then sums over the finite number of such choices.

This decomposition allows one to prove, in principle, refined bounds for the cardinal-
ity of these subfamilies, since the Bushnell–Henniart bounds [9] can often be improved
under such assumptions. For example, if the combinatorial data that one takes is “trivial”,
in the sense that it corresponds to �v and � 0v supercuspidal on GLn, then (keeping the
assumptions (2) and (3) of the previous remark) one can use the bound Ar.� � z� 0/ � na
of [10, Corollary C], which is, in general, far better than the general bound of .2n � 2/a
cited above. In this way one can show that, under Ramanujan and Riemann as in Theo-
rem A.6, the subfamily of F .Q/ consisting of � which
(1) are supercuspidal at all the places at which they ramify,
(2) have archimedean component lying in some fixed compact of the unitary dual,
has cardinality O.Qn=2C2/ (ignoring the discriminant dependence). This bound is sur-
prisingly strong, and no trace formula was used to derive it. We have not found this type
of interplay between conductor dropping phenomenon and improved bounds on dimen-
sion counts of automorphic forms elsewhere in the literature.

A.1. Idea of proof

We present here the basic argument to prove Theorem A.1. We shall later need to modify
the presentation to obtain the best possible exponent.

Let q be an integral ideal of OF . Let � be a character of A�
f

, where Af is the ring of
finite adeles of F . Let

Acusp.q; �/ D ¹� 2 AcuspWq�f D q; ��f D �º;

Fq;�.Q/ D F .Q/ \Acusp.q; �/:

Here, q�f is the conductor of �f and ��f is the central character of �f . If Acusp.q; �/ is
nonempty then the conductor d of � necessarily divides q. Then

jF .Q/j D
X

Norm.q/�Q

X
djq

X
�

cond d

jFq;�.Q/j: (A.1)

The argument we sketch below provides a bound on jFq;�.Q/j of the form

O"..D
n2Norm.q/�2Q2nCn2/1C"/:

Executing the triple sum over all .q; d; �/, this would produce a bound of
O"..D

n2Q2nCn2/1C"/. We will later show (see §A.3) how to remove the n2 to estab-
lish Theorem A.1, as well as the sharp conditional bounds in Theorem A.6.
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A.1.1. Mapping Acusp.q; �/ to a Hermitian space. We begin by describing a way to map
Acusp.q; �/ to a Hermitian space, whose inner product can be understood in terms of
Rankin–Selberg L-functions. The reader is encouraged to read ahead to the next sub-
section describing the Dirichlet coefficients of these L-functions for a motivation of the
following constructions.

Recall that a partition � D .�i / is a sequence of nonincreasing nonnegative integers
�1 ��2 � � � �with only finitely many nonzero entries. Write P for the set of all partitions.
The length of � 2 P , denoted `.�/, is the number of its nonzero entries. Write

P` D ¹�W�1 � � � � � �` � 0º

for the partitions of length at most `. Finally, for � D .�i / 2 P , write j�j D
P
i �i . For

an integer r , let P`.r/ D ¹� 2 P`W j�j D rº; this is an empty set when r is negative.
Let S be a finite set of finite places. Let IS denote the set of integral ideals of OF

supported outside of S . When S is empty we abbreviate this to I for the set of all integral
ideals. Given an nD

Q
p prp 2 I we write Pn�1.n/ for the set of sequences �D .�p/p of

partitions such that �p 2 Pn�1.rp/. A Pn�1-decorated prime-to-S ideal is a pair .n; �/,
where n 2 IS and � 2Pn�1.n/. Let I S denote the set of Pn�1-decorated prime-to-S
ideals. We have a map I S ! IS , .n; �/ 7! n, where we forget the decoration and take
the underlying ideal. Observe that several .n; �/ can have the same underlying ideal n.
We shall sometimes write zn for a Pn�1-decorated ideal with underlying ideal n.

For a parameterX > 1, let I S .X/D ¹zn 2I S WNorm.n/�Xº; this is the set of pairs
.n;�/ with Norm.n/ � X and � 2Pn�1.n/. Let V S .X/ be the vector space of complex
valued functions on I S .X/. Endow V S .X/ with the standard scalar product

hf; gi D
X

zn2IS .X/

f .zn/g.zn/:

For an integral ideal q of OF , with support S , we shall map Acusp.q; �/ to V S .X/ in the
following way. For a partition � 2 Pn�1 let s� denote the associated Schur function in n
variables. If � is the zero partition, then s� is identically 1. For .n;�/ 2 I S set

a�.n;�/ D
Y
p…S

s�p.A�.p//; where A�.p/ D .˛1;�.p/; : : : ; ˛n;�.p//: (A.2)

We note that if n D 2 and �f has trivial central character, then the decoration � D .�p/p
is necessarily �p D .rp; 0; : : :/ and the (A.2) just recovers the Hecke eigenvalue of �
at n. In fact, more generally, when n � 2 and �f has trivial central character, if we take
� D .�p/p to satisfy �p D .rp; 0; : : :/, then we once again recover the Hecke eigenvalue
at n D

Q
p prp .

Let f WR ! R be a nonnegative smooth function supported in Œ1=2; 1� and having
Lebesgue integral 1. Write

F SX .n/ D
X

.m;S/D1

f .Norm.nmn/=X/:
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For every � 2 Acusp.q; �/ we define a vector vS� 2 V S .X/ by the rule

vS� W .n;�/ 7!
q
F SX .n/ a�.n;�/:

Note that for Norm.n/ > X we have F SX .n/D 0; in this way the function zn 7! vS� .zn/
can indeed be viewed as an element of V S .X/.

A.1.2. Relation to Rankin–Selberg L-functions. We now recall the description of the
Rankin–Selberg Dirichlet coefficients. This will clarify the choice of map � 7! vS� and
the inner product we put on V S .X/. Let �; � 0 2 Acusp.q; �/. The prime-to-S part of the
Rankin–Selberg L-function is defined, for Re.s/ > 1, by the Euler product

LS .s; � � z� 0/ D
Y
p…S

nY
jD1

nY
j 0D1

�
1 � j̨;�.p/ j̨ 0;� 0.p/Norm.p/�s

��1
:

We write a��z� 0.n/, for .n; S/D 1, for the Dirichlet coefficients of LS .s; � � z� 0/, so that

LS .s; � � z� 0/ D
X

.n;S/D1

a��z� 0.n/Norm.n/�s :

Cauchy’s identity shows that

a��z� 0.p
r / D

X
�2Pn.r/

s�.A�.p//s�.Az� 0.p//:

Following the exposition in [7, §2], for a partition � D .�1; : : : ; �n�1; k; 0; : : :/ 2 Pn we
let b� D .�1 � k; : : : ; �n�1 � k; 0; : : :/ 2 Pn�1. Then s�.A�.p// D �k.$p/s O�.A�.p//.
Now, for any pair .�; k/, where � 2 Pn�1 and k � 0, there is a unique � 2 Pn such that
j�j D j�j C kn andb�D � (add k to each of the first n entries of �). Applying this we get

a��z� 0.p
r / D

X
k�0

X
�2Pn�1.r�nk/

s�.A�.p//s�.Az� 0.p//: (A.3)

The sum on k is finite, going up to the integer part of r=n. Note that, in the above expres-
sion, we have used the fact that ��f D �� 0f D �; this explains why we have decomposed
according to central character in (A.1). Thus, for .n; S/ D 1, we have

a��z� 0.n/ D
Y

prpkn

X
kp�0

X
�p2Pn�1.rp�nkp/

s�p.A�.p//s�p.Az� 0.p//

D

X
.m;S/D1

mnjn

X
�2Pn�1.n=mn/

a�.n=m
n;�/a� 0.n=mn;�/: (A.4)

We now consider the smooth sum of coefficients

S.X/ D
X

.a;S/D1

a��z� 0.a/f .Norm.a/=X/:
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We have

S.X/ D
X

.a;S/D1

f .Norm.a/=X/
X

.m;S/D1
mnja

X
�2Pn�1.a=mn/

a�.a=m
n;�/a� 0.a=mn;�/

D

X
.n;S/D1

X
.m;S/D1

f .Norm.nmn/=X/
X

�2Pn�1.n/

a�.n;�/a� 0.n;�/

D

X
.n;�/2IS

F SX .n/a�.n;�/a� 0.n;�/ D
X

zn2IS .X/

vS� .zn/vS� .zn/:

We recognize this as hvS� ; vS� 0i. On the other hand, if we let

Of .s/ D

Z 1
0

f .x/xs
dx

x

be the Mellin transform of f , then by the Mellin inversion formula one has

S.X/ D
1

2�i

Z
.2/

LS .s; � � z� 0/ Of .s/X s ds:

This allows us to read off the orthogonality properties of vS� and vS� 0 in terms of the
analytic information of LS .s; � � z� 0/.

A.1.3. Strategy of proof. Let

uS� D
vS�

hvS� ; vS�i1=2

be the projection of the vector vS� to the unit sphere in V S .X/. The idea behind the proof
of Theorem A.1 is to show that, for X large relative to Q,
(1) the map Fq;�.Q/! V S given by � 7! vS� is injective;
(2) when �; � 0 2 Fq;�.Q/ are distinct, the vectors uS� and uS� 0 are quasi-orthogonal;
(3) there cannot be too many such quasi-orthogonal vectors.
Moreover, each of these steps will be seen to be quantifiable, polynomially in Q.

There is only one problem with this approach: we have thrown out the information at
ramified primes. While this allows for a simpler presentation, the price to pay is a weaker
bound in Theorem A.1. Indeed one obtains in this way the exponent 2n C n2 C " in
the parameter Q, with or without assuming the Ramanujan conjecture and the Riemann
hypothesis. See Remark A.16 for more details on the source of this loss by a power of n2.

To obtain the unconditional bound of Theorem A.1 (as well as the conditional bound
of Theorem A.6, which is sharp up to "), we shall need to take into account the information
at ramified primes. To adapt the above argument along these lines, one must explicate the
Rankin–Selberg coefficients at ramified primes, which has been done by the first author
in [61, Appendix]. In particular, we shall see in §A.2 that the “combinatorial distance
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to supercuspidal” of �S D ˝p2S �p governs the shape of the ramified Rankin–Selberg
coefficients. Then, in §A.3, we further decompose Fq;�.Q/ according to this data. After
an appropriate enrichening of the space V S .X/ to take into account this information, we
then execute the above three steps.

A.2. Rankin–Selberg theory

We now recall some of the basic local and global properties of the Rankin–Selberg L-
function that we shall need in the proof of Theorem A.1.

A.2.1. Induction data. Let v be a finite place of F associated with a prime ideal p of OF .
Let qv be the cardinality of the residue field. Let �v be an irreducible unitary generic
representation of GLn.Fv/.

Recall that by the Bernstein–Zelevinsky description of the admissible dual, we may
associate with �v (see [61, §A.1]) the following combinatorial data:
(C1) a standard Levi subgroup M ' GLn1 � � � � � GLnr of GLn;
(C2) a partition J D ŒJ1; : : : ; JA� of the set ¹1; : : : ; rº;
(C3) an integer vector d D .d1; : : : ; dr / 2 Nr , where dj j nj , such that mj D nj =dj is

constant (say equal to ma) along j 2 Ja;
(C4) an integer vector e D .e1; : : : ; eA/ 2 NA, where each ea divides n;
the following analytic data:
(A1) real numbers �1 � � � � � �r ;
(A2) real numbers t1; : : : ; tr ;
encoded in the complex numbers

sj D �j C i tj and zj D q
�sj�nj =2
v I

as well as the following arithmetic data:
(SC) a set ¹%1; : : : ; %Aº of pairwise twist-inequivalent unitary supercuspidal representa-

tions %a of GLma.Fv/ having torsion number ea.
The representation is �v arises through induction in stages from the above data, as recalled
in [61, §A.1].

A.2.2. Rankin–Selberg local factors. The local Rankin–Selberg L-factor can be
expressed using the above combinatorial and analytic data. (The epsilon factor, on the
other hand, encodes the arithmetic information contained in the choice of supercuspidal
representations on each block. We do not define the epsilon factors here, but they are
used implicitly in Appendix B.) We let Combv D ¹.M; J ; d; e/º denote the collection of
combinatorial data C1, C2, C3, C4. Let �v and � 0v both have the same combinatorial type
.M; J ;d; e/. Let zj ; z0j denote their respective analytic data.
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By [61, §A.2, Example 6] we have

L.s; �v � z�
0
v/ D

AY
aD1

Y
j;k2Ja

min.nj ;nk/Y
�D1

�
1 � .q�vzj z

0
k
/eaq�easv

��1
D

AY
aD1

nY
�D1

Y
j;k2J�a

�
1 � .q�vzj z

0
k
/eaq�easv

��1
; (A.5)

where J �a D ¹j 2 JaW nj � �º. We expand the expression (A.5) into the local Dirichlet
series, which we again denote by a��z� 0.pr /. We shall now describe these in terms of the
analytic data zj , similarly to the unramified setting of §A.1.

We now furthermore assume that the central characters of �v and � 0v coincide. We fix
a and � in (A.5) and expand the product over j and k. We obtainY

j;k2J�a

�
1 � .q�vzj z

0
k
/eaXea

��1
D

X
r�0

a��z� 0.p
ear I �; a/Xear :

Cauchy’s identity will once again allow us to describe the coefficients a��z� 0.pear I�;a/ as
a combinatorial expression in terms of the local roots. With this in mind, we letA�.pIa;�/
denote the set of parameters q�=2v zj , for j 2 J �a , completed to a size n multiset by adding
n � jJ �a j remaining zeros. For an integer e � 1 we write Ae�.pI a; �/ for the set of e-th
powers of the parameters in A�.pI a; �/. We may then evaluate the Schur functions in n
variables on Ae�.p; a; �/. Reasoning as in (A.3), we find

a��z� 0.p
ear I �; a/ D

X
k�0

X
�2Pn�1.r�nk/

s�.A
ea
� .pI a; �//s�.A

ea
z� 0
.pI a; �//: (A.6)

Multiplying out � and a in (A.5), we deduce that a��z� 0.pr / is the complete homogeneous
polynomial of degree r in the coefficients a��z� 0.peaf I �; a/.

Remark A.10. The combinatorial data M D T , J D ¹1; : : : ; nº (so that A D 1), d D
.1; : : : ; 1/, and eD 1 corresponds to representations �v which are, up to a character twist,
unramified. In this case, the coefficient a��z� 0.pr I �; 1/ is zero for all � > 1, since all
nj D 1. Thus a��z� 0.pr / D a��z� 0.pr I 1; 1/. Note that when �v is unramified, A�.pI 1; 1/
is the set of the Satake parameters A�.p/, and (A.6) recovers (A.3).

Remark A.11. In [61, (A.6)], it is shown that when �v and � 0v are irreducible unitary
generic representations of GLn.Fv/ and GLm.Fv/, respectively, then

L.s; �v � �
0
v/ D

Y
.a;b/2�

Y
j2Ja

Y
k2Kb

min.nj ;n0k/Y
�D1

�
1 � .q�vzj z

0
k/
e`.a;b/q

�e`.a;b/s
v

��1
: (A.7)

The expression (A.5) is a special case of this, when both �v and � 0v have the same com-
binatorial type. See loc. cit. for relevant notation.
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The local roots q�vzj z
0
k

in (A.7) satisfy jq�vzj z
0
k
j D q

���j��
0
k
�nj =2�n

0
k
=2

v . Under the
Ramanujan conjecture, we have �j D � 0k D 0, so that

jq�vzj z
0
kj D q

��nj =2�n
0
k
=2

v � 1: (A.8)

Unconditionally, the Jacquet–Shalika bounds [34] show that 0 � j�j j; j� 0kj < 1=2, so that

jq�vzj z
0
kj < q

�C1�nj =2�n
0
k
=2

v � qv: (A.9)

Rudnick–Sarnak [58, Appendix] improved this to q1�ıv , where ı D 1=.n2 C 1/ C

1=.m2 C 1/.

A.2.3. General formula for Dirichlet coefficients. We put together the descriptions of the
prime-to-S coefficients in (A.2) with the ramified coefficients in (A.6).

We continue to write v for a finite place with associated prime ideal p. Recall the set
Combv from §A.2.2, whose elements index the combinatorial data Cv D .Mv; J v;dv; ev/
described in §A.2.1. Via the expansion (A.5), Cv gives rise to a set

¹Aev� .pI av; �v/W 1 � av � Av; 1 � �v � nº;

encoding the analytic data. We shall write Index.Cv/ for the indexing set of pairs .av; �v/.
Now let S once again denote the prime support of the ideal q and put CombS DQ

v2S Combv . Furthermore, for C 2 CombS we let Index.C / D
Q
v2S Index.Cv/. For

any C 2 CombS , we let Acusp.q; �;C / denote the set of � 2 Acusp.q; �/ such that �S
has combinatorial data C . Let �; � 0 2 Acusp.q; �;C /. Recalling the notation in §A.1.1,
let n be an integral ideal and � 2Pn�1.n/. Let .a; �/ 2 Index.C /. Generalizing (A.2),
we write

a�.n;�I a; �/ D
Y
p…S

s�p.A�.p//
Y
p2S

s�p.A
eap
� .pI ap; �p//:

Then the Dirichlet coefficients of L.s; � � z� 0/, denoted a��z� 0.n/, can be written as

a��z� 0.n/

D

X
mnjn

X
�2Pn�1.n=mn/

X
.a;�/2C

a�.n=m
n;�I a; �/a� 0.n=mn;�I a; �/; (A.10)

extending (A.4) to all ideal n 2 I .

A.2.4. Global Rankin–Selberg estimates. We now recall a few basic analytic proper-
ties of the Rankin–Selberg L-function L.s; � � z� 0/ associated with a pair .�; � 0/ 2
Fq;�.Q/ �Fq;�.Q/.

The convexity bound of Li [45] (see also [7] for the cases n D 3; 4) states that

s � 1

s � 2
L.s; � � z� 0/� .Dn2C.� � z� 0; s//.1��/=2 .Re.s/ � 1/: (A.11)
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We have the factorizationC.� � z� 0; s/DN��z� 0K��z� 0.s/. For �f and � 0
f

of conductor q,
whose central characters are equal up to an unramified twist, Theorem B.1 of Appendix B
implies that

N��z� 0 � Norm.q/2n�2: (A.12)

Moreover, the bounds [43, Lemma A.2] imply

K��z� 0.s/� .1C jsj/dn
2

.K�Kz� 0/
n: (A.13)

We deduce that, for �; � 0 2 Fq;�.Q/, we have

s�1

s�2
L.s; ��z� 0/� .Dn2.1Cjsj/dn

2

Norm.q/�2Q2n/.1��/=2 .Re.s/ � 1/: (A.14)

The function L.s; � � z� 0/ is regular at s D 1 if and only if � 0 ¤ � . In the case where
� 0 D � , we have a lower bound of polynomial type on the residue at s D 1. Indeed,
[6, Theorem 3] establishes the existence of an A > 0 such that

Res
sD1

L.s; � � z�/� .DnQ/�A: (A.15)

Remark A.12. In [43] it is shown that Res
sD1

L.s; � � z�/� .D4n2C.… � z…//�
7
8C

5
8n�",

where … D � � � . From the upper bound (A.12), one may obtain an explicit admissible
value of A. This exponent will not play a role in Theorem A.1.

A.3. Refining the setup in §A.1

We put Fq;�;C .Q/ D F .Q/ \Acusp.q; �;C /. Then

jFq;�.Q/j D
X

C2CombS

jFq;�;C .Q/j: (A.16)

We shall prove that

jFq;�;C .Q/j �" .D
n2Norm.q/�2Q2n/1C"; (A.17)

uniformly in q. Note that for every v we have jCvj D On.1/. Thus the number of terms in
(A.16) is jC j D O.jS jOn.1// D O.logOn.1/Q/. Inserting this into (A.16) and (A.1) will
then prove Theorem A.1.

Recall the set I S of Pn�1-decorated prime-to-S ideals from §A.1.1. We shall now
enrich I S at the places in S to account for the combinatorial information C 2 CombS .
We shall define a .Pn�1; C /-decorated ideal to be a triple .n; �; .a; �//, where n 2 I
is an integral ideal, � 2Pn�1.n/, and .a; �/ 2 Index.C /. We shall generally write this
as .n; �I a; �/. The set of such triples will be denoted IS . We have a map IS ! I ,
.n; �I a; �/ 7! n, where we forget the decorations and take the underlying ideal n. We
sometimes write zn for an element in IS with underlying ideal n. Let IS .X/ denote the
set of zn 2 IS with Norm.n/ � X .
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Let VS .X/ be the vector space of complex valued functions on IS .X/. Endow VS .X/
with the standard scalar product

ha; bi D
X

zn2IS .X/

f .zn/g.zn/:

We shall map Acusp.q; �; C / to VS .X/ by sending � 2 Acusp.q; �; C / to the vector
v� 2 VS .X/ given by the formula

v�.zn/ D
p
FX .n/ a�.zn/;

where f WR! R is as in §A.1 and

FX .n/ D
X
m

f .Norm.nmn/=X/:

The above enrichment allows us to identify the inner product hv� ; v� 0i in terms of
the full finite part Rankin–Selberg L-function. Indeed, by (A.10) and Mellin inversion we
have

hv� ; v� 0i D
X
zn2IS

FX .n/a�.zn/a� 0.zn/ D
1

2�i

Z
.2/

L.s; � � z� 0/ Of .s/X s ds: (A.18)

The above formula is the culmination of the combinatorial explication of the Rankin–
Selberg L-functions in §A.1–A.3. It is the basis of the following section.

A.4. Executing steps (1) and (2)

We now execute the first two steps of the proof outline in §A.1, using the facts we col-
lected from Rankin–Selberg theory in §A.2.4.

A.4.1. First step. We begin by establishing the following result.

Proposition A.13. Let " > 0 and

X � .Dn2Norm.q/�2Q2n/1C":

Then the map Fq;�;C .Q/! VS .X/ given by � 7! v� is injective.

Proof. Indeed, [6, Theorem 7] shows the existence of a B > 0 such that when X �
.Dn=2Q/B any pair .�; � 0/ 2 Fq.Q/ �Fq.Q/ satisfying a�.zn/ D a� 0.zn/ for zn 2 IS

lies along the diagonal � D � 0. It is shown in [48] that an admissible value for the expo-
nent B is 2n C ", for any " > 0. (In loc. cit. the discriminant dependence is actually
D2n2C" rather than Dn2C" as we have written. This is due to an inefficient application
of the Bushnell–Henniart bounds in the discriminant aspect. See Remark A.5.) In fact,
their result can be refined, under the assumption that �f and � 0

f
have the same (finite)

conductor q and central character �. Indeed, in this case, the bounds of Theorem B.1 of
Appendix B save Norm.q/2 off of this.
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A.4.2. Second step. As in §A.1, we let

u� D
v�

hv� ; v�i1=2

be the projection of the vector v� to the unit sphere in V . We now proceed to show that
the vectors u� and u� 0 (for � ¤ � 0) are quasi-orthogonal, in a quantifiable sense.

Proposition A.14. Let .�; � 0/ 2 Fq;�;C .Q/ �Fq;�;C .Q/. For " > 0 let

X � .Dn2Norm.q/�2Q2n/1=2C":

If � 0 ¤ � then hu� ;u� 0i �";r .D
nQ/�r for all r > 0.

Proof. We shall show that there is C > 0 such that for X � .Dn2Norm.q/�2Q2n/1=2C"

any pair .�; � 0/ 2 Fq;�;C .Q/ �Fq;�;C .Q/ satisfies´
hv� ; v�i � .DnQ/�C if � D � 0,
hv� ; v� 0i �";r .D

nQ/�r if � ¤ � 0.
(A.19)

(Using Remark A.12, we can find an explicit value of C but this value is irrelevant for the
proof of this proposition.) These two estimates imply the result.

Recall the identity (A.18). By hypothesis Of .1/D 1, and since f is of compact support,
Of .s/ is entire. Using (A.14), we shift the contour to .�r/ for r > 0 to obtain

hv� ; v� 0i D Res
sD1

L.s; � � z� 0/X COr ..D
n2Norm.q/�2Q2n/.1Cr/=2X�r /:

If � ¤ � 0 then the residual term vanishes, and hence

hv� ; v� 0i �r .D
n2Norm.q/�2Q2n/.1Cr/=2X�r :

If � D � 0 we recall the lower bound (A.15). This produces

hv� ; v�i � .DnQ/�AX COr ..D
n2Norm.q/�2Q2n/.1Cr/=2X�r /:

Letting X � .Dn2Norm.q/�2Q2n/1=2C", we take r sufficiently large (relative to n and
") to arrive at the two estimates in (A.19).

Remark A.15. We note that we could avoid quoting the convexity bound (A.11) of [45]
by dualizing the L-function, as was done, for example, in [48]. This does not, however,
lead to an improvement in the resulting bounds.

Remark A.16. The analog of Proposition A.14, when stated with hvS� ; vS� 0i, would incur
a loss of n2 in the power of Q. Indeed, with the setup of §A.1 one needs to bound

LS .s; � � z� 0/ D L.s; � � z� 0/LS .s; � � z�
0/�1
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for Re.s/ D � ! �1. From (A.5), each local correction factor Lv.s; � � z� 0/�1 is the
product of at most n2 local factors of the form 1 � ˛��� 0.pI �; j; k/

eq�esv . By Remark
A.11, and in particular the bound (A.9) on the Rankin–Selberg local roots, we deduce that
Lv.s;� � z�

0/�1� .1C q1��v /n
2
. Thus, for Re.s/D � < 0, we have LS .s;� � z� 0/�1�

.
Q
vjq qv/

n2.1��/, which accounts for the weakened exponent. Moreover, the same loss

byQn2 would arise in the proof of Proposition A.13, were we only to assume that �p'�
0
p

for p − q.
Note that in the critical strip the correction factor LS .s; � � z� 0/�1 is uniformly

bounded under the Ramanujan conjecture (see (A.8)). Nevertheless, a contour shift to any-
where within the critical strip leads to insufficient correlation bounds relative to known
sphere packing bounds.

A.5. Executing step (3)

We finally come to the fact that a large-dimensional sphere can only contain so many
quasi-orthogonal vectors.

Let N denote the cardinality of the set IS .X/; this is the same as the dimension
of VS .X/. Denote by K the cardinality of Fq;�;C .Q/. We shall show that K � N when
X D .Dn2Norm.q/�2Q2n/1C". Since N � X D .Dn2Norm.q/�2Q2n/1C", this will
complete the proof of (A.17), and hence of Theorem A.1.

By our choice of X , we may apply both Propositions A.13 and A.14, so that
Fq;�;C .Q/ can be viewed as a finite system of unitary quasi-orthogonal vectors in VS .X/.
The following abstract result establishes the desired bound. To apply it to our situation,
we identify VS .X/ D CN D RM , where M D 2N .

Proposition A.17. Let M � 2 and put V D RM . Let u1; : : : ;uK 2 V be unitary vectors
such that jhui ;uj ij < M�1 for i ¤ j . Then K �M .

Before passing to the proof of Proposition A.17, we make several remarks.

Remark A.18. The conclusion of the proposition is sharp, since one can certainly putM
orthonormal vectors (and no more) on the unit sphere in RM . The idea of the proof of
Proposition A.17 is that, in high dimensions, a 1=M error off of strict orthogonality is
imperceptible. (In fact, a 1

2
M�1=2 error is provably imperceptible: see Remark A.19.)

Note that the quasi-orthogonality relations established in Proposition A.14 for the
family ¹u� W � 2 F .Q/º are much stronger (rapid decay) that the required bounds for
Proposition A.17. However, it is of no advantage to have Or .M�r / correlation decay,
instead of the required rate of O.1=M/, since in any case, strictly vanishing off-diagonal
correlations (an orthonormal basis) still produce K DM .

Remark A.19. Let M � 2 and � 2 Œ0; �/. Denote by A.M; �/ the maximum cardinality
of a subset ¹u1; : : : ;uKº of SM�1 with maxi¤j hui ;uj i � cos � . Such a subset is called a
spherical code.
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If � >�=2, then an elementary argument shows thatA.M;�/ is bounded by an expres-
sion depending only on � . Indeed, as remarked in [28, §3.2], we have

0 � hu1 C � � � C uK ;u1 C � � � C uKi � K CK.K � 1/ cos �: (A.20)

Thus, if cos � is strictly negative, this provides a bound for A.M; �/ which depends only
on � . In particular, if � > �=2 is fixed, then A.M; �/ is bounded uniformly in M .

If � > �=2 is now allowed to depend on M , then (A.20) still yields an upper bound
on A.M; �/. For example, if cos � D �M�˛ for some ˛ � 0, we obtain A.M; �/ �M ˛ .
As ˛ varies through the interval Œ0; 1�, this provides an interpolation of the uniformly
bounded range (where � > 1=2 is fixed) and the range treated by Proposition A.17.

On the other hand, when � < �=2 is fixed, then A.M; �/ grows exponentially in M .
The work of Kabatyanskiı̆–Levenshteı̆n [35] provides upper bounds in this regime. It is
known, however, that for � D �=2 � c=

p
M , one still retains a polynomial upper bound.

See [17, Theorem 2.1] and [63]. Indeed, Lemma 2 of loc. cit shows that one retains a
linear bound as long as cos � � 1

2
M�1=2. This last result would in fact be sufficient for

our purposes.

Proof of Proposition A.17. An elementary exercise establishes the result for M D 2.
Suppose the result is true in dimension M � 1. We claim this implies the result in dimen-
sion M .

Let W be the orthogonal complement to uK in V D RM . For every 1 � i � K � 1
let wi be the projection of the vector ui to W . We define �i 2 R by the equality wi D
ui � �iuK ; then �i D hui ;uKi. For 1� i; j �K � 1we have hwi ;wj i D hui ;uj i C �i�j .
If i D j we obtain kwik2 D 1 C �2i . By hypothesis, j�i j < 1=M , which implies that
kwik2 > 1�M�2 DM�2.M 2 � 1/. Moreover, if i ¤ j we have jhui ;uj ij < 1=M ; thus

jhwi ;wj ij < 1=M C 1=M 2
DM�2.M C 1/:

Now, consider the K � 1 unitary vectors u0j D wj =kwj k in the .M � 1/-dimensional
subspace W . For 1 � i ¤ j � K � 1 we have

jhu0i ;u
0
j ij D kwik

�1
kwj k�1jhwi ;wj ij <

M 2

M 2 � 1
�
M C 1

M 2
D

1

M � 1
:

From our recurrence hypothesis, we deduce that K � 1 �M � 1, as claimed.

Remark A.20. The above induction argument works under the more general hypothesis
that maxi¤j jhui ;uj ij < f .M/, for any function f satisfying f .M/

1�f .M/
� f .M � 1/. But

if f .M/ D M�˛ , this inequality reads .1 � 1=M/˛ � 1 �M�˛ . The left hand side is
approximated by 1 � ˛=M , and one sees that one can do no better than ˛ D 1.

A.6. Proof of Theorem A.6

We now address the question of improving the upper bound on jF .Q/j in Theorem A.1,
under the Riemann hypothesis for Rankin–Selberg L-functions as well as the Ramanujan
conjecture at finite places for members of Acusp.
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It is easy to see that the exponent of 2n in Theorem A.1 can be improved to nC 1
under these assumptions, and that the discriminant dependence is as described there. This
is due to the fact that, under Riemann and Ramanujan, the map � 7! v� is injective
as soon as X � log2Q (see, for example, [32, Proposition 5.22]). This replaces step
(1) in the proof of Theorem A.1. On the other hand, the proof of Proposition A.14 is
insensitive to the Riemann hypothesis and the Ramanujan conjecture, despite the fact that
the residue of the L.s; � � z�/ is bounded below by 1=logQ under these assumptions
(see [32, Theorem 5.19]). In any case, with Theorem A.13 improved, we may take X D
.Dn2Norm.q/�2Q2n/1=2C" in executing step (3). Indeed, the exponent ofQ required for
the value of X in step (3) is the maximum of the exponents coming from Propositions
A.13 and A.14. Inserting this into (A.16) and (A.1) will then prove Theorem A.6.

Colin J. Bushnell and Guy Henniart
Appendix B. A bound for the Artin exponent of a pair

Let F be a locally compact nonarchimedean field, and n;m two positive integers. Let �
be a smooth irreducible representation of GLn.F /, with central character !� and Artin
conductor Ar.�/ D a, and let � be a smooth irreducible representation of GLm.F /, with
central character !� and Artin conductor Ar.�/ D b.

In [9] and [10, Theorem C], we proved that the pair .�; �/ satisfies

Ar.� � �/ � maC nb �min.a; b/: (B.1)

That bound cannot be improved in general but here, prompted by a query of F. Brumley,
we improve (B.1) under an additional hypothesis.

Theorem B.1. Assume that !�!� is unramified. Then

Ar.� � �/ � maC nb � 2min.a; b/: (B.2)

When n D m and a D b, this gives Ar.� � �/ � .2n � 2/a, as used in the main text.
Note also that when n D m D 1 the hypothesis implies a D b and Ar.� � �/ D 0, which
is fortunate since the right hand side of (B.2) is also 0!

Thanks to the Langlands correspondence, we may express the theorem in terms of
Weil–Deligne representations, and we indeed use that language in the proofs. We fix a
separable algebraic closure F sep of F and let WF be the Weil group of F sep over F . We
write �; � for the Weil–Deligne representations corresponding to �; �: they are directs
sums of indecomposable Weil–Deligne representations. The theorem above is then equiv-
alent to

Theorem B.2. Assume that det � det � is unramified. Then

Ar.� ˝ �/ � maC nb � 2min.a; b/: (B.3)

Remark B.3. Assume that � is the direct sum of characters of WF , all trivial but one,
which then has to be det � . Take for � the contragredient z� of � . Then Ar.� ˝ z�/ D
.2n � 2/a, so one cannot improve (B.3) or (B.2) in general, even assuming that � D z� .

We now proceed to the proof, relying on the results and techniques of [10].
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B.1. A basic point is a stronger inequality than (B.1) when � and � are indecomposable.

Lemma B.4. Assume that � and � are indecomposable. Then

Ar.� ˝ �/=.nm/ � max.a=n; b=m/; with equality if a=n ¤ b=m:

Proof. The case of inequality is [10, Proposition 6.3]. The case of equality can be deduced
from [10, Proposition 5.5].

Lemma B.5. Assume that � is indecomposable. Then Ar.det �/ � a=n.

Proof. By [10, Fact 2.1] and the notation there, we have � D Str .� 0/, for some positive
integer r and some irreducible representation � 0 of WF .

If � 0 is an unramified character of WF then r D n and a D n � 1, whereas det � is
unramified, so Ar.det�/D 0� a=n. If � 0 is not an unramified character, then aD rAr.� 0/
and det� D .det�/r , so it is enough to treat the case where � D � 0 is irreducible (and not
unramified). But then a � n is the Swan exponent of � , so, using [10, Fact 2.3],

a

n
� 1 D inf ¹" > 0W �.W "

F / D 1º:

Since det � is certainly trivial on the ramification subgroup W "
F if � is, we see that the

Swan exponent of det � is at most a=n � 1, so Ar.det �/ � a=n.

Let us define the list of slopes of � . When indecomposable, � has a list of n slopes, all
equal to a=n. In general the list of slopes of � is obtained by gathering the lists of slopes
of its indecomposable summands, in increasing order. We write .a1; : : : ; an/ for the list of
slopes of � , and .b1; : : : ; bm/ for the list of slopes of � ; in particular, a D a1 C � � � C an
and b D b1 C � � � C bm.

Applying Lemmas B.4 and B.5 to the indecomposable summands of � and � we get

Corollary B.6. The following holds:

(i) Ar.det �/ � an.
(ii) Ar.� ˝ �/ � nAr.�/ if an � b1, with equality if an < b1.

B.2. In this subsection, we assume nD 1. As the case nDmD 1 is done, we also assume
m > 1.

We first deal with the case bm�1 < bm. Then we can write � D � 0 ˚ � for a character
� of WF with Ar.�/ D bm. By Corollary B.6(i), Ar.det � 0/ � bm�1 and since det � D
.det � 0/� we get Ar.det �/ D bm. But � D det � and det � det � is unramified, so we have
a D bm.

By Corollary B.6(ii), we have Ar.� ˝ � 0/D .m� 1/a since a D bm > bm�1. We also
have Ar.� ˝ �/ D Ar..det �/�/ D Ar..det �/�1�/, so Ar.� ˝ �/ D Ar.det � 0/ � bm�1.
Adding, we get Ar.� ˝ �/ � .m � 1/aC bm�1.

On the other hand, b � bm D a hence min.a; b/ D a and

maC b � 2min.a; b/ D .m � 2/aC b � .m � 1/aC bm�1

because b � bm�1 C bm D aC bm�1. We have proved (B.3) when bm�1 < bm.
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We now assume that bm�1 D bm. By Corollary B.6(i), Ar.det �/ � bm and reason-
ing as above, we now get a � bm from Corollary B.6(ii). Write � D � 0 ˚ �, where �
is a Weil–Deligne representation with dimension d � 2 and all slopes equal to bm. Let
b0 D Ar.� 0/, so b D b0 C dbm. We have Ar.� ˝ � 0/ � .m � d/aC b0 �min.a; b0/: this
follows from (B.1) if � 0 ¤ 0, and m D d , b0 D 0 if � 0 D 0.

On the other hand, Ar.� ˝ �/ � dbm by Corollary B.6(ii), since a � bm. Adding, we
obtain

Ar.� ˝ �/ � .m � d/aC b0 C dbm �min.a; b0/;

so the result follows, provided daCmin.a; b0/ � min.a; b0 C dbm/, which is clear since
d � 2. This again proves (B.3).

B.3. From now on we assume n;m > 1.
We first deal with the situation where an�1 < an and bm�1 < bm. Accordingly, we

write � D � 0 ˚ � for a character � of WF with Ar.�/ D an, and � D � 0 ˚ �, for a char-
acter � of WF with Ar.�/ D bm. We put a0 D Ar.� 0/, b0 D Ar.� 0/, so a D a0 C an and
bD b0C bm. Reasoning as above, we get Ar.det� 0/� an�1, Ar.det� 0/� bm�1, anD bm,
and Ar.��/ � max.an�1; bm�1/.

On the other hand, by (B.1) we have

Ar.� 0 ˝ � 0/ � .m � 1/a0 C .n � 1/b0 �min.a0; b0/;

and by Corollary B.6(ii) again, Ar.� 0 ˝ �/ D .n � 1/bm D .n � 1/an and Ar.�˝ � 0/ D
.n � 1/an. Adding, we get

Ar.� ˝ �/ � .m � 1/aC .n � 1/b �min.a0; b0/Cmax.an�1; bm�1/:

The result then follows provided that aCbCmin.a0;b0/�2min.a;b/Cmax.an�1;bm�1/,
or equivalently

a0 C b0 Cmin.a0; b0/ � 2min.a0; b0/Cmax.an�1; bm�1/: (B.4)

But a0 C b0 D min.a0; b0/ C max.a0; b0/ and max.a0; b0/ � max.an�1; bm�1/ because
a0 � an�1 and b0 � bm�1, establishing (B.4).

B.4. We turn to the case where an�1 < an but bm�1 D bm. Write � D � 0 ˚ � for a
character � of WF with Ar.�/ D an, and � D � 0 ˚ � for a Weil–Deligne representation �
with dimension d � 2 and all slopes equal to bm. Put a0 D Ar.� 0/ and b0 D Ar.� 0/, so
a D a0 C an and b D b0 C dbm.

As in the second case of §B.2, we get an � bm and Ar.� ˝ �/ � dbm by Corol-
lary B.6(ii).

By (B.1) (or because � 0 D 0) we have

Ar.� 0 ˝ � 0/ � .m � d/a0 C .n � 1/b0 �min.a0; b0/:
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Because an � bm we have an�1 < bm so, by Corollary B.6(ii), Ar.� 0˝ �/D .n� 1/dbm.
Applying Lemma B.4 to �˝ �j where �j is an indecomposable summand of � 0, we obtain

Ar.�˝ � 0/ �
m�dX
iD1

max.an; bi /:

Adding gives

Ar.� ˝ �/ � .m� d/a0 C ndbm C .n� 1/b0 �min.a0; b0/C
m�dX
iD1

max.an; bi /: (B.5)

We claim that the right hand side of (B.5) is at most m.a0 C an/ C n.b0 C dbm/ �
2min.a0 C an; b0 C dbm/, or equivalently that

2min.a0 C an; b0 C dbm/C
m�dX
iD1

max.an; bi / � man C da0 C b0 Cmin.a0; b0/: (B.6)

Indeed, since
Pm�d
iD1 max.an; bi / � .m � d/an C b0 and d � 2, we have

2min.a0 C an; b0 C dbm/C
m�dX
iD1

max.an; bi / � 2.a0 C an/C .m � d/an C b0

� man C da
0
C b0;

establishing (B.6). By symmetry, the case where an�1 D an but bm�1 < bm also holds.

B.5. The final case is when an�1 D an and bm�1 D bm. Here the hypothesis that
det � det � is unramified plays no role. By symmetry we may and do assume an � bm.

We write � D � 0 ˚ � for a Weil–Deligne representation � with dimension e � 2 and
all slopes equal to an, and � D � 0˚ � as in §B.4. We put a0 D Ar.� 0/, b0 D Ar.� 0/, so that
a D a0 C ean, b D b0 C dbm. By (B.1) (or because � 0 or � 0 is 0) we have Ar.� 0 ˝ � 0/ �
.m� d/a0C .n� e/b0 �min.a0;b0/. Since an� bm by hypothesis, from Corollary B.6 we
get Ar.� 0 ˝ �/ � d.n� e/bm and Ar.�˝ �/ � dbm. As in §B.4 we get, by Lemma B.4,

Ar.�˝ � 0/ �
m�dX
iD1

emax.an; bi /:

Adding, this gives

Ar.� ˝ �/� .m� d/a0C .n� e/b0C ndbm �min.a0; b0/C e
m�dX
iD1

max.an; bi /: (B.7)
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We claim that the right hand side of (B.7) is at most ma0 Cmean C nb0 C ndbm �
min.a0 C ean; b0 C dbm/. This is equivalent to the inequality

da0 Cmean C eb
0
Cmin.a0; b0/

� min.a0 C ean; b0 C dbm/C e
m�dX
iD1

max.an; bi /: (B.8)

Indeed, using
Pm�d
iD1 max.an; bi / � .m � d/an C b0 and d � 2, as in §B.4, we

deduce (B.8).

B.6. With an entirely similar reasoning, but replacing Artin exponents Ar with Swan
exponents Sw, we get the following result, improving [10, Theorem CS] in a special case.

Theorem B.7. Let � and � be semisimple representations of WF . Assume that
Sw.det � det �/ D 0. Then

Sw.� ˝ �/ � .dim �/Sw.�/C .dim �/Sw.�/ � 2min.Sw.�/;Sw.�//:
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