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Abstract. In recent work [P. Grohs and M. Rathmair, Stable Gabor phase retrieval and spectral
clustering, Comm. Pure Appl. Math. (2018)] the instabilities of the Gabor phase retrieval problem,
i.e., the problem of reconstructing a function f from its spectrogram jGf j, where

Gf .x; y/ D

Z
Rd

f .t/e��jt�xj
2

e�2�it �ydt; x; y 2 Rd ;

have been completely classified in terms of the disconnectedness of the spectrogram. These findings,
however, were crucially restricted to the one-dimensional case (d D 1) and therefore not relevant
for many practical applications.

In the present paper we not only generalize the aforementioned results to the multivariate case
but also significantly improve on them. Our new results have comprehensive implications in various
applications such as ptychography, a highly popular method in coherent diffraction imaging.
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1. Introduction

1.1. Motivation

Phase retrieval in its most general formulation is concerned with the reconstruction of a
signal f 2 B with B a Banach space from phaseless linear measurements

Af WD .j�!.f /j/!2� ; (1.1)

where ˆ D .�!/!2� � B 0, the dual of B.
Problems of this kind appear in a vast number of physical applications, the most

prominent example being coherent diffraction imaging [15, 18], where one seeks to
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recover a function from phaseless Fourier type measurements, so called diffraction pat-
terns. Further applications include radar [14], astronomy [9], audio [19] and quantum
mechanics [6] to mention only a few.

Usually the measurement vectors ˆ are such that f 7! .�!.f //!2� is nicely invert-
ible, meaning that reconstructing f would not be a significant problem if the phases of the
measurements were available. The removal of phase, however, not only involves the loss
of a huge amount of information but also renders the problem nonlinear. It is therefore
notoriously difficult to even decide whether a concrete phase retrieval problem is well
posed, i.e., whether the measurements Af uniquely and stably determine the underlying
signal f in the following sense:

Uniqueness: Is the mapping f 7! Af injective up to the identification f � ei˛f for
˛ 2 R?

Stability: What is the qualitative behaviour of the local stability constant, i.e., the small-
est number c.f / such that

dB.g; f / WD inf
jajD1
kg � af kB � c.f /d

0.Ag;Af / 8g 2 B; (1.2)

where d 0 denotes a suitable metric on the measurement space?

At this point we would like to draw attention to our very recent article together with Sarah
Koppensteiner [11] where, among other things, our current understanding of uniqueness
and stability for phase retrieval is summarized.

The present paper is concerned with the study of stability when the measurements
arise from the so called Gabor transform. The Gabor transform is just the short time
Fourier transform with Gaussian window.

Definition 1.1. The Gabor transform of f 2 L2.Rd / is defined by

Gf .x; y/ D

Z
Rd
f .t/e��jt�xj

2

e�2�it �ydt; x; y 2 Rd :

By duality the definition can be extended to the dual of the space of Schwartz functions,
i.e., the space of tempered distributions denoted by � 0.Rd /.

Note that by choosing the measurement vectors to be time-frequency shifts of the
Gaussian

�!.t/ D e
��jt�xj2e�2�iy�t ; ! D .x; y/ 2 � � R2d ;

the Gabor transform fits right into our setting, i.e., in that case Af as defined in (1.1)
coincides with jGf j.

The Gabor transform can be interpreted as localization of f at x followed by Fourier
transform,

Gf .x; y/ D F
�
fe��j��xj

2�
.y/:

Thus, for a two-dimensional object, represented by f 2 L2.R2/, the magnitude of the
Gabor transform jGf .x; �/j describes the diffraction pattern of the localization of f at x.
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Fig. 1. Schematic setup of ptychographical experiment. Image taken from [16].

Hence the Gabor transform perfectly mimics the concept of ptychography, a popular and
highly successful approach in coherent diffraction imaging based on the idea that multiple
diffraction patterns of one and the same object are generated by illuminating different
sections of the object separately in order to introduce redundancy (cf. Figure 1).

1.2. Related work

We will now briefly discuss results regarding stability properties of phase retrieval in
infinite-dimensional spaces. All results into this direction are fairly recent.

First of all, inconveniently, phase retrieval in infinite dimensions is severely ill-posed
as it can never be uniformly stable, in the sense that c.f / in (1.2) can never be uniformly
bounded, i.e., supf 2B c.f / D C1, under very general assumptions on B; ˆ and d 0

[3,5]. This means that there are functions f and Qf such that the respective measurements
Af and A Qf are arbitrarily close while f and Qf are not similar at all. In that case f is
informally referred to as an ‘instability’.

Note that this behavior stands in stark contrast to the finite-dimensional situation
where uniqueness readily implies global stability.

Furthermore, if the infinite-dimensional space B is approximated by an increasing
sequence B1 � B2 � � � � � B of finite-dimensional subspaces with dim.Bn/ D n then
the global stability constant of the restricted problem, i.e., the smallest number cn such
that

inf
jajD1
kg � af kB � cnd

0.Ag;Af / 8f; g 2 Bn;

may degenerate exponentially in n [3, 5].
For the concrete example of Gabor phase retrieval, explicit instabilities can be con-

structed by taking two functions f1 and f2 which have time-frequency support on two dis-
joint domains, meaning that Gf1 and Gf2 are essentially supported on disjoint domains.
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In that case the spectrograms of fC WD f1 C f2 and f� WD f1 � f2 approximately coin-
cide since

jG .f1 ˙ f2/j
2
D jGf1j

2
˙ 2<

�
Gf1Gf2

�
C jGf2j

2
� jGf1j

2
C jGf2j

2:

For details see [4]. Qualitatively all instabilities obtained in this way are of the same
type, namely their spectrograms essentially live on a domain which is a disconnected set
in the time-frequency plane. A quantitative concept that precisely captures this kind of
disconnectedness is provided by the so called Cheeger constant, which plays a prominent
role in Riemannian geometry [7] and spectral graph theory [8].

Definition 1.2. Let��Rd be a domain and letw be a nonnegative, continuous function
on �. Then the Cheeger constant of w is defined by

h.w;�/ WD inf
C2C

R
@C\�

w

min ¹
R
C
w;
R
�nC

wº
;

where C WD ¹C � � open W @C \� is smoothº.

Remark 1.3. A small Cheeger constant h.w; �/ indicates that the domain � can be
partitioned into C � � and � n C such that the weight w is small along the separating
boundary and, at the same time, both C and� n C approximately carry the same amount
of L1-energy with respect to w. In that sense w then consists of multiple components; we
say that w is of disconnected type.

If on the other hand w is concentrated on a connected domain – the Gaussian being a
prime example – a partition which accomplishes both objectives simultaneously does not
exist. See Figure 2 where two concrete examples are considered.

xy xy xy

Fig. 2. Comparison of possible partitions of the domain in the disconnected (left) and connected
case (center and right).

Based upon the work of one of the authors and his collaborators [2], the paramount
discovery in our preceding article [12] is that the local stability constant c.f / for phase
retrieval from Gabor magnitudes of univariate functions can be essentially controlled by
the reciprocal of the Cheeger constant of the spectrogram of f , i.e. by h.jGf j;�/�1. This
insight nicely complements the picture as it reveals that all instabilities are of disconnected
type. However, the results are fundamentally restricted to the one-dimensional setting.
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1.3. Contribution

The main contribution of this article is that we establish a connection between the Cheeger
constant and stability of Gabor phase retrieval obtained in [12] for multivariate signals of
arbitrary dimension. The function spaces best suited for our analysis are the so called
modulation spaces.

Definition 1.4. For p � 1 the modulation spaces are defined by

Mp.Rd / D ¹f 2 � 0.Rd / W Gf 2 Lp.R2d /º; (1.3)

with induced norm kf kMp.Rd / D kGf kLp.R2d /.

With the modulation spaces at hand we can now state a special case of our main result,
Theorem 4.4.

Theorem A. Suppose that f 2M1.Rd / is such that jGf j has a global maximum at the
origin and let q > 2d . Then for all g 2M1.Rd /,

inf
jajD1
kg � af kM1.Rd / .

�
1C h.jGf j;R2d /�1

�
�
�

jGgj � jGf j



W 1;1.R2d /
C k.1C j � j2dC2/.jGgj � jGf j/kLq.R2d /

�
(1.4)

where the implicit constant depends on d and q only.

Note however that Theorem 4.4 is way more general as it also covers the case where
the phase of the Gabor transform on a domain � ¨ R2d is to be reconstructed given
jGf .!/j, ! 2 �.

Our results have an immediate impact for substantial applications, one of them being
ptychography – as briefly discussed in Section 1.1 – where the object of interest is repre-
sented by a function of more than one variable. Theorem A identifies precisely for which
ptychographic measurements reconstruction is possible in a stable manner.

We would like to stress that the results in the present paper are not merely a straight-
forward generalization of our results from [12] to higher dimensions. The proof methods
have undergone several modifications which not only makes for a slicker reading but also
leads to notably improved results: Our earlier analysis only guaranteed estimates as in
(1.4) where the implicit constant mildly depended on f . This dependence is now entirely
removed, i.e., the stability constant can indeed be controlled in terms of the reciprocal of
the Cheeger constant.

Our proof methods draw upon techniques from various fields of mathematics such
as functional analysis, Riemannian geometry, complex analysis in several variables and
potential theory. The second main emphasis is on the study of certain quantities, such as
the logarithmic derivative, of entire functions satisfying specific growth restrictions. The
results we derive in this direction play a vital role in our analysis of Gabor phase retrieval.
These results do not only serve as an auxiliary intermediate step but are rather interesting
in their own right, and therefore merit to be highlighted at this stage:
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Theorem B. Suppose that G is an entire function on Cd such that supjzj�r jG.z/j �

jG.0/je˛r
ˇ

for all r > 0. Then

kG0=GkL1.Br / . r2dCˇ�1; r > 0;

where the implicit constant depends on d , ˛ and ˇ but not on G.

Theorem B is a special case of Theorem 3.3.

1.4. Preliminaries and notation

In the present paper we will constantly identify Cd with R2d via

.z1; : : : ; zd / D .x1 C iy1; : : : ; xd C iyd / ! .x1; y1; : : : ; xd ; yd /I

accordingly, a domain� in Cd can be considered as a domain in R2d and vice versa. We
will denote balls of radius r centered at u by Br .u/ WD ¹z W jz � uj < rº; if uD 0 we will
just write Br .

A complex valued function F on a domain � � Cd is differentiable at u 2 � if it is
differentiable with respect to x1; y1; : : : ; xd ; yd . In that case we write

rF.u/ D

�
@

@x1
F.u/;

@

@y1
F.u/; : : : ;

@

@xd
F.u/;

@

@yd
F.u/

�T
:

We will also use the so called Wirtinger derivatives defined by @
@zj
D

1
2

�
@
@xj
� i @

@yj

�
for

1 � j � d . If F is complex differentiable at u we will occasionally use the notation

F 0.u/ D

�
@

@z1
F.u/; : : : ;

@

@zd
F.u/

�T
:

We denote the space of holomorphic functions on a domain � � Cd by O.�/ and the
space of meromorphic functions, i.e., functions that locally coincide with the quotient of
two holomorphic functions, by M.�/.

For a measurable, nonnegative function w on � and 1 � p < C1 we denote the
weighted Lebesgue space by Lp.�; w/; it consists of all measurable functions F on �
such that

kF kLp.�;w/ WD

�Z
�

jF jpw

�1=p
< C1: (1.5)

In the unweighted case, i.e., if w � 1, we will just write Lp.�/ and k � kLp.�/ instead.
Note that (1.5) also makes sense for vector valued functions F by understanding jF j as
the euclidean length.

The Sobolev norms are defined by

k � kW 1;p.�/ WD k � kLp.�/ C kr � kLp.�/:
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2. Stability and Cheeger constants

2.1. A first stability result

This section will unveil our key mechanism for deriving stability estimates for phase
retrieval under the general assumption that the quotient of two measurements is mero-
morphic. This mechanism relies on the interplay between Poincaré inequalities, as defined
next, and complex analysis.

Definition 2.1. Let� � Cd be a domain equipped with a nonnegative, integrable weight
w and let 1 � p < C1. We say that � supports a Poincaré inequality if there exists a
finite constant C such that

inf
c2C
kF � ckLp.�;w/ � CkrF kLp.�;w/ for all F 2M.�/ \ Lp.�;w/: (2.1)

The smallest possible constant in (2.1) is called the Poincaré constant of � and denoted
by CP .�;w; p/.

Remark 2.2. Note that in the defining inequality of Definition 2.1 functions are restricted
to be meromorphic. This is certainly nonstandard but precisely the right concept for our
purposes. Due to the famous Lavrent’ev phenomenon [20], which states that smooth func-
tions need not necessarily be dense in weighted Sobolev spaces, a Poincaré inequality of
the type defined above does not necessarily imply a Poincaré inequality in the usual sense.

The main result of this section provides an upper bound for the distance between two
measurements whose quotient is assumed to be meromorphic in terms of an expression
which only depends on the moduli of the two measurements.

Theorem 2.3. Let � � Cd be a domain and let 1 � p < C1. Suppose that F1; F2 2
Lp.�/ are such that their quotient F2=F1 is meromorphic. Then

inf
jcjD1
kF2 � cF1k �



jF2j � jF1j

Lp.�/
C 23=2CP .�; jF1j

p; p/

�

rjF1j � rjF2j

Lp.�/ C 



rjF1jjF1j
.jF1j � jF2j/






Lp.�/

�
:

(2.2)

Inequality (2.2) is already quite close to a stability estimate of the desired mould. If
we neglect the logarithmic derivative rjF1j=jF1j for a moment, it states that – provided
that CP .�; jF1jp; p/ is moderately small – the distance between two measurements is
comparable to the distance of the respective moduli, as measured in the Sobolev norm.

The remainder of this section is devoted to proving Theorem 2.3. A key role in the
proof will be played by the fact that for holomorphic functions F the local variation of jF j
coincides with the local variation of F up to a factor.

Lemma 2.4. Suppose that F is holomorphic at a point w 2 Cd . Thenˇ̌
rjF j.w/

ˇ̌
D 2�1=2jrF.w/j D jF 0.w/j:
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Proof. Let us first assume that d D 1. We split F D uC iv into its real and imaginary
parts. At every point where F is differentiable,

rjF j D r.u2 C v2/1=2 D
1

2

2uruC 2vrv

jF j
D
uruC vrv

jF j

and therefore ˇ̌
rjF j

ˇ̌2
D
u2jruj2 C v2jrvj2 C 2uv.ru � rv/

u2 C v2
:

Since F is assumed to be holomorphic at w, the Cauchy–Riemann equations hold at w.
In particular, jrv.w/j2 D jru.w/j2 and ru.w/ � rv.w/ D 0. Thus, jrjF j.w/j2 D
jru.w/j2.

On the other hand,

jrF.w/j2 D jru.w/C irv.w/j2 D jru.w/j2 C jrv.w/j2 D 2jru.w/j2; (2.3)

where we have again used jrv.w/j2 D jru.w/j2. Therefore the first identity
ˇ̌
rjF j.w/

ˇ̌
D 2�1=2jrF.w/j holds true.

For the second identity note that since F is holomorphic at w, we have F 0.w/ D
@
@z
F.w/ D @

@x
F.w/. Thus, by making use of the Cauchy–Riemann equations again and

by (2.3), we have

jF 0.w/j2 D u2x.w/C v
2
x.w/ D jru.w/j

2
D 2�1jrF.w/j2

and therefore jF 0.w/j D 2�1=2jrF.w/j.
The general case d > 1 follows from the univariate case: Note that for any 1 � j � d

the mapping C 3 z 7! F.w1; : : : ;wj�1; z;wjC1; : : : ;wd / is holomorphic at wj . Then by
the first part,

jrjF j.w/j2 D

dX
jD1

��
@

@xj
jF j.w/

�2
C

�
@

@yj
jF j.w/

�2�

D

dX
jD1

2�1
��

@

@xj
F.w/

�2
C

�
@

@yj
F.w/

�2�
D 2�1jrF.w/j2:

Similarly we find that

jF 0.w/j2 D

dX
jD1

ˇ̌̌̌
@

@zj
F.w/

ˇ̌̌̌2
D

dX
jD1

2�1
��

@

@xj
F.w/

�2
C

�
@

@yj
F.w/

�2�
D 2�1jrF.w/j2;

which completes the proof.

With Lemma 2.4 at hand we are ready to prove the main result of this section:
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Proof of Theorem 2.3. In a first, preparatory step we show that the constraint jcj D 1 in
the distance

inf
jcjD1
kF2 � cF1kLp.�/

can effectively be dropped if the unsigned measurements are close (cf. inequality (2.7)).
The distance term without the constraint on c will be controlled in the second step by
making use of Poincaré’s inequality as well as Lemma 2.4.

Step 1: Getting rid of the constraint. For � > 0 let c� 2 C be such that

kF2 � c�F1kLp.�/ � inf
c2C
kF2 � cF1kLp.�/ C �: (2.4)

Note that by continuity c� can always be chosen to be nonzero. By making use of the
triangle inequality we estimate

inf
jcjD1
kF2 � cF1kLp.�/ �





F2 � c�

jc�j
F1






Lp.�/

� kF2 � c�F1kLp.�/ C





c�F1 � c�

jc�j
F1






Lp.�/

: (2.5)

Furthermore the last term can be bounded by



c�F1 � c�

jc�j
F1






Lp.�/

D


jc�F1j � jF1j

Lp.�/

�


jc�F1j � jF2j

Lp.�/ C 

jF2j � jF1j

Lp.�/
� kc�F1 � F2kLp.�/ C



jF2j � jF1j

Lp.�/: (2.6)

Combining (2.5) and (2.6) with (2.4) yields

inf
jcjD1
kF2 � cF1kLp.�/ � 2 inf

c2C
kF2 � cF1kLp.�/ C 2� C



jF2j � jF1j

Lp.�/:
Since � > 0 was arbitrary,

inf
jcjD1
kF2 � cF1kLp.�/ � 2 inf

c2C
kF2 � cF1kLp.�/ C



jF2j � jF1j

Lp.�/: (2.7)

Step 2: Bound for the unconstrained distance. First we rewrite, for arbitrary c 2 C,

kF2 � cF1kLp.�/ D kF2=F1 � ckLp.�;jF1jp/:

Note that by assumption the quotient F2=F1 is meromorphic, kF2=F1kLp.�;jF1jp/ D
kF2kLp.�/ < C1 and the weight jF1jp is integrable due to the assumption that F1 2
Lp.�/. Therefore Poincaré’s inequality can be applied and we obtain

inf
c2C
kF2 � cF1kLp.�/ D inf

c2C
kF2=F1 � ckLp.�;jF1jp/

� CP .�; jF1j
p; p/





rF2F1





Lp.�;jF1jp/

D 21=2CP .�; jF1j
p; p/





r ˇ̌̌̌F2F1
ˇ̌̌̌




Lp.�;jF1jp/

(2.8)
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where the last equality follows from Lemma 2.4, since F2=F1 is holomorphic in� outside
a set of measure zero. Using the fact that

r

ˇ̌̌̌
F2

F1

ˇ̌̌̌
D jF1j

�2
� .jF1jrjF2j � jF2jrjF1j/

almost everywhere in � we estimate



r ˇ̌̌̌F2F1
ˇ̌̌̌




Lp.�;jF1jp/

D


jF1j�2 � .jF1jrjF2j � jF2jrjF1j/

Lp.�;jF1jp/

�





 jF1jrjF2j � jF1jrjF1jjF1j2






Lp.�;jF1jp/

C





 jF1jrjF1j � jF2jrjF1jjF1j2






Lp.�;jF1jp/

D


rjF1j � rjF2j

Lp.�/ C 



rjF1jjF1j

.jF1j � jF2j/






Lp.�/

: (2.9)

By combining (2.7)–(2.9) we arrive at the desired bound in (2.2).

2.2. Cheeger’s inequality

Next we want to provide some insight into the Poincaré constant CP .�; jF1jp; p/, which
by Theorem 2.3 is closely related to the question of local stability at F1.

The following result is inspired by the work of Jeff Cheeger [7], where the smallest
eigenvalue of the Laplacian on a Riemannian manifold is related to a geometric quantity
which is similar to the Cheeger constant as introduced in Definition 1.2.

Theorem 2.5. Let 1 � p � 2, let � � R2d be a domain and let w be a nonnegative and
continuous weight on �. Then

CP .�;w; p/ � 8 � h.w;�/
�1:

Proof. A proof for the case d D 1 is carried out in [12, Appendix] and generalizes readily
to the multivariate case.

Theorem 2.5 immediately implies the following version of the stability result of The-
orem 2.3.

Corollary 2.6. Let��Cd be a domain and let 1� p � 2. Suppose that F1;F2 2Lp.�/
are such that F2=F1 is meromorphic and jF1j is continuous. Then

inf
jcjD1
kF2 � cF1kLp.�/ �



jF2j � jF1j

Lp.�/
C 29=2 � h.jF1j

p; �/�1
�

rjF1j � rjF2j

Lp.�/ C 



rjF1jjF1j

.jF1j � jF2j/






Lp.�/

�
:
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3. On the growth of the logarithmic derivative of holomorphic functions

The estimates in Theorem 2.3 and Corollary 2.6 include the logarithmic derivative of the
modulus of F1, a term which is rather undesirable as we want to obtain a bound which
depends on the difference of jF1j and jF2j only.

This section is devoted to the study of the logarithmic derivatives of entire functions
that satisfy certain growth restrictions. More precisely, we consider the following class of
entire functions on Cd .

Definition 3.1. Let ˛; ˇ > 0. Then

Oˇ
˛ .C

d / WD ¹G 2 O.Cd / WMG.r/ � jG.0/je
˛rˇ
8r > 0º;

where we set MG.r/ WD maxjzj�r jG.z/j.

Remark 3.2. Note that we require a pointwise inequality to hold, whereas in the defi-
nition of type and order a similar inequality only needs to hold in an asymptotic sense.
Consequently, for an entire function G of type � � a and order � � b in general we have
G … O

ˇ
˛ .Cd /:

The quantity of our interest is the Lp-norm of .logG/0 D G0=G on balls centered
at the origin. Our results reveal that k.logG/0kLp.Br / grows at most polynomially in r
and provide explicit bounds that depend on ˛; ˇ but are remarkably independent of
G 2 O

ˇ
˛ .Cd /.

The main theorem of this section reads as follows.

Theorem 3.3. Let 1 � p < 1 C 1=.2d � 1/. There exists a constant c > 0 that only
depends on d and p such that for all G 2 O

ˇ
˛ .Cd / with G ¤ 0 and all r > 0,

k.logG/0kLp.Br / � c˛2
2dC2ˇ r2dCˇ�1: (3.1)

The results of this section rely heavily on the formula of Poisson–Jensen. In the one-
dimensional case the formula is well-known [1]. In higher dimensions a similar formula
is established for subharmonic functions in potential theory [13]. Since log jGj is subhar-
monic for any holomorphic function G [17], the formula can be applied to log jGj and
leads to the following result:

Theorem 3.4 (Poisson–Jensen). Suppose G W Cd ! C is entire. In case d D 1 let
z1; z2; : : : denote the zeros of G repeated according to multiplicity. Then for r > 0 and
jzj < r ,

log jG.z/j D
1

2�

Z 2�

0

log jG.rei� /j
r2 � jzj2

jrei� � zj2
d� �

X
kW jzk j<r

log
ˇ̌̌̌
r2 � zkz

r.z � zk/

ˇ̌̌̌
: (3.2)
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In case d � 2 there exists a Borel measure �G on Cd such that for any r > 0 and jzj < r ,

log jG.z/j D
1

Sd�1 � r

Z
@Br

log jG.�/j
r2 � jzj2

jz � �j2d
d�.�/

�

Z
Br

1

jz � �j2d�2
�

�
r

j�j
ˇ̌
z � �r2=j�j2

ˇ̌�2d�2 d�G.�/ (3.3)

where Sd�1 denotes the surface area of the unit sphere and � denotes the surface measure
on @Br .

Since the formula of Poisson–Jensen takes different shapes depending on the dimen-
sion, in the following we will consider the cases d D 1 and d � 2 separately. Note however
that qualitatively equations (3.2) and (3.3) are quite similar: First of all, both the integral
in (3.2) and the first integral in (3.3) express a weighted average of log jGj over the surface
of a ball. Secondly, the sum in (3.2) can be rewritten asX

kW jzk j<r

log
ˇ̌̌̌
r2 � zkz

r.z � zk/

ˇ̌̌̌
D

Z
Br

log
ˇ̌̌̌
r2 � �z

r.z � �/

ˇ̌̌̌
d�.�/;

where � WD
P
k ızk , and therefore it is the integral of a function with a singularity at z

with respect to a measure that is supported precisely on the zero set of G. The second
integral in (3.3) can be interpreted similarly. More generally, the measure �G is related
to the distribution of the zeros of G. As we will see next, the distribution of zeros can be
controlled in terms of the growth of G.

Proposition 3.5. Let ˛; ˇ > 0 and suppose G 2 O
ˇ
˛ .Cd / with G ¤ 0. In case d D 1 let

z1; z2; : : : denote the zeros of G repeated according to multiplicity. Then for all r > 0,

]¹k W jzkj < rº �
2ˇ˛

log 2
rˇ :

In case d � 2 let �G be defined by (3.3) and �G by �G.r/ WD
R
Br
jzj�2dC2 d�G.z/. Then

for all r > 0,

�G.Br / � ˛2
ˇC1r2d�2Cˇ and �G.r/ � ˛2

ˇC1rˇ :

Proof. Note that G ¤ 0 together with G 2 O
ˇ
˛ .Cd / implies that G.0/ ¤ 0. Since both

equations (3.2) and (3.3) are invariant with respect to multiplication of G by a nonzero
constant, we may assume that jG.0/j D 1.

We first prove the statement for d D 1. Since jG.0/j D 1, applying (3.2) for z D 0
yields X

kW jzk j<r

log
r

jzkj
D

1

2�

Z 2�

0

log jG.rei� /j d�: (3.4)
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Since for jzkj < r=2 we have log r
jzk j
� log 2, we can estimate

]¹k W jzkj < r=2º �
1

log 2

X
kW jzk j<r

log
r

jzkj

D
1

log 2
1

2�

Z 2�

0

log jG.rei� /j d� �
˛

log 2
rˇ :

Replacing of r by 2r concludes the proof of the first statement.

We proceed with the case d � 2. To simplify notation we set � WD �G and � WD �G .
Applying equation (3.3) for z D 0 givesZ

Br

�
1

j�j2d�2
�

1

r2d�2

�
d�.�/ D

1

Sd�1 � r2d�1

Z
@Br

log jG.�/j d�.�/: (3.5)

Since for j�j < r=2 we have

1

j�j2d�2
� 2 �

�
1

j�j2d�2
�

1

r2d�2

�
;

by using (3.5) we estimate

�.r=2/ D

Z
Br=2

j�j�2dC2 d�.�/ �
2

Sd�1 � r2d�1

Z
@Br

log jG.�/j d�.�/ � 2˛rˇ :

Replacing r by 2r yields
�.r/ � 2ˇC1˛rˇ :

Since �.r/ � r�2dC2�.Br / the second claim follows immediately, i.e.,

�.Br / � 2
ˇC1˛r2d�2Cˇ :

Before we go on to prove Theorem 3.3 let us provide some intuition for the case
d D 1. In that case the zero set of any entire function G ¤ 0 is discrete. Locally at a zero
z0 we can factorize

G.z/ D .z � z0/
m
�H.z/;

where m 2 N denotes the multiplicity of the zero z0 and H is a locally nonvanishing,
analytic function. Computing the logarithmic derivative of G gives

.logG/0.z/ D
G0.z/

G.z/
D

m

z � z0
C .logH/0.z/;

thus the logarithmic derivative has a pole of order 1 at z0. Proposition 3.5 allows us to
control the number of zeros. If we choose p such that z 7! jzj�1 is Lp-integrable we will
be able to bound k.logG/0kLp.Br /.

For d � 2 the situation is more complicated as zeros are not discrete any more. Before
we prove Theorem 3.3 we derive pointwise estimates, again by exploiting the representa-
tion formula of Poisson–Jensen.
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Proposition 3.6. Let ˛; ˇ > 0. Suppose G 2 O
ˇ
˛ .Cd / and G ¤ 0. Then there exists a

constant c that only depends on d such that for all r > 0 and jzj < r=2,

j.logG/0.z/j � c
�
˛2ˇ rˇ�1 C

Z
Br

d�.�/

jz � �j2d�1

�
; (3.6)

where � WD
P
k ızk – where zk are the zeros of G repeated according to multiplicity – in

case d D 1 and � D �G is defined by (3.3) in case d � 2.

Proof. The assumption that G 2 O
ˇ
˛ .Cd / is not the zero function implies that G.0/ ¤ 0.

Since the logarithmic derivative is invariant with respect to multiplication by a nonzero
constant, we may assume that G.0/ D 1. Again the cases d D 1 and d � 2 are treated
separately:

d D 1: First we compute logG.z/ for jzj < r using (3.2):

logG.z/ D 2 log jG.z/j � logG.z/

D
1

�

Z 2�

0

log jG.rei� /j �
1

2

�
rei� C z

rei� � z
C
re�i� C z

re�i� � z

�
d�

�

X
kW jzk j<r

�
log

r2 � zkz

r.z � zk/
C log

r2 � zkz

r.z � zk/

�
� logG.z/: (3.7)

Next we differentiate with respect to z. The antiholomorphic terms are annihilated by @
@z

,
i.e.,

@

@z

�
re�i� C z

re�i� � z

�
D 0;

@

@z

�
log

r2 � zkz

r.z � zk/

�
D 0;

@

@z
logG.z/ D 0:

Elementary computations show that

@

@z

�
1

2

rei� C z

rei� � z

�
D

rei�

.rei� � z/2
;

@

@z

�
log

r2 � zkz

r.z � zk/

�
D

jzkj
2 � r2

.z � zk/.r2 � zkz/
;

and thus

.logG/0.z/ D
1

�

Z 2�

0

log jG.rei� /j
rei�

.rei� � z/2
d� C

X
kW jzk j<r

r2 � jzkj
2

.z � zk/.r2 � zkz/

DW I.z/C II.z/ (3.8)

We will now estimate j.logG/0.z/j for jzj < r=2. We treat I and II separately.
To estimate jI.z/j, note that applying Cauchy’s integral formula to the function z 7! z

yields Z 2�

0

rei�

.z � rei� /2
d� D 0 for all z 2 Br :
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Therefore

I.z/ D
1

�

Z 2�

0

�
log jG.rei� /j � log jMG.r/j

� rei�

.z � rei� /2
d�

and furthermore for jzj < r=2,

jI.z/j �
1

�

Z 2�

0

ˇ̌
log jG.rei� /j � logMG.r/

ˇ̌
�

ˇ̌̌̌
rei�

.z � rei� /2

ˇ̌̌̌
d�

�
4

�r

Z 2�

0

�
logMG.r/ � log jG.rei� /j

�
d�

due to jG.rei� /j �MG.r/. By having a look at (3.4) we observe that
R 2�
0

log jG.rei� /jd�
is nonnegative and therefore

jI.z/j �
4˛

�
rˇ�1 for jzj < r=2: (3.9)

To estimate jII.z/j, note that for any jzj < r=2 and jzkj < r we haveˇ̌
r2 � jzkj

2
ˇ̌
� r2; jr2 � zkzj � r

2
� jzkj jzj � r

2=2I

making use of these estimates yields

jII.z/j �
X

kW jzk j<r

ˇ̌̌̌
r2 � jzkj

2

.z � zk/.r2 � zkz/

ˇ̌̌̌
� 2

X
kW jzk j<r

jz � zkj
�1: (3.10)

Combining (3.9) and (3.10) implies (3.6) for d D 1.

d � 2: Let � WD �G be defined as in Proposition 3.5. Then by utilizing (3.3) we know
that

logG.z/ D � logG.z/C
2

Sd�1r

Z
@Br

log jG.�/j � h.z; �/ d�.�/

� 2

Z
Br

k.z; �/ d�.�/ (3.11)

for all jzj < r , where

h.z; �/ D
r2 � jzj2

jz � �j2d
; k.z; �/ D

1

jz � �j2d�2
�

�
r

j�j �
ˇ̌
z � �r2

j�j2

ˇ̌ :�2d�2
We differentiate (3.11) with respect to the first component z1 of z (differentation with
respect to the other variables works in exactly the same way). Interchanging the order of
integration and differentiation yields, since logG is antiholomorphic with respect to z1,

@

@z1
logG.z/ D

2

Sd�1r

Z
@Br

log jG.�/j �
@

@z1
h.z; �/ d�.�/ � 2

Z
Br

@

@z1
k.z; �/ d�.�/

DW III.z/C IV.z/: (3.12)
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To compute the derivative of the kernel function h we write

h.z; �/ D
r2 � z1z1 � jz

0j2�
.z1 � �1/.z1 � �1/C jz0 � � 0j2

�d ;
where z D .z1; z0/ and z0 2 Cd�1 and similarly for �. Then

@

@z1
h.z; �/ D

�z1jz � �j
2d � .r2 � jzj2/d jz � �j2.d�1/.z1 � �1/

jz � �j4d

D jz � �j�2d�2.�z1jz � �j
2
� d.r2 � jzj2/.z1 � �1// (3.13)

where we have used that z1 7! z1 is antiholomorphic. A similar computation yields

@

@z1
k.z; �/ D .d � 1/ �

�
r2d�2

j�j2d�2
�
z1 � O�1

jz � O�j2d
�

z1 � �1

jz � �j2d

�
(3.14)

where we set O� D �r2=j�j2. Next we derive bounds for jIII.z/j and jIV.z/j for jzj < r=2.
To handle jIII.z/j, for j�j D r we can now estimateˇ̌̌̌

@

@z1
h.z; �/

ˇ̌̌̌
.d r�2dC1;

where ‘.d ’ means that the left hand side can be bounded by the right hand side times a
constant that depends on d only. Thus

jIII.z/j �
2

Sd�1 � r

Z
@Br

ˇ̌
log jG.�/j

ˇ̌
�

ˇ̌̌̌
@

@z1
h.z; �/

ˇ̌̌̌
d�.�/

.d r�2d
Z
@Br

ˇ̌
log jG.�/j

ˇ̌
d�.�/

� r�2d
�Z

@Br

ˇ̌
logMG.r/ � log jG.�/j

ˇ̌
d�.�/C

Z
@Br

jlogMG.r/j d�.�/

�
D r�2d

�Z
@Br

�
logMG.r/ � log jG.�/j

�
d�.�/C

Z
@Br

jlogMG.r/j d�.�/

�
From (3.5) it follows that

R
@Br

log jG.�/jd�.�/ is nonnegative. Since G is holomorphic
and G.0/ D 1 we have jlogMG.r/j D logMG.r/ for all r . Therefore we can further
estimate

jIII.z/j .d r�2d
Z
@Br

logMG.r/ d�.�/ .d r�2d r2d�1˛rˇ

and thus
jIII.z/j .d ˛rˇ�1 for jzj < r=2: (3.15)

To estimate jIV.z/j, first note that j O�j> r whenever j�j< r . For jzj< r=2we estimateˇ̌̌̌
@

@z1
k.z; �/

ˇ̌̌̌
.d

r2d�2

j�j2d�2
� r�2dC1 C

1

jz � �j2d�1
:
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Therefore

jIV.z/j � 2

Z
Br

ˇ̌̌̌
@

@z1
k.z; �/

ˇ̌̌̌
d�.�/

.d r�1
Z
Br

j�j�2dC2 d�.�/C

Z
Br

d�.�/

jz � �j2d�1

D r�1 � �.r/C

Z
Br

d�.�/

jz � �j2d�1
;

where we set �.r/ WD
R
Br
j�j�2dC2d�.�/. By Proposition 3.5,

jIV.z/j .d ˛2ˇ rˇ�1 C
Z
Br

d�.�/

jz � �j2d�1
for jzj < r=2: (3.16)

Combining (3.15) and (3.16) yields (3.6) for d � 2.

We are set to prove Theorem 3.3.

Proof of Theorem 3.3. Let� be defined as in Proposition 3.6. Then the pointwise estimate

j.logG/0.z/j � c
�
˛2ˇ rˇ�1 C

Z
Br

d�.�/

jz � �j2d�1

�
(3.17)

holds for z 2 Br=2, where c only depends on d . We begin by bounding the norm of the
second term on the right hand side; we may assume that �.Br / > 0, otherwise there is
nothing to estimate. We have



z 7! Z

Br

d�.�/

jz � �j2d�1





p
Lp.Br=2/

D

Z
Br=2

�Z
Br

d�.�/

jz � �j2d�1

�p
dA.z/

D

Z
Br=2

�Z
Br

�.Br /

jz � �j2d�1
�
d�.�/

�.Br /

�p
dA.z/

� �.Br /
p�1

Z
Br=2

Z
Br

d�.�/

jz � �j.2d�1/p
dA.z/

where we have used Jensen’s inequality. By changing the order of integration we obtain



z 7! Z
Br

d�.�/

jz � �j2d�1





p
Lp.Br=2/

� �.Br /
p�1

Z
Br

Z
Br=2

dA.z/

jz � �j.2d�1/p
d�.�/:

The inner integral can be bounded byZ
Br=2

dA.z/

jz � �j.2d�1/p
�

Z
Br=2

dA.z/

jzj.2d�1/p

D


z 7! jzj�2dC1

p

Lp.Br=2/
DW c

p

d;p
:
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Note that p < 1C 1=.2d � 1/ is precisely the condition for cd;p to be finite. Thus we
arrive at 



z 7! Z

Br

d�.�/

jz � �j2d�1





p
Ls.Br=2/

� c
p

d;p
�.Br /

p: (3.18)

To estimate the first summand of the right hand side in (3.17) we compute the norm of the
constant function

k1kLp.Br=2/ D vol.Br=2/1=p D
�
�d

dŠ
.r=2/2d

�1=p
: (3.19)

It follows from (3.17)–(3.19) and Proposition 3.5 that there exists a c0 that only depends
on d and p such that

k.logG/0kLp.Br=2/ � c
0
�
˛2ˇ rˇ�1k1kLp.Br=2/ C �.Br /

�
� c00

�
˛2ˇ rˇ�1 � .r=2/2d=p C ˛2ˇC1r2d�2Cˇ

�
� c000˛2ˇC1r2dCˇ�1;

where c00 and c000 again only depend on d and p. By replacing r by 2r we get the desired
bound

k.logG/0kLp.Br / � c
000˛22dC2ˇ r2dCˇ�1:

4. Stable Gabor phase retrieval

4.1. The main result

In the present section we will elaborate on how the results from the previous two sections
enable us to derive stability estimates for the problem of phase retrieval from Gabor mag-
nitudes. The Gabor transform Gf enjoys the pleasant property of being an entire function
(up to an exponential factor and a reflection) and therefore the tools we have developed
thus far can be applied.

Lemma 4.1. Let �.z/ D e�jzj
2=2��ix�y . Then for any f 2 � 0.Rd / the function z 7!

Gf . Nz/�.z/ is entire.

Proof. A proof for functions of polynomial growth can be found in [10].

Due to Lemma 4.1 we can apply Corollary 2.6 to F1.z/D Gf . Nz/ and F2.z/D Gg. Nz/

to obtain the following result.

Corollary 4.2. Let � � R2d be a domain. Then for all f; g 2Mp.Rd /,

inf
jcjD1
kGg � cGf kLp.�/ �



jGgj � jGf j


Lp.�/

C 29=2 � h.jGf jp; �/�1
�

rjGf j � rjGgj



Lp.�/
C





rjGf jjGf j
.jGf j � jGgj/






Lp.�/

�
:
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Except for the logarithmic derivative Corollary 4.2 already gives an estimate of the
desired form. The following proposition aims at absorbing the logarithmic derivative in a
polynomial weight which does not depend on f .

Proposition 4.3. Let � � R2d and let 1 � p < 2d=.2d � 1/ and q > p=.1 � p 2d�1
2d

/.
Suppose that f 2M1.Rd / is such that jGf j has a global maximum at z0. Then there
exists a constant c which only depends on d; p and q such that for all measurable func-
tions H , 



rjGf jjGf j

H






Lp.�/

� c


.1C j � �z0j/2dC2H

Lq.�/:

Proof. We can assume that � D R2d and that z0 D 0 (otherwise translate and modu-
late f ). The proof is split into two parts: First we derive uniform bounds of the norm of
the logarithmic derivative on balls centered at the origin. In the second part the logarith-
mic derivative is absorbed in a polynomial weight by making use of Hölder’s inequality
and Part 1.

Part 1: By Lemma 4.1 we know that G.z/ WD Gf . Nz/�.z/ is entire. The gradient of the
modulus of the Gabor transform can be computed in terms of G:

rjGf j D r
�
jGje�

�
2 j�j

2�
D .rjGj/e�

�
2 j�j

2

C jGj
�
re�

�
2 j�j

2�
:

Since jre�
�
2 j�j

2
j.z/ D �jzj � e�

�
2 jzj

2
we obtainˇ̌

r log jGf j.z/
ˇ̌
�
ˇ̌
r log jGj.z/

ˇ̌
C �jzj: (4.1)

Lemma 2.4 implies that the right hand side coincides with 2�1=2j.logG/0.z/j C �jzj
almost everywhere.

The assumption that jGf j has a maximum at the origin implies that G 2 O2
�=2
.Cd /

(see Definition 3.1). We can therefore apply Theorem 3.3 to obtain, for r > 0 and 1 � s <
1C 1=.2d � 1/,

r log jGf j




Ls.Br /

� 2�1=2k.logG/0kLs.Br / C �kz 7! zkLs.Br / . r2dC1; (4.2)

where the implicit constant depends on d and s only.

Part 2: We define s by the equation 1=p D 1=q C 1=s. One can elementarily verify that
the assumptions on p and q imply that 1 � s < 1C 1=.2d � 1/. Thus the Ls-norm of the
logarithmic derivative can be bounded as in Part 1 (see (4.2)).

Let D0 WD B1 and Dj WD B2j n B2j�1 for j 2 N. Then

kr log jGf j �Hkp
Lp.R2d /

D

X
j�0

kr log jGf j �Hkp
Lp.Dj /

:

We apply now Hölder’s inequality on every Dj to obtain

kr log jGf j �HkLp.Dj / �


r log jGf j




Ls.Dj /

kHkLq.Dj / . 2j.2dC1/kHkLq.Dj /;
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where we have used estimate (4.2) from Part 1. Let r WD q=p > 1 and r 0 its Hölder
conjugate, i.e., 1=r C 1=r 0 D 1. By applying Hölder’s inequality for sums we estimate
further

kr log jGf j �Hkp
Lp.R2d /

.
X
j�0

2j.2dC1/pkHk
p

Lq.Dj /

D

X
j�0

2�j=r
0

� 2j.2dpCpC1=r
0/
kHk

p

Lq.Dj /

�

�X
j�0

2�j
�1=r 0

�

�X
j�0

2j.2dpCpC1=r
0/r
kHk

q

Lq.Dj /

�p=q
:

The first factor is a finite constant depending on r 0 and therefore ultimately on p and q
only.

The second factor is estimated in the following way:X
j�0

2j.2dpCpC1=r
0/r
kHk

q

Lq.Dj /
�

X
j�0

Z
Dj

2j.2dC2/pr jH.z/jq dA.z/

D

X
j�0

Z
Dj

2j.2dC2/qjH.z/jq dA.z/

. k.1C j � j2dC2/Hkq
Lq.R2d /

;

where we have used 2j.2dC2/ . 1C jzj2dC2 for z 2Dj . Thus we get the desired estimate

kr log jGf j �HkLp.R2d / . k.1C j � j2dC2/HkLq.R2d /:

The main stability result now follows directly from Proposition 4.3 together with
Corollary 4.2.

Theorem 4.4. Let � � R2d and let 1 � p < 1C 1=.2d � 1/ and q > p=.1 � p 2d�1
2d

/.
Then for all f 2Mp.R2d / whose spectrogram jGf j has a global maximum at z0,

inf
jajD1
kGg � aGf kLp.�/ . .1C h.jGf jp; �/�1/

�
�

jGf j�jGgj



W 1;p.�/
Ck.1Cj��z0j

2dC2/.jGf j�jGgj/kLq.�/
�
8g 2Mp.Rd /;

where the implicit constant depends on d; p and q only.

4.2. Noise stability

In virtually any practical situation the measurements are corrupted by noise, i.e., one
is faced with the problem of reconstructing f from jGf j C 
 instead of jGf j. As we
will see next, the main theorem of the previous section also implies a stability result for
reconstruction from noisy Gabor magnitudes.
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Theorem 4.5. Let � � R2d and let 1 � p < 1C 1=.2d � 1/ and q > p=.1 � p 2d�1
2d

/.
Suppose that f 2 Mp.R2d / is such that its spectrogram jGf j has a global maximum
at z0. Suppose that 
 is a smooth function on � and suppose that g 2Mp.Rd / is such
that 

jGf j C 
 � jGgj



D
� �

where
kF kD WD kF kW 1;p.�/ C k.1C j � �z0j

2dC2/F kLq.�/:

Then
inf
jajD1
kGg � aGf kLp.�/ . .1C h.jGf jp; �/�1/.� C k
kD/;

where the implicit constant depends on d; p and q only.

Proof. By Theorem 4.4 we have

inf
jajD1
kGg � aGf kLp.�/ . .1C h.jF1j

p; �/�1/


jGgj � jGf j



D
:

The statement then follows from the estimate

jGgj � jGf j


D
�


jGgj � .jGf j C 
/



D
C k
kD � � C k
kD :

4.3. Multicomponent stability

In this section we discuss yet another consequence of the main stability result, Theo-
rem 4.4, which tells us that instabilities for Gabor phase retrieval must be of disconnected
type. In other words, reconstruction of the Gabor transform is stable on domains� where
jGf j is connected.

We now want to pick up the multicomponent paradigm, which was introduced in ear-
lier work by one of the authors and his collaborators [2]: Suppose that the phase retrieval
problem is relaxed as we require no longer that Gf be reconstructed up to a global phase
factor but instead only demand that the phase factor is constant on each component but
may take different values on different components. A component is here a subdomain �i
of � on which jGf j is connected, i.e., stable recovery on �i is possible.

The multicomponent paradigm – i.e. to identify F D
Pk
iD1 Fi , where Fi is concen-

trated on �i with
Pk
iD1 aiFi whenever ja1j; : : : ; jakj D 1 – is especially meaningful for

applications in audio as a change of phase on individual components is usually impercep-
tible to the human ear.

The relaxation accomplishes that Gabor phase retrieval becomes stable. By applying
Theorem 4.4 on every single component �i � � we obtain the following result.

Theorem 4.6. Let � � R2d and let 1 � p < 1C 1=.2d � 1/ and q > p=
�
1 � p 2d�1

2d

�
.

Suppose that f 2Mp.Rd / is such that its spectrogram jGf j has a global maximum at z0.
Suppose that � is partitioned into subdomains �1; : : : ; �k , i.e., �i \�j D ; for i ¤ j
and

Sk
iD1�i D �. Then for all g 2Mp.Rd /,
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inf
ja1j;:::;jak jD1

kX
iD1

kGg � aiGf kLp.�i /

. .1C h�/
�

jGf j � jGgj



W 1;p.�/
C k.1C j � �z0j

2dC2/.jGf j � jGgj/kLq.�/
�
;

where h� WD max1�i�k h.jGf jp;�i /�1 and where the implicit constant depends on d;p
and q only.
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