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Abstract. Let A, B C M be inclusions of o-finite von Neumann algebras such that A and B are
images of faithful normal conditional expectations. In this article, we investigate Popa’s intertwin-
ing condition A <37 B using modular actions on A, B, and M. In the main theorem, we prove
that if A <ps B, then an intertwining element for A <37 B also intertwines some modular flows
of A and B. As a result, we deduce a new characterization of A <ps B in terms of the continuous
cores of A, B, and M. Using this new characterization, we prove the first W*-superrigidity type
result for group actions on amenable factors. As another application, we characterize stable strong
solidity for free product factors in terms of their free product components.
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1. Introduction

In [35], Sorin Popa obtained the first uniqueness result for certain Cartan subalgebras in
non-amenable type II; factors up to unitary conjugacy. He used this result to compute
some invariants of von Neumann algebras and succeeded in giving the first examples
of type II; factors which have trivial fundamental groups, solving a long-standing open
problem in von Neumann algebra theory. This breakthrough work led to great progress
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in the classification of non-amenable von Neumann algebras over the last years, which is
now called Popa’s deformation/rigidity theory (see the surveys [26,40,50]).

An important technical ingredient in his theory is the intertwining-by-bimodules tech-
nique [35,37]. Let M be a finite von Neumann algebra and A, B C M von Neumann
subalgebras. The intertwining condition, which will be written as A <ps B, is defined as a
weaker version of unitary conjugacy from A into B (see Definition 2.4). Popa proved that
this condition is equivalent to an analytic condition: non-existence of a net of unitaries
in A with a certain convergence condition. This equivalence provides a very powerful
tool to obtain unitary conjugacy between certain subalgebras, and it is now regarded as
a fundamental tool to study relations between general subalgebras in a von Neumann
algebra.

The proof of this analytic characterization relies on the bimodule structure via GNS
representations of traces. The finiteness assumption of M is hence crucial in this context.
However, since there are many natural questions for non-tracial von Neumann algebras
(more specifically, for type III factors) which should be studied in deformation/rigidity
theory, there have been many attempts to generalize the intertwining machinery to type III
von Neumann algebras. In a joint work with C. Houdayer [15], we succeeded in proving
the aforementioned analytic characterization in the case when A is finite (and B C M can
be general), but the general case is still open. See also [2, 7, 18, 22,28, 48, 49] for other
partial generalizations of this technique.

In the present article, we focus on this problem. We will investigate Popa’s inter-
twining condition A <ps B for general inclusions of von Neumann algebras. Before
proceeding, we prepare some terminology. For a (possibly non-unital) inclusion of von
Neumann algebras A C M, we say that A C M is with expectation if there is a faithful
normal conditional expectation E4:14M14 — A, where 14 is the unit of A. For any such
expectation F4, we say that a faithful normal positive functional ¢ € M, is preserved
by E4 if it satisfies ¢ = ¢(14 - 14) + go(lj . Ij{) and p o E4 = ¢ on 14M14, where
15 =1y — 4.

Now we introduce the main theorem in this article. The theorem shows that the inter-
twining condition A <7 B is equivalent to the same condition but together with additional
conditions on Tomita—Takesaki’s modular actions. More precisely, an intertwining ele-
ment, which implements a weak unitary conjugacy for A <js B, also intertwines some
modular flows for A and B. As a result, the condition A <3s B is equivalent to a condi-
tion on the continuous cores of A, B, and M (see item (3) below). This provides a new
perspective on the intertwining machinery in type III von Neumann algebra theory. In the
theorem below, 0¥ is the modular action and C, (M) is the continuous core of M (with
respect to ¢ € M,1); see Section 2. Recall that a factor N is a type 111, factor if its contin-
uous core is a factor. See Definitions 3.4 and 3.7 for intertwining conditions with modular
actions and with conditional expectations.

Theorem A. Let M be a o-finite von Neumann algebra and A, B C M (possibly non-
unital) von Neumann subalgebras with expectations. Fix any faithful normal conditional
expectation Ep: 1pM1p — B and any faithful state ¢ € M which is preserved by Ep.
Then the following two conditions are equivalent:
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o A=<y B.

o (A,0V) <y (B,0%) for some faithful state € M such that 0;// (A)=Aforallt eR
(or equivalently such that \ is preserved by some conditional expectation onto A).

Moreover, for any fixed faithful normal conditional expectation E4: 14M14 — A, any
faithful state v € M, which is preserved by E4, and any o-finite type 1) factor N
equipped with a faithful state ® € N, the following conditions are equivalent:

(1) (4,0%) 2m (B,0?).

(2) (A, E4) Zm (B, Ep).

() M(Cygu(4 ® N)) 2, o, man) Coow(B ® N), where IT: Cygu(M @ N) —
Coow(M ® N) is the canonical x-isomorphism given by the Connes cocycle.

The following immediate corollary gives a new characterization of A <ps B in terms
of the continuous cores of A, B, and M. Since all continuous cores are semifinite, up
to cutting down by a finite projection, one can use the analytic characterization of the
intertwining condition at the level of continuous cores.

Corollary B. Keep the setting of Theorem A and fix a type 111, factor N and a faithful
state ® € Nx. Then A <pr B if and only if item (3) in Theorem A holds for some E4
and Y.

We emphasize that this corollary fails if we do not take tensor products with a type I1I;
factor. In fact, there is an inclusion B C M = A such that M £y B but Cy(M) Zc,(m)
Cy(B) (see [16, Theorem 4.9]). Hence the type III; factor N is necessary.

Here we explain the idea behind Theorem A. In [38, 39], Popa proved his celebrated
cocycle superrigidity theorem. He developed a way of using his intertwining machinery to
study cocycles of actions. If two discrete group actions I' % M and I' ~A# M on a finite
von Neumann algebra M are cocycle conjugate (so that M xg I' = M x4 I'), then the
intertwining condition Cly xg I' <prs, 1 Clpys Xg I' is equivalent to a weak conjugacy
condition for & and 8 (see Definition 3.1). In [19], by assuming the subalgebra A is trivial
(but B C M can be general), Houdayer, Shlyakhtenko, and Vaes applied this idea to the
case of modular actions. They combined it with Connes cocycles and deduced a new
characterization of intertwining conditions, in terms of the states of A, B, and M. This
new characterization enabled them to identify specific states on von Neumann algebras,
and they applied it to the classification of free Araki—Woods factors.

Our Theorem A is strongly motivated by these works. In fact, when the subalgebra A
is finite, Theorem A can be proved (without tensoring by a type III; factor) by developing
ideas in these works. Hence the main interest of Theorem A is the case that A is of
type III. It is technically more challenging, since the proofs of [38,39] and [19] can no
longer be adapted. We will use another characterization of A <3s B which holds without
the finiteness assumption (see Theorem 2.5(2)). By taking tensor products with a type
III; factor N and by analyzing operator valued weights on basic constructions, we will
connect this condition on M to the one of C,(M ® N). See Lemmas 2.3 and 3.12 for the
use of type III; factors.
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Application: W*-superrigidity for actions on amenable factors

Our first application of Theorem A is to W*-superrigidity of group actions on amenable
factors. For a group action I' ~,# B on a von Neumann algebra B, W*-superrigidity of
means that the isomorphism class of the action 8 can be recovered from the one of the von
Neumann algebra (or the W*-algebra) B xg I'. More precisely, for any action A R, A, if
B xg T' ~ A xg A as von Neumann algebras, then 8 > « as actions. Here for the action «,
we only assume natural conditions in the framework (e.g. free and ergodic action) and
do not impose any technical assumptions. W*-superrigidity is one of the highlights of
deformation/rigidity theory.

The first example of W*-superrigid actions was discovered by Popa and Vaes [42].
They proved that for a large class of amalgamated free groups, any free ergodic proba-
bility measure preserving action is W*-superrigid. After this breakthrough work, many
examples have been obtained [1,8,17,24,25,34,43,44,51]. All these works are on actions
on probability spaces, namely, actions on commutative von Neumann algebras.

In the present article, we investigate actions on amenable factors. Recall that a von
Neumann algebra M (with separable predual) is amenable if it is generated by an increas-
ing union of (countably many) finite-dimensional von Neumann algebras. The amenable
von Neumann algebras are the easiest class of von Neumann algebras, which contains
all commutative von Neumann algebras. Hence it is natural to ask if a W*-superrigidity
phenomenon occurs for actions on non-commutative amenable von Neumann algebras.
However, because of the technical difficulties coming from non-commutativity, none of
W*-superrigidity type results for such actions is known so far (even for type II; factors).

We prepare some terminology. We say that a countable discrete group I' is in the class
€ [52] if it is non-amenable and for any trace preserving cocycle action I' ~, B on a finite
von Neumann algebra B, the following condition holds:

e for any projection p € B x I' =: M and any amenable von Neumann subalgebra
AC pMp,if AN pMp C A and if Nypp(A)” C pMp has essentially finite index,
then A <37 B.

Here an inclusion P C N of finite von Neumann algebras has essentially finite index if

there is a projection p € P’ N N which is arbitrary close to 1 such that Pp C pNp has

finite Jones index. The class € contains all weakly amenable groups I" with agz)(F) >0

[43], all non-amenable hyperbolic groups [44] and all non-amenable free products

[25,51]. As explained in [52], groups in this class do not contain any infinite amenable

subgroups. Recall that a faithful normal state ¢ on a von Neumann algebra M is weakly

mixing if the fixed point algebra of the modular action of ¢ is trivial. In this case M must
be a type III; factor, and the unique amenable type III; factor admits such a state.

The following theorem is the main application of Theorem A. This is the first
W*-superrigidity type result for actions on amenable factors. As we will explain below,
the proof of this theorem uses modular theory in a crucial way, and hence cannot be
adapted to type II; factors.

Theorem C. Let I' be an ICC countable discrete group in the class €, By a type 111,
amenable factor with separable predual, and ¢o a faithful normal state on By which
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is weakly mixing. Then the Bernoulli shift action T ~/P Qr(Bo. o) (=: (B, ¢)) is
W*-superrigid in the following sense.

Let A /% (A, ) be any state preserving outer action of a discrete group A on an
amenable factor A with a faithful normal state . If B xg I' >~ A x4 A, then there exist

e a finite normal subgroup Ao < A and a cocycle action A/ Ay @"‘A/AO (A xq Ao, V')
by a fixed section s: N/ Ao — A, where ' is the canonical extension of ¥ on A X No;

e a state preserving cocycle action (Ad(ug))ger of I' on a type 1 factor (B, w) equipped
with a faithful normal state,

such that the actions AJAg A% ™0 (A xq Ao, ¥') and T AP®N® (BB, ¢ ® w)
are conjugate via a state preserving isomorphism.

The Bernoulli action in this theorem was intensively studied in [52, 53] where sim-
ilar conclusions were obtained if the action A ~,* (A4, ¥) is also a Bernoulli action of
a group in the class €. Now thanks to our Theorem C, we can take arbitrary actions as
AR (A, Y).

The conclusion of Theorem C is optimal. Indeed, subgroups and type I factors in the
theorem can appear always, since the amenable type III; factor B has decompositions
suchas B = A x Ag and B = B ® B. Note also that the cocycle action A/Ag m"‘A/AO
(A %y Ao, ¥') above depends on the choice of the section s, but this dependence affects
the cocycle action Ad(u) on a type I factor only.

The proof of Theorem C splits into two steps. Firstly, we prove a unique crossed
product decomposition theorem: we identify the base algebra B from the von Neumann
algebra B xg I', so that the associated groups are isomorphic and the two actions are
cocycle conjugate. Secondly, we prove a cocycle superrigidity type theorem: the corre-
sponding cocycle is cohomologous to a coboundary, so that the two actions are conjugate.

The next theorem treats the first step. Such a unique crossed product decomposition
theorem has been intensively studied during the last decade for actions on finite von
Neumann algebras [10,22,33,44] (and see aforementioned works for W*-superrigidity).
Thanks to our Theorem A, we can take type III factors as base algebras B.

Theorem D. Let I be an ICC countable discrete group in the class €, B a o-finite,
amenable, diffuse factor, and T ~® B an outer action.

Assume that B xg I' >~ A x4 A for some outer action A % A of a countable discrete
group A on a o-finite, amenable, diffuse factor A. Then there is an amenable normal
subgroup Ao < A such that the induced cocycle action A/ Ay Q“A/AO A Xy Mo is cocycle
conjugate to B. In particular if A has no amenable normal subgroups, then 8 and o are
cocycle conjugate.

If A is an ICC group in the class €, then it has no amenable subgroups, hence we get
the following corollary, which generalizes [43, Theorem 1.10].

Corollary E. Let T ~® B and A /®* A be outer actions of countable discrete ICC
groups on o-finite, amenable, diffuse factors such that B xg I' >~ A 3y A. If T and A
are in the class €, then B and o are cocycle conjugate.
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We next need a cocycle superrigidity type theorem for the second step. Appropriate
adaptations of techniques in [36, 39] (see also [32, 52]) to our setting easily provide the
following proposition. This proposition is however not useful in our study. As we explain
shortly, we will use Popa’s argument in the proof of this proposition.

Proposition F. Let I" be a non-amenable countable discrete group, (By, po) an amenable
factor with separable predual and with a faithful normal state, and T' ~,P Qr(Bo. o) =:
(B, @) the Bernoulli shift action. Assume that either U is a direct product of two infinite
groups or it has a normal subgroup with relative property (T).

Assume that B is cocycle conjugate to some state preserving outer action A ~* (A, V)
of a countable discrete group A on an amenable factor A with a faithful normal state .
Then there exists an inner action (Ad(ug))ger of T" on a type 1 factor B such that the
actions o and B ® Ad(u) are conjugate.

Idea of the proof of Theorem C

The proof uses modular theory in a crucial way. Consider two actions 8 and « as in
Theorem C.

Since the group I' is in the class €, we can first apply Theorem D. Then an induced
cocycle action a0 is cocycle conjugate to f. If this cocycle action is a genuine action,
by assuming that I" is a direct product or has property (T), one can apply Proposition F
and obtain a conjugacy result. However, it is not clear when the cocycle action, which
comes from a section s: I" >~ A/Ay — A, is a genuine action. In other words, we do not
know when the exact sequence 1 - Ag - A — I' — 1 splits, where A is amenable and
I" is in the class € satisfying the assumption of Proposition F. This is the main technical
issue in proving the W*-superrigidity theorem in our setting, and this is why such a result
is not known even for type II; factors.

In the present article, to avoid this problem, we use modular actions. Since we have
assumed that 8 and « are state preserving, there is an isomorphism

B xgyxge (' xR) > A Xgyow (A XR)

such that the corresponding (possibly cocycle) actions are cocycle conjugate. By assum-
ing that ¢¢ is weakly mixing (which means ¢? is weakly mixing), and combining with
some rigidity property of Bernoulli actions, one can apply an argument similar to the proof
of Proposition F to the direct product group I" x R. Here we emphasize that R-actions
are always genuine actions, so we can avoid the above problem in this context. Thus the
cocycle is cohomologous to a coboundary as R-actions. Since R < I' x R is normal and
0% is weakly mixing, the same conclusion actually holds for I' x R-actions and we can
finish the proof. This is the main idea of the proof of Theorem C.

Application: stable strong solidity of free product factors

The next application is to the structure of amalgamated free product von Neumann al-
gebras. We will generalize loana’s work [25] to the type III setting.
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Recall that for any (possibly non-unital) inclusions A, B C M with expectations and
with 1 = 137, we say that A is injective relative to B in M [29,33] if there is a conditional
expectation E:14(M, B)14 — A which is faithful and normal on 14 M14. Recall that for
any von Neumann algebra M with a decomposition M = M, & M, where M, is atomic
and M, is diffuse, we say that M is strongly solid (resp. stably strongly solid) [3,33] if for
any diffuse amenable von Neumann algebra A C M, with expectation, Nz, (4)” (resp.
sNum, (A)") remains amenable. Here sV, (A) is the set of all elements x € My such
that xAx* C A and x*Ax C A, and such elements are called stable normalizers. Then
Num,; (A) is given by sNar, (A) N U(My) and its elements are called normalizers. Note
that these two notions of strong solidity coincide if M is properly infinite. By definition,
a strongly solid non-amenable factor M does not admit any crossed product decomposi-
tion M = A x I" (for amenable A), so strong solidity should be understood as a strong
indecomposability of M .

The following theorem is a generalization of Ioana’s theorem [25, Theorem 1.6] (see
also [3,21,51]). As a corollary, we characterize stable strong solidity of free product
factors; see [25, Theorem 1.8] for the same characterization for type II; factors.

Theorem G. Let B C M; be inclusions of o-finite von Neumann algebras with expec-
tations E; for i = 1,2. Let M := (My, Ey) xp (M>, E>) be the amalgamated free
product von Neumann algebra, p € M a projection, and A C pMp a von Neumann
subalgebra with expectation. Assume that A is injective relative to B in M and assume
that A’ N pMp C A. Then at least one of the following conditions holds true:

(i) A=m B;
(i) sNpmp(A)” <y M; for somei € {1,2};
(iil) sNpamp(A)” is injective relative to B.

Corollary H. Let I be a set and (M;, ¢;)iey afamily of nontrivial von Neumann algebras
with faithful normal states. Put M := *;c;(M;, ¢;). Then M is stably strongly solid if
and only if so are all M;’s.

Factoriality of free product von Neumann algebras was studied in [47]. Examples of
stably strongly solid factors have been obtained in several articles [3, 4, 6,20]. Also all
amenable von Neumann algebras are stably strongly solid. Using these algebras, Corol-
lary H provides plenty of new examples of stably strongly solid factors.

2. Preliminaries

Tomita—Takesaki theory

Let M be a von Neumann algebra and ¢ a faithful normal semifinite weight on M.
Throughout the paper, for objects in Tomita—Takesaki’s modular theory, we will use the
following notation. The modular operator, conjugation, and action are denoted by A,
J,, and 0¥ respectively. The continuous core, which is the crossed product von Neumann
algebra M xg¢ R, is denoted by Cy, (M), and Tr, and L,R mean the canonical trace on
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Cy(M) and the canonical copy of LR in C,(M) respectively. The centralizer algebra
M, is the fixed point algebra of the modular action. The norm || - ||« is the operator norm
of M, while || - ||2,4 (or || - |l) is the L2-norm determined by ¢. See [45] for definitions
of all these objects.

For any continuous action G ~R,* M of a locally compact group G, in this article we
will use the following canonical embeddings for crossed products: w: M — M %, G by
(e (x)§)(g) = ag—1(x)§(g) forall § € L*(G,L*(M))and g € G;and G — M x4 G
by g — 1y ® Ag for all g € G. Via these embeddings, we often regard M and LG as
subalgebras of M x, G.

Connes cocycle

Let G be a locally compact group, M a von Neumann algebra and G R, M a continuous
action (see [45, Definition X.1.1] for continuity). Let p € M be a non-zero projection. We
say that a o-strongly continuous map u: G — pM is a generalized cocycle for o (with
support projection p) if

® Ugp = Ugag(uy) forall g, h € G;

e uguy = panduzue = ag(p)forallg € G.

In this case, by putting g (pxp) := ugag(pxp)ug forall x € M and g € G, one has a
continuous G-action on pMp. We have p(M x4 G)p >~ pMp Xqu G. When p = 1, we
simply say that u is a cocycle.

Let N be another von Neumann algebra and consider continuous actions G ~R,* M
and G ~# N. We say that « is cocycle conjugate to B via a generalized cocycle if there
exist a projection p € M, a *-isomorphism w: pMp — N and a generalized cocycle
u: G — pM for o with support projection p such that

7t o By om(a) = ugag(a)u, foralla € pMp, g € G.
In this case, by identifying pMp = N by means of , we can define a partial isometry
U:L*(G,L*(M)) — L*(G,L*(M)) by (U£)(g) = uz-1£(8) = pug—1a,—1(p)E(g) for
g € G.Note that U*U = 7y (p) and UU™ = p ® 1;2(g). One has a *-isomorphism
Mgy :=AdU): p(M %o G)p — pMp xg G

satisfying I1g o (x) = x for x € pMp and [1g o (pAg p) = pugkgp = ug)vg forg € G.
If one can choose p = 1, so that u is a cocycle, then we simply say that o and 8 are
cocycle conjugate.

Let M be a von Neumann algebra and ¢, { normal semifinite weights on M. Assume
that ¢ is faithful and let s (v) be the support projection of . Consider the modular actions
0% on M and oV on s()Ms (). The Connes cocycle ([DV, Dg];)rer [11] is a gener-
alized cocycle for 0¥ with support projection s(1) such that 0% is cocycle conjugate to
oV via ([Dy, D¢]:)ser. In particular, there is a canonical *-isomorphism

Mye: pCo(M)p = p(M xge G)p — pMp Xsu G = Cy(pMp).

See [45, V.II1.3.19-20] for this non-faithful version of the Connes cocycle. In this article,
we need the following important theorem.
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Theorem 2.1 ([11, Théoreme 1.2.4]). Let M be a von Neumann algebra and ¢ a faithful
normal semifinite weight on M. Let p € M be a projection and (u;);er a generalized
cocycle for (of), with support projection p. Then there is a unique normal semifinite
weight ¥ on M such that s(V) = p and uy = [DY, Do), forallt € R.

Below, we record an elementary lemma. We use the notation xpy = ¢(y - x).
Lemma 2.2. Let M be a von Neumann algebra and ¢, € M, faithful positive func-
tionals.

(1) For any projection e € My, we have
[Deve, DY]; =e and e[Dy, Dol; = [Deve, Dy];.
In particular we have a chain rule:

[Deyre, Dy]: [DY, Dol: = [Dere, Dg];.

(2) Let v € M be a partial isometry such that e := vv* € My and [ :=v*v € M,.
Assume that vpv* = eyre on M (equivalently fof = v*yv). Then

vol (W xv)v* = o) (exe), v*[DY, Dgl, = 0?(v*), xeM, 1 €eR.

Cocycle actions

A more general version of a group action is a cocycle action. We say that a locally compact
group G acts on a von Neumann algebra M as a cocycle action if there exist continuous
maps «: G — Aut(M) and v: G x G — U(M) such that

U = ld» Qg OOy = Ad(l)(g, h)) Olgp, v(g,h)v(gh,k) = ag(v(h,k))v(g,hk)

for all g, h, k € G, where e is the neutral element. The map v is called a 2-cocycle. Two
cocycle actions G ~,@") M and G ~,®*) N are said to be cocycle conjugate if there
exist a x-isomorphism 7: M — N and a continuous map u: G — U(M) such that, for
allg,h € G,
7 lo Bgom = Ad(ug) o g, x Yw(g. h)) = Ugtg (Up)V(g, h)u;h.

In this article, cocycle actions appear in the following two contexts.

Let ' /% B be an action of a discrete group on a von Neumann algebra B. Let
p € B be a projection and assume that og(p) ~ p in B for all g € G. Take any par-
tial isometries wg € B such that wewy = p and wzw, = agz(p) for all g € T'. Define
ag(x) = Wweog(x)wy and vP (g, h) := wgozg(wh)w;h forall x € pBp, g,h € I'. Then
(a?,v?) is a cocycle action on pBp satisfying p(B xq I')p >~ pBp X(gr yr) T.

Let ' /¥ B be the same group action. Let A < I' be a normal subgroup and fix a

section s: I'/A — T such that s(A) is the unit of I'. Inside B x, I, for all g,h € T'/A,
we define

T/A .__ T .
g™ = Ad(Ay(,)) € Aut(B xq A) and  v(g,h) i=A] ) oy € LA,

It is easy to verify that «'/2 and v define a cocycle action of I'/A on B x4 A satisfying
B xg I' = (B xg A) Xqr/a 4 T'/A.
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Basic constructions and operator valued weights

For operator valued weights, we refer the reader to [13, 14]. We will say that a unital
inclusion B C M of von Neumann algebras is with operator valued weight if there is an
operator valued weight Eg: M — B, which is always assumed to be normal, faithful and
semifinite.

Let B C M be a unital inclusion of o-finite von Neumann algebras with expecta-
tion Ep. Fix a faithful normal state ¢ on M such that ¢ = ¢ o Eg. Put L?2(M) :=
L?*(M, ¢) and J := J,, and consider B C M C B(L?(M)). The von Neumann al-
gebra (M, B) := (JBJ)' is called the basic construction, and is generated by MegM,
where ep is the Jones projection for Ep. Using the inclusion JBJ C JMJ with expecta-
tion JEpJ := Ad(J) o Ep o Ad(J), one can define a canonical operator valued weight
(JEgJ) 1 (JBJ) — (JMJ) = M. We will write as Ep := (JEgJ)™!. It satisfies
EB(b*eBa) = b*a foralla,b € M. See [30,31] for the general theory of EB.

Below we collect well known facts for basic constructions and operator valued
weights, which we will need in this article.

e For any faithful v € M, one can define a faithful normal semifinite weight 1/7 =
¥ o Ep on (M, B). We have

o/lm =0 and [DVy,D@), = [Dy,Dg], forallseR.

o Let Ec,): Co(M) — Cy(B) be the canonical conditional expectation such that
EC¢(B)|M = Ep and EC¢(B)|L¢R = id. Using 0;0 o EB = E\B o Of for all r € R,
one can define an operator valued weight from (M, B) x5 R to M Xxz¢ R whose
restriction on (M, B)™ coincides with Ep. We will denote it by Ep x R.

e We canonically have
(Cp(M),Cy(B)) = C3((M, B)).

The left hand side has a canonical operator valued weight E, c,(B) onto Cy, (M), and the

right hand side has Ep x R. Since the constructions are canonical, these two operator
valued weights coincide.

Here we prove a lemma for type I1I; factors.

Lemma 2.3. Let A C M be a unital inclusion of von Neumann algebras with an operator
valued weight E 4. Fix a faithful Y4 € A}, and put  := W4 o E4. Let N be a type 111,
factor with a faithful normal semifinite weight w. Then

Cyow(A®NY N Cyou(M B N) = (4' N My) @ Cly ® Clyag,.

Proof. The inclusion D is clear, so we prove the converse.

Since N is a type III; factor, there is a faithful normal semifinite weight @’ such
that (N,) N N = C (see [45, Theorem XII.1.7]). Thanks to the Connes cocycle, there
is a canonical isomorphism from Cygw (M ® N) to Cyge(M ® N) which sends
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Cyow (A ® N) onto Cygew(A ® N) and which is the identity on M ® N. Hence to
prove this lemma, by exchanging v’ with @, we may assume that N, N N = C.
For simplicity we write Lyg,R = LR. Observe that (e.g. [18, Proposition 2.4])

Cyew(Cly ®Cly)n Cyoo(M ®N)C (M@N)I/,@w@LR.
Since (Clgy ® No)' N (M @ N)ygw = My ® Cly, we have
Cx/r@w((ClA ® Nw)/ n C1/,®w(M®N) C My ®Cly ® LR.

Since C,(N) is a factor (because N is of type III;), we have 7, (N) N (Cly ® LyR)
= Cly ® Clp2g), where 7, (N) is the canonical image of N in Cy,(N). This implies
that

Cyow(Cl4 @ N) NCyguw(M & N) C My ® [1,(N)' N (Cly ® LR)]

Using the canonical embedding 7y g, the last term coincides with myge(My ® Cly),
hence

Cyow(A® N) NCygo(M ®N) = 1ygu(A ® Cly) N ryge(My @ Cly)
= Tyew(A' N My) @ Cly)

This is the conclusion. [

Popa’s intertwining theory

As explained in Section 1, we refer the reader to [35, 37] for the origin of intertwining
theory. Here we give a definition introduced in [15].

Definition 2.4. Let M be a o-finite von Neumann algebra and A, B C M (possibly non-
unital) von Neumann subalgebras with expectation. We will say that a corner of A embeds
with expectation into B inside M and write A <ps B if there exist projections e € A,
f € B, apartial isometry v € e M f and a unital normal x-homomorphism 6:eAe — fBf
such that

e f(ede) C fBf is with expectation;
e vl(a) = av foralla € ede.
In this case, we will say that (e, f, 0, v) witnesses A <ps B.
We recall known characterizations of the intertwining condition A <ps B. For this,
we borrow notation from [15, Section 4]. The same notation will be used in Section 3.
Let M be a o-finite von Neumann algebra and A, B C M (possibly non-unital) von

Neumann subalgebras with expectations. Fix a faithful normal conditional expectation Ep
for B C 1gM1p.Put B := B @ C(lpy — 1p) and let Ef: M — B be a faithful normal
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conditional expectation which extends Ep. Let B = By @ B, be the unique decomposi-
tion such that B is finite and B, is properly infinite. Fix a faithful normal trace tp, on B
and choose a faithful normal state ¢ € M, such that ¢ is preserved by Ep and E, and
®|B, = tB, (up to scalar multiples). Fix a standard representation L>(M) := L*(M, ¢)
and its modular conjugation J := J,. We write ey and ep for the corresponding Jones
projections (note that ezlp = egJ1pJ = ep), and E 5 for the canonical operator valued
weight from (M, B) to M given by Eg(xegx*) = xx* for all x € M. Denote by Tr the
unique trace on (M, E)JIBl J satisfying Tr((x*egx)J1p,J) = 13, (Ep(1p,xx*1p,))
for all x € M. Since Z({M, §)J131 J) = JZ(B1)J, there is a unique operator valued
weight ctr: (M, ]§)J131 J — JZ(B1)J such that Tr = zp,(J - J) octr. Since Tr is a
trace, ctr is an extended center valued trace. Let ctrp, be the center valued trace for B
and recall that T, o ctrg, = tp,. We have

ctr((x*egx)J1p,J) = J ctrp, o Ep(1p,xx*1p,)J forall x € M.

We mention that the decomposition B = By @ B, here is slightly different from the one
in [15], and that ctr was not used in [15]. However the proof of [15, Theorem 4.3] works
without any change if we use ctr and our decomposition for B. Our items introduced here
are more appropriate in the context of intertwining conditions with actions, which will be
discussed in the next section.

Now we introduce Popa’s intertwining theorem. We refer the reader to [15, Theorem
4.3] and [2, Theorem 2] for the proof of this version.

Theorem 2.5. The following conditions are equivalent:

(1) A=um B.

(2) There exists a non-zero positive element d € A’ N 14(M, B Y14 such that

d=dJ1pJ and Egz(d)e M.

If A is finite, then for any o-strongly dense subgroup § C U(A), conditions (1) and (2)

are also equivalent to

(3) There is no net (u;); in § such that Eg(b*u;a) — 0 o-strongly for all a,b € M1p.
Using the next lemma, we can replace the map 6 for the condition A <js B with a

unital *-homomorphism on A.

Lemma 2.6.

(1) A =p B if and only if there exist a separable Hilbert space H, a projection
f € B®B(H), a partial isometry w € (14 ® e1,1)(M @ B(H)) f, where ey is a
minimal projection, and a unital normal *-homomorphismn: A — f(B @ B(H)) f
such that

- n(A) C f(B®B(H))f is with expectation;
—wr(a) =(a®e,1)w foralla € A.

In this case (to distinguish it from A <pr B) we will say that (H, f, w, w) witnesses
A <3 B.
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(2) Assume that either
— A does not have any direct summand which is semifinite and properly infinite, or
— B is properly infinite.
If A <p1 B, then the Hilbert space H in item (1) can be taken finite-dimensional.

Proof. Since we will prove a very similar but more complicated statement in Lemma 3.6,
we omit the proof. Indeed, to prove this lemma, one can follow the proof of Lemma 3.6
by regarding actions as trivial (and by using [15, Theorem 4.3 and Lemma 4.10]). ]

3. Intertwining theory with modular actions

In this section, we introduce several variants of Popa’s intertwining condition. We inves-
tigate these conditions as well as relations between them. At the end of this section, we
prove Theorem A. Throughout this section, we always fix (possibly non-unital) inclusions
A, B C M of o-finite von Neumann algebras with expectations E4, Ep respectively.

Intertwining theory with group actions

We first consider the intertwining condition A <jps B when a locally compact group acts
on them. This idea was first used in [38, 39] to study cocycle superrigidity for discrete
group actions. Although our main interest is the case of modular actions, we first study
this condition by assuming that a general locally compact group acts on A, B C M.

We fix the following setting (which will be used in Definition 3.1 and Theorem 3.2).
We use notation introduced before Theorems 2.5, so we use A C 1yM14, B C 1pM1p,
B=B1®B,,B,Ep, Ez, L*(M), ¢, J,ep,ej,18,, Tr, E, and ctr. Let G be alocally
compact second countable group, and consider continuous actions « and  of G on M
such that

® ag(A) = Aand By(B) = Bforall g € G;

e q0FE4=FEqoazonlyMlqand By 0 Egp = EgofgonlgMlpforall g € G;

e « and B are cocycle conjugate: there exists a $-cocycle w: G — M such that o, =
Ad(wg) o Bg(=: Bg) forall g € G.

In this setting, based on the viewpoint of Lemma 2.6(1), we define intertwining conditions

with group actions as follows.

Definition 3.1. Keep the above setting. We say that (A, &) embeds with expectation into
(B, B) inside M and write (A, a) <3' (B, B) if there exists (H, f, 7, w) which witnesses
A <y B (in the sense of Lemma 2.6(1)) and a generalized cocycle (ug)gec for B ® idy
with values in B ® B(H) and with support projection f such that

o Wi, = (wg @ 1g)(Be @idy)(w) forall g € G;

® ug(Bg ®idp)(w(a))uy = n(ag(a)) forallg € G anda € A.

In this case, we will say that (H, f, , w) and (ug)geg witness (A, o) 5}5}1 (B, B).
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Before proceeding, we record the following observations.

o In the definition, we may drop the assumption that w is a partial isometry by consider-
ing its polar decomposition (e.g. [15, Remark 4.2(1)]).

e We can define a *x-isomorphism H’” w- M %o G — M xg G such that H“’ La)=a
fora € M and H“’ M%) = wg)t for g € G. There exist unital 1nclus1ons A Xy G C
14(M xg G)ly and B xg G C1p(M xg G)lp.

e Using compression maps by ep ® 1 and e4 ® 1, faithful normal conditional expecta-
tions Epx,G:18(M xg G)1p — B g G and Egx,G:14(M xq G)1g4 — A x4 G are
defined.

e For each g € G, let ug € U(L?*(M)) be the canonical implementing unitary for fB,.
Then putting B ¢ 1= Ad(ug), one can extend the action § on (M, B ).

e Putting &g := Ad(a)gug) = Ad(wg) Eg for g € G, we can also extend « on (M, B).
Note that &g (14) = 14 and &g (J1pJ) = J1pJ forallg € G.

e For each g € G, since B, commutes with Ep, we have l?g o Bg =g o EE on
((M, B)J1gJ)T. This implies that E5 0 &g = ag o Ez on (M, B)J15J)*.

Our first goal in this section is to prove the following theorem, which gives fundamen-
tal characterizations of the condition (4, o) <3 (B, ). We mention that the origins of
these conditions can be found in [38,39] (see also [19]).

Theorem 3.2. Consider the following conditions:

(1) (A,@) <37 (B, B).

(2) % (A% G) Zmxge B xp G.

(3) There exist no nets (u;); of unitaries in U(A) and (g;); in G such that

Ep(Bg; (b™)wg uia) — 0  o-strongly foralla,b € M1p.
(4) There exists a non-zero positive element d € A’ N 14(M, §>& 14 such that
d=dJ1pJ and Egz(d)e M.

Then we have (4)<(1)=(2). Moreover the following assertion holds true:

o Assume further that A X G is finite. Then (2)<(3)=(4), hence all conditions are
equivalent. In this case, we can choose a Hilbert space H in item (1) to be finite-
dimensional.

Remark 3.3. In the case A = C, combined with Theorem 3.9 below, this theorem gen-
eralizes [19, Theorem 3.1]. When A is not finite, the implication (2)=>(1) does not hold
since there is a counterexample [ 16, Theorem 4.9]. We will nevertheless use this theorem
for general A by taking tensor products with a type III; factor (see Lemma 3.12).

Proof of Theorem 3.9. Throughout the proof, we will write a tensor product with B(H)
and associated maps to the tensor product by adding the symbol H as a superscript, such
as M = M@B(H),af =g ®idH,a)f ‘= wg ® 1y etc.
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()=(2). Fix (H, f. 7, w) and (4g)gec. The generalized cocycle (ug)geg gives a
*-isomorphism

H%H,(ﬁH)u:f(MH XNy G)f — f(MH xgu G)f

satisfying T4, o, (faf) = faf for a € M% and T, o (28" 1) =

Su gkgH f= ugzlgH for g € G. Note that this restricts to a *-isomorphism between

SBH xguye G)f and f(B¥ 341 G)f. The equivariance property (8%) (7 (a)) =

ug,BgH (m(a))uy = mw(ag(a)) fora € Aand g € G implies that there is a *-homomorphism
A3y G — m(A) xgmyu G C f(BY gy G)f.

Composing this map with H%  (grryu> WE geta *-homomorphism

F:Axg G — f(BY xgu G)f

such that 7(a) = w(a) fora € A and T (A3) = ug)LgH for g € G. The partial isometry
w then satisfies, inside M 7 XgH G,foralla € Aand g € G,

H ~
NGy 4@ ®er)w = wi(a),
H H o u _
O g (A% W =of BEWIAET = wugAl” = wiF(1Y).

Hence using the isomorphism M xgu G = (M xp G) ® B(H) and the fact that
H‘E’Z,QH = H‘/‘;’a ® idy, we see that (H, 7, f, w) witnesses H‘[;”a(A Xy G) jﬁf}ixﬁG
B xg G. This is equivalent to item (2) by Lemma 2.6.

()=(). Take (H, m, f, w) and (ug)gec Witnessing item (1). Write w =
> wj ®ei,;, where (e;,;);,; is amatrix unitof B(H),andput W:= 3, wieg ®e1,; =

weg (where eg ‘=e5 ® ly). Then forany a € A,

(a@e)WW* = (a® 61,1)wegW* = wn(a)egw* =WW*a Qei,).

50 WIW* € (A® Cer1) N (la ® et ) (M, BH)(14 ® e1,1) = (4" N 14(M, B)14)
® Cey,1. Moreover, for any g € G, by the intertwining condition of w,

~H _ _HpH H H _ HpH HoH H
Olg (WW*) - wg ﬂg (wel}' w*)(a)g )* - a)g IBg (U))BE ﬂg (w*)(wg )*
= wugeguz,w* = wegfw* =WWw*,

so WW* e (14(M, E) 1% ® Cey,1. Using the equality Eﬁ@B(H) = EE ® idg, we find
that

(Eg ®idm)WW?) = Egpiny(WW™) = ww” € M ® Cevr < co.

Thus by using the element d such thatd ® e;,; = WW™, we get (4).
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(4)=(1). Take a non-zero spectral projection p of d such that p < Ad for some A > 0.
Then p satisfies exactly the same assumption as d. Fix a countably-infinite-dimensional
Hilbert space H (with a matrix unit (e; ;j); ; in B(H)), and consider the inclusion

A®Cey  C (M, BY®B(H) = (M7 BH).
Then the projection p ® e ; satisfies
E;}‘H (p®er1) = EE(P) ®e1,1 < 00.

Since the projection eZ (13 ® 1g) = (e 51B) ® 1y is properly infinite, we can follow
[15, Theorem 4.3, proof of (6):(%—b)] (we do not need the finiteness of 4). We can
find a partial isometry W e (M| BH) (of the form weg = W), a projection f € B,
a *-homomorphism 7: A — fBH f such that n(a)eg =W*(a®e )W and wn(a) =
(a®ey,)wforalla € A, and WW*=pQ®ei1 € (1a(M, 1’37)114)a ® B(H). Note that
(H, f,m, w) witnesses A <3’ B (up to taking the polar decomposition of w).

We next construct a generalized cocycle. For any g € G, since W*wf ,35 W) e
lgeg(]\’l\, E)ngeg = BHeg, there is Aa unique ugz € BH such that ugeg =
W*wfﬁf(W). Since g — a)g and g — ﬂf(W) are *x-strongly continuous, so is the
map G > g > ug. Observe that

eHuguy = Wl BEWW*) )W = w*all (wwHWw = fel

and similarly eguzug = ﬁf (f)eg forall g € G.For g,h € G, we compute that

ug B up)el = wroll BEW)BE W*of B (W)
= wral ww*ol B2 (i BE, W)
= W*a)zlﬁgh(W) = ugheg.

Since u, is defined via B H eg ~ BH we can remove eg from the conclusions of the
above computations. Thus (1g)geG is a generalized cocycle for B# with support pro-

jection f. Using the equation (wf)*Wug = B;I(W), we find that for any a € A and
geq,

BH(n(a))el = BEW* (@ ®er )W) = uW*all (a ® er.1)Wug
= u;n(ag(a))ugeg.

We get the equivariance property u g f8 gl (m(a))uy = m(dg(a)) foralla € A. Finally, since
W = weg, the equation (a)g)*Wug = Eg(W) for g € G implies (wf)*wugeg =
ﬁ;’ (w)eg. We get wu, = wfﬁf (w) for all g € G, and thus (ug)geg is the desired

cocycle. We get item (1).
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From now on, we assume that A x,, G is finite.
(2)<(3). Suppose first that (3) does not hold, hence there exist nets (u;); of unitaries
in U(A) and (g;); in G such that

Ep(Bg; (b*)wg uia) — 0  o-strongly foralla,b € Mlp.
Then for any a,b € M1p and s, s’ € G, we have
EBXﬁG(be*Hw,a()Lgi_l)uia)tf,) = AEEBXBG(b*Aﬁi_lw;iuia))Lf,
- Afg,—“ Ep(Bg; (b*)w;iuia)kf/,

The last term converges to 0 in the o-strong topology for all a,h € M1p and s, s’ € G.
By Theorem 2.5(3) (see also [15, Theorem 4.3(5)]), this means H%”a (A Xg G) ZMxz6
B Xpg G.

Conversely, suppose that H‘E’,a (A %y G) ZMxyzc B xg G. Then by Theorem 2.5(3),
there exist nets (#;); of unitaries in U(A) and (g;); in G such that

EBxﬁG(y*Hw,a(Ag,—l)”ix) — 0 o-strongly forall x, y € (M xg G)13.

Using the same computation as above, we conclude that (3) does not hold.

(3)=(4). Let v be a faithful normal state on M X, G which is preserved by E4x,G
such that ¥4, is a trace. Observe that ¥|1,m1, is a-preserving, since 1443 €
(14M14)y for all g € G. It then follows that ¥ o @, = ¥ on (14(M, B)14J1J)*
forallg € G.

By assumption, there exist § > 0 and a finite subset ¥ C 14M1p such that

Z ||E3(ﬁg(b*)w;ua)||§,¢, >§ forallu € U(A), g €G.
a,be¥

Putdo :=3 ,cq vegy™ € (14(M, B)14)" and observe that dy = doJ15J, Eg(do) =

D yer Y € 1aM1y and ctr(do J1p,J) = 3 yc5 J ctrp, (Ep(1p,y*y1p,))J < oo.
Define

K = 0" (u*Gg(do)u | u € U(A), g € G} C 14(M, B)14.
Following the proof of (5§)=(6) of [lAS, Theorem 4.3], there exists a unique element d € K
of minimum || - ||, j-norm. Since ¥ is preserved by & and since A is contained in the

centralizer of 1@, we deduce that d € A’ N (14(M, B)14)%. Note thatd = dJ1gJ, since
do = doJ1pJ.
We prove that d # 0. For all u € U(A) and g € G, we have

D (Wrag(do)uhg(a), Ap(@))y = Y (u*dg(begh™uhy(a), Ay(@)),
ace¥F a,be¥F

= Y (urwgBe(b)enPg (B IwiuA,(a). Ag(a))y

a,be¥F

= X IEs(Bg (6" wiua)li3,, > 6.
a,be¥F
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By taking convex combinations and a o-weak limit, we obtain ) & {(dAy(a), Ap(a))e
> 8. This implies d # 0.
We prove E5(d) € M. Observe that for any g € G,

Eg*ag(doyu) = Y Ezu*ag(y)ogegorog (v )u)

yeF
= > wrag(y)ag (y)u = u*ag(z yy*)u-
YeF yeF

Combining this with the normality of E 5> we conclude that | E F) oo =
| Zye{F ¥¥* |l for all x € X, hence Eg(d) € M. We get item (4).

Finally, we prove that the Hilbert space H in item (1) can be taken finite-dimensional.
For this, we continue to use do, d, K and claim ctr(dJ1p, J) < oo. Using the formula for
ctr given in Section 2 and using ctrg, o By = B¢ octrp, on By forall g € G, we compute
that forany g € G and u € U(A),

ctr(u*@g (do)uJ1p,J) = Y _ ctr(u*wg B (]eslBe (v )wgul J15,J)
yeF
= 3 Jctr, 0 Ep(1, [Be () oful(Be 6 )wkul* 15,)J
yeF

= Z J ctrp, o Eg(1p, Bg(y*y)15,)J
yeF

= Jﬂg o ctrp, 0EB<Z lBly*lel)J'
yeF

Combined with the normality of ctr, this yields

et/ 1, Do = [ets, (B3 (2 15,0 71,))|
yefF

for all x € K. Thus we get ctr(dJ1p,J) < oo.

We next follow the proof of (4)=-(1) above. Take a non-zero spectral projection p
of d such that p < Ad for some A > 0, so that ctr(pJ1p,J) < co and Eg(p) € M. We
have either p J1p,J # Oor p J1p,J # 0.

Assume that p J1p,J # 0. We may assume p J1p,J = p. Then since B is properly
infinite, we can follow the proof above (with H = C and B = B5;), so we get item (1)
with H = C.

Assume that p J1p, J # 0 and we may assume p J1p, J = p. Then using Eg(p) <00
and ctr(p) < oo, we find that there is a family {w; }?_, C M1p, suchthat W; := w;eg are
partial isometries foralli, p = Y/ wiegw) = Y i, W;W*, and Eg(w}w;) = 8 j p;
for all i, j, where p; € B; are projections. This fact is well known to experts, but we
include a short proof for the reader’s convenience (but for the case B; = B = B ). First,
by a maximality argument, there exists a pair (@, g) of projections with Q € (M, B) and
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q € B, which is maximal for the condition p > Q ~ gep < ep. It follows that zp(r) < g
for any other pair (R, r) such that p — Q > R ~ rep < eg. Then we can construct
inductively a family (Q;, ¢;)7L,, where m € N U {oo}, of pairs of projections such that
0;0;, =0foralli # j, p > Q; ~ g;ep forall i, and (Q;, ¢;) is maximal with respect
to the condition p — Z;-_:ll Qj > Q; ~giep < ep for all i. Then the maximality implies
zp(gi+1) < g; for all i, hence m < oo (because ctr(p) < oo) and p = Y /-, Q;. Take
partial isometries W; € (M, B) such that Q; = W;W,* and g; = W;*W; for all i. Since
EB (p) < o0, by the push down lemma (e.g. [15, Lemma 2.5]), one can write W; = w;ep
for some w; € M, as desired.
Consider the *-homomorphism 7: p(M, B yp — B1 ® M, given by

n n
pxp= Y Wi(WxWpW' Y Eg(wfxw;)®eij. x € (M, B)

i,j=1 i,j=1

Then using the identification p(M, B)p ~ p(M, B)p ® Ce,1 and the partial isometry
W .= Zj W; ® ey,j, we see that 7 satisfies m(x)(eg ® 1,) = W*(x ® eq,1)W for all
x € p(M, B)p. Define f :=n(14) € By ® M,, and w := Y wi®er; €M ® My, so
that W*W = f(eg ® 1,) and W = w(eg ® 1,). By restricting 7 to Ap and composing
with the map A — Ap, we have a unital normal *-homomorphism 7: 4 — (B @ M) f
such that (a ® e1,1))W = Wx(a) forall a € A. Thus we are exactly in the same situation
as in the proof of (4)=(1) but with H = C" and B = B;. Following the same proof, we
getitem (1) with H = C" as desired. [ ]

Intertwining theory with modular actions

We next focus on the case of modular actions. We continue to use A, B C M and fix
faithful normal conditional expectations E4, Ep for A, B respectively. Let ¥, ¢ € M, be
faithful normal positive functionals which are preserved by E4, Ep respectively. Then
since o,w (A) = A, 0(B) = B forall t € R, and 0¥ and o* are cocycle conjugate by
([DY, Dgl;)ser, the condition (A, 0¥) <49 (B, 0¥) can be defined. In this setting, the
extended actions of o¥ and 0% on (M, B ) are exactly the modular actions of Vi=vo E B
and @ :=gokE 7 respectively.

As in the usual intertwining condition, we introduce intertwining conditions with
modular actions at the level of corners.

Definition 3.4. In the above setting, we will say that a corner of (A, V) embeds with
expectation into (B, 0 %) inside M and write (A,c¥) <jr (B,0?) if there exists (e, f,6,v)
which witnesses A <) B with e € Ay, and a generalized cocycle (u;);er for 6 with
values in B and with support projection f such that, with w, := [DV, D¢];,

o vu; = w0l (v) forallt € R;
o uof(0(a))uf = Q(U;p(a)) foralla € ede and t € R.
In this case, we will say that (e, f, 0, u) and (ug)geG witness (A, o¥) <m (B,a?).
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Below we collect elementary lemmas. We omit proofs since they are straightforward.

Lemma 3.5. Assume (A,0¥) <pr (B,0%) and fix (e, f.6,v) and (u);er which witness

(A,0¥) <p (B, 0®) in the sense of Definition 3.4.

(1) For any projection ey € eAye with eqv = v8(ep) # 0, (eo, 0(€0), 8]eyaeq- €0V) and
(B(eo)us)ser witness (A,a¥) <p (B,0®) (up to the polar decomposition of egv).

(2) For any projection z € B N 6(ede) N{u, |t € RY (e.g. z € Z(B)) with vz # 0,
(e, fz,0(-)z,vz) and (u;z):cr witness (A,a¥) <pr (B,0%) (up to the polar decom-
position of vz).

(3) Let u € A and w € B be partial isometries such that ¢ = u*u and f =
ww*. Then (uu*, w*w, Ad(w™) o 6 o Ad(u™), uvw) and the generalized cocycle
(w*u,of (w)),er witness (A, o¥") <um (B,0?), where y' € M is any faithful ele-
ment which is preserved by E 4 such that uu*y'uu* = uyu™ and uu™ € Ay .

(4) Let ' and ¢’ be any faithful normal positive functionals on M which are preserved
by E4 and Ep respectively and have the property that e € Ay. Then (e, f,0,v) and
(0(e[DY'. DYie)u [Do, Dg'),); witness (A.0¥') <p (B.c?).

Moreover all these statements hold if we consider (H, f, 7, w) and (uy)rer which wit-

ness (A,a¥) <y (B,0?) in the sense of Definition 3.1. (In this case, we use Z(A) and

B ® B(H) instead of Ay and B in items (1)—(3), and item (4) holds without the assump-

tione € Ayr).

The next lemma clarifies the relation between < and <" for modular actions. It
should be compared to Lemma 2.6.

Lemma 3.6.

(1) (A,0Y) <p (B,0*) ifand only if (A,c¥) jﬁ (B, 0*). In particular, these notions
do not depend on the choice of Y and ¢ (as long as they are preserved by E4 and Ep
respectively).

(2) Assume either
— A does not have any direct summand which is semifinite and properly infinite, or
— B is properly infinite.

If (A, oV) j}’lf;i (B, 0%), then the Hilbert space H in Definition 3.1 can be taken
finite-dimensional.

Proof. We decompose A = A; & A, & Az and B = By & B, & B3, where Ay, By are
finite, A, B, are semifinite and properly infinite, and A3, B3 are of type III. Then by
Lemma 3.5(1, 2) and [15, Remark 4.2(2)], we know that (A, o‘/’) =<m (B,0?) if and only
if (A4;, O'w) =um (Bj,0?) for some i, j. Hence we can always assume that A = A; and
B = B; for some i, j. The same is true for (4,0%) <4 (B,0?).

(1) By Lemma 3.5(4), the condition (4, 0"%) <4 (B, 0¥) does not depend on the
choice of ¥, ¢. Hence if this statement is proven, then (4, ") <y (B, 0%) does not
depend on ¥, ¢ either.
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Assume that (4;,0Y) 5% (Bj.0%) for some i, j and take (H, f, 7, w) and (u,); as
in the definition. Let z € Z(A) be a non-zero projection such that Az 3 a — w(a)w*w is
injective. Since z € Ay, up to replacing Az by A, we may assume that A > a — w(a)w*w
is injective. In particular wi(e) # O for any non-zero projection e € A.

Assume that B = B, or B = Bj3. Then since 1p ® ey,; is properly infinite, one has
f < 1p ® e1,1. Up to equivalence of projections, using Lemma 3.5(3), we may assume
that f is containedin B ® Cey,;. Sousing M = M ® Ce;,1, we get (A,0Y) <y (B,09).

Assume that B = B;. Then A = A; or A;. If A = A,, then by using eAe for any
fixed finite projection e € Ay (note that Ay contains many finite projections, e.g. by the
first part of the proof of [21, Lemma 2.1]) and using Lemma 3.5(1), we may assume that
A is finite. By the last statement of Theorem 3.2, we may assume that A is finite and H
is finite-dimensional. We can still assume that A 3 a +— 7w (a)w™*w is injective.

Write H = C” for some n € N. As in the proof of [5, Proposition F.10] or [48,
Proposition 3.1(ii)=(iii)], there is a projection e € A such that 7 (e) is equivalent to a
projection fy ® ej,1 for some fo € B. By [21, Lemma 2.1], e is equivalent to a projection
in Ay, so we may assume e € A . Observe that, regarding 7 as a map from A ® Cey 1,
(14 ®e1,1, fow,w)and (u;), witness (4 @ (Cel,l,o‘”) <meM, (B ® M,,0?®™)_ Since
mw(e)w*w # 0, by Lemma 3.5(1), (e ® e1,1. 7(€), T|edewe; ;- (€ ® €1,1)w) witnesses
(A® Cey1,0%) <peMm, (B ® M,,d®") as well. We then apply Lemma 3.5(3) for
7(e) ~ fo ® e1,1, and find that (e ® e; 1, fo ® e1,1, #’, w’) and some generalized cocycle
witness (A ® Cey.1,0%) <pem, (B ® M, 0¢®") for some ' and w’. Finally, since
Jfo ® e1,1 and w’ are contained in M ® Cey 1, by identifying M ® Ceq,; = M, we get
(A.0%) =u (B.0?).

We next show the ‘only if” direction. Assume that (4, 0¥) <3r (B, 0%) and take
(e, f,60,v) and (u;); as in the definition. As in the proof above, we can assume eAe > a
> v*v0(a) is injective and hence v(ey) # 0 for any non-zero projection ey € eAe.

Let z be the central support projection of e in A, and take partial isometries (w;);jey in
A such that wo = e, ¢; :== wfw; <eforalli € I,and ) ;,.; w;w] = z. Note that / is a
countable set, so we regard I C N. We put v, := wuv foralln € [ andd = Zne[ vnegv;f,
and then it is easy to see that d = dJ1gJ and Eg(d) € M. We note that d # 0, since
each v, is non-zero by w;v, = wyw,v = vO(w,; w,) # 0. Then for any a € A, we have

ad = zad = E wiw;a E vjegu; = E w; (waw;)vegv*wy

iel jel i,jel
= E w;vl(w;aw;)egv w; = E wivegv* (wiaw;)w; = daz = da.
ijel ijel

It follows that d € A’ N 14(M, B)14. Define a faithful normal positive functional v’
on M by

1
yo=D o sy + (1 -2y (- 2).
nel
Note that ¢’ is preserved by E4. By Lemma 2.2, the equality e,¥'e, = 27" w,yw;;
implies cf,}p(wn) = 271" [Dy’, DY]Fw, forall £ € R and n € I. An easy computation
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shows that

o/ (d) = [DY, Dgl,of @)Dy, D]} = [DY', DY]; d [Dy', Dy], forallt € R.

We see that O';p/(d) =d forall t € R and hence d € A’ N (14(M, E)IA)@' By The-

orem 3.2, this means (4, o‘/’/) fﬁi (B,0%). By Lemma 3.5(4), this is equivalent to
(4,0%) < (B.oY).

(2) Assume that (4;,0%) <47 (B;,0?) for some i, j. If B = B, or Bj, then the first
half of the proof of item (1) shows that one can assume H = C. So we get the conclusion.
If A = A3, then we must have B = B3, which we proved. Finally, if A = A1, then the
last part of Theorem 3.2 gives the conclusion. ]

Intertwining theory with conditional expectations

In [19], a notion of intertwining conditions for states was introduced. Inspired by this,
we introduce a notion of intertwining conditions for conditional expectations. We still fix
A, B C M with expectations E4, Ep.

Definition 3.7. We say that a corner of (A, E4) embeds with expectation into (B, Ep)
inside M and write (A, E4) <p (B, Ep) if there exists (e, f, 0, v) which witnesses
A =<y B and faithful normal positive functionals v, ¢ € M, which are preserved by
E 4, Ep respectively such that

vo* € (I4M14)y, v*v e (1gMlp),, and vv*yYvv* = vev*.
In this case, we say that (e, f, 6, v) and V¥, ¢ witness (A, E4) <um (B, Ep).

The next lemma clarifies relations between A <37 B and (A, E4) <y (B, Ep). Note
that, as in the statement of Theorem A, one can actually take ¢ = 14 in the next lemma
(this will be proved later).

Lemma 3.8. The condition A <pr B holds if and only if there is a non-zero projection
g € A N 14M1y4 and a faithful normal conditional expectation Eqq: qMq — Aq such
that (Aq, E4q) <M (B, EB).

Proof. The ‘if’ direction is trivial, so we prove the ‘only if” direction. Take (e, f, 0, v)
which witnesses A <3 B. By [15, Remark 4.2(2, 3)], we may assume that A is finite or
of type III, and that ede > a — 6(a)v*v is injective. Up to replacing e with a smaller
projection if necessary, we may assume that there exist finitely many orthogonal and
equivalent projections (e;)?_, in A such that Y ;_, ¢; =: z4(e) € Z(A). Fix a faithful
normal conditional expectation Eg for the inclusion 6(eAe) C fBf, and take a faithful
normal state ¢p on B such that ¢ 0 Eg =@ on fBf.Putg:=¢go EgonlpMIlp and
observe that the modular action of ¢ globally preserves 8(eAe) and fBf. In particular
it also preserves 0(eAe) N fMf, so by [21, Lemma 2.1], there is a partial isometry
w € B(ede)’ N fMf such that w*w = v*v and ww* € (B(ede) N fFMf)°’. Up to
replacing vw* by v, we may assume that v*v is in (fMf)°”.



Unitary conjugacy for type III subfactors and W*-superrigidity 1701

We put eg := vv* € (ede) NeMe and fy := v*v € (O(ede) N FMf)°’. Since
B(ede) fo C foM fy is globally preserved by 0%, it is with expectation, say E: foM fo —
O(eAe) fo, which satisfies ¢ o E = ¢ on foM fy. Observe that Ad(v) gives a spatial iso-
morphism from 6(eAe) fy onto (eAe)ey. Hence we can define a conditional expectation
by

E!; := Ad(v) o E 0o Ad(v*):egMeo — (eAe)ey.

Define a positive functional ¥} := vgv* on (eAe)eq and put ' := ¥ o E; on egMey.
We have v*v = fo € (1M 1p), and vv* = eg € (egMeg)y-. By using ¥y = vpv* on
(ede)eg and ¢ o E = ¢ on fyM fy, we compute that, for any x € M,

v Y (x)vo* = Yy o Ej(vv*xvv®) = (vpu™)(WE (v vvtxvv*v)v®)
= ¢(foE(*xv) fo) = ¢ 0 E(v*xv) = @(v*xv).

We get vo*y'vv* = vpv*. Since they satisfy ¢ =@ o Egon 1gM1p and ' = y' o E
on eg M eg, we can extend ¢ and ¥’ to normal states on M which are preserved by Ep and
E’, respectively. In this case, we still have fo € My, eg € My, and vv*y/'vv™* = vev*.

We claim ((ede)eq, E'}) < (B, Ep). Let z € Z(eAe) be the central support projec-
tion of e in (eAe)’ and observe that (eAe)eg >~ eAez. Since we have assumed eAe > a >
v*vl(a) = v*av is injective, the map ede 3 a — Ad(v) (v*v6(a)) = aey is also injective.
In particular we get z = e and (eAe)eq ~ eAe. Consider 0y: (eAe)eg ~ eAe — fBf
given by Oy (aeg) := 0(a) for a € eAe. Then (eey, f, Oy, v) witnesses (eAe)eg <pr B.
Together with ¢ and v/, this witnesses ((eAe)eq, E)}) <y (B, Ep).

Since eg € (ede) N (eMe) = (A’ N 14M1y)e, there is a projectiong € A’ N 14, M14
such that ge = ey and g = z4(e)g. Using projections (e;)7_, which we fixed in the
first paragraph of the proof, we have an identification gM g ~ egMey ® M, which
restricts Aq ~ eAeq ® M,,. In particular, there is a faithful normal conditional expec-
tation E44:gMq — Aq such that Eqgleome, = E)j- Since we chose /' as any extension
of ¥'|eome, Which is preserved by E,, we can in particular choose ¥ as the one which
is preserved by E; and E4,. Then it is easy to see that the same (eeo, f, 6, v) as above
and ¥', ¢ witness (Aq, Eaq) <m (B, Ep). [

The next theorem clarifies the relation between (4, E4) <ar (B, Eg) and (4,0¥) <p
(B, 0%). The proof uses Connes cocycles to construct a positive functional. Note that the
case A = C was proved in [19, proof of Theorem 3.1].

Theorem 3.9. (A, E4) <p (B, E) if and only if there exist faithful normal states r, ¢
€ M, which are preserved by E4, Ep respectively such that (A,c¥) <p (B, 0?).

Remark 3.10. Combined with Lemma 3.6(1), characterizations given in Theorem 3.2
can be adapted to (A, E4) <y (B, Ep) and (A4, 0‘/’) <m (B,0%). Moreover ¥ and ¢ for
(A,0¥) <p (B,0?) can be taken arbitrary as long as they are preserved by E4 and Ep
respectively.

Proof of Theorem 3.9. Suppose (A, E4) <m (B, Ep) and take (e, f,6,v) and ¥, ¢.
We put d := vegv* and observe that d € (ede)’ N (e(M, B)e), d = dJ1pJ, and
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Eg(d) < 00. By Lemma 2.2, the equation vv*yvv* = vev* implies [Dy, Dg],0f (v)
= v forall t € R. Then 0,/ (d) = d for any t € R, hence d € A’ N (14(M. B)14).
We get (ede,a¥) jﬂi (B,0%) by Theorem 3.2. This implies (ede,c¥) <pr (B,0?) by
Lemma 3.6, and hence (4, %) <y (B, 0%).

Suppose (4, 0¥) <p (B,0%) and take (e, f,6,v) and (u;);er. Since (U;)ser is a
generalized cocycle for o with support projection f, by Theorem 2.1 there is a unique
faithful normal semifinite weight wp on fBf such that [Dug, Dpgl; = u; forallt € R.
Put ;= up o Ep on fMf and observe [Du, Dgp]; = u; forallt € R. For any t € R
and a € eAe, using the equation vu, = w,oy (v) where w; = [DV, Dg];, it is easy to
compute that

o/ (vv*) = vv*, o’ (*v) =v*v, and ¥ (08(a)) = (a7 (a)).

We find that vv* € eMye and v*v € (fMf),. Weextend by fuf + (1— fle(l — f)

and still denote it by . It satisfies u = pw o Eg on 1gM1p and 1p, f € M,,. We put

eo = vv* € eMye and fy :=v*v e fM, f.Foranyt € R, using Lemma 2.2, we have
[D(wpuv®). Dole = [D(vuv™), Dpli[Dp. Dol: = voy (v*)[Dp, Dol

v[Du, Dgliaf (v*) = vu,0f (v*) = w,0f (V™)

= o;/’(vv*)a), = vv*w,; = [D(eoVeg), Do];.

We get egreg = vuv™. Hence (e, f, 0, v) and ¥, u witness (A4, E4) <p (B, Eg), but
is not necessarily bounded. So we have to replace u by a bounded one.

Since egreq = vuv™, it follows that up(Ep(fo)) = u(v*v) = ¥(eg) < oo. Since
ol'B(Eg(fo)) = Ep(c!(fo)) = Ep(fo) forall t € R, and since fo = v*v € f(ede)’,
Eg(fo)is contained in (fBf),.; N O(eAe)’. Combined with the fact that v*vEg(fo) # 0
(because Eg(v*vEgR(fy)) = Ep(fy)? # 0), this shows that there is a non-zero spectral
projection f’ € (fBf)uyz N6(ede) of Ep(fo) suchthatvf’ 5 0and up(f’) < oco. Put
v i=uf’,0(a) ;= 0(a)f fora € eAe and u, := f'u, fort € R. We claim that, up to
the polar decomposition of v/, (e, f’,6’,v) and (u});er witness (4,0Y) <p (B,0¥).

It is easy to see that v'6’(a) = av’ for all a € eAe, hence (e, f’, 6, v’) witnesses
A <p B.Foranyt € R, since f’ = o/*(f’), one has

) uy = uy fup = ujof (fur = of (f).
This means u}, = f'u; = u,0f (f’) for all t € R. Using this, it is easy to compute that
foranya € ede and t,s € R,

uy s =ujol (), vu, =ow0f (), and ulof(0'(a))W))* = 9/(0,'”(61)).

Thus (e, f7,6’,v") and (u});er Witness (4,0%) < (B,0¥%).
We replace v’ with its polar part. Then by using (e, f/, 6’,v") and (u})ser, and by
following the same construction as we did for ©, we again construct a faithful normal
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semifinite weight u’ on M such that u), = [Df'u’ f', De]; for all t € R, and eyyey =

v’ v, where ej 1= v'v’*. Since

[Df W' f'. Doly =u, = f'u, = f'[Dfuf. Dol = [Df'uf’, Dol

forallr € R, it follows that /'’ f' = f’uf’. In particular, since u(f’) < oo, f'u' f” is
bounded. By construction, p’ is bounded on M and hence (e, f’,60’,v") and ¥, 1’ witness
(A, Eq) =m (B, Ep). n

We record the following permanence property.

Lemma 3.11. Let D C A be a unital von Neumann subalgebra with expectation Ep.

(1) If (A,06Y) <p (B,0%), then (D,c¥") <u (B, o) for any faithful ¥ € M which
is preserved by Ep o E4.

(2) If (A, E4) Zm (B. Ep), then (D, Ep o E4) =pm (B, E).

Proof. These are immediate by Lemma 3.6(1) and Theorem 3.9. ]

Proof of Theorem A

Now we prove Theorem A. We continue to use A, B C M with expectations, and we only
fix Ep. We also fix a type III; factor (N, w) as in the statement of Theorem A.
The next lemma is the key observation to prove Theorem A.

Lemma 3.12. Let E4: 14M 14 — A be a faithful normal conditional expectation, and let
v, @ € My be faithful states which are preserved by E4, Ep respectively. The following
conditions are equivalent:

(1) (A, E4) 2m (B, Ep).

(2) (A®N.E4®idy) <ygy (BN, Ep ®idy).

(3) H(p@w,llf@)w (C1/f®w (A @ N)) §Cw®w(M§N) C<p®cu (B @ N)

Proof. (1)=(2). This is trivial (one only needs to take tensor products with 1 or idy).
2)=(@3). By Theorem 39 and Lemma 3.6(1), item (2) is equivalent to

(A® N,o¥®?) <oy (BN, 0¢®?). By Theorem 3.2, we get item (3).

(3)=(1). We first recall the following general facts (some of which were men-
tioned in Section 2). Since (Cy,(M), Cy(B)) is generated by (M, B) and L,R, and
since 0,‘7’ = Ad(AZ), where ¢ = ¢ o EE’ (Co(M), C(p(g)) is canonically identified
as C3((M, B)). Put ¢ := ¥ o Eg. Since [DV, D@]; = [Dy, Dg]; for all t € R, the
map H@;: C@((M, §)) — Ca({M, 5)) restricts to Iy y: Cy (M) — Cyu(M). Since
lp = 7ge(1p) is the unit of Cy(B), the modular conjugation Jc,, (ar) on L2(Cy(M)) =
L?(M) ® L?(R) (with respect to the dual weight of ¢) satisfies

Je,n e,y I,y = Je,an 1B,y = J1BT ® 112R).
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We note that the unitization of Cy,(B) is contained in C, (E), but they are different in
general. We will use these observations for A@ N, BN C M ® N. B
Now we start the proof. We put B := Cygu(B ® N), B1 := Cygu(B ® N),

M = Cpou(M @ N), A= Cygu(A®N),and IT := H@’@, so that our assump-

tion is written as IT(+4) <4¢ B. Note that the unitization of B is contained in B;. Take
(e, f, 0, v) which witnesses IT(A) <y B. Let w; € +A be partial isometries such that
wiw; < e and ) ; wiw = z4(e), where z4(e) is the central support of e in 4. Put
d = ); II(w;)veg, v*II(w;/) and observe that

d € TH(A) N Ineay (M. Bi)lneyy. d =dglgd. and Eg,(d) < oo,

where ¢ is the modular conjugation for L2(.M). Note that §1gJ = J13J @ 1y ® 172(r)
as we have explained.

Claim. The element d is contained in

[A' N 14(M, E)JIBJIAL; ® Cly ® Clyog).
Proof. Observe that

M7H(d) € A NIATTT (M, B1)F188)1a,

and TT7'((M, B1)) = Cy= (M & N, B® N)) and VRw=( ®w)oEzgy =
V¥ ® w. Then using = ¥ o Eq 0 Eg on 14(M, B)14, we can apply Lemma 2.3 (to the
inclusion A C 14(M, B )y 14 with the operator valued weight E4 o E 7) to get

AN IAH_1(<M,£1>)1A =[A" N 14(M, E)IAL; ®Cly & Clp2gy.

Since I1 is the identity on (M ® N, B ® N), d is also contained in this set. Finally, by
multiplying by #1gf = J1pJ ® Iy ® 1;2(R), we get the conclusion of the claim.  m

By the claim, we can regard that d is in [A’ N 14(M, E)JIBJIA]J,. As mentioned
in Section 2, E 8, coincides with E BN X R (the natural crossed product extension of

E F@n)- hence the restriction of Eg ,on (M ® N, B® N) coincides with E Ggn - 1t then
follows that

®N "

00> Eg,(d) = Eggy(d) = (E5 ®idy)(d) = E(d).

Thus d satisfies the condition in Theorem 3.2(4) and we get (4,c¥) 5;‘\21 (B,0%). By
Lemma 3.6(1) and Theorem 3.9, this is equivalent to item (1). [

Proof of Theorem A. We first prove the equivalence of the first two conditions. Assume
that A <ps B. By Lemma 3.8, there is a projection g € A’ N 14M 14 and a faithful normal
conditional expectation E44:qMq — Aq such that (Aq, E44) <pm (B, Ep). Put A? :=
W*{A,q} = Aq ® Ag~*, where g := 14 — q. Observe that Agt C g Mq* is with
expectation, say E 4,1 . Then by definition, the condition (Aq, E44) <m (B, Ep) implies
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(A1, Eqq ® EAqJ_) <m (B, Ep). Since A C 14M 1, is with expectation, so is A C A9.
By Lemma 3.11, we have (A4, E4) <p (B, Ep) for some faithful normal conditional
expectation E4: 14M14 — A. By Theorem 3.9, (4, 0‘/’) =<pm (B, 0?) for any faithful
¥ € M which is preserved by E4. This finishes the proof of the first part of the theorem.

We next prove the equivalence of (1)—(3). The equivalence of items (1) and (2) is
proved in Theorem 3.9. By Lemma 3.12, item (3) is also equivalent. ]

4. Crossed products with groups in the class €

In this section we prove Theorem D. Throughout this section, we will fix an outer action
I' A B of a discrete group T on a o-finite diffuse factor B. We put M := B x g .

General facts on outer actions
We first recall several well known facts on outer actions and associated crossed products.
Lemma 4.1. Let ¢ be a faithful normal state on M which is preserved by Ep. Then one
can define a I'-action B on Cy,(B) by setting, forallg e ', b € B, t € R,

Be(b) = Be(b) and Bg(Af) =[D(g o fyg-1). Dl A7.
We have a canonical identification

(B xg I') Xgo R 2~ (B xg¢ R) X r,

which is the identity on B, LT", and LyR.

Proof. This follows by direct computations using Ad(X), where X is the flip map on
L?(B) ® {*(I') ® L?(R) for the second and third components. |

Recall that an inclusion of factors P C N is called irreducible if P’ N N = C.

Lemma 4.2. Let p € B be a projection, By C pBp an irreducible subfactor, q,r € By
projections, and o: qBoq — rBor a x-homomorphism such that 6 (qBogq) N rBr = Cr.
Let x € rMq be any element with Fourier decomposition x = _ ger Xghg. Assume that
xy =o(y)x forall y € gBoq. Then

® xghgy =0(V)XgAg and xgBe(y) = 0(¥)xg forally € qBog and g € T';

o xgxy; € Crand xgxg € CBg(q);

e if x*x =q, xx* =r, and (qBog) N gM q = Cgq, there is a unique g € T such that

X = Xghg.

Proof. For all y € gByq, we have
Z xghgy =xy =0(y)x = Z o(y)xghg.

gerl ger
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By comparing coefficients, one has x;Agy = 0(y)xgAg and xgz B (y) = o (y)x, for all
Y € qBog and g € T'. It follows that xgxz = xgAe(xgAg)* € 0(qBog) NrBr = Cr,
and Bo—1(xzxg) = (XgAg)*xgAg € (¢Bog)’ NgBq = Cq forall g € I'. Assume further

that x*x = ¢, xx* = r, and (gBog) NgMq = Cq. Fix g € T such that xz # 0. Then
Xghgy =0 (¥)xghe = 0(¥)xx*xgAe = xyx*xgAgy forall y € gBog,
hence x*xgAg € (qBog) N gM g = Cq. We conclude that x = xgA,. L]

Lemma 4.3. Let A % A be any outer action of a discrete group on a factor. Assume
that M = A xq A and A C B. Then there is a surjective homomorphism w: A — I such
that

e forany h € A there is a unique uy, € U(B) such that )uﬁ = Mhl,r;(h);

o B = A x4 ker(m).

In particular, a induces a cocycle action A /ker(w) ~ A Xg ker(;), and it is cocycle
conjugate to 8 via A x4 ker(wr) = B and 7w: A /ker(zw) >~ T.

Proof. Since A’ N M = C, by Lemma 4.2, any )L,f for h € A can be uniquely written as

)Lfl\ = uhkg for some g € I" and some uj, € U(B). By the uniqueness, if we put g = 7 (h),

then 7: A — T defines a homomorphism. Since 4 and )Lfl\ (h € A) generate M, it follows

that B and 7 (I") generate M as well. This implies that 7(A) = I and 7 is surjective.
Put Ay := ker(sr). By construction, A, = uy, for all 1 € A¢ and hence

By := A x4 Ao C B.

We have to show the opposite inclusion. Let Eg: M — B and Ep,: M — By be canonical
conditional expectations. Observe that Ep, o Ep = Ep,. Fix any faithful normal state
@ on By and extend it by ¢ o Ep,. Then Ep and Ep, extend to Jones projections ep
and eg, on L?(M, ¢). Let x = Y, XsAl € A xg A be any element with its Fourier
decomposition. Then

epAy(x) = Y enAo(xnAp) = D epAp(xpunrigy) = Y Ag(xpup)
heA heA helg

= D Ap(xadp).

hEAO

Since thg last element is ill A Xy Ao, we see that B C A X, A~0.

Put A := A/Ag and A := A x4 Ao, and fix any section s: A — A such that s(A) =e.
Forany g, h € A, we define /\Q = Aé\(g), Og 1= Ad(/\;\(g)) € Aut(/T), g 1= Ug(g), and
c(g,h) :=~)L§\(g)s£h)s(gh)_1 € LAy. Then it is easy to check that (&, ¢) defines a cocycle
action of A on 4, and that &, = Ad(ii5(g)) © Br(g) and 1 = Uiz (it})c(g, h)ilgp for
all g, h € A. Thus using A= Band 7: A ~ T, we find that (ﬁg)ge]\ gives a cocycle

conjugacy between AA@) fandT AP B. ]
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Actions of groups in the class €

We continue to use the outer action I mﬂ B on a o-finite diffuse factorand M = B x I'.
Note that if B is a II; factor, then § preserves the canonical trace, so M is also a II; factor.
The next proposition is a generalization of [27, Lemma 8.4].

Proposition 4.4. Let p € B be a projection and A C pMp be a subfactor with expectation

such that A’ N pMp = Cp and sNymp(A)” = pMp.

(1) If A <pr B, then there exist (e, f, 0, v) witnessing A <y B and a finite normal
subgroup K < T such that

fede) N fBf =Cf, wvv*=e, v*veblede) N f(BxK)YFf

Assume further that ' has no finite normal subgroups, and that either B is of type
Iy or both A and B are properly infinite. Then we can choose e = f = p and
ve UpMp).

(2) Assume that p = 1 and A has a decomposition M = A x A for some outer action of
a discrete group A on A. Assume that I" and A are ICC. If A <pr B and B <ps A,
then A and B are unitarily conjugate in M.

Proof. (1) Since B is a factor, using [15, Remark 4.5] we may assume that A <3y pBp.
We first show, using the assumption A’ N pMp = C p, that there is (e, f, 6, v) which
witnesses A <ps pBp such that O(eAe) C fBf is irreducible.

To see this, we fix any (e, f, 8, v) which witnesses A <jr pBp and we will modify
it. Since vv* € (ede)’ NeMe = Ce, one has vv* = e and moreover v*v is a minimal
projection in 6(ede)’ N fMf. Indeed, for any projection r < v*v in O(ede)’ N fMf,
vrv* € (ede)’ NeMe = Ce is again e, hence r = vv*. We may assume that the sup-
port projection of Eg(v*v), which is contained in 8(eAe)’ N fBf, coincides with f. Let
z be the central support projection of v*v in 8(eAe)’ N fM f. Then since v*v is min-
imal, (6(ede) N fMf)z is a type 1 factor. Since O8(eAe) C fBf is with expectation,
so is the inclusion f(ede) N fBf C 6(eAe) N fMf.In particular, (6(ede) N fBf)z
is an atomic von Neumann algebra. Since z commutes with 6(ede) N fBf, there is a
unique projection w € Z(6(ede) N fBf) such that (6(ede)’ N fBf)w > aw — az €
(6(eAe) N fBf)z is isomorphic. Thus there is a minimal projection ¢ in 68(ede)’ N
fBf. Since g < f, q is smaller than the support of Eg(v*v), hence vg # 0. Now
(e,q,0(-)q, vq) witnesses A <pr pBp (up to the polar decomposition of vg) and has
the property that 6(eAe)q C gBgq is an irreducible inclusion.

Thus we can start the proof by assuming 8(eAe) N fBf = C f.Put By := 0(eAe) C
fBf and note that B) N fBf = C f. Consider the Fourier decomposition z := v*v =
> ger Xghg € B xT'. Since z € By N fMf, by Lemma 4.2 (for the case 0 = id) we
have xgdo € By N fMf, xgx; = C f,and x;x, € CB,(f). Define a subgroup K < T’
and a subset I'y C I" by

K :={g €T | Ad(wg) o Bg¢|B, = idp, for some wg € B

with wgw; = f, w;wg = Bg ()}
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Fo:={g el | Ad(wg) o Bg(rg Borg) = qg Bogg for some wg € B, gg,rg € By
with wgw; = (g, w;wg = Bg(rg)}.

By definition, z is in B x K. We will prove that |K| < oo, I'g is a group, K is normal
in Iy, and 'y = I'. This will finish the proof of the first half of item (1).

We claim that K is a finite group. Fix (wg)gex Which appeared in the definition of K
such that w, = 1. For all g, h € K, define

By = Ad(wg) o By and  pigp := weBe(wp)wyy, € U(SBS)

and observe that (8%, u) gives a cocycle action of K on fBf, so that f(B xg K) f =
JBf xpw ) K. The condition ¥ |p, = idp, implies that ug, € C f forall g, h € K,
hence we can regard pt as a scalar 2-cocycle. In particular fBf »gw ) K contains a finite
von Neumann algebra (C f) x(gw ;) K. Since B, N fBf =C f and % |p, = idp,, using
Fourier decompositions it is easy to see that

B(/) N{fBf X(Bw 1) K] =(Cf) X(Bw 10) K.

The left hand side contains the minimal projection z, and hence so does the right hand
side. This implies that K is a finite group. (Indeed, if it is infinite, one has a sequence
of unitaries which converges weakly to 0, but this is impossible in a finite von Neumann
algebra with a minimal projection.)

We next claim that Iy is a group and K is normal in I'y. For this, take g € I'y and pick
any (wg, gg,7¢) as in the definition of I'g. Observe that if we replace g, by a projection
qg € By which satisfies qg = (g in By, then qg satisfies the same condition as g, (with
some appropriate Wg, 'g). The same holds for r,. Take another & € Iy and (wy, gp. 1)-
Then since By is a factor, up to replacing rg or g5 with a smaller and equivalent projection
in By, we may assume g = ¢, Then it is easy to see gh € ['g. We also have g~! € T,
because (Wg—1,gg—1,rg—1) := (ﬂ;l(w;), rg,{g) works. Using this family for g~?, for
h := gkg™! for any fixed k € K, the family (wy. qx.r;) can be taken so that g, = ry,
and Ad(wy,) o B, = id on g, Bogy,- Since f By f is a diffuse factor, we can apply the usual
patching method and obtain (wy,, g5, r3) such that g, = r, = f and Ad(wy) o By, = id
on By. This means & € K, hence K is normal in I'y.

We show I' = T'y. Observe that eAe is a diffuse factor and sN,(gxr)e(ede)” =
e(B x T')e. Since Ad(v*) is an isomorphism between ede C e(B x I')e and Byz C
z(B x IN)z, it follows that sN;(pur)z(Boz)” = z(B x T')z. Fix any partial isome-
try u € SN;(Bxr)z(Boz) with u*u = gz, uu™ = rz for q,r € By, and consider the
Fourier decomposition u = ) , . XgAg € B x I'. Since Ad(u) is an isomorphism from
qBoqz to rByrz, using Bpz >~ By we can define an isomorphism o*: gBoq — rBor by
a*(y)z = uyu™ forall y € gBoq. By Lemma 4.2, forall y € gBpg and g € T,

Xghgy = a"(y)xghg, Xxgxg € Cr, and xyxg € CBg(q).

So each xg € rBf,(q) is a scalar multiple of a partial isometry. We can write x, =
agwg for some ag € C, where wg is a partial isometry. Observe that if xg 7# 0, then
Ad(wgAg)(y) = a*(y)r e rBor forall y € gBogq, so g is contained in I'y. It follows that
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u €z(B xT)z. Now take any x € sN;(pxr)z (Boz) and consider its polar decomposition
x = v|x|. Then since |x| € Byz and since v is a partial isometry in SNz (gxr)z(Boz),
we find that x € z(B x I'g)z. Since sN;(gxr)z(Boz)” = z(B x T')z, we conclude that
z(BxT)z =z(B xTy)z. Since z € B x Ty and B x I'y is a diffuse factor, we indeed
have B xI' = B x T'y. This means I' = T'y.

We next assume that I has no finite normal subgroups. Then K must be trivial, so
v*v € B and we may assume f = v*v. There is a partial isometry v € pMp such that
vv*=ee€ A, v*v= f € pBp,and v*Av C fBf.If B is of type II; (so that M, A are II;
factors) or if both A and B are properly infinite, then (up to replacing e, f by smaller ones
if necessary) we can apply the patching method and obtaine = f = p andv € U(pMp).
This is the conclusion.

(2) Observe that B is a II; factor (hence so is M) if and only if A is. Hence using
item (1) of this proposition, we can find v, w € U(M) with vAv* C B and wBw* C A.
Put u := vw and observe that uBu* C B and (uBu*) N B C uBu*) N M =
u(B’ N M)u* = C. By Lemma 4.2, we can write u = xgA, for some g € I' and
Xg € U(B). In particular we have B = uBu™* = vwBw*v* C vAv* C B. We conclude
that vAv* = B. |

The next lemma explains how we use the properties of the class € for actions on type
III factors. This uses our Theorem A.

Lemma 4.5. Let p € M be a projection, and A C pMp be a subfactor with expecta-
tion E4. Assume that T is in the class €, A’ N\ pMp = C, A is amenable, and Npprp(A)”
has finite index in pMp. Then A <pr B.

Proof. Put P := Nypp(A)” and let N be the hyperfinite type III; factor and w a faithful
normal state such that Né) N N = C. Let E4, Ep be any faithful normal conditional
expectations for A, P respectively. Observe that the condition A’ N pMp C A implies
that normal expectations onto A and P are unique, hence E4 o Ep = E 4. Fix any faithful
states ¥, ¢ € M which are preserved by E4, Ep respectively. Then, by the uniqueness
of E4 and by Theorem A, A <ps B is equivalent to

Hw@am/x@w (Cv/®w (A ® N)) ﬁC[p@w(M@N) C(p@a,(B ® N).

There is a canonical inclusion Cyge(4 ® N) C Cygw(P ® N), which is regular
by [3, Lemma 4.1]. For notational simplicity, we omit Ilyge,yvee and write M :=
Coeo(M @ N), B :=Cyu(BRN), A:=Cygu(A®N),and P := Cyge(P ® N).
Observe that 4 is amenable and & C M has finite index.

By Lemma 4.1, there is an identification M = B Xz I'. Let r € LygowR be any
projection such that Tryg,(r) < co. Then since B is a type Il factor and since
E preserves the canonical trace on B, r Mr is realized as a cocycle crossed product
r8r XEr ) I' for some 2-cocycle u: I' x I' — rBr (because r ~ Eg(r) forallg eI,
see Section 2). Since M is a Il factor, and p is infinite while r is finite, there is
v € M such that vv* = r and pg := v*v € pAp. Put A” := vAV*. Observe that
AV is amenable and (AY) N rMr = Cr (use Lemma 2.3). Since #4 is a Iy, factor,
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we have poNpup(A) Po = Npgspo (Pobpo)”. In particular N 4, (4AY)” in r Mr has
finite index. Hence by the definition of the class €, we have AV <, 4, r Br. This implies
A <y B and hence A <ps B as we explained. [

Proof of Theorem D. By Lemma 4.5, we have A <37 B. Note that A is a type II; factor
if and only if B is. Hence we can apply Proposition 4.4 and find a unitary u € U(M)
such that uAu™ C B. Thus we may assume that A C B. We then apply Lemma 4.3 to
get the conclusion. Note that ker(;r) is amenable since A x ker(sr) is amenable and A is
a factor. ]

5. Rigidity of Bernoulli shift actions

In this section, we will study Bernoulli shift actions with type III base algebras. In partic-
ular we prove Theorem C and Proposition F.

Popa’s criterion for cocycle superrigidity

The next proposition is a variant of Popa’s theorem which was used to prove cocycle
superrigidity [36,38,39]. See also [52, Theorem 7.1].

Proposition 5.1. Let G be a locally compact second countable group, G1 < G a closed
normal subgroup, and (P, ¢) a von Neumann algebra with a faithful normal state. Let
G AP (P, ) be a state preserving continuous action. Let w: G — U(P) be a o-strongly
continuous map such that ag := Ad(wg) o Bg and v(g. h) := wgBg(wn)wy, forg.h€G
define a cocycle action of G. Assume that

v(g.h) =1=v(h,g)forallg € Gy and h € G (hence «|g, is a genuine action);

there is a faithful state y € Py which is preserved by o|g, ;
(Cp,alg,) ji}{“ (C1p, BlG,) for all projections p € P%;

o Blg, is weakly mixing.

Then there exist a separable Hilbert space H, a projection [ € B(H), a o-strongly con-
tinuous map u: G — U(fB(H) f), and a partial isometry w € P ® B(H) such that
w'w=f, ww'=1Qe;, and wug=(wg® lg)(Be Qidy)(w) forall geG,

where ey, is a minimal projection in B(H). In particular, (Ad(ug))gec and
(ugup u;h)g’heg define a cocycle action on fB(H) f, and « is conjugate to the cocycle
action (Bg @ Ad(ug))gec by w:

ag(wxw®) = B (wxw*) = w(By ® Ad(ug))(x)w*  forallx € P ® fB(H) Y.

Proof. Since most of the arguments are straightforward adaptations of [52, proof of The-
orem 7.1], we give only a sketch of the proof. Take (H, f, w, w) and (4g)ge, Which
witness (Cp, o|g,) <p (Clp, Blg,) (and H can be finite-dimensional). Observe that
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w*w € (P @ B(H))P®AWIG = C1p @ B(H) (because Bg, is weakly mixing), hence
up to replacing f by w*w, we may assume that w*w = f.

Thus the condition (Cp, «|g,) <p (Clp, B|G,) means that there exist a projec-
tion f € M, a continuous homomorphism u: G; — U(f M, f), and a partial isometry
w e (p®er1)(P ®M,)f suchthat wug = (wg ® 1,)(Be ®id,)(w) forall g € Gy.

Claim. There exist a separable Hilbert space H, a projection f € B(H), a partial isom-
etryw € P ® B(H), and a continuous homomorphism u: G1 — U(fB(H) f) such that

o wig = (g ® 1) (Bg ® ider)(w) forall g € Gu;
e w*w = f and ww* € pP"‘p@(Cel,l, where ey 1 is a fixed minimal projection;

e there exist finite rank projections (Py)xeN in B(H) such that Py — 1y as k — oo and
each Py commutes withug forall g € Gy.

Proof. Let & denote the set of all non-zero projections e € P (= P ® Cey ;1) such that
there exists (n, f, w, u) which witnesses (Cp, @|g,) <p (Clp, B|g,) with e = ww™*.
Then it is straightforward to check that & is closed under the following operations: B (e) €
Eforallh e Gandalle € ;e Vv f € Eforalle, f € &; and ey € & for all projections
eo € eP¥G1eande € 6.

Fix any countable dense subset X C G. Observe that sup,.y Br(e) € pP%p is real-
ized as a (countably) infinite direct sum of projections in &, that is, there is a family
(ni, fi, wi,u')ies such that Y ier Wiw] = sup,cx Br(e), where I is a countable set. By
defining H := @;c; C", [ 1= Dje; fis w = [wilier € (p ® e1,1)(B ®B(H)) f, and
u = P;c; u', we get the conclusion. [

Now we define ¥ as the set of all non-zero projections e € P* (= P* @ Cey,1) such
that there exists (H, f, w,u) which witnesses the conclusion of the claim above with e =
ww™. Now using the assumption (C p,a|g,) <p (Clp,B|g,) forall p € P* and applying
a maximality argument, there is a family (H;, f;, w;,u’);c; such that YierwiwS =1p
(= 1p ® e1,1), where I is a countable set. Define (H, f, w,u) as a direct sum of all
(Hi, fi, wi,u')ier (with w = [w;]ier € (1 ® e1,1)(B ® B(H))); then it satisfies all the
conditions in the claim above with ww* =1 ® e;,1. Hence (H, f, w, u) satisfies the
conclusion of this theorem but only for G.

We have to extend the conditions on G; to those on G, using the weak mixing of f|g, .
Puta)g =we ® 1y, ﬁgH = B¢ ®idH,a§ =, ®idy,and v (g,h) :=v(g,h) ® 1y
for all g, h € G. Extend the map u to one on G by

Ug 1= w*a)?ﬁ;’(w) forall g € G.

It is easy to compute that for any g, h € G,

*

zUg and ugﬁg(uh)zw*vH(g,h)wugh.

Ugy = f =u

In particular, u: G — U(P ® fB(H) f)isacocycle for BH with a 2-cocycle w* v (-, yw.
To finish the proof, we have only to show that u is a map into fB(H) f, so that /3? (up)
= uj and ugupuy, = w*vH (g, hyw € fB(H) f forallg,h € G.
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Fix g € G and k € N. Put H, := Py H and u’; := Pruy Py for all h € G, where
(Py)nen is a family of finite rank projections as in the claim (and we regard P =
lp ® Pg). Then since Py commutes with uj, for all & € Gy, putting 8} := Ad(up) o B,
we have

Bi(ul) = PiBhi(ug) P = ugus .y, (uj)* € ugB(Hy) forallh € G,

Observe that 8} is of the form 8, ® Ad(uy,) for all h € G;. Then combining the weak mix-
ing of B, with (By ® Ad(u§)) (k) e ukB(Hy) forall h € Gy, we find that u¥ € B(Hy).
Since k is arbitrary, we conclude that u, € B(H ) as required. |

Rigidity of Bernoulli shifts for cocycle actions

Let I" be a countable discrete group, By an amenable von Neumann algebra with separable
predual, gy a faithful normal state on By, and ' ~# Qr(Bo.¢o) =: (B, ¢) the Bernoulli
shift action. Put M := B xg I'. Here we recall the following fact.

Theorem 5.2. Let p € M be a projection and A C pMp a von Neumann subalgebra
with expectation E4. Fix a faithful & € My which is preserved by E4, and set P :=
A" pMy p. If Cy(A) Zc,m) Cp(LT), then P has an amenable direct summand.

Proof. This can be proved by applying arguments in [9, Theorem 4.1], which is based on
the arguments in [37,38,41] (together with the deformation given in [23]). Actually one
has to modify the spectral gap argument [41] as follows. Put B := Q) (Bo*LZ,po*T17)
and extend ¢ and 8 on B, so that there are canonical inclusions M C B x g =: M and
Co(M) C C, (1\7 ). Then we can prove the following weak containment:

ML*(Cy(M)) © L*(Co (M), iy < mL*(Cy(M)) ® L*(Co(M))c, (a1

(e.g. see [32, proof of Theorem 5.2]). Then using the spectral gap argument given in
[32, Lemma 4.1], we can follow [9, proof of Theorem 4.1]. [

Proof of Theorem C. Put M := B xg I' and regard M = A x4 A via the given isomor-
phism. We have A <3y B by Lemma 4.5, hence by Proposition 4.4, there is u € U(M)
such that uAu® C B. Then up to replacing the initial isomorphism by the one with
Ad(u), we may assume A C B. Then by Lemma 4.3, there is a surjective homomorphism
m: A — I such that A X, A9 = B, where Ay ::~ker(7t), and for any h € A, there is a
unique u, € U(B) such that /\fl\ = uh/\};(h). Put A := A %y Ag and A := A/Ay. Using
a fixed section s: A — A such that s(Ayp) is the unit, we will use the following notation:
S A T A A._ A
forall g, h € A, dg := Ad(A((,)) € Aut(A), c(g,hl.— As(g)s(h)s(gh)*l JAg 1= A

s()» nd
Ug = Ug(g). We have a cocycle action A ~@) A with the relations

Ay =ughliy. Ad(ug) o Bu(g) =g, c(g.h) =TgBg(ip)iis, forallg heA.
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For simplicity we identify Cy, (M) = C,(M). Then by Lemma 4.1, there is an inclusion
LyR C Cy(A %z A) = Cy(M) = Cyp(B) x5 T.

Observe that, since & is ¥ -preserving, (LyR) N C,(M) contains a copy of LA with

expectation, hence (LyR)’ N C, (M) has no amenable direct summand (because LA has
no such summand).

Claim. We have (Cp,oV) <p (Clp,0?) for all projections p € Bg.
Proof of Claim. Fix any projection p € B:}‘:. Since LA p has no amenable summand, by
applying Theorem 5.2 to Ly R p we find that Ly R p <c, ) Cp(LT'). By Theorem 3.2,
to prove this claim, we have only to show that Ly Rp <c,8) LeR.

Suppose for contradiction that LyRp Zc, () LoR. Take a net (u;); in U(LyR)

such that
Er,r(b*u;pa) — 0 foralla,b € C,(B).

Observe that for all 4 € A and u; € Ly R, since u; commutes with A}‘:\,
)Lg(h)uip(k;(h))* = uiAMu; pAN) up = uju; puy,.
It follows that for alla,b € C,(B) and g, h € K
E (DAggyti pary () = E (B Lyt POy 1By (@A 1)
Co(LD\OA (Ui PAA 1 () Co(D) DA Ui P\ (ny) IPr(m\) A p(ng)
= Ec,wr)(blujui pup) By (@A % gy
= ELw]R(buzuipuhﬂn(h)(a))l;l;(hg) — 0.
By [15, Theorem 4.3(5)], we get Ly R p Zc, ) Cp(LT), a contradiction. [ ]

Define G := T x R. Since 8 and ¢¥ commute, we can define a continuous action
G AP (B.g) by
ﬂfg ni=Bgo of =0l oB, forall(g,1)€G.

The condition B, = C then means that 8| is weakly mixing. In the same way, we can

define a continuous cocycle action A xR q‘w (A4, ) with the 2-cocycle ¢¥ (g, 1), (h,s))
:=c(g,h)forall (g,7),(h,s) € A xR.

Claim. Identify A =Tand A= B. Define a o-strongly continuous map w: G — U(B)
by
(g0 = [DY. Dgliof (ug) = 0] (ug)[DY. Dgle. g eT.1€R.

Then o gives a cocycle conjugacy between B® and @V : for all (g,1), (h,s) € G,

Ad(@(g.)) © Bl ) = &ZZ,Z) and 0. Bl, 1 (@hs) = ¢V (&,1), (h,5))O(gh,i+s)-
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Proof of Claim. Observe that for any (g,¢) € G, since A¥ and )Lg commute in Cy, (M),

MXY = uiAZ (Do, DY AY = uld@g((De. DY])AZAY

=228 = Do, DY A uiAY = [Do. Dy} ui)AY AL
Since /X;/’)Lg = )Lgk;/', using [De, Dy]f = [Dy, De]; we get

) = 0f W) [DY. Dyl = Eg([DY. Dglug = ugfe (DY Dylo).
Recall that we have the cocycle relations
c(g.h) = ugBg(un)uy, forallg heTl;
(DY, D@ly+s = [DY, Dol,0f ([DY, Dgls) forallt,s € R.
We then compute that for any (g, ¢), (h,s) € G,

w(g,t)ﬂz)g,t)(w(h,s)) = ugPg([DY. D¢lt)Bg 0 of (D, Dylsof (up))
=ugBg([DY, D‘/’]t+s0?+s(uh)) = ug Py (w(h,t+s))
= ugBg UnPr([DV. D@lits)) = c(g. MughBen([DV. Dolits)
= V(g 1), (h,$)O(gh+s):

and similarly Ad(wg 1)) © ﬂzag n= &K, . m

Now we put G; := R < G. Then since we already have (C p, 0’/’) =<p (C,o?) for all
projections p € B:}‘: = B we can apply Proposition 5.1. Thus there exist a separable
Hilbert space H, a projection f € B(H ), a o-strongly continuous map v:G =T’ xR —
U(fB(H)f), and a partial isometry w € B ® B(H) such that

* Wy, = (W ® 1) (Bg ®idy)(w) forall g € G;
o w*w = f and ww* = 1® ey,1, where e1,; € B(H) is a minimal projection;
o (Ad(vg))gec and (vg vhv;h)g,heg define a cocycle action on fB(H) f';
o & (wxw*) = w(B? ® Ad(vg))(x)w* forallx € B® fB(H)f.
As in the proof of Proposition 5.1, the first equation implies v;4s = v;vs forall ¢, 5 € R,
hence (v;)ser is a continuous homomorphism. By Stone’s theorem, there is a unique
infinitesimal generator & on fH, so that [Trg(h-), fTry f]; = h'' = v, forall ¢ € R,
where Trg is a fixed semifinite trace on B(H ) (with Trg (e1,1) = 1). We then compute that
forallt € R, with o := ¢ @ Tryg, ¥ := ¢ @ Triy and h = 13 ® h, using Lemma 2.2,
[Df e (h) £.DY™ o Adw)]; = [Df ™ (h) f. Df ™ f1i[Df @™ f. DY 0 Ad(w)];
= [Dfe" f.Df Y fL[Df Y f. DY o Ad(w)];
=v/([Dg. DY), ® 1i)(0) ® idm)(w*)w
=v/(0f ®idg)(w*)([Dg, DY]: ® 1m)w
=w*([DY, D¢l ® lu)([Dp, DY) ® lg)w=f.
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We find that o (h-) = ¥ o Ad(w). In particular, putting u := Trg (h-), we see that
Ad(w*):B=B®Ce;; > B® fB(H)f

satisfies ¥ = (¢ ® ) o Ad(w*). Since Ad(w™*) gives a conjugacy between 8¢ ® Ad(u)
and &V, by restriction, it gives a state preserving conjugacy between B ® Ad(u) and &.

Finally, we show that Ay is a finite group. Observe that Trgy (h) = ¥ (1) < o0, so h is
a compact operator on fH. We have

Ay g Ao = (A xg Ao)y = (B ng(H)f)w@w-

Since h is a compact operator, there exist finite rank projections r, on fH
which commute with & such that r, — f. Then since ¢% is weakly mixing,
one has r,(B ® fB(H)f)poun = C ® (raB(H)r,), for all n. In particular
(B® fB(H)f)po, is an atomic von Neumann algebra, so that Ay xg Ag is one as
well. This implies that Ay is a finite group (and Ay is atomic). |

Rigidity of Bernoulli shifts for genuine actions

We continue to use the Bernoulli shift action I' ~# Qr(Bo.wo) = (B, p) and M =
B xg I', assuming that By is amenable. We recall the following fact.

Theorem 5.3 ([32, Theorem A]). Let p € M be a projection, and A C pMp a finite von
Neumann subalgebra with expectation.

(1) If A £y LT, then A’ N pM p has an amenable direct summand.
(2) If A has relative property (T) in pMp, then A <pr LT.

Proof of Proposition F. By assumption, there are isomorphisms I' >~ A and A ~ B, and
there is a cocycle w: ' — U(B) such that @ = <.

Assume that I' has a normal subgroup I'} < I" with relative property (T). Let A} < A
be the image of I'y. For any projection g € LA} N B, we apply Theorem 5.3(2) to LA1¢
and find that LA1q <p LT.

Assume that I is a direct product I' = I'y x I', with I'; non-amenable. We let A; < A
be the images of I'; for i = 1, 2. For any projection ¢ € LA} N B, we apply Theorem
53(1)to LA1gq. We get LA1q <p LT

Thus in both cases, one has LA ;¢ <ps LT for any projection ¢ € LA} N B. Fix such
g € LA, N B; we claim that (Cq, a|a,) < (C, B|r,). Indeed, suppose for contradiction
that there is (g;);es in A1 such that

¢(Bg,; (b™)wy qa) — 0 o-strongly foralla,b € B.
Then for any a,b € B and s,s’ € T', we have
ErrGEb g  (5_)gary) = A Err ('3 o} qa)hy,
= 201 0(Bg; (B)0f g

The last term converges to 0, hence LA1g Zp LT, a contradiction.
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Finally, since A1 < A is normal, we can apply Proposition 5.1 to get a cocycle action
(Ad(ug))ger on afactor B. By construction, this cocycle action is a genuine action, which
finishes the proof. ]

6. Strong solidity of free product factors

For amalgamated free products von Neumann algebras and their modular theory, we refer
the reader to [46, 54]. Throughout this section we fix the following setting.

Let I be aset, (M;);er afamily of o-finite von Neumann algebras, B C M; a common
unital von Neumann subalgebra, and E;: M; — B faithful normal conditional expecta-
tions for all i € I. Denote by M := xp (M;, E;);ecs the amalgamated free product von
Neumann algebra, and by Ep: M — B the canonical conditional expectation. For any
subset ¥ C I, we denote M := *p (M;, E;)icy,and Eg: M — Mg is the canonical
conditional expectation.

To prove Theorem G, we first prove the following special case. This is a variant of
Ioana’s theorem [25, Theorem 1.6] (see also [21,51]), and the proof uses a theorem in [3].

Lemma 6.1. Let I = {1,2}. Assume that there is a semifinite trace Trg on B such that
Trp o E; are tracial for alli € I. Then the conclusion of Theorem G holds for any p € M
and A C pMp as in the statement, provided that Trg o Eg(p) < oo.

Proof. Recall that for any semifinite von Neumann algebra, relative injectivity and rel-
ative semidiscreteness are the same condition (see [29, Theorem A.6]). To prove this
lemma, we follow the argument in the paragraph just before [21, Theorem A.4]. In this
argument, we can apply [3, Theorem 3.11] instead of [43, Theorem 1.6]. Then all other
proofs work if we replace the normalizer algebra with the stable normalizer algebra. Thus
the conclusion of [21, Theorem A.4] holds for the stable normalizer von Neumann algebra
and the lemma is proven. ]

Proof of Theorem G. Suppose that A Zpy B and sNpprp(A)” Ay M; fori = 1,2. We
will prove that P := sN,pp,(A)” is injective relative to B in M.

Let E4 and Ep be faithful normal conditional expectations for A and P respectively,
N the hyperfinite type III; factor, and w a faithful normal state such that N, N N = C.
Observe that A’ N pMp C A implies that E4 and Ep are unique normal expectations,
hence E4 o Ep = E4. From this uniqueness and Theorem A, there exist ¥ preserved by
E4, Ep, and ¢ preserved by Ep, Epy, fori = 1,2, such that

Nyg0,v80(Cyen(d ® N)) Z¢, o, maN) Covo(B ® N),
Myg0,v80(Cyen(P ® N)) Z¢, o, maN) Covo(Mi ® N)  fori =1,2.

Observe that since A ® N is properly infinite, by [12, Lemma 2.4] we have



Unitary conjugacy for type III subfactors and W*-superrigidity 1717

In particular the inclusion A ® N C P ® N is regular, and hence by [3, Lemma 4.1] the
inclusion Cygw(4A ® N) C Cyge(P ® N) is regular as well. For notational simplicity,
we omit Mg,y @w and write M := Cyguw(M @ N), M; := Cogu(M; ® N) fori = 1,2,
B :=Cpeu(B®N),and A := Cygw(A ® N).Let &;: M; — B be the faithful normal
conditional expectation such that &; | Mgy = Ei ®idy and €|Lr, = id R, and note
that M has an amalgamated free product structure,

M = (M],Sl) * @ (Mz,gz).

In this setting, our assumptions are translated to A Ay B, Npup(A)" Ay M; for
all i = 1,2, and A is injective relative to B in M (use [29, Corollary 3.6 and The-
orem 3.2]). Fix any projection r € LygeoR such that Tryge(r) < 0o, and observe
that rAr Zy B and rN,up(A)'r Ay M; for all i = 1,2. Using the inclusion
rNp s p(A)'r C s Nprppr(rAr)” (e.g. [12, Proposition 2.10]), by applying Lemma 6.1
to rer C rpMrp, we find that r Ny, (4)"r is injective relative to B. Since r is arbi-
trary, by [16, Lemma 3.3(v)] we conclude that N, , ()" is injective relative to B in M.
Since Npup(A)” contains Cyge(P ® N) with expectation, by [29, Theorem 3.2] we
know that P ® N is injective relative to B ® N in M ® N. Finally, it is easy to see that
P is injective relative to B in M. This is the conclusion. ]

Proof of Corollary H. If M is stably strongly solid, then since all M;’s are von Neumann
subalgebras with expectation, all M;’s are stably strongly solid. We have to show the
converse.

Let p € M be a projection and A C pMp a diffuse amenable von Neumann subal-
gebra with expectation. We have to show that P := sN,7,(A4)” is amenable. Since pMp
is solid by [21, Theorem 6.1], A’ N pMp is amenable. Then as in [3, proof of Main The-
orem], up to replacing A v (4’ N pMp) by A, we may assume that A’ N pMp C A.
Let z € P be the unique projection such that P(p — z) is amenable and Pz has no
amenable direct summand. We will deduce a contradiction by assuming that z # 0. In
this case, using Pz C sN;p-(Az)”, up to replacing z by p we may assume that P has
no amenable direct summand. Define M := M Q@ B({?), M := M; @ B({?), A® :=
AQ®B(£?), and E{° := E; ® idg2), and observe that M = xp 2y (M°, E{®);eq and
SNppmoo p(A%)" = Npproo p(A®)” (since A is properly infinite). Since A is diffuse,
we have A® Z£jpro0 B(£2).

Suppose first that / = {1, 2}. We can apply Theorem G to A*° C pM*°p, and find
(i) NMpproo p(A™®)" Zpro0 M for some i € {1,2} or (iii) Nppro0 ,(A°°)” is amenable. If
(iii) holds, then since P ® B(£?) C Npproo ,(A™®)" is with expectation, we infer that P is
amenable, a contradiction. Hence condition (ii) holds. Fix i such that N,pre0 ,(A°)”
<moo MP®, and take (H, f, m, w) witnessing this condition. Observe that w(A*°) C
JS(M>® ® M,) f is a diffuse amenable von Neumann subalgebra with expectation and
that 7 (P ® B(£?)) C :/V-f(M[_OO®Mn)f(7T(AOO))N is with expectation. Since M; is assumed
to be stably strongly solid, M ® M, is strongly solid by [3, Corollary 5.2]. Thus
(P ® B(£?)) is amenable. Since 7 is a normal *-homomorphism, P has an amenable
direct summand, a contradiction. We have thus proved this theorem in the case / = {1,2}.
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Now we prove the general case. Let I be a general set and we put Mg :=
*jeg (M;, ¢;) for any subset ¥ C I. We fix any finite subset ¥ C I and observe
that Mg is stably strongly solid by the result in the last paragraph. We apply the
same argument as in the case I = {1,2} to A C pMp using the decomposition M =
Mg * Mgc. Then since M is stably strongly solid, the only possible condition is that
Npmoo p(A®)" <poo M J%OC By assuming that this condition holds for all finite subsets
¥ c I, we will deduce a contradiction.

Since P ® B(£?) C Npypmoop(A%)”, using [15, Lemma 4.8] we find that indeed
PR B(?) <poo M ;% for all finite subsets  C I. Then as in the proof of Theorem G,
by applying Theorem A (and using N ~ N ® B(£?)) one has $ < Mgc for all finite
subsets ¥ C I, where we have used similar notations to ones in the proof of Theorem G,
suchas P := Cygw(P ® N), Mgc := Cypguw(Mgc ® N) for appropriate Ep, Y, ¢.

Fix any projection r € LygeR such that Tryg,(r) < oco. Fix any projection
zeP NpMp = (P N pMp)y = Z(P) (e.g. by Lemma 2.3). We will prove that
rPrz <y Mgc for all finite subsets & C I. Then [21, Proposition 4.2] will imply the
amenability of r Pr and hence the one of &, a contradiction. To prove this condition, fix
F, r and z. Observe that Pz C sN;pr,(Az)”. Then since Pz has no amenable direct
summand, we can apply the same argument to Az C Pz (as we applied to A C P), and
get Pz <y Mgc. Since the central support of rz in Pz is z, by [15, Remark 4.2(3)] we
get rPrz <y Mgc. This is the desired condition. ]
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