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Abstract. We put forward a uniform narrative that weaves together several variants of Hrushovski–
Kazhdan style integral, and describe how it can facilitate the understanding of the Denef–Loeser
motivic Milnor fiber and closely related objects. Our study focuses on the so-called “nonar-
chimedean Milnor fiber” that was introduced by Hrushovski and Loeser, and our thesis is that it
is a richer embodiment of the underlying philosophy of the Milnor construction. The said narrative
is first developed in the more natural complex environment, and is then extended to the real one via
descent. In the process of doing so, we are able to provide more illuminating new proofs, free of
resolution of singularities, of a few pivotal results in the literature, both complex and real. To begin
with, the real motivic zeta function is shown to be rational, which yields the real motivic Milnor
fiber; this is an analogue of the Hrushovski–Loeser construction. Then, applying T -convex integra-
tion after descent, matching the Euler characteristics of the topological Milnor fiber and the motivic
Milnor fiber becomes a matter of simple computation, which is not only free of resolution of singu-
larities as in the Hrushovski–Loeser proof, but is also free of other sophisticated algebro-geometric
machineries. Finally, we also establish, in a much more intuitive manner, a new Thom–Sebastiani
formula, which can be specialized to the one given by Guibert–Loeser–Merle.
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1. Introduction

Recent years have seen significant development in applying Hrushovski–Kazhdan’s inte-
gration theory to the study of Denef–Loeser’s motivic Milnor fiber and related topics.
The main goal of this paper is to articulate a uniform narrative on such interactions, and
thereby not only recover several fundamental results regarding motivic Milnor fiber but
also subjugate them to the same principles afforded by the new perspective, and hopefully
open up new fronts of inquiry in the process. This narrative is summarized in the diagram
(1.3) below.

More concretely, we shall reconstruct motivic Milnor fibers as motivic integrals, estab-
lish a general type of Thom–Sebastiani formula, and retrieve invariants of the correspond-
ing topological Milnor fibers, all without using resolution of singularities. In fact, there are
several variants of the Hrushovski–Kazhdan style integration at play here and their syn-
ergy is the driving force of our telling. Among these variants, the central one is of course
the original construction as developed in [24]. It works for any algebraically closed valued
fields of equal characteristic 0 and is flexible enough to allow arbitrary choice of parame-
ter spaces that satisfy certain mild conditions. Varying the parameter space enables one to
study different categories of definable sets that are equipped with suitable Galois actions,
which is highly desirable in the applications we are interested in (a list of the various pairs
of ambient and parameter spaces is provided at the end of this introduction for the reader’s
convenience). Such a perspective is first put forward in [25] for the purpose of finding a
resolution-free construction of the complex motivic Milnor fiber, among other things (see
also [27, 31] for further developments).

To begin with, by an (algebraic) variety over a field k, we mean a reduced separated
k-scheme of finite type. We denote by Vark the category of varieties over k.

The Grothendieck semiring KC C of a category C is the free semiring generated by
the isomorphism classes of C , subject to the usual scissor relation ŒA X B�C ŒB� D ŒA�
when B is a subobject of A, where ŒA�, ŒB� denote the isomorphism classes and “X”
is a certain binary operation, usually just set subtraction; additional relations may be
imposed, to be determined in context. Sometimes C is also equipped with a binary oper-
ation – for example, cartesian product of sets or (reduced) fiber product of varieties – that
induces multiplication in KC C , in which case KC C becomes a commutative semiring.
The formal groupification KC of KC C is then a commutative ring. If a group G acts on
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the objects of C and the morphisms of C are G-equivariant, that is, they commute with
G-actions, then the corresponding G-equivariant Grothendieck ring is denoted by KGC .
IfG D limnGn is profinite then we shall always impose the condition that aG-action fac-
tors through some Gn-action. The archetypal example is the Grothendieck ring K O� VarC

of varieties over C with good O�-actions (with an additional condition that identifies linear
actions on affine spaces with the trivial one), where O� is the procyclic group of roots of
unity.

In this introduction, for simplicity, we shall just consider a nonconstant polynomial
function f W .Cd ; 0/! .C; 0/ such that 0 is a singular point, that is, rf .0/ D 0. For
0 < �� ı � 1, the topological type (or even the diffeomorphism type) of the set Fa D
NB.0;ı/\ f �1.a/, where NB.0;ı/ is the closed ball of radius ı centered at 0, is independent

of the choice of �, ı, and a2 .0;��. This topological type, referred to as the (closed) Milnor
fiber of f , is denoted by Ff . The open Milnor fiber, where the open ball B.0; ı/ is used,
is also of interest, but more so in the real environment than in the complex one. We will
come back to this later.

Let L be the space of formal arcs on Cd at 0. So each element in L is of the form
.t/ D .1.t/; : : : ; d .t//, where i .t/ is a complex formal power series with i .0/ D 0.
Let Lm be the space of such arcs modulo tmC1 (also referred to as “truncated arcs”).
Consider the subset of Lm:

Xf;m D ¹.t/ 2 Lm j f ..t// D t
m mod tmC1º:

It may be viewed as the set of closed points of an algebraic variety over C and carries a
natural �m-action. The motivic zeta function attached to f is then the generating series
whose coefficients are in effect the “ O�-equivariant motivic volumes” of the sets of trun-
cated arcs above:

Zf .T / WD
X
m�1

ŒXf;m�ŒA�
�ndT n 2 K O� VarCŒŒA�

�1�JT K: (1.1)

Here and below, A denotes the affine line in question.
It is shown in [10, 11] that Zf .T / is rational and the motivic Milnor fiber Sf WD

� limT!1 Zf .T / is then extracted from this rational expression via a formal process
of sending the variable T to infinity (this process is also summarized in [25, §8.4]). Of
course, to justify calling Sf a “Milnor so-and-so” one needs to show, at the very least, that
invariants of the topological Milnor fiber Ff can be recovered from it. This is indeed the
case for, say, the Euler characteristic and the Hodge characteristic.

Originally, both the proof that Zf .T / is rational and the proof that the Euler (or
Hodge) characteristics coincide rely on resolution of singularities. More recently, in [25],
these results are established by way of a more conceptual construction, namely the
Hrushovski–Kazhdan integration. To briefly outline the methodology, we work in the
field QC WD

S
m2ZC C..t1=m// of complex Puiseux series. This is the algebraic closure

of the field C..t// of complex Laurent series, where a typical element takes the form
x D

P
n2Z ant

n=m for some m 2 ZC such that, for some n0 2 Z, an D 0 for all n < n0.
We think of k WD C as a subfield of QC via the embedding a 7! at0. There is an obvious
valuation map val W QC� ! Q such that the valuation ring O WD CJt1K consists of those



G. Fichou, Y. Yin 1620

series with nonnegative exponents and the maximal ideal M consists of those series with
positive exponents. Its residue field k admits a section onto k and hence is isomorphic
to C. It is well-known that . QC;O/ is an algebraically closed valued field.

For a series x D
P
n2Z ant

n=m 2 QC with val.x/ D p=m, let rv.x/ D aptp=m, which
is called the leading term of x. Then the motivic zeta function attached to f may be
expressed as

Zf .T / D
X
n�1

Hm.ŒXf �/T
n; (1.2)

where the coefficients Hm.ŒXf �/ are certain Hrushovski–Kazhdan integrals of definable
sets that take values in K O� VarCŒŒA��1�, and the so-called nonarchimedean Milnor fiber
of f ,

Xf D ¹x 2Md
j rv.f .x// D rv.t/º;

is a definable set over the parameter space (the “ground field”) S D C..t//. Formulated
in this way, the rationality of Zf .T / essentially follows from certain computation rules
of (convergent) geometric series. That the Euler characteristics of Sf and Ff coincide
follows from the fact that we can express both the Euler characteristic of each coefficient
of Zf .T / and the Euler characteristic of Ff in terms of traces of the monodromy action
on the cohomology groups of Ff , where the first expression relies on the resolution-free
proofs of the A’Campo–Denef–Loeser formula (this is the main point of [25]) and quasi-
unipotence of local monodromy (see [25, Remark 8.5.5]).

It is this kind of more conceptual viewpoint – no arbitrary choice of a resolution for
computational purposes – we aim to emulate and develop further in this paper. Our dis-
cussion will lean toward real geometry, because that is where some of our new results are
more pronounced. Here “real geometry” is broadly construed and may mean the study of
varieties over R or, more significantly, real varieties in the sense of [4] (real points of vari-
eties over R), or even semialgebraic (more generally, o-minimal) geometry. Accordingly,
there is the issue of choosing or formulating an appropriate variant of the Hrushovski–
Kazhdan integration that reflects the choices of both the kind of motivic Milnor fiber one
wants to construct and the category in which such a construction is carried out. The results
are described in detail below.

K VF� K RVŒ��=.P � 1/
R

// K RVŒ��=.P � 1/ ŠK RES

K�VF˘Œ�� K�RVdbŒ��=.P�/

R ˘
//K�VF˘Œ��

K VF�
��

K�RVdbŒ��=.P�/ ŠK RESE˘ //K�RVdbŒ��=.P�/

K RVŒ��=.P � 1/
��

ŠK RES

ŠK RES

K VF QR K RV QRŒ��=.P � 1/K RV QRŒ��=.P � 1/ ŠK RES QR

K VF�

K VF QR

�=F QR
��

K RVŒ��=.P � 1/

K RV QRŒ��=.P � 1/

�=R QR
��

ŠK RES

ŠK RES QR

K TVF� K TRVŒ��=.P � 1/R T // K TRVŒ��=.P � 1/ K TRES

K VF QR K RV QRŒ��=.P � 1/
R
QR

//K VF QR

K TVF�
��

K RV QRŒ��=.P � 1/ ŠK RES QRK RV QRŒ��=.P � 1/

K TRVŒ��=.P � 1/
��

ŠK RES QR

K TRES
��

K RVŒ��=.P � 1/ ŠK RES
Eb //K RVŒ��=.P � 1/ ŠK RES
Eg

//

K RV QRŒ��=.P � 1/ ŠK RES QR
E
b; QR

//K RV QRŒ��=.P � 1/ ŠK RES QR
E
g; QR

//

K TRVŒ��=.P � 1/ K TRES
ET
b //K TRVŒ��=.P � 1/ K TRES

ETg

//

ŠK RES K Oı VarR‚ //

ŠK RES

ŠK RES

id
��

ŠK RES K Oı VarR
‚ // K Oı VarR

K Oı VarR

id
��

ŠK RES QR K�2RVar‚ QR
//

ŠK RES

ŠK RES QR

�=R QR
��

ŠK RES K Oı VarRK Oı VarR

K�2RVar

„

��

K TRES Z
�

//

ŠK RES QR

K TRES
��

ŠK RES QR K�2RVarK�2RVar

Z

�BM

��

(1.3)
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Suppose that the nonconstant polynomial function f is defined over R.
To begin with, we may still work in the framework of [25], that is, the original

Hrushovski–Kazhdan integration theory as applied to the categories of definable sets in
the LRV-structure QC, which is an ACVF-model. For the formal definitions of the first-
order language LRV and the LRV-theory ACVF of algebraically closed valued field of
equal characteristic 0, we refer the reader to [33, §2]. The two sorts VF, RV of LRV
are interpreted as QC, QC�=.1CM/ (or, equivalently, the group of leading terms) and the
cross-sort function rv W VF� ! RV as the quotient homomorphism (or the leading term
map described above). The homomorphism from RV onto the value group � D Q, also
referred to as the �-sort, with the kernel k�, is denoted by vrv. All this is encapsulated in
the commutative diagram

k� RV� � //

O XM

k�

quotient
����

O XM VF�� � // VF�

RV

rv
����

RV �
vrv // //

VF�

�

val

$$ $$

(1.4)

where the bottom sequence is exact. There indeed exists a natural isomorphism RV!
Q˚C� given by aqtq 7! .q; aq/, though it is not definable.

Since we intend to study real geometry, the parameter space for definable sets should
not be C..t// as in [25] but rather R..t//, and the Galois group Gal. QC =R..t/// is then iden-
tified with the profinite group Oı WD O� Ì Gal. QC = QR/, where QR is the field of real Puiseux
series, that is, the real closure of R..t//.

The category VF� consists of the definable subsets of VFn, n � 0, as objects (alterna-
tively, the definable subsets of varieties over R..t//) and the definable bijections between
them as morphisms. The category RVŒk� essentially consists of the finite covers of defin-
able subsets of RVk as objects and the definable bijections between them as morphisms.
The category RVŒ�� is the coproduct of RVŒk�, k � 0, and hence is equipped with a
gradation by ambient dimensions. One of the main results of [24] is the canonical iso-
morphism

R
in (1.3) between the Grothendieck rings, where P stands for the element

Œrv.1 CM/� � Œrv.M X0/� in K RVŒ1� (so the principal ideal .P � 1/ is not homoge-
neous).

The structure of K RVŒ�� can be significantly elucidated. To wit, it is isomorphic to
a tensor product of two other Grothendieck rings K RESŒ�� and K�Œ��, where RESŒ�� is
the category of twisted constructible sets in the residue field k and �Œ�� is the category of
definable sets in the value group � (as an o-minimal group); both categories are graded by
ambient dimensions. The objects of RESŒ�� are twisted because the short exact sequence
at the bottom of (1.4) does not admit a natural splitting, and K�Œ�� is not the Grothendieck
ring of o-minimal groups because not all definable bijections are admitted as morphisms.
Anyway, we have two retractions from K RVŒ�� onto a quotient ŠK RES of K RES (the
gradation is forgotten), reflecting the fact that there are two Euler characteristics in the
�-sort; these are labeled Eb , Eg in (1.3). Here Eg really takes value in ŠK RESŒŒA��1�;
indeed, all the corresponding rings downstream thence should be localized at ŒA� (we take
ŒA� D �1 for Z), but this is not shown for brevity.
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The isomorphism ‚ is constructed as in [25, §4.3].
The motivic zeta function Zf .T / now resides in K Oı VarRŒŒA��1�JT K. However, the

coefficients of Zf .T / require a kind of crude volume forms and the integral
R

(or other
variants in [24]) is not adequate for the task. Significant modifications are in order. This
work has been carried out in [20] in order to correct a technical oversight in [25], resulting
in the canonical isomorphism

R ˘ in (1.3). The category �VF˘Œ�� consists of the proper
invariant objects of VF� and the category �RVdbŒ�� the doubly bounded objects of RVŒ��,
all equipped with �-volume forms (see [20, Definitions 6.34, 4.9]). The nonarchimedean
Milnor fiber Xf of f is an object of �VF˘Œ�� (with the trivial volume form). Note that
�VF˘Œ�� is also graded since, as in classical measure theory, gradation by ambient dimen-
sions is a necessity in the presence of volume forms (a curve has volume zero if considered
as a subset of a surface). Also, the ideal .P�/ is homogeneous but is no longer princi-
pal. We may again express K�RVdbŒ�� as a tensor product of two other Grothendieck rings
K�RESŒ�� and K��dbŒ��. Since the objects of��dbŒ�� are doubly bounded, the two Euler
characteristics coincide and consequently there is only one retraction onto ŠK RES, which
is labeled E˘ in (1.3).

The henselian field C..t1=m//, m 2 ZC, is considered as an LRV-substructure of QC
and hence its value group �.C..t1=m/// is identified with m�1Z. Corresponding to each
C..t1=m// there is a homomorphism hm from a subring K\�RVdbŒ�� of K�RVdbŒ�� into
K Oı VarRŒŒA��1� that vanishes on .P�/. The integral

R ˘
ŒXf � indeed lands in K\�RVdbŒ��

and the coefficients Hm.ŒXf �/ in (1.2) are given by hm.
R ˘
ŒXf �/. Then Sf , that is,

� limT!1Zf .T /, is equal to�
‚ ı E˘ ı

Z ˘�
.ŒXf �/ D

�
‚ ı Eb ı

Z �
.ŒXf �/ 2 K Oı VarRŒŒA�

�1�:

Of course the element .‚ ı Eb ı
R
/.ŒXf �/ may be attached to f directly, but to establish

its significance, we need to compare it with the zeta function construction. It is this reason
that forces us to work with an integral whose target only involves doubly bounded sets
in RV, namely

R ˘, instead of
R

, so as to facilitate the computation of the coefficients
of Zf .T /.

Without the top row, (1.3) commutes with the dotted arrows too. The element
.‚ ı Eg ı

R
/.ŒXf �/ may be attached to f directly as well, but then its geometric sig-

nificance is unclear, except in the bottom row. We will say more about this below.
Let RVar be the category of real varieties in the sense of [4]. Taking real points and

forgetting the Oı-actions, we can specialize Hm.ŒXf �/ to KRVar and thereby obtain the
real motivic Milnor fiber of f in KRVarŒŒA��1�. However, we are more interested in a
subtler construction that is indigenous to the real algebraic environment.

Since f is assumed to be defined over R, it may be realized as a real function
.Rd ; 0/ ! .R; 0/. The open and closed Milnor fibers are constructed as before, but
denoted by FC

f
, NFC
f

since, in the absence of monodromy, replacing .0; �� with Œ��; 0/
will, in general, result in different topological types F �

f
, NF �
f

. So the qualifiers “positive”
and “negative” should be tagged on in the terminology if we are to look at the whole
picture. The difference between FC

f
and NFC

f
is more significant in real geometry.
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The sets of real truncated arcs are denoted by Lm.R/. Replacing Lm with Lm.R/
in Xf;m, we get a real variety X1

f;m
. The complexification X1

f;m
˝ C of X1

f;m
is a vari-

ety over C, which is isomorphic to Xf;m, and carries a natural ım-action, where ım D
�m Ì Gal.C=R/. Consequently, X1

f;m
inherits a natural �2-action from X1

f;m
˝ C. This

is indeed how the homomorphism „ in (1.3) is constructed.
As a subfield, QR inherits from QC a valuation map, a valuation ring, etc. The pair

. QR;O. QR// forms a henselian valued field. There is a general procedure to specialize the
integral

R
to sets in any henselian subfield of QC, in particular, for those in QR over R..t//.

The corresponding homomorphisms between the Grothendieck rings are marked in the
third row of arrows in (1.3).

Applying „ termwise to Zf .T / brings about a (positive) motivic zeta function
Z1
f
.T /, which belongs to K�2RVarŒŒA��1�JT K; there is of course a negative one too.

The rationality of Z1
f
.T / and hence the existence of the real motivic Milnor fiber S1

f
in

K�2RVarŒŒA��1� follows. Let X1
f

be the QR-trace of Xf . The image of ŒXf � in K VF QR is
ŒX1
f
� and hence S1

f
may indeed be computed purely in the real algebraic environment as

.‚ QR ı E
b; QR ı

R
QR/.ŒX

1
f
�/.

The next step is to justify calling S1
f

a Milnor fiber by recovering invariants of NFC
f

from S1
f

. Actually the only known additive invariant of NFC
f

is the topological (or semi-
algebraic) Euler characteristic �. NFC

f
/. It is shown in [6, Theorem 4.4] that �. NFC

f
/ does

agree with �BM .S1
f
/, where �BM is the Borel–Moore Euler characteristic, also labeled

as such in (1.3); note that the real motivic Milnor fiber in [6] is the forgetful image of S1
f

in KRVarŒŒA��1�. Their method relies on a real analogue of the A’Campo–Denef–Loeser
formula, which needs resolution of singularities. Unfortunately, upon the absence of mon-
odromy in the real environment, we cannot follow the method of [25] outlined above to
get a resolution-free proof, at least not without further elucidating the effect of the mon-
odromy action on the complexification of the real Milnor fibers as suggested by [29].

Going along a different route, we use the theory of motivic integration for T -convex
valued fields as developed in [34]. This theory is rich in expressive power and hence
can handle all the definable objects in the algebraic environment. On the other hand, its
expressive power is also its limitation in yielding algebro-geometric information since, in
the corresponding categories of definable sets, there are much more morphisms that can
cause loss of algebro-geometric data when passing to the Grothencieck rings. Neverthe-
less, it should retain much of the numerical information.

We work in QR, which is now viewed as a real closed field equipped with both a total
ordering and a valuation (or more generally a polynomially bounded T -convex valued
field). This structure is expressed in a first-order language LTRV, which still has two sorts
VF and RV. The categories TVF�, TRVŒ��, TRESŒ��, etc., are all defined similarly as
before. Again, there are the canonical isomorphism

R T in (1.3) between the Grothendieck
rings (this is the so-called generalized Euler characteristic of definable sets in QR), the
tensor expression K TRESŒ��˝K T�Œ�� of K TRVŒ��, and the two retractions ET

b
, ETg in

(1.3). The definable sets in the residue field are precisely the semialgebraic sets and hence
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K TRES is canonically isomorphic to Z; this is labeled � in (1.3) since it is indeed the
semialgebraic Euler characteristic.

Applying �BM termwise toZ1
f
.T /, we obtain a power series in ZJT K, which is under-

stood as a topological zeta function attached to f . The definable set X1
f

may be approx-
imated by a sequence of semialgebraic sets NFr , r 2 RC, whose semialgebraic homology
eventually stabilizes. The Euler characteristic of this stabilized semialgebraic homology
is equal to, on the one hand, �. NFC

f
/ and, on the other hand, .� ı ET

b
ı
R T
/.ŒX1

f
�/ and

hence �BM .S1
f
/.

The same argument shows that �.FC
f
/ D .� ı ETg ı

R T
/.ŒX1

f
�/, where NFC

f
, ET

b
are

replaced by FC
f

, ETg . As a corollary, we get

�.Œ NFC
f
�/ D .�1/dC1�.ŒFC

f
�/:

This comes from an equality at the motivic level (the second and third rows in (1.3)),
and may be construed as a specialization of Bittner’s computation of the dual of motivic
Milnor fiber in [3].

This approach also works in the complex setting, considering QC as QR2 and hence Xf
as an object of TVF�. It shows in particular that �.Ff / is equal to the Euler characteristic
of Sf , as in [25, Remark 8.5.5], but without using even quasi-unipotence of local mon-
odromy. Note that, over C, the Euler characteristics of the open and closed Milnor fibers
coincide, so if Sf encodes information on both of them, one cannot see it at this level.

We can extend ‚ ı Eb ı
R

further by composing the Hodge–Deligne polynomial
map. According to [32, Remark 3.24], this actually gives the Hodge–Deligne polyno-
mial of the limit mixed Hodge structure associated with a variety over C..t//. Extending
‚ QR ı E

b; QR ı
R
QR by composing the virtual Poincaré polynomial map, we get a similar

homomorphism into ZŒu�. It would be interesting to investigate if it too encodes informa-
tion on limit structures. But of course we are ahead of ourselves here because such limit
structures are not yet available in the real setting.

Finally, in showcasing the potential of the framework underlying (1.3), we describe
another main result, namely a new (local) Thom–Sebastiani formula in mixed variables,
extending that in [22] (the results in [21, 23] are for separate variables and hence overlap
to a much lesser extent with the case we establish here). A precursor of our method has
already been used in [27] to recover the Thom–Sebastiani formula of [9, 28]. This part of
the paper is somewhat independent of the previous discussion that concentrates on real
geometry; on the other hand, since here we completely abandon the zeta function point of
view, one does need to be convinced, at the outset, of the significance of the construction
.‚ ı Eb ı

R
/.ŒXf �/.

We still work in QC, but change the parameter space to k [ � Š C [Q. Unlike in the
previous situations, the (model-theoretic) automorphism group Aut. QC =C [Q/ is much
larger than the automorphism group Aut.RV =k� [Q/. It is this latter group, henceforth
abbreviated as O� , that we need. This group is isomorphic to limn C�n , where each C�n is
just a copy of C� and the transition morphisms are the same as in O� D limn �n. More
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concretely, the elements in O� may be identified as sequences Oa D .an/n of nth roots of a,
a 2C�, satisfying an

kn
D ak . Such an element acts on QC by the equation Oa � t1=nD ant1=n.

The Thom–Sebastiani formalism is typically concerned with expressing the Milnor
fiber of a compound function h.f1; : : : ; fl / in terms of the Milnor fibers of the component
functions f1; : : : ; fl . The classical results and most of the later generalizations can only
handle the case of separate variables, that is, h.f1; : : : ; fl / is regarded as a function on
the product

Q
i Xi , where Xi is the source variety of fi , and often h is just a linear form.

Our formula, on the other hand, is much more sophisticated.
For any functions � W X ! A and  W Y ! B , we write � ˚  for the function

X \ Y ! A � B given by x 7! .�.x/;  .x//.
Let f; g W .Cd ; 0/! .C; 0/ be nonconstant polynomial functions, singular at 0, and

h.x; y/ a polynomial of the form yN C
P
2�{�` x

m{ ; we may rename N as m1, but
its role is somewhat different and hence it is denoted differently (the case ` D 2 is
dealt with in [22]). For each 1 � { � `, let f.{/ D

P
2�i�{ f

mi W .Cd ; 0/ ! .C; 0/

and #.{/ D .m2=m{ ; mi=m{/2�i�{ ; here f.1/ is interpreted as the zero function and is
interpreted #.1/ as 1 2 Q. Let gN{ ˚ f{ denote the restriction of gN ˚ f to the set
Md
\ .val ı .gN ˚ f //�1.m2=m{ ; 1=m{/.

The category Var#
.{/

C consists of varieties over G2
m with .#.{/; n/-diagonal Gm-actions;

see §5.2 for the unexplained terms. Each object of Var#
.{/

C may be thought of as equipped
with a O� -action that factors through, for some n 2 ZC, the canonical epimorphism �n W

O�!C�n , and the corresponding Grothendieck ring is denoted by K#.{/ VarC . If { D 1 then
we abbreviate Var#

.{/

C , K#.{/ VarC as Var1
C , K1 VarC; actually Var1

C is just the category
VarGm

Gm
in [22] and hence is equivalent to the category of varieties over C with good O�-

actions. There is a K O� VarC-module homomorphism

‰#.{/ W K
#.{/ VarC ! K1 VarC;

which is referred to as a convolution operator.
Supposem2�N �m3� � � ��m`. Then there is an operator‚ac

#.{/
ıEac

b;#.{/
ı
R ac
#.{/

on classes of functions of the form gN{ ˚ f{ , with target K#.{/ VarC , which may be roughly
understood as‚ıEb ı

R
applied fiberwise. Abbreviate .‚ac

#.{/
ıEac

b;#.{/
ı
R ac
#.{/
/.ŒgN{ ˚f{ �/

as S
]

gN{ ˚f{
; we call it the motivic Milnor fiber of gN{ ˚ f{ over G2

m. Then our Thom–

Sebastiani formula states that, in K1 VarC Š K O� VarC , S]
h.f;g/

is equal to

S
]

gN
.ŒZf �/C S

]

fm2
C

X
2<{�`

S
]

fm{
.ŒZgNCf.{�1/ �/ �

X
2�{�`

‰#.{/.S
]

gN{ ˚f{
/I (1.5)

here the first and the third terms are the motivic Milnor fibers over Gm but restricted to the
indicated zero sets (in [22] a variant of this is called iterated motivic vanishing cycles).

As before, the whole construction can be specialized to the real setting if f , g are
defined over R, of which the Thom–Sebastiani formula obtained in [5] is a special case.
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A novel perspective behind (1.5) is that S]
h.f;g/

may be decomposed into terms corre-
sponding to combinatorial data that can be read off of the tropical curve of h.x; y/. This
actually suggests that our method can handle polynomials more complicated than h.x;y/,
for instance, those with more variables and even mixed terms. However, the complexity
of the combinatorics involved will become quite heavy, perhaps disproportionately so, as
it is unclear how the ground gained can shed new light on the geometry and topology of
the singularities in question. Thus we have chosen to just present a simple case that is
already beyond what is known in the literature.

Ambient and parameter spaces. For the general integration theory summarized in §2, we
work in a sufficiently saturated ACVF-model U with parameters in an arbitrary substruc-
ture S that is definably closed.

Throughout §3, the parameter space S is R..t//. In §3.1 is described a general descent
procedure from U to an arbitrary henselian substructure M. For the rest of the section,
the pair .U ;M/ is specialized to . QC; QR/.

In §4, we work in the TCVF-model QR with all parameters allowed (restricting to R..t//
makes no sense in the presence of a total ordering). There also appears in §4.2.2 the
ambient space QC with the parameter space C..t//, both as interpreted in QR.

We have mentioned above that the complex Thom–Sebastiani formula is obtained
in QC with S D C [Q, treating � Š Q as a definable sort in the model-theoretic sense.
For the real case in §5.5.1, S is changed to R [Q so that descent from QC to QR may be
carried out.

The parameter space may change in context, which we do not always point out. For
instance, if S D C [Q then studying a t -definable set in QC in effect changes S to C..t//.

2. Hrushovski–Kazhdan style integration

The first part of the paper relies heavily on [20], and hence we shall make extensive use
of the notations and terminologies therein, starting with those in [20, §2.1]; pointers will
be provided along the way.

In this section, following the tradition in the model-theoretic literature, we work in a
sufficiently saturated model U of ACVF, together with a fixed parameter space S, which
is a substructure of U . This is of course a matter of convenience, otherwise one needs to
change the model one is working in whenever compactness is applied. We assume that the
map rv is surjective in S (but the value group �.S/ of S could be trivial) and the definable
closure dcl S of S equals S. Among other things, this latter condition implies that if �.S/
is nontrivial then the underlying valued field of S is henselian (in fact this is equivalent to
the condition dcl S D S). So by a definable set we shall always mean an S-definable set,
unless indicated otherwise.

Remark 2.1. Semantically, we shall treat the value group � as a definable sort (the
�-sort) consisting of imaginary elements, that is, classes of definable equivalence rela-
tions. However, syntactically, any reference to � may be eliminated in the usual way and
we can still work with LRV-formulas for the same purpose.
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If  2 � is definable then it is in the divisible hull Q ˝ �.S/ of �.S/, and vice
versa. This does not mean, though, that the definable set ] D vrv�1./ � RV (see [20,
Notation 2.7]) contains a definable point unless  2 �.S/.

Remark 2.2. A pillar of the theory of definable sets in U is C -minimality, meaning
that every definable subset of VF is a boolean combination of (definable) valuative discs.
Another one is the so-called orthogonality between the k-sort and the �-sort, meaning
that every definable subset A of Un with pr�k.A/ in k and pr>k.A/ in � (see [20,
Notation 2.1, Terminology 2.3]) is a finite union of products A0 � A00 � kk � �n�k ; in
particular, if A is the graph of a function on pr�k.A/ or pr>k.A/ then its image is finite.

Various regions in U , such as the sorts RV, k, and � , are stably embedded. In our
context, this simply means that, for instance, if a set in RV is definable then it is RV.S/-
definable.

The definitions of the various categories of definable sets, with or without �-volume
forms, are all listed in [20, §3] in full detail, which will not be repeated here. We only
remark that ambient dimension plays a role in determining the volume, whatever that
means, of a definable set, and this is why for an object .A; !/ 2 �VFŒk�, AVF is required
to be a subset of VFk , whereas an object A 2 VFŒk� is only required to be of dimension
at most k.

There is a homomorphism of graded semirings

‰ W KC RESŒ��˝KC �finŒ�� KC �Œ��! KC RVŒ��; (2.1)

which is determined by the assignment

.Œ.U; f /�; ŒI �/ 7! Œ.U � I ]; f � id/�: (2.2)

There is also the version with volume form

�‰ W KC �RESŒ��˝KC ��finŒ�� KC ��Œ��! KC �RVŒ��:

The groupifications of these homomorphisms are denoted the same.

Proposition 2.3 ([24, Prop. 10.10(1)]). Both ‰ and �‰ are isomorphisms of graded
semirings.

Note that [24, Proposition 10.10(2)] does not hold. This oversight has caused issues
for certain constructions in [25] that depend on it. These issues have now been resolved
in [20]. The modified construction will be summarized below.

Recall from [20, Notation 3.20] that Isp is the (nonhomogeneous) semiring congruence
relation on KC RVŒ�� generated by the pair .Œ1�; ŒRVıı1�/ and hence the corresponding
principal ideal of K RVŒ�� is generated by the element P � 1 2 KC RVŒ�1�, where
P D Œ1�� ŒRVıı� 2K RVŒ1�, as we have mentioned above. Similarly, �Isp is the semiring
congruence relation on KC �RVŒ�� generated by the pair .Œ1�; ŒRVıı�/, which is homo-
geneous, and hence the corresponding principal ideal of K�RVŒ�� is generated by the
element P (the volume forms here are all 0, see [20, Notation 3.19]).
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Recall from [20, Notation 3.21] the homomorphisms (and their groupifications)

L W KC RVŒ��! KC VF� and �L W KC �RVŒ��! KC �VFŒ��:

We have L.Œ1�/ D Œ1CM� D ŒM� and L.ŒRVıı�/ D ŒMX0�, and hence L.P � 1/ D 0.
Moreover, �L.P/ D 0 since M and M X0 are in essential bijection (see [20, Defini-
tion 3.5]). It so happens that these relations are the only ones needed to describe the
kernels of L and �L.

Theorem 2.4. For each k � 0 there is a canonical isomorphism of semigroupsZ
C

W KC VFŒk�! KC RVŒ�k�= Isp

such that
R
C
ŒA�D ŒU �= Isp if and only if ŒA�D ŒLU �. Passing to the colimit of the groupi-

fications, we obtain a canonical isomorphism of ringsZ
W K VF� ! K RVŒ��=.P � 1/:

Similarly, for each k � 0 there is a canonical isomorphism of semigroupsZ �

C

W KC �VFŒk�! KC �RVŒk�=�Isp

such that
R
C
ŒA� D ŒU �=�Isp if and only if ŒA� D Œ�LU �. Taking the direct sum of the

groupifications, we obtain a canonical isomorphism of graded ringsZ �

W K�VFŒ��! K�RVŒ��=.P/:

This is a combination of two main theorems, Theorems 8.8 and 8.29, of [24]. But it is
not enough for our purpose. To recover motivic zeta function and thence motivic Milnor
fiber, we shall need the theory developed in [20], complementing the work in [25]. We
explain here only the gist of this theory. The reader should consult [20] for full details.

A set, possibly with �-coordinates, is bounded if, after applying the maps val, vrv, id
in the VF-, RV-, �-coordinates, respectively, it is contained in a box of the form Œ;1�n,
and doubly bounded if the box is of the form Œ�; �n. An object .A; !/ 2 �VFŒk� is
bounded or doubly bounded if the graph of ! is so; similarly in the other categories. In
particular, an object .U; f; !/ 2 �RVŒk� is bounded if the graphs of f and ! are both
bounded; actually, by [20, Lemma 3.26], if U is doubly bounded then the images of these
functions are necessarily doubly bounded.

The full subcategories of �RVŒ��, ��Œ�� of doubly bounded objects are denoted by
�RVdbŒ��, ��dbŒ��. The corresponding restriction of �‰ is indeed an isomorphism (see
[20, Remark 4.10]):

KC �RESŒ��˝KC ��dbŒ��! KC �RVdbŒ��: (2.3)
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For each  2 � , let M D ¹a 2 VF j val.a/ > º. If  D .1; : : : ; n/ 2 �n then M

denotes the product of Mi ; each coset of M in VFn is called a polydisc of radius  .
A subset of VFn is  -invariant if it is a union of polydiscs of radius  . For example, finite
subsets of VF are not invariant (or rather they are 1-invariant, but 1 is not allowed in
the definition), the maximal ideal M is  -invariant for every  2 �C, whereas M X0 is
not  -invariant for any  2 �C, because the radii of its maximal open subdiscs tend to1
as they approach 0. A proper invariant set is an invariant set A such that AVF is bounded
and ARV is doubly bounded. For example, if U 2 RVdbŒk� then LU is a proper invariant
set (it is actually doubly bounded).

The subcategory �VF˘Œk� of �VFŒk� consists of the proper invariant objects and the
morphisms that are compositions of relatively unary proper covariant homeomorphisms.
It is rather involved to make sense of what the morphisms are, the reader is referred to
[20, Definitions 6.1, 6.2, 6.24]) for detail. A crucial point to keep in mind is that every
morphism in �VF˘Œk� is an honest bijection, as opposed to merely an essential bijection,
and is in effect required to admit an inverse. So �VF˘Œk� is already a groupoid and there
is no need to pass to a quotient category as described in [20, Remark 3.7], and it makes
sense to speak of the forgetful homomorphism K�VF˘Œ��! K VF�.

Notation 2.5. For each  2 �C.S/, let RVıı D rv.M X0/ and

P D ŒRVıı XRVıı �C Œ¹tº� � Œ1� 2 K RVdbŒ1�;

where t 2 ] is any definable point. So Œ¹tº�D Œ1� in K RVdbŒ1�. But t also stands for an
element in K�RVdbŒ1� (with the constant volume form 0), and Œ¹tº� ¤ Œ1� in K�RVdbŒ1�

unless  D 0.
Observe that P does not depend on the choice of t 2 ]. The ideal of K�RVdbŒ��

generated by the elements P is denoted by .P�/. The images of .P�/ are contained in
.P � 1/, .P/ under, respectively, the natural (forgetful) homomorphisms

K�RVdbŒ��! K RVŒ��; K�RVdbŒ��! K�RVŒ��:

By [20, Corollary 6.37], the map �L induces a surjective homomorphism of graded
Grothendieck rings K�RVdbŒ�� // // K�VF˘Œ��. By [20, Proposition 7.24], its kernel is
precisely .P�/.

Theorem 2.6 ([20, Theorem 7.26, Corollary 7.27]). There is a canonical isomorphism of
graded Grothendieck rings:Z ˘

W K�VF˘Œ��! K�RVdbŒ��=.P�/:

It interpolates the two isomorphisms
R

,
R � in the sense that the following diagram com-

mutes:

K RVŒ��=.P � 1/ K�RVdbŒ��=.P�/oo

K VF�

K RVŒ��=.P � 1/

R
��

K VF� K�VF˘Œ��oo K�VF˘Œ��

K�RVdbŒ��=.P�/

R ˘
��

K�RVdbŒ��=.P�/ K�RVŒ��=.P///

K�VF˘Œ��

K�RVdbŒ��=.P�/

K�VF˘Œ�� K�VFŒ��// K�VFŒ��

K�RVŒ��=.P/

R�
��

(2.4)
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Next, in light of the isomorphism ‰, we have a procedure to replace classes of poly-
topes with numbers (o-minimal Euler characteristics, see [20, Remark 4.2]) and thereby
construct two retraction maps from the Grothendieck ring in RV to that in RES, which is
dubbed “uniform retraction to RES” (see Example 3.22 for an explicit computation):

Proposition 2.7. There are two ring homomorphisms

Eg W K RVŒ��! ŠK RESŒŒA��1� and Eb W K RVŒ��! ŠK RESŒŒ1��1� Š ŠK RES

such that

� P � 1 2 K RVŒ1� vanishes under both of them,

� for all x 2 K RESŒk� and all y 2 K�Œl�,

Eg.x ˝ y/ D �g.y/xŒGm�
l ŒA��.kCl/ and Eb.x ˝ y/ D �b.y/xŒGm�

l Œ1��.kCl/;

(2.5)
where, for simplicity, x ˝ y stands for the element ‰�1.x ˝ y/ 2 K RVŒ��.

By the first clause, they may be regarded as homomorphisms on K RVŒ��=.P � 1/.

Remark 2.8. For a proper invariant objectA of VF� of dimension n, the homomorphisms
Eg ı

R
, Eb ı

R
only differ by a factor in ŠK RESŒŒA��1�; see [20, Remark 7.28]. Conse-

quently, we have

Eg

�Z
ŒA�

�
D Eb

�Z
ŒA�

�
ŒA��n: (2.6)

In §4, the T -convex versions of Eb ı
R

, Eg ı
R

yield the Euler characteristics of the
closed and open topological Milnor fibers. Then (2.6) may be specialized to one between
these two numerical quantities; see Corollary 4.18.

More generally, (2.6) is a manifestation of the Bittner duality [2]; this will be explained
elsewhere.

There is also a version for the doubly bounded category with volume forms:

Proposition 2.9. There is a graded ring homomorphism

�Edb
W K�RVdbŒ��! ŠK RESŒ��

such that .P�/ vanishes and, for all x 2 K�RESŒ��, �Edb.x/ D �.x/, where � is the
forgetful homomorphism � W K�RESŒ��! ŠK RESŒ��.

See [20, §4] for the notation and a full explanation on how to obtain these results.
The composition of �Edb with the forgetful homomorphism ŠK RESŒ��! ŠK RES is

denoted by E˘. By [20, Remark 4.14], the following diagram commutes:

K�RVdbŒ��

ŠK RES
E˘

��

K�RVdbŒ�� K RVŒ��// K RVŒ��

ŠK RES
Eb��

(2.7)



Motivic integration and Milnor fiber 1631

which may serve as an alternative and more direct (but less comprehensive) construction
of E˘.

Remark 2.10. Appending (2.7) to the left square in (2.4), we obtain the upper portion of
(1.3) (the homomorphism ‚ is given in (3.6)).

Remark 2.11. The homomorphism Eb will be used in the construction of motivic Mil-
nor fiber in §3, but not Eg , because it does not quite commute with E˘ (say, by (2.6),
Eg.Œ1�/ D ŒA��1 whereas E˘.Œ1�/ D Eb.Œ1�/ D 1). It is intriguing to ponder how Eg fit
in with the grand scheme of things (more on this in Remark 3.21 below).

For the Thom–Sebastiani formula in §5 to hold, we must also use Eb (otherwise cer-
tain terms in the computation would not vanish, see Remark 5.34).

As in [20], we shall carry out computations (in §3.4 and throughout §5) using reduced
cross-sections. Recall that a cross-section of � is a group homomorphism csn W � ! VF�

with val ı csn D id. The corresponding reduced cross-section of � is the function csn D
rv ı csn W � ! RV. If such a reduced cross-section exists then it induces an isomorphism
RV Š � ˚ k�. In general this is not guaranteed, that is, the short exact sequence in (1.4)
may not split (definably).

Example 2.12. We may think of the procyclic group O� D limn �n as the Galois group
Gal. QC =C..t///, since they are canonically isomorphic. For each element � D .�n/n 2 O�,
the assignment n 7! �nt

1=n gives a reduced cross-section csn� WQŠ�!RV, and the map
given by � 7! csn� is a bijection between O� and the set � of reduced cross-sections csn
with csn.1/D rv.t/; in other words, O� acts freely and transitively on� via multiplication.

Definition 2.13. Relative to a reduced cross-section csn, the twistback function tbk W
RV! k is given by u 7! u= csn.vrv.u//, where1=1 D 0. For any set U � RVn1 and
 2 �n1, the set tbk.U /� kn is called the  -twistback ofU . If tbk.U /D tbk.U 0/ for all
;  0 2 vrv.U / then U is called a twistoid, in which case we simply write tbk.U / for the
unique twistback. A definable finite partition .Ui /i ofU is called a twistoid decomposition
of U if every Ui is a twistoid.

The few facts on reduced cross-sections, twistbacks, and bipolar twistoid decomposi-
tions (see [20, Definition 5.10]) that we shall need are all explained in [20, §5].

3. Motivic Milnor fiber

In this section we first specialize the integration theory above to henselian subfields of U ,
such as the field QR of real Puiseux series. This is followed by a discussion on how to
construct various Grothendieck rings, especially those in real algebraic geometry. We
then adapt [20, §8] to the current context and show that the real motivic zeta function
and thence the motivic Milnor fiber can be recovered from an object of VF�, namely
the nonarchimedean Milnor fiber. Our method, when combined with the virtual Poincaré
polynomial of real varieties, yields a new invariant.
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3.1. Specialization to henselian subfields

The descent procedure described here is based on [24, §12]. We work in U with the
parameter space S D R..t//.

It may seem at first glance that we may as well take SD QR since every element in QR is,
after all, definable over R..t//. However, generally speaking, elements in QR are definable
over R..t// only in QR, not in U , in other words, they are not quantifier-free definable over
R..t// in QR (to define them one needs to use the ordering, which is not quantifier-free
definable, and this point will come up again in §4).

Let M be a substructure of U in which the map rv is surjective. Recall that the sub-
structure S D R..t// is regarded as a part of the language and hence all other substructures
contain it. The main case of interest is M D QR (see also [20, §8.1]).

If X � VFn �RVm is a definable (and hence quantifier-free definable) set then the
trace of X in M, denoted by X.M/, is the set of M-rational points of X , that is,

X.M/ D X \ .VF.M/n � RV.M/m/:

Such a trace is also called a constructible set in M since it is indeed quantifier-free defin-
able in M. Note, however, that if f W X ! � is a definable function then the image
f .X.M// is not necessarily a set in �.M/, but rather a set in the divisible hull Q˝ �.M/

of �.M/. For instance, if M D C..t// then �.M/ D Z and hence  2 � is definable if
and only if  2 Q˝ �.M/ D Q. On the other hand, if X is a set in � and f is a piece-
wise GLk.Z/-transformation on X then f .X.M// is of course a set in �.M/; this is the
situation in the �-categories.

Assume that the valued field .VF.M/;O.M// is henselian. This is equivalent to the
condition that M is definably closed and �.M/ is nontrivial (see [24, Example 12.8] or
[20, Lemma 2.11]). It follows that M is functionally closed, that is, for any definable
set X and any definable function f on X (no �-coordinates are allowed), the image
f .X.M// is a set in M and hence is definable (constructible) in M, or more concisely,
f .X.M// D f .X/.M/.

The rest of this subsection is devoted to explaining the middle portion of (1.3):

K VFM K RVMŒ��=.P � 1/

R
M //

K VF�

K VFM

�=FM

��

K VF� K RVŒ��=.P � 1/
R

// K RVŒ��=.P � 1/

K RVMŒ��=.P � 1/

�=RM

��

K RVMŒ��=.P � 1/ ŠK RESM
Eb;M

//

K RVŒ��=.P � 1/

K RVMŒ��=.P � 1/

K RVŒ��=.P � 1/ ŠK RES
Eb // ŠK RES

ŠK RESM

�=RM

��

(3.1)

where Eb , Eb;M can be replaced by Eg , Eg;M if ŒA� is inverted in the right column.

Definition 3.1 (M-constructible categories). An object of the category RVMŒk� is a pair
of the form U .M/ D .U.M/; f�U.M//, where U D .U; f / 2 RVŒk�. Any constructible
function of the form F.M/ W U .M/! V .M/, where F W U ! V is an RVŒk�-morphism,
is a morphism of RVMŒk�.

The categories VFM D
S
k VFMŒk�, �MŒk�, RESMŒk�, etc., are defined analogously.
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We call KC VFM, etc., M-constructible Grothendieck semirings associated with M.
Since M is functionally closed, the following binary relation is well-defined and is

indeed a semiring congruence relation:

FM D ¹.ŒA�; ŒB�/ 2 .KC VF�/2 j ŒA.M/� D ŒB.M/� in KC VFMº:

The semiring congruence relations RM � .KC RVŒ��/2, GM � .KC �Œ��/2 are defined
analogously. The restriction of RM to .KC RESŒ��/2 and the corresponding ideal of
ŠK RES are both still denoted by RM. We have KC VFM Š KCVF�=FM, etc.

Suppose that .ŒA�; ŒB�/2FM. By the definition of VFM, we can find a VF�-morphism
F WA0!B 0 withA.M/�A0 �A andB.M/�B 0 �B that witnesses this (there may not
exist a VF�-morphism between A and B , though). Let A00 D A X A0 and B 00 D B X B 0.
By Theorem 2.4, there are U; V 2 RVŒ�� such that ŒA00� D ŒLU � and ŒB 00� D ŒLV �. By
functional closedness, if U .M/ ¤ ; then LU .M/ ¤ ; and hence A00.M/ ¤ ;, which
contradicts the choice of A00. So U .M/ D ; and similarly V .M/ D ;. This means that
.ŒU �; ŒV �/ 2 RM, in other words,

R
C
ŒA00� D

R
C
ŒB 00� modulo RM. Therefore,Z

C

ŒA� D

Z
C

ŒA0�C

Z
C

ŒA00� DRM

Z
C

ŒB 0�C

Z
C

ŒB 00� D

Z
C

ŒB�:

Conversely, by a similar reasoning, if .ŒU �; ŒV �/ 2 RM then LU .M/, LV .M/ are iso-
morphic in VFM, in other words, .ŒLU �; ŒLV �/ 2 FM. So

R
induces an isomorphism

R
M

between K VFM and K RVMŒ��=.P � 1/.
Next, let RM ˝GM be the semiring congruence relation on KC RESŒ��˝KC �Œ��

generated by RM and GM. By the universal mapping property of tensor product, there
exists a canonical isomorphism

KC RESŒ��˝KC �Œ��=RM ˝GM Š KC RESMŒ��˝KC �fin
MŒ�� KC �MŒ��:

So the assignment (2.2) induces a KC �fin
MŒ��-linear map

‰M W KC RESŒ��˝KC �Œ��=RM ˝GM ! KC RVŒ��=RM Š K RVMŒ��:

Functional closedness and Proposition 2.3 show that the two semiring congruence rela-
tions match exactly via ‰M and hence ‰M is an isomorphism as well.

Finally, suppose that �.M/ is divisible, for instance, M D QR. By o-minimal cell
decomposition and induction on dimension, for any I; J 2 �Œ��, if I.M/ D J.M/

then �b.I / D �b.J / and �g.I / D �g.J /, and hence this is so if, more generally,
.ŒI �; ŒJ �/ 2GM. So K�MŒ�� also admits two ring homomorphisms into Z and the assign-
ment (2.5) yields two ring homomorphisms Eg;M, Eb;M from K RVMŒ��=.P � 1/ into
ŠK RESM.

3.2. Grothendieck rings in real and complex geometry

The complexification of a varietyX over R is denoted byX ˝R C, which is a variety over
C endowed with an antiholomorphic involution coming from the complex conjugation c
over C; the Grothendieck ring of the corresponding category is denoted by Kc VarC .
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Conversely, to every quasi-projective variety Y over C endowed with an antiholomorphic
involution there corresponds a unique variety X over R such that Y Š X ˝R C. So
extension of scalars induces an isomorphism K VarR ! Kc VarC .

Taking the fixed points of the set X.C/ of the complex points of a variety X over R
under the complex conjugation gives a real variety in the sense of [4]; this is denoted
by X.R/. Such sets of real points of varieties over R, considered with their sheaves of
regular functions over R, form the category RVar of real varieties, and taking real points
induces a surjective homomorphism K VarR! KRVar with kernel generated by the vari-
eties without real points (see [18, Corollary 1.11]).

We consider also an equivariant version of the Grothendieck ring of complexified
varieties over R, taking into account group actions by roots of unity that are compatible
with the complex conjugation.

Notation 3.2. Denote the dihedral group Gal.C=R/ Ë �n by ın, where the Gal.C=R/-
action on �n corresponds to taking the inverse. Set Oı D limn ın, which is canonically
isomorphic to Gal. QC = QR/ Ë O�, where the action of Gal. QC = QR/ on O� corresponds again
to taking the inverse, and Oı may also be identified with the Galois group Gal. QC =R..t///.
More explicitly, if � D .�n/n�1 is a coherent system of roots of unity, then it acts on
a complex Puiseux series � D

P
k akt

k=m by � � � D
P
k ak�

k
mt
k=m. The conjugation

automorphism of QC is also denoted by c. It acts on � by c � � D
P
k akt

k=m.

Lemma 3.3. For any element � of O�, the relation c�c� D 1 holds in Oı.

Proof. Denote by � D .�n/n�1 the topological generator of O� given by �n D exp.2i�=n/.

So the orbit of � is dense in the topological group O�. The equality �n�nz D z holds for
any n � 1 and any z 2 C, which implies that c�c� D 1 in Oı. Moreover, for any integer
m � 0,

c�mC1c�mC1 D c�m.�c�/�m D c�mc.c�c�/�m D c�mc�m;

and hence, by induction, c�mc�m D 1 for any m. So c�c� D 1 for any element of O�
because � is a topological generator of O�.

Definition 3.4. A Oı-action Oh on a complexified variety X over R is good if it factors
through some ın-action and the induced Gal.C=R/-action is the canonical antiholomor-
phic involution.

The category of complexified varieties over R with good Oı-actions consists of objects
of the form X D .X; Oh/, where X is a complexified quasi-projective variety over R and
Oh is a good Oı-action on X , and Oı-equivariant morphisms between such objects.

The Grothendieck ring of this category is denoted by K[; Oı VarR. The ring K Oı VarR is
the quotient of K[; Oı VarR by the ideal generated by the elements of the form

ŒX � .AnC;
Oh/� � ŒX � .AnC; c/�; (3.2)

where Oh is a good linear Oı-action.
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Remark 3.5. Let X D .X; Oh/ be a complexified variety over R with a good Oı-action.
Then Oh and the group involution of Oı together induce another good Oı-action Oh0 on X . This
means that there is a natural ring involution of K[; Oı VarR and also K Oı VarR.

An arc Spec CJtK! X on a variety X over C may have branches, which are rep-
resented by complex Puiseux series in QC. Galois actions over CJtK on these branches
encode certain information on the singularity in question and hence are an integral part of
the construction in [25]. These Galois actions are gone when we restrict to real branches
of real arcs, corresponding to the pair QR and RJtK, albeit a faint trace remains.

Remark 3.6. We have seen in Example 2.12 above that there is a natural bijection
between O� and the set of reduced cross-sections csn WQ! RV with csn.1/ D rv.t/ in QC.
Similarly, there is such a bijection between Oı and such a set but with csn.1/ D rv.˙i t/.

In contrast, there is only one such reduced cross-section in QR, which is but
another way of saying that Gal. QR =R..t/// is trivial. Nevertheless, if n is even then
Gal.R..t1=n//=R..t/// Š �2, and there are two such reduced cross-sections in R..t1=n//,
determined by the two choices˙t1=n, and if n is odd then there is only one.

Definition 3.7. The category of real varieties with �2-actions consists of objects of the
formX D .X;h/, whereX is a real variety and h is a �2-action onX , and �2-equivariant
morphisms between such objects (the actions and morphisms are all given by regular maps
in the sense of [4]).

The Grothendieck ring of this category is denoted by K[;�2RVar. The ring K�2RVar
is the quotient of K[;�2RVar by the ideal generated by the elements of the form

ŒX � .AnR; h/� � ŒX � .A
n
R; id/�; (3.3)

where h is any linear �2-action.

Let .X; Oh/ be a complexified variety over R with a good Oı-action, factoring through a
ın-action.

Remark 3.8. Since �n is cyclic, the induced O�-action on the Oh-orbit of any (closed)
point x 2 X factors through a faithful �dx -action with dx j n. Thus, Oh factors through a
ıdx -action hdx .

For all � 2 �dx < ıdx , since c�c� D 1, we have chdx .�/chdx .�/.x/D x. Moreover,
if x is a real closed point, that is, if x 2 X.R/, then hdx .�/chdx .�/.x/D x. In particular,
if dx happens to be even and if we choose � 2 �2 < ıdx (so that hdx .�/

2 D 1), then
chdx .�/.x/ D hdx .�/.x/, meaning that hdx .�/.x/ is a real closed point as well.

Definition 3.9. The �2-action Oh.R/ on X.R/ is given by x 7! hdx .�/.x/ for � 2 �2 if
dx is even and x 7! x otherwise.

See Remark 3.17 for an illuminating example.

Lemma 3.10. The assignment .X; Oh/ 7! .X.R/; Oh.R// induces a surjective group homo-
morphism

„ W K Oı VarR ! K�2RVar : (3.4)



G. Fichou, Y. Yin 1636

Proof. If the induced �n-action is faithful on X , then .X.R/; Oh.R// is a real variety with
a �2-action in the sense of Definition 3.7. Otherwise, we stratify X.R/ into Zariski con-
structible subsets on which the �2-action is regular as follows. For any positive integer d
dividing n, the set Xd of fixed points of the �d -action on X induced by the morphism
�n!�d W � 7! �n=d is a complexified variety over R with a ın=d -action. Since the�n=d -
action is faithful on X 0

d
D Xd X

S
d jljn; d<l Xl , the �2-action induced on the Zariski

constructible subset X 0
d
.R/ of X.R/ is regular as expected.

So summing the classes of these constructible sets with �2-actions makes sense in
K�2RVar. Since isomorphic complexified varieties X , Y over R with Oı-actions give rise
to isomorphic constructible sets with �2-actions, and (3.2), (3.3) are essentially the same
condition, it follows that „ is well-defined, and the assignment ŒX � 7! ŒX.R/� respects
addition by construction. For surjectivity, only note that a �2-action that is regular on a
real variety can be linearized and hence gives rise to a complexified variety over R with a
ı2-action in a natural way.

Note, however, that„ fails to respect product and hence is not a ring homomorphism:
if x, y are two points belonging to X , Y then d.x;y/ D gcd.dx ; dy/ and hence the �2-
action on .x; y/ as a point belonging to X � Y is not necessarily the product of the
�2-actions on x, y. On the other hand, in light of (3.2) and (3.3), it can be upgraded to
an AC-module homomorphism via the natural ring homomorphism AC ! AR, where
AC is the subring of K Oı VarR generated by Œ.AC; c/� and AR is the subring of K�2RVar
generated by ŒAR�.

A similar construction at the level of K[; Oı VarR instead of K Oı VarR yields a group
homomorphism „[ W K[; Oı VarR ! K[;�2RVar.

K[; Oı VarR K Oı VarR
// K Oı VarR K VarRˆ //

K[;�2RVar K�2RVar//K[;�2RVar

K[; Oı VarR

OO

„[

K�2RVar KRVar//K�2RVar

K Oı VarR

OO

„

KRVar

K VarR

OO

„R

K[; O� VarC K O� VarC
// K O� VarC K VarC

//

K[; Oı VarR

K[; O� VarC

��

K Oı VarR

K O� VarC

��

K VarR

K VarC

��

(3.5)

In [25], similar Grothendieck rings K[; O�VarC , K O�VarC are defined for categories of vari-
eties over C. We summarize the situation in the diagram (3.5), where the right column of
horizontal arrows are the forgetful homomorphisms, the first row of vertical arrows are
obtained by taking real points, and the second row of vertical arrows are obtained by for-
getting the antiholomorphic (that is, the real) structure. This diagram commutes except for
the upper left square: the two routes from K[; Oı VarR to K�2RVar are actually not identical
(see Remark 3.17), and the construction below uses the one that passes through „.

Remark 3.11 (Polynomial realizations). There is a unique ring homomorphism ˇ W

KRVar! ZŒu� that coincides with the Poincaré polynomial
P
i2N dimHi .X;F2/ ui for
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compact nonsingular real varieties X ; see [30]. Similarly, there is a unique group homo-
morphism

ˇ�2 W K�2RVar! ZJu�1KŒu�
that coincides with the equivariant Poincaré series

P
i2Z dimHi .X ; F2/ ui for compact

nonsingular real varieties X endowed with �2-actions; see [16]. We will say more about
the virtual Poincaré polynomial in §3.5.

3.3. Piecewise retraction to RES

We now proceed to replicate the construction in [25, §8] so as to recover the motivic
zeta function with coefficients in K Oı VarRŒŒA��1� and the corresponding motivic Milnor
fiber; many arguments are formally the same, hence we shall be brief. The subsequent
specialization to K�2RVarŒŒA��1� is new and points to deeper phenomena in the real
algebraic environment.

For the remainder of this section we work in QC with S D R..t//.
As in [25, §4.3], using the twistback function given by a chosen reduced cross-section

csn, we construct a homomorphism

‚ W ŠK RES! K Oı VarR : (3.6)

This does not depend on the choice of csn.

Remark 3.12. Several variants of ‚ will appear below. To show that they are injective,
we may simply follow the argument in [25, proof of Proposition 4.3.1]. For surjectivity,
however, some modification is needed, and how much of it is needed varies.

For ‚ it is quite simple. Let Œ.X; Oh/� 2 K Oı VarR with Oh factoring through a ın-action.
We may assume that X is quasi-projective and irreducible. The induced �n-action on X
gives a quotient variety X=�n, which is also quasi-projective and carries an antiholomor-
phic involution and hence is defined over R. Then the Kummer-theoretic construction in
[25, proof of Proposition 4.3.1] yields a U 2 RES with ‚.ŒU �/ D Œ.X; Oh/�.

The situation in QR is trickier (even for injectivity, due to how the category RES QR is
defined in Definition 3.1). LetU 2RES QR. For each u 2U , let du be the least positive inte-
ger such that u is a tuple in RV.R..t1=du///, or equivalently, vrv.u/ 2 d�1u Z. As implied
by Remark 3.6, there is a nontrivial �2-action on a two-element set ¹u; u0º � U if du is
even. Thus, similar to Definition 3.9, we can construct a �2-action on U by u 7! u0 if du
is even and u 7! u otherwise. If we choose the reduced cross-section that is in QR then the
twistback function yields a homomorphism

‚ QR W ŠK RES QR ! K�2RVar (3.7)

such that the diagram

ŠK RES QR K�2RVar
‚ QR //

ŠK RES

ŠK RES QR

„ QR

��

ŠK RES K Oı VarR
‚ // K Oı VarR

K�2RVar

„

��

(3.8)
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commutes, where „ QR is just the map �=R QR with M D QR in (3.1), but has to be treated
as an AC-module homomorphism instead of a ring homomorphism, for the same reason
that „ has to be treated as such. So ‚ QR must be surjective. Comparing the constructions
of „ QR and „, we see that ‚ QR must be injective as well.

Remark 3.13. Appending (3.8) to (3.1) with M D QR, we derive two volume operators

Vol�2 W K VF�
Vol OıD‚ıEbı

R
���������! K Oı VarR

„
�! K�2RVar

and

Vol�2
QR
W K VF QR

‚ QRıEb; QRı
R
QR

���������! K�2RVar;

satisfying Vol�2 D Vol�2
QR
ı .�=F QR/. Also, according to [20, Notation 5.14], for any

U 2 RVŒ�� and any bipolar twistoid decomposition .Ui /i of U , we have

.‚ ı Eb/.ŒU �/ D
X
i

�b.vrv.Ui //Œtbk.Ui /�
Oı
2 K Oı VarR; (3.9)

where Œtbk.Ui /�
Oı 2 K Oı VarR is just ‚.ŒUi \ ]�/ for any  2 Ii D vrv.Ui /, but is a more

useful notation since it is computationally more suggestive.
We can also consider changing Eb to Eg (see Remark 3.21).

For any ringR, letRŒTQ� be the ring of Puiseux polynomials overR, that is, the group
ring of Q over R. Consider the subring K Oı VarRŒŒA��1�ŒT; T �1� of K Oı VarRŒŒA��1�ŒTQ�.
The canonical image of K Oı VarRŒT

Q� in K Oı VarRŒŒA��1�ŒTQ� is still denoted as such. The
assignment T 7! ŒA� determines a ring homomorphism

� W K Oı VarRŒŒA�
�1�ŒT; T �1�! K Oı VarRŒŒA�

�1�: (3.10)

Let U D .U; f; !/ 2 �RVdbŒk�. Following the discussion leading to [20, (8.2)], using
the notation therein in particular, we assign to U the expression

hm.U / D
X
i

Œtbk.Ui /�
Oı
X
2Ii;m

T �m�i ./ 2 K Oı VarRŒŒA�
�1�ŒTQ�: (3.11)

The “piecewise retraction” formula (3.11) is indeed quite similar to the “uniform
retraction” formula (3.9). The difference is just that the coefficient �b.Ii / in the latter is
replaced by a formal “counting” sum

P
2Ii;m

T �m�i ./ in the former, which also takes
the volume form into account. That the “uniform retraction” formula does not depend
on the choice of the bipolar twistoid decomposition is simply a consequence of the con-
struction of Eb itself. That (3.11) does not depend on the choice of the bipolar twistoid
decomposition and is invariant on isomorphism classes needs an argument, see the proof
of [20, Lemma 8.2] (it is here that we need functional closedness in C..t1=m//). Therefore,
we have constructed a ring homomorphism

hm W K�RVdbŒ��! K Oı VarRŒŒA�
�1�ŒTQ�:
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Let K\
m�RVdbŒ�� denote the subring .hm/�1.K

Oı VarRŒŒA��1�ŒT;T �1�/ of K�RVdbŒ��.
By the proof [20, Lemma 8.3], the homomorphism

� ı hm W K\
m�RVdbŒ��! K Oı VarRŒŒA�

�1�

vanishes on .P�/. Note that the ideal .P�/ of K�RVdbŒ�� in Notation 2.5 is now gener-
ated by the elements P with  2 ZC D �C.R..t///.

Remark 3.14. If U D .U; f; l/ 2 �RVdbŒ�� with l 2 m�1Z (constant volume form) then
the exponents in (3.11) are all integers and hence ŒU � 2 K\

m�RVdbŒ��. Actually we shall
only need the case l D 0.

The ring
T
m2ZC K\

m�RVdbŒ�� is denoted by K\�RVdbŒ��.
If A D .A; l/ 2 �VF˘Œ�� with l constant then

R ˘
ŒA� may be expressed

as Œ.U; f; l/�=.P�/, and hence if l 2 Z then
R ˘
ŒA� belongs to the quotient

K\�RVdbŒ��=.P�/. In that case, for everym 2 ZC, the expression .� ı hm ı
R ˘
/.ŒA�/ in

K Oı VarRŒŒA��1� makes sense since � ı hm vanishes on .P�/.

Denote by RESm the full subcategory of RES such that U 2 RESm if and only if every
 2 vrv.U / is a tuple inm�1Z, or equivalently, U 2 RESm if and only if the action on U
of the kernel of the canonical projection Oı ! ım is trivial.

Let ˇ D .ˇ1; : : : ; ˇn/ 2 .m�1Z/n and A � On
�RVl be a proper ˇ-invariant defin-

able set such that prVF�A is finite-to-one. Then we may associate with A an element
ŒAŒmIˇ��ŒA��m

P
ˇ in K RESmŒŒA��1�; see [25, §4.2] for details. By [25, Lemma 4.2.1],

it actually does not depend on ˇ by [25, Lemma 4.2.1] and hence may be denoted by QAŒm�.
The localization of‚ at ŒA� is still denoted by‚. The image of QAŒm� in ŠKRESŒŒA��1�

is still denoted as such. The following result is crucial for recovering the motivic zeta
function.

Lemma 3.15. .� ı hm ı
R ˘
/.Œ.A; 0/�/ D ‚. QAŒm�/ in K Oı VarRŒŒA��1�.

To show this lemma, the statement of Theorem 2.6 itself is not quite enough. We
need the fact that there exists a special �VF˘Œ��-morphism F W .A; 0/! .LU ; 0/, called
a special covariant bijection, with U 2 RVdbŒ��; see the proof of [20, Lemma 8.6] for
details.

Recall the diagrams (3.5) and (3.8). Applying the ring homomorphism „R ı ˆ,
localized at ŒA�, to both sides of the equality in Lemma 3.15, we get an equality in
KRVarŒŒA��1�; similarly in K�2RVarŒŒA��1� if the AC-module homomorphism „, local-
ized at Œ.AC; c/�, is used.

3.4. Motivic zeta function and motivic Milnor fiber

Let X be a nonsingular connected variety of dimension d over R and f a nonconstant
morphism, also over R, from X to the affine line. Let z 2 f �1.0/ be an R-rational point.
Since X , f , and z are fixed, we shall not always carry them in notation and terminology.
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Let � be the reduction map X.O/! X.k/. The nonarchimedean Milnor fiber of f is the
set

X D ¹x 2 X.O/ j rv.f .x// D rv.t/ and �.x/ D zº: (3.12)
Note that X may be constructed in an affine neighborhood of z and hence is indeed a
(quantifier-free) definable set. Moreover, it is ˇ-invariant for every ˇ � 1. Thus, X is
an object of �VF˘Œ�� equipped with the constant volume form 0. We define the positive
motivic zeta function of f to be the power series

Z1.T / D
X
m2ZC

�
„ ı � ı hm ı

Z ˘�
.ŒX�/Tm 2 K�2RVarŒŒA��1�JT K: (3.13)

Recall from §1, for each m 2 ZC, the set of truncated arcs at z:

Xm D ¹' 2 X.CŒt �=t
mC1/ j f .'/ D tm mod tmC1 and '.0/ D zº;

which may be considered as a complexified variety over R with a natural ım-action. Tak-
ing real points gives rise to a real variety with a �2-action:

Xm.R/ D ¹' 2 X.RŒt �=t
mC1/ j f .'/ D tm mod tmC1 and '.0/ D zºI

we denote it by X1
m to emphasize the sign of tm. Note that X1

m ˝R C D Xm.

Proposition 3.16. The zeta function in (3.13) coincides with the classical one as in (1.1).

Proof. By Remark 3.14, the expression .� ı hm ı
R ˘
/.ŒX�/ 2 K Oı VarRŒŒA��1� makes

sense, and by Lemma 3.15, we have .� ı hm ı
R ˘
/.ŒX�/ D ‚. QXŒm�/. Notice that

Xm Š ¹' 2 X.CŒt
1=m�=t .mC1/=m/ j rv.f .'// D rv.t/ and '.0/ D zº:

So ‚. QXŒm�/ D ŒXm�ŒA��md . So the coefficients of Z1.T / can be recast as�
„ ı � ı hm ı

Z ˘ �
.ŒX�/ D „.ŒXm�ŒA�

�md / D ŒX1
m�ŒA�

�md : (3.14)

Remark 3.17. The �2-action on X1
m considered here is in general different from the one

in [16], where it is simply induced by t 7! �t form even. For instance, suppose that X is
the affine line, f is the square function, and z D 0. Then the �2-action given by „ on

X1
4 D ¹˙t

2
C bt3 C ct4 2 RŒt �=t5 j .b; c/ 2 R2º Š ¹x2 D 1º �R2

swaps any two elements of the form ˙t2 C ct4 and hence induces the unique nontrivial
�2-action on the first factor of ¹x2 D 1º � 0 �R, whereas the action induced by t 7! �t
is entirely trivial. Actually, the �2-action induced by t 7! �t corresponds to the dotted
route from K[; Oı VarR to K�2RVar in (3.5).

The motivic zeta function ZG.T / studied in [16] is shown to be a rational series (the
rational formula given therein needs to be revised, though) and hence one can take the
limit as T goes to infinity, as we shall do for Z1.T / below. Unfortunately, this process of
“taking the limit” kills off the �2-actions on the coefficients of ZG.T /, and consequently
the limit of ZG.T / does not actually carry any �2-action. In contrast, the limit of Z1.T /
often retains a �2-action and lives in K�2RVarŒŒA��1�.



Motivic integration and Milnor fiber 1641

There is the negative counterpart Z�1.T / of Z1.T /. Since the situation is the same,
we shall concentrate on the positive one and drop the qualifier “positive” from the termi-
nology. We do remark that, although complexification has seen success to some extent,
for instance, the result on the Euler characteristics in [29] or the fact that the involution
defined in Remark 3.5 exchanges Z1.T / and Z�1.T / (as observed in [17, Lemma 3.2]
for truncated arcs), it is unclear how the duality of “the positive” and “the negative” here
works.

Notation 3.18. Let
K�2RVarŒŒA��1�ŒT ��

be the localization of K�2RVarŒŒA��1�ŒT � with respect to the multiplicative family gen-
erated by the elements 1 � ŒA�aT b , where a 2 Z and b 2 ZC; it may be regarded as a
subring of K�2RVarŒŒA��1�JT K. Similarly for KRVarŒŒA��1�ŒT ��.

Applying the forgetful homomorphism ˆ in (3.5) termwise to the coefficients
ofZ1.T /, we obtain a zeta function NZ1.T /. It is shown in [15], using resolution of singu-
larities, that NZ1.T / belongs to KRVarŒŒA��1�ŒT ��. Letting “T go to infinity” as described
in [25, §8.4], we get a limit

NS1 WD � lim
T!1

NZ1.T / 2 KRVarŒŒA��1�; (3.15)

which is understood as the real motivic Milnor fiber of f . The following finer result is in
the same spirit.

Theorem 3.19. The zeta function Z1.T / belongs to K�2RVarŒŒA��1�ŒT �� and

S1 WD � lim
T!1

Z1.T / D

�
„ ı‚ ı E˘ ı

Z ˘�
.ŒX�/ 2 K�2RVarŒŒA��1�: (3.16)

The proof is the same as that of [20, Theorem 8.11], one only needs to insert “„” at
suitable places; this is left to the reader.

As pointed out in [20, Remark 8.14], we cannot really take the motivic Milnor fiber S1

of f in K�2RVar, at least not if S1 is viewed as something obtained through Z1.T /. On
the other hand, in light of Theorem 3.19 and Remark 2.10, we can forego the zeta function
point of view and recover S1 in K�2RVar directly as

Vol�2.ŒX�/ D
�
„ ı‚ ı Eb ı

Z �
.ŒX�/ D

�
„ ı‚ ı E˘ ı

Z ˘�
.ŒX�/:

Remark 3.20. The real nonarchimedean Milnor fiber X1 of f is the set X. QR/ of QR-
rational points of X. We can calculate S1 directly as Vol�2

QR
.ŒX1�/. This is sometimes

much simpler than working with the complex nonarchimedean Milnor fiber X; see Ex-
ample 3.22 below. The reason is that QR is real closed (and indeed o-minimal). This
additional structure gives rise to a variant of the Hrushovski–Kazhdan construction, which
we shall discuss in §4.



G. Fichou, Y. Yin 1642

Remark 3.21. By (2.6), the upper portion of (1.3) almost commutes if Eb is replaced
by Eg . At any rate, one can consider the homomorphism Vol�2g , using Eg instead of Eb ,
and attach Vol�2g .ŒX�/ to f directly. This gives Vol�2g .ŒX�/ D Vol�2.ŒX�/ŒA��d . On the
other hand, the work in [3] shows that the Bittner dual D.S1/ of S1 D Vol�2.ŒX�/ is
S1ŒA�1�d . So Vol�2g .ŒX�/ŒA� D D.S1/. We will explain in a future paper how to recover
these results around the Bittner duality without using the weak factorization theorem
of [1].

One cannot help but wonder if there is a more geometric interpretation of Vol�2g .ŒX�/,
on a par with that of the motivic Milnor fiber S1, and if their duality is actually a shadow
of some sort of cohomological duality (categorification). In the opposite direction, going
further down to the level of Euler characteristic, something definite can be said: see Corol-
lary 4.18.

Example 3.22. Consider the polynomial function f .x; y/ D x6 C x2y2 C y6 on the
affine plane and take z to be the origin. We decompose the real nonarchimedean Milnor
fiber X1 into the following sets in RV. QR/:

A D ¹y D 0º \ ¹rv.x6/ D rv.t/º; A0 D ¹x D 0º \ ¹rv.y6/ D rv.t/º;

B D ¹1 > val.y6/ > 1º \ ¹val.x2y2/ > 1º \ ¹rv.x6/ D rv.t/º;

B 0 D ¹1 > val.x6/ > 1º \ ¹val.x2y2/ > 1º \ ¹rv.y6/ D rv.t/º;

C D ¹val.x6/ D val.x2y2/ D 1º \ ¹rv.x6 C x2y2/ D rv.t/º;

C 0 D ¹val.x2y2/ D val.y6/ D 1º \ ¹rv.x2y2 C y6/ D rv.t/º;

D D ¹val.x6/ > 1º \ ¹val.y6/ > 1º \ ¹rv.x2y2/ D rv.t/º:

By symmetry, ŒA� D ŒA0�, ŒB� D ŒB 0�, and ŒC � D ŒC 0� in K VF QR. Observe that if we
work with the complex nonarchimedean Milnor fiber X then the first term in C should
be ¹val.x6/ D val.x2y2/ � 1º, but the only possibility for C in RV. QR/ is the indicated
condition because the leading terms of x6 and x2y2 cannot cancel in QR. This simplifies
the computation tremendously. In comparison, we shall perform a similar decomposition
in QC for a simpler polynomial (no mixed terms) in §5.

In terms of elements in K RES QRŒ��˝ K� QRŒ�� modulo .P � 1/, the integrals
R
QRŒA�,R

QRŒB�, and
R
QRŒC � work out at, respectively,

Œ¹x6 D rv.t/º� 2 K RES QRŒ1�;

Œ¹x6 D rv.t/º�˝ Œ.1=3;1/]� 2 K RES QRŒ1�˝K� QRŒ1�;

Œ¹.x; y/ 2 .1=6/] � .1=3/] j tbk.x6/C tbk.x2y2/ D 1º� 2 K RES QRŒ2�:

The assignment .x; y/ 7! .xy; y/ gives a definable bijection between D and

¹.x; y/ 2M2
j rv.x2/ D rv.t/ and 1=6 < val.y/ < 1=3º

and hence
R
QRŒD� works out at

Œ¹x2 D rv.t/º�˝ Œ.1=6; 1=3/]� 2 K RES QRŒ1�˝K� QRŒ1�:
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Since �b..1=3;1// D 0 and �b..1=6; 1=3// D �1, we get, in K�2RVar,

Vol�2
QR
.ŒX1�/ D 2Vol�2

QR
.ŒA�/C 2Vol�2

QR
.ŒB�/C 2Vol�2

QR
.ŒC �/C Vol�2

QR
.ŒD�/

D 2Œ¹x6 D 1º�C 2Œ¹x6 C x2y2 D 1º \G2
m� � ŒGm�Œ¹x

2
D 1º�

D 2Œ¹x6 C x2y2 D 1º� � ŒGm�Œ¹x
2
D 1º�; (3.17)

where the �2-action is given by .x; y/ 7! .�x; y/ for the first term and x 7! �x for the
second term. Then, applying the realization map ˇ�2 in Remark 3.11, we get

.ˇ�2 ı Vol�2
QR
/.ŒX1�/ D 2u � .u � 1/ D uC 1: (3.18)

If we forget the �2-action on Vol�2
QR
.ŒX1�/, it becomes 2Œ¹x6 C x2y2 D 1º� � 2ŒGm�

in KRVar. If we take further the virtual Poincaré polynomial then it becomes 0, since
¹x6 C x2y2 D 1º has the same virtual Poincaré polynomial as the unit circle minus two
points.

3.5. Concerning the virtual Poincaré polynomial

Let R be a real closed field. An R-variety is defined in the same way as a real variety, but
with R replaced by R. The corresponding category of R-varieties is denoted by RVar and
its Grothendieck ring by KRVar; we have seen the special case R D R in §3.2.

The virtual Poincaré polynomial is an invariant of RVar, which is defined in [30]. The
proof for its existence there relies on the weak factorization theorem of [1] and Poincaré
duality; the former is valid over any field of characteristic 0 and the latter is available for
singular homology of compact nonsingular real algebraic varieties with F2-coefficients.
Replacing singular homology with semialgebraic homology H sa with F2-coefficients
(see [8] or [4, §11.7]), Poincaré duality still holds (in the semialgebraic setting “com-
pact” means “closed and bounded”). Thus, the proof goes through almost verbatim for
RVar:

Theorem 3.23. There exists a unique homomorphism ˇR WKRVar!ZŒu� that assigns to
each compact nonsingularR-varietyX its Poincaré polynomial

P
i2N dimH sa

i .X;F2/u
i .

If R D R then we denote ˇR simply by ˇ as in Remark 3.11.

Remark 3.24. Let R! R0 be a real closed field extension. Let X be an R-variety. Then
the virtual Poincaré polynomial of the extension X.R0/ of X to R0 is equal to the virtual
Poincaré polynomial of X . Actually, for X compact and nonsingular, this follows imme-
diately from the invariance of semialgebraic homology under real closed field extension.
The general case follows from additivity, expressing the class of X in terms of classes of
compact nonsingular R-varieties via resolution of singularities.

Write Vol QR for the composition of Vol�2
QR

with the forgetful homomorphism K�2RVar

! KRVar. Since QRVar is a subcategory of VF QR, there is a natural homomorphism
K QRVar! K VF QR. Composing this with Vol QR and then the virtual Poincaré polynomial
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map ˇ, we obtain a homomorphism ˇlim WK QRVar!ZŒu�. Thus we have found two homo-
morphisms ˇlim, ˇ QR from K QRVar to ZŒu�.

Remark 3.25. Over the algebraic closure of a henselian discretely valued field, it is
shown in [32, Proposition 3.23] that the analogue of ˇlim, defined with the Hodge–Deligne
polynomial instead of the virtual Poincaré polynomial, gives the Hodge–Deligne polyno-
mial of the limit mixed Hodge structure associated with a variety. It would seem interest-
ing to also compare ˇlim with a similar map on limit structures, but such structures have
yet to be constructed in the real framework.

Also, the duality of Eb and Eg described in Remarks 2.11 and 3.21 yields another
homomorphism ˇlim

g W K QRVar! ZŒu�.

Lemma 3.26. For every compact smooth real variety X , Vol Oı.ŒX. QC/�/ D ŒX.C/� in
K Oı VarR and hence Vol�2

QR
.ŒX. QR/�/ D ŒX� in K�2RVar .

Proof. Let n be the dimension of X and choose a quasi-finite morphism f W X ! An

over R. Set X D .X.C/; f /, which is treated as an object of RESŒn�. Then we have
ŒX.C/� D ‚.Eb.ŒX �// in K Oı VarR. Thus, for the first clause, it is enough to showR
ŒX. QC/� D ŒX �=.P � 1/. This is essentially the content of [24, Lemma 13.3(2)], and the

same proof works almost verbatim (the function f needs to be adjusted so as to become
piecewise étale). The second clause is immediate from (3.1) and (3.8).

Combining this lemma with Remark 3.24, we get the following equality:

Corollary 3.27. For any real algebraic variety X ,

ˇlim.ŒX. QR/�/ D ˇ.ŒX�/ D ˇ
QR.ŒX. QR/�/:

However, the two homomorphisms do not coincide in general. Here is a counterex-
ample:

Example 3.28. Consider the polynomial f .x; y/D x6 C x2y2 C y6 again. Let X � QR2

be the QR-variety given by the equation f .x; y/ D t . Observe that we actually have
X �M. QR/2 and hence X is closed and bounded.

For any t 0 2 VF with rv.t 0/ D rv.t/, there is an immediate automorphism � of QC
over R with �.t 0/ D t , where “immediate” means that � fixes RV pointwise. Therefore,
changing t to t 0 in the definition of X does not change the value

R
ŒX. QC/�. It follows from

compactness that Z
ŒX� D

Z
Œrv.t/]�

Z
ŒX. QC/� D Œ1�

Z
ŒX. QC/� (3.19)

and hence, by (3.1),
R
QRŒX

1� D Œ1�
R
QRŒX�, where again X, X1 are the complex and real

nonarchimedean Milnor fibers associated with f .
Now, since X is nonsingular and has only one connected component, it follows that

ˇ
QR.ŒX�/ D 1C u. On the other hand,

.ˇ ı Vol QR/.ŒX
1�/ D .ˇ ı Vol QR/.ŒX�/ D ˇ

lim.ŒX�/:
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The expression Vol QR.ŒX
1�/ may be understood as the motivic Milnor fiber NS1 of f in

(3.15), taken in KRVar. The computation towards the end of Example 3.22 shows that its
virtual Poincaré polynomial is 0. So ˇlim.ŒX�/ ¤ ˇ

QR.ŒX�/.

4. In T -convex valued field

It is also shown in [25, §8] that one can recover, in a localization of K O� VarCŒA�1�, the
motivic zeta function and then the motivic Milnor fiber S of f from its nonarchimedean
Milnor fiber X. In [25, Remark 8.5.5], these results yield a proof, without using reso-
lution of singularities but still using other sophisticated algebro-geometric machineries,
that the Euler characteristic of S equals that of the topological Milnor fiber of f (whether
finer invariants such as the Hodge–Deligne polynomial can be recovered in this way is
still unknown). In this section, we aim to prove this equality and its real analogue using
a geometric argument at the level of T -convex sets instead. Moreover, as is already men-
tioned in Remark 2.8, in the real environment, the difference between the bounded and
the geometric Euler characteristics in the �-sort is manifested as an equality relating the
Euler characteristics of the closed and the open topological Milnor fibers.

4.1. The universal additive invariant

We first summarize the main result of [34]. To begin with, let T be a complete polynomi-
ally bounded o-minimal LT -theory extending the theory RCF of real closed fields. It is
not necessary in [34], but here we assume that R is a T -model. Let R WD .R; <; : : :/ be
a nonarchimedean T -model containing R and O � R be the convex hull of R. Then O is
a proper T -convex subring of R in the sense of [13], that is, O is a convex subring of R

such that, for every definable (no parameters allowed) continuous function f WR!R, we
have f .O/ � O. According to [13], the theory Tconvex of the pair .R;O/, suitably axiom-
atized in the language Lconvex that extends LT with a new unary relation symbol, is com-
plete. We further assume that T admits quantifier elimination and is universally axioma-
tizable, which can always be arranged through definitional extension. Then Tconvex admits
quantifier elimination too. It also follows that R is an elementary LT -substructure of R.

We may also view R as an LRV-structure. To construct Hrushovski–Kazhdan style
integrals in this environment, however, we need to work with a different language, which
extends LRV. Since 1CM is a convex subset of R�, the total ordering on R� induces
a total ordering on RV. This turns RV into an ordered group and k into an ordered field.
By the general theory of T -convexity, there is a canonical way of turning k further into
a T -model, which is isomorphic to the T -model R, with the isomorphism given by the
residue map res. Let kC be the set of positive elements of k (similarly for other totally
ordered sets with a distinguished element), which forms a convex subgroup of RV.

Notation 4.1. Denote the quotient map RV! � WD RV =kC by vrv. The composition
val WD vrv ı rv W R� ! � is referred to as a signed valuation map. The corresponding
value group is a “double cover” of the traditional value group. Consequently, the Euler
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characteristics, still denoted by �g and �b , are slightly different from the ones in [20,
Remark 4.2].

All of this structure can be expressed in a two-sorted first-order language LTRV, in
which R is referred to as the VF-sort and RV is taken as a new sort. The resulting theory
TCVF (see [34, Definition 2.7]) is complete and weakly o-minimal, and admits quantifier
elimination. Informally and for all practical purposes, the language LTRV may be viewed
as an extension of the language Lconvex.

Example 4.2. If T D RCF then we can turn QR into a model of TCVF, with signed valua-
tion, as follows. First note that rv is just the leading term map described in Example 2.12,
and we may identify RV with Q˚R�. Then the ordering on RV is the same as the lexi-
cographic ordering on Q˚RC or Q˚R� (but not both of them together due to the issue
of sign). The quotient group � D .Q˚R�/=RC is naturally isomorphic to the subgroup
˙eQ WD eQ [�eQ of R�, where e D exp.1/, so that Q is identified with eQ via the map
q 7! eq . Adding a new symbol1 to RV, we now interpret QR as an LTRV-structure, with
the signed valuation given by

x 7! rv.x/ D .q; aq/ 7! sgn.aq/e�q;

where sgn.aq/ is the sign of aq . It is also a model of TCVF: all the axioms in [34, Defi-
nition 2.7] are more or less immediately derivable from the valued field structure, except
(Ax. 7), which holds since RCF is polynomially bounded, and (Ax. 8), which follows
from [13, Proposition 2.20].

Henceforth we assume T D RCF and work in the TCVF-model QR, with all parameters
allowed. The reason that here all parameters are allowed is that we really gain nothing
by restricting to S D R..t// since, as has been remarked at the beginning of §3.1, every
element in QR is definable over R..t//.

The categories VFŒk�, RVŒk�, RESŒk�, and RES are defined as before. Of course all
notions are now formulated relative to TCVF, in particular, “definable” means “LTRV-
definable,” and so on. To distinguish them from the previous similar-looking categories,
we shall write TVFŒk�, TRVŒk�, TRESŒk�, and TRES instead.

The �-categories contain subtle differences, though.

Definition 4.3 (T�-categories). The objects of the category T�Œk� are the finite disjoint
unions of definable subsets of �k . Any definable bijection between two such objects is
a morphism of �Œk�. The category T�finŒk� is the full subcategory of T�Œk� such that
I 2 T�finŒk� if and only if I is finite.

Every T�Œk�-morphism is definably a piecewise GLk.Q/-transformation; compare
with [20, Remark 3.15].

Observe that K T�finŒk� is naturally isomorphic to Z for all k and hence K T�finŒ��

Š ZŒX�. There is still a K T�finŒ��-linear map

‰T W K TRESŒ��˝K T�finŒ�� K T�Œ��! K TRVŒ��;

which is an isomorphism of graded rings.
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Remark 4.4 (Explicit description of K TRES). The semiring KC TRES is actually gen-
erated by isomorphism classes ŒU � with U a set in kC. We have the following explicit
description of KC TRES. Its underlying set is .0 �N/ [ .NC � Z/, where the first coor-
dinate indicates the dimension and the second the o-minimal Euler characteristic. For all
.a; b/; .c; d/ 2 KC TRES,

.a; b/C .c; d/ D .max ¹a; cº; b C d/; .a; b/ � .c; d/ D .aC c; b � d/:

The dimensional part is lost in the groupification K TRES of KC TRES, that is, K TRES
Š Z, which is much simpler than KC TRES.

The elements Œ1�, P , and ŒA� in K TRVŒ��, the lifting map L, and the semiring con-
gruence relation Isp are also defined as before.

Proposition 2.7 still holds in the current environment:

Proposition 4.5 ([34, Proposition 4.24]). There are two ring homomorphisms

ETg W K TRVŒ��! K TRES Š Z and ETb W K TRVŒ��! K TRES Š Z

such that

� P � 1 vanishes under both of them,

� for all x 2 K TRESŒk� and all y 2 K T�Œl�,

ETg .x ˝ y/ D .�1/
k�g.y/x and ETb .x ˝ y/ D .�1/

l�b.y/x:

where x ˝ y stands for the element .‰T /�1.x ˝ y/ 2 K TRVŒ��.

We can also write the last two equalities in a form that is not simplified so as to
make the similarity to Proposition 2.7 apparent (the classes are replaced by their Euler
characteristics in the residue field):

ETg .x ˝ y/ D �g.y/x.�1/
l .�1/�.kCl/ and ETb .x ˝ y/ D �b.y/x.�1/

l1�.kCl/:

Note that �1 in the expression .�1/l is the Euler characteristic of the half-torus (think
of RC), not the torus (think of R�); this is related to the use of a signed valuation map
(see Notation 4.1). Both ET

b
and ETg will be relevant to our construction below.

Theorem 4.6 ([34, Theorem 5.40]). For each k � 0 there exists a canonical isomorphism
of semigroups Z T

C

W KC TVFŒk�! KC TRVŒ�k�= Isp

such that
R T
C
ŒA� D ŒU �= Isp if and only if ŒA� D ŒLU �. Passing to the colimit yields a

canonical isomorphism of semiringsZ T

C

W KC TVF� ! KC TRVŒ��= Isp :
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Theorem 4.7. There are a generalized Euler characteristic and two specializations to Z:

�Tg ; �
T
b W K TVF�

R T
��! K TRVŒ��=.P � 1/

ETg
��!
��!
ET
b

K TRES Š Z:

Example 4.8. Let us compute the images of ŒM� under these two generalized Euler char-
acteristics. To begin,

R T
ŒM� D Œ1�=.P � 1/. Since Œ1�C ŒA� D 0 in K TRESŒ1�, we have

�Tg .ŒM�/ D Œ1�ŒA��1 D �1 2 .K TRESŒ��ŒŒA��1�/0 Š K TRES:

Similarly �T
b
.ŒM�/ D 1 in .K TRESŒ��ŒŒ1��1�/0 Š K TRES. Thus �Tg .ŒM

C�/ D �1 and
�T
b
.ŒMC�/D 0. It follows that, for any interval .0; a� with a 2 RC, by additivity, we have

�Tg .Œ.0; a� XMC�/ D 1 and �Tb .Œ.0; a� XMC�/ D 0:

Remark 4.9. We can relate the isomorphism in Theorem 4.6 to the “purely algebraic”
isomorphism in Theorem 2.4 via the following commutative diagram, extending (3.1)
with M D QR:

K TVF� K TRVŒ��=.P � 1/
R T

//

K VF QR

K TVF�
��

K VF QR K RV QRŒ��=.P � 1/
R
QR // K RV QRŒ��=.P � 1/

K TRVŒ��=.P � 1/
��

K TRVŒ��=.P � 1/ K TRES
ET
b //

K RV QRŒ��=.P � 1/

K TRVŒ��=.P � 1/

K RV QRŒ��=.P � 1/ ŠK RES QR
E
b; QR

// ŠK RES QR

K TRES
��

(4.1)

where the vertical arrows are all induced by the subcategory functors. If E
b; QR, ET

b
are

replaced by E
g; QR, ETg then the diagram still commutes, and extends (3.1) with Eg , E

g; QR

instead of Eb , E
b; QR.

4.2. Link with the topological Milnor fiber

Denote by DefT the category of LT -definable sets and LT -definable bijections. So DefT
is a subcategory of TVF� and we have an induced homomorphism

i W K DefT ! K TVF�:

Let � W K DefT ! Z be the o-minimal Euler characteristic, which is an isomor-
phism; see [12]. On the other hand, K DefT is also canonically isomorphic to K TRES
(Remark 4.4). Since �, �Tg ı i , and �T

b
ı i all agree on the class of the singleton ¹1º, they

must be equal.

4.2.1. The real case. In semialgebraic geometry, the Borel–Moore homology is defined
for locally compact semialgebraic sets and satisfies a long exact sequence, which gives
rise to an additive and multiplicative Euler characteristic �BM . It is equal to the Euler
characteristic of the singular cohomology with compact supports, also only defined for
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locally compact semialgebraic sets. One can compute �BM on a cell decomposition, and
the formula obtained can be used to extend the definition of �BM to any semialgebraic
set; see [7, §1.8]. Consequently, �BM coincides with � (this holds in general for any
o-minimal theory, but we do not know a reference that contains a complete account of it).

Remark 4.10. The Euler characteristic coming from, say, the singular cohomology on
semialgebraic sets, is not additive in general. It is however the case if one restricts to
varieties over C, for which it actually coincides with �BM .

Notation 4.11. LetX , f , and z be as in §3.4. Recall that the (positive) closed topological
Milnor fiber is instantiated by LT -definable sets (in R) of the form

NFa;r D ¹x 2 X.R/ j kx � zk � r and f .x/ D aº; 0 < a� r � 1;

where k � k W VFd ! VF denotes the Euclidean norm restricted to R. The (positive) open
topological Milnor fiber is similarly instantiated by LT -definable sets Fa;r , but with
kx � zk � r replaced by kx � zk < r .

Fix a t 2MC. For each r 2VFC, the set NFr is defined as NFa;r , but withX.R/ replaced
by X.VF/ and a by t (since t does not vary anymore, we drop it from the notation);
similarly for Fr . So NFr is the topological closure of Fr . Let @ NFr be the boundary of NFr ,
that is,

@ NFr D NFr X Fr D ¹x 2 X.VF/ j kx � zk D r and f .x/ D tº:

Set F D
T
r2UC

NFr D
T
r2UC

Fr , where U D O XM, or equivalently,

F D ¹x 2 X.O/ j kx � zk 2M and f .x/ D tº:

Since O is the convex hull of R, we can also write F D
T
r2RC

NFr D
T
r2RC Fr . Note

that F is definable but is in general not LT -definable.

Proposition 4.12. The o-minimal Euler characteristic �.Œ NFa;r �/ of the closed topological
Milnor fiber is equal to �T

b
.ŒF �/. Similarly, for the open topological Milnor fiber Fa;r ,

we have �.ŒFa;r �/ D �Tg .ŒF �/.

The proof essentially consists of the following two lemmas.

Lemma 4.13. If r 2 UC is sufficiently small then, in K TVF�,

ŒF � D Œ NFr � � Œ.0; r� XMC�Œ@ NFr � D ŒFr � � Œ.0; r/ XMC�Œ@ NFr �:

Proof. The second equality is clear. For the first equality, we shall think of the LT -defin-
able subset A D

S
r2VFC r � @

NFr of VF�VFd as a fibration over VFC. By o-minimal
trivialization (see [12, §9.2.1]), there exists an interval Œa; b� � VFC such that the sets
Œa; b�\M, Œa; b�XM are both nonempty and the fibration A is LT -definably trivial over
Œa; b�, that is, there is an LT -definable homeomorphism

h W Œa; b� � @ NFb !
[

r2Œa;b�

r � @ NFr ;
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compatible with the projections onto Œa; b�. Now, by additivity, it suffices to compute
Œ NFb X F � in KTVF�. Since h induces a definable bijection between NFb X F and the
product ..0; b� XMC/ � @ NFb , the desired equality follows.

Lemma 4.14. �.Œ NFa;r �/ D �.Œ NFr �/ and �.ŒFa;r �/ D �.ŒFr �/.

Note that all the occurrences of � here stand for the o-minimal Euler characteristic,
but on one side of the equality it is taken in R, and in R on the other side.

Proof of Lemma 4.14. Considering NFa;r as a definable set in R, it has the same Euler
characteristic (since any cell decomposition in R is also a cell decomposition in R) and,
by o-minimal trivialization, there is a t 0 2MC such that �.Œ NFa;r �/ D �.Œ NF 0r �/, where NF 0r
is defined as NFr but with t replaced by t 0. Since t , t 0 make the same cut in R, there is
an automorphism of R over R mapping NFr to NF 0r . The first equality follows. The second
equality is similar.

Proof of Proposition 4.12. By Lemma 4.14, we may show �T
b
.ŒF �/ D �.Œ NFr �/ and

�Tg .ŒF �/ D �.ŒFr �/ instead. This is immediate by Example 4.8 and Lemma 4.13.

Recall the (positive) nonarchimedean Milnor fiber X1 from Remark 3.20, which, in
the presence of the Euclidean norm, may now be written as

¹x 2 X.O/ j kx � zk 2M and rv.f .x// D rv.t/º:

Theorem 4.15. We can recover the Euler characteristics of the closed and the open topo-
logical Milnor fibers by applying �T

b
, �Tg to X1. More precisely,

�Tb .ŒX
1�/ D �.Œ NFa;r �/ and �Tg .ŒX

1�/ D ��.ŒFa;r �/:

This follows from the following equality:

Lemma 4.16. In K TRVŒ��=.P � 1/,
R T
ŒX1� D Œ1�

R T
ŒF �.

Proof. The argument has already been given in Example 3.28. In the current setting, the
immediate automorphisms in question are provided by [34, Lemma 2.22].

Proof of Theorem 4.15. Since ET
b
.Œ1�/D 1 and ETg .Œ1�/D�1, this is immediate by Lem-

ma 4.16 and Proposition 4.12.

Remark 4.17. Composing the two diagrams (3.1), (4.1) together, we recover the real
motivic Milnor fiber of f as Vol QR.ŒX

1�/ (this is not written Vol�2
QR
.ŒX1�/ as suggested in

Remark 3.20 because all parameters are allowed in the current setting, which kills all the
�2-actions) and its Euler characteristic as �T

b
.ŒX1�/. In parallel with [25, Remark 8.5.5],

the latter, by the preceding discussion, is equal to the (Borel–Moore) Euler characteristic
of the closed topological Milnor fiber of f . This result has been previously obtained in
[6, Theorem 4.12], whose method involves heavy dosage of resolution of singularities.
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We have also recovered the Euler characteristic of the open topological Milnor fiber
of f (up to sign) from X1 (for another method, see [6, Remark 4.10]), but this hap-
pens solely in the T -convex environment and, unlike the closed topological Milnor fiber,
whether it comes from a geometric object, dual to Vol QR.ŒX

1�/ in some sense, or not, is
unclear; see Remark 3.21. The following equality might be a faint trace of this perceived
duality.

Corollary 4.18. �.Œ NFa;r �/ D .�1/d�1�.ŒFa;r �/.

Proof. This is immediate from (2.6) and Theorem 4.15.

This result has also been obtained in [6, Theorem 4.4]. It would be very interesting to
categorify this equality, that is, to lift it to one between homology groups. One conceivable
way to do this, as suggested by the work in [19], is to develop a sort of homology theory
for definable sets in QR, or in QC, which might also shed light on the mystery alluded to in
Remark 3.21. The existence of such a theory, however, is purely hypothetical.

Example 4.19. Consider the polynomial function f .x; y/ D xpyq on the affine plane,
where p;q 2 ZC, and take z to be the origin. LetmD gcd.p; q/. Without loss of general-
ity, p=m is odd. Then the assignment .x; y/ 7! .xp=myq=m; y/ gives a definable bijection
between X1 and

¹.x; y/ 2M2
j rv.xm/ D rv.t/ and 0 < val.y/ < 1=qº;

which means that the integral
R
QRŒX

1�=.P � 1/ works out at

Œ¹xm D rv.t/º�˝ Œ.0; 1=q/]� 2 K RES QRŒ1�˝K� QRŒ1�:

So, in KRVarŒŒA��1�, we have

Vol QR;b.ŒX
1�/ D �ŒGm�Œ¹x

m
D 1º� and Vol QR;g.ŒX

1�/ D �ŒGm�Œ¹x
m
D 1º�ŒA��2;

where the extra letters in the subscripts indicate which Euler characteristic is being used.
Set m0 D 1 if m is odd and m0 D 2 if m is even. Then �T

b
.ŒX1�/ D 2m0 is the Euler

characteristic of the closed topological Milnor fiber and ��Tg .ŒX
1�/ D �2m0 is the Euler

characteristic of the open topological Milnor fiber.

The last vertical arrow in (4.1) and ‚ QR in (3.7) (forgetting the �2-actions) induce a
homomorphism

KRVarŒŒA��1� Š ŠK RES QRŒŒA�
�1�! K TRES Š Z;

which is just the semialgebraic Euler characteristic. Applying it termwise to the coeffi-
cients of the zeta function as defined in (3.13), but using „R ı ˆ instead of „ (recall
(3.5)), we obtain a power series Ztop.T / in ZJT K. This series is, up to sign, the positive
topological zeta function considered in [26]. In more detail, for each m � 1, let XCm be
the following set of truncated arcs at z:

¹' 2 X.RŒt �=tmC1/ j f .'/ D atm mod tmC1 with a 2 RC and '.0/ D zº:
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Proposition 4.20. Ztop.T / D �
P
m�1.�1/

md�.XCm /T
m 2 ZJT K.

Proof. Since the map XCm!RC given by ' 7! a is a trivial fibration by [26, Remark 1.1],
we have �.XCm / D �.R

C/�.X1
m/. So the equality follows from (3.14).

4.2.2. The complex case. We may consider the complex geometry in QC over C..t// in
the TCVF-model QR, since there is an interpretation, in the model-theoretic sense, of the
LRV-structure QC in the LTRV-structure QR; this is just a fancy way to say that, after fixing a
square root

p
�1, QC may be identified with QR2, C..t// with R..t//2, RV. QC/ with RV. QR/2,

and so on.

Example 4.21. We think of c 2 QC as aC
p
�1b but write it simply as a pair .a; b/ 2 QR2;

also denote a by <c and b by =c. Let g; h 2 CŒx1; : : : ; xn�. Then the definable set

¹c 2 QCn
j valf .c/ � valg.c/º DW ¹valf � valgº

can also be described as the union of the following two subsets of QR2n:

¹val<f � val<gº \ ¹val<f � val=gº; ¹val=f � val<gº \ ¹val=f � val=gº:

Thus, definable sets in QC may be regarded as definable sets in QR. Let VF�, RVŒ��, etc.,
be the categories in [20, §3] with S D C..t//. Then there is an induced faithful functor
VF� ! TVF�, which in turn yields a homomorphism DVF W K VF� ! K TVF�.

For the pair of RV-categories RVŒ�� and TRVŒ��, although a similar functor is avail-
able, we need to be more careful since these categories are graded. To illustrate the
concern, consider the object RV1. QC/D RV1. QR/2. Since the real line . QR; 0/� QC and the
imaginary line .0; QR/ � QC have only one nonzero coordinate, this object has nonempty
components in all of the three categories TRVŒ0�, TRVŒ1�, and TRVŒ2�. This interpre-
tation leads to an issue since, for instance, the complex points .1; 0/ and .1; 1/ should
certainly be isomorphic objects, but they cannot be since they do not even belong to the
same graded piece.

To resolve this issue, we can work with a dimension-free version of K RVŒ��, namely
the zeroth graded piece .K RVŒ��ŒŒ1��1�/0 of K RVŒ��ŒŒ1��1�. This ring is indeed isomor-
phic to K RV�, where RV� is the category of definable sets and bijections in RV, and
can also be obtained from RVŒ�� by forgetting f in .U; f / 2 RVŒ��. There is the for-
getful epimorphism K RVŒ�� ! K RV�. The pushforward ideal of .P � 1/ along this
epimorphism is still denoted as such. It follows from the construction of Eb that there is
a homomorphism

Eb� W K RV� =.P � 1/! ŠK RES

whose composition with the epimorphism

K RVŒ��=.P � 1/! K RV� =.P � 1/

is Eb . All this also applies to K TRVŒ��, K TRV�, and K TRES, and the corresponding
homomorphism is denoted by ET

b�
. Since, in K TRV�, we have

Œ.1; 1/� � ŒRVıı1. QC/� D 1 � ŒRVıı1. QR/�
2
D 1 � .2 �P/2 D .P � 1/.3 �P/;
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the ideal .P � 1/ of K RV� is included in the eponymous ideal of K TRV�.

K VF� K RV� =.P � 1/// K RV� =.P � 1/ ŠK RES//

K RVŒ��=.P � 1/

K VF�

44R K RVŒ��=.P � 1/

K RV� =.P � 1/
��

K RVŒ��=.P � 1/

ŠK RES

Eb

**

K TVF� K TRV� =.P � 1/
R T
� //

K VF�

K TVF�

DVF

��

K VF� K RV� =.P � 1/R � // K RV� =.P � 1/

K TRV� =.P � 1/
��

K TRV� =.P � 1/ K TRES
ET
b� //

K RV� =.P � 1/

K TRV� =.P � 1/

DRV

��

K RV� =.P � 1/ ŠK RES
E�
b

// ŠK RES

K TRES

DRES

��

K TVF� K TRV� =.P � 1///K TVF�

K TRVŒ��=.P � 1/

R T
**

K TRV� =.P � 1/ K TRES//K TRV� =.P � 1/

K TRVŒ��=.P � 1/

OO
K TRES

K TRVŒ��=.P � 1/

44

ET
b

(4.2)

In conclusion, we have a commutative diagram (4.2). Similarly, (4.2) still commutes if
Eb , E�

b
, etc., are replaced by Eg , E�g , etc.

Remark 4.22. Since DRES.Œk. QC/�/D Œk. QR/�2 D 1 in K TRES, we may, in (4.2), replace
ŠK RES with ŠK RES =.ŒA� � 1/. This has the effect of equalizing Eb , Eg (see [20,
Remark 4.4]) and thence the upper portions of the two versions of (4.2). So there is only
one homomorphism from KVF� to KTRESŠZ, in other words, �T

b
ıDVFD �

T
g ıDVF;

denote it by �C . This is perhaps another manifestation of the phenomenon alluded to in
Remark 4.10.

Let X , f be defined over C and z a C-rational point. In light of the complex ver-
sion of (3.16) (see [20, Remark 8.14]), the motivic Milnor fiber S of f may be taken
as .‚ ı Eb ı

R
/.ŒX�/ 2 K O� VarC , where X is the nonarchimedean Milnor fiber of f as

defined in (3.12).
Now, we proceed to recover the result in [25, Remark 8.5.5]. The sets NFa;r , NFr , @ NFr ,

and F are defined as in Notation 4.11, but with X.R/ replaced by X.C/ and X.VF/
by X. QC/. Then the computations in the real case still go through almost verbatim. In
K TVF�, we still have, for all sufficiently small r 2 UC,

ŒF � D Œ NFr � � Œ.0; r� XMC. QR/�Œ@ NFr �:

Thus �T
b
.ŒF �/ D �.Œ NFr �/. On the other hand, since �.@ NFr / D �.@Fa;r / D 0 (the smooth

compact complex manifold @Fa;r is of odd dimension), �Tg .ŒF �/D �.Œ NFr �/ as well. Now,
observe that, in the present setting,Z T

ŒX� D Œ1�2
Z T

ŒF � 2 K TRVŒ��=.P � 1/;

and hence it makes no difference which one of the generalized Euler characteristics
�Tg , �T

b
is used to relate X and F .

Theorem 4.23. The Euler characteristic of the topological Milnor fiber of f is equal to
�T
b
.ŒF �/ and �Tg .ŒF �/, which in turn are equal to �C.ŒX�/.
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To see that this is indeed the result in [25, Remark 8.5.5], we need to show that
�C.ŒX�/ D .DRES ı‚

�1/.S/ D �c.S/, where �c is the homomorphism

K O� VarC ! K VarC ! K VarC =.ŒA� � 1/! Z

with the last arrow given by the compactly supported Euler characteristic, see [25, (5.5.2)].
Since both DRES ı ‚

�1 and �c are induced by the topological Euler characteristic of
varieties over C, they must be equal.

5. Thom–Sebastiani formula

Let X be a smooth connected variety and f , g nonconstant morphisms from X to the
affine line, all defined over C. In this section we aim to establish a local motivic Thom–
Sebastiani formula for composite morphisms on X of the form h.f; g/, where h.x; y/ is
a polynomial of the form

yN C
X
2�{�`

xm{ ; m2 � N � m3 � � � � � m`I

here we may rename N as m1, but it plays a special role and hence is denoted differently.
The actual condition we shall assume is somewhat weaker than this (see Hypothesis 5.35).

5.1. Combinatorial data and Galois actions of the torus

The said formula expresses the motivic Milnor fiber of h.f; g/ as a sum of (iterated)
motivic Milnor fibers of morphisms derived from f , g and their convolution products.
Before diving into technicalities, we first describe how the various terms in the sum are
singled out based on certain combinatorial data that is read off from the tropical curve of
h.x; y/.

Consider the planes in .QC/3 defined by the following equations: z D 1, z DNy, and
z Dm{x for 2 � { � `. The points with the lowest z-coordinates on these planes form the
surface of a convex polyhedron whose edges are the pairwise intersections of the three
planes z D 1, z D Ny, and z D m2x. The tropical curve H of h.x; y/ is the orthogonal
projection of these edges in the .x; y/-plane. Thus, H consists of two rays H1, H2 and a
line segmentH3, all emanating from the point .1=m2; 1=N /; see Figure 1 (left). BothH1
and H2 contribute a term of (iterated) motivic Milnor fiber to the formula.

For the other terms, we need to examine the vertical rectangular pane P � .QC/3 of
height 1 standing on the line segment H3; see Figure 1 (right). For each 2 � { � `, let
˛{ D 1=m{ and ˇ{ Dm2=.Nm{/. Each plane z Dm{x intersects P along the oblique line
segment connecting .0; 0; 0/ and .˛{ ; ˇ{ ; 1/ in .QC/3. Let L{ � .QC/2 be the open line
segment between the two points .˛{ ;ˇ{/ and .˛{C1;ˇ{C1/, where we set ˛`C1Dˇ`C1D 0.
Then:
� Each point .˛{ ; ˇ{/ with { > 2 contributes a term of (iterated) motivic Milnor fiber.
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.0; 0/ x

y

1
N

1
m2

.0; 0/ . 1m2
; 1
N
/

H2

H1

H3

.˛`; ˇ`/ .˛4; ˇ4/. . . .˛3; ˇ3/

L` L`�1 L4 L3 L2. . .

Fig. 1. The tropical curve H of h.x; y/ and the vertical rectangular pane P of height 1 on the line
segment H3.

� For each { � 2, the sequence of points above .˛{ ; ˇ{/ that lie on the oblique line seg-
ments contribute another term.
� So do the corresponding open line segments that lie over L{ .
These last two terms are jointly referred to as a term of convolution product.

Remark 5.1. In this section, we choose to work with varieties over C with Gm-actions
instead of O�-actions. This corresponds to working in the ACVF-model QC with S D
C [ Q. Now, although � Š Q is only a definable sort of QC (see Remark 2.1), the
Hrushovski–Kazhdan integration theory still goes through. This is not explicitly stated
in [24] but is included in the more general assumption of “effectiveness” there; in [33]
and its sequels, val.VF.S// is assumed to be nontrivial, but this is merely for convenience
and is by no means an essential requirement. Note that Q will become redundant if any
additional parameters from, say, M. QC/ or RVıı. QC/ are used, since then every element
in Q is definable.

Let z 2 f �1.0/ be a C-rational point. As before, since the discussion below will be
of a local nature, we may assume that X is affine (hence a definable subset of VFn for
some n) and, without loss of generality, zD 0. WriteX \Mn asX.M/. We shall consider
definable sets of the form

X]
 D ¹x 2 X.M/ j val.f .x// D º;  2 �CI

for simplicity, X
]
1 will just be written as X], which is of primary interest, and the restric-

tion f�X]
 as X

]
 (this will become a general notational scheme below). For each u 2 RV

and each a 2 u] � VF, let

Xa D ¹x 2 X.M/ j f .x/ D aº and Xu D ¹x 2 X.M/ j rv.f .x// D uº;

which are a-definable sets; so Xrv.t/ is just the set called the nonarchimedean Milnor fiber
of f above. The following equality relating

R
ŒXu� and

R
ŒXa� generalizes (3.19), and will

be used frequently (and often implicitly); the argument for it is the same as the one given
thereabout.
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Lemma 5.2.
R
ŒXu� D Œ1�

R
ŒXa�.

For each a 2 C�, there is an automorphism C..t//! C..t// sending t to at . Thus,
there is a subgroup of Gal.C..t//=C/ that may be identified with C�; the preimage of C�

along the canonical surjective homomorphism

Gal. QC =C/! Gal.C..t//=C/

is denoted by O� . We have O� Š limn C�n , where each C�n is just a copy of C� and the
transition morphisms are the same as in the limit O� D limn �n; so for each n there is a
canonical epimorphism �n W O� ! C�n , which is a part of the limit construction (in the cat-
egory of groups, say). More concretely, the elements in O� may be identified as sequences
Oa D .an/n of nth roots of a, a 2 C�, satisfying an

kn
D ak . Such an element acts on QC by

Oa � t1=n D ant
1=n. We have a short exact sequence

1! O�! O� ! C� ! 1:

This sequence does not split, though.

Remark 5.3. Here is a different perspective on O� . By the structural theory of valued
fields, an element � 2 Gal. QC =C..t/// is in the ramification subgroup if and only if it
fixes RV pointwise (see [14, Lemma 5.3.2]). But it can be easily checked that every
� 2 Gal. QC =C..t/// moves some element of RV unless � D id. So Gal. QC =C..t/// Š O�
may be identified with Aut.RV =RV.C..t////, where RV.C..t/// is equal to the subgroup
of RV generated by rv.t/ over k�.

For each u 2 k�, there is an automorphism Aut.RV =k�/ sending rv.t/ to u rv.t/;
observe that an automorphism in Aut.RV =k�/ fixes � Š RV =k� pointwise if and only
if it is of this form. So O� may also be identified with a subgroup of Aut.RV =k�/, namely
Aut.RV =k� [Q/.

Remark 5.4. From yet a different perspective, recall from Remark 3.6 that there exists
a natural bijection between O� and the set of reduced cross-sections csn W Q! RV with
csn.1/D rv.t/ in QC. Of course this is still the case if we change rv.t/ to any other element
of the form u rv.t/, u 2 k�. Consequently, we may identify O� with the set of all such
reduced cross-sections.

Since every reduced cross-section csn determines a reduced angular component
ac W RV ! k� via the assignment u 7! tbk.u/, and conversely, every reduced angular
component ac determines a reduced cross-section csn with csn.Q/ D ac�1.1/, we see
that O� may also be identified with the set of all such reduced angular components.

Intuitively, as we have seen above, all this is just saying that if any reduced angular
component or reduced cross-section is chosen and added to the structure of RV then we
have an intrinsic isomorphism RV Š k� ˚ Q, and hence if both k� and Q are fixed
pointwise then RV has no symmetries left other than the trivial one.

Remark 5.5. Similar to the case S D C..t//, elements in ŠK RES now carry good
O� -actions, that is, those O� -actions that factor through some �n and hence may be con-
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sidered as Gm-actions. To emphasize this and to distinguish it from the similar ring with
good O�-actions, we shall denote ŠK RES by ŠK O� RES over S D C [Q and by ŠK O� RES
over S D C..t//.

An action of an algebraic group G on a variety Y , all defined over C, is good if every
orbit is contained in an affine open subset of Y . If G is finite and Y is quasi-projective
then this condition always holds, which is why we have not brought it up until now.

From here on, only good Gm-actions – in both senses when applicable – will be con-
sidered, and hence we will drop the qualifier “good” from the terminology altogether.

Definition 5.6. Let Y be a variety over C with a Gm-action h. We say that h is n-
weighted, for some n 2 ZC, if there is a morphism � W Y ! Gm such that �.c � y/ D
cn�.y/ for all c 2 Gm and all y 2 Y . We also say that h is 0-weighted if it is trivial, and
the only witness to this is the morphism Y ! 1. Observe that if there is a Gm-equivariant
isomorphism between .Y; h/ and .Y 0; h0/ then h is n-weighted if and only if h0 is n-
weighted. Moreover, if h is n-weighted with a witness � and h0 is n0-weighted with a
witness � 0 then

�.c � y/� 0.c � y0/ D cnCn
0

�.y/� 0.y0/ for all c 2 Gm, all y 2 Y , and all y0 2 Y 0;

and hence the diagonal Gm-action h � h0 on Y � Y 0 is .nC n0/-weighted.
The category Var�nC consists of the varieties over C with n-weighted Gm-actions and

the Gm-equivariant morphisms between them. Denote by Var O�C the colimit of the inductive
system of Var�nC , n 2 N, where the transition functors Var�nC ! Var�knC , corresponding to
multiplication of integers, are given by .Y; h/ 7! .Y; hk/; so there are no functors between
Var�0C and other Var�nC .

We may and do think of an object of Var O�C as equipped with a O� -action that factors
through some �n, hence the notation.

The Grothendieck groups K�n VarC , K O� VarC are constructed subject to the usual
condition on trivializing Gm-actions on affine line bundles, analogous to (3.2). So K O� VarC

is the colimit of K�n VarC , n 2 N, and is indeed a commutative ring, with the product
induced by that in Var O�C .

Remark 5.7. Choose a reduced cross-section csn W Q ! RV; the point rv.t/ 2 RV is
not special in the present setting (the object of interest will be X], not Xrv.t/) and hence
we no longer demand csn.1/ D rv.t/. Let U � ] � RVn be an object of RES, where
1 � � � � � n. Let d be the least positive integer such that U is a set in RV.C..t1=d ///;
note that any other such integer is a multiple of d . So the O� -action onU factors through �d .
Write nD e=d for some e 2ZC and consider the function � WU !RV given by u 7! udn .
Then �.c � u/ D ced�.u/ for all c 2 Gm and all u 2 U . So, if tbk.U / is a variety over C
then it is ed -weighted, which is witnessed by tbk.�/.

Recall that the isomorphism in [25, §4.3] is constructed via twistback; henceforth
we denote it by ‚ O� W ŠK O� RES ! K O� VarC . Similarly, there is an isomorphism ‚ O� W
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ŠK O� RES! K O� VarC , and the diagram

ŠK O� RES K O� VarC
‚ O� //

ŠK O� RES

ŠK O� RES
��

ŠK O� RES K O� VarC
‚ O� // K O� VarC

K O� VarC

��

indeed commutes, where the first vertical arrow is induced by the subcategory relation
and the second vertical arrow is induced by the obvious forgetful functor ( O� is a subgroup
of O� ).

Remark 5.8. The modified argument for the surjectivity of ‚ O� is not as straightforward
as that in Remark 3.12. A bit of model theory is needed.

Let .Y; h/ 2 Var�nC and � W Y !Gm witness that h is n-weighted. Without loss of gen-
erality, Y is irreducible and quasi-projective. Since the first-order theory of algebraically
closed fields admits elimination of imaginaries, there are a definable set Z in Gm and
a definable surjection ! W Y ! Z each of whose fibers contains precisely one h-orbit.
So ! ˚ � W Y ! Z � Gm is a definable finite-to-one surjection each of whose fibers
inherits a �n-action from h. By the Kummer-theoretic construction in the proof of [25,
Proposition 4.3.1] and compactness, we may assume that there are a definable function
� W Z ! Gm and a definable bijection

�1 W .! ˚ �/
�1.Z � 1/! ¹.z; 1; v/ 2 Z �Gm �Gm j �.z/ D v

n
º:

For y 2 Y with �1.y/D .z; 1; v/ and c 2Gm, set �.c � y/D .z; cn; cv/. It can be checked
that if c � y ¤ c0 � y0 then �.c � y/ ¤ �.c0 � y0/ and hence � is a Gm-equivariant bijec-
tion from .Y; h/ onto a set V � Z � Gm � Gm, where the Gm-action on V is given by
c � .z; w; v/ D .z; cnw; cv/. Let U � Z � 1] � .1=n/] be such that tbk.U / D V . Then
‚ O� .ŒU �/ D Œ.Y; h/�.

Following the notational scheme introduced in Remark 3.13, let us denote
‚ O� ı Eb ı

R
, ‚ O� ı Eb ı

R
by Vol O� , Vol O�. Relative to any chosen reduced cross-section

csn, the fiber Xcsn.1/ gives the motivic Milnor fiber Sf as constructed in [25, §8.5], that
is, Vol O�.ŒXcsn.1/�/ D Sf , but for any v 2 k� other than 1, Sv

f
WD Vol O�.ŒXv csn.1/�/ is not

equal to Sf in general. The O�-action on Sv
f

corresponds to a coset of O� in O� , which in turn
corresponds to the various reduced cross-sections csn0 WQ! RV with csn0.1/D v csn.1/.

These constructions still go through if we replace S D C..t// with S D C..tq// for any
q 2 QC.

5.2. Categories with angular components

Ultimately, we are only interested in the points .˛{ ; ˇ{/ 2 .QC/2 as described above and
the corresponding sequences .m2=m{ ;mi=m{/2�i�{ of elements in .0; 1� � QC. But it is
conceptually clearer to work in a more general setting. Let # D .#1; : : : ;#`/ be a sequence
of elements in .0; 1� � QC with #` D 1 such that if ` > 1 then #1 D #2 < � � � < #`; let
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� be the least positive integer such that every �#i is an integer; so any other integer that
has this property must be a multiple of �. We take #` D 1 to simplify the discussion, and
can derive other cases by symmetry (see Remark 5.22).

Remark 5.9. Similar to the case of Vol O� , we aim to construct homomorphisms Volac
# D

‚ac
#
ıEac

b;#
ı
R ac
#

, written as Volac
D‚ac ıEac

b
ı
R ac when `D 1 (hence # D 1), and show

that they commute with various convolution operators as illustrated in (5.1):

K RVacŒ��=.P � 1/K VFac //

R ac

K RVac
#
Œ��=.P � 1/

K RVacŒ��=.P � 1/

P…#
��

K RVac
#
Œ��=.P � 1/K VFac

#
//

R ac
#K VFac

#

K VFac

P†#
��

K RVacŒ��=.P � 1/ ŠK RESacEac
b //

K RVac
#
Œ��=.P � 1/

K RVacŒ��=.P � 1/

K RVac
#
Œ��=.P � 1/ ŠK RESac

#

Eac
b;#

// ŠK RESac
#

ŠK RESac

P…#
��

ŠK RESac K1 VarC Š K O� VarC
‚ac

//

ŠK RESac
#

ŠK RESac

ŠK RESac
# K# VarC Š K O� VarGm

‚ac
# // K# VarC Š K O� VarGm

K1 VarC Š K O� VarC

P‰#
��

(5.1)

This and the next subsections explain the middle and right squares of the diagram.
The construction of

R ac
#

is given in §5.4.

First of all, to define convolution operators, we need to consider objects equipped with
angular component maps and equivariant morphisms between them, as follows.

Let Y be a variety over C with a Gm-action and � W Y ! G`
m a morphism. For each

1 � i � `, write �i D pri ı� , �>i D pr>i ı� , etc. Suppose that, for some morphism
�� W Y ! Gm,

�i D .�
�/�#i for every 2 � i � `:

For n 2 ZC that is divisible by �, we say that � is .#; n/-diagonal if

�1.c � y/D c
n#1�1.y/; ��.c � y/D cn=���.y/; for all c 2 Gm and all y 2 Y: (5.2)

This implies that �.c � y/ D cn#�.y/, where cn# D .cn#i /1�i�`; we also refer to � as a
variety over G`

m with a .#; n/-diagonal Gm-action.
Recall that, for any functions � W X ! A and  W Y ! B , we denote by � ˚  the

function X \ Y ! A � B given by x 7! .�.x/;  .x//. Also, if A, B are subsets of a
group .G;C/ then � C  is the function X \ Y ! G given by x 7! �.x/C  .x/.

Definition 5.10. An object of the category Var#;nC is a variety �1˚�� W Y !G2
m over G2

m

with a Gm-action such that � W Y !G`
m is .#;n/-diagonal. A morphism between two such

objects is a morphism between the varieties over G2
m that is equivariant with respect to

the Gm-actions.
The category Var#C is the colimit of the inductive system of Var#;nC , n 2 ZC (the tran-

sition functors are given as in Definition 5.6).

For convenience, an object of Var#;nC will sometimes be referred to as .Y;�/ or just � ,
with �� implicit, even though �� cannot be recovered from � alone.

The Grothendieck groups K#;n VarC are constructed as usual. Since fiber product
(reduced) over G2

m with diagonal action induces a product operation, K#;nVarC is a com-
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mutative ring. Set
K# VarC D colim

n
K#;n VarC :

Observe that if ` D 1; 2 then # does not really have any bearing on the definitions of
.#; n/-diagonality and the category Var#;nC . So, in that case, we shall just say n-diagonal
and write Var1;n

C , etc., when ` D 1 and Var2;n
C , etc., when ` D 2. The difference between

Var1;n
C and Var�nC is that, in the latter, witnesses for n-weightedness are implicit and hence

morphisms are not required to respect them.

Remark 5.11. Actually, Var1;n
C is just the category VarGm;n

Gm
as defined in [22, §2.3] and,

by [22, Lemma 2.5], it is equivalent to the category of varieties over C with �n-actions,
in particular, K1;n VarC Š K�n VarC for all n and hence we have an isomorphism

‡ W K1 VarC ! K O� VarC: (5.3)

Denote by Var�nGm
the category of varieties � W Z ! Gm over Gm with �n-actions

such that its fibers are �n-invariant, and by VarGm;n

G2m
the category of varieties � W Z! G2

m

over G2
m with Gm-actions such that the fibers of �1 are Gm-invariant and �2 is n-diagonal.

The morphisms in both categories are those that are equivariant with respect to the group
in question. By [22, Lemma 2.5] again, these two categories are equivalent.

Assume ` > 1. For .Y; �/ 2 Var#;nC , let N� be the morphism

Y
��2
��! G2

m
.x;y/7!xy�1

��������! Gm

By (5.2), every fiber of N� inherits a Gm-action from Y and hence N� ˚ �� is an object of
VarGm;n=�

G2m
. Conversely, for each object � W Z ! G2

m of VarGm;n=�

G2m
, the morphism N� on Z

given by z 7! .�1.z/�2.z/
�#1 ; �2.z// is an object of Var#;nC . These two assignments can

be extended to functors that are inverse to each other. So,

K#;n VarC Š KGm;n=� VarG2m
Š K�n=� VarGm :

Consequently, all the work on K# VarC below may be considered as done on

K O� VarGm Š colim
n

K�n=� VarGm ;

where Var O�Gm
is the category of varieties over Gm whose fibers are O�-invariant with uni-

formly good O�-actions, in other words, Var O�Gm
is the colimit of the inductive system of

Var�nGm
, n 2 ZC.

As in [22], the point here is that K O� VarGm is much closer to objects that have been
studied extensively in the literature and hence for which we have a deeper understanding.

IfZ 2Var O�C and .Y;�/ 2Var#;nC then .Y �Z;� ı prY / 2Var#;nC , where the Gm-action
on Y �Z is given by c � .y; z/D .c � y; cn � z/ for all c 2Gm. This is compatible with the
inductive systems in question (the action cn � z on the Z-factor is forced for this reason)
and hence, after passing to the colimits, we see that K# VarC is indeed a K O� VarC-module.
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Definition 5.12. Assume ` > 1. We construct a K O� VarC-module homomorphism

‰# W K# VarC ! K1 VarC

by induction on ` as follows.
For .Y;�/ 2 Var#;nC , let .�1C �2/�1.0/ and Y X .�1C �2/�1.0/ denote, in VarC , the

pullbacks of ��2 W Y ! G2
m along the antidiagonal of G2

m and its complement, respec-
tively. By (5.2), both varieties inherit a Gm-action from Y .

For the base case ` D 2, we consider the Gm-action on .�1 C �2/�1.0/ �Gm whose
second factor is given by c � z D cnz. Then the expressions

Œ.Y X .�1 C �2/
�1.0/; �1 C �2/�; Œ..�1 C �2/

�1.0/ �Gm; prGm
/� (5.4)

designate two elements in K1;n VarC; they only depend on the class of .Y; �/ and hence
may be denoted by P‰2;n.Œ.Y;�/�/, R‰2;n.Œ.Y;�/�/, respectively. These assignments respect
the defining relations of K2;n VarC and hence may be extended uniquely to two group
homomorphisms P‰2;n, R‰2;n. These group homomorphisms in turn are compatible with
the inductive systems in question and hence, after passing to the colimits, we obtain two
group homomorphisms P‰2, R‰2, which also respect the K O� VarC-module structure. Set
‰2 D �. P‰2 � R‰2/.

For the inductive step ` > 2, let # 0 D .#3; #3; #4; : : : ; #`/ and �0 be the least positive
integer such that �0#i is an integer for every 3 � i � `. Then �0 divides �. We consider
the Gm-action on Gm � .�1C �2/

�1.0/ whose first factor is given by c � z D cn#3z. Then
the expression

.Y #
0

; �#
0

/ WD .Gm � .�1 C �2/
�1.0/; 1Gm � .�

�/�=�
0

/ (5.5)

designates an object of Var#
0;n

C whose class only depends on that of .Y; �/ and hence
may be denoted by ‰#

0

#;n
.Œ.Y; �/�/. The assignments ‰#

0

#;n
, n 2 ZC, may be extended to

group homomorphisms and their colimit‰#
0

#
WK# VarC!K# 0 VarC is a K O� VarC-module

homomorphism. Now we set

P‰# D P‰# 0 ı‰
# 0

# ;
R‰# D R‰# 0 ı‰

# 0

# ; ‰# D ‰# 0 ı‰
# 0

# D �.
P‰# � R‰#/:

We could have defined ‰# to be P‰# � R‰# instead of �. P‰# � R‰#/. The negative sign
at the front is inherited from the literature.

Remark 5.13. The case ` D 2 is special. For .X;�X / 2 Var1;m
C and .Y; �Y / 2 Var1;n

C , let
�X � �Y be the obvious morphismX � Y !G2

m. Then .X � Y;�X � �Y / is an object of
Var2;mn

C whose class only depends on those of .X; �X / and .Y; �Y /. We define a binary
map on K1 VarC by

Œ.X; �X /� � Œ.Y; �Y /� D ‰2.Œ.X � Y; �X � �Y /�/ 2 K1 VarC : (5.6)

Although the category Var2
C is not the same as the one used in [22, §5.1], the proof of

[22, Proposition 5.2] still goes through verbatim, which justifies referring to (5.6) as a
convolution product (it is commutative, associative, and unital).
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Recall that definability is construed in QC with S D C [Q, unless additional parame-
ters are used.

Definition 5.14. An object of the category RVac
#
Œk� is a definable triple of the form

.U; f W U ! RVk ; g D ac1˚ ac� W U ! #
]
1 � .1=�/

]/

such that, for every r 2 ran.g/, the pair .g�1.r/;f�g�1.r// is an object of RVŒk�, in other
words, f�g�1.r/ is finite-to-one (the category RVŒk� here is of course defined relative to
the additional parameters r , that is, S is in effect the subgroup of RV generated by r
over k�). The function

ac D ac1˚
M
2�i�`

.ac�/�#i W U ! #]

is referred to as an angular component map on U D .U; f /. A definable bijection
F W U ! V is a morphism between two such objects .U ; gU /, .V ; gV / if gU D gV ı F .
Set RVac

#
Œ�� D

`
k RVac

#
Œk�.

The category RESac
# is defined in the same way, but with RVŒk� replaced by RES.

Remark 5.15. The assignment .U; f; g/ 7! .U; f ˚ g/ induces a functor RVac
#
Œ�� !

RVŒ�� that identifies RVac
#
Œ�� with a subcategory of RVŒ��; similarly for RESac

# , RES.

As is the case with Var#;nC , we shall sometimes refer to an object of RVac
#
Œk� as .U ;ac/,

with ac� implicit. For each 1 � i � `, let aci D pri ı ac, ac>i D pr>i ı ac, etc.
The ring structure of K RVac

#
Œ�� is induced by fiberwise disjoint union and fiber-

wise cartesian product in RVac
#
Œ��; similarly for other such categories. We also think of

K RVac
#
Œ�� as a K RVŒ��-module and ŠK RESac

# as a ŠK O� RES-module (the extra defining
condition for “ŠK” in ŠK RESac

# is in effect imposed fiberwise).
If ` D 1 (hence # D 1) then the subscript # will be dropped from the notation.

Definition 5.16. Assume ` > 1. We construct a K RVŒ��-module homomorphism

…# W K RVac
# Œ��! K RVacŒ��

by induction on `, as follows.
Let .U ; ac/ D .U; f; ac1˚ ac�/ 2 RVac

#
Œk�. Let U 0 be the subset of U determined by

the antidiagonal condition ac1.u/ D � ac2.u/.
For the base case `D 2, that is, # D .1; 1/, let f1 W U ! RVkC1 be the function given

by u 7! .f .u/; ac1.u//, and similarly for f2. The pairs .U; f1/, .U X U 0; f1/, .U 0; f1/
are more suggestively denoted, respectively, by

U 1; U 1 X .ac1C ac2/�1.0/; .ac1C ac2/�1.0/:

The elements P….1;1/.Œ.U ; ac/�/, R….1;1/.Œ.U ; ac/�/ in K RVacŒkC1� are then given, respec-
tively, by

Œ.U 1 X .ac1C ac2/�1.0/; ac1C ac2/�; Œ..ac1C ac2/�1.0/ � 1]; pr1]/�I (5.7)



Motivic integration and Milnor fiber 1663

here the second term is such that each fiber of pr1] is a copy of .ac1C ac2/�1.0/, and
hence is indeed an element in K RVacŒkC1�. These two assignments do not depend on
the representative .U ; ac/ or the choice between f1 and f2, and hence may be extended
uniquely to two K RVŒ��-module homomorphisms P….1;1/, R….1;1/ (the gradation has been
shifted by 1). Then set ….1;1/ D �. P….1;1/ �

R….1;1//.
For the inductive step `>2, let # 0 and �0 be as in Definition 5.12. For every r2.1=�0/],

since there are only finitely many .r1; r2/ 2 #
]
1 � .1=�/

] with r1 D �r
�#2
2 and r�=�

0

2 D r ,
the restriction f�.U 0 \ ..ac�/�=�

0

/�1.r// is finite-to-one. So the triple

.U #
0

; ac#
0

/ WD .#
]
3 � U

0; f ı prU 0 ; id�.ac�/�=�
0

/ (5.8)

designates an object of RVac
# 0
Œk� whose class only depends on that of .U ; ac/ and the

assignment Œ.U ; ac/� 7! Œ.U #
0

; ac#
0

/� determines a K RVŒ��-module homomorphism

…# 0

# W K RVac
# Œ��! K RVac

# 0 Œ��:

Thus, we may set

P…# D
P…# 0 ı…

# 0

# ;
R…# D

R…# 0 ı…
# 0

# ; …# D …# 0 ı…
# 0

# D �.
P…# �

R…#/:

There is a similar construction resulting in a ŠK O� RES-module homomorphism

ŠK RESac
# ! ŠK RESac;

which is denoted by …# as well. Its construction is actually simpler since the categories
RESac

# , RESac are not graded and the function f is irrelevant. Moreover, in light of the ring
homomorphism Eb W K RVŒ��! ŠK O� RES, this…# may be viewed as a K RVŒ��-module
homomorphism too.

For .U ;acU / 2 RVacŒk� and .V ;acV / 2 RVacŒl �, let acU �acV be the obvious function
from U � V into .1; 1/]. Then the class

Œ.U � V ; acU � acV /� 2 K RVac
.1;1/ŒkCl �

only depends on the classes Œ.U ; acU /�, Œ.V ; acV /�, not their representatives. Set

Œ.U ; acU /� � Œ.V ; acV /� D ….1;1/.Œ.U � V ; acU � acV /�/ 2 K RVacŒkClC1�;

which may be thought of as a convolution product of the two classes.
The following lemma only serves to confirm the structural resemblance of the binary

map � here to the convolution product (5.6). It will not be of any use beyond this point.

Lemma 5.17. The binary map � on K RVacŒ�� is commutative and associative. Moreover,
for all .U ; ac/ D .U; f; ac/ 2 RVacŒk�,

Œ.U ; ac/� � 1 D Œ.U ; ac/�Œ1� 2 K RVacŒkC1�:

Here 1 2 K RVacŒ0� is the multiplicative identity in K RVacŒ�� and is represented by
the triple .1];1; id/, and Œ1� 2 K RVacŒ1� is represented by the triple .1]; id; id/.
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Proof. The formal computations involved are essentially the same as those in the proof
of [22, Proposition 5.2]. We shall just write down some details for the second claim since
the expected convolution identity 1 is actually off by a factor, namely Œ1�, in this setting.

For ease of notation, the function ac ı prU on U � 1] is still denoted by ac, similarly
for f and id1] . Write .U � 1]; f ˚ ac/ as U � 1]. Then Œ.U ; ac/� � 1 2 K RVacŒkC1� is
given by

�.Œ.U � 1] X .acC id1]/
�1.0/; acC id1]/� � Œ..acC id1]/

�1.0/ � 1]; pr1]/�/: (5.9)

In this expression, for each r 2 1], we have, in K RVŒkC1�,

Œ.acC id1]/
�1.r/� D Œ.U X ac�1.r/; f ˚ ac/� and Œpr�1

1]
.r/� D Œ.U; f ˚ ac/�:

So (5.9) may also be written as

�.Œ.U � 1] X .ac� id1]/
�1.0/; pr1]/� � Œ.U � 1

]; pr1]/�/:

Of course this is just Œ..ac� id1]/
�1.0/; pr1]/�. In K RVŒkC1�, since we now have, for

every r 2 1], Œpr�1
1]
.r/�D Œ.ac�1.r/� r;f � idr /�, it follows that Œ..ac� id1]/

�1.0/;pr1]/�
D Œ.U ; ac/�Œ1�.

5.3. Commuting with the convolution operators

Next, we show that the middle and right squares of (5.1) indeed commute.

Remark 5.18. Let .U ; g D ac1˚ ac�/ 2 RVac
#
Œ��. By Proposition 2.3 and compactness,

there exists a definable finite partition .Bi /i of #]1 � .1=�/
] such that every fiber g�1.r/ is,

uniformly over each Bi , r-definably bijective to a disjoint union of products U rij �D
]
rij

withU rij 2RESŒ�� andDrij 2�Œ��. Actually, by stable embeddedness (see Remark 2.2),
we may write Drij as Dij since it must be the case that Drij D Dr 0ij for any other
r 0 2 Bi ; similarly for vrv.U rij /, which may be assumed to be a singleton. Let U ij DS
r2Bi

U rij � r and gij W U ij ! Bi be the obvious coordinate projection.

Remark 5.19. Keeping the notation of Remark 5.18, we see that, over each Bi , there are
elements Œ.Vi ; gi /�, Œ.Vi 0 ; gi 0/� in ŠK RESac

# , depending on the choice of U ij andDij , such
that

Eb.Œg
�1.r/�/ D Œg�1i .r/� � Œg�1i 0 .r/�:

This equality is construed in ŠK O�RES with, say, SDC..t1=�//, but in general not with SD
C..t//, unless the isomorphism ‚ O� is applied on both sides, in which case the difference
between C..t1=�// and C..t// is neutralized and the equality happens in K O� VarC . Thus,
Œ.Vi ; gi /� � Œ.Vi 0 ; gi 0/� does not depend on the choice of U ij and Dij . Setting

Œ.U ; g/� 7!
X
i

.Œ.Vi ; gi /� � Œ.Vi 0 ; gi 0/�/ (5.10)

yields a ring homomorphism

Eac
b;# W K RVac

# Œ��! ŠK RESac
# ;

which is also a K RVŒ��-module homomorphism.
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Note that Eac
b;#
.Œ.U ; g/�/ may be understood as a “function” into #]1 � .1=�/

] whose
“fibers” are of the form Eb.Œg

�1.r/�/, which has nothing to do with the partition .Bi /i ,
but it takes extra work to make sense of what “function” and “fibers” mean here, and the
point of the partition .Bi /i is just to show the existence of such a finite sum as in (5.10)
and thereby that Eac

b;#
is well-defined.

Taking quotient by .P � 1/ fiberwise, we see that the corresponding ideal of
K RVac

#
Œ��, still denoted by .P � 1/, vanishes along Eac

b;#
.

The map …# on K RVac
#
Œ�� is indeed related to the map …# on ŠK RESac

# via Eac
b;#

as
indicated in the middle square of (5.1):

Lemma 5.20. As K RVŒ��-module homomorphisms, Eac
b
ı P…# D

P…# ı Eac
b;#

, and simi-
larly for R…# and hence for …# .

Proof. Although the case of…# follows immediately from those of P…# and R…# , we shall
show this for …# directly using the same argument. To that end, it is enough to consider
elements in K RVac

#
Œ�� of the form Œ.U ; g/�, since the general case would follow from

K RVŒ��-linearity.
We use induction on `. For the base case ` D 2, that is, # D .1; 1/, by Remark 5.18,

using the notation there, we have

Œ.U ; g/� D
X
ij

Œ.U ij ; gij /�Œ.D
]
ij � Bi ; prBi /�:

Since ….1;1/ is a K RVŒ��-module homomorphism, it follows that

….1;1/.Œ.U ; g/�/ D
X
ij

ŒD
]
ij �….1;1/.Œ.U ij ; gij /�/:

Let nij D �b.Dij /. The gradation is forgotten by Eac
b

, so we have

.Eac
b ı….1;1//.Œ.U ; g/�/ D

X
ij

nij….1;1/.Œ.Uij ; gij /�/;

where .Uij ; gij / stands for the obvious object of RESac
.1;1/ in relation to .U ij ; gij /. The

right-hand side of this equality also equals .….1;1/ ı Eac
b;.1;1/

/.Œ.U ; g/�/.
For the inductive step ` > 2, let # 0 be as in Definition 5.16. Then a similar computation

shows that, for all i; j ,

.Eac
b;# 0 ı…

# 0

# /.Œ.U ij ; gij /�/ D .…
# 0

# ı Eac
b;#/.Œ.U ij ; gij /�/: (5.11)

So the desired equality follows from the definition of…# and the inductive hypothesis.

The O� -action on an object .U; ac/ 2 RESac
# must factor through some �n such that n=�

and hence all n#i are integers. It may also be interpreted as a Gm-action subject to the
condition

ac.c � u/ D rv.cn#/ ac.u/ for all u 2 U and all c 2 Gm:
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Let RESac
#;n be the full subcategory of RESac

# of those objects for which this condition
holds. Thus, we have obtained an inductive system of categories RESac

#;n such that

RESac
# D colim

n
RESac

#;n and ŠK RESac
# D colim

n
ŠK RESac

#;nI

Lemma 5.21. For each n there is a ring isomorphism

‚ac
#;n W ŠK RESac

#;n ! K#;n VarC;

determined by the assignment Œ.V; g/� 7! Œtbk.V; g/� for vrv.V / a singleton, and hence a
ring isomorphism

‚ac
# W ŠK RESac

# ! K# VarC :

Moreover, under the ring homomorphism ‚ O� ı Eb , we have ‚ac ı P…# D
P‰# ı ‚

ac
#

as
K RVŒ��-module homomorphisms, and similarly for R…# , R‰# and hence for …# , ‰# .

This shows that the right square of (5.1) commutes.
Note that the set tbk.V;g/ is definable without using the implicit reduced cross-section

csn; in other words, varying csn will not change tbk.V; g/, but does change the bijection
in question, and that is why tbk.V; g/ inherits the O� -action on .V; g/.

Proof of Lemma 5.21. The situation here is very similar to that in [25, §4.3] or in
Remarks 5.7 and 5.8, so we shall be brief. If vrv.V / is a singleton then the graph of
tbk.g/ is just a constructible set, in fact uniformly so fiberwise. So the assignment induces
a homomorphism ‚ac

#;n
at the semiring level and hence at the ring level. If tbk.V; g/ and

tbk.V 0; g0/ are isomorphic in Var#;nC then the isomorphism may be twisted to one between
.V; g/ and .V 0; g0/ in RESac

#;n. So ‚ac
#;n

is injective. On the other hand, since objects in

Var#;nC and RESac
#;n are all endowed fiberwise with �n=�-actions via restriction, the argu-

ment for surjectivity in Remark 5.8 can be modified to work for ‚ac
#;n

.
The second claim follows from an inductive argument, similar to the one in the proof

of Lemma 5.20.

Remark 5.22. Let � D .�1; : : : ; �`/ be another sequence of elements in the interval
.0; 1� � QC such that �i=�` D #i for every 1 � i � `. Then there is a � 2 Aut.RV =k�/
with �.�`/ D 1 and hence �.�i / D #i for every 2 � i � `. If � 0 is another such automor-
phism then there is a � 2 Aut.RV =k� [Q/ such that � D � 0 ı � , and hence � , � 0 induce
the same endofunctors of RVŒ��, RES. So, in light of Remark 5.15, there are categories
RVac

� Œ��, RESac
� and canonical isomorphisms, both denoted by �� for simplicity, that fit

in the following commutative diagram:

K RVac
#
Œ�� ŠK RESac

#

Eac
b;#

//

K RVac
� Œ��

K RVac
#
Œ��

��
��

K RVac
� Œ�� ŠK RESac

�

Eac
b;�

// ŠK RESac
�

ŠK RESac
#

��
��

This means that, in particular, we do not have to restrict the discussion, both above and
below, to the case #` D 1 (we have done so above for simplicity).
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5.4. Decomposing the composite Milnor fiber

Definition 5.23. An object of the category VFac
#

is a definable function of the form f D

f1 ˚ f
� W A! #

]]
1 � .1=�/

]] such that, for all r 2 #]1 � .1=�/
],

� if f .A/ \ r] ¤ ; then r] � f .A/,
�
R
Œf �1.a/� D ŒU r �=.P � 1/ only depends on r , not the choice of a 2 r].

Note that if ` D 1 then both conditions are redundant: for the first one, the function f W
A! #

]
1 must be surjective because, with S D C [Q, no proper nonempty subset of ]]

is definable for any  2 Q� (this fact will be used several times below), and the second
one is guaranteed by Lemma 5.2 (but not for functions into M` with ` > 1). The function

Nf D f1 ˚
M
2�i�`

.f �/�#i W A! #]]

is referred to as an angular component map on A.
If g W B ! #

]]
1 � .1=�/

]] is another object of VFac
#

then any definable bijection F W
A! B with g ı F D f is a morphism of VFac

#
.

Remark 5.24. Assume that ` > 1. Let f be as above and let r 2 rv. Nf .A// � #]. Then,
for every 2 � i � `, by the first condition in Definition 5.23, it must be the case that
r
]
1 � r

]
i � .f1 ˚ .f

�/�#i /.A/. On the other hand, for all a; b 2M with a�#2 D b�#2 and
all 2 < i � `, if rv.a�#i / D rv.b�#i / then a�#i D b�#i . So r] \ Nf .A/ may be written as
the graph of an r-definable function r]�2! r

]
>2 that only depends on r , not f , and whose

projection into each r]i , 2 < i � `, is surjective.

Remark 5.25. Given two functions �;  W A! M that are definable over S D C, we
manufacture an object of VFac

#
from them as follows. The trick is to replace one of them

with a sufficiently large power of itself.
For a 2 M2, write

R
Œ.� ˚  /�1.a/� D ŒU a�=.P � 1/, which makes sense over

the larger substructure Shai. However, as we have just pointed out above, unlike in
Lemma 5.2, U a does depend on the parameter a. Anyway, by compactness, there is a
definable finite partition .Bi /i of M2 such that the objects U a are defined uniformly over
each Bi . Since each val.Bi / � .QC/2 is a cone based at the origin (because S D C),
there are a Bi and an M 2 ZC such that ˛]] � .0; ˛=.M#1/�

]] � Bi for all ˛ 2 QC.
Let �.x; y; : : :/ be a quantifier-free formula that defines the object U a over a 2 Bi .
Then M may be chosen to be so large that for all a; a0 2 Bi with rv.a/ D rv.a0/
and every term in �.x; y; : : :/ of the form rv.F.x; y//, where F.x; y/ 2 CŒx; y�, we
have rv.F.a// D rv.F.a0// and hence U a D U a0 . Therefore, for all r 2 .RVıı/2 with
vrv.r1/=#1 � M vrv.r2/, U a does not depend on the choice of a 2 r]. It follows that if
M is divisible by � as well, in particular, if � itself is sufficiently large, then the restric-
tion of � ˚  M=� to the set .� ˚  /�1.#]]1 � .1=M/]]/ satisfies the two conditions in
Definition 5.23.

Alternatively, there are Bi and N 2 ZC such that ˛]] � ŒN˛=.�#1/;1/]] � Bi
for all ˛ 2 QC. If N is sufficiently large then, for all r D .r1; r2/ 2 .RVıı/2 with
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N vrv.r1/� �#1 vrv.r2/, in particular, for r 2 .#1=N/] � .1=�/],U a does not depend on
the choice of a 2 r] and so the restriction of �N ˚ to .� ˚ /�1..#1=N/]] � .1=�/]]/
is as desired.

The ring structure of K VFac
#

is induced by fiberwise disjoint union and fiberwise
cartesian product in VFac

#
. It is also a K VF�-module.

Definition 5.26. Let S# � #]] be the subset such that a 2 S# if and only if val.
P
i ai /D

#` D 1. For each f 2 VFac
#

, let †#.f / W Nf �1.S#/ ! 1]] be the object of VFac given
by x 7!

P
i .
Nf .x//i . This assignment induces a K VF�-module homomorphism †# W

K VFac
#
! K VFac.

Note that †# is not a ring homomorphism unless ` D 1.

Remark 5.27. For each f 2 VFac
#

, let U D
S
r2#

]
1
�.1=�/]

U r � r , where
R
Œf �1.a/� D

ŒU r �=.P � 1/ for a 2 r]; the factor r in U is an object in RVŒ0�, and is just a bookkeeping
device. Let ac1˚ac� WU ! #

]
1 � .1=�/

] be the obvious coordinate projection onU . Then
Œ.U ; ac1˚ ac�/�=.P � 1/ is an element in K RVac

#
Œ��=.P � 1/ that only depends on the

class Œf � 2 K VFac
#

of f . This indeed gives a ring and K VF�-module isomorphismZ ac

#

W K VFac
# ! K RVac

# Œ��=.P � 1/:

As usual, abbreviate ‚ac
#
ı Eac

b;#
ı
R ac
#

as Volac
# (or Volac if ` D 1, per our convention).

Remark 5.28. By the argument in Remark 5.22, now in terms of Aut. QC =C/ and
Aut. QC =C [Q/, and using the notation there, we may replace # with � without altering
the structure of the category VFac

#
. In particular, we have the K VF�-module homomor-

phisms †� and
R ac
�

.

Notation 5.29. From here on, fix a sequence m2 < N < m3 < � � � < m` of positive inte-
gers and take #i Dmi=m`; note thatN ism1, but its role is somewhat different and hence
is denoted differently. We assume gcd.mi ;mj /D 1 for all 1 < i < j � `; this is not really
necessary, but does simplify the discussion a bit, for instance, the various values of � that
will appear below are just m3; : : : ; m`.

Let  ˚ � W X ! #
]]
1 � .1=m`/

]] be an object of VFac
#

. For 2 � { � | � `, let

�.{;|/ D
X
{�i�|

�mi W X ! #]]{ and #Œ{;|/ D .#{ ; #{ ; #{C1; : : : ; #| /:

Also let �.2;1/ be the zero function.
For any function f W X ! VFn and each  2 Qn, denote the set f �1.]]/ by X

]

f;
;

as usual, if nD 1 and  D 1 then the latter may be dropped from the notation. For any set
A � X , the restriction f�.X]

f;
\ A/ is just denoted by X

]

f;
\ A.
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Lemma 5.30. For all 1 � { < | � `, X
]

 C�.2;{/;#{C1
˚ � is an object of VFac

#Œ{C1;|/
.

If { > 1 then it is surjective on #]]{C1 � .1=m`/
]] and

R
.X

]

 C�.2;{/;#{C1
˚ �/�1.a/ only

depends on rv.a2/ 2 .1=m`/].

Proof. The case { D 1 is assumed. For { > 1, we have, for a 2 #]]2 � .1=m`/
]],

val.a1 C a
m2
2 / D #3 if and only if a1 2 �a

m2
2 C #

]]
3 � rv.�am22 /] � #

]]
2 . So, by the

case { D 1 and the two conditions in Definition 5.23, the claim holds for { D 2. Iterating
this argument, the lemma follows.

Lemma 5.31. For 2 � { � ` and #{ � � < #{C1, we have the following equalities:Z ac

�

ŒX
]
 C�.2;{/;�

� D

8<:. P…#Œ2;{/ ı
R ac
#Œ2;{/

/.Œ ˚ ��/ if #{ D �,

. R…#Œ2;{/ ı
R ac
#Œ2;{/

/.Œ ˚ ��/ if #{ < � < #{C1.
(5.12)

Proof. For each b 2 #
]]
2 with rv.b/ D r , denote rv.

S
a2#

]]
2
Xr]

a �
m2
p
b � a/ �

#
]
2 � .1=m`/

] by PWr , where we write PWr because it only depends on r . For every
a 2 #

]]
2 � .1=m`/

]] with rv.a/ D s, write
R
Œ. ˚ �/�1.a/� D ŒU s�=.P � 1/. ThenR

Œ.X
]

 C�.2;2/;#2
/�1.b/� D Œ

S
s2 PWr

U s � .s; pr#2/�=.P � 1/, where .s; pr#2/ belongs to

RVŒ1�. Upon examination of the construction of P…#Œ2;2/ in Definition 5.16, we see thatR ac
#2
ŒX

]

 C�.2;2/;#2
� indeed works out at . P…#Œ2;2/ ı

R ac
#Œ2;2/

/.Œ ˚ ��/.

Let RW D
S
r2#

]
2

r � m2
p
�r � #

]
2 � .1=m`/

]. If #2 < � < #3 and b 2

�]] then
R
Œ.X

]
 C�.2;2/;�

/�1.b/� D Œ
S
s2 RW U s � .s; pr#2/�=.P � 1/. It follows thatR ac

�
ŒX

]
 C�.2;2/;�

� D . R…#Œ2;2/ ı
R ac
#Œ2;2/

/.Œ ˚ ��/.

Assume { > 2. Let  0 DX
]

 C�.2;2/;#3
. So X

]
 C�.2;{/;�

DX
]
 0C�.3;{/;�

. If #{ D � thenR ac
�
ŒX

]
 C�.2;{/;�

� D
R ac
�
ŒX

]
 0C�.3;{/;�

�

D . P…#Œ3;{/ ı
R ac
#Œ3;{/

/.Œ 0 ˚ ��/

D . P…#Œ3;{/ ı…
#Œ3;{/
#Œ2;{/

ı
R ac
#Œ2;{/

/.Œ ˚ ��/

D . P…#Œ2;{/ ı
R ac
#Œ2;{/

/.Œ ˚ ��/;

where the second line is by an obvious inductive hypothesis and the third line follows
from Lemma 5.30; similarly if #{ < � < #{C2.

Taking � D 1, we have shown that the left square of (5.1) commutes; similarly for
R….#;�/ and †.#;�/ if � D m=m` > 1 for some m 2 ZC (see Remark 5.28).
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Notation 5.32. Let f;g WX!M be functions that are definable over SDC, for instance
polynomials in CŒx� with X D X.M/ for a smooth connected variety X . Write f.{;|/ as
in Notation 5.29.

For 2� { � `, we identify three pairwise disjoint subsets of ¹val ı .gN C f.2;{//D 1º:

X�
gNCf.2;{/

D ¹val ı .gN C f.2;{�1// < 1 < val ı f m{C1º;

X�
gNCf.2;{/

D ¹val ı .gN C f.2;{�1// D val ı f m{ D 1º;

XC
gNCf.2;{/

D ¹val ı .gN C f.2;{�1// > 1º:

Note that val ı .gN C f.2;{�1// D val ı f mi for every 2 � i < { is implied in all three
conditions and for { also in the first one, and val ı f m{ D 1 is implied in the third one.

WriteZf D f �1.0/ and Zf D¹val ı f > 1º, and similarly for other functions into M.
Since rv ıf.{;|/ D rv ıf m{ for all 2 � { � | � `, we have

Zf.{;|/ D Zf ; Zf.{;|/ D Zfm{ ; XC
gNCf.2;{/

D X
]

f.{;|/
\ZgNCf.2;{�1/ : (5.13)

Actually, for any r 2 .=m{/], f.{;|/ restricts to a bijection r] ! .rm{ /] (it is surjective
because no proper nonempty subset of .rm{ /] is r-definable, and injectivity is a conse-
quence of Hensel’s lemma), and hence, for any definable setA�X and any a;b 2 .rm{ /],Z

Œ.X
]

f.{;|/;
\ A/�1.a/� D

Z
Œ.X

]

fm{ ;
\ A/�1.b/�: (5.14)

The set X
]

gNCf.2;`/
is decomposed into five parts:

X
]

gNCf.2;`/
D .X

]

gN
\Zf.2;`// [ .X

]

f.2;`/
\ZgN /

[

[
2<{�`

XC
gNCf.2;{/

[

[
2�{�`

.X�
gNCf.2;{/

[X�
gNCf.2;{/

/; (5.15)

corresponding to the five terms encoded by the combinatorial data in Figure 1, in the same
order as presented thereabout. The restriction of gN C f.2;`/ to each part is a definable
function onto 1]] and hence is an object of VFac; to curb excess of notation, these functions
and other similar ones below will just be denoted by their respective domains.

Write Volac.ŒX
]

f
\ A�/ as S]

f
.ŒA�/, and simply S

]

f
if A D X .

Thus, computing S
]

gNCf.2;`/
boils down to computing the Volac-values of the five

terms on the right-hand side of (5.15). The computation of the last two terms makes use
of Lemma 5.31; the details are given in the next subsection. For the first three terms, this
can be done together:

Lemma 5.33. Let �; W X !M be definable functions. For M 2 ZC sufficiently large,

S
]

�M
.ŒZ �/ D S

]

�M
.ŒZ �/ and S

]
 .ŒZ�M �/ D S

]
 :
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Proof. We begin by considering � instead of �M . For ; ˇ 2QC, denote by X
]

�;; ;ˇ
the

restriction of � to the set X
]
�; \X

]

 ;ˇ
, which is a definable function onto ]], and writeZ ac



ŒX
]

�;; ;ˇ
� D ŒW ;ˇ �=.P � 1/:

By [20, §5], there is a .;ˇ/-definable finite partition .D;ˇ;i /i of vrv.W ;ˇ / such that, for
each i , the setW ;ˇ \D

]

;ˇ;i
is a bipolar twistoid. By compactness, there is a  -definable

finite partition .E;j /j of QC such that, over each pieceE;j , the partitions .D;ˇ;i /i may
be achieved uniformly and, for each i , the corresponding twistbacks are the same. So each
class

R ac

Œ
S
ˇ2E;j

X
]

�;; ;ˇ
� is indeed represented by a finite disjoint union of bipolar

twistoids W ;i;j 2 RVac
 Œ�� and each vrv.W ;i;j / is of the form

S
ˇ2E;j

D;ˇ;i � ˇ,
where �b.D;ˇ;i / 2 Z is constant over E;j .

Working over S D C, by compactness, these partitions .E;j /j may be achieved uni-
formly over  2 QC; in other words, they form a definable finite partition of .QC/2

whose pieces are cones based at the origin. This implies that there are a j and a
p 2 QC such that .p;1/ � E;j for all  2 QC. Since M is sufficiently large, we
have .1;1/ � .p=M;1/ � E1=M;j . Therefore, the class

R ac
1=M

Œ
S
ˇ2.1;1/ X

]

�;1=M; ;ˇ
�

is represented by a finite disjoint union of bipolar twistoids W 1=M;i 2 RVac
1=M

Œ��

such that each vrv.W 1=M;i / may be written in the form
S
ˇ2.1;1/ D1=M;ˇ;i � ˇ,

where �b.D1=M;ˇ;i / 2 Z is constant over ˇ 2 .1; 1/. Observe that the classR ac
Œ
S
ˇ2.1;1/ X

]

�M ; ;ˇ
� must admit a representative of this form as well, which is then

annihilated by Eac
b

because �b..1;1//D 0. This leaves onlyZ in the computation. The
first equality follows.

For the second equality, since the roles of �M ,  are not exactly symmetric, a
slightly different argument is needed. Let the restrictions X

]

 ;;�;ˇ
of  and the parti-

tions .D;ˇ;i /i , .E;j /j be as above. In fact, we only need the case  D 1 and hence can
write X

]

 ;�;ˇ
,Dˇ;i , Ej instead. SinceM is sufficiently large, .0; 1=M� � Ej for some j .

Then the class
R ac
Œ
S
ˇ2.0;1=M�X

]

 ;�;ˇ
� is represented by a finite disjoint union of bipolar

twistoids similar to W 1=M;i , hence so is the class
R ac
Œ
S
ˇ2.0;1� X

]

 ;�M ;ˇ
�. This is again

annihilated by Eac
b

because �b..0; 1�/ D 0. Since X
]
 is the union of X

]
 \ Z�M andS

ˇ2.0;1� X
]

 ;�M ;ˇ
, the lemma follows.

Remark 5.34. It is not essential to use the bounded Euler characteristic �b for the second
equality as the interval .0; 1� vanishes under both, but �b is needed for the first equality.

Hypothesis 5.35. Henceforth we assume that each mi is sufficiently large relative to the
data in question that involve only the numbers before it. This condition is needed and will
become clear whenever Remark 5.25 is invoked (implicitly).
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Substituting suitable functions from Notation 5.32 for �,  in Lemma 5.33 yields

Corollary 5.36. We have the following equalities:

� S
]

gN
.ŒZf.2;`/ �/ D S

]

gN
.ŒZfm2 �/ D S

]

gN
.ŒZfm2 �/ D S

]

gN
.ŒZf �/,

� for 2 < { � `, Volac.ŒXC
gNCf.2;{/

�/ D S
]

fm{
.ŒZgNCf.2;{�1/ �/,

� S
]

f.2;`/
.ŒZgN �/ D S

]

fm2
.ŒZgN �/ D S

]

fm2
.

Proof. The second equality needs additional explanation. By (5.14) and (5.13),

Volac.ŒXC
gNCf.2;{/

�/ D S
]

f.{;`/
.ŒZgNCf.2;{�1/ �/ D S

]

fm{
.ŒZgNCf.2;{�1/ �/:

Hence the first equality of Lemma 5.33 may be applied with � D f , M D m{ , and
 D gN C f.2;{�1/.

5.5. A local Thom–Sebastiani formula

For 2 � i � { � ` and ˛ 2 QC, write # {i D mi=m{ and #.{/˛ D .˛# {2; ˛#
{
i /2�i�{ . Let

gN{;˛DX
]

gN ;˛#{
2

and f{;˛DX
]

f;˛=m{
. Then gN{;˛˚ f{;˛ 2VFac

#
.{/
˛

. If ˛D 1 then it is dropped

from the notation. Write Volac
#
.{/
˛

.ŒgN{;˛ ˚ f{;˛�/ as S]
gN{;˛˚f{;˛

.

Let L0{ be the open interval .m{=m{C1; 1/ �QC. If a 2X�
gNCf.2;{/

then val.f .a//D

1=m{ and if a 2 X�
gNCf.2;{/

then val.f .a// 2 L0{=m{ . For each ˛ 2 L0{ , let X
�;˛

gNCf.2;{/

be the restriction of X�
gNCf.2;{/

determined by the condition val.f .a// D ˛=m{ .

Since (5.1) commutes, taking �D 1 and  ˚ � D gN{ ˚ f{ in Lemma 5.31, we obtain

Volac.ŒX�
gNCf.2;{/

�/ D .Volac
ı†#.{//.Œg

N
{ ˚ f{ �/ D

P‰#.{/.S
]

gN{ ˚f{
/;

and taking � D 1 and  ˚ � D gN{;˛ ˚ f{;˛ for ˛ 2 L0{ in Lemma 5.31, we obtain

Volac.ŒX
�;˛

gNCf.2;{/
�/ D R‰

#
.{/
˛
.S
]

gN{;˛˚f{;˛
/:

By Remark 5.28, the right-hand side of this second equality is actually the same for any
˛ 2QC and hence in particular may be written as R‰#.{/.S

]

gN{ ˚f{
/. From another perspec-

tive, if we write
R ac
ŒX
�;˛

gNCf.2;{/
�D ŒU ˛�=.P � 1/ then there is an ˛-definable partition of

val.U ˛/ of the form .Dk˛ � ˛/k , uniform over QC, such that each U ˛ \ .Dk˛ � ˛/] is
a bipolar twistoid. Thus,

R ac
ŒX�

gNCf.2;{/
� is represented by a finite disjoint union of bipo-

lar twistoids W k 2 RVŒ�� with vrv.W k/ D
S
˛2L0{

Dk˛ � ˛. Since �b.Dk˛/ is constant
over L0{ for every k, it follows that

Volac.ŒX�
gNCf.2;{/

�/ D �b.L
0
{/
R‰#.{/.S

]

gN{ ˚f{
/ D � R‰#.{/.S

]

gN{ ˚f{
/: (5.16)

So the minus sign on R‰# in the definition of ‰# may now be interpreted as the Euler
characteristic of a bounded open interval.
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Theorem 5.37. In conclusion, we have derived a local Thom–Sebastiani formula in
K1 VarC:

S
]

gNCf.2;`/
D S

]

gN
.ŒZf �/C S

]

fm2
C

X
2<{�`

S
]

fm{
.ŒZgNCf.2;{�1/ �/�

X
2�{�`

‰#.{/.S
]

gN{ ˚f{
/:

The special case ` D 2 and m2 D 1 is related to the local Thom–Sebastiani formula
in [22, Corollary 5.16] as follows. In terms of motivic Milnor fibers instead of motivic
vanishing cycles, this latter formula may be written as

Sf;z � SgNCf;z D ‰†.SgN ;z.Sf // � SgN ;z.Œf
�1.0/�/: (5.17)

Here z 2 f �1.0/ is a C-rational point, which is implicit in Theorem 5.37 (recall the
simplification made at the beginning of this section). The (local) motivic Milnor fibers
Sf;z and SgNCf;z are constructed via motivic zeta functions with coefficients in M

Gm
Gm

;
see [22, §3.6] for details. The meaning of the term SgN ;z.Œf

�1.0/�/ is established in
[22, Theorem 3.9], and it belongs to M

Gm
Gm

. According to the nearby cycles formalism

of [22, §4.6], SgN ;z.Sf / belongs to M
G2m
G2m

. But then, after applying the operator ‰† as

defined in [22, §5.1], it comes down to M
Gm
Gm

as well. In a nutshell, the expression (5.17)
is well-typed.

There is an isomorphism ‡ W M
Gm
Gm
! M O�, which is just (5.3) localized at ŒA�. It

can be checked that a similar construction via “taking the fiber at csn.1/” also yields
an isomorphism ŠK RESac

! ŠK O� RES, which will also be denoted by ‡ , and indeed
‚ O� ı ‡ D ‡ ı ‚ac. Consequently, by [22, Remark 3.13] and the complex version of
Theorem 3.19 (see [20, Theorem 8.11]), we have

S
]

gNCf
D SgNCf;z ; S

]

f
D Sf;z ; S

]

gN
.ŒZf �/ D SgN ;z.Œf

�1.0/�/: (5.18)

This implies that, for any sufficiently large N 2 ZC,

‰2.S
]

gN˚f
/ D ‰†.SgN ;z.Sf //: (5.19)

The methodology of [22] offers a geometric interpretation of “sufficiently largeN 2 ZC”
in terms of log-resolutions. Our interpretation lies in the proof of Lemma 5.33 and
Remark 5.25, and is not as informative since it depends on compactness. It is not clear
how to relate the two thresholds. Also note that the left-hand side of (5.19) is obviously
commutative in the sense that S]

gN˚f
D S

]

f˚gN
, and perhaps this can be translated into

an expression on the right-hand side through a resolution-based analysis of the motivic
zeta functions involved.

The setup for the motivic Thom–Sebastiani formula in [9] involves a morphism f 0

on another smooth variety X 0 and the obvious morphism f C f 0 on the product Y D
X � X 0. This formula is a special case of [22, Corollary 5.16], as demonstrated in [22,
Theorem 5.18], and hence can be recovered from Theorem 5.37 as well, although we do
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need to check that it holds for N D 1 in that situation. Anyway, we can give a more direct
proof. To begin with, write (5.15) as

Y
]

fCf 0
D .X

]

f
�Zf 0/ [ .X

]

f 0
�Zf / [ YC

fCf 0
[ Y�fCf 0 :

Observe that the conclusion of Remark 5.25 already holds for the function f ˚ f 0 on
Y.M/ D X.M/ �X 0.M/ and indeed

Volac.ŒYC
fCf 0

[ Y�fCf 0 �/ D �‰2.S
]

f˚f 0
/ D �S

]

f
� S

]

f 0
:

To compute the other two terms, now symmetric, the key is the following equality.

Lemma 5.38. .Eb ı
R
/.ŒZf �/ D 1.

Proof. We actually show a more general claim: Over S D C, if A is a definable set in M

then .Eb ı
R
/.ŒA�/ D 0 if 0 … A and .Eb ı

R
/.ŒA�/ D 1 otherwise. This is enough since

enlarging the language (new parameters, new function symbols, etc.) will not change these
equalities.

Since there is no definable point in � Š Q except 0, we see that if .U; f / 2 RESŒk�
then U , f .U / are just constructible sets in C. Let A be a definable set. Then

R
ŒA� may

be expressed as a finite sum
P
i ŒU i � ˝ ŒDi � modulo .P � 1/, where ŒU i � 2 K RESŒ��

and ŒDi � 2 K�Œ��. We may assume that either ŒDi � D 1 (if Di 2 �finŒ�� then it may be
absorbed into U i ) or Di is infinite. In the latter case, for some coordinate projection, say
pr1, we may further assume that pr1.Di / is .�1; 0/ or .0;1/ or Q X 0 and hence, by
o-minimality, Eb.Di / D 0.

Thus, to compute .Eb ı
R
/.ŒA�/, we may write

R
ŒA� as

P
i ŒU i � modulo .P � 1/.

By Theorem 2.4, there is a definable injection g W
U
i LU i ! A. By orthogonality

(Remark 2.2), val.g.
U
i LU i // is finite and hence only 0 and1 can occur in its coordi-

nates; in the case we are interested in, that is, A �Mn for some n, only 1 can occur,
but then A must contain the point 0. So g.

U
i LU i / is either empty or is the singleton

0, which means that
P
i ŒU i � is either 0 or 1, respectively. Since .Eb ı

R
/.ŒA X 0�/ also

equals 1 or 0, we see that .Eb ı
R
/.ŒA�/ D 1 if and only if 0 2 A.

By the same reasoning that leads to (5.16), the class
R
ŒZf 0 X Zf 0 � is represented

by a finite disjoint union of bipolar twistoids W i 2 RVŒ�� such that vrv.W i / is of the
form

S
2.1;1/Di �  and �b.Di / is constant over .1;1/ for every i . Consequently,

Vol O�.ŒZf 0 XZf 0 �/ D 0. Then, by Lemmas 5.2 and 5.38, for every r 2 1],

Vol O�.Œ.X]

f
�Zf 0/

�1.r]/�/ D Vol O�.ŒXf;r �ŒZf 0 XZf 0 �C ŒXf;r �ŒZf 0 �/

D Vol O�.ŒXf;r �/:

This shows that Volac.ŒX
]

f
�Zf 0 �/ D S

]

f
and hence

S
]

fCf 0
D S

]

f
C S

]

f 0
� S

]

f
� S

]

f 0
: (5.20)
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5.5.1. The real case. If we work in the ACVF-model QC with S D R [ Q and let the
variety X , the morphism f , etc., be defined over R then the preceding discussion is still
valid. In more detail, there is a subgroup of Gal.C..t//=R/ that may be identified with
Gal.C=R/ ËC�; its preimage along the canonical surjective homomorphism

Gal. QC =R/! Gal.C..t//=R/

is denoted by c O� , which may be identified with limn.Gal.C=R/ Ë C�/n. There is
an isomorphism ŠKc O� RES Š Kc O� VarR (for surjectivity, combine the arguments in
Remarks 3.12 and 5.8).

The categories in Definition 5.10 and the corresponding Grothendieck groups are now
written as Var#;nR and K#;n VarR. As in Definition 3.4, for an object .Y; �/ of Var#;nR , the
Gal.C=R/ Ë C�-action on Y and the morphism � W Y ! G`

m are required to be com-
patible with the antiholomorphic involution in question; in particular, for the generator
c 2 Gal.C=R/, (5.2) should read

�1.c � y/ D c � �1.y/ and ��.c � y/ D c � ��.y/; (5.21)

so if y is a real point then �1.y/, ��.y/must be real points too. We construct a Kc O� VarR-
module homomorphism ‰# W K# VarR ! K1 VarR as in Definition 5.12. Then Theo-
rem 5.37 holds in K1 VarR as well.

However, as in §3.4, we are more interested in a statement that is indigenous to the
real algebraic environment. In addition, we shall point out how to deduce the real Thom–
Sebastiani formula in [5] from ours.

Let K O�RVar be the real analogue of K O� VarC , that is, the Grothendieck ring of the
category of real varieties with weighted R�-actions. A morphism � W Y.R/! .R�/` on
a real variety Y.R/ with an R�-action is .#; n/-diagonal if the obvious analogue of (5.2)
holds. The categories RVar#;n, RVar# , etc., are defined accordingly. The K O�RVar-module
homomorphism‰# in the bottom row of (5.22) is constructed as in Definition 5.12 again.

Given any n-weighted c O� -action Oh on Y ˝R C, by considering the induced ın-action
in each fiber and the orbit size of each real point as in Definition 3.10, one sees that Oh gives
rise to an n-weighted R�-action on Y.R/. Consequently, as in (3.5), taking real points
yields AC-module homomorphisms „# , „1 in (5.22) (also one Kc O� VarR ! K O�RVar).

K#RVar K1RVar
‰# //

K# VarR

K#RVar

„#

��

K# VarR K1 VarR
‰# // K1 VarR

K1RVar

„1

��

K1RVar K�2RVar‡1 //

K1 VarR

K1RVar

K1 VarR K Oı VarR
‡1 // K Oı VarR

K�2RVar

„

��

(5.22)

By an inductive argument similar to the one in the proof of Lemma 5.20, noting also
that, by (5.21), fibers of � over genuinely complex points make no contributions to fibers
over real points in (5.4) and (5.5), we deduce that the first square of (5.22) commutes.
So Theorem 5.37 holds in K1RVar too, as a direct specialization of the same equality in
K1 VarR via „# and „1.
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This state of affairs may seem somewhat unsatisfactory as the supposedly real formula
is in actuality computed from the complex objects in (5.15) and the volume operators
Volac

# over QC. To remedy this, we can start the specialization procedure earlier, using the
technique in §3.1, as has been done in Remark 3.20, and obtain the same formula using
the QR-trace of (5.15) and the corresponding volume operators over QR. No new perspective
appears herein and hence we shall not labor further on it.

Remark 5.39. The second square of (5.22) also commutes, where the two horizontal
arrows are constructed via taking the fiber at 1 as in (5.3). However, as another manifes-
tation of the duality of the sign, taking the fiber at �1 yields a genuinely different ring
homomorphism

‡�1 W K1RVar! K�2RVar

Neither ‡1 nor ‡�1 is injective, not even taken as a pair (for instance any even power
function on the torus gives the same class).

Now, the said formula in [5] is formulated in a specialization MA� of K1RVarŒŒA��1�,
which is constructed using arc-symmetric (semialgebraic) sets and maps. In more detail,
adapting the method of [22], the (generalized) real motivic Milnor fiber S�

f
of f is the

limit of a motivic zeta function Z�.T / whose coefficients are given by sets of truncated
arcs of the form

¹' 2 X.RŒt �=tmC1/ j f .'/ D atm mod tmC1 with a 2 R� and '.0/ D zº

together with the built-in angular component map sending ' to a. Then an equality similar
to the special case (5.20) may be established in MA� ; see [5, Corollary 6.20]. Here we
point out that the process of “taking the limit” forces the R�-actions on the coefficients of
Z�.T / to factor through an RC-action, and consequently the negative part of R� does not
really figure in S�

f
; this is but another manifestation of what has been said in Remark 3.17

about the construction in [16].
Let us rather consider the same construction at the level of K1RVar (hence finer, since

full R�-actions are retained). In order to show that [5, Corollary 6.20] can be obtained
from the specialization of (5.20) to K1RVar, one needs to check that S�

f
can indeed be

recovered as Volac.X
]

f
/ over QR, similar to (5.18). We may try to reproduce the argument

given there. To begin with, taking the fiber at 1 coefficientwise, we recover from Z�.T /

the motivic zeta function Z1.T / in (3.13) (taking the fiber at �1 gives its negative coun-
terpart Z�1.T /), and it is straightforward to check that this operation commutes with the
operator “� limT!1” in (3.15); actually this is just an analogue of [22, Remark 3.13],
which we have also gone through in §3.4. However, this is as far as we can go since,
unlike ‡ in (5.3), ‡1 is not an isomorphism. In other words, although we know that the
images of S�

f
, Volac.X

]

f
/ under ‡1 coincide in K�2RVar, we cannot conclude that they

themselves coincide in K1RVar.
Thus the apparent shortcut is blocked in the real environment, and we shall have to

revert to the zeta function point of view, that is, we need to show a version of Theorem 3.19
with respect to Z�.T / and X

]

f
. QR/. Although some extra care is needed concerning the
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use of the integral
R ˘, there is no new insight arising in this endeavor and, as above, we

choose not to labor further on technicalities.
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[29] McCrory, C., Parusiński, A.: Complex monodromy and the topology of real algebraic sets.
Compos. Math. 106, 211–233 (1997) Zbl 0949.14037 MR 1457340
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