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Abstract. We introduce a notion of ˇ-almost periodicity and prove quantitative lower spectral/
quantum dynamical bounds for general bounded ˇ-almost periodic potentials. Applications include
the first sharp arithmetic spectral criterion for the entire family of supercritical analytic quasiperi-
odic Schrödinger operators and arithmetic spectral/quantum dynamical criteria for families with
zero Lyapunov exponents, with applications to Sturmian potentials and the critical almost Mathieu
operator. In particular, we disprove a 1994 conjecture of Wilkinson–Austin.
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1. Introduction

Singular continuous spectral measures of Schrödinger operators, usually defined by what
they are not, are still not very well understood. The aim of direct spectral theory is to
obtain properties of spectral measures/spectra and associated quantum dynamics based
on the properties of the potential. In the context of 1D operators this is most often done
via the study of solutions/transfer matrices/dynamics of transfer-matrix cocycles. Indeed,
there are many beautiful results linking the latter to either dimensional properties of spec-
tral measures (going back to [40]) or directly to quantum dynamics (e.g. [24, 50]). There
is also a long thread of results relating dimensional properties of spectral measures to
quantum dynamics (e.g. [8, 53, 60] and references therein) as well as results connecting
spectral/dynamical properties to some further aspects (e.g. [12, 51]). Many of those have
been used to obtain dimensional/quantum dynamical results (sometimes sharp) for sev-
eral concrete families (e.g. [21]). However, there were no results directly linking easily
formulated properties of the potential to dimensional/quantum dynamical results, other
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than for specific families or a few that ensure either the mere singularity or continuity of
spectral measures (and their immediate consequences). In particular, we do not know of
any quantitative results of this type.

In this paper we prove the first such result. It is abstract, and thus applicable in various
contexts. In particular, it leads to a number of powerful conclusions, both for the general
class of analytic quasiperiodic operators, e.g. Theorem 2, the first arithmetic if-and-only-
if criterion for this family beyond the Kotani theory, and for the specific popular models,
e.g. Theorem 4, disproving a 25-year old conjecture of Wilkinson–Austin.

To start with the most general setting, consider the Schrödinger operator on `2.Z/
given by

.Hu/n D unC1 C un�1 C V.n/un: (1.1)

For ˇ > 0, we say a real sequence ¹V.n/ºn2Z has ˇ-repetitions if there is a sequence of
positive integers qn !1 such that

max
1�j�qn

jV.j / � V.j ˙ qn/j � e
�ˇqn : (1.2)

We will say that ¹V.n/ºn2Z has1-repetitions if (1.2) holds for any ˇ > 0. For ˇ <1,
we will say that ¹V.n/ºn2Z is ˇ-almost periodic if, for some � > 0, V.� C kqn/ satisfies
(1.2) for any jkj � e�ˇqn=qn, i.e.,

max
1�j�qn; jkj�e�ˇqn=qn

jV.j C kqn/ � V.j C .k ˙ 1/qn/j � e
�ˇqn (1.3)

for any n. We will say that ¹V.n/ºn2Z is1-almost periodic if it is ˇ-almost periodic for
any ˇ <1: We note that ˇ-almost periodicity and even1-almost periodicity does not
imply almost periodicity in the usual sense. In particular, it is easily seen that there is an
explicit set of generic skew shift potentials that satisfy this condition.

We will prove

Theorem 1. LetH be given by (1.1) and V be bounded and ˇ-almost periodic. Then, for
an explicit C D C.�; V / > 0, for any

 < 1 � C=ˇ (1.4)

the spectral measure is  -spectral continuous.

For the definition of spectral continuity (a property that also implies packing continu-
ity and thus lower bounds on quantum dynamics) see Section 1.1. We formulate a more
precise version (specifying the dependence of C on �; V ) in Theorem 7.

Our result can simultaneously be viewed as a quantitative version of two well-known
statements:
� Periodicity implies absolute continuity. Indeed, we prove that a quantitative weakening

(ˇ-almost periodicity) implies quantitative continuity of the (fractal) spectral measure.
� Gordon condition .an infinite sequence of single/double almost repetition/ implies con-

tinuity of the spectral measure. Indeed, we prove that a quantitative strengthening
(multiple almost repetitions) implies quantitative continuity of the spectral measure.
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Potentials with1-repetitions are known in the literature as Gordon potentials.1 This
property has been used fruitfully in the spectral theory in various situations; see reviews
[16, 18] and references therein. In many cases those potentials were automatically ˇ-
almost periodic or even1-almost periodic, so satisfied almost repetitions over sufficiently
many periods. However, even in such cases, what all those papers used was the strength
of the approximation over two (almost) periods based on the Gordon Lemma type argu-
ments. See, e.g., [38] where a sharp abstract version is presented. The only exception is
Last [53] who implicitly used 1-almost periodicity to construct an example of poten-
tials with spectral measure of zero Hausdorff dimension and almost ballistic quantum
dynamics (later slightly improved in [25] to an example with pure point spectrum and
almost ballistic quantum dynamics). Our main technical accomplishment here is that we
find a new algebraic argument and develop a technology that allows one to obtain quan-
titative corollaries from the fact that the approximation stays strong over many periods,
thus exploring this feature analytically and effectively for the first time. One important
technical step is quantitative bounds on ellipticity of almost-period-length transfer matri-
ces for spectrally almost every energy (Theorem 10). This means that spectrally almost
every energy eventually falls into shrunk spectral bands of the periodic approximants (vs
enlarged ones, in the previous treatments, see Remark 2.1), with moreover a quantitative
control.

Lower bounds on spectral dimension lead to lower bounds on packing dimension, thus
also for the packing/upper box counting dimensions of the spectrum as a set and for the
upper rate of quantum dynamics. Therefore, we obtain corresponding non-trivial results
for all the above quantities.

It is clear that our general result only goes in one direction, as even absolute conti-
nuity of the spectral measures does not imply ˇ-almost periodicity for ˇ > 0, as analytic
potentials with Diophantine frequencies (so no ˇ-almost periodicity for positive ˇ) have
absolutely continuous spectrum for small couplings.

However, in the important context of analytic quasiperiodic operators this leads to a
sharp if-and-only-if result.

Let H D H�;˛;V be a Schrödinger operator on `2.Z/ given by

.Hu/n D unC1 C un�1 C V.� C n˛/un; n 2 Z; � 2 T ; (1.5)

where V is the potential, ˛ 2R nQ is the frequency and � 2 T is the phase. Let �D ��;˛
be the spectral measure associated with vectors ı0; ı1 2 l2.Z/ in the usual sense.

Given ˛ 2 .0; 1/, let pn=qn be the continued fraction approximants to ˛. Define

ˇ.˛/ WD lim sup
n

log qnC1
qn

2 Œ0;1�: (1.6)

Let S WD ¹E 2 �.H/ W L.E/ > 0º, where �.H/ is the spectrum of H and L.E/ is
the Lyapunov exponent, be the set of supercritical energies (or, equivalently, the set of E

1While 1-repetitions are usually used in the definition of Gordon potentials, typically ˇ-
repetitions for sufficiently large ˇ are enough for the applications.
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such that the corresponding transfer-matrix cocycle is non-uniformly hyperbolic). The
set S depends on ˛ and V but not on �:

Our main application is

Theorem 2. For any analytic V and any � , the spectral measure � restricted to S is of
full spectral dimension if and only if ˇ.˛/ D1:

Full spectral dimensionality is defined through the boundary behavior of the Borel
transform of the spectral measure (see details in Section 1.1). It implies a range of prop-
erties, in particular, maximal packing dimension and quasiballistic quantum dynamics.
Thus our criterion links in a sharp way a purely analytic property of the spectral measure
to arithmetic properties of the frequency. The result is local (so works for any subset of
the supercritical set, see Theorem 5 for more details) and quantitative (so we obtain sep-
arately quantitative spectral singularity and spectral continuity statements for every finite
value of ˇ, see Theorems 6 and 7).

The study of one-dimensional one-frequency quasiperiodic operators with general
analytic potentials has seen remarkable advances in the last two decades, focusing mainly
on two regimes: (almost) reducibility (which does not intersect with S ) and hyperbolicity
(i.e. S ), dubbed, correspondingly, sub- and supercritical in [1]. The results in the regime
of positive Lyapunov exponents can be divided into two classes:
� Those that hold for all frequencies (e.g. [11, 24, 41, 45–47]).
� Those that have arithmetic (small denominator type) obstructions preventing their hold-

ing for all frequencies, thus requiring a Diophantine type condition (e.g. [10, 20, 31]).2

Results of the first kind often (but not always [11, 69]) do not require analyticity and
hold in higher generality. Results of the second kind describe phenomena where there is
a transition in the arithmetics of the frequency. Thus an extremely interesting question
is to determine where this transition happens and to understand the neighborhood of the
transition. However, even though some improvements on the frequency range of some
results above have been obtained (e.g. [72]), most existing proofs often require a removal
of a non-arithmetically-defined measure zero set of frequencies, thus cannot be expected
to work up to the transition.

There have been remarkable recent advances in obtaining complete arithmetic cri-
teria in the presence of transitions [7, 42–44] or non-transitions [3] for explicit popular
Hamiltonians: the almost Mathieu operator and the Maryland model, but there have been
no such results that work for large families of potentials. For the reducibility regime,
where many recent advances are described in [71], there are also both dynamical and
spectral phenomena that do have arithmetic obstructions, but there have been no results

2Not all results can currently be classified this way, the most notable example being the Cantor
structure of the spectrum [32], currently proved for a non-arithmetically-defined full measure set
of frequencies, while the statement has no known arithmetic obstructions. Theoretically there may
also be results such as [3] which formally should belong to the first group but the proof requires an
argument that highly depends on the arithmetics, so they must be in the second group, in spirit. In
some sense [11] is a result of this type.
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yet on if-and-only-if arithmetic criteria in the presence of transitions, for large families.
Theorem 2, holding for general analytic potentials, is the first theorem of this kind.

A natural way to distinguish between different singular continuous spectral measures
is by their Hausdorff dimension. However, Hausdorff dimension is a poor tool for char-
acterizing the singular continuous spectral measures arising in the regime of positive
Lyapunov exponents, as it is always zero (for a.e. phase for any ergodic case [65], and
for every phase for one frequency analytic potentials [41]3). Similarly, the lower trans-
port exponent is always zero for piecewise Lipschitz potentials [24, 47]. Thus those two
quantities do not even distinguish between pure point and singular continuous situations.
In contrast, our quantitative version of Theorem 2, contained in Theorems 6 and 7, shows
that spectral dimension is a good tool to finely distinguish between different kinds of
singular continuous spectra appearing in the supercritical regime for analytic potentials.

The continuity part of Theorem 2 is robust and only requires some regularity of V .
Besides the above-mentioned criterion, Theorem 1 allows us to obtain new results for
other popular models, such as the critical almost Mathieu operator, Sturmian potentials,
and others.

Indeed, our lower bounds are effective for ˇ > C supE2�.H/ L.E/ where L.E/ is
the Lyapunov exponent (see Theorem 7), thus the range of ˇ is increased for smaller
Lyapunov exponents, and in particular we obtain full spectral dimensionality (and there-
fore quasiballistic motion) as long as ˇ.˛/ > 0, when Lyapunov exponents are zero on
the spectrum. This applies, in particular, to Sturmian potentials and the critical almost
Mathieu operator.

As an example, setting S0 D ¹E W L.E/ D 0º we have

Theorem 3. For Lipschitz V , the quantum dynamics is quasiballistic

(1) for any ˇ.˛/ > 0 if S0 6D ;,

(2) for ˇ.˛/ D1 otherwise.

A similar statement also holds for full spectral dimensionality or packing/box count-
ing dimension 1. The Lipschitz condition can be relaxed to piecewise Lipschitz (or even
Hölder), leading to part (1) also holding for Sturmian potentials. This in turn leads to first
explicit examples of operators whose integrated density of state has different Hausdorff
and packing dimensions, within both the critical almost Mathieu and Sturmian families.

The fact that quantum motion can be quasiballistic for highly Liouville frequencies
was first realized by Last [53] who proved that the almost Mathieu operator with an appro-
priate Liouville frequency (constructed step by step) is quasiballistic. The quasiballistic
property is a Gı in any regular (à la Simon’s Wonderland theorem [63]) space [15, 28],
thus this was known for (unspecified) topologically generic frequencies. Here we show
a precise arithmetic condition on ˛ depending on whether or not Lyapunov exponent
vanishes somewhere on the spectrum. Thus, in the regime of positive Lyapunov expo-
nents, the quantum motion is very interesting, with dynamics almost bounded along some

3The result of [41] is formulated for a trigonometric polynomial v, but it extends to the analytic
case – and more – by the method of [47].
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scales [47] (this property is sometimes called quasilocalization) and almost ballistic along
others. For finite values of ˇ.˛/ in this regime our result also yields power-law quantum
dynamics along certain scales while bounded along others.

In particular, for the almost Mathieu operator, a combination of Theorems 1, 2, and 3
leads to optimal results on the quasiballistic behavior in terms of the exponent ˇ.˛/
(Corollary 3).

Almost Mathieu operators, which are operators (1.5) with V.x/ D 2� cos 2�x, go
back to the work of Peierls [59] and are known (and well-studied) in physics as Harper’s
or Azbel–Hofstadter model. They were dubbed almost Mathieu and were popularized
in math through “Simon’s problems” [62, 64], which guided the development of the the-
ory of quasiperiodic operators. One of the most important remaining open questions is the
dimension of the spectrum of the critical (�D 1) almost Mathieu operator (e.g. [66]). This
question has received a lot of attention in the physics literature since the early 80’s. A con-
jecture, usually attributed to Thouless (e.g. [70]), and supported by significant numerics
(e.g. [27,67,68]), was that the fractal dimension is equal to 1=2. Wilkinson and Austin [70]
gave numerical and heuristic evidence that the box counting dimension is less than 1=2
for the golden mean, and goes to zero as n!1 for ˛ with continued fraction expansion
of the form Œn; n; n; : : :�, leading to the conjecture that the box counting dimension is less
than 1=2 for all ˛. There have been a number of interesting rigorous results on the Haus-
dorff dimension of the spectrum of the critical almost Mathieu operator [6, 35, 36, 54], all
showing zero or small dimension for various ˛. Recently, it was proved that Hausdorff
dimension is always bounded above by 1=2 [39], which, however, does not imply a sim-
ilar bound for box counting dimension. Let dimB.A/ denote the box counting dimension
of a Borel set A, and let † denote the spectrum of the critical almost Mathieu operator.
An immediate corollary of the proof of Theorem 3 is

Theorem 4. If ˇ.˛/ > 0, then dimB.†/ D 1.

This disproves the Wilkinson–Austin conjecture through an explicit family of ex-
amples. More details are given in Section 1.3.

Finally, we mention that the concepts and methods introduced in this paper were
already extended to singular Jacobi matrices in [34], leading also to sharp results, both
for the general analytic case and for the extended Harper’s model.

1.1. Main application

Fractal properties of Borel measures on R are linked to the boundary behavior of their
Borel transforms [25]. Let

M.E C i"/ D

Z
d�.E 0/

E 0 � .E C i"/
(1.7)

be the Borel transform of the measure �. Fix 0 <  < 1. If for �-a.e. E,

lim inf
"#0

"1� jM.E C i"/j <1; (1.8)
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we say that � is (upper)  -spectral continuous. Note that spectral continuity (and singu-
larity) captures the lim inf power law behavior of M.E C i"/, while the corresponding
lim sup behavior is linked to Hausdorff dimension [25]. Define the (upper) spectral dimen-
sion of � to be

s.�/ D sup ¹ 2 .0; 1/ W � is  -spectral continuousº: (1.9)

For a Borel subset S � R, let �S be the restriction of � on S . A reformulation of Theo-
rem 2 is

Theorem 5. Suppose V is real analytic and L.E/ > 0 for every E in some Borel set
S � R. Then for any � 2 T , s.�S / D 1 if and only if ˇ.˛/ D1.

Remark 1.1. If for �-a.e. E,

lim inf
"#0

"1� jM.E C i"/j D 1; (1.10)

we say that � is (upper)  -spectral singular. We can also consider

zs.�/ D inf ¹ 2 .0; 1/ W � is  -spectral singularº: (1.11)

Obviously, s.�/ � zs.�/. Actually, we will prove an upper bound for zs.�/. Therefore, the
conclusion in Theorem 5 also holds for zs.�/.

1.2. Spectral singularity, continuity and proof of Theorem 5

We first study the  -spectral singularity of�. We are going to show that under the assump-
tion of Theorem 5 we have

Theorem 6. Assume L.E/ > a > 0 for E 2 S . There exists c D c.a/ > 0 such that for
any ˛; �; if

 >
1

1C c
ˇ.˛/

; (1.12)

then �S is  -spectral singular.

Obviously, Theorem 6 implies that if ˇ <1, then

s.�S / � zs.�S / �
1

1C c=ˇ
< 1: (1.13)

The analyticity of the potential and the positivity of the Lyapunov exponent are only
needed for spectral singularity. We now formulate a more precise version of the general
spectral continuity result, Theorem 1.

For S � �.H/ assume there are constantsƒ > 0 and n0 2N such that for any k 2 Z,
E 2 S and n � n0,�E � V.k C n/ �11 0

�
� � �

�
E � V.k C 1/ �1

1 0

� � eƒn: (1.14)
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Clearly, such a ƒ always exists for bounded V , with n0 D 1:
As before we denote by �S the spectral measure of H restricted to a Borel set

S � �.H/.

Theorem 7. Let H be given by (1.1) and suppose V satisfies (1.14) and is ˇ-almost
periodic with � > 0. Then, for a C.�/ D C0.1C 1=�/, with ƒ satisfying (1.14) , if

ˇ > C.�/
ƒ

1 � 
(1.15)

then �S is  -spectral continuous. Here C0 is a universal constant. Consequently,

zs.�S / � s.�S / � 1 � C.�/
ƒ

ˇ
: (1.16)

Proof of Theorem 5. Under the assumption of Theorem 5, if ˇ <1, Theorem 6 provides
the upper bound (1.13) for the spectral dimension.

We will now get the lower bound using Theorem 7. Let V� .n/ WD V.� C n˛/. By
boundedness of V and compactness of the spectrum, there is a constant ƒV <1 such
that (1.14) holds uniformly for E 2 �.H� /; � 2 T . In order to apply Theorem 7, it is
enough to show that for any ˇ < ˇ.˛/, V.� C j˛/ has ˇ-repetitions for any � 2 T ; j 2Z.
Indeed, by (1.6), there is a subsequence qnk such that

.log qnkC1/
ı
qnk > ˇ:

Since V is analytic, for any �; j and 1 � n � qnk we have

jV.� C j˛ C n˛/ � V.� C j˛ C n˛ ˙ qnk˛/j � Ckqnk˛k � C
1

qnkC1
� Ce�ˇqnk :

Thus if ˇ.˛/ D1, then zs.�S / D s.�S / D 1.

Property (1.14) naturally holds in a sharp way in the context of ergodic potentials
with uniquely ergodic underlying dynamics. Assume the potential V D V� is generated
by some homeomorphism T of a compact metric space � and a function f W �! R by

V� .n/ D f .T
n�/; � 2 �; n 2 Z: (1.17)

Assume .�; T / is uniquely ergodic with an ergodic measure �. It is known that the spec-
tral type of H� is �-almost surely independent of � (e.g. [13]). In general, however, the
spectral type (locally) does depend on � (see [49]). If f is continuous then, by uniform
upper semicontinuity (e.g. [26]),

lim sup
n

sup
�

1

n
log
�E�V� .n/ �11 0

�
� � �

�
E�V� .1/ �1

1 0

��L.E/; 8E: (1.18)

This was recently extended in [47] to almost continuous f . Following [47], we will say a
function f is almost continuous if it is bounded and its set of discontinuities has a closure
of �-measure zero. By [47, Corollary 3.2], if f is bounded and almost continuous then
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(1.18) also holds for every E. Moreover, if the Lyapunov exponent L.E/ is continuous
on some compact set S , then, by compactness and subadditivity, the lim sup in (1.18) will
also be uniform in E 2 S . Since by upper semicontinuity L.E/ is continuous on the set
where it is zero, as a consequence of Theorem 7 we obtain

Corollary 1. Assume the function f in (1.17) is bounded and almost continuous and
L.E/ D 0 on some Borel subset S of �.H� /. If V� .n/ is ˇ-almost periodic for some
ˇ; � > 0, then s.��S / D 1:

Proof. For any 0 <  < 1, set ƒ0 D ˇ.1 � /=.2C / where C D C.�/ is given in Theo-
rem 7.4 Since L.E/ D 0 on S , by the arguments above there is n0 D n0.ƒ0/ independent
of � and E such that�E � V� .n/ �11 0

�
� � �

�
E � V� .1/ �1

1 0

� � eƒ0n; n � n0; E 2 S; � 2 �:

Obviously, ˇ > Cƒ0=.1 � /, so Theorem 7 is applicable and (1.16) holds. Therefore,
s.�S;� / � 1 � Cƒ

0=ˇ >  .

Let S0 D ¹E W L.E/ D 0º and SC D ¹E W L.E/ > 0º:
As an immediate consequence we obtain

Theorem 8. If V� .n/ is given by (1.17) with uniquely ergodic .�; T / and almost contin-
uous f , then for every � we have

(1) s.�S0/ D 1 as long as V is ˇ-almost periodic with ˇ > 0,

(2) s.�SC/ D 1 as long as V is ˇ-almost periodic with ˇ D1.

Remark 1.2. (1) ˇ > 0 is not a necessary condition in general for s.�S0/ D 1, for
s.�ac/D 1 even if V is not ˇ-almost periodic for any ˇ, and the support of the absolutely
continuous spectrum is contained in (and may coincide with) S0. It is a very interesting
question to specify a quantitative almost periodicity condition for s.�sing

S0
/ D 1, in par-

ticular, find an arithmetic criterion for analytic one-frequency potentials for s.�Scr/ D 1

where Scr � S0 is the set of critical energies in the sense of Avila’s global theory.
(2) According to Theorem 5, ˇ D 1 is also necessary if f is analytic and T is an

irrational rotation of the circle (ˇ will depend on T ). In case f has lower regularity, it is
an interesting question to determine an optimal condition on ˇ.

1.3. Corollaries for the AMO, Sturmian potentials, and transport exponents

If we replace the lim inf by lim sup in the definition of upper spectral dimension, we
will define correspondingly the lower spectral dimension which will coincide with the
Hausdorff dimension dimH.�/ of a measure �.

Also one can consider the packing dimension of �, denoted by dimP.�/. The pack-
ing dimension can be defined in a similar way to (1.9) through the  -dimensional lower

4If ˇ D1 take any finite ˇ instead.
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derivative D�.E/. It can be easily shown that D�.E/ � lim inf"#0 "1� jM.E C i"/j.
Thus the relation between packing dimension and upper spectral dimension is dimP.�/

� zs.�/.5 Therefore, the lower bound we get in Theorem 7 also holds for the packing
dimension.

Lower bounds on spectral dimension also have immediate applications to lower
bounds on quantum dynamics. Denote by ıj the vector ıj .n/ D �j .n/. For p > 0, define

hjX j
p

ı0
i.T / D

2

T

Z 1
0

e�2t=T
X
n

jnjpjhe�itH ı0; ınij
2: (1.19)

The growth rate of hjX jp
ı0
i.T / characterizes how fast e�itH ı0 spreads out. In order to get

power law bounds for hjX jp
ı0
i.T /, it is natural to define the following upper and lower

dynamical exponents:

ˇC
ı0
.p/ D lim sup

T!1

loghjX jp
ı0
i.T /

p logT
; ˇ�ı0.p/ D lim inf

T!1

loghjX jp
ı0
i.T /

p logT
: (1.20)

The dynamics is called ballistic if ˇ�
ı0
.p/ D 1 for all p > 0, and quasiballistic if

ˇC
ı0
.p/ D 1 for all p > 0. We will also say that the dynamics is quasilocalized if

ˇ�
ı0
.p/ D 0 for all p > 0.
In [33], it is shown that the upper and lower transport exponents of a discrete

Schrödinger operator (1.1) can be bounded from below by the packing and Hausdorff
dimension of its spectral measure respectively. Therefore, by [33] we have ˇC

ı0
.p/� s.�/

for all p. As a direct consequence of Theorem 7 we have

Corollary 2. If V.n/ is bounded and1-almost periodic, the upper dynamical exponent
ˇC
ı0
.p/ of the operator (1.5) is 1 for any p > 0, and the associated dynamics is quasi-

ballistic.

This has nice immediate consequences. In particular, consider the almost Mathieu
operator

.H�;�;˛u/n D unC1 C un�1 C 2� cos 2�.� C n˛/ un; � > 0: (1.21)

As a consequence of the formula for the Lyapunov exponent and Theorem 5, one has

Corollary 3. The almost Mathieu operator (1.21) is quasiballistic6 for any .and all/
� 2 T and

(1) for � < 1 for all ˛;

(2) for � D 1 as long as ˇ.˛/ > 0;

(3) for � > 1 as long as ˇ.˛/ D1.

5Unlike for Hausdorff dimension, the relation for packing dimension only goes in one direction,
in general, contrary to what is claimed in [14].

6And has spectral dimension 1 and packing dimension 1 of the spectral measure.
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Statement (1) is a corollary of absolute continuity [2, 51] and is listed here for com-
pleteness only. Statements (2) and (3) are direct corollaries of Theorem 8.

For � > 1, the Hausdorff dimension of the spectral measure of the almost Mathieu
operator is equal to zero [41] and ˇ�.p/ D 0 for all p > 0 [24]. Thus almost Mathieu
operators with � > 1 and ˇ.˛/ D 1 provide a family of explicit examples of operators
that are simultaneously quasilocalized and quasiballistic and whose spectral measures
satisfy

0 D dimH.�/ < dimP.�/ D 1:

The same holds of course for cos replaced with any almost continuous f as long as the
Lyapunov exponent is positive everywhere on the spectrum, in particular for f D �g

where g is either bi-Lipschitz (as in [37]) or analytic, and � > �.g/ is sufficiently large.
Let dN be the density states measure of the almost Mathieu operator and † be the

spectrum. It is well-known that in the critical case, � D 1, † has Lebesgue measure zero
[5, 52]. It is then interesting to consider the fractal dimension of the spectrum (as a set).
Since dN D E.d�� / and supptop.dN/ D † , by the discussion above we have

Corollary 4. For the critical almost Mathieu operator, � D 1, and ˇ.˛/ > 0 we have
dimP.dN/ D dimP.†/ D 1:

Last and Shamis [54] (see also [61]) proved that for a dense Gı set of ˛ (which there-
fore has a generic intersection with the set ¹˛ W ˇ.˛/ > 0º), the Hausdorff dimension
of the spectrum is equal to zero. This was recently extended to the entire set of ˛ with
ˇ.˛/ > 0 [6]. Thus critical almost Mathieu operators with topologically generic frequen-
cies (namely, those with ˇ.˛/ > 0) and any � provide an explicit family of operators that
all have spectra satisfying

0 D dimH.†/ < dimP.†/ D dimB.†/ D 1:

Another well-known family is Sturmian Hamiltonians given by

.Hu/n D unC1 C un�1 C ��Œ1�˛;1/.n˛ C � mod 1/un; (1.22)

where � > 0 and ˛ D RnQ. If ˛ D
p
5�1
2

, it is called the Fibonacci Hamiltonian. The
spectral properties of the Fibonacci Hamiltonian have been thoroughly studied in a series
of papers in the past three decades (see [17,19] for more references). Recently, Damanik,
Gorodetski and Yessen [21] proved that for every � > 0, the density-of-states measure
dN� is exact-dimensional (the Hausdorff and upper box counting dimension are the same)
and dimH.dN�/ < dimH.†�/.

Our results show that the exact dimensionality properties of the Sturmian Hamilto-
nians strongly rely on the arithmetic properties of ˛. It was shown in [9] that if ˛ is
irrational, the Lyapunov exponent of a Sturmian operator restricted to the spectrum is
zero. Also the spectrum †�;˛ of the Sturmian Hamiltonian is always a Cantor set with
Lebesgue measure zero. Moreover, for Sturmian potentials results similar to those for the
critical almost Mathieu operator in Corollary 4 also hold. Let �� be the spectral measure
of the Sturmian operator (1.22) and let dN�;˛ be the density-of-states measure and †�;˛
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be the spectrum. We say that a phase � is ˛-Diophantine if there exist  <1 and � > 1
such that k� C m˛kR=Z � =.jmj C 1/� for all m 2 Z. Clearly, this is a full measure
condition. We have

Theorem 9. For the Sturmian operator H�;�;˛ with ˇ.˛/ > 0 and � > 0, if � is ˛-
Diophantine, the spectral dimension of �� is 1.

As a consequence, if ˇ.˛/ > 0 and � > 0, then the packing dimensions of dN�;˛ and
of †�;˛ are both equal to 1.

Previously, Liu, Qu and Wen [57, 58] studied the Hausdorff and upper box counting
dimension of †�;˛ of Sturmian operators. For large couplings, they gave a criterion on
˛ 2 .0; 1/ for the Hausdorff dimension of the spectrum to be 1. Combining Theorem 9
with their results, we have

Corollary 5. Let †�;˛ be the spectrum of the Sturmian Hamiltonian with � > 20. There
are explicit ˛ such that for a.e. � ,

dimH.�
�
�;˛/ < s.�

�
�;˛/ D dimP.�

�
�;˛/ D 1; (1.23)

dimH.dN�;˛/ < s.dN�;˛/ D dimP.dN�;˛/ D 1: (1.24)

The proof for the Sturmian case is given in Section 4.
The rest of this paper is organized as follows. After giving the preliminaries in Sec-

tion 1.4 we proceed to the proof of the general continuity statement in Section 2. First we
quickly reduce Theorem 7 to Lemma 2.1 where we also specify the constant C0 appear-
ing in Theorem 7. We note that we do not aim to optimize the constants here and many
of our arguments have room for improvement. Lemma 2.1 is further reduced to the esti-
mate on the traces of the transfer matrices over eventual almost periods, Theorem 10,
through its corollaries, Lemmas 2.2 and 2.3. Theorem 10 is the key element and the most
technical part of the proof. It is of interest in its own right as it can be viewed as the
quantitative version of the fact that period-length transfer matrices of periodic operators
are elliptic: it provides quantitative bounds on the traces of transfer matrices over almost
periods based on quantitative almost periodicity for spectrally a.e. energy. In Section 2.2
we separate this statement into hyperbolic and almost parabolic parts, in Lemmas 2.4
and 2.5. In Section 2.3 we use the extended Schnol Theorem to study the hyperbolic case
and in Section 2.4 we combine estimates on level sets of polynomials, power-law subordi-
nacy bounds, and an elementary but very useful algebraic representation of matrix powers
(Lemma 2.9) to study the almost parabolic case. Lemmas 2.2 and 2.3 are proved in Sec-
tion 2.5, completing the continuity part. In Section 3 we focus on analytic quasiperiodic
potentials and prove Theorem 6. The proof is based on a lemma about density of local-
ized blocks (Lemma 3.3). Finally, we discuss Sturmian potentials in Section 4, proving
Theorem 9 and then providing explicit examples for Corollary 5.

1.4. Preliminaries

1.4.1. m-function and subordinacy theory. We now briefly introduce the power-law
extension of the Gilbert–Pearson subordinacy theory [29, 30], developed in [40]. We will
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also list the necessary related facts on the Weyl–Titchmarshm-function. More details can
be found, e.g., in [13].

Let H be as in (1.5) and z D E C i" 2 C. Consider the equation

Hu D zu (1.25)

with the family of normalized phase boundary conditions:

u
'
0 cos' C u'1 sin' D 0; ��=2 < ' � �=2; ju

'
0 j
2
C ju

'
1 j
2
D 1: (1.26)

Let ZC D ¹1; 2; : : :º and Z� D ¹: : : ;�2;�1; 0º. Denote by u' D ¹u'j ºj�0 the right half-
line solution on ZC of (1.25) with boundary condition (1.26) and by u';�D¹u';�j ºj�0 the
left half-line solution on Z� of the same equation. Also denote by v' and v';� the right
and left half-line solutions of (1.25) with boundary conditions orthogonal to u' and u';�.
That is, v' D u'C�=2,v';�D u'C�=2;�;' � 0, and v' D u'��=2,v';�D u'��=2;�;' > 0.
For any function u W ZC ! C we denote by kukl the norm of u over a lattice interval of
length l , that is,

kukl D
� Œl�X
nD1

ju.n/j2 C .l � Œl �/ju.Œl�C 1/j2
�1=2

; (1.27)

where Œ � is integer part. Similarly, for u W Z� ! C, we define

kukl D
�Œl��1X
nD1

ju.�n/j2 C .l � Œl �/ju.�Œl �/j2
�1=2

: (1.28)

Now given any " > 0, we define the length l D l.'; "; E/ by requiring the equality

ku'kl.';";E/kv
'
kl.';";E/ D

1

2"
: (1.29)

We also define l�.'/ by using u';�; v';� through the same equation. By the constancy of
the Wronskian and orthogonality of the boundary conditions, we have

u'.nC 1/v'.n/ � v'.nC 1/u'.n/ D u'.1/v'.0/ � v'.1/u'.0/ D 1;

which implies by Cauchy–Schwarz that

ku'kl � kv
'
kl �

1
2
.Œl� � 1/: (1.30)

Denote bym' WCC!CC andm�' WC
C!CC the right and left Weyl–Titchmarshm-

functions associated with the boundary condition (1.26). LetmDm0 andm�Dm�0 be the
half line m-functions corresponding to the Dirichlet boundary conditions. The following
key inequality [40] relatesm'.E C i"/ to the solutions u' and v' given by (1.25), (1.26).

Lemma 1.1 (J-L inequality, [40, Theorem 1.1]). For E 2 R and " > 0, and for any
' 2 .��=2; �=2�,

5 �
p
24

jm'.E C i"/j
<
ku'kl.';"/

kv'kl.';"/
<

5C
p
24

jm'.E C i"/j
: (1.31)
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We need to study the whole-line m-function which is given by the Borel transform of
the spectral measure � of the operator H (see e.g. [13]). The following relation between
the whole-line m-function M and the half-line m-function m' was first shown in [22] as
a corollary of the maximal modulus principle. One can also find in [4] a different proof
based on a direct computation in the hyperbolic plane.

Proposition 1 ([22, Corollary 21]). For E 2 R and " > 0,

jM.E C i"/j � sup
'
jm'.E C i"/j: (1.32)

This proposition implies that in order to obtain an upper bound for the whole-line
m-function, namely, the continuity of the whole-line spectrum, it is enough to obtain a
uniform upper bound of the half-line m-function for any boundary condition.

On the other hand, consider the unitary operatorU W l2.Z/! l2.Z/ defined by .U /n
D  �nC1 for n 2 Z. For any operator H on l2.Z/, we define an operator zH on l2.Z/ by
zH D UHU�1. Denote by zm; zm' ; zu' and zl.'/ the parameters m;m' ; u' and l.'/ of the

operator zH . We will need the following well-known facts (see e.g. [41, Section 3]). For
any ' 2 .��=2; �=2� we have

M.z/ D
m'.z/ zm�=2�' � 1

m'.z/C zm�=2�'
(1.33)

and
zl.�=2 � '/ D l�.'/; kukl D kUukl : (1.34)

Similar to [41, Lemma 5], a direct consequence of (1.33) is the following result.

Lemma 1.2. For any 0 <  < 1, suppose that there exists a ' 2 .��=2; �=2� such
that for �-a.e. E in some Borel set S , we have lim inf"!0 "1� jm'.E C i"/j D 1
and lim inf"!0 "1� j zm�=2�'.E C i"/j D 1. Then lim inf"!0 "1� jM.E C i"/j D 1
for �-a.e. E in S , so the restriction �.S \ �/ is  -spectral singular.

1.4.2. Transfer matrices and Lyapunov exponents. Although Theorem 7 does not involve
any further conditions on the potential, it will be convenient in what follows to use dynam-
ical notations. Let � D RZ and T W � ! � be given by .T �/.n/ D �.n C 1/. Let
f .�/ WD �.0/. Then any potential V can be written as in (1.17), V� .n/ WD �.n/D f .T n�/.
Thus for a fixed ¹Vnºn2Z D � 2 �, we will rewrite the potential V as V� .n/ D f .T n�/
as in (1.17). For our general theorem we do not introduce any topology, etc.; this is
being done purely for the notational convenience. Denote the n-step transfer matrix by
An.�; E/:

An.�; E/ D A.T
n�;E/A.T n�1�;E/ � � �A.T �;E/; n > 0; (1.35)

and
A0 D Id; An.�; E/ D A

�1
�n.T

n�;E/; n < 0;
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where

A.�;E/ D

�
E � f .�/ �1

1 0

�
: (1.36)

The connection to Schrödinger operators is clear since a solution ofHuD Eu can be
reformulated as

An.�; E/

�
u1
u0

�
D

�
unC1
un

�
; n 2 Z: (1.37)

In other words, the spectral properties of Schrödinger operators H are closely related to
the dynamics of the family of skew products .T; A.�; E// over � � R2. We will often
suppress either � or E or both from the notations if the corresponding parameters are
fixed through the argument.

If V is actually dynamically defined by (1.17) with a certain underlying ergodic base
dynamics .�; T; �/ then, by the general properties of subadditive ergodic cocycles, we
can define the Lyapunov exponent

L.E; T / D lim
n!1

1

n

Z
�

log kAn.�; E/k d� D inf
n>0

1

n

Z
�

log kAn.�; E/k d�: (1.38)

2. Spectral continuity

2.1. Proof of Theorem 7

Throughout this section we assume (1.14) is satisfied uniformly forE 2 S and � 2� (see
Section 1.4.2). Assume V is ˇ-almost periodic for some � > 0. The proof of Theorem 7
is based on the following estimates on the growth of the l-norm of half-line solutions. Let
u' ; v' be given as in (1.25)–(1.27).

Lemma 2.1. For 0 <  < 1, assume ˇ > 100.1C 1=�/ƒ=.1� /. For �-a.e. E, there is
a sequence of positive numbers �k ! 0 such that for any ',

1

16
.Lk/


� kv'k2Lk � .Lk/

2� (2.1)

where Lk D l.'; �k ; E/ is as in (1.29).

Proof of Theorem 7. Fix 0<  < 1. SetC.�/ WD 100.1C 1=�/. Lemma 2.1 can be applied
to any ˇ > C.�/ ƒ

1�
. According to (2.1) and the J-L inequality (1.31), for �-a.e. E and

any ',

�
1�

k
jm'.E C i�k/j �

1

.2ku'kLkkv
'kLk /

1�
� .5C

p
24/
kv'kLk
ku'kLk

� C �
.L
.2�/=2

k
/�

1
4
L
=2

k

�2� D C <1:
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Since �k is independent of ', for a fixed E and �k , we can take the supremum with
respect to '. By (1.32) in Proposition 1, for �-a.e. E we have

�
1�

k
jM.E C i�k/j < C;

i.e.,
lim inf
"#0

"1� jM.E C i"/j <1; �-a.e. E;

which proves the  -spectral continuity of Theorem 7. The lower bound (1.16) comes from
the definition of spectral dimensionality.

Lemma 2.1 follows from the following estimates on the trace of the transfer matrix.
Let qk be the sequence given in (1.3).

Theorem 10. If
ˇ > .37C 11=�/ƒ; (2.2)

then for �-a.e. E, there is K.E/ such that

jTraceAqk .E/j < 2 � e
�10ƒqk ; k � K.E/: (2.3)

This theorem is the key estimate for spectral continuity. It can be viewed as a quantita-
tive version of the classical fact that period-length transfer matrices of periodic operators
are elliptic on the spectrum. Indeed, we prove that ˇ-almost periodicity implies quantita-
tive bounds on ellipticity. The proof will be given in the following two subsections. As a
direct consequence of Theorem 10, we have the following estimates on the norm of the
transfer matrices. They show that if the trace of the transfer matrix over an almost period
is strictly less than 2, then there is a sublinearly bounded subsequence. We will use this
result to prove Lemma 2.1 first. The proofs of Lemmas 2.2 and 2.3 will be postponed to
Section 2.5. Let K.E/ be as in Theorem 10.

Lemma 2.2. For any � > 0 setNk D Œe�qk � and suppose that, in addition to the conditions
of Theorem 10,

ˇ > 15ƒC .2C 1=�/�: (2.4)

Then for �-a.e. E,

NkqkX
nD1

kAn.E/k
2
� e.�C15ƒ/qk ; k � K.E/ (2.5)

Lemma 2.3. For 0 <  < 1, assume that in addition to the conditions of Lemma 2.2,

� �
17ƒ

1 � 
: (2.6)

Then
NkqkX
nD1

kAn.E/k
2
� .Nkqk/

2� ; k � K.E/: (2.7)
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Proof of Lemma 2.1. It is enough to prove the right-hand inequality of (2.1), which is an
upper bound of kv'kLk for any '. Then by the relation u' D v'C�=2, one obtains the
same upper bound for ku'kLk . Note that ku'kLkkv

'kLk � Lk=4 by (1.30), provided
Lk � 2. Therefore,

kv'kLk �
1

4
Lk

1

ku'kLk
�
1

4
L
=2

k
;

which is the left-hand inequality of (2.1).
For any 0 <  < 1, set ˇ0 D 100.1C 1=�/ ƒ

1�
, � D 17ƒ

1�
. Then (2.2), (2.4) and (2.6)

are satisfied for all ˇ > ˇ0. Therefore, (2.7) holds the with above choice of parameters.
Let lk D Œe�qk �qk . Rewrite (2.7) as

Plk
nD1 kAn.E/k

2 < l
2�

k
. Thus kv'k2

lk
� 4l

2�

k
for

any '. By (1.30), we have

1

4
lk � ku

'
klkkv

'
klk � 4l

2�

k
: (2.8)

Set
"k.'/ WD

1

2ku'klkkv
'klk

: (2.9)

Then
�k D inf

'
"k.'/ �

1

8l
2�

k

> 0 (2.10)

is well-defined. Set Lk.'/ WD l.'; �k ; E/. Then the length scale satisfies

�k D
1

2ku'kLk.'/kv
'kLk.'/

: (2.11)

By (2.10),

Lk.'/ � 4ku
'
kLkkv

'
kLk D

2

�k
� 16l

2�

k
:

Since �k � "k.'/ and ku'klkv'kl is increasing in l , for any ' we obtain

lk � Lk.'/ � 16l
2�

k
: (2.12)

By the definition of lk , for large k;

e.��
ƒ

200.1�/
/qkqk � Lk.'/ � e

..2�/�Cƒ=200/qkqk : (2.13)

Write Lk.'/ D ŒLk.'/�C zLk.'/ and

ŒLk.'/� D .Nk.'/ � 1/qk C rk.'/; Nk.'/ 2 N; 0 � rk.'/ < qk : (2.14)

Define

�k.'/ D
logNk.'/

qk
: (2.15)
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We have

ŒLk.'/� D .e
�k.'/qk � 1/qk C rk.'/; e�k.'/qk 2 N; 0 � rk.'/ < qk : (2.16)

For large qk , it is easy to check that

e.�k.'/�ƒ=200/qkqk � .e
�k.'/qk � 1/qk � Lk.'/ � e

�k.'/qkqk :

Using (2.13), for any ' we have

� �ƒ=200 � �k.'/ � .2 � /� Cƒ=100 � 2� Cƒ=100: (2.17)

Together with the choice of ˇ and �, we have

ˇ > ˇ0 > 15ƒC .2C 1=�/�k.'/:

Now we can again apply Lemma 2.2 with parameters ˇ, �k.'/ and the length scale
Nk.'/ D e

�k.'/qk to get

Nk.'/qkX
nD1

kAn.E/k
2
� e.�k.'/C15ƒ/qk : (2.18)

Notice Lk.'/ � e.�k.'/�ƒ=200/qk implies that

1

.Lk/2�

Nk.'/qkX
nD1

kAn.E/k
2
� e.�.1�/�kC16ƒ/qk :

By the left-hand inequality of (2.17), we obtain

.1 � /.�k.'/Cƒ=200/ > .1 � /� D 17ƒ;

which implies
.1 � /�k.'/ > 17ƒ � .1 � /ƒ=200 > 16:5ƒ;

and
1

.Lk/2�

NkqkX
nD1

kAn.E/k
2
� e�ƒqk=2 � 1: (2.19)

Finally, by Lemma 2.3 we have

kv'k2Lk �

ŒLk �C1X
nD1

jv'n j
2
�

Nk.'/qkX
nD1

.jv'n j
2
C jv

'
nC1j

2/

�

Nk.'/qkX
nD1

kAn.E/k
2
� .Lk/

2� :



Singular continuous spectral measures for quasiperiodic Schrödinger operators 19

2.2. Proof of Theorem 10

The proof of Theorem 10 will be divided into two cases. We will first exclude the energies
where the trace is much greater than 2 infinitely many times using the extended Schnol
Theorem (Lemma 2.6). Then we will estimate the measure of energies where the trace
is close to 2 through subordinacy theory. The conclusion consists of the following two
lemmas. Again let qk be the sequence given by (1.3) with certain ˇ; � > 0.

Lemma 2.4. For any � > 0, if

ˇ > .3C 1=�/� C .7C 1=�/ƒ; (2.20)

then for spectrally a.e. E, there is K1.E/ such that

jTraceAqk .E/j < 2C e
��qk ; k � K1.E/: (2.21)

Lemma 2.5. If
ˇ > .25C 1=�/ƒ; (2.22)

then for spectrally a.e. E, there is K2.E/ such that

jTraceAqk .E/˙ 2j > e
�10ƒqk ; k � K2.E/: (2.23)

Proof of Theorem 10. The theorem follows immediately by combining Lemma 2.4 with
� D 10ƒ and Lemma 2.5.

Remark 2.1. It may be interesting to compare Theorem 10 with the technique Last used
in his proof of zero Hausdorff dimensionality of the spectral measures of supercritical
Liouville almost Mathieu operators [53]. An important step there was using Schnol’s
Theorem to show that eventually spectrally almost every energy is in the union of the
spectral bands of the periodic approximants enlarged by a factor of q2

k
. Here we show

that spectrally almost every energy is in the union of the shrunk spectral bands of the
periodic approximants, a much more delicate statement, technically, hence with more
powerful consequences.

2.3. The hyperbolic case: Proof of Lemma 2.4

We are going to show that if q is an ‘approximate’ period as in (1.3) with certain ˇ; � > 0
and satisfies

jTraceAq.E/j � 2C e��q (2.24)

then the trace of the transfer matrix at the scale e�q=2 will be very large and any gener-
alized eigenfunction of Hu D Eu will be bounded from below at the scale e�q=2. If this
happens for infinitely many q, then any generalized eigenfunction will have at least 1=2
power law growth (in index) along some fixed subsequence. By the extended Schnol The-
orem, such an E must belong to a set of spectral measure zero.
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Claim 1. Fix any � > 0. There exist xiq 2Z, i D 1; : : : ; 4;q 2N, .depending only on �;ƒ/
such that jxiqj !1 as q!1 and the following is true: if for q!1, jTraceAq.E/j �
2C e��q and

max
1�j�q; jkj�e�ˇq=q

jV.j C kq/ � V.j C .k ˙ 1/q/j � e�ˇq; � > 0; (2.25)

with
ˇ > .3C 1=�/� C .7C 1=�/ƒ; (2.26)

then for any ju0j2C ju1j2D 1, we have maxiD1;:::;4 juE
xiq
j> eq=16;where uEn is a solution

with boundary values .u0; u1/.

Lemma 2.6 (Extended Schnol Theorem). Fix any y > 1=2. For any sequence jxkj ! 1
.where the sequence is independent of E/, for spectrally a.e. E, there is a generalized
eigenvector uE of Hu D Eu such that

juExk j < C.1C jkj/
y :

We can now prove Lemma 2.4.

Proof of Lemma 2.4. Let qk be as in (1.3). Let E be such that there is a subsequence
qkj ! 1 satisfying jTraceAqkj .E; ˛/j � 2 C e

��qkj . For simplicity, we still denote

the subsequence by qk . By Claim 1 the set
S4
iD1¹x

i
qk
º has the property that for any

generalized eigenfunction uE , one has

max
iD1;:::;4

juE
xiqk
j > eqk=16:

Let zxk be the one in
S4
iD1¹x

i
qk
º where the maximum of juE

xiqk

j is attained. Then juE
zxi
k

j >

eqk=16 � jkj. According to Lemma 2.6, the set of such E must have spectral measure
zero.

Claim 1 is based on the following results. First, we need to estimate the norm of
the conjugation matrix for any hyperbolic SL.2;R/ matrix with respect to the distance
between its trace and 2:

Lemma 2.7. SupposeG 2 SL.2;R/ with 2 < jTraceGj � 6. The invertible matrixB such
that

G D B

�
� 0

0 ��1

�
B�1 (2.27)

where �˙1 are the two conjugate real eigenvalues of G with jdetBj D 1 satisfies

kBk D kB�1k <

p
kGkp

jTraceGj � 2
: (2.28)

If jTraceGj > 6, then kBk � 2
p
kGk

p
jTraceGj�2

.
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The proof is based on a direct computation of conjugate matrices. For the sake of
completeness, we present it in Appendix A.1.

Fix � > 0 and apply Lemma 2.7 to Aq satisfying

jTraceAqj > 2C e��q : (2.29)

Using the bound kAqk � eƒq in (1.14) and 2 � eƒq=200 for q large, we then have

Claim 2. For large q;

Aq D B

�
� 0

0 ��1

�
B�1 (2.30)

where �˙1 are the two conjugate real eigenvalues of Aq with j�j > 1 and B satisfies
jdetBj D 1 and

kBk D kB�1k < e.�=2Cƒ=2Cƒ=200/q : (2.31)

Second, we need to use the almost periodicity (2.25) of the potential to obtain approx-
imation statements for the transfer matrices. Set

N D Œe.�=2Cƒ=100/q�: (2.32)

Under the assumption (2.25) and (2.26) on V as in Claim 1, for q large enough (depending
on ƒ and n0) we have

Claim 3. Under the conditions of Claim 1,

kANq � A
N
q k � 2e

�ƒq
j�jN � 2e�ƒqjTraceANq j; (2.33)

kŒANq�
�1
� A�Nqk � 4e

�ƒq
j�jN � 4e�ƒqjTraceANq j: (2.34)

Proof of Claim 1. Decomposing Aq as in (2.30), we obtain j�j > 1C e��q=2. Obviously,
jTraceANq j � j�j

N . By (2.32), N > 2e�q=2q, thus

jTraceANq j � .1C e
��q=2/2e

�q=2q
� eq :

Assume q is so large that 4e�ƒq � 1=10. By (2.33), we have

jTraceANq � TraceANq j � 2kANq � A
N
q k � 4e

�ƒq
jTraceANq j:

Therefore,
jTraceANqj > .1 � 4e�ƒq/jTraceANq j �

9
10
eq : (2.35)

Now consider the solution u of Hu D Eu with normalized initial value

X D

�
u1
u0

�
; kXk D 1:

Then by (1.37),

ANq �X D

�
uNqC1
uNq

�
; A�Nq �X D

�
u�NqC1
u�Nq

�
: (2.36)
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(2.34) implies that

kŒANq�
�1
�Xk � kA�Nqk � kXk C 4e

�ƒq
jTraceANq j � kXk

� kA�Nqk � kXk C
1

10
jTraceANq j � kXk:

Thus combining the Cayley–Hamilton theorem with (2.35), we have

9
10
jTraceANq j � kXk � kTraceANqXk D kANq �X C ŒANq��1 �Xk

� kANq �Xk C kA�Nq �Xk C
1
10
jTraceANq j � kXk:

Then
kANq �Xk C kA�Nq �Xk �

8
10
jTraceANq j � kXk �

1
2
jTraceANq j;

which is equivalent to

max
²�uNqC1uNq

�; �u�NqC1u�Nq

�³ � 1
4
jTraceANq j:

Therefore,
max ¹juNqC1j; juNqj; ju�NqC1j; ju�Nqjº � 1

16
eq :

Let xiq D .�1/
iNqC 1� Œi=3�; i D 1; : : : ; 4. Then for every q and one of i D 1; : : : ; 4,

juxiq
j > 1

16
eq .

It now remains to prove (2.33) and (2.34) in Claim 3. Set

�i D Aq.T
.i�1/q�;E/ � Aq.�; E/; i D �N C 1; : : : ; N: (2.37)

Claim 4. Suppose (1.14) holds for n� n0 and is uniform inE 2 S . FixE 2 S and � 2�.
If V� satisfies (2.25) with � > 0, then there is a constant Cn0 .depending only on n0 and
an upper bound of kV k1/ such that

k�i .�; E/k � ji � 1jqCn0e
.ƒ�ˇ/q; ji j D 1; : : : ; Œe�ˇq=q�: (2.38)

Proof. The proof is quite standard. Suppose 1 � i � Œe�ˇq=q�. Then for jkj < i ,
jkjq < e�ˇq . Since VT kq� .n/ D V� .nC kq/, (2.25) implies that for jkj < i the following
holds:

jVT kq� .j / � VT .kC1/q� .j /j � e
�ˇq; 1 � j � q;

which implies

kA.T kqCj �/ � A.T .kC1/qCj �/k � e�ˇq; 1 � j � q; jkj < i:

By a standard telescoping argument, for any � 0 D T kq�; jkj < i ,

kAq.T
q� 0/ � Aq.�

0/k � qC
n0
V e.ƒ�ˇ/q D qCn0e

.ƒ�ˇ/q
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where CV is such that kA.� 0; E/k � CV for all � 0; E. In the above estimate, if n > n0,
we use the bound (1.14). When n � n0, we use the trivial bound kAnk � C

n0
V . We have

Aiq.�; E/ D Aq.T
.i�1/q�/ � � �Aq.T

q�/Aq.�/:

Therefore, for 1 � i � Œe�ˇq=q�,

k�ik �

i�1X
kD1

kAq.T
kq�/ � Aq.T

.k�1/q�//k � .i � 1/qCn0e
.ƒ�ˇ/q :

Since (2.25) is symmetric with respect to T ! T �1, (2.38) for i � 0 follows by taking
T 0 D T �1.

Proof of Claim 3. Write, for any i ,

Aiq D B
�1

�
�i 0

0 ��i

�
B;

so kAiqk � kBk
2j�ji . Set G.�/ D 1

�
Aq.�/ and Gj D G.T .j�1/q�/. By (2.31), we have

kGik � kBk2 � e.�CƒCƒ=100/q . Under the assumption (2.26), we have �=2 C ƒ=100
< �ˇ, so by (2.32), Nq < e�ˇq . Then Claim 4 implies, for j D �N; : : : ; N and large q,
that

kGj �Gk D
1

�
k�j k � NqCn0e

.ƒ�ˇ/q
� e.�ˇC�=2CƒCƒ=50/q :

Now we want to apply Lemma A.1 in Appendix A.3 to theseGj , withMDe.�CƒCƒ=100/q

and ı D e.�ˇC�=2CƒCƒ=50/q . Direct computation gives

NM 2ı < e.�ˇC3�C3ƒCƒ=20/q :

By (2.26) we have ˇ� .3� C 3ƒCƒ=20/ >ƒ. Therefore, for q large enough (depending
on n0), we have NMı < NM 2ı < e�ƒq . Then Lemma A.1 implies that Na
jD1

Gj �G
N
 � 2NM 2ı � 2e�ƒq;

 Na
jD1

G�NCj �G
N
 � 2NM 2ı � 2e�ƒq :

Therefore,

kANq � A
N
q k D j�j

N
�

 Na
jD1

Gj �G
N
 � 2e�ƒqjTraceANq j; (2.39)

establishing (2.33) , and

kANq.T
�Nq�/�ANq .�/k D j�j

N
�

 Na
jD1

G�NCj �G
N
 � 2e�ƒqjTraceANq j: (2.40)
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For any two matrices F;G 2 SL.2;R/, direct computation of the entries shows that
kF CGk D kF �1 CG�1k.

Using this simple fact, we find that

kA�Nq.�/ � ŒA
�1
q .�/�

N
k D kŒANq�

�1.T �Nq�/ � ŒANq .�/�
�1
k

D kŒANq�.T
�Nq�/ � ŒANq .�/�k:

This implies
kA�Nq.�/ � ŒA

�1
q .�/�

N
k � 2e�ƒqjTraceANq j:

Also,
kŒANq�

�1
� ŒA�1q �

N
k D kŒANq� � ŒAq�

N
k: (2.41)

Therefore, by (2.39), we obtain (2.34).

Lemma 2.6 is proved in the same way as the standard Schnol Theorem, but the state-
ment in this form, while very useful, does not seem to be in the literature (we learned it
from S. Molchanov, see Acknowledgments). For the sake of completeness, we include a
short proof in the Appendix.

2.4. Energies with trace close to 2: Proof of Lemma 2.5

Throughout this section, we will assume again that all q are large enough and satisfy (1.3)
with certain ˇ; � > 0, i.e.,

max
1�j�q; jkj�e�ˇq=q

jV.j C kq/ � V.j C .k ˙ 1/q/j � e�ˇq : (2.42)

We are going to show that spectrally almost surely, there are only finitely many q such
that TraceAq is close to 2.

In fact, we are going to prove the following quantitative estimate on the measure of
energies where the trace of the associated transfer matrix is close to 2.

Lemma 2.8. Let ƒ be as in (1.14) on some set S � �.H/. Let

Sq D ¹E W 0 < jTraceAq ˙ 2j < e�10ƒqº: (2.43)

Assume (2.42) holds and
ˇ > .25C 11=�/ƒ: (2.44)

Then
�.Sq/ < 4qe

�ƒq=15 < e�ƒq=20 (2.45)

where � D �S is the spectral measure restricted to S .

Once we have Lemma 2.8, the Borel–Cantelli lemma immediately implies Lem-
ma 2.5. So the main task is to prove (2.45).

In order to estimate the spectral measure of Sq , first we recall the following results
on the structure of Sq . Let Pn.R/ denote the polynomials over R of exact degree n. Let
PnIn.R/ be the elements in Pn.R/ with n distinct real zeros.
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Proposition 2 ([45, Theorem 6.1]). Let p 2 PnIn.R/ with y1 < � � � < yn�1 the local
extrema of p. Let

�.p/ WD min
1�j�n�1

jp.yj /j (2.46)

and 0 � a < b. Then

jp�1.a; b/j � 2 diam.z.p � a//max
²

b � a

�.p/C a
;

�
b � a

�.p/C a

�1=2³
(2.47)

where z.p/ is the zero set of p and j � j D Leb.�/ denotes the Lebesgue measure.

Fix any � > 0. We apply Proposition 2 to the polynomial TraceAq.E/ 2 PqIq.R/,
with a D 2 and b D 2C e��q . Clearly, diam.z.TraceAq � 2// is bounded from above
by some constant that only depends on kV k1. We also have j�.TraceAq/j � 2. Since
b � a < 1, we have j.TraceAq/�1.a; b/j � CV

p
b � a D CV e

��q=2 where CV is some
constant that only depends on kV k1. Since .TraceAq/�1.a; b/ contains at most q bands,
setting Sq D ¹E W 2 < TraceAq < 2C e��qº, we have

Sq D

q[
jD1

Ij ; jIj j � jSqj � CV e
��q=2: (2.48)

The same analysis works for .a; b/ D .2 � e��q; 2/; .�2 � e��q;�2/; .�2;�2C e��q/.
Thus the structure (2.48) also holds for the other three cases.

Denote
"jq D jIj j < e

.��=2Cƒ=200/q : (2.49)

If Ij \ † 6D ;, pick Ej 2 Ij \ † where † D �.H/ is the spectrum. Set zIj D
.Ej � "

j
q ;Ej C "

j
q/. Then Ij � zIj , so it is enough to estimate the spectral measure of

S
zIj .

SetNq D Œe.�=2�ƒ=200/q�. For any "q > 0, define lq D l.'; "q;E/; u' ; v' as in (1.29).
Write lq D Œlq�C lq � Œlq�, and Œlq� D Kq � q C rq , where 0 � rq D Œlq� mod q < q and
0 � lq � Œlq� < 1. We need the following power law estimate, which is key to the proof
of Lemma 2.8.

Claim 5. Suppose E 2 Sq \ † and 0 < "q < e.��=2Cƒ=200/q . Suppose (2.42) holds.
Assume that ˇ > .2C 1=�/� C .5C 1=�/ƒ and � � 10ƒ. Then for every initial condi-
tion ',

ku'k2lq � e
ƒq=10: (2.50)

Combining (2.50) with subordinacy theory, we are ready to estimate the m-function
and the spectral measure.

Proof of Lemma 2.8. Take � D 10ƒ. Then ˇ > .25C 11=�/ƒ satisfies the requirement
in Claim 5. Let Ej 2 Ij \† � Sq \† . For any ', let u';Ej ; v';Ej be the right half-line
solution associated with the energy Ej . According to (2.49), Claim 5 can be applied to
all u';Ej .
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For any ', we have

ku';Ej k2lq.j / � e
ƒq=10; j D 1; : : : ; q;

where lq.j / D l.'; Ej ; "
j
q/.

Then by the J-L inequality (1.31) and the definition of lq.j /, we have

"jq jm'.Ej C i"
j
q/j <

5C
p
24

2ku';Ej klqkv
';Ej klq

�
kv';Ej klq

ku';Ej klq
<
5C
p
24

2
� e�ƒq=10

Notice that the interval Ij is independent of the boundary condition ', and so is "jq . There-
fore, we can take the supremum with respect to ' on both sides of the above inequality.
By Proposition 1, we have

"jq jM.Ej C i"
j
q/j �

5C
p
24

2
e�ƒq=10:

On the other hand, by the definition of M.z/ in (1.7), we have

ImM.E C i"/ �
1

2"
�.E � "; E C "/; E 2 R; " > 0:

Therefore,

�.Ej � "
j
q ; Ej C "

j
q/ � 2"

j
q jM.Ej C i"

j
q/j � .5C

p
24/e�ƒq=10;

which implies
�.Ij / � �. zIj / � e

�ƒq=15:

Since in (2.48) there are four cases for Sq and each of them satisfies the previous esti-
mates, the spectral measure of Sq will be bounded by 4qe�ƒq=15 � e�ƒq=20.

The proof of Claim 5 relies on the following estimates on transfer matrices. The first
one is a formula for the power of a general SL.2;R/ matrix. It is elementary but turned
out particularly useful and will be an important part of our quantitative estimates in both
hyperbolic and nearly parabolic cases. As we did not find it in the literature, we provide a
proof of it, as well as of the next lemma, in the Appendix.

Lemma 2.9. SupposeA 2 SL.2;R/ has eigenvalues �˙1. For any k 2N, if TraceA¤ 2,
then

Ak D
�k � ��k

� � ��1
�

�
A �

TraceA
2

� I

�
C
�k C ��k

2
� I: (2.51)

Otherwise, Ak D k.A � I /C I .

The key to the estimates in the nearly parabolic case is the following simple

Lemma 2.10. There are universal constants 1 < C1 <1 and c1 > 1=3 such that for all
E 2 Sq and 1 � k � Nq , we have

c1 <
�k C ��k

2
< C1; c1k <

�k � ��k

� � ��1
< C1k (2.52)
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Second, since Aq.�/ is almost periodic (with an exponential error), the iteration
of Aq.�/ along the orbit will be close to its power. The argument is similar to what we
used in the proof of (2.33) in the previous part.

Claim 6. Fix � 2�,E 2 Sq \† and � > 0. Suppose (2.42) holds with ˇ > .2C 1=�/� C
.5C 1=�/ƒ. Then for any 1 � k � Nq , we have

kAkq � A
k
qk � 2e

�ƒq : (2.53)

Proof. Set �j D Aq.T
j�1�/ � Aq.�/. By Claim 4, k�j k � jqCe.�ˇCƒ/q for

j < Œe�ˇq=q�. Recall that Nq D Œe.�=2�ƒ=200/q�. The condition on ˇ guarantees
Nq < Œe

�ˇq=q�, therefore we have k�j k� e.�ˇC�=2CƒCƒ=100/q for all j D 1; : : : ;Nq . We
need to check the other requirements of Lemma A.1. According to Lemmas 2.9 and 2.10,

kAjqk < C1j

Aq � TraceAq
2

� I

C C1 < 3C1NqkAqk < e.�=2CƒCƒ=100/q :
Now apply Lemma A.1 to the sequence Aq.�/; : : : ; Aq.T j�1�/; : : : ; Aq.T k�1�/

with M D e.�=2CƒCƒ=100/q and ı D e.�ˇC�=2CƒCƒ=100/q . We have NqM
2ı <

e.�ˇC2�C3ƒCƒ=40/q : Since ˇ > .2 C 1=�/� C .5 C 1=�/ƒ > 2� C 5ƒ we have
ˇ � .2� C 3ƒCƒ=40/ > ƒ. Therefore, for q large enough, NqMı < NqM

2ı < e�ƒq .
Consequently, by Lemma A.1, we have kAkq � Akqk D k

`k
jD1 Aq.T

j�1�/ � Akq.�/k

� 2e�ƒq .

Now we are ready to finish the proof of the most technical part.

Proof of Claim 5. We first show the following lower bound for Kq D ŒŒ`q�=q�:

Kq > e
ƒq=6 > 18C1e

ƒq=8: (2.54)

Actually, if Kq � Nq , then (2.54) is automatically satisfied since � � 10ƒ.
Now assume Kq < Nq . For any n � Œlq� C 1, write n D kq C r , where 0 � k �

Kq; 0 � r � q. Set X' D
� cos'
� sin'

�
. According to (2.51), (2.52) we have, for any ' and

1 � k � Kq < Nq;

kAkq �X'k < C1k

Aq � TraceAq
2

� I

C C1 < C1k.kAqk C 3=2/C C1
and by (2.53),

kAkq �X'k � kA
k
q �X'k C k.Akq � A

k
q/ �X'k � C1k.kAqk C 3=2/C C1 C 1:

For n0 < r � q, and for any � 0 2�, kAr .� 0/k � eƒq . For 1� r � n0, we bound kAr .� 0/k
by C n0 as in the proof of Claim 4. Therefore, kAr .� 0/k � eƒq for all 1 � r � q with q
large. Thus,

kAkqCr .�/ �X'k � kAr .T
kq�/k � kAkq.�/ �X'k � e

ƒq
�
C1k.kAqk C 3=2/C C1 C 1

�
� eƒq

�
C1k.e

ƒq
C 3=2/C C1 C 1

�
� ke.2ƒCƒ=200/q :
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Recalling that
� u'
nC1

u
'
n

�
D An �X' ; direct computation shows

ku'k2lq �

Œlq �C1X
nD1

kAn �X'k
2
�

qX
rD1

kAr �X'k
2
C

KqX
kD1

qX
rD1

kAkqCrX'k
2

� qe2ƒq C

KqX
kD1

qX
rD1

k2e.4ƒCƒ=100/q

� qe2ƒq CK3qqe
.4ƒCƒ=100/q

� K3qe
.4ƒCƒ=20/q :

Since ' is arbitrary and
� v'

nC1

v
'
n

�
D An � X'C�=2, kv'k2

lq
has the same upper

bound. Therefore, ku'klqkv
'klq � K

3
qe
.4ƒCƒ=20/q . On the other hand, since "q <

e.��=2Cƒ=200/q , we have

ku'klqkv
'
klq D

1

2"q
� e.�=2�ƒ=100/q : (2.55)

With � � 10ƒ, this implies that K3q � e
qƒ=2. Therefore,

Kq > e
ƒq=6 > 18C1e

ƒq=8 (2.56)

as claimed.
In order to get the lower bound on ku'k2

lq
in (2.50), we need to consider two cases.

Case I. For ' such that�Aq � TraceAq
2

� I

�
�X'

 � e�ƒq=8; (2.57)

using (2.51) of Lemma 2.9, for any 1 � k � 18C1eƒq=8 � Nq we have

kAkq �X'k D

�k � ��k� � ��1
�

�
Aq �

TraceAq
2

� I

�
X' C

�k C ��k

2
�X'


�
�k � ��k

� � ��1
�

�Aq � TraceAq
2

� I

�
X'

 � �k C ��k2
� kX'k

�
1
3
ke�ƒq=8 � C1

where in the last inequality we use (2.52) of Lemma 2.10. Due to (2.53), we then have

kAkq �X'k � kA
k
q �X'k � k.Akq � A

k
q/ �X'k �

1
3
ke�ƒq=8 � 2C1:

Therefore, for 9C1eƒq=8 � k � 18C1eƒq=8, we have

kAkq �X'k � C1 > 1: (2.58)
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By (2.56) and (2.58) we obtain

ku'k2lq �
1

2

Œlq ��1X
nD1

kAn �X'k
2
�
1

2

Œ18C1e
ƒq=8�X

kDŒ9C1eƒq=8�C1

kAkq �X'k
2
� eƒq=10:

Case II. For ' such that�Aq � TraceAq
2

I

�
�X'

 < e�ƒq=8; (2.59)

by (2.51), for any 1 � k � Nq we get

kAkq �X'k D

�k � ��k� � ��1
�

�
Aq �

TraceAq
2

I

�
X' C

�k C ��k

2
�X'


�
�k C ��k

2
� kX'k �

�k � ��k

� � ��1
�

�Aq � TraceAq
2

I

�
X'


� 1=3 � C1ke

�ƒq=8

where in the last step we use (2.52) of Lemma 2.10 again. Combining this with (2.53), we
have

kAkq �X'k � kA
k
q �X'k � k.Akq � A

k
q/ �X'k � 1=3 � C1ke

�ƒq=8
� 2e�ƒq

� 1=4 � C1ke
�ƒq=8

provided 2e�ƒq � 1=12. Then for 1 � k � 1
8C1

eƒq=8 � Kq � Nq , we obtain kAkq �X'k
� 1=8. This implies

ku'k2lq �
1

2

Œ 1
8C1

eƒq=8�X
kD1

kAkq �X'k
2
� eƒq=10:

2.5. Proofs of Lemmas 2.2 and 2.3

Proof of Lemma 2.2. Assume that

jTraceAqj < 2 � e��q < 2: (2.60)

Then in the expression in Lemma 2.9, � D ei with  2 .��; �/. For any j , we have

Ajq D
sin j 
sin 

�

�
Aq �

TraceAq
2

� I

�
C

cos j 
2
� I;  2 .��; �/: (2.61)

Then j2cos j D jTraceAqj< 2�e��q implies jsin j>
q
1�

�
1� 1

2
e��q

�2
>Ce��q=2.

Therefore,
kAjqk � Ce

�q=2.kAqk C 1/C 1
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(here q is large enough so that kAqk � eƒq). Now, by Theorem 10 for �-a.e. E and
k > K.E/ we have (2.60) with � D 10ƒ, so we obtain

kAjqk � e
.6ƒCƒ=100/q :

Now let N D Œe�q�. By the same argument as used for the proof of (2.33) and (2.53)
(based on Lemma A.1), if ˇ > 15ƒC .2C 1=�/�, then for any j � N ,

kAjq � Ajqk < e
.�ˇC13ƒC2�Cƒ=20/q < e�ƒq :

As a consequence, we have kAjqk � e.6ƒCƒ=50/q , and kAjqCrk � e.7ƒCƒ=50/q for all
0 � r � q and 0 � j � N . Therefore,

NqX
nD1

kAn.E/k
2
�

NX
kD0

qX
rD1

kAkqCr .�; E/k
2
� Nqe.14ƒCƒ=25/q � e.�C15ƒ/q :

Proof of Lemma 2.3. By the choice of N , Nq > e.��ƒ=200/q for q large, thus for any
 < 1,

1

.Nq/2�

NqX
nD1

kAn.E/k
2
� e.�C15ƒ/qe�.2�/.��ƒ=200/q

� e.�.1�/�C16ƒ/q :

If � � 17ƒ
1�

, then .1 � /� � 16ƒ � 1
2
ƒ. Therefore,

1

.Nq/2�

NqX
nD1

kAn.E/k
2
� e�

1
2ƒq � 1:

3. Spectral singularity

3.1. Power law estimates and proof of Theorem 6

Throughout this section, our potential will be given by V� .n/D V.� C n˛/;n 2 Z, where
V.�/ is a real analytic function defined on the torus with analytic extension to the strip
¹z W jIm zj < �º.

According to Lemma 1.2, it is enough to find a ' such that both m' and zm�=2�' are
 -spectral singular. The main technical tool to estimate the m-function is subordinacy
theory, Lemma 1.1. We also need one more general statement about the existence of
generalized eigenfunctions with sublinear growth of their l-norm (see [55]). That is, for
�� -a.e. E, there exists ' 2 .��=2; �=2� such that u' and u';� both obey

lim sup
l!1

kukl

l1=2 log l
<1: (3.1)
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This inequality provides us an upper bound for the l-norm of the solution. To apply sub-
ordinacy theory, we also need a lower bound for the l-norm. It will be derived from the
following lower bounds on the norm of transfer matrices. Denote

zAn.�; E; ˛/ D An.� � ˛;E;�˛/: (3.2)

Note that zAn is the n-step propagator for u';�; v';�. We have

Lemma 3.1. Fix ˛ 2 RnQ with ˇ D ˇ.˛/ <1. Assume that L.E/ � a > 0 and E 2 S .
There is c D c.a; �/ > 0 such that for l > l.E; ˇ; �/, and any � 2 T ,

lX
kD1

kAk.�; E; ˛/k
2
� l1C2c=ˇ ; (3.3)

lX
kD1

k zAk.�; E; ˛/k
2
� l1C2c=ˇ : (3.4)

Proof of Theorem 6. For any ', we have

ku'k2l C kv
'
k
2
l �

1

2

lX
kD1

kAk.�/k
2; (3.5)

ku';�k2l C kv
';�
k
2
l �

1

2

lX
kD1

k zAk.�/k
2: (3.6)

Therefore, a direct consequence of (3.3) is the power law estimate for the left-hand side
of (3.5), i.e., ku'k2

l
C kv'k2

l
� l1C2c=ˇ for l large.

On the other hand, according to (3.1), for �� -a.e. E, there exist '.E/ and C D
C.E/ <1 such that for large l ,

ku'kl � Cl
1=2 log l; ku';�kl � Cl

1=2 log l: (3.7)

Let us consider the right half-line estimates for u' ;m' first. From (3.5) and (3.7), we have

kv'k2l � l
1C2c=ˇ

� Cl.log l/2 � 1
4
l1C2c=ˇ

and then
kv'kl �

1
2
l1=2Cc=ˇ (3.8)

provided ˇ <1 and l > l.ˇ;E; �/.
Applying subordinacy theory (1.31) to (3.7) and (3.8) one has, for any  2 .0; 1/ and

any " > 0,

"1� jm'.E C i"/j �
1

.2ku'kl."/kv'kl."//1�
� .5 �

p
24/
kv'kl."/

ku'kl."/

� c
kv'k



l

ku'k
2�

l

� c l
.1Cc=ˇ/�1 log�2 l
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where c > 0 may denote different constants that only depend on  . Set 0 D 0.ˇ/ D
1

1Cc=ˇ
< 1, since ˇ <1. For any  > 0, we have

"1� jm'.E C i"/j � c l
=0�1 log�2 l !1

as "! 0.
Using (3.6) and (3.7), the same argument works for u';�; v';� andm�' . Therefore, for

spectrally a.e. E, lim inf"!0 "1� jm'.E C i"/j D 1 and lim inf"!0 "1� jm�' .E C i"/j
D 1. According to Lemma 1.2, � is  -spectral singular for any  > 0. The conclusion
for the spectral dimension follows from the definition directly.

The proof of Lemma 3.1 depends on the following lemmas about the localization
density of the half-line solution. The key observation is that in the regime of positive
Lyapunov exponents we can guarantee transfer matrix growth at scale qn somewhere
within any interval of length qn, giving a contribution to (3.3).

Lemma 3.2. Assume that L.E/ � a > 0 and ˛ 2 RnQ. There are c2 D c2.a; �/ > 0 and
a positive integer d D d.�/ such that for E 2 S and n > n.E; �/, there exists an interval
�n such that

Leb.�n/ �
c2

4dn
(3.9)

and for any � 2 �n, we have7

kAn.�; E; ˛/kHS > e
nL.E/=16: (3.10)

In the following, we will use k � k for the HS norm k � kHS. Now let c2 and d be as in
Lemma 3.2. Denote

kn D

�
c2qn

4d

�
� 1 (3.11)

where as before qn are the denominators of the continued fraction approximants to ˛:
Based on Lemma 3.2, one can show that

Lemma 3.3. Fix E 2 S and ˛ 2 RnQ. Let kn be as in (3.11). Suppose qn is large
enough so that (3.9) holds for �kn . Then for any � , and any N 2 N, there is jN .�/ 2
Œ2Nqn; 2.N C 1/qn/ such that

kAjN .�; E; ˛/k > e
knL.E/=32: (3.12)

We first use Lemmas 3.2 and 3.3 to finish the proof of Lemma 3.1. The proofs of these
two lemmas are postponed to the next section.

Proof of Lemma 3.1. For l sufficiently large, there is qn such that l 2 Œ2qn; 2qnC1/. Write
l as

l D 2Nqn C r;

7We denote by k � kHS the Hilbert–Schmidt norm of an SL.2;R/ matrix A D
�
a b
c d

�
, kAkHS D

p
a2 C b2 C c2 C d2.
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where 0 � r < 2qn and 1 � N < qnC1=qn. Suppose qn is large enough so that (3.9)
holds for �kn . Then Lemma 3.3 is applicable. Fix � . Consider An.�; E; ˛/ first. Let
jn.�/ 2 Œ2nqn; 2.nC 1/qn/, n D 0; 1; : : : ; N , be as in (3.12). Direct computation shows
that

lX
kD1

kAk.�/k
2
� kAj0.�/k

2
C kAj1.�/k

2
C � � � C kAjN�1.�/k

2

� NeknL.E/=32:

We have l D 2Nqn C r < 4Nqn, i.e., N > l=.4qn/. (3.11) implies c2qn=.5d/ < kn <
c2qn=.4d/ for qn large, so we have

lX
kD1

kAk.�/k
2
�

l

4qn
eknL.E/=32 �

l

4qn
e16cqn

where c D c.c2; d; a/, where a is the lower bound for L from Lemma 3.2. Then for
sufficiently large l , we have

lX
kD1

kAk.�/k
2 > le8cqn :

We also assume l is large enough (meaning qn is large enough), so that logqnC1
qn

< 2ˇ,

i.e., eqn > q1=.2ˇ/nC1 . Then

lX
kD1

kAk.�/k
2
� lq

4c=ˇ
nC1 � l � .l=2/

4c=ˇ
� l1C2c=ˇ :

For the same � , repeat the above procedure for An.� � ˛; �˛; E/. Notice that
zAn.�; E; ˛/ D An.� � ˛; E;�˛/. Therefore, we have a sequence of positive integers
zjN .� � ˛/ 2 Œ2Nqn; 2.N C 1/qn/ for any N 2 N such that

k zAzjN .�; E; ˛/k > e
knL.E/=32: (3.13)

The rest of the computations are exactly the same as for An.�; E; ˛/. Notice that the
constants c2 and d in Lemma 3.2 are independent of the choice of ˛ or �˛ and � . So kn
and c will be the same for An and zAn.

3.2. Proofs of the density lemmas

Proof of Lemma 3.2. Denote

fn.�/ D kAn.�; E; ˛/k
2
HS: (3.14)

Obviously, fn.�/ is a real analytic function with analytic extension to the strip ¹z W
jIm zj < �º. For bounded S we have

kfnk� WD sup
jIm zj<�

jfn.z/j < e
C1n; E 2 S; (3.15)
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where C1 D C1.S; kV k�/ can be taken uniform for all E 2 S . Expand fn.�/ into its
Fourier series on T as

fn.�/ D
X
k2Z

bn.k/e
2�ik� (3.16)

where bn.k/ is the k-th Fourier coefficient of fn.�/ which satisfies

jbn.k/j < kfnk�e
�2��jkj; 8k 2 Z: (3.17)

We split fn.�/ into two parts, for some positive integer d which will be specified later:

fn.�/D gn.�/CRn.�/; gn.�/D
X
jkj�dn

bn.k/e
2�ik� ; Rn.�/D

X
jkj>dn

bn.k/e
2�ik� :

For any � 2 T ,

jRn.�/j �
X
jkj>dn

jbn.k/j �
X
jkj>dn

kfnk�e
�2��jkj

�
2

1 � e�2��
eC1ne�2��dn:

Now pick

d D

�
C1

2��

�
C 2: (3.18)

With this choice of d , we have 2��d > C1 C 1, so for any � 2 T ,

jRn.�/j �
2

1 � e�2��
e�n < 1; n > n0.�/: (3.19)

Now we assume that the Lyapunov exponent L.E/ of A.�;E/ is positive. Denote

‚1n D ¹� W fn.�/ > e
nL.E/=8

º;

‚2n D ¹� W gn.�/ > e
nL.E/=4

º;

‚3n D ¹� W fn.�/ > e
nL.E/=2

º:

According to (3.19), we see that if fn.�/ > enL.E/=2, then

gn.�/ > fn.�/ � jRn.�/j > e
nL.E/=2

� 1 > enL.E/=4; n > n.E/;

and if gn.�/ > enL.E/=4, then

fn.�/ > gn.�/ � jRn.�/j > e
nL.E/=8; n > n.E/:

Therefore, for large n;
‚3n � ‚

2
n � ‚

1
n: (3.20)

On the other hand,

2nL.E/ � 2

Z
T

log kAn.�/kHS d� D
Z

T
logfn.�/ d�

� Leb.‚3n/ log kfnk� C .1 � Leb.‚3n// log enL.E/=2

� Leb.‚3n/ � C1nC .1 � Leb.‚3n// � nL.E/=2;
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which implies Leb.‚3n/ �
3L.E/

2C1�L.E/
. Since L.E/ � a > 0 for E 2 S , we have

Leb.‚3n/ �
3a

2C1 � a
DW c2.a; �/ > 0: (3.21)

Thus
Leb.‚2n/ � c2.a; �/ > 0: (3.22)

Since gn.�/ is a trigonometric polynomial of degree 2dn, the set ‚2n consists of no more
than 4dn intervals. Therefore, there exists a segment �n � ‚2n with Leb.�n/ > c2

4dn
.

Obviously, �n is also contained in ‚1n, i.e., for any � 2 �n,

kAn.�/k
2
HS > e

nL.E/=8

and
Leb.�n/ >

c2

4dn
; n > n.E; �/;

where d only depends on � and is independent of n.

The following standard lemma is proved e.g. in [41].

Lemma 3.4 ([41, Lemma 9]). Let� � Œ0; 1� be an arbitrary interval. If j�j > 1=qn then
for any � there exists a j in ¹0; 1; : : : ; qn C qn�1 � 1º such that � C j˛ 2 �.

Proof of Lemma 3.3. The case N D 0 is already covered by Lemma 3.4. The proof for
N > 0 follows the same strategy. Notice that (3.11) implies j�kn j >

c2
4dkn

> 1
qn

for
large qn. Applying Lemma 3.4 to � C 2Nqn, we find that there exists a j in ¹0; 1; : : : ;
qn C qn�1 � 1º such that � C 2Nqn˛ C j˛ 2 �kn , i.e.,

kAkn.� C 2Nqn˛ C j˛/k > e
knL.E/=16:

Since
A2NqnCjCkn.�/ D Akn.� C 2Nqn˛ C j˛/A2NqnCj .�/

and Ai is unimodular, we see that either

kA2NqnCj .�/k � e
knL.E/=32 or kA2NqnCjCkn.�/k � e

knL.E/=32:

Let jN be 2Nqn C j or 2Nqn C j C kn, so that jN satisfies (3.12). Clearly,

2Nqn � 2Nqn C j < 2Nqn C j C kn < 2Nqn C 2qn:

Therefore, jN 2 Œ2Nqn; 2.N C 1/qn/.

4. Sturmian Hamiltonian

Liu, Qu and Wen [57, 58] studied the Hausdorff and upper box counting dimension
of †�;˛ with general irrational frequencies. For any irrational ˛ 2 .0; 1/ with continued
fraction expansion Œ0I a1; a2; : : : �, define

K�.˛/ D lim inf
k!1

� kY
iD1

ai

�1=k
and K�.˛/ D lim sup

k!1

� kY
iD1

ai

�1=k
: (4.1)
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Then [58, Theorem 1], [57, Theorem 1.1]) for large coupling constant �, dimH.†˛;�/D 1

iff K�.˛/ D1 and dimB.†˛;�/ D 1 iff K�.˛/ D1.
The usual way to study Sturmian Hamiltonians is to decompose Sturmian poten-

tials into canonical words, which obey recursive relations. Here we present an alternative
approach to study spectral dimension properties of Sturmian Hamiltonians based on the
techniques we developed in Theorem 7.

We will first prove Theorem 9. Set

V� .n/ D ��Œ1�˛;1/.� C n˛ mod 1/: (4.2)

It is well-known that for Sturmian H� , the restriction of the Lyapunov exponent on the
spectrum is zero (see [23, Theorem 1]). By the discussion after (1.18) (see [47]) or else,
specifically for Sturmian potentials, by [56], for arbitrarily small ƒ > 0 and n � n0.ƒ/,
kAn.�; E/k � e

ƒn uniformly in � and E 2 �.H� /. Here we will apply Corollary 1
directly.

Let qk be the subsequence of denominators of the continued fraction approximants
of ˛ such that kqk˛k < e�ˇqk=2 . In order to apply Corollary 1, it is enough to verify that
V� .n/ given by (4.2) is ˇ.˛/-almost periodic for all ˛-Diophantine � 2 T . Fix � > 1. If
� is ˛-Diophantine there is  > 0 such that k� Cm˛kR=Z � =.jmj C 1/� for anym 2Z.
Then for jmj � q,

dist.� Cm˛; ¹Z; 1 � ˛ C Zº/ � min
jmj�qC1

k� Cm˛kR=Z:

Therefore,

min
jmj�q

dist.� Cm˛; ¹Z; 1 � ˛ C Zº/ � min
jmj�qC1



.jmj C 1/�
�



.q C 2/�
:

Let N D Œeˇq=4�, where q > q0.; ˇ/ is an element of the subsequence qk chosen
above. Then for jj j � N , and any jmj � q, we have

kjq˛k � jj j � kq˛k � e�ˇq=4 �


10.q C 2/�
�
1

10
dist.� Cm˛; ¹Z; 1 � ˛ C Zº/:

Therefore, for any jmj � q and jj j �N , � Cm˛ mod 1 and � Cm˛C jq˛ mod 1 belong
to the same of the two open intervals .0; 1 � ˛/; .1 � ˛; 1/, which implies that

�Œ1�˛;1/.� Cm˛ mod 1/ D �Œ1�˛;1/.� Cm˛ C jq˛ mod 1/; jmj � q; jj j � N

Therefore, for 0 � m � q;

V� .m/ D V� .mC q/ D � � � D V� .mCNq/;

which immediately implies ˇ.˛/-almost periodicity for the sequence qk with � D 1=4.
Since the set of ˛-Diophantine � has full Lebesgue measure, the conclusion for the

density of states follows directly from dN D E.d�� /.
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Next we will construct ˛ to prove Corollary 5. We will define inductively the contin-
ued fraction coefficients an; n� 1, so ˛ D Œa1; : : : ; an; : : : �. Fix ˇ > 0. Start with some n0
large. For 1 � i � n0, set ai D 1. Set Œa1; : : : ; an�D pn=qn. Now, for k D 1; 2; : : : define
nk D qn0 C qn1 C � � � C qnk�1 and

an D

´
eˇqnk ; n D nk C 1;

1; nk C 2 � n � nkC1;
for k D 0; 1; : : : :

It is easy to check that

ˇ C
log qnk
qnk

D
log ankC1qnk

qnk
<

log qnkC1
qnk

< ˇ C
log 2qnk
qnk

;

so
log qnkC1
qnk

! ˇ;

and

.a1a2 � � � ank /
1=nk D .an0C1an1C1 � � � ank�1C1/

1=nk

D .eˇqn0 eˇqn1 � � � eˇqnk�1 /1=.qn0Cqn1C���Cqnk�1 / D eˇ <1:

Therefore, ˛ constructed in the above way satisfies ˇ.˛/ > 0 while K�.˛/ <1. Then
Corollary 5 follows from [58] and Theorem 9.

On the other hand, if we take ˛ D Œ0I 1; 2; 3; : : : �, then K�.˛/ D 1 while ˇ.˛/ D 0.
By [58], for the Sturmian Hamiltonian with frequencies ˛ such thatK�.˛/D1, we have
dimH.†˛;�/ D dimP.†˛;�/ D 1.

Appendix A

A.1. Proof of Lemma 2.7

Suppose that u; v are the two normalized eigenvectors of G such that

Gu D �u; Gv D ��1v; kuk D kvk D 1:

Denote the angle between u and v by � . Without loss of generality we assume further

that j� j < �=2. Set zB D .u; v/, B D zB=
q
jdet zBj. Obviously, k zBk � 1, jdetBj D 1, and

det zB D kuk � kvk � sin � . Therefore,

kBk �
1p
jsin � j

:

On the other hand, G.u � v/ D �u � ��1v, which implies that

� � ��1 D �kuk � ��1kvk � k�u � ��1vk D kG.u � v/k � kGk � ku � vk:
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By the law of cosines, ku � vk D 2 sin �
2

. Then

2 sin
�

2
�
� � ��1

kGk
D

p
.jTraceGj C 2/.jTraceGj � 2/

kGk

jTraceGj � 6 implies that jTraceGj C 2 � 2.jTraceGj � 2/, so 2 sin �
2
�

p
2.jTraceGj�2/
kGk

.
Therefore,

sin � � 2 sin
�

2
�
1
p
2
�
jTraceGj � 2
kGk

; so kBk �

p
kGkp

jTraceGj � 2
:

It is also easy to see that if jTraceGj > 6, then kBk � 2
p
kGk

p
jTraceGj�2

.

A.2. Proofs of Lemmas 2.9 and 2.10

Proof of Lemma 2.9. Suppose A D
�
a b
c d

�
2 SL.2;R/ has eigenvalues � and ��1:

Case I: TraceA ¤ 2. Obviously, � ¤ 1 and

A D

�
a b

c d

�
D B

�
� 0

0 ��1

�
B�1 (A.1)

where B is the conjugation matrix. Suppose � ¤ d . We can pick the conjugation matrix
as

B D

 
1 b

��1�a
c
��d

1

!
; B�1 D

� � d

� � ��1

 
1 �

b
��1�a

�
c
��d

1

!
: (A.2)

If �D d , it is easy to see that bc D 0. Without loss of generality, we assume c D 0; b ¤ 0.
We can pick the conjugation matrix as

B D

�
1 1

d�d�1

b
0

�
; B�1 D

b

d�1 � d

�
0 �1

�
d�d�1

b
1

�
: (A.3)

Direct computation using (A.1)–(A.3) shows that for any k 2 N,

Ak D
�k � ��k

� � ��1
�

�
A �

aC d

2
� I

�
C
�k C ��k

2
� I: (A.4)

Case II: TraceA D 2. Also follows by a (simpler) direct computation, considering sepa-
rately a D 1 and a ¤ 1.

Proof of Lemma 2.10. Now assume E 2 Sq and 1 � k � Nq . Apply (A.4) to Aq.E/.
First, suppose 2 < TraceAq.E/ < 2C e��q . Then

1 < � D
TraceAq.E/C

p
.TraceAq.E//2 � 4
2

<
2C e��q C

p
.2C e��q/2 � 4

2

< 1C e.��=2Cƒ=200/q :
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There is a universal constant C such that for any 1 � k � Nq < e.�=2�ƒ=200/q ,

1 < �k < .1C e.��=2Cƒ=200/q/Nq < C:

Therefore,

1 <
�k C ��k

2
< C: (A.5)

On the other hand,
�k � ��k

� � ��1
D

kX
iD1

�k�2iC1;

and therefore

k �
�k � ��k

� � ��1
< C1k: (A.6)

Now assume 2� e��q < TraceAq.E/ < 2. Then � D ei and (A.4) can be expressed
as

Akq D
sin k 
sin 

�

�
Aq �

TraceAq
2

� I

�
C

cos k 
2
� I: (A.7)

We have 1� 1
2
e��q < cos < 1. Then jsin j < e��q=2, and j j < �

2
jsin j < 2e��q=2.

As in the hyperbolic case, we set Nq D Œe.�=2�ƒ=200/q�. For k � Nq ,

jk j < 2e�ƒq=200:

Then for q large enough, we have 2
�
jk j � jsin k j � jk j �

p
3=2. Therefore, 2

�
k �ˇ̌ sink 

sin 

ˇ̌
< �

2
k and 1 � cos k > 1=2.

Exactly the same argument works for the cases ¹E W �2 < TraceAq < �2C e��qº
and ¹E W �2 � e��q < TraceAq < �2º.

A.3. Some estimates on matrix products

Lemma A.1. Suppose G is a 2 � 2 matrix satisfying

kGj k �M <1 for all 0 < j � N; (A.8)

where M � 1 only depends on N . Let Gj D G C �j , j D 1; : : : ; N , be a sequence of
2 � 2 matrices and let

ı D max
1�j�N

k�j k: (A.9)

If
NMı < 1=2; (A.10)

then for any n � N ,  na
jD1

Gj �G
n
 � 2NM 2ı: (A.11)
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Proof. Denote

D D max
1�k1;k2�N

 k2a
jDk1

Gj

:
Then a simple perturbation argument, as e.g. in [48], shows thatD �M.ıDN C 1/. Thus
D � M

1�MıN
. Direct computation shows that for any 1 � n � N ,

na
jD1

Gj �G
n
D

n�1X
kD0

� na
jDkC2

Gj

�
�kC1G

k :

Therefore,  na
jD1

Gj �G
n
 � NDıM � M 2ıN

1 �MıN
:

Clearly, if MıN < 1=2, then k
`n
jD1Gj �G

nk � 2NM 2ı.

A.4. Extended Schnol Theorem (Lemma 2.6)

Let y > 1=2 and xk be any sequence such that jxkj ! 1 as k ! 1. For a Borel set
B � R, denote

�n;m.B/ D hın; �B.H/ımi; �.B/ D
X
n

an.�n;n.B/C �nC1;nC1.B//;

where

an D

´
c.1C jkj/�2y ; n D xk ;

c.1C jnj/�2y ; else

with c > 0 chosen so that
P
n an D 1=2. Then � is a Borel probability measure with

�.B/ D 0 if and only if �.B/ D 0, i.e., � and � are mutually absolutely continuous. By
the Cauchy–Schwarz inequality,

j�n;m.B/j � �n;n.B/
1=2�m;m.B/

1=2:

so �n;m is absolutely continuous with respect to �. By the Radon–Nikodym Theorem,
there exists a measurable density

Fn;m.E/ D

�
d�n;m

d�

�
.E/; �-a.e. E;

with
�n;m.B/ D

Z
�B.E/Fn;m.E/ d�.E/:

Then for every bounded measurable function f , we have

hın; f .H/ımi D

Z
f .E/Fn;m.E/ d�.E/:
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In particular, if g is compactly supported and bounded, we may set f .E/ D Eg.E/ and
haveZ
g.E/.EFn;m.E// d�.E/ D hın;Hg.H/ımi D hınC1 C ın�1 C Vnın; g.H/ımi

D

Z
g.E/FnC1;m.E/ d�.E/C

Z
g.E/Fn�1;m.E/ d�.E/C

Z
g.E/VnFn;m.E/ d�.E/

D

Z
g.E/ŒFnC1;m.E/CFn�1;m.E/CVnFn;m.E/� d�.E/:

For any fixed m 2 Z, let uE .n/ D Fn;m.E/. Thus for any g we haveZ
g.E/..H �E/uE /.n/ d�.E/ D 0;

i.e., ¹uE .n/ºn2Z is a generalized eigenfunction of Hu D Eu for �-a.e. E.
On the other hand, let

Bn D ¹E W Fn;n � 1=anº:

Then
�.Bn/ D

X
k

ak�k;k.Bn/ � an�n;n.Bn/ D an

Z
Bn

Fn;n.E/ d�.E/;

while Z
Bn

Fn;n.E/ d�.E/ �
1

an
�.Bn/:

Therefore, Z
Bn

.anFn;n.E/ � 1/ d�.E/ � 0:

Hence, �.Bn/ D 0, i.e., for �-a.e. E, Fn;n.E/ � 1
an

, thus

jFn;mj � a
�1=2
n a�1=2m :

Fix m D 0, and let uE .n/ D Fn;0. Then according to the previous proof, for �-a.e. E,
uE is a generalized eigenfunction of Hu D Eu and obeys the estimate

juE .n/j � a
�1=2
0 a�1=2n :

By the choice of an, we have

juE .xk/j � .1C jkj/
y :
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