
© 2021 European Mathematical Society
Published by EMS Press. This work is licensed under a CC BY 4.0 license.

J. Eur. Math. Soc. 24, 1769–1790 (2022) DOI 10.4171/JEMS/1146

Seán Gomes � Andrew Hassell

Semiclassical scarring on tori in
KAM Hamiltonian systems

Received May 5, 2019

Abstract. We show that for almost all perturbations in a one-parameter family of KAM Hamil-
tonians on a smooth compact surface and for almost all KAM Lagrangian tori ƒ! , we can find a
semiclassical measure with positive mass on ƒ! .
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1. Introduction

The purpose of this article is to investigate the phenomenon of scarring (concentration)
of sequences of eigenfunctions of quantum systems whose underlying classical system
is KAM.

1.1. Completely integrable and KAM systems

Suppose M is a compact boundaryless smooth manifold of dimension n. We work on the
cotangent bundle T �M , and consider a Hamiltonian P.x; �/, that is, a real C1 function
on T �M tending to C1 as the fibre variable � tends to infinity (so that the level sets
of P are compact). The natural symplectic form on T �M induces Hamiltonian flow with
respect to P . This dynamical system is said to be completely integrable if there is a
symplectic transformation to ‘action-angle’ variables .I; �/, where I 2 Dn lies in some
closed ball in Rn and � takes values in Tn, such that the induced Hamiltonian in these
coordinates is a function only of I , say H 0.I /. This transformation can be local in the I
variable but must be global in the � variable. Then Hamilton’s equations of motion in the
action-angle variables take the simple form

PI D 0; P� D !.I / WD
@H 0.I /
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That is, the orbits are restricted to Lagrangian tori ¹I D constantº, and the motion is
quasiperiodic on each torus, with frequency !.I /. Under the nondegeneracy assumption
that the Hessian r2IH

0 is nonsingular, the tori can be indexed (locally) by frequency
! 2 � rather than action I , and we use the notation ƒ! for this purpose.

If we now consider a smooth one-parameter family of perturbations

H.�; I I t / 2 C1.Tn
�D � .�1; 1//; H.�; I I 0/ D H 0.I /; (1.1)

it is natural to ask whether there are any such invariant Lagrangian tori that survive the per-
turbation for sufficiently small t . This problem was resolved by the work of Kolmogorov,
Arnold and Moser [14], [1], [16], with the development of what has come to be known as
KAM theory.

The initial significant breakthrough in this problem was due to Kolmogorov [14], with
the conclusion that although a dense set of tori is indeed generally destroyed by such a
perturbation, a large measure collection of the invariant tori ƒ! survive, precisely those
whose frequencies ! 2 � of quasiperiodic flow satisfy the Diophantine condition

! 2 �� D

²
! 2 � W jh!; kij �

�

jkj�
for all k 2 Zn n ¹0º and dist.!; @�/ � �

³
(1.2)

where � > 0 is fixed and � > n� 1. The tori with frequencies satisfying this Diophantine
condition are said to be nonresonant.

In the early 2000s, Popov [19] proved a version of the KAM theorem for perturbed
completely integrable Hamiltonians in the Gevrey regularity classes G�.T �M/, defined
as the set of u 2 C1.Tn �D/ with

sup
˛

sup
.x;�/

L�˛˛Š��j@˛x;�uj <1 (1.3)

for some L > 0. For such Hamiltonians, Popov established a Birkhoff normal form anal-
ogous to action-angle variables for integrable Hamiltonians.

1.2. Quantization of KAM systems

We now turn to the quantum setting. A quantization of the classical system just described
is a semiclassical family of pseudodifferential operators Ph.t/, depending on a small
semiclassical parameter h 2 .0; h0�, and smoothly on a time parameter t 2 Œ0; t0�, with
(semiclassical) principal symbol P.x; �I t /. We shall assume that Ph.t/ has fixed posi-
tive differential order and is elliptic and self-adjoint as an operator on half-densities in
L2.M I�1=2/. Under these conditions, L2.M I�1=2/ equipped with the canonical inner
product has an orthonormal basis of eigenfunctions uj .t; h/ of Ph.t/ with associated
eigenvaluesEj .t; h/ for each h 2 .0; h0� and t 2 Œ0; t0�. We are interested in the behaviour
of these eigenfunctions in the semiclassical limit h! 0, in which we can expect to see
properties of the classical dynamical system become visible.

Using his Birkhoff normal form construction, Popov constructed a so-called quantum
Birkhoff normal form for a class of semiclassical differential operators Ph.t/ with prin-
cipal symbol P.x; �I t / and vanishing subprincipal symbol, for sufficiently small t [18].
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The key ingredient we require is the construction of a family of quasimodes for the semi-
classical pseudodifferential operator Ph with exponentially small error term localising
onto the nonresonant tori in [18]. We shall make extensive use of his construction in the
present paper (although we only require an error term of the form O.h4/ for our results
to go through).

We formulate our results for semiclassical pseudodifferential operators. Thus Ph.t/ is
assumed to be a family of elliptic, self-adjoint semiclassical pseudodifferential operators
of fixed positive orderm>0. In addition we assume that Ph.t/ has semiclassical principal
symbol independent of h and vanishing subprincipal symbol, in the semiclassical sense
(that is, the full semiclassical symbol agrees with the principal symbol up to O.h2/).
One example to keep in mind is that of linear self-adjoint perturbations of completely
integrable Schrödinger Hamiltonians, in which case our operator Ph.t/ has symbol

�.Ph.t// D P.x; �I t / D
X
i;j

gij .x/�i�j C V.x/C tQ.x; �/ (1.4)

with V;Q 2 G�.T �M/, V real-valued, Q self-adjoint with vanishing subprincipal sym-
bol. For other examples, see Section 5.

1.3. Main result

Our result is formulated in terms of semiclassical measures. For the reader’s convenience
we recall the definition here. Suppose that, for a sequence hj # 0, we have a sequence
of functions v.hj / in L2.M I�1=2/, with compact microsupport in the sense that there
is a semiclassical pseudodifferential operator B of semiclassical order 0 and compact
microsupport such that v.hj / D B.hj /v.hj / C OC1.M I�1=2/.h

1/. Let � be a positive
measure on T �M . We say that � is a semiclassical measure associated with the sequence
v.hj / if

lim
j!1
hAhj v.hj /; v.hj /i D

Z
T �M

�.A/ d� (1.5)

for every semiclassical pseudodifferential operator A of semiclassical order 0 and com-
pact microsupport. If the v.hj / are normalized in L2.M I�1=2/ then � is automatically a
probability measure. Compactness theorems show that every normalized sequence v.hj /
with compact microsupport has a subsequence admitting a semiclassical measure. In par-
ticular, fixing t , this is true for a sequence of normalized eigenfunctions of Phj .t/ with
uniformly bounded eigenvalues as hj ! 0. If the v.hj / are normalized eigenfunctions, or
more generally quasimodes v.hj / satisfying .Phj .t/��j /v.hj /D oL2.1/, �j �E! 0,
then � is supported in T �M on the set †E where the symbol P.x; �I t / of Ph.t/ is equal
toE. Suppose for simplicity that dP.�; t / does not vanish on†E ; this implies that†E is a
smooth codimension 1 submanifold of T �M . The Liouville measure � on T �M (viewed
as a top-degree form) induces a smooth measure �E on †E by writing � D � ^ dP.�; t /
and then restricting � to†E . Where � has positive mass on a set S � †E of �E -measure
zero, we say that the sequence of eigenfunctions scars, or concentrates, at S .
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Popov’s quasimode construction yields quasimodes associated to semiclassical mea-
sures � supported on a single Lagrangian torus ƒ! for any nonresonant !. This leads to
the question (which was posed to us by S. Zelditch about a decade ago) of whether the
true eigenfunctions behave similarly. In the present article, we show that in dimension
n D 2, for almost all t 2 Œ0; t0� and for a full measure set of invariant tori ƒ! , there are
semiclassical measures for Ph.t/ with positive mass on ƒ! . Since the energy surfaces
†E have dimension 3 and the Lagrangian tori have dimension 2 in this case, this shows
the existence of sequences of eigenfunctions that scar at ƒ! . More precisely, we prove
the following result.

Theorem 1.1 (Main Theorem). Suppose M is a compact boundaryless G� surface, and
suppose that Ph.t/ is a family of self-adjoint elliptic semiclassical pseudodifferential
operators acting on C1.M I�1=2/ with fixed positive differential order m, such that

� the operator Ph.t/ has full symbol real-valued and in the Gevrey class S`.T �M/ from
Definition A.6 where ` D .�; �; �/, with �.� C 2/C 1 > � > �0 D �.� C 1/C 1 and
� D �.� C nC 1/;

� the principal symbol of Ph.t/ is given by some P.x; �I t / 2 G�;1.T �M � .�1; 1// and
the subprincipal symbol is identically zero;

� the Hamiltonian P 0.x; �/ WD P.x; �I 0/ is, in some open set of phase space T �M ,
nondegenerate and completely integrable;

� written in action-angle coordinates .�;I /2T2 �D for the HamiltonianP 0, the vector
fields

rIH
0.I / and rI

�Z
T2
@tH.�; I I 0/ d�

�
are linearly independent

for I 2 D and all h < h0, (1.6)

whereH.�; I I t / denotes P.x; �I t / written in the action-angle coordinates for P 0, and
H 0.I / WD H.�; I I 0/.

Then there exists t0 > 0 such that for almost all t 2 Œ0; t0�, and for almost all KAM tori
ƒ! D T2 � ¹I!º with ! 2 �� , there exists a semiclassical measure associated to the
eigenfunctions of Ph.t/ that has positive mass .and hence scars/ on ƒ! .

Remark 1.2. In [7], under similar assumptions in dimension n, the weaker result is shown
that Ph.t/ is not quantum ergodic for a full measure set of parameter values t .

Remark 1.3. As in [7], the key technique is the exploitation of the variation of eigen-
values in the parameter t , together with a construction of quasimodes that concentrate
entirely on particular KAM tori.

The improvement made by this theorem comes from the fact that H 0.I / and
.2�/�2

R
@tH.�; I I 0/ d� are the leading order terms for the quasieigenvalues and their

t -derivatives at t D 0 respectively. In dimension 2, under the assumptions in Theorem 1.1,
the level curves of these two quantities intersect transversally and form a coordinate sys-
tem for the action space D. Thus, postponing precise definitions until Section 2, if two
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quasieigenvalues �m; �n and their time derivatives are both close at some small t , then
so are the associated actions Im and In. This allows us to control spectral clustering of
eigenvalues for most values of t , which is the key difficulty in passing from properties of
quasimodes to properties of true eigenfunctions.

1.4. Outline of this paper

In Section 2 we review the statement of the quantum Birkhoff normal form, and the result-
ing explicit expression for quasimodes and quasieigenvalues. This is essentially contained
in Popov [18], adapted to allow a 1-parameter family parametrized by ‘time’ t .

In Section 3, we prove Theorem 1.1. In Section 3.1 we use the nonresonance condition
(1.2) to show that distinct quasieigenvalues typically (that is, for most values of t ) have
spacing bounded below by h , for some fixed parameter  � 11=2, excluding a family
of negligible proportion as h ! 0. Using this in Section 3.2, we are able to construct
a large family of energy windows Œ� � h ; � C ch � about quasieigenvalues in which
we control the spectral concentration, in the sense that there are a bounded number of
actual eigenvalues in each such window. Applying elementary spectral theory shows that
the maximal value of jhu; vij is bounded below by a positive constant independent of h,
where v is the quasimode with quasieigenvalue � and u ranges over the eigenfunctions
associated to this energy window. Because we have this for all such energy windows
except for a family of negligible proportion, as h! 0, we can extract a subfamily, indexed
by a sequence hj tending to zero, associated to quasimodes that concentrate on almost
every invariant KAM torusƒ! . Choosing eigenfunctions u.hj / so that jhu.hj /; v.hj /ij is
bounded below by a positive constant, we then obtain a sequence of eigenfunctions u.hj /
with positive semiclassical mass on ƒ! .

In Section 4, we remark on our theorem in the setting of C1, as opposed to Gevrey,
manifolds. Our choice of Gevrey regularity was pragmatic, based on the availability of the
full details of the KAM argument in Popov’s papers. We remark that Gevrey regularity,
as opposed to analyticity, is flexible enough to allow the use of cutoff functions, which
is convenient in designing examples to which our results apply. We give several such
examples in Section 5.

The paper concludes with an appendix, containing definitions of the Gevrey classes
and the corresponding pseudodifferential calculus.

1.5. Related literature

This article is a direct continuation of the research begun by Popov on quasimodes for
KAM systems, which has already been discussed. Previously, quasimodes associated
to Lagrangian tori were introduced by Colin de Verdière [4]. A key component of the
argument is a quantum Birkhoff normal form. Extensive use has been made of quantum
Birkhoff normal forms when estimating eigenvalues and/or eigenfunctions. We do not
attempt a complete review of this literature here, but we mention results for eigenval-
ues of Schrodinger operators near a minimum value of the potential [21]; nonself-adjoint
operators in two dimensions, in which nonresonant tori also play a key role [10, 15];
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magnetic Laplacians [20]; and subLaplacians [5]. They have also been used in inverse
spectral problems, related to wave trace invariants [8, 12, 22].

The idea of using the spectral flow of a 1-parameter family of operators to control
spectral concentration for most values of the parameter originates from a paper by the
second author [9], and has also been used by the first author in [6], [7].

2. Quantum Birkhoff normal form

We first recall the quantum Birkhoff normal form for the quantization of Gevrey KAM
Hamiltonians, originally due to Popov [18]. This construction yields exponentially accu-
rate quasimodes localising onto the invariant KAM tori.

We let M be a compact G�-smooth manifold of dimension n � 2 and let P.x; �/ D
P 0.x; �/C P 1.x; �/ be a small G� perturbation of a completely integrable G� Hamilto-
nian. From the Liouville–Arnold theorem [2], we can (locally) write P as

.P ı Q�/.�; I / D H 0.I /CH 1.�; I / (2.1)

in the system of action-angle coordinates for the completely integrable Hamiltonian P 0,
where Q� W Tn �D ! T �M is a symplectomorphism such that P 0 ı Q� D H 0.

From the construction in [19], the Hamiltonian H.�; I / D P ı Q� can be placed in a
G�;�.�C1/C1 Birkhoff normal form about a family of invariant tori ¹ƒ!º with frequencies
! 2 �� . The precise definition of the anisotropic Gevrey classes G�;�

0

can be found in
Definition A.1. The existence of a Birkhoff normal form means that we can write

QH.�; I / D H ı � D K.I/CR.�; I / (2.2)

whereR is flat andrK.I!/D! at the set of nonresonant actions I! 2E� D!�1.��/ for
a suitable choice ofG�;�.�C1/C1 exact symplectic transformation � W Tn �D! Tn �D

withD �Rn compact. In particular, one can apply this result to the 1-parameter family of
Hamiltonians (1.1). In this case, we obtain a family of exact symplectic transformations
�t W Tn � D ! Tn � D that transform the Hamiltonian H.�; I I t / into the Birkhoff
normal form

QH.�; I I t / D H ı �t D K.I I t /CR.�; I I t /: (2.3)

Furthermore, from [7, Proposition 3.14], the componentsK.I I t /;R.�; I I t / of the normal
form have smooth dependence on the parameter t and we have

K.I I t / D H 0.I /C t

Z
Tn
@tH.�; I I 0/ d� CO.jt j

9=8/ (2.4)

uniformly in I 2 D.
Now fix ` D .�; �; �/ with � > 1, �.� C n C 1/ > � > �.� C 1/ C 1 and � D

�.� C n C 1/ and let Ph.t/ be a smooth 1-parameter family of formally self-adjoint
semiclassical pseudodifferential operators with full symbols in the Gevrey class S`, acting
on half-densities with principal symbol P and vanishing subprincipal symbol. One then
obtains a quantum Birkhoff normal form in the class of Gevrey semiclassical pseudodif-
ferential operators.



Semiclassical scarring on tori in KAM Hamiltonian systems 1775

Theorem 2.1. There exists a family of semiclassical Fourier integral operators

Uh.t/ W L
2.Tn

IL/ � .�1; 1/! L2.M/ .0 < h < h0/ (2.5)

that are uniformly bounded in t; h and are associated with the canonical relation graph
of the Birkhoff normal form transformation �t such that for each fixed t 2 .�1; 1/,

(1) Uh.t/�Uh.t/ � Id is a pseudodifferential operator with symbol in the Gevrey class
S`.T

n �D/ which restricts to an element of S�1
`

.Tn � Y / for some subdomain Y
of D that contains E�.t/;

(2) Ph.t/ ı Uh.t/ � Uh.t/ ı P 0
h
.t/ D Rh.t/ 2 S

�1
`

, where the operator P 0
h
.t/ has

symbol

p0.�; I I t; h/ D K0.I I t; h/CR0.�; I I t; h/

D

X
j��h�1=�

Kj .I I t /h
j
C

X
j��h�1=�

Rj .�; I I t /h
j (2.6)

with both K0 and R0 in the symbol class S`.Tn � D/ from Definition A.6 where
� > 0 is a constant, K0.I I t /; R0.�; I I t / are the components of the Birkhoff normal
form of the Hamiltonian P0 ı Q�, and

@˛IRj .�; I I t / D 0 (2.7)

for .�; I I t / 2 Tn �E�.t/ � .�1; 1/.

Here L denotes the Maslov line bundle associated to the embedded KAM Lagrangian
tori, which is independent of !. See [17], [18].

This quantum Birkhoff normal form was obtained in [18] without the presence of the
parameter t . In [7, Section 4], the same construction is carried out with the presence of t .
In particular, it is noted that the symbols Kj ; Rj can be taken smooth in t .

As a consequence of Theorem 2.1, one obtains a t -dependent family of Gevrey class
quasimodes as is shown in [18, Section 2.4]. In particular, for each t we obtain a finite
h-dependent family vm.t; h/ 2 C1c .M/ supported in a bounded h-independent domain
such that

kPhvm.t; h/ � �m.t; h/vm.t; h/k D O.exp.�ch�1=�.�CnC1/// (2.8)

and
jhvm.t; h/; vn.t; h/i � ımnj D O.exp.�ch�1=�.�CnC1/// (2.9)

where the index set is

Mh.t/ WD ¹m 2 Zn W dist.h.mC #=4/; E�.t// < Lhº (2.10)

for a fixed L > 0, where E�.t/D !�1.�� I t / is the collection of nonresonant actions and
#=4 is the Maslov class of the embedded Lagrangian tori in T�M . (See [17], [18] for
details.)
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These quasimodes satisfy the asymptotic

Mh.t/ � h
�n meas.E�.t//; (2.11)

and for each fixed t , these quasimodes Q have all associated semiclassical measures sup-
ported on the nonresonant invariant Lagrangian tori ƒ! with ! 2 �� . In terms of the
quantum Birkhoff normal form from Theorem 2.1, the quasimodes are given by

.vm.t; h/; �m.t; h// D .Uh.t/em; K
0.Im; t I h// (2.12)

where Im WD h.m C #=4/ for m 2 Mh.t/ � Zn, ¹emºm2Z is the orthonormal basis of
L2.TnIL/ associated with the quasiperiodic functions

Qem.x/ WD exp.i.mC #=4/ � x/ (2.13)

on Rn, and
K0.I; t I h/ WD

X
j�Ch�1=�

Kj .I; t/h
j (2.14)

is the integrable part of the quantum Birkhoff normal form, with K0 D K and K1 D 0,
the latter being a consequence of the assumption of vanishing subprincipal symbol of Ph.

Remark 2.2. Typically, a fixed Im 2 h.Zn C #=4/ will only be in E�.t/ for O.h/-sized
intervals as t varies.

By truncating the symbol expansion of the elliptic symbol a in [7, Proposition 4.2] to
some finite order errorO.hC1/, we find that the quantum Birkhoff normal form symbols
K0 and R0 have expansions truncated to the same finite order, at the cost of enlarging the
error term Rh.t/ in Theorem 2.1 to order O.hC1/. This weakens the error estimate in
the quasimodes (2.12) toO.hC1/. Such quasimodes with  � 11=2 are sufficient for the
application in this paper.

The results in Section 3 rely on also being able to find a bound for K0 and its time
derivatives that is uniform in .t; h/ 2 .0; t0/ � .0; h0/. Since we have truncated the series
expansion ofK0 to finite order errorO.hC1/, this follows easily from smoothness of the
principal symbol K0 and the fact that the homological equation used to iteratively solve
for Kj (see [7, Proposition 4.3]) preserves smoothness in t and gives us explicit uniform
bounds on the time derivatives.

3. Scarring on individual KAM tori

We now set about proving Theorem 1.1. We begin by fixing a 1-parameter family of
perturbations

H.�; I I t / 2 G�;�;1.T2
�D � .�1; 1// (3.1)

of the nondegenerate completely integrable HamiltonianH 0.I /DH.�;I I0/. We assume
without loss of generality thatD is convex by shrinking if necessary, and fix KAM param-
eters � D 2 (this is an arbitrary but convenient choice, any � > 1 will do) and � > 0. We
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also choose � sufficiently small so that the set of nonresonant frequencies�� has positive
measure.

We also make the geometric assumption (1.6) on the perturbation family H.�; I I t /.

Remark 3.1. Notice that if this condition is satisfied at one action I�, then it is satisfied in
a neighbourhood, so can be assumed throughoutD by shrinkingD if necessary. It is clear
that the set of perturbationsH satisfying the condition at one point is a codimension 1 set.
In this sense (i.e. shrinking D as necessary) the geometric assumption holds generically.

This assumption implies that the function K0 (the integrable part of the quantum
Birkhoff normal form) and its time derivative @tK0 locally form coordinates in D for all
t < t0 and h < h0.

More precisely, we have:

Proposition 3.2. There exist h0; t0 > 0 such that for all 0 < t < t0 and all 0 < h < h0,

� W I 7! .K0.I; t I h/; @tK
0.I; t I h// (3.2)

is a local diffeomorphism with

G1j�.I1/ � �.I2/j � jI1 � I2j � G2j�.I1/ � �.I2/j (3.3)

for some positive constants G1; G2 that depend on our choice of perturbation H but are
uniform in t and h.

Proof. From (2.4) and the finite symbolic expansion

K0.I; t I h/ D
X
j�

Kj .I; t/h
j (3.4)

with each Kj smooth, it follows that

@tK
0.I; 0I h/ D .2�/�2

Z
T2
@tH.�; I I 0/ d� CO.h/ (3.5)

uniformly in I . Hence

@tK
0.I; t I h/ D .2�/�2

Z
T2
@tH.�; I I 0/ d� CO.t/CO.h/: (3.6)

Moreover,

K0.I; t I h/ D K0.I; t/CO.h/ D K0.I; 0/CO.t/CO.h/: (3.7)

Hence the claim follows from the linear independence of

rH 0.I / and r

�Z
T2
@tH.�; I I 0/ d�

�
by taking t0; h0 sufficiently small.
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3.1. Nonconcentration of quasieigenvalues

In Section 2, we introduced a family of quasimodes for the quantization H.x; hD/ using
the quantum Birkhoff normal form (2.1). In particular, the quasieigenvalues were given in
terms of the quantum Birkhoff normal form by

�m.t I h/ D K
0.Im; t I h/

where Im D h.mC #=4/ for m 2Mh.t/. We write �m.t I h/ D K0.Im; t I h/ even when
m …Mh.t/.

A consequence of the nonresonance condition (1.2) is a lower bound on the difference
between quasieigenvalues associated to actions Im; In with a small difference.

Proposition 3.3. There exist constants C1; C2 > 0 dependent on our choice of perturba-
tion H and on the nonresonance constant � but independent of t and h, such that for all
distinct m; n 2 Z2 with Im; In 2 D such that

jIm � Inj � C1h
3=4 (3.8)

and m 2Mh.t/ we have
j�m � �nj � C2h

3=2: (3.9)

Proof. First, by taking the leading order term in the semiclassical expansions of the K0,
we have

�j�m � �nj � jK0.Im; t / �K0.In; t /j CO.h
2/ (3.10)

uniformly for t < t0. Taylor expansion yields

K0.In; t / �K0.Im; t / D hrK0.Im; t / � .n �m/C h
2
hr

2K0. QI ; t/.n �m/; .n �m/i

(3.11)
for some QI on the line segment between Im and In.

Since m 2Mh.t/, we also have

jrK0.Im; t / � rK0.I! ; t /j D O.h/ (3.12)

uniformly for t < t0 where I! is some nonresonant action corresponding to a nonresonant
frequency ! 2 �� . Inserting this estimate into (3.11) and recalling that ! D rK0.I! ; t /,
we obtain

K0.In; t / �K0.Im; t / D hrK0.I! ; t / � .n �m/CO.h
2
jn �mj2/CO.h2jn �mj/

D hrK0.I! ; t / � .n �m/CO.h
2
jn �mj2/

D h! � .n �m/CO.h2jn �mj2/

�
h�

jn �mj2
CO.h2jn �mj2/

� .�C�21 CO.C
2
1 //h

3=2 (3.13)
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by bounding the leading term below using the nonresonance condition (1.2) and making
use of the fact that

jIm � Inj � C1h
3=4
” jm � nj � h�1=4:

The claim now follows from (3.10) and (3.13) upon choosing C1 suitably small. We
remark that the exponent in (3.8) was chosen precisely so that the second term in the
penultimate line of (3.13) can be absorbed into the first.

Qualitatively, Proposition 3.3 shows that if two distinct quasieigenvalues �m; �n are
very close (that is, less than C2h3=2 apart), then there is a lower bound on how close their
actions Im; In can be (they must differ by at least C1h3=4). Applying Proposition 3.2,
this in fact gives us a lower bound (of the order of h3=4) on the difference of speeds
@t .�m � �n/. This forces them to separate quite quickly as t evolves. This is quantified
in the following proposition.

Proposition 3.4. Choose any  > 3=2. Suppose that h < h0, m;n 2 Z2 are distinct, and
t� 2 .0; t0/ are fixed with Im; In 2 D, m 2Mh.t�/ and

j�m.t�I h/ � �n.t�I h/j < h
 < C2h

3=2: (3.14)

Denote
Cm;n.h/ D ¹t 2 .0; t0/ W j�m.t I h/ � �n.t I h/j < h


º: (3.15)

Then there exist positive constants QC1; QC2 which depend on the constants C1; C2 from
Proposition 3.3 as well as the geometric constants G1; G2 from Proposition 3.2 such that

meas.Œt� � QC1h3=4; t� C QC1h3=4� \ Cm;n.h//

h3=4
< QC2h

�3=2: (3.16)

Proof. From the contrapositive of Proposition 3.3, we have jIm � Inj > C1h3=4, and so
an application of Proposition 3.2 yields

j@t�m.t I h/ � @t�n.t I h/j D j@tK
0.Im; t I h/ � @tK

0.In; t I h/j � Ch
3=4 (3.17)

where C depends on C1; C2; �; L and the geometric constants Gi .
By Taylor expanding we have

�m.t I h/ D K
0.Im; t�I h/C .t � t�/@t .K

0.Im; t�I h//CO.jt � t�j
2/ (3.18)

with error term uniform in h and m. It then follows from (3.14) that

j�m.t I h/ � �n.t I h/j D .t � t�/j@tK
0.Im; t I h/ � @tK

0.In; t I h/j

CO.h /CO.jt � t�j
2/: (3.19)

By choosing QC1 sufficiently small, the quadratic term O.jt � t�j
2/ is dominated by the

linear term for jt � t�j � QC1h3=4, that is, for t in the interval from (3.16). Also, the
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h term is dominated by the others for sufficiently small h since  > 3=2. It follows
that

j�m.t I h/ � �n.t I h/j �
1
2
.t � t�/j@tK

0.Im; t I h/ � @tK
0.In; t I h/j (3.20)

for t 2 Œt� � QC1h3=4; t� C QC1h3=4�. Hence, we only have t 2 Cm;n.h/ for jt � t�j �
C�1h�3=4. This yields (3.16), where the constants QCi depend on the original Hamil-
tonian, the perturbation, �, L, and the Gi , but not on t or h.

Provided that  > 7=2, Proposition 3.4 allows us to deduce that for any fixed index
m 2 Z2 with Im 2 D and for any t 2 .0; t0/ for which m 2Mh.t/, �m.t; h/ is typically
the only quasieigenvalue in an energy window of size O.h /.

To formulate this notion precisely, we introduce some new notation. For eachm 2 Zn

such that Im 2 D, we define h-dependent sets

Am WD ¹t 2 .0; t0/ W m 2Mh.t/º (3.21)

and

Bm WD ¹t 2 .0; t0/ W m 2Mh.t/ and
j�m.t I h/ � �n.t I h/j > h

 for all n ¤ m with In 2 Dº: (3.22)

Remark 3.5. In the definition of Bm it is not required that n 2Mh.t/.

We begin by recording a measure-theoretic lemma.

Lemma 3.6. If A � .0; t0/ with

meas.A \ .x � r; x C r//
meas..0; t0/ \ .x � r; x C r//

< � (3.23)

for all x 2 .0; t0/, then meas.A/ < 2�t0.

Proof. We have

1

meas..x � r; x C r/ \ .0; t0//

Z
.x�r;xCr/\.0;t0/

1A.y/ dy < �

for each x 2 t0. Integrating in x, we obtainZ t0

0

Z
.x�r;xCr/\.0;t0/

1A.y/ dy dx < 2r�t0:

Fubini’s theorem then impliesZ
A

meas..x � r; x C r/ \ .0; t0// < 2r�t0

and meas.A/ < 2�t0 follows.
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Proposition 3.7. Assume  > 7=2. For Bm � Am defined as above, we have the estimate

meas.Am n Bm/ D O.h�7=2/ (3.24)

uniformly over m 2 Z2 with Im 2 D.

Proof. Proposition 3.4 and Lemma 3.6 imply that the measure of the set

¹t 2 .0; t0/ W m 2Mh.t/ and j�m.t I h/ � �n.t I h/j < hº (3.25)

has a uniform upper bound of O.h�3=2/ for any m; n 2 Z2 such that Im; In 2 D, and
any h < h0.

Additionally, we know that #¹n 2 Z2 W In 2 Dº � h�2 � meas.D/, so by summing
over all such n, we obtain the upper bound

meas.Am n Bm/ D O.h�7=2/

uniform in m.

We can also recast Proposition 3.7 as a statement of nonconcentration of quasieigen-
values for fixed t . We use the notation

N1.t; h/ D #Mh.t/ D #¹m 2 Z2 W Im 2 D and t 2 Amº; (3.26)

N2.t; h/ D #Bh; Bh WD ¹m 2 Z2 W Im 2 D and t 2 Bmº: (3.27)

Proposition 3.8. Let N1; N2 be defined as above. Then for  > 11=2, the set

G WD ¹t 2 .0; t0/ W 9 sequence hj ! 0 such that N2.t; hj / D N1.t; hj / for all j º (3.28)

has full measure in .0; t0/.

Proof. We begin by fixing an arbitrary sequence hj & 0, and defining

Sj WD ¹t 2 .0; t0/ W N1.t; hj / ¤ N2.t; hj /º: (3.29)

In this notation, we have

G c �

1[
nD1

1\
kDn

Sk : (3.30)

Using Proposition 3.7, we can estimateZ t0

0

.N1.t; h/ �N2.t; h// dt D
X
m2Z2

meas.Am n Bm/

� ¹m 2 Z2 W Im 2 Dº �O.h
�7=2/ D O.h�11=2/:

It follows that

meas.Sj / D
Z t0

0

1Sj dt �

Z 1

0

.N1.t; h/ �N2.t; h// dt D O.h
�11=2
j /: (3.31)

From (3.30) and (3.31), we can conclude

meas.G c/ � meas
� 1[
nD1

1\
kDn

Sk

�
D lim
n!1

meas
� 1\
kDn

Sk

�
� lim
n!1

meas.Sn/ D 0:
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3.2. Nonconcentration implies positive mass

Having established that G is of full measure in Proposition 3.8 provided  > 11=2, we now
fix  > 11=2; t 2 G , and consider an associated sequence hj ! 0 such that N1.t; hj / D
N2.t; hj / for all j 2 N. We suppress t -dependence of various quantities in our notation
in this section for brevity.

Introducing the energy windows

Wm.h/ WD Œ�m.h/ � h
=3; �m.h/C h

=3� (3.32)

form 2Mh, the conditionN1.t;hj /DN2.t;hj / implies that t 2Bm if and only if t 2Am,
with these sets defined in (3.21) and (3.22). Consequently, the energy windows Wm.hj /

are disjoint.
We now want to study the number of true eigenvalues Ek.hj / lying in the window

Wm.hj /. Let
Nm.h/ D #¹Ek.h/ 2 Wm.h/º: (3.33)

From Weyl’s law, the total number of eigenvalues in the energy band Œa; b� is asymptotic
to .2�h/�2meas.p�1.Œa; b�// where p D �.Ph/, whilst the number of quasimodes in our
local patch Tn �D satisfies the asymptoticN2.hj /DN1.hj /� h�2j meas.E�/. Typically
the ratio

R WD
meas.p�1.Œa; b�//
4�2 meas.E�/

(3.34)

will be much larger than 1 if our coordinate patch is very small. This ratio R will lead
to a lower bound (3.46) proportional to R�2 for the mass of our semiclassical measure
restricted to a particular torus ƒ! .

Fixing � > 1, we define

QMh.�/ WD ¹m 2Mh W Nm.h/ < �Rº: (3.35)

The pigeonhole principle shows that for large �, Nm.h/ is only rarely larger than �R.
Indeed, the disjointness of the windows Wm.hj / implies

lim sup
j!1

h2j #.Mhj n
QMhj / � �R �

meas.p�1.Œa; b�//
4�2

; (3.36)

and since h2j #Mhj ! meas.E�/ as j !1, it follows that

# QMhj .�/

#Mhj

D 1 �
#.Mhj n

QMhj /

#Mhj

> 1 � 2=� (3.37)

for each sufficiently large j . That is, the proportion ofO.h /-sized energy windows asso-
ciated to actions in Mh containing at most �R eigenvalues is at least 1 � 2=�.
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Lemma 3.9. For fixed  > 11=2 and each m 2 QMhj .�/, there exists an L2-normalised
eigenfunction ukj .hj / with eigenvalue Ekj .hj / 2 Œ�m � h


j =3; �m C h


j =3� such that

max
jEkj ��mj�h



j

jhukj ; vmij �
1 � o.1/

�R
: (3.38)

Proof. Since the quasimodes vm are of order O.hC1/, we have

hk�?
Œ�m�h



j
=3;�mCh



j
=3�
.vm/k � k.Phj � �m/�

?

Œ�m�h


j=3
;�mCh



j
=3�
.vm/k

� k.Phj � �m/vmk D O.h
C1
j /;

so
k�Œ�m�hj =3;�mCh



j
=3�.vm/k D 1 �O.hj / (3.39)

where �I is the spectral projector associated to Ph. This spectral projector can be
expressed as X

Ek.hj /2Œ�m�h


j
=3;�mCh



j
=3�

uk.hj /h�; uk.hj /i;

which implies X
Ek.hj /2Œ�m�h



j
=3;�mCh



j
=3�

jhuk.hj /; vmij
2
D 1 �O.hj /: (3.40)

Combining this estimate with (3.35) yields (3.38).

We now show that most nonresonant actions in E� of KAM tori are close to actions
in QMhj .�/ for all sufficiently large j . This shows that the concentrating quasimodes
associated to such torus actions can be formed from the subfamily QMhj .�/ �Mhj . We
introduce the notation

QIhj .�/ D ¹hj .mC #=4/ W m 2
QMhj .�/º;

Ihj D ¹hj .mC #=4/ W m 2Mhj º
(3.41)

for the actions corresponding to integer pairs m 2 QMhj .�/, respectively m 2Mhj .

Proposition 3.10. Let QIhj .�/ be defined as in (3.41). Then

meas.¹I 2 E� W dist.I; QIhj .�// < Lhj º/

meas.E�/
� 1 �

2�L2

�
(3.42)

for all sufficiently large j .
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Proof. For I 2 E� that are not within distance Lhj of some Im with m 2 QMh, we must
have jI � Imj < Lhj for some m 2Mhj n

QMhj . However,

#.Ihj n QIhj / <
2

�
#Mhj �

2

�h2j
�meas.E�/

for all sufficiently large j . Hence we can bound the total measure of such I as

meas.¹I 2 E� W dist.I; QIhj .�// � Lhj º/

meas.E�/
�

2

�h2j
� �L2h2j D

2�L2

�
(3.43)

for all sufficiently large j .

Proposition 3.10 together with (3.38) are the key ingredients required to prove Theo-
rem 1.1.

3.3. Proof of Theorem 1.1

Let E�;j .�/ be the subset of E� in (3.42), and define

QE�.�/ WD

1\
lD1

1[
jDl

E�;j .�/:

Then QE�.�/ has measure at least 1 �O.��1/, and has the property that

I 2 QE�.�/ H) dist.I; QIhj .�// < Lhj for infinitely many j: (3.44)

For each I! 2 QE�.�/ and each such j , we choose such an action in QAhj and an associated
quasimode vmj for Phj in order to obtain a sequence of quasimodes that concentrates
completely on the torus ƒ! D ¹I!º � T2.

For this sequence, we can find using Lemma 3.9 a corresponding sequence of eigen-
functions ukj for Phj such that

jhukj .hj /; vmj .hj /ij >
1

2�R
(3.45)

for all sufficiently large j .
We now claim that the sequence ukj .hj / scars on the torusƒ! . To see this, we take an

arbitrary semiclassical pseudodifferential operator Ah with compactly supported symbol
equal to 1 in a neighbourhood of the torus ƒ! , and estimate

hA2hj ukj .hj /; ukj .hj /i D kAhj ukj .hj /k
2

�
ˇ̌
hAhj ukj .hj /; vmj .hj /i

ˇ̌
2

D
ˇ̌
hukj .hj /; vmj .hj /i C hukj .hj /; .Ahj � Id/vmj .hj /i

ˇ̌
2

�
1

5�2R2
(3.46)
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for sufficiently large j , from (3.45) and the fact that

k.Ahj � Id/vmj .hj /k
2
D h.Ahj � Id/�.Ahj � Id/vmj .hj /; vmj .hj /i ! 0

from concentration of vmj onto the torus ƒ! .
Now let � be a semiclassical measure associated to a subsequence of the ukj .hj /. We

see that Z
�.A/ d�

is bounded below by .5�2R2/�1. By taking A to have shrinking support in a neighbour-
hood of ƒ! , we see that � has mass at least .5�2R2/�1 on ƒ! .

Applying this argument with �!1 we establish the existence of such semiclassical
measures for almost all I! 2 E� and we are done.

One can apply Theorem 1.1 with � ! 0 to obtain the following corollary.

Corollary 3.11. Under the same assumptions as in Theorem 1.1, for almost all nonreso-
nant frequencies ! 2

S
�>0E� , there exists a t0.!/ > 0 such that for almost all t 2 .0; t0/

there exists a semiclassical measure associated to the eigenfunctions of Ph.t/ that has
positive mass on ƒ! .

4. Remarks on C 1 case

In the present article, the assumption was made that P.x; �I t / 2 G�;�;1 and that M is a
G� class manifold. This choice was made because to the authors’ knowledge, there does
not appear to be any direct analogue of classical Birkhoff normal form (see [19, Corol-
lary 1.2]) in the literature for KAM systems that are C1 perturbations of C1 completely
integrable systems. However, under the assumptions of the existence of such a Birkhoff
normal form, a quantum Birkhoff normal form was obtained in the C1 setting by Colin de
Verdière [4], with the symbols K0; R0 of C1 regularity and quasimodes having O.h1/
error terms. As we only require O.hC1/ quasimodes for the argument in this paper, the
proof of Theorem 1.1 goes through in the C1 case in exactly the same manner.

Theorem 4.1. Suppose M is a compact boundaryless C1 surface, and suppose that
Ph.t/ is a family of self-adjoint elliptic semiclassical pseudodifferential operators of fixed
positive differential order m, such that

� the operator Ph.t/ has full symbol real-valued, smooth in t , and in the standard Kohn–
Nirenberg symbol class;

� the principal symbol of Ph.t/ is given by some P.x; �I t / 2 C1.T �M � .�1; 1// and
the subprincipal symbol is identically zero;

� the Hamiltonian P 0.x; �/ WD P.x; �I 0/ is, in some open set of phase space T �M ,
nondegenerate and completely integrable;

� P.x; �I t / admits a classical Birkhoff normal form in the sense of Section 2;
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� written in action-angle coordinates .�;I /2Tn �D for the HamiltonianP 0, the vector
fields

rIH
0.I / and rI

�Z
T2
@tH.�; I I 0/ d�

�
are linearly independent

for I 2 D and all h < h0, (4.1)

whereH.�; I I t / denotes P.x; �I t / written in the action-angle coordinates for P 0, and
H 0.I / WD H.�; I I 0/.

Then there exists t0 > 0 such that for almost all t 2 Œ0; t0�, and for almost all KAM tori
ƒ! D Tn � ¹I!º with ! 2 �� , there exists a semiclassical measure associated to the
eigenfunctions of Ph.t/ that has positive mass .and hence scars/ on ƒ! .

5. Examples

5.1. The flat torus

A fundamental example of a nondegenerate completely integrable system is the flat torus,
T2 DR2=2�Z2 with the standard metric. If we denote the spatial coordinates by .�1; �2/
and their dual coordinates by I1; I2 then these form action-angle coordinates and the
symbol of the Laplacian takes the form I 21 C I

2
2 , which is obviously nondegenerate. Our

result applies in particular to metric perturbations of the flat torus provided that (1.6)
holds, which it clearly does locally for a generic perturbation. For example, if we take
H.�;I I t /D I 21 C I

2
2 C t cos2 �1I1I2 then this satisfies condition (1.6) whenever I1¤ I2.

Another standard example of a completely integrable system is geodesic flow on a
Gevrey smooth surface of revolution. In the case of the ellipsoid, this was checked to be
nondegenerate in [13]. Generic Gevrey smooth metric perturbations and potential pertur-
bations can similarly be treated.

5.2. Spherical pendulum

Geodesic flow on the 2-sphere is certainly completely integrable, but it is degenerate,
as every orbit is periodic. However, if we add to this system a potential which is the
height function in the standard embedding into R3, then the system is still rotationally
invariant, hence completely integrable, but now nondegenerate, as shown in [11]. Gevrey
smooth metric or potential perturbations of this system fall into the framework of this
paper provided that condition (1.6) is satisfied locally.

5.3. Central potentials

Another standard completely integrable system is that of central potentials on R2, that is,
the system on T �R2 with Hamiltonian

h.x; y; �; �/ D �2 C �2 C V
�p
x2 C y2

�
:
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Again this is rotationally invariant and therefore completely integrable. The correspond-
ing operator is the Schrödinger operator h2� C V . Although this is on a noncompact
manifold, if V.r/!1 as r !1 then this operator has discrete spectrum and the phase
space corresponding to any energy interval Œ0;E� is compact, so our results apply directly
provided that V is Gevrey smooth. The system is nondegenerate for generic V . This fol-
lows from [3, Chapter 2, Section 1.1], where explicit formulae for the period � between
pericentre and apocentre, and for the aspidal angle ˆ, are given. Nondegeneracy is equiv-
alent to the condition that .�;ˆ/ are nondegenerate functions of the angular momentum c

and energy h, and it is straightforward to check from these explicit formulae that this
is true after a generic perturbation of the potential. Our theorem applies for example to
compactly supported (or decaying at infinity) Gevrey smooth potential perturbations sat-
isfying (1.6).

Appendix A. Gevrey class symbols and Birkhoff normal form

In this appendix we collect the basic definitions of Gevrey functions and Gevrey symbol
classes.

LetD be a bounded domain in Rn and let X be either a bounded domain in Rn or the
compact set Tn.

Definition A.1. For �; �0 > 1, the anisotropic Gevrey class G�;�
0

.X �D/ is defined as
the set of u 2 C1.X �D/ with

sup
˛;ˇ

sup
.�;I /

j@˛�@
ˇ
I ujL

�˛
1 L

�ˇ
2 ˛Š��ˇŠ��

0

<1 (A.1)

for some L1; L2 > 0.

This definition can be extended to functions with more than two differing degrees of
Gevrey regularity in the obvious manner.

We now fix the parameters �;� > 1 and %� � C�� 1, and denote the triple .�;�;%/
by `.

Definition A.2. A formal Gevrey symbol on X �D is a formal sum

1X
jD0

pj .�; I /h
j (A.2)

where the pj 2 C10 .X �D/ are all supported in a fixed compact set and there exists a
C > 0 such that

sup
X�D

j@
ˇ

�
@˛Ipj .�; I /j � C

jCj˛jCjˇ jC1ˇŠ�˛Š�j Š%: (A.3)
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Definition A.3. A resummation of the formal symbol (A.2) is a function p.�; I I h/ 2
C10 .X �D/ for 0 < h � h0 with

sup
X�D�.0;h0�

ˇ̌̌
@
ˇ

�
@˛I

�
p.�; I I h/ �

NX
jD0

pj .�; I /h
j
�ˇ̌̌

� hNC1C
NCj˛jCjˇ jC2
1 ˇŠ�˛Š�.N C 1/Š%: (A.4)

Lemma A.4. Given a formal symbol (A.2), one choice of resummation is

p.�; I I h/ WD
X

j��h�1=%

pj .�; I /h
j (A.5)

where � depends only on n and C1.

Definition A.5. We define the residual class of symbols, S�1
`

, as the collection of reali-
sations of the zero formal symbol.

Writing f � g if f � g 2 S�1
`

, it then follows that any two resummations of the same
formal symbol are �-equivalent. Gevrey symbols are precisely the equivalence classes
of �.

Definition A.6. We denote the set of the equivalence classes by S`.X �D/.

We can now introduce the pseudodifferential operators corresponding to these sym-
bols.

Definition A.7. To each symbol p 2 S`.X �D/, we associate a semiclassical pseudo-
differential operator defined by

Phu.x/ D.2�h/
�n

Z
X�Rn

ei.x�y/��=hp.x; �I h/u.y/ d� dy (A.6)

for u 2 C10 .X/.

The above construction is defined modulo exp.�ch�1=%/, as for any p2S�1
`

.X�D/

we have
kPhuk D OL2.exp.�ch�1=%// (A.7)

for some constant c > 0.

Remark A.8. The exponential decay of residual symbols is a key strengthening that
comes from working in a Gevrey symbol class, as opposed to the standard Kohn–Niren-
berg classes.

An important feature of the Gevrey symbol calculus is that the symbol class
S`.X �D/ is closed under composition.

We conclude by noting that if p 2 S.�;�;2��1/, then G� changes of variable preserve
the symbol class of p. This coordinate invariance allows us to extend the Gevrey pseu-
dodifferential calculus to compact Gevrey manifolds.
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