
© 2021 European Mathematical Society
Published by EMS Press

J. Eur. Math. Soc. (Online first) DOI 10.4171/JEMS/1143

Didier Bresch � Alexis F. Vasseur � Cheng Yu

Global existence of entropy-weak solutions to the
compressible Navier–Stokes equations with non-linear
density dependent viscosities

Received May 7, 2019; revised June 16, 2020

Abstract. In this paper, we considerably extend the results on global existence of entropy-
weak solutions to the compressible Navier–Stokes system with density dependent viscosities
obtained, independently (using different strategies) by Vasseur–Yu [Invent. Math. 206 (2016) and
arXiv:1501.06803 (2015)] and by Li–Xin [arXiv:1504.06826 (2015)]. More precisely, we are able
to consider a physical symmetric viscous stress tensor � D 2�.�/D.u/C .�.�/ div u � P.�// Id
where D.u/ D Œru C rT u�=2 with shear and bulk viscosities (respectively �.�/ and �.�/) sat-
isfying the BD relation �.�/ D 2.�0.�/� � �.�// and a pressure law P.�/ D a�
 (with a > 0 a
given constant) for any adiabatic constant 
 > 1. The non-linear shear viscosity �.�/ satisfies some
lower and upper bounds for low and high densities (our result includes the case �.�/ D ��˛ with
2=3 < ˛ < 4 and � > 0 constant). This provides an answer to a longstanding question on com-
pressible Navier–Stokes equations with density dependent viscosities, mentioned for instance by
F. Rousset [Bourbaki 69ème année, 2016–2017, exp. 1135].

Keywords. Global weak solutions, compressible Navier–Stokes equations, vacuum, degenerate
viscosities

1. Introduction

When a fluid is governed by the barotropic compressible Navier–Stokes equations, the
existence of global weak solutions, in the sense of J. Leray [35], in space dimension
greater than 2 remained for a long time without answer, because of the weak control of
the divergence of the velocity field which may provide the possibility for the density to
vanish (vacuum state) even if initially this is not the case.
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There exists a huge literature on this question in the case of constant shear viscosity
� and constant bulk viscosity �. Many authors, including Hoff [27], Jiang–Zhang [29],
Kazhikhov–Shelukhin [33], Serre [47], Vaı̆gant–Kazhikhov [48] (to cite but a few),
obtained partial answers. The first rigorous approach to this problem in its generality
is due to P.-L. Lions [38] when the pressure law in terms of the density is given by
P.�/D a�
 where a and 
 are strictly positive constants. He presented in 1998 a complete
theory for P.�/ D a�
 with 
 � 3d=.d C 2/ (where d is the space dimension) allowing
one to obtain global existence of weak solutions à la Leray in dimensions d D 2 and 3 and
for general initial data belonging to the energy space. His result was then extended in 2001
to the case P.�/ D a�
 with 
 > d=2 by Feireisl–Novotný–Petzeltová [24] introducing
an appropriate method of truncation. Note also the 2014 paper on compressible Navier–
Stokes equations with constant viscosities by Plotnikov–Weigant [45] in dimension 2 for
the linear pressure law, that is, 
 D 1. In 2002, Feireisl [23] also proved it is possible
to consider a pressure law P.�/ non-monotone on a compact set Œ0; ��� (with �� con-
stant) and monotone elsewhere. This was relaxed in 2018 by Bresch–Jabin [16] allowing
one to consider real non-monotone pressure laws. They also proved that it is possible to
consider some constant anisotropic viscosities. The Lions theory has also been extended
recently by Vasseur–Wen–Yu [49] to pressure laws depending on two phases (see also
Maltese & al. [39], Novotný [43] and Novotný–Pokorný [44]). The method introduced by
Bresch–Jabin [16] has also been recently developed in the bifluid framework by Bresch–
Mucha–Zatorska [17].

When the shear and bulk viscosities (respectively � and �) are assumed to depend
on the density �, the mathematical framework is completely different. It was discussed,
mathematically, initially in a paper by Bernardi–Pironneau [6] related to viscous shallow-
water equations and by P.-L. Lions [38]. The main ingredient in the constant case, which
is the compactness in space of the effective flux F D .2�C �/divu� P.�/, is no longer
true for density dependent viscosities. In space dimension greater than 1, a new math-
ematical framework was initiated with a series of papers by Bresch–Desjardins [8–11]
(started in 2003 with Lin [12] in the context of Navier–Stokes–Korteweg with linear
shear viscosity case) who identified a piece of information related to the gradient of
a function of the density if the viscosities satisfy what is called the Bresch–Desjardins
constraint. This information is usually called the BD entropy, allowing the introduction
of the concept of entropy-weak solutions. Using such extra information, they obtained
the global existence of entropy-weak solutions in the presence of appropriate drag terms
or singular pressure close to vacuum. Concerning the case one-dimensional in space, or
the spherical case, many important results have been obtained for instance by Burtea–
Haspot [18], Ducomet–Nečasová–Vasseur [22], Constantin–Drivas–Nguyen–Pasqualotto
[20], Guo–Jiu–Xin [25], Haspot [26], Jiang–Xin–Zhang [28], Jiang–Zhang [29], Kanel’
[32], Li–Li–Xin [36], Mellet–Vasseur [41], Shelukhin [47] without drag terms. Stabil-
ity and construction of approximate solutions in space dimension 2 or 3 have been
investigated during more than fifteen years with a first important stability result with-
out drag terms or singular pressure by Mellet–Vasseur [40]. Several important works,
for instance by Bresch–Desjardins [8–11] and Bresch–Desjardins–Lin [12], Bresch–
Desjardins–Zatorska [13], Li–Xin [37], Mellet–Vasseur [40], Mucha–Pokorný–Zatorska
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[42], Vasseur–Yu [50, 51], and Zatorska [52], have also been written trying to find
a way to construct approximate solutions. Recently a real breakthrough has been
made in two papers by Li–Xin [37] and Vasseur–Yu [50]: Using two different ways,
they got the global existence of entropy-weak solutions for the compressible system
when �.�/ D � and �.�/ D 0. Note that Li–Xin [37] also consider more general vis-
cosities satisfying the BD relation but with a non-symmetric stress diffusion (� D
�.�/ruC .�.�/ div u � P.�// Id) and more restrictive conditions on the shear viscos-
ity �.�/ and bulk viscosity �.�/ and on the pressure law P.�/ compared to the present
paper.

The objective of this paper is to extend the results on existence of global entropy-
weak solutions obtained independently (using different strategies) by Vasseur–Yu [50]
and Lin–Xin [37] in order to answer a longstanding mathematical question on compress-
ible Navier–Stokes equations with density dependent viscosities, mentioned for instance
by Rousset [46]. More precisely, extending and coupling carefully the two-velocities
framework by Bresch–Desjardins–Zatorska [13] with the generalization of the quantum
Böhm identity found by Bresch–Couderc–Noble–Vila [7] (proving a generalization of the
dissipation inequality used by Jüngel [30] for the Quantum Navier–Stokes system and
established by Jüngel–Matthes [31]) and with the renormalized solutions introduced by
Lacroix-Violet and Vasseur [34], we get global existence of entropy-weak solutions to the
following Navier–Stokes equations:

�t C div.�u/ D 0;

.�u/t C div.�u˝ u/CrP.�/ � 2 div
�p

�.�/S� C
�.�/

2�.�/
Tr.
p
�.�/S�/ Id

�
D 0;

(1.1)
where p

�.�/S� D �.�/D.u/

with data
�jtD0 D �0.x/ � 0; �ujtD0 D m0.x/ D �0u0; (1.2)

and where P.�/ D a�
 denotes the pressure with constants a > 0 and 
 > 1, � is the
density of the fluid, u stands for the velocity of the fluid, and DuD ŒruCrT u�=2 is the
strain tensor. As usual, we consider

u0 D
m0

�0
when �0 6D 0 and u0 D 0 elsewhere;

jm0j
2

�0
D 0 a.e. on ¹x 2 � W �0.x/ D 0º:

Remark 1.1. We record the following identity:

2 div
�p

�.�/S� C
�.�/

2�.�/
Tr.
p
�.�/S�/ Id

�
D 2 div.�.�/Du/Cr.�.�/ divu/:
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The viscosity coefficients �D �.�/ and �D �.�/ satisfy the Bresch–Desjardins rela-
tion introduced in [9],

�.�/ D 2.��0.�/ � �.�//: (1.3)

The relation between the stress tensor S� and the triple .�.�/=
p
� ;
p
� u;
p
� v/ where

v D 2rs.�/with s0.�/D �0.�/=� will be proved in the following way: The matrix valued
S� is the symmetric part of the matrix valued function T�, namely

S� D
T� C tT�

2
; (1.4)

where T� is defined throughp
�.�/T� D r

�
p
� u

�.�/
p
�

�
�
p
� u˝

p
�rs.�/ (1.5)

with
s0.�/ D �0.�/=�; (1.6)

and

�.�/

2�.�/
Tr.
p
�.�/T�/ Id D

�
div
�
�.�/

�.�/

p
� u

�.�/
p
�

�
�
p
� u �
p
� rs.�/

��00.�/

�0.�/

�
Id :

(1.7)

Remark 1.2. Compared to the case �.�/ D �, the definition of T� is given through the
two compatible identities (1.5) and (1.7).

For the sake of simplicity, we will consider the case of periodic boundary conditions
in three dimensions in space, namely � D T3. In the whole paper, we assume

� 2 C 0.RCI RC/ \ C 2.RC� I R/; (1.8)

where RC D Œ0;1/ and RC� D .0;1/: We also assume that there exist positive numbers
˛1; ˛2 such that

2=3 < ˛1 � ˛2 < 4;

0 <
1

˛2
��0.�/ � �.�/ �

1

˛1
��0.�/ for any � > 0;

(1.9)

and there exists a constant C > 0 such thatˇ̌̌̌
��00.�/

�0.�/

ˇ̌̌̌
� C <1: (1.10)

Note that if �.�/ and �.�/ satisfy (1.3) and (1.9), then

�.�/C 2�.�/=3 � 0;

and thanks to (1.9),
�.0/ D �.0/ D 0:
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Remark 1.3. Note that the hypotheses (1.9)–(1.10) allow the shear viscosity to be of
the form �.�/ D ��˛ with � > 0 a constant where 2=3 < ˛ < 4 and the bulk viscosity
satisfying the BD relation �.�/ D 2.�0.�/� � �.�//.

Remark 1.4. Note that the restriction 2=3 < ˛1 � ˛2 comes from the hypothesis that
there exists " > 0 such that 2�.�/ C 3�.�/ � "�.�/, which gives 2�.�/ C 3�.�/ > 0

(far from vacuum), the usual physical restriction between the shear and bulk vis-
cosities. Meanwhile, for technical reasons in the proof of Lemma 2.1, we need to
restrict ˛2 < 4 in hypothesis (1.9). More precisely, we get krrZ.�/kL2..0;T /��/ and
krZ1.�/kL4..0;T /��/ controlled if the two constants in front of them in Lemma 2.1 are
positive.

It is important to remark that in the recent paper [1], the authors have indicated
how Lemma 2.1 may be used for the full range 2=3 < ˛ < 1 when �.�/ D �˛

and �.�/ D 2.˛ � 1/�˛ . It is enough to be able to compare krrZ.�/kL2..0;T /��/ to
krZ1.�/kL4..0;T /��/ to relax the assumptions. This is based on the following inequality:
For any d � 1 and any positive function � in H 2.Td /,Z

Td
jr�1=2j4 dx �

9

16

Z
Td
.��/2 dx:

Remark 1.5. In [50] and [37] the case �.�/ D �� and �.�/ D 0 is considered, and
in [37] more general cases have been considered but with a non-symmetric viscous term
in the three-dimensional in space case, namely � div.�.�/ru/ � r.�.�/ div u/. In [37]
the viscosities �.�/ and �.�/ satisfy (1.3) with �.�/ D ��˛ where ˛ 2 Œ3=4; 2/ and with
the following assumption on 
 for the pressure p.�/ D a�
 :


 2

´
.1; 6˛ � 3/ if ˛ 2 Œ3=4; 1�;
Œ2˛ � 1; 3˛ � 1� if ˛ 2 .1; 2/:

Definitions

Following [34] (based on [50]), we will show the existence of renormalized solutions in u.
Then, we will show that this renormalized solution is a weak solution. The renormaliza-
tion provides weak stability of the advection terms �u˝ u and �u˝ v. Let us first define
a renormalized solution:

Definition 1.1. Consider � > 0, 3�C 2� > 0, r0 � 0, r1 � 0, r2 � 0, ı � 0 and r � 0.
We say that .

p
�;
p
�u/ is a renormalized weak solution in u of the compressible Navier–

Stokes equations (with an extra capillarity term, with drag terms, with a supplementary
pressure if respectively r 6D 0, .r0; r1; r2/ 6D 0 and ı 6D 0) if it satisfies (1.23)–(1.26) below,
and for any ' 2 W 2;1.R3/, there exist measures R' ; R

1

' ; R
2

' 2M.RC ��/ with

kR'kM.RC��/ C kR
1

'kM.RC��/ C kR
2

'kM.RC��/ � Ckrr'kL1.R3/;
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where the constant C depends only on the solution .
p
�;
p
� u/, and for any function

 2 C1c .R
C ��/,Z T

0

Z
�

.� t C
p
�
p
� u � r / dx dt D 0;Z T

0

Z
�

�
�'.u/ t C �'.u/˝ u W r 

�
dx dt

�

Z T

0

Z
�

�
2

�p
�.�/S� C

�.�/

2�.�/
Tr.
p
�.�/S�/ Id

�
'0.u/

�
� r dx dt

� r

Z T

0

Z
�

�
2

�p
�.�/Sr C

�.�/

2�.�/
Tr.
p
�.�/Sr / Id

�
'0.u/

�
� r dx dt

C

Z T

0

Z
�

F.�; u/'0.u/ dx dt D hR' ;  i;Z T

0

Z
�

�
�.�/ tC

�.�/
p
�

p
�u �r 

�
dx dt�

Z T

0

Z
�

�.�/

2�.�/
Tr.
p
�.�/T�/ dx dt D 0;

where S� is given in (1.4) and T� is given in (1.7). The matrix Sr is compatible in the
sense of (1.19)–(1.21) below.

The vector valued function F is given by

F.�; u/ D

s
P 0.�/�

�0.�/
r

Z �

0

r
P 0.s/�0.s/

s
ds

C ı

s
P 0
ı
.�/�

�0.�/
r

Z �

0

s
P 0
ı
.s/�0.s/

s
ds � r0u � r1�juju �

r2

�0.�/
�juj2u:

(1.11)

For every i; j; k between 1 and d we havep
�.�/ '0i .u/ŒT��jk D @j .�.�/'

0
i .u/uk/ �

p
� uk'

0
i .u/
p
� @j s.�/CR

1

' ; (1.12)

r'0i .u/Œr.
p
�.�/rZ.�//�jk D r@j .

p
�.�/ '0i .u/@kZ.�//CR

2

' I (1.13)

moreover

kR
1

'kM.RC��/ C kR
2

'kM.RC��/ C kR'kM.RC��/ � Ckrr'kL1 ;

and for any  2 C1c .�/,

lim
t!0

Z
�

�.t; x/ .x/ dx D

Z
�

�0.x/ .x/ dx;

lim
t!0

Z
�

�.t; x/u.t; x/ .x/ dx D

Z
�

m0.x/ .x/ dx;

lim
t!0

Z
�

�.�/.t; x/ .x/ dx D

Z
�

�.�0/.x/ .x/ dx:
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Remark 1.6. The notion of renormalized solutions was introduced by R. DiPerna and
P.-L. Lions [21], and it was adapted to the study of the compressible Navier–Stokes equa-
tions by P.-L. Lions [38]. In Lions’ framework, this notion allows one to handle the issue
of low regularity of the density. However, in our paper, we have more uniform bounds on
the density and less regularity of the velocity. With our definition of renormalized solution
in velocity, this allows us to get the weak stability of the solution sequence even if we are
not able to have extra control on �juj2. It allows us to get rid of the Mellet–Vasseur type
inequality for passing to the limits and allows us to establish the existence result for any

 > 1:

We define a global weak solution of the approximate system or the compressible
Navier–Stokes equation (when r D r0 D r1 D r2 D ı D 0) as follows:

Definition 1.2. Let S� the symmetric part of T� in L2..0;T /��/ satisfying (1.4)–(1.7)
and Sr the capillary quantity in L2..0; T / ��/ given by (1.19)–(1.21). Set P.�/ D a�


and Pı.�/ D ı�10. We say that .�; u/ is a weak solution to (1.17)–(1.20) if it satisfies the
a priori estimates (1.23)–(1.26) and for any  2 C1c ..0; T / ��/,Z T

0

Z
�

.�@t C �u � r / dx dt D 0;Z T

0

Z
�

.�u@t C �u˝ u W r / dx dt

�

Z T

0

Z
�

2

�p
�.�/S� C

�.�/

2�.�/
Tr.
p
�.�/S�/ Id

�
� r dx dt

� r

Z T

0

Z
�

2

�p
�.�/Sr C

�.�/

2�.�/
Tr.
p
�.�/Sr / Id

�
� r dx dt

C

Z T

0

Z
�

F.�; u/ dx dt D 0;

.1:14/

Z 1
0

Z
�

�
�.�/ t C

�.�/
p
�

p
� u � r 

�
dx dt

�

Z T

0

Z
�

�.�/

2�.�/
Tr.
p
�.�/T�/ dx dt D 0;

with F given through (1.11), and for any  2 C1c .�/,

lim
t!0

Z
�

�.t; x/ .x/ dx D

Z
�

�0.x/ .x/ dx;

lim
t!0

Z
�

�.t; x/u.t; x/ .x/ dx D

Z
�

m0.x/ .x/ dx;

lim
t!0

Z
�

�.�/.t; x/ .x/ dx D

Z
�

�.�0/.x/ .x/ dx:
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Remark 1.7. As mentioned in [15], the equation on �.�/ is important: By taking  D
div' for all ' 2 C10 , we can write the equation satisfied by r�.�/, namely

@tr�.�/C div.r�.�/˝ u/ D div.r�.�/˝ u/ � r div.�.�/u/

� r

�
�.�/

2�.�/
Tr.
p
�.�/T�/

�
D � div.

p
�.�/ tT�/ � r

�
�.�/

2�.�/
Tr.
p
�.�/T�/

�
:

(1.15)

This will justify in some sense the two-velocities formulation introduced in [13] with the
extra velocity linked to r�.�/.

The main result of our paper reads as follows:

Theorem 1.1. Let �.�/ satisfy (1.8)–(1.10) and let � and � satisfy (1.3). Assume that the
initial data satisfyZ

�

�
1

2
�0ju0 C 2�rs.�0/j

2
C �.1 � �/�0

j2rs.�0/j
2

2

�
dx

C

Z
�

�
a
�


0


 � 1
C �.�0/

�
dx � C <1 (1.16)

with k 2 .0; 1/ given. Let 0 < T < 1 be given. Then, for any 
 > 1, there exists a
renormalized solution to (1.1)–(1.2) as defined in Definition 1.1 with r , r0, r1, r2 and ı
all zero. Moreover, this renormalized solution with initial data satisfying (1.16) is a weak
solution to (1.1)–(1.2) in the sense of Definition 1.2.

Our result may be considered as an improvement of [37] for two reasons: First, it
takes into account a physical symmetric viscous tensor, and secondly, it extends the range
of the coefficients ˛ and 
 . The method is based on the consideration of an approximate
system with an extra pressure quantity, appropriate non-linear drag terms and appropriate
capillarity terms. This generalizes the Quantum Navier–Stokes system with quadratic drag
terms considered in [50,51]. First we prove that weak solutions of the approximate system
are renormalized solutions of the system, in the sense of [34]. Then we pass to the limit
with respect to r2; r1; r0; r; ı to get renormalized solutions of the compressible Navier–
Stokes system. The final step is the proof that a renormalized solution of the compressible
Navier–Stokes system is a global weak solution of the compressible Navier–Stokes sys-
tem. Note that thanks to the technique of renormalized solution introduced in [34], it is
not necessary to derive the Mellet–Vasseur type inequality in this paper; this allows us to
cover the whole range 
 > 1.

First step. Motivated by the work of [34], the first step is to establish the existence of
a global �-entropy weak solution (in the sense of Theorem 1.2 below) to the following
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approximation:

�t C div.�u/ D 0;
.1:17/

.�u/t C div.�u˝ u/CrP.�/CrPı.�/

� 2 div
�p

�.�/S� C
�.�/

2�.�/
Tr.
p
�.�/S�/ Id

�
� 2r div

�p
�.�/Sr C

�.�/

2�.�/
Tr.
p
�.�/Sr / Id

�
C r0uC r1�jujuC r2

�

�0.�/
juj2u D 0

where the barotropic pressure law and the extra pressure term are respectively

P.�/ D a�
 ; Pı.�/ D ı�
10 with ı > 0: (1.18)

The matrix S� is defined in (1.4) and T� is given in (1.5)–(1.7). The matrix Sr is com-
patible in the following sense:

r
p
�.�/Sr D 2r

�
2
p
�.�/rrZ.�/ � r.

p
�.�/rZ.�//

�
; (1.19)

where

Z.�/ D

Z �

0

Œ�.s/1=2�0.s/�=s ds;

k.�/ D

Z �

0

Œ�.s/�0.s/�=�.s/3=2 ds

(1.20)

and

r
�.�/

2�.�/
Tr.
p
�.�/Sr / Id D r

�
�.�/p
�.�/

C
1

2
k.�/

�
�Z.�/ Id

�
r

2
divŒk.�/rZ.�/� Id : (1.21)

Remark 1.8. Note that the previous system is a generalization of the quantum vis-
cous Navier–Stokes system considered by Lacroix-Violet and Vasseur [34] (see also the
interesting papers by Antonelli–Spirito [2, 3] and by Carles–Carrapatoso–Hillairet [19]).
Indeed, if we consider �.�/ D � and �.�/ D 0, we can writep

�.�/Sr D 4
p
� Œrr

p
� � 4.r�1=4 ˝r�1=4/�;

using Z.�/ D 2
p
� : The Navier–Stokes equations for quantum fluids were also consid-

ered by A. Jüngel [30].

As a first step generalizing [50], we prove the following result.
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Theorem 1.2. Let �.�/ satisfy (1.8)–(1.10) and let �.�/ be given by (1.3). If r0 > 0, then
also assume that infs2Œ0;1/ �0.s/ D �1 > 0. Assume that r1 is small enough compared
to ı, r2 is small enough compared to r and the initial values satisfyZ

�

�0

�
ju0 C 2�rs.�0/j

2

2
C .�.1 � �/C r/

j2rs.�0/j
2

2

�
dx

C

Z
�

�
a
�


0


 � 1
C �.�0/C ı

�100
9
C
r0

"1
j.ln �0/�j

�
dx <1; (1.22)

for a fixed � 2 .0; 1/. Then there exists a �-entropy weak solution .�;u;T�;Sr / to (1.17)–
(1.21) satisfying the initial conditions (1.2), in the sense that .�; u;T�; Sr / satisfies the
mass and momentum equations in a weak form, and satisfies the compatibility formula in
the sense of Definition 1.2. In addition, it satisfies the following estimates:

k
p
� .uC 2�rs.�//k2

L1.0;T IL2.�//
� C; ak�k




L1.0;T IL
 .�//
� C;

kT�k
2
L2.0;T IL2.�//

� C; .�.1 � �/C r/k
p
�rs.�/k2

L1.0;T IL2.�//
� C;

�k
p
�0.�/�
�2 r�k2

L2.0;T IL2.�//
� C;

(1.23)

and

ık�k10
L1.0;T IL10.�//

� C; ı


p�0.�/�8 r�

2

L2.0;T IL2.�//
� C;

r2





� �

�0.�/

�1=4
u





4
L4.0;T IL4.�//

� C; r1


�1=3juj

3

L3.0;T IL3.�//
� C;

r0kuk
2
L2.0;T IL2.�//

� C; rkSrk
2
L2.0;T IL2.�//

� C;

(1.24)

where C does not depend on the parameters �, ı, r , r0, r1, r2. Note that the bounds (1.23)
provide the following control on the velocity field:

k
p
� uk2

L1.0;T IL2.�//
� C:

Moreover letting

Z.�/ D

Z �

0

p
�.s/ �0.s/

s
ds and Z1.�/ D

Z �

0

�0.s/

�.s/1=4s1=2
ds;

we have the extra control

r

�Z T

0

Z
�

jr
2Z.�/j2 dx dt C

Z T

0

Z
�

jrZ1.�/j
4 dx dt

�
� C; (1.25)

and

k�.�/kL1.0;T IW 1;1.�// C k�.�/ukL1.0;T IL3=2.�//\L2.0;T IW 1;1.�// � C;

k@t�.�/kL1.0;T IW�1;1.�// � C;

kZ.�/kL1.0;T IL1C.�// C kZ1.�/kL1.0;T IL1C.�// � C; (1.26)

where C > 0 is a constant which depends only on the initial data.
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Sketch of proof of Theorem 1.2. To show Theorem 1.2, we need to build a smooth solu-
tion to an approximation associated to (1.17). Here, we adapt the ideas developed in [13]
to construct this approximation. More precisely, we consider an augmented version of the
system which will be more appropriate to construct approximate solutions. Let us explain
the idea.

First step: the augmented system. Define a new velocity field generalizing the one intro-
duced in the BD entropy estimate:

w D uC 2�rs.�/

and a drift velocity v D 2rs.�/ with s.�/ defined in (1.6).
Assuming to have a smooth solution of (1.17) with damping terms, .�; w; v/ satisfies

the following system of equations:

�t C div.�w/ � 2���.�/ D 0

and

.�w/t C div.�u˝ w/ � 2.1 � �/ div.�.�/Dw/ � 2� div.�.�/A.w//

� .1 � �/r.�.�/ div.w � �v//Cr�
 C ır�10 C 4.1 � �/� div.�.�/r2s.�//
D �r0.w � 2�rs.�// � r1�jw � 2�rs.�/j.w � 2�rs.�//

� r2
�

�0.�/
jw � 2�rs.�/j2.w � 2�rs.�//C r�r

�p
K.�/�

�Z �

0

p
K.s/ ds

��
;

where A.w/ D .rw � trw/=2, and

.�v/t C div.�u˝ v/� 2� div.�.�/rv/C 2div.�.�/rtw/Cr.�.�/div.w � �v//D 0;

where
v D 2rs.�/; w D uC �v; K.�/ D 4.�0.�//2=�:

This is the augmented version for which we will show that there exist global weak solu-
tions, adding a hyperdiffusivity "2Œ�2sw� div..1C jrwj2/rw/� to the equation satisfied
by w, and passing to the limit as "2 goes to zero.

Important remark. Note that recently Bresch–Couderc–Noble–Vila [7] showed the fol-
lowing relation:

�r

�p
K.�/�

�Z �

0

p
K.s/ ds

��
D div.F.�/r2 .�//Cr

�
.F 0.�/� � F.�//� .�/

�
with F 0.�/ D

p
K.�/� and

p
�  0.�/ D

p
K.�/ : Thus choosing

F.�/ D 2�.�/ and therefore F 0.�/� � F.�/ D �.�/;
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this gives  .�/ D 2s.�/ and thus

�r

�p
K.�/�

�Z �

0

p
K.s/ ds

��
D 2 div

�
�.�/r2.2s.�//

�
Cr

�
�.�/�.2s.�//

�
:

(1.27)

This identity will play a crucial role in the proof, because it defines the appropriate capil-
larity term to consider in the approximate system to be compatible with the stress tensor.
This form is compatible with the various multipliers which are used to get the �-entropy
estimates and to control regularity of the density. Other identities will be used to define
a weak solution for the Navier–Stokes–Korteweg system and to pass to the limit in it,
namely

2�.�/r2.2s.�//C �.�/�.2s.�// D 4
�
2
p
�.�/rrZ.�/ � r.

p
�.�/rZ.�//

�
C

�
2�.�/p
�.�/

C k.�/

�
�Z.�/ Id� divŒk.�/rZ.�/� Id; (1.28)

where

Z.�/ D

Z �

0

Œ�.s/1=2�0.s/�=s ds and k.�/ D

Z �

0

�.s/�0.s/

�.s/3=2
ds:

Note that the case considered in [34, 50, 51] is related to �.�/ D � and K.�/ D 4=�
which corresponds to the Quantum Navier–Stokes system. Note that two very interest-
ing papers by Antonelli–Spirito [4,5] consider Navier–Stokes–Korteweg systems without
such relation between the shear viscosity and the capillary coefficient.

Remark 1.9. The additional pressure ı�10 is used in (2.19) thanks to 3˛2 � 2 � 10. It
could be possible to take �3˛2�2 but we have chosen �10 for simplicity.

Second step and main result concerning the compressible Navier–Stokes system. To
prove global existence of weak solutions of the compressible Navier–Stokes equations,
we follow the strategy introduced in [34, 50]. To do so, first we approximate the viscos-
ity � by a viscosity �"1 such that infs2Œ0;1/ �0"1.s/ � "1 > 0. Then we use Theorem 1.2
to construct a �-entropy weak solution to the approximate system (1.17). We then show
that it is a renormalized solution of (1.17) in the sense of [34]. More precisely we prove
the following theorem:

Theorem 1.3. Let �.�/ satisfy (1.8)–(1.10), and let �.�/ be given by (1.3). If r0 > 0, then
assume also that infs2Œ0;1/ �0.s/D �1 > 0. Assume that r1 is small enough compared to ı
and r2 is small enough compared to r .as in Theorem 1:2/ and the initial values satisfy

Cin WD

Z
�

�
�0

�
ju0 C 2�rs.�0/j

2

2
C .�.1 � �/C r/

j2rs.�0/j
2

2

��
dx

C

Z
�

�
a
�


0


 � 1
C �.�0/C ı

�10

9
C
r0

"1
j.ln �0/�j

�
dx <1: (1.29)

Then the �-entropy weak solution is a renormalized solution of (1.17) in the sense of
Definition 1.1.
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We then pass to the limit with respect to the parameters r; r0; r1; r2 and ı to obtain a
renormalized weak solution of the compressible Navier–Stokes equations and prove our
main theorem.

2. The first level of the approximation procedure

The goal of this section is to construct a sequence of approximate solutions satisfying the
compactness structure to prove Theorem 1.2, that is, the existence of weak solutions of
the approximation system with capillarity and drag terms. Here we present the first level
of the approximation procedure.

1. The continuity equation is

�t C div.�Œw�"3/ D 2� div.Œ�0.�/�"4r�/ (2.1)

with modified initial data

�.0; x/ D �0 2 C
2C�. N�/; 0 < � � �0.x/ � N�:

Here Œf .t;x/�"3 denotes the standard regularization by mollification with respect to space,
and Œf .t; x/�"4 is in time. This is a parabolic equation if infŒ0;1/ �0.s/ > 0. Thus, we can
apply the standard theory of parabolic equations to solve it when w is smooth enough. In
fact, the same equation was solved in [13].

2. The momentum equation with drag terms is replaced by its Faedo–Galerkin approx-
imation with the additional regularizing term "2Œ�

2sw � div..1 C jrwj2/rw/� where
s � 2,Z
�

�w �  �

Z t

0

Z
�

�
�

�
Œw�"3 � 2�

Œ�0.�/�"4
�

r�

�
˝ w

�
W r 

C 2.1 � �/

Z t

0

Z
�

�.�/Dw W r C 2�

Z t

0

Z
�

�.�/A.w/ W r 

C .1 � �/

Z t

0

Z
�

�.�/ divw div � 2�.1 � �/
Z t

0

Z
�

�.�/rv W r 

� �.1 � �/

Z t

0

Z
�

�.�/ div v div �
Z t

0

Z
�

�
 div � ı
Z t

0

Z
�

�10 div 

C "2

Z t

0

Z
�

�
�sw ��s C .1C jrwj2/rw W r 

�
D �

Z t

0

Z
�

r0.w � 2�rs.�// �  � r1

Z t

0

Z
�

�jw � 2�rs.�/j.w � 2�rs.�// �  

� r2

Z t

0

Z
�

�

�0.�/
jw � 2�rs.�/j2.w � 2�rs.�// �  

� r

Z t

0

Z
�

p
K.�/�

�Z �

0

p
K.s/ ds

�
div.� /C

Z
�

�0w0 �  ; (2.2)
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satisfied for any t > 0 and any test function  2 C.Œ0; T �I Xn/, where �.�/ D

2.�0.�/� � �.�//, s0.�/ D �0.�/=�, Xn D span ¹eiºniD1 and ¹eiº1iD1 is an orthonormal
basis in W 1;2.�/ with ei 2 C1.�/ for any integers i > 0.

3. The Faedo–Galerkin approximation for the equation on the drift velocity v readsZ
�

�v � � �

Z t

0

Z
�

�
�

�
Œw�"3 � 2�

Œ�0.�/�"4
�

r�

�
˝ v

�
W r�

C 2�

Z t

0

Z
�

�.�/rv W r� C �

Z t

0

Z
�

�.�/ div v div�

�

Z t

0

Z
�

�.�/ divw div� C 2
Z t

0

Z
�

�.�/rTw W r� D

Z
�

�0v0 � �; (2.3)

satisfied for any t > 0 and any test function � 2 C.Œ0; T �IYn/, where Yn D span ¹biºniD1
and ¹biº1iD1 is an orthonormal basis inW 1;2.�/ with bi 2 C1.�/ for any integers i > 0:

The above full approximation is similar to the ones in the papers [13]–[14] which are
two parts dedicated to augmented systems similar to the one we consider. We can repeat
the same argument as in [13] to obtain the local existence of solutions to the Galerkin
approximation. For the sake of completeness, in Section 2.1 we show how to obtain the
local solution to the approximation system.

2.1. Local existence

For any fixed w 2 C.Œ0; T �IXn/, we can solve the continuity equation (2.1) with its ini-
tial data. In fact, it is a quasi-linear parabolic equation with smooth coefficients, and the
classical parabolic theory yields the following result [13, 24].

Theorem 2.1. Let � 2 .0; 1/ and suppose that the initial condition is

�.0; x/ D �0 2 C
2C�. N�/; 0 < � � �0.x/ � N�:

Then (2.1) has a unique classical solution � D �.w/ that belongs to

VŒ0;T � D ¹� 2 C.Œ0; T �IC
2C�.�// \ C 1.Œ0; T � ��/ W �t 2 C

�=2.Œ0; T �IC.�//º

and satisfies
0 < � � �.t; x/ � N� <1: (2.4)

Moreover, w 7! �.w/ maps bounded sets in C.Œ0; T �IXn/ into bounded sets in VŒ0;T � and
is continuous with values in C.Œ0; T �IC 2C�

0

.�//; 0 < �0 < � < 1:

With Theorem 2.1 at hand, we are ready to proceed to the Galerkin approximation.
In particular, we are going to show that there is a unique solution to (2.2) and (2.3) on a
short time interval by using a fixed point argument. More precisely, there exists Tn > 0
such that

.w; v/ 2 C.Œ0; Tn�IXn/ � C.Œ0; Tn�IYn/
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satisfying (2.2) and (2.3). To this end, we denote

.w.t/; v.t//

D

�
M�.t/

�
PXn.�w/

0
C

Z t

0

K.w/.s/ ds

�
;N�.t/

�
PYn.�v/

0
C

Z t

0

L.v/.s/ ds

��
D T .w; v/.t/;

where � D �.w/ is a solution to the continuity equations when w is given in Xn. The
space X�n is identified with Xn; we use he; �i.Xn;Xn/ to express the action of a functional
from X�n on an element from Xn, and similarly for hb; �i.Yn;Yn/. Thus, we have

M�.t/ W Xn ! Xn;

Z
�

�M�.t/.e/ � � D he;  i.Xn;Xn/; e;  2 Xn;

N�.t/ W Yn ! Yn;

Z
�

�N�.t/.b/ � � D hb; �i.Yn;Yn/; b;  2 Yn;

where PXn ; PYn are the projections of L2.�/ onto Xn and Yn respectively. The operator
K W Xn ! Xn is defined as follows:

hK.w/;  i.Xn;Xn/ D

Z
�

�
�

�
Œw�"3 C 2�

Œ�0.�/�"4
�

r�

�
˝ w

�
W r 

� 2.1 � �/

Z
�

�.�/Dw W r � 2�

Z
�

�.�/A.w/ W r 

� .1 � �/

Z
�

�.�/ divw div C 2�.1 � �/
Z
�

�.�/rv W r 

C �.1 � �/

Z
�

�.�/ div v div C
Z
�

�
 div C ı
Z
�

�10 div 

� "2

Z
�

�
�sw ��s � .1C jrwj2/rw W r 

�
�

Z
�

r0.w � 2�rs.�// �  

� r1

Z
�

�jw � 2�rs.�/j.w � 2�rs.�// �  

� r2

Z
�

�

�0.�/
jw � 2�rs.�/j2.w � 2�rs.�// �  

� r

Z
�

p
K.�/�

�Z �

0

p
K.s/ ds

�
div.� /I

and the operator L W Yn ! Yn is defined by

hL.v/; �i D

Z
�

�
�

�
Œw�"3 � 2�

Œ�0.�/�"4
�

r�

�
˝ v

�
W r�

� 2�

Z
�

�.�/rv W r� � �

Z
�

�.�/ div v div�

�

Z
�

�.�/ divw div� � 2
Z
�

�.�/ trw W r�:
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Thanks to (2.4), we derive

kM�.t/kL.Xn;Xn/ � 1=�; kN�.t/kL.Yn;Yn/ � 1=�;

and

kM�1.t/ �M�2.t/kL.Xn;Xn/ C kN�1.t/ �N�2.t/kL.Yn;Yn/ � ck�
1
� �2kL1.�/; (2.5)

where c only depends on n and �: Observe that by the equivalence of norms in the finite-
dimensional spaces Xn and Yn, this yields

kK.w/kXn C kL.v/kYn � c.�; �; kr�kL2 ; kwkXn ; kvkYn/: (2.6)

We denote

BM;� D ¹.w; v/ 2 C.Œ0; ��IXn/ � C.Œ0; ��IYn/ W kwkC.Œ0;��IXn/ C kvkC.Œ0;��IYn/ �M º;

where M > 0 is a given constant; this is a ball in C.Œ0; ��IXn/ � C.Œ0; ��IYn/: By Theo-
rem 2.1 and estimates (2.5), (2.6), one can show that the mapping T .w; v/ is a continuous
mapping of the ball BM;� into itself, and it is a contraction for small time Tn > 0. Thus,
the fixed point argument gives us a unique solution to (2.2) and (2.3).

Thus, we have obtained a local solution .�n; wn; vn/ on Œ0; Tn�, where Tn � T . In
order to extend the local solution to a global one, uniform bounds are necessary so that
the corresponding procedure can be iterated.

2.2. The energy estimate if the solution is regular enough

For any fixed n > 0; choosing test functions  D w; � D v in (2.2) and (2.3), we find
that .�; w; v/ satisfies the �-entropy equalityZ
�

�
�

�
jwj2

2
C .1� �/�

jvj2

2

�
C

�



 � 1
C ı

�10

9

�
C 2.1� �/

Z t

0

Z
�

�.�/jDw � �rvj2

C.1��/

Z t

0

Z
�

�.�/.divw�� div v/2C2�
Z t

0

Z
�

�0.�/p0.�/

�
jr�j2

C2�

Z t

0

Z
�

�.�/jAwj2C"2

Z t

0

Z
�

�
j�swj2C.1Cjrwj2/jrwj2

�
Cr

Z t

0

Z
�

p
K.�/�

�Z �

0

p
K.s/ ds

�
div.�w/C20�ı

Z t

0

Z
�

�0.�/�8jr�j2

Cr0

Z t

0

Z
�

.w�2�rs.�// �wCr1

Z t

0

Z
�

�jw�2�rs.�/j.w�2�rs.�// �w

Cr2

Z t

0

Z
�

�

�0.�/
jw�2�rs.�/j2.w�2�rs.�// �w

D

Z
�

�
�0

�
jw0j

2

2
C.1��/�

jv0j
2

2

�
C

�


0


�1
Cı

�100
9

�
�

Z T

0

Z
�

�
 div.Œw�"3�w/

�ı

Z T

0

Z
�

�10 div.Œw�"3�w/; (2.7)
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where s0 D �0.�/=� and p.�/ D �
 : Compared to the calculations made in [13], we
have to take care of the capillary term and then to take care of the drag terms show-
ing that they can be controlled using infs2Œ0;1/ �0.s/ � "1 > 0 for the linear drag, using
the extra pressure term ı�10 ds for the quadratic drag term and using the capillary term
r�r.

p
K.�/ �.

R �
0

p
K.s/ ds/ for the cubic drag term. To do so, let us provide some

properties of the capillary term and rewrite the terms coming from the drag quantities.

2.2.1. Some properties of the capillary term. Using the mass equation, the capillary term
in the entropy estimates reads

r

Z
�

p
K.�/�

�Z �

0

p
K.s/ ds

�
div.�w/ D

r

2

d

dt

Z
�

ˇ̌̌̌
r

Z �

0

p
K.s/ ds

ˇ̌̌̌2
C 2�r

Z
�

p
K.�/�

�Z �

0

p
K.s/ ds

�
��.�/ D I1 C I2: (2.8)

In fact, we write I1 as

r

2

d

dt

Z
�

ˇ̌̌̌
r

Z �

0

p
K.s/ ds

ˇ̌̌̌2
D
r

2

d

dt

Z
�

�jrs.�/j2:

By (1.27), we have

I2 D 2�r

Z
�

p
K.�/�

�Z �

0

p
K.s/ ds

�
��.�/

D �2�r

Z
�

�r

�p
K.�/�

�Z �

0

p
K.s/ ds

��
� rs.�/

D 2�r

Z
�

�
2�.�/j2r2s.�/j2 C �.�/j2�s.�/j2

�
: (2.9)

Control of norms using I2. Let us first recall that since

�.�/ D 2.�0.�/� � �.�// > �2�.�/=3;

there exists � > 0 such that

2

Z T

0

Z
�

�.�/jr2s.�/j2 C

Z T

0

Z
�

�.�/j�s.�/j2

� �

�
2

Z T

0

Z
�

�.�/jr2s.�/j2 C
1

3

Z T

0

Z
�

�.�/j�s.�/j2
�
:

As the second term on the right-hand side is positive, a lower bound on the quantityZ T

0

Z
�

�.�/jr2s.�/j2 (2.10)

will provide the same lower bound on I2.
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Let us now specify the norms which are controlled by (2.10). To do so, we need to rely
on the following lemma on the density. In this lemma, we prove a more general entropy
dissipation inequality than the one introduced by Jüngel [30] and more general than those
by Jüngel–Matthes [31].

Lemma 2.1. Let �0.�/� < k�.�/ for 2=3 < k < 4 and

s.�/ D

Z �

0

�0.s/

s
ds; Z.�/ D

Z �

0

p
�.s/

s
�0.s/ ds; Z1.�/ D

Z �

0

�0.s/

�.s/1=4s1=2
ds:

(i) Assume � > 0 and � 2 L2.0; T IH 2.�//. Then there exists ".k/ > 0 such thatZ T

0

Z
�

jr
2Z.�/j2 C ".k/

Z T

0

Z
�

�2

�.�/3
jrZ.�/j4 �

C

".k/

Z T

0

Z
�

�.�/jr2s.�/j2;

where C is a universal positive constant.

(ii) Consider a sequence of smooth densities �n > 0 such that Z.�n/ and Z1.�n/

converge strongly in L1..0; T / � �/ respectively to Z.�/ and Z1.�/ andp
�.�n/r

2s.�n/ is uniformly bounded in L2..0; T / ��/. ThenZ T

0

Z
�

jr
2Z.�/j2 C ".k/

Z T

0

Z
�

jrZ1.�/j
4
� C <1:

Remark 2.1. The case of Z D 2
p
� was proved in [30], which is critical to deriving a

uniform bound on the approximate velocity in L2.0; T IL2.�// in [50, 51]. The above
lemma will play a similar role in this paper.

Proof of Lemma 2.1. Let us first prove (i). Noting that Z0.�/ D
p
�.�/
�

�0.�/, we getp
�.�/r2s.�/ D

p
�.�/r

�
r�.�/

�

�
D
p
�.�/r

�
1p
�.�/

rZ.�/

�
D r

2Z.�/ �
rZ.�/p
�.�/

˝r
p
�.�/

D r
2Z.�/ �

�rZ.�/˝rZ.�/

2�.�/3=2
:

Thus, Z
�

�.�/jr2s.�/j2 D

Z
�

jr
2Z.�/j2 C

1

4

Z
�

�2

�.�/3
jrZ.�/j4

�

Z
�

�

�.�/3=2
r
2Z.�/ W .rZ.�/˝rZ.�//: (2.11)
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By integration by parts, the cross product term reads

�

Z
�

�

�.�/3=2
r
2Z.�/ W .rZ.�/˝rZ.�//

D �

Z
�

�
p
�.�/

�.�/
r
2Z.�/ W

�
rZ.�/p
�.�/

˝
rZ.�/p
�.�/

�
D

Z
�

�

�.�/

p
�.�/rZ.�/ � div

�
rZ.�/p
�.�/

˝
rZ.�/p
�.�/

�
C

Z
�

r

�
�p
�.�/

�
˝rZ.�/ W

rZ.�/˝rZ.�/

�.�/

D I1 C I2: (2.12)

We are able to control I1 directly:

jI1j � "

Z
�

�2

�.�/3
jrZ.�/j4 C

C

"

Z
�

�.�/

ˇ̌̌̌
r

�
rZ.�/p
�.�/

�ˇ̌̌̌2
� "

Z
�

�2

�.�/3
jrZ.�/j4 C

C

"

Z
�

�.�/jr2s.�/j2; (2.13)

where C is a universal positive constant. We also calculate

I2 D

Z
�

r

�
�p
�.�/

�
˝rZ.�/ W

rZ.�/˝rZ.�/

�.�/

D

Z
�

r�˝rZ.�/

�.�/3=2
W .rZ.�/˝rZ.�//

�

Z
�

�

�.�/2
r
p
�.�/ ˝rZ.�/ W .rZ.�/˝rZ.�//

D

Z
�

�

�.�/2�.�/0
jrZ.�/j4 �

1

2

Z
�

�2

�.�/3
jrZ.�/j4: (2.14)

Relying on (2.11)–(2.14), we haveZ
�

jr
2Z.�/j2 C

Z
�

�

�.�/2�0.�/
jrZ.�/j4 �

�
1

4
C "

�Z
�

�2

�.�/3
jrZ.�/j4

�
C

"

Z
�

�.�/jr2s.�/j2:

Since k1�0.s/s � �.s/; we have

s

�.s/2�0.s/
�

�
1

4
C "

�
s2

�.s/3
�

�
k1 �

1

4
� "

�
s2

�.s/3
> "

s2

�.s/3
;
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where we choose k1 > 1=4. This impliesZ
�

jr
2Z.�/j2 C "

Z
�

�2

�.�/3
jrZ.�/j4 �

C

"

Z
�

�.�/jr2s.�/j2:

This ends the proof of (i). Concerning (ii), it suffices to pass to the limit in the inequality
proved previously using the lower semicontinuity on the left-hand side.

2.2.2. Drag terms control. We have to discuss three kinds of drag terms: linear, quadratic
and cubic.

(a) Linear drag term. As in previous works [8, 51, 52], we need to choose a linear drag
with constant coefficients,

r0

Z t

0

Z
�

.w � 2�rs.�// � w D r0

Z t

0

Z
�

jw � 2�rs.�/j2

C r0

Z t

0

Z
�

.w � 2�rs.�// � .2�rs.�//: (2.15)

The second term on the right side of (2.15) reads

r0

Z t

0

Z
�

.w � 2�rs.�// � .2�rs.�// D r0

Z t

0

Z
�

�.w � 2�rs.�// �
2�rs.�/

�

D r0

Z t

0

Z
�

�.w � 2�rs.�// � 2�rg.�/

D 2�r0

Z t

0

Z
�

�tg.�/;

where g0.�/ D s0.�/
�
D

�0.�/

�2
and g.�/ D

R �
1
�0.r/

r2
dr: Letting

G.�/ D

Z �

1

Z r

1

�0.�/

�2
d� dr;

we get

r0

Z
�

�tg.�/ D r0
@

@t

Z
�

G.�/;

which implies

r0

Z t

0

Z
�

�tg.�/ D r0

Z
�

G.�/:

Meanwhile, since lim�!0 �
0.�/ D "1 > 0, for any small � > 0 and any j�j < �, we have

�0.�/ � "1=2: Thus,

G.�/ �
"1

2

Z �

1

�
1 �

1

r

�
dr D

"1

2
.� � 1 � ln �/ � �

"1

4
.ln �/�
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for any � � �. Similarly, we can show that

G.�/ � 4"1.ln �/C

for any � � �. For a given �0 > 0, if � � �0, then

0 � G.�/ � C

Z �

1

Z r

1

�0.�/ d� dr � C�.�/�:

(b) Quadratic drag term. We use the same argument as in [13] to handle this term. The
quadratic drag term gives

r1

Z t

0

Z
�

�jw � 2�rs.�/j.w � 2�rs.�// � w

D r1

Z t

0

Z
�

�jw � 2�rs.�/j3

C r1

Z t

0

Z
�

�jw � 2�rs.�/j.w � 2�rs.�// � .2�rs.�//: (2.16)

The second drag term on the right–hand side can be controlled as follows:

r1

ˇ̌̌̌Z t

0

Z
�

�jw � 2�rs.�/j.w � 2�rs.�// � .2�rs.�//

ˇ̌̌̌
� 2�r1

Z t

0

Z
�

�.�/juj jDuj

� �

Z t

0

Z
�

�.�/jDuj2 C �r21

Z t

0

Z
�

�.�/juj2; (2.17)

and 

p�.�/ juj


L2.0;T IL2.�//

� C


�1=3juj



L3.0;T IL3.�//





p�.�/�1=3






L6.0;T IL6.�//

:

Note that Z t

0

Z
�

�.�/3

�2
D

Z t

0

Z
0���1

�.�/3

�2
C

Z t

0

Z
��1

�.�/3

�2

� C

Z t

0

Z
0���1

�.�/.�0.�//2 C

Z t

0

Z
��1

�.�/3

�2

� C C

Z t

0

Z
��1

�.�/3

�2
: (2.18)

From (1.9), for any � � 1, we have

c0�˛1 � �.�/ � c�˛2 ;
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where 2=3 < ˛1 � ˛2 < 4: This yieldsZ t

0

Z
��1

�.�/3

�2
� c

Z t

0

Z
��1

�3˛2�2 � c

Z t

0

Z
�

�10 (2.19)

for any time t > 0:

(c) Cubic drag term. The non-linear cubic drag term gives

r2

Z t

0

Z
�

�

�0.�/
jw � 2�rs.�/j2.w � 2�rs.�// � w

D r2

Z t

0

Z
�

�

�0.�/
jw � 2�rs.�/j4

C r2

Z t

0

Z
�

�

�0.�/
jw � 2�rs.�/j2.w � 2�rs.�// � .2�rs.�//: (2.20)

The novelty now is to show that we control the second drag term of the right-hand side
using the Korteweg-type information on the left-hand side,

r2

Z t

0

Z
�

�

�0.�/
jw � 2�rs.�/j2.w � 2�rs.�// � .2�rs.�//

� r2

�
3

4

Z t

0

Z
�

�

�0.�/
jw � 2�rs.�/j4 C

.2�/4

4

Z t

0

Z
�

�

�0.�/
jrs.�/j4

�
: (2.21)

Note that the first term on the right-hand side may be absorbed by the first term in (2.20).
Let us now prove that if r2 small enough, the second term on the right-hand side may be
absorbed by the term coming from the capillary quantity in the energy. From Lemma 2.1,
we have Z t

0

Z
�

�2

�.�/3
jrZ.�/j4 D

Z t

0

Z
�

1

�.�/�2
jr�.�/j4:

It remains to check thatZ t

0

Z
�

�

�0.�/
jrs.�/j4 D

Z t

0

Z
�

1

�0.�/�3
jr�.�/j4 � C

Z t

0

Z
�

1

�.�/�2
jr�.�/j4:

This concludes the proof provided r2 is small enough compared to r .

2.2.3. The �-entropy estimate. Using the previous calculations, assuming r2 small
enough compared to r , and denoting

EŒ�; uC 2�rs.�/;rs.�/�

D

Z
�

�
�

�
juC 2�rs.�/j2

2
C .1 � �/�

jrs.�/j2

2

�
C

�



 � 1
C
ı�10

9
CG.�/

�
;
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we get the following �-entropy estimate:

EŒ�; uC 2�rs.�/;rs.�/�.t/C r0

Z t

0

Z
�

juj2

C
r

2

Z
�

ˇ̌̌̌
r

Z �

0

p
K.s/ ds

ˇ̌̌̌2
dxC2.1��/

Z t

0

Z
�

�.�/jDuj2C20�ı

Z t

0

Z
�

�0.�/�8jr�j2

C 2.1 � �/

Z t

0

Z
�

.�0.�/� � �.�//.divu/2 C 2�
Z t

0

Z
�

�.�/jA.uC 2�rs.�//j2

C 2�

Z t

0

Z
�

�0.�/p0.�/

�
jr�j2 C r1

Z t

0

Z
�

�juj3 C
r2

4

Z t

0

Z
�

�

�0.�/
juj4

C �r

Z t

0

Z
�

�.�/j2r2s.�/j2 C
1

2
�r

Z t

0

Z
�

�.�/j2�s.�/j2

�

Z
�

�
�0

�
jw0j

2

2
C.1��/�

jv0j
2

2

�
C

�


0


�1
C
ı�100
9
C
r

2

ˇ̌̌̌
r

Z �0

0

p
K.s/ ds

ˇ̌̌̌2
CG.�0/

�
dx

C C
r1

ı

Z
�

EŒ�; uC 2�rs.�/;rs.�/�: (2.22)

It now suffices to remark thatZ t

0

Z
�

�.�/jDuj2 C

Z t

0

Z
�

.�0.�/� � �/jdivuj2

D

Z t

0

Z
�

�.�/
ˇ̌
Du � 1

3
divu Id

ˇ̌2
C

Z t

0

Z
�

�
�0.�/� � �.�/C 1

3
�.�/

�
jdivuj2:

Noting that ˛1 > 2=3, there exists " > 0 such that

�0.�/� � 2
3
�.�/ > "�.�/:

Such information and the control of
p
�.�/ jA.u/C 2�rs.�/j in L2.0; T IL2.�// allow

us, using the Grönwall Lemma and the constraints on the parameters, to get the uniform
estimates (1.23)–(1.25).

Now we can show (1.26). First, we have

r�.�/ D
r�.�/
p
�

p
� 2 L1.0; T IL1.�//;

due to mass conservation and uniform control on r�.�/=
p
� given in (1.23). Let us now

write the equation satisfied by �.�/:

@t�.�/C div.�.�/u/C
�.�/

2
divu D 0:

Recalling that �.�/ D 2.�0.�/� � �.�// and the hypothesis on �.�/, we get

d

dt

Z
�

�.�/ � C

�Z
�

j�.�/j jdivuj2 C
Z
�

�.�/

�
;
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and therefore
�.�/ 2 L1.0; T IL1.�//

if �.�0/ 2 L1.�/ due to the fact that
p
j�.�/j divu 2 L2.0; T IL2.�//:

Now, we observe that �.�/=
p
� is smaller than 1 for � � 1 because ˛1 > 2=3, and

smaller than �.�/ for � > 1. Hence

�.�/=
p
� 2 L1.0; T IL1.�//:

Meanwhile, thanks to (1.9), we have

jr.�.�/=
p
� /j �

ˇ̌̌̌
r�.�/
p
�

ˇ̌̌̌
C

�.�/

2�
p
�
jr�j �

�
1C

1

˛1

�ˇ̌̌̌
r�.�/
p
�

ˇ̌̌̌
:

By (1.23), r.�.�/=
p
� / is bounded in L1.0; T I L2.�// and finally �.�/=

p
� is

bounded in L1.0; T IL6.�//. Thus,

�.�/u D
�.�/
p
�

p
� u

is uniformly bounded in L1.0; T IL3=2.�//: Let us come back to the equation satisfied
by �.�/ which reads

@t�.�/C div.�.�/u/C
�.�/

2
divu D 0:

Recalling that �.�/ divu 2 L1.0; T IL1.�//, we get the conclusion on @t�.�/.
Let us now prove that

Z.�/ D

Z �n

0

p
�.s/ �0.s/

s
ds 2 L1C..0; T / ��/ uniformly.

Note first that

0 �

p
�.s/ �0.s/

s
� ˛2

�.s/3=2

s2
� c2˛2

�
s3˛1=2�21s�1 C

�.s/3=2�

s2�
1s�1

�
:

There exists " > 0 such that ˛1 > 2=3C "; thus

0 �

p
�.s/ �0.s/

s
� c2˛2

�
s"�11s�1 C

�.s/3=2�

s2�
1s�1

�
:

Noting that �0.s/ > 0 for s > 0 and using the definition of Z.�/, we get

0 � Z.�/ � C.�" C �.�/3=2�/

with C independent of n. Thus Z.�/ 2 L1.0; T IL1C.�// uniformly with respect to n.
Bounding Z1.�/ follows similar lines.
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2.3. Compactness lemmas

In this subsection, we provide general compactness lemmas which will be used several
times in this paper.

Some uniform compactness

Lemma 2.2. Assume we have a sequence ¹�nºn2N satisfying the estimates in Theorem
1.2, uniformly with respect to n. Then there exists a function � 2 L1.0; T IL
 .�// such
that, up to a subsequence,

�.�n/! �.�/ in C.Œ0; T �IL3=2.�/ weak/;

and
�n ! � a.e. in .0; T / ��:

Moreover

�n ! � in L.4
=3/C..0; T / ��/;s
P 0.�n/�n

�0.�n/
r

�Z �n

0

r
P 0.s/�0.s/

s
ds

�
*

s
P 0.�/�

�0.�/
r

�Z �

0

r
P 0.s/�0.s/

s
ds

�
in L1..0; T / ��/

and s
P 0.�n/�n

�0.�n/
r

�Z �n

0

r
P 0.s/�0.s/

s
ds

�
2 L1C..0; T / ��/:

If ın > 0 is such that ın ! ı � 0, then

ın�
10
n ! ı�10 in L4=3..0; T / ��/:

Proof. From the estimate on �.�n/ and the Aubin–Lions lemma, up to a subsequence,
we have

�.�n/! �.�/ in C.Œ0; T �IL3=2.�/ weak/;

and therefore using �0.s/ > 0 on .0;1/ with �.0/ D 0, we get the conclusion on �n. Let
us now recall that

˛1

�n
�
�0.�n/

�.�n/
�
˛2

�n
(2.23)

and therefore
c1�

˛2
n � �.�n/ � c2�

˛1
n for �n � 1;

and
c1�

˛1
n � �.�n/ � c2�

˛2
n for �n � 1;

with c1 and c2 independent of n. Note thats
p0.�n/�0.�n/

�n
r�n 2 L

1.0; T IL2.�// uniformly. (2.24)
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Let us prove that there exists " such that

I0 D

Z T

0

Z
�

�4
=3C"n < C

with C independent of n and the parameters. We first remark that it suffices to look at
it when �n � 1 and to observe that there exists " such that " � .
 � 1/=3: Taking such
parameters we haveZ T

0

Z
�

�4
=3C"n 1¹��1º �

Z T

0

Z
�

�2
=3C
�1=3n 1¹��1º �

Z T

0

Z
�

�2
=3C
C˛1�1n 1¹��1º;

recalling that ˛1 > 2=3: Following [37], it remains to prove that

I1 D

Z T

0

Z
�

�Œ5
C3.˛1�1/�=3n 1¹��1º <1

uniformly. Denoting

I2 D

Z T

0

Z
�

�Œ5
C3.˛2�1/�=31¹��1º

and using the bounds on �.�n/ in terms of power functions in �, which are different for
�n � 1 and for �n � 1, we can write

I1 � I1 C I2

� Ca

Z T

0

Z
�

�2
=3n P 0.�n/�.�n/ � Ca

Z T

0

k�
nk
2=3

L1.�/
kP 0.�n/�.�n/kL3.�/

where C does not depend on n. Using the Poincaré–Wirtinger inequality, one obtains

kP 0.�n/�.�n/kL3.�/ D k
p
P 0.�n/�.�n/ k

2
L6.�/

� k
p
P 0.�n/�.�n/ kL1.�/ C krŒ

p
P 0.�n/�.�n/ �k

2
L2.�/

:

Let us now check that the two terms are uniformly bounded in time. First we calculate

rŒ
p
P 0.�n/�.�n/ � D

P 00.�n/�.�n/C P
0.�n/�

0.�n/p
P 0.�n/�.�n/

r�n:

Using (2.23), we can check that

P 00.�n/�.�n/C P
0.�n/�

0.�n/p
P 0.�n/�.�n/

�

s
P 0.�n/�0.�n/

�n
:

Therefore, using (2.24) we get, uniformly with respect to n,

sup
t2Œ0;T �

krŒ
p
P 0.�n/�.�n/ �k

2
L2.�/

<1:
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Let us now check that uniformly with respect to n,

sup
t2Œ0;T �

k
p
P 0.�n/�.�n/ kL1.�/ <1: (2.25)

Using the bounds on �.�n/, we haveZ
�

p
P 0.�n/�.�n/ � C

Z
�

Œ�.
�1C˛1/=2n 1�n�1 C �
.
�1C˛2/=2
n 1�n�1�

with C independent of n. Recalling that ˛1 � 2=3 and ˛2 < 4, we can check thatZ
�

p
P 0.�n/�.�n/ � C

Z
�

Œ�
=3n C �
=2n �3=2n �;

and therefore using �
n 2 L1.0; T IL1.�// and �n 2 L1.0; T IL10.�//, we get (2.25).
This ends the proof of the convergence of �n to � in L.4
=3/C..0; T / ��/.

Let us now focus on the convergence ofs
P 0.�n/�n

�0.�n/
r

�Z �n

0

r
P 0.s/�0.s/

s
ds

�
: (2.26)

First let us recall that

r

�Z �n

0

r
P 0.s/�0.s/

s
ds

�
2 L1.0; T IL2.�// uniformly:

Let us now prove that s
P 0.�n/�n

�0.�n/
2 L2C..0; T / ��/: (2.27)

Recall first that ˛1 > 2=3. We just have to consider �n � 1. We write

P 0.�n/�n

�0.�n/
1�n�1 � C�


�˛1C1
n 1�n�1 � C�


C1=3
n 1�n�1 � C�

4
=3
n 1�n�1:

We can use the fact that �.4
=3/Cn 2 L1..0; T / ��/ uniformly to deduce (2.27). Thanks
to s

P 0.�n/�n

�0.�n/
!

s
P 0.�/�

�0.�/
in L2..0; T / ��/

and

r

�Z �n

0

r
P 0.s/�0.s/

s
ds

�
! r

�Z �

0

r
P 0.s/�0.s/

s
ds

�
weakly in L2..0; T / ��/;

we have the weak convergence of (2.26) in L1..0; T / ��/.
We now investigate limits of u independent of the parameters. We need to differentiate

the case with hyperviscosity "2 > 0 from the case without it. In the case with hypervis-
cosity, the estimate depends on "1 because of the drag force r1, while the estimate in the
case "2 D 0 is independent of all the other parameters. That is why we will consider the
limit as "2 ! 0 first.
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Lemma 2.3. Assume that "1 > 0 is fixed. Then there exists a constant C > 0 depending
on "1 and Cin, but independent of all the other parameters .as long as they are bounded/,
such that for any initial values .�0;

p
�0 u0/ satisfying (1.29) for Cin > 0 we have

k@t .�u/kL1C.0;T IW�s;2.�// � C; kr.�u/kL2.0;T IL1.�// � C:

Assume now that "2 D 0. Let ˆ W RC ! R be a smooth function, positive for � > 0,
such that

ˆ.�/C jˆ0.�/j �

´
Ce�1=� for � � 1;
Ce�� for � � 2:

Assume that the initial values .�0;
p
�0 u0/ satisfy (1.29) for a fixed Cin > 0. Then there

exists a constant C > 0 independent of "1; r0; r1; r2; ı .as long as they are bounded/ such
that

k@t Œˆ.�/u�kL1C.0;T IW�2;1.�// � C;

krŒˆ.�/u�kL2.0;T IL1.�// � C:

Proof. We split the proof into two cases.

Case 1: "1 > 0. From the equation on �u and the a priori estimates, we find directly that

k@t .�u/kL1C.0;T IW�s;2.�// � C C

�
r1

"1

�1=4
k�k

1=4

L1.0;T /��/

�
r1

Z T

0

Z
�

�

�0.�/
juj4

�3=4
� C.1C 1="1/:

We have �.�/ � "1�, and from (1.23) we have the a priori estimate

kr
p
� k2

L1.0;T IL2.�//
� C="1:

Hence

kr.�u/kL2.0;T IL1.�// �





 �p
�.�/






L1.0;T IL2.�//

k
p
�.�/rukL2.0;T IL2.�///

C 2kr
p
� kL1.0;T IL2.�//k

p
� ukL1.0;T IL2.�//

� C:

Case 2: "2 D 0. Multiplying the equation for �u by ˆ.�/=� we get, just as for the renor-
malization,

k@t Œˆ.�/u�kL1C.0;T IW�2;1.�// � C:

Note that

krŒˆ.�/u�kL2.0;T IL1.�// �





 ˆ.�/p
�.�/






L1




p�.�/ru



L2.L2/

C 2





ˆ0.�/�0.�/






L1..0;T /��/

k�0.�/r
p
� kL1.0;T IL2.�//k

p
� ukL1.0;T IL2.�// � C:
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Lemma 2.4. Assume that either "2;n D 0, or "1;n D "1 > 0. Let .�n;
p
�n un/ be a

sequence of solutions for a family of bounded parameters with uniformly bounded ini-
tial values satisfying (1.29) with a fixed Cin. Assume that there exists ˛ > 0 and a smooth
function h W RC � R3 ! R such that �˛n is uniformly bounded in Lp..0; T / � �/ and
h.�n; un/ is uniformly bounded in Lq..0; T / ��/, with

1

p
C
1

q
< 1:

Then, up to a subsequence, �n converges to a function � strongly in L1 and
p
�n un

converges weakly to a function q in L2. Define u D q=
p
� whenever � ¤ 0, and u D 0

on the vacuum where � D 0. Then �˛nh.�n; un/ converges strongly in L1 to �˛h.�; u/.

Proof. Thanks to the uniform bound on the kinetic energy
R
�njunj

2, and to Lemma 2.2,
up to a subsequence, �n converges strongly inL1..0;T /��/ to a function �, and

p
�n un

converges weakly in L2..0; T / ��/ to a function q.
We want to show that, up to a subsequence, un1¹�>0º converges almost everywhere

to u1¹�>0º. We consider two cases. First, if "1;n D "1 > 0, then from Lemma 2.3 and the
Aubin–Lions lemma, �nun converges strongly in C 0.0; T IL1.�// to

p
� q D �u. Up to

a subsequence, both �n and �nun converge almost everywhere to, respectively, � and �u.
For almost every .t; x/ 2 ¹� > 0º, and n large enough, �n.t; x/ > 0, so un D �nun=�n
at this point converges to u. If "2;n D 0 we use the second part of Lemma 2.3 and thanks
to the Aubin–Lions lemma, ˆ.�n/un converges strongly in C 0.0; T IL1.�// to ˆ.�/u.
We still have, up to a subsequence, both �n and ˆ.�n/un converging almost everywhere
to, respectively, � and ˆ.�/u (we have used the fact that ˆ.r/=

p
r D 0 at r D 0). Since

ˆ.r/¤ 0 for r ¤ 0, for almost every .t;x/2 ¹� > 0º, and n large enough,ˆ.�n/.t;x/ > 0,
so un D ˆ.�n/un=ˆ.�n/ at this point converges to u.

Note that

�˛nh.�n; un/ D �
˛
nh.�n; un/1¹�n>0º C �

˛
nh.�n; un/1¹�nD0º:

The first term converges almost everywhere to �˛h.�;u/1¹�>0º, and therefore to �˛h.�;u/
in L1 by the Lebesgue theorem. The second part can be estimated as follows:

k�˛nh.�n; un/1¹�nD0ºkL1 � kh.�n; un/kLqk�
˛
n1¹�D0ºkLp�" :

But �˛n1¹�D0º converges almost everywhere to 0, by the Lebesgue theorem, so the last
term converges to 0.

Some compactness when the parameters are fixed. For any fixed positive ı, r0, r1, r2
and r , to obtain a weak solution to (1.17), we only need to handle the compactness of the
terms

r�nr

�p
K.�n/�

�Z �n

0

p
K.s/ ds

��
and

r1
�n

�0.�n/
junj

2un:
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Indeed, due to the term r2�njunjun and the fact that infs2Œ0;1/�0.s/ > "1 > 0, one obtains
the compactness for all other terms in the same way as in [13, 40].

Capillarity term. To pass to the limits in

r�nr

�p
K.�n/�

�Z �n

0

p
K.s/ ds

��
;

we use the identity

�r

�p
K.�n/�

�Z �n

0

p
K.s/ ds

��
D 4

�
2 div.

p
�.�n/rrZ.�n// ��.

p
�.�n/rZ.�n//

�
C

�
r

��
2�.�n/p
�.�n/

C k.�n/

�
�Z.�n/

�
� r divŒk.�n/rZ.�n/�

�
(2.28)

where

Z.�n/ D

Z �n

0

Œ�.s/1=2�0.s/�=s ds and k.�n/ D

Z �n

0

�.s/�0.s/

�.s/3=2
ds:

It allows us to rewrite the weak form coming from the capillarity term as follows:Z t

0

Z
�

p
K.�n/�

�Z �n

0

p
K.s/ ds

�
div.�n /

D 4

Z t

0

Z
�

�
2
p
�.�n/rrZ.�n/ W r C

p
�.�n/rZ.�n/ �� 

�
C

Z t

0

Z
�

��
2�.�n/p
�.�n/

C k.�n/

�
�Z.�n/ div C k.�n/rZ.�n/ � r div 

�
D A1 C A2:

In fact, with Lemma 2.2 at hand, we are able to get compactness of A1 and A2 easily.
Concerning A1, we know thatp

�.�n/ !
p
�.�/ in Lp..0; T /ILq.�// for all p <1 and q < 3:

Noting that rrZ.�n/ is uniformly bounded in L2.0; T IL2.�//, we find that rZ.�n/ is
uniformly bounded in L2.0; T IL6.�//, because

R
�
rZ.�n/D 0 due to periodicity. Thus

we have the following weak convergence:Z
�

p
�.�n/rZ.�n/ �� !

Z
�

p
�rZ �� ;

and Z
�

p
�.�n/rrZ.�n/r !

Z
�

p
�rrZ W r ;
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thanks to Lemma 2.2. We conclude that Z D Z.�/, thanks to the bound on Z.�n/ and
the strong convergence of �n. Thus using the compactness of �n, the passage to the limit
in A1 is done. Concerning A2, we just have to look at the coefficients

k.�n/ D

Z �n

0

�.s/�0.s/=�.s/3=2 ds; j.�n/ D 2�.�n/=
p
�.�n/ :

Recalling the assumptions on �.s/ and the relation �.s/ D 2.�0.s/s � �.s//, we have

2.˛1 � 1/�.s/ � �.s/ � 2.˛2 � 1/�.s/;

and
˛1p
�.s/ s

�
�0.s/

�.s/3=2
�

˛2p
�.s/ s

:

This means that the coefficients k.�n/ and j.�n/ are comparable to
p
�.�n/ . Using the

compactness of the density �n and the information on �.�n/ given in Corollary 2.2, we
deduce the compactness of A2 proceeding as for A1.

Cubic non-linear drag term. We will use Lemma 2.4 to show the compactness of

�n

�0.�n/
junj

2un:

More precisely, we write

�n

�0.�n/
junj

2un D �
1=6
n

r
�n

�0.�n/
junj

2�1=3n junj
1p

�0.�n/

D �1=6n h.�n; junj/: (2.29)

By Lemma 2.2, there exists " > 0 such that �
1=6
n is uniformly bounded in

L1.0; T IL6
C".�// and �n ! � a.e., so

�1=6n ! �1=6 in L6
C"..0; T / ��//: (2.30)

Noting that
q

�n
�0.�n/

junj
2 is uniformly bounded in L2.0; T IL2.�//, and infs2Œ0;1/�0.s/

� "1 > 0, we see that �1=3n junj 1p
�0.�n/

is uniformly bounded in L3.0; T IL3.�//, thus

h.�n; junj/ D

r
�n

�0.�n/
junj

2�1=3n junj
1p

�0.�n/

2 L6=5.0; T IL6=5.�// uniformly. (2.31)

By Lemma 2.4 and (2.29)–(2.31), we deduce thatZ t

0

Z
�

�n

�0.�n/
junj

2un !

Z t

0

Z
�

�

�0.�/
juj2u:
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Relying on the compactness stated in this section and the compactness in [40], we can
follow the argument in [13] to show Theorem 1.2. Thanks to the term r1�njunjun, we
have Z T

0

Z
�

r1�njunj
3
� C:

This implies that
p
�n un !

p
� u strongly in L2.0; T IL2.�//:

With the above compactness results, we are able to pass to the limits to get a weak solu-
tion. In fact, to obtain a weak solution to (1.17), we have to pass to the limits as "4 ! 0,
n!1; "3 ! 0 and "! 0 respectively in the same spirit as in [13]. In particular, when
passing to the limit as "3! 0, we also need to handle the identification of v with 2rs.�/.
Following the argument in [13], one shows that v and 2rs.�/ satisfy the same moment
equation. By the regularity and compactness of solutions, we can show the uniqueness of
solutions. By the uniqueness, we have v D 2rs.�/. This ends the proof of Theorem 1.2.

3. From weak solutions to renormalized solutions to the approximation

This section is dedicated to showing that a weak solution is a renormalized solution for
our last level of approximation, in order to show Theorem 1.3. First, we introduce a new
function

Œf .t; x/�" D f � �".t; x/ for any t > "; and Œf .t; x/�x" D f � �".x/;

where

�".t; x/ D
1

"NC1
�

�
t

"
;
x

"

�
; �".x/ D

1

"N
�

�
x

"

�
;

with � a smooth non-negative even function compactly supported in the space-time ball
of radius 1, and with integral 1. In this section, we will rely on the following two lemmas.
Let @ be a partial derivative in one direction (space or time) in these two lemmas. The first
one is the commutator lemma of DiPerna and Lions [38].

Lemma 3.1. Let f 2 W 1;p.RN �RC/ and g 2 Lq.RN �RC/ with 1 � p; q �1 and
1=p C 1=q � 1. Then

kŒ@.fg/�" � @.f .Œg�"//kLr .RN�RC/ � Ckf kW 1;p.RN�RC/kgkLq.RN�RC/

for some C � 0 independent of ", f and g, and with r determined by 1=r D 1=p C 1=q:
In addition,

Œ@.fg/�" � @.f .Œg�"//! 0 in Lr .RN �RC/

as "! 0 if r <1: Moreover, in the same way, if f 2 W 1;p.RN / and g 2 Lq.RN / with
1 � p; q � 1 and 1=p C 1=q � 1, then

kŒ@.fg/�x" � @.f .Œg�
x
" //kLr .RN / � Ckf kW 1;p.RN /kgkLq.RN /
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for some C � 0 independent of ", f and g, with r determined by 1=r D 1=p C 1=q: In
addition,

Œ@.fg/�x" � @.f .Œg�
x
" //! 0 in Lr .RN /

as "! 0 if r <1:

We also need another very standard lemma:

Lemma 3.2. If f 2 Lp.� � RC/ and g 2 Lq.� � RC/ with 1=p C 1=q D 1 and if
H 2 W 1;1.R/, thenZ T

0

Z
�

Œf �"g D

Z T

0

Z
�

f Œg�";

lim
"!0

Z T

0

Z
�

Œf �"g D

Z T

0

Z
�

fg;

@Œf �" D Œ@f �";

lim
"!0
kH.Œf �"/ �H.f /kLsloc.��RC/ D 0 for any 1 � s <1:

We define a non-negative cut-off function �m for any fixed positive m as follows:

�m.y/ D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

0 if 0 � y � 1=.2m/;
2my � 1 if 1=.2m/ � y � 1=m;
1 if 1=m � y � m;
2 � y=m if m � y � 2m;
0 if y � 2m:

(3.1)

It enables us to define an approximate velocity for the density bounded away from zero
and bounded away from infinity. This is crucial to our procedure, since the approximate
velocity gradient is bounded in L2..0;T /��/. In particular, we introduce um D u�m.�/
for any fixedm> 0. Thus, we can show rum is bounded in L2.0;T IL2.�// due to (3.1).
In fact,

rum D �
0
m.�/u˝r�C �m.�/

1p
�.�/

T�

D

�
�0m.�/

.�.�/�/1=4

.�0.�//3=4

���
�

�0.�/

�1=4
u

�
˝

�
�0.�/

�1=2�.�/1=4
r�

�
C �m.�/

1p
�.�/

T�:

Similarly to [34], thanks to the cut-off function (3.1) and for m fixed, the functions
�0m.�/.�.�/�/

1=4=.�0.�//3=4 and �m.�/=
p
�.�/ are bounded. Then rum is bounded in

L2..0; T / ��/ using the estimates with r > 0 and r2 > 0, and hence for ' 2 W 2;1.R/,
we find that r'0..um/j / is bounded in L2..0; T / ��/ for j D 1; 2; 3.

The following estimates are necessary:



D. Bresch, A. F. Vasseur, C. Yu 34

Lemma 3.3. There exists a constant C > 0 depending only on the fixed solution
.
p
� ;
p
� u/, and Cm depending also on m, such that

k�kL1.0;T IL10.�// C k�ukL3.0;T IL5=2.�// C


�juj2



L2.0;T IL10=7.�//

C k
p
� .jS�j C r jSr j/kL2.0;T IL10=7.�// C





�.�/�.�/






L1..0;T /��/

C






s
P 0.�n/�n

�0.�n/
r

�Z �n

0

r
P 0.s/�0.s/

s
ds

�




L1C..0;T /��/

C






s
P 0
ı
.�n/�n

�0.�n/
r

�Z �n

0

s
P 0
ı
.s/�0.s/

s
ds

�




L1C..0;T /��/

C kr0ukL2..0;T /��/ � C;

and
kr�m.�/kL4..0;T /��/ C k@t�m.�/kL2..0;T /��/ � Cm:

Proof. By (1.24), we have � 2 L1.0; T I L10.�//. Now r
p
� 2 L1.0; T I L2.�//

because �0.s/ � "1 and �0.�/r�=
p
� 2 L1.0; T IL2.�//. Noting that

�u D �2=3�1=3u;

and �2=3 2 L1.0; T IL15.�// and �1=3u 2 L3.0; T IL3.�//, we see that �u is bounded
in L3.0; T IL5=2.�//.

By (1.24), we have .�=�0.�//1=2juj2 2 L2..0; T / ��/. Since

�juj2 D .��0.�//1=2
�

�

�0.�/

�1=2
juj2;

it is bounded in L2.0; T I L10=7.�//, where we have used the facts that �.�/ 2
L1.0; T I L5=2.�// (recalling that for � � 1 we have �.�/ � c�4 and � 2

L1.0; T IL10.�//) and �0.�/� � ˛2�.�/.
Similarly, we find that

p
� .jS�j C r jSr j/ 2 L2.0; T I L10=7.�// by (1.23). The

L1..0; T / ��/ bound for �.�/=�.�/ may be obtained easily due to (1.3) and (1.9).
Concerning the estimates related to the pressures, we just have to look at the proof of

Lemma 2.2. Noting that

r�m.�/ D �
0
m.�/r� D �

0
m.�/

�1=2�.�/1=4

�0.�/

�
�0.�/

�1=2�.�/1=4
r�

�
by (1.25), we conclude that r�m.�/ is bounded in L4..0; T / � �/. It suffices to recall
that thanks to the cut-off function �m, we have �0m.�/�

1=2�.�/1=4=�0.�/ bounded in
L1..0; T / ��/. Similarly, we write

@t�m.�/ D �
0
m.�/@t� D ��

0
m.�/ div.�u/

D ��0m.�/
�
p
�

Tr.T�/ �
�
�0m.�/

.�.�/�/1=4

.�0.�//3=4

��
�1=4

.�0.�//1=4
u

�
�

�
�0.�/

�1=2�.�/1=4
r�

�
;
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which shows that @t�m.�/ is bounded in L2.0; T I L2.�// thanks to (1.23), (1.24)
and (1.25). and using the cut-off function property to bound the extra quantities in
L1..0; T / ��/ as previously.

Lemma 3.4. The �-entropy weak solution constructed in Theorem 1.2 is a renormalized
solution; in particular, we haveZ T

0

Z
�

�
�'.u/ t C .�'.u/˝ u/r 

�
�

Z T

0

Z
�

r '0.u/

�
2

�p
�.�/ .S�CrSr /C

�.�/

2�.�/
Tr.
p
�.�/S�Cr

p
�.�/Sr /

�
Id
�

�

Z T

0

Z
�

 '00.u/T�

�
2

�
.S�CrSr /C

�.�/

2�.�/
Tr.S�CrSr /

�
Id
�

C

Z T

0

Z
�

 '0.u/F.�; u/ D 0; (3.2)

wherep
�.�/ '0i .u/ŒT��jk D @j .�'

0
i .u/uk/ �

p
� uk'

0
i .u/
r�
p
�
C NR1' ;p

�.�/ '0i .u/ŒSr �jk D 2
p
�.�/ '0i .u/@j @kZ.�/

� 2@j .
p
�.�/ @kZ.�/'

0
i .u//C

NR2' ;

�.�/

2�.�/
'0i .u/Tr.

p
�.�/T�/ D div

�
�.�/

�.�/

p
� u

�.�/
p
�
'0.u/

�
�
p
� u �
p
�rs.�/

��00.�/

�.�/
'0.u/C NR3' ;

�.�/

�.�/
'0.u/Tr.

p
�.�/Sr / D '

0
i .u/

�
�.�/p
�.�/

C
1

2
k.�/

�
�Z.�/

�
1

2
div.k.�/'0i .u/rZ.�//C NR

4
' ;

(3.3)

where
NR1' D '

00
i .u/T�

p
�.�/ u;

NR2' D 2'
00
i .u/T�rZ.�/;

NR3' D �'
00
i .u/T� �

p
�.�/ u

�.�/

2�.�/
;

NR4' D
k.�/

2
p
�.�/

'00i .u/T� � rZ.�/:

(3.4)
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Proof. We choose Œ�0m.Œ��"/ �" as a test function for the continuity equation with
 2 C1c ..0; T / ��/. Using Lemma 3.2, we have

0 D

Z T

0

Z
�

�
@t
�
�0m.Œ��"/ 

�
"
�C �u � r

�
�0m.Œ��"/ 

�
"

�
D �

Z T

0

Z
�

�
�0m.Œ��"/ @t Œ��" C div.Œ�u�"/�0m.Œ��"/ 

�
D

Z T

0

Z
�

�
 t�m.Œ��"/ �  �

0
m.Œ��"/

�
�p
�.�/

Tr.T�/C 2
p
� u � r

p
�

�
"

�
: (3.5)

Using Lemmas 3.3 and 3.2, and passing to the limit as "! 0, from (3.5) we get

0 D

Z T

0

Z
�

�
 t�m.�/ �  �

0
m.�/

�
�
p
�

Tr.T�/C 2
p
� u � r

p
�

��
D

Z T

0

Z
�

�
 t�m.�/ �  

�
�0m.�/

�
p
�

Tr.T�/C u � r�m.�/
��
;

(3.6)

since  r�m.�/ 2 L4..0; T / ��/, u 2 L2..0; T / ��/, and  is compactly supported.
Similarly, we can choose Œ �m.�/�" as a test function for the momentum equation. In

particular, we have the following lemma.

Lemma 3.5.

lim
"!0

Z T

0

Z
�

Œ �m.�/�"
�
@t .�u/C div.�u˝ u/

�
D �

Z T

0

Z
�

�
 t�um Cr �

�
�u˝ um C  .@t�m.�/C u � r�m.�//

�
�u
�
:

Proof. By Lemma 3.1, we can show thatZ T

0

Z
�

Œ �m.�/�"@t .�u/! �

Z T

0

Z
�

�
@t �um C  @t�m.�/�u

�
:

For the second term, we haveZ T

0

Z
�

Œ �m.�/�" div.�u˝ u/ D
Z T

0

Z
�

 �m.�/Œdiv.�u˝ u/�"

D

�Z T

0

Z
�

 �m.�/Œdiv.�u˝ u/�" �
Z T

0

Z
�

 �m.�/Œdiv.�u˝ u/�x"

�
C

Z T

0

Z
�

 �m.�/Œdiv.�u˝ u/�x"

D R1 CR2;
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where Œf .t;x/�"D f .t;x/ � �".t; x/ and Œf .t;x/�x" D f � �".x/with " > 0 small enough.
We write

R1 D

Z T

0

Z
�

 �m.�/Œdiv.�u˝ u/�" �
Z T

0

Z
�

 �m.�/Œdiv.�u˝ u/�x"

D

Z T

0

Z
�

 r�m.�/ W Œ�u˝ u�" �

Z T

0

Z
�

 r�m.�/ W Œ�u˝ u�
x
" :

Thanks to Lemma 3.3, �juj2 2 L2.0;T IL10=7.�// and  r�m.�/ 2 L4..0;T /��/, and
we conclude that R1! 0 as "! 0: Meanwhile, we can apply Lemma 3.1 to R2 directly,
thusZ T

0

Z
�

 �m.�/Œdiv.�u˝ u/�x"

D

�Z T

0

Z
�

 �m.�/Œdiv.�u˝ u/�x" �
Z T

0

Z
�

 �m.�/ div.�u˝ Œu�x" /
�

C

Z T

0

Z
�

 �m.�/ div.�u˝ Œu�x" /

D R21 CR22:

By Lemma 3.1, we have R21 ! 0 as " ! 0. The term R22 will be calculated in the
following way:Z T

0

Z
�

 �m.�/ div.�u˝ Œu�x" /

D

Z T

0

Z
�

 �m.�/ div.�u/Œu�x" C
Z T

0

Z
�

 �m.�/�u � rŒu�
x
"

D

Z T

0

Z
�

 div.�u/Œum�x" C
Z T

0

Z
�

 �ur.�m.�/Œu�
x
" /

�

Z T

0

Z
�

 Œu�x" � r�m.�/�u

D �

Z T

0

Z
�

r �u˝ Œum�
x
" �

Z T

0

Z
�

 � Œu�x"r�m.�/�u;

which tends to

�

Z T

0

Z
�

r �u˝ um �

Z T

0

Z
�

 � ur�m.�/�u

as "! 0.



D. Bresch, A. F. Vasseur, C. Yu 38

For the other terms in the momentum equation, we can use the same method as for
(3.6) to getZ T

0

Z
�

�
 t�um

Cr �

�
�u˝ um � 2�m.�/

�p
�.�/ .S� C rSr /

C
�.�/

2�.�/
Tr.
p
�.�/ .S� C rSr // Id

���
C

Z T

0

Z
�

 
�
@t�m.�/C u � r�m.�/

�
�u

�

Z T

0

Z
�

�
2 

�p
�.�/ .S� C rSr /C

�.�/

2�.�/
Tr.
p
�.�/ .S� C rSr // Id

�
r�m.�/

C  �m.�/F.�; u/

�
D 0:

Thanks to (3.6), we haveZ T

0

Z
�

�
 t�um

Cr �

�
�u˝ um � 2�m.�/

�p
�.�/ .S� C rSr /

C
�.�/

2�.�/
Tr.
p
�.�/ .S� C rSr // Id

���
�

Z T

0

Z
�

�
 �0m.�/

�p
�.�/

Tr.T�/�u �  �m.�/F.�; u/
�

�

Z T

0

Z
�

�
2 

�p
�.�/ .S�C rSr /C

�.�/

2�.�/
Tr.
p
�.�/ .S�C rSr // Id

�
r�m.�/

�
D 0:

(3.7)

The goal of this subsection is to derive a formulation of a renormalized solution fol-
lowing the idea in [34]. We choose Œ '0.Œum�"/�" as a test function in (3.7). Using the
same argument as for Lemma 3.5, we can show thatZ T

0

Z
�

�
@t
�
 '0.Œum�"/

�
"
�um Cr

�
 '0.Œum�"/

�
"
W .�u˝ um/

�
!

Z T

0

Z
�

�
�'.um/ t C �u˝ '.um/r 

�
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andZ T

0

Z
�

r
�
 '0.Œum�"/

�
"

�
�2�m.�/

�p
�.�/ .S� C rSr /

C
�.�/

2�.�/
Tr.
p
�.�/ .S� C rSr //

�
Id
�

C
�
 '0.Œum�"/

�
"

�
��0m.�/

�p
�.�/

Tr.T�/�u

�2

�p
�.�/ .S�CrSr /C

�.�/

2�.�/
Tr.
p
�.�/ .S�CrSr / Id/

�
r�m.�/C�m.�/F.�; u/

�
!

Z T

0

Z
�

r. '0.um//

�
�2�m.�/

�p
�.�/ .S� C rSr /

C
�.�/

2�.�/
Tr.
p
�.�/ .S� C rSr // Id

��
C  '0.um/

�
��0m.�/

�p
�.�/

Tr.T�/�u

� 2

�p
�.�/ .S� C rSr /C

�.�/

2�.�/
Tr.
p
�.�/ .S� C rSr //

�
r�m.�/C �m.�/F.�; u/

�
as "! 0. Putting these two limits together, we haveZ T

0

Z
�

��
�'.um/ t C �u˝ '.um/r 

�
Cr '0.um/

�
�2�m.�/

�p
�.�/ .S� C rSr /C

�.�/

2�.�/
Tr.
p
�.�/ .S� C rSr //

��
C  '00.um/rum

�
��m.�/2

�p
�.�/ .S� C rSr /C

�.�/

2�.�/
Tr.
p
�.�/ .S� C rSr //

��
C  '0.um/

�
��0m.�/

�p
�.�/

Tr.T�/�u � 2
�p

�.�/ .S� C rSr /

C
�.�/

2�.�/
Tr.
p
�.�/ .S� C rSr //

�
r�m.�/C �m.�/F.�; u/

��
D 0: (3.8)

Now we should pass to the limit in (3.8) as m! 1. To this end, we should keep the
following in mind:

�m.�/! 1 for almost every .t; x/ 2 RC ��;

um ! u for almost every .t; x/ 2 RC ��;

j��0m.�/j � 2; j��0m.�/j ! 0 for almost every .t; x/ 2 RC ��:

(3.9)
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We can find thatp
�.�/rum D

p
�.�/r.�m.�/u/ D �m.�/

p
�.�/ruC �0m.�/

p
�.�/ ur�

D
�m.�/p
�.�/

�
r.�.�/u/ �

p
� u �

r�.�/
p
�

�
C

p
�

�.�/3=4

�p
�.�/

�
�0.�/r�

��
�1=4

.�0.�//1=4
u

��
�0m.�/

�.�/3=4�1=4

.�0.�//3=4

�
D �m.�/T� C

p
�

�.�/3=4

�p
�.�/

�
�0.�/r�

��
�1=4

.�0.�//1=4
u

��
�0m.�/

�.�/3=4�1=4

.�0.�//3=4

�
D A1m C A2m:

Note that ˇ̌̌̌
�0m.�/

�.�/3=4�1=4

.�0.�//3=4

ˇ̌̌̌
� C j�0m.�/�j;

so �0m.�/�.�/
3=4�1=4=.�.�/0/3=4 ! 0 for almost every .t; x/: Thus, the dominated con-

vergence theorem shows that A2m ! 0 as m!1: Meanwhile, the dominated conver-
gence theorem also impliesA1m!T� inL2t;x . Hence, with (3.9) at hand, lettingm!1
in (3.8), one obtainsZ T

0

Z
�

��
�'.u/ t C �u˝ '.u/r 

�
� 2r '0.u/ W

�p
�.�/ .S� C rSr /

C
�.�/

2�.�/
Tr.
p
�.�/ .S� C rSr // Id

�
� 2 '00.u/T� W

�
.S� C rSr /

C
�.�/

2�.�/
Tr.S� C rSr / Id

�
C  '0.u/F.�; u/

�
D 0:

From now on, we denoteR' D 2 '00.u/T�..S�C rSr /C
�.�/
2�.�/

Tr.S�C rSr / Id/. This
ends the proof of Theorem 1.3.

4. Renormalized solutions and weak solutions

The main goal of this section is the proof of Theorem 1.1 that states the existence of
renormalized solutions of the Navier–Stokes equations without the additional terms, thus
the existence of weak solutions of the Navier–Stokes equations.

4.1. Renormalized solutions

In this subsection, we will show the existence of renormalized solutions. To this end, we
need the following stability lemma.
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Lemma 4.1. Take any fixed ˛1 < ˛2 as in (1.9) and consider sequences ın, r0n, r1n
and r2n such that ri;n ! ri � 0 with i D 0; 1; 2 and ın ! ı � 0. Consider a sequence
�n W RC ! RC satisfying (1.9) and (1.10) for fixed ˛1 and ˛2 such that

�n ! � in C 0.RC/:

If .�n; un/ satisfies (1.23)–(1.26), then up to a subsequence, still denoted n, the following
convergences hold.

(1) �n ! � strongly in C 0.0; T ILp.�// for any 1 � p < 
:

(2) �n.�n/un ! �.�/u in L1.0; T ILp.�/ for p 2 Œ1; 3=2/.

(3) .T�/n ! T� weakly in L2.0; T IL2.�//.

(4) For every H 2 W 2;1.Rd / and 0 < ˛ < 2
=
 C 1, �˛nH.un/! �˛H.u/ strongly
in Lp.0; T I�/ for 1 � p < 2


.
C1/˛
: In particular,

p
�.�n/H.un/!

p
�.�/H.u/

strongly in L1.0; T IL2.�//:

Proof. Using (1.26), the Aubin–Lions lemma gives, up to a subsequence,

�n.�n/! Q� in C 0.0; T ILq.�//

for any q < 3=2: But sup j�n � �j ! 0 as n!1: Thus,

�n.�n/! Q�.t; x/ in C 0.Œ0; T �ILq.�//; (4.1)

so up to a subsequence,
�.�n/! Q�.t; x/ a.e:

Note that � is an increasing function, so it is invertible, and ��1 is continuous. This
implies that �n! � a.e. with �.�/D Q�.t; x/: Together with (4.1) and �n being uniformly
bounded in L1.0; T IL
 .�//, we get part (1).

Note that

r
�.�n/
p
�n
D

p
�n r�.�n/

�n
�
�.�n/r�n

2�n
p
�n

;

thus ˇ̌̌̌
r
�.�n/
p
�n

ˇ̌̌̌
� C j

p
�n j

ˇ̌̌̌
r�.�n/
p
�n

ˇ̌̌̌
;

so r �.�n/p
�n

is bounded in L1.0; T IL2.�//, thanks to (1.23). Using (1.26), we find that
�.�n/p
�n

is bounded in L1.0; T IW 1;2.�//, thus uniformly bounded in L1.0; T IL6.�//.

On the other hand,
p
�n un is uniformly bounded in L1.0; T I L2.�//. From

Lemma 2.4, we have

�.�n/un D
�.�n/
p
�n

p
�n un ! �.�/u in L1.0; T ILq.�//

for any 1 � q < 3=2: Since .T�/n is bounded in L2.0; T IL2.�//, up to a subsequence it
converges weakly in L2.0; T IL2.�// to a function T�. In view of Lemma 2.4, this gives
part (4).
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With Lemma 4.1, we are able to obtain the renormalized solutions of Navier–Stokes
equations without any additional term by letting n!1 in (3.2). We state this result in
the following lemma, where we fix � such that "1 > 0.

Lemma 4.2. For any fixed "1 > 0, there exists a renormalized solution .
p
� ;
p
� u/ to

the initial value problem (1.1)–(1.2).

Proof. We can use Lemma 4.1 to pass to the limits in the extra terms. We will have to
follow this order: r2 ! 0, then r1 ! 0, and finally r0; ı; r ! 0 together.

� If r2 D r2.n/! 0, we just write

r2
�n

�0.�n/
junj

2un D r
1=4
2

�
�n

�0.�n/

�1=4�
�n

�0.�n/

�3=4
junj

2un;

and �0.�n/ � "1 > 0; so
�

�n
�0.�n/

�1=4
� C j�nj

1=4, and thus

r2
�n

�0.�n/
junj

2un ! 0 in L4=3.0; T IL6=5.�//:

� For r1 D r.n/! 0,

jr1�njunjunj � r
1=3�1=3n r2=3�2=3n junj

2;

which converges to zero in L3=2.0; T IL9=7.�// using the drag term control in the energy
and the information on the pressure law P.�/ D a�
 .

� For r0 D r0.n/! 0, it is easy to conclude that

r0un ! 0 in L2..0; T / ��/:

�We now consider the limit as r ! 0 of the term

r�nr

�p
K.�n/�

�Z �n

0

p
K.s/ ds

��
:

Noting the identity

�nr

�p
K.�n/�

�Z �n

0

p
K.s/ds

��
D 2div

�
�.�n/r

2.2s.�n//
�
Cr

�
�.�n/�.2s.�n//

�
;

we only need to focus on div.�.�n/r2.2s.�n/// since the same argument holds for the
other term. Since

r

Z
�

div
�
�.�n/r

2.2s.�n//
�
 

D r

Z
�

�n

�n
rZ.�n/˝rZ.�n/r C r

Z
�

�nrs.�n/� 

D r

Z
�

�n

�n
rZ.�n/˝rZ.�n/r dx C r

Z
�

p
�n rZ.�n/� ;
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the first term can be controlled asˇ̌̌̌
r

Z
�

p
�n rZ.�n/� 

ˇ̌̌̌
� Cr1=2k

p
�.�n/ kL2.0;T IL2.�//k

p
r rZ.�n/kL2.0;T IL2.�// ! 0;

thanks to (1.25) and (1.26); and the second term as

r

ˇ̌̌̌Z
�

�n

�n
rZ.�n/˝rZ.�n/r 

ˇ̌̌̌
�
p
r
p
r

Z
�

p
�.�n/

�n

�.�n/3=2
jrZ.�n/j

2
jr j

� C





pr �n

�.�n/3=2
jrZ.�n/j

2






L2.0;T IL2.�//

k
p
�.�n/kL2.0;T IL2.�//r

1=2
! 0:

� Concerning the quantity ı�10, thanks to �0"1.�/ � "1 > 0;
p
ı jr�5j is uni-

formly bounded in L2.0; T IL2.�//. This shows that ı1=30� is uniformly bounded in
L10.0; T IL30.�//: Thus, we haveˇ̌̌̌Z T

0

Z
�

ı�10r 

ˇ̌̌̌
� C. /ı2=3kı1=3�10kL1.0;T IL3.�// ! 0

as ı ! 0:

With Lemma 4.1 at hand, we are ready to obtain the renormalized solutions to (1.1)–
(1.2). By parts (1) and (2) of Lemma 4.1, we can pass to the limits in the continuity
equation. Thanks to part (4) of Lemma 4.1,p

�.�n/ '
0.un/!

p
�.�/ '0.u/ in L1.0; T IL2.�//:

With the help of Lemma 2.2, we can pass to the limit in the pressure, and thus we get the
renormalized solutions.

4.2. Recovering weak solutions from renormalized solutions

In this part, we get weak solutions from renormalized solutions constructed in Lemma 4.2.
Now we show that Lemma 4.2 is valid without the condition "1 > 0. For such a �, we
construct a sequence �n converging to � in C 0.RC/ and such that "1n D inf�0n > 0.
Lemma 4.1 shows that, up to a subsequence,

�n ! � in C 0.0; T ILp.�//; (4.2)

�nun ! �u in L1.0; T IL
pC1
2p .�//; (4.3)

for any 1 � p < 
; where .�;
p
� u/ is a renormalized solution to (1.1).

Now, we want to show that this renormalized solution is also a weak solution in
the sense of Definition 1.2. To this end, we introduce a non-negative smooth function
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ˆ WR!R with compact support andˆ.s/D 1 for any�1� s� 1: Let Q̂ .s/D
R s
0
ˆ.r/dr

and define
'n.y/ D n Q̂ .y1=n/ˆ.y2=n/ˆ.y3=n/

for any y D .y1; y2; y3/ 2 R3. Note that 'n is bounded in W 2;1.R3/ for any fixed
n > 0, 'n.y/ converges everywhere to y1 as n!1, r'n is uniformly bounded in n and
converges everywhere to the unit vector .1; 0; 0/, and

krr'nkL1.R3/ � C=n! 0

as n!1. This allows us to control the measures in Definition 1.1 as follows:

kR'nkM.RC��/ C kR
1

'n
kM.RC��/ C kR

2

'n
kM.RC��/ � Ckrr'nkL1.R3/ ! 0

as n!1. Using this function 'n in the equation of Definition 1.1, the Lebesgue Theorem
gives us the equation on �u1 in Definition 1.2 by letting n!1. In this way, we are able
to get the full vector equation on �u by permuting the directions. Applying the Lebesgue
dominated convergence theorem, one obtains (1.4) by passing to the limit in (1.12) with
i D 1 and the function 'n. Thus, we have shown that the renormalized solution is also a
weak solution.
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