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Abstract. This paper contains three new results. (1) We introduce new notions of projective crys-
talline representations and twisted periodic Higgs–de Rham flows. These new notions generalize
crystalline representations of étale fundamental groups introduced by Faltings [Algebraic Anal-
ysis, Geometry, and Number Theory (1989)] and Fontaine and Laffaille [Ann. Sci. Éc. Norm.
Supér. (4) 15 (1983)] and periodic Higgs–de Rham flows introduced by Lan, Sheng and Zuo
[J. Eur. Math. Soc. (JEMS) 21 (2019)]. We establish an equivalence between the categories of
projective crystalline representations and twisted periodic Higgs–de Rham flows via the category
of twisted Fontaine–Faltings module which is also introduced in this paper. (2) We study the
base change of these objects over very ramified valuation rings and show that a stable periodic
Higgs bundle gives rise to a geometrically absolutely irreducible crystalline representation. (3)
We investigate the dynamic of self-maps induced by the Higgs–de Rham flow on the moduli
spaces of rank-2 stable Higgs bundles of degree 1 on P1 with logarithmic structure on marked
points D WD ¹x1; : : : ; xnº for n � 4 and construct infinitely many geometrically absolutely irre-
ducible PGL2.Z

ur
p /-crystalline representations of �ét

1 .P
1
Qur
p
nD/. We find an explicit formula of the

self-map for the case ¹0; 1;1; �º and conjecture that a Higgs bundle is periodic if and only if
the zero of the Higgs field is the image of a torsion point in the associated elliptic curve C� defined
by y2 D x.x � 1/.x � �/ with the order coprime to p.
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0. Introduction

The nonabelian Hodge theory established by Hitchin and Simpson associates a represen-
tation of the topological fundamental group of an algebraic variety X over C to a holo-
morphic object on X named Higgs bundle. Later, Ogus and Vologodsky established the
nonabelian Hodge theory in positive characteristic in their fundamental work [28]. They
constructed the Cartier functor and the inverse Cartier functor, which give an equivalence
between the category of nilpotent Higgs modules of exponent � p � 1 and the category
of nilpotent flat modules of exponent � p � 1 over a smooth proper and W2.k/-liftable
variety. This equivalence generalizes the classical Cartier descent theorem. Fontaine and
Laffaille [10] for X D Spec W.k/ and Faltings for general case have introduced the cat-
egory MF rŒa;b�.X=W /. The objects in the category MF rŒa;b�.X=W / are the so-called
Fontaine–Faltings modules and consist of a quadruple .V;r;Fil; '/, where .V;r;Fil/
is a filtered de Rham bundle over X and ' is a relative Frobenius which is horizontal
with respect to r and satisfies the strong p-divisibility condition. The latter condition is
a p-adic analogue of the Riemann–Hodge bilinear relations. Then the Fontaine–Laffaille–
Faltings correspondence gives a fully faithful functor from MF rŒ0;w�.X=W / .w � p � 2/

to the category of crystalline representations of �ét
1 .XK/, where XK is the generic fiber

of X. This can be regarded as a p-adic version of the Riemann-Hilbert correspondence.
Faltings [9] has established an equivalence between the category of generalized rep-

resentations of the geometric fundamental group and the category of Higgs bundles over
a p-adic curve, which has generalized the earlier work of Deninger and Werner [3] on
a partial p-adic analogue of Narasimhan–Seshadri theory.

Lan, Sheng and the third named author have established a p-adic analogue of the
Hitchin–Simpson correspondence between the category of GLr .Wn.Fq//-crystalline rep-
resentations and the category of graded periodic Higgs bundles by introducing the notion
of Higgs–de Rham flow. It is a sequence of graded Higgs bundles and filtered de Rham
bundles, connected by the inverse Cartier transform defined by Ogus and Vologodsky [28]
and the grading functor by the attached Hodge filtrations on the de Rham bundles (for
details see [20, Section 3] or Section 3.1 in this paper).

A periodic Higgs bundle must have trivial Chern classes. This fact limits the applica-
tion of the p-adic Hitchin–Simpson correspondence. For instance, Simpson constructed
a canonical Hodge bundle �1X ˚OX on X in his proof of the Miyaoka–Yau inequality
([31, Propositions 9.8 and 9.9]), which has nontrivial Chern classes in general. In fact, the
classical nonabelian Hodge theorem tells us that the Yang–Mills–Higgs equation is still
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solvable for a polystable Higgs bundle with nontrivial Chern classes. Instead of getting
a flat connection, one can get a projective flat connection in this case, whose monodromy
gives a PGLr -representation of the fundamental group. This motivates us to find a p-adic
Hitchin–Simpson correspondence for graded Higgs bundles with nontrivial Chern classes.

As the first main result of the present paper we introduce the 1-periodic twisted
Higgs–de Rham flow over X1 as follows:

.V;r;Fil/0
Gr. � /˝.L;0/

''

.E; �/0

C�1
1

88

.E; �/1 ˝ .L; 0/.

�L

�
kk

Here L is called a twisting line bundle on X1, and �L W .E1; �1/˝ .L; 0/ Š .E0; �0/ is
called the twisted �-structure.

On the Fontaine module side, we also introduce the twisted Fontaine–Faltings module
over X1. The latter consists of the following data: a filtered de Rham bundle .V;r;Fil/
together with an isomorphism between de Rham bundles

'L W .C
�1
1 ı GrFil.V;r//˝ .L

˝p;rcan/ Š .V;r/:

We will refer to the isomorphism 'L as the twisted '-structure. The general construc-
tion of twisted Fontaine–Faltings modules and twisted periodic Higgs–de Rham flows are
given in Section 1.5 and Section 3.2 (over Xn=Wn.k/, and multi-periodic case).

Theorem 0.1 (Theorem 3.3). Let X be a smooth proper scheme over W . For each inte-
ger 0 � a � p � 2 and each f 2 N, there is an equivalence between the category of all
twisted f -periodic Higgs–de Rham flows over Xn of level � a and the category of strict
pn-torsion twisted Fontaine–Faltings modules over Xn of Hodge–Tate weight � a with
an endomorphism structure of Wn.Fpf /.

Theorem 0.1 can be generalized to the logarithmic case (Theorem 3.4).
The next goal is to associate a PGLn-representation of �ét

1 to a twisted (logarithmic)
Fontaine–Faltings module. To do so, we need to generalize Faltings’ work. Following
Faltings [7], we construct a functor DP in Section 2.5, which associates to a twisted
(logarithmic) Fontaine–Faltings module a PGLn representation of the étale fundamental
group.

Theorem 0.2 (Theorem 2.10). LetX be a smooth proper geometrically connected scheme
over W with a simple normal crossing divisor D � X relative to W . Suppose Fpf � k.
Let M be a twisted logarithmic Fontaine–Faltings module over X (with pole along D)
with endomorphism structure of W.Fpf /. Applying the DP -functor, one gets a projective
representation

� W �ét
1 .X

o
K/! PGL.DP .M//;

where XoK is the generic fiber of Xo D X nD .
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In Section 3.4, we study several properties of this functor DP . For instance, we
prove that a projective subrepresentation of DP .M/ corresponds to a subobject N �M
such that DP .M=N/ is isomorphic to this subrepresentation. Combining this with The-
orem 3.3, we infer that a projective representation coming from a stable twisted periodic
Higgs bundle .E; �/ with .rank.E/; degH .E// D 1 must be irreducible.

The following theorem gives a p-adic analogue of the existence of projective flat
Yang–Mills–Higgs connection in terms of semistability of Higgs bundles and triviality of
the discriminant.

Theorem 0.3 (Theorem 3.10). A semistable Higgs bundle over X1 initials a twisted
preperiodic Higgs–de Rham flow if and only if it is semistable and has trivial discriminant.

Consequently, we obtain the existence of nontrivial representations of étale funda-
mental group in terms of the existence of semistable graded Higgs bundles.

Definition 0.4. A representation

�ét
1 .X

o
K/! PGLr .Fq/

is called geometrically absolutely irreducible if its pull-back to the geometric fundamental
group

� W �ét
1 .X

o

Qp
/! PGLr .Fq/

is absolutely irreducible, i.e. it is irreducible as a PGLr .Fp/-representation.

Theorem 0.5 (Theorem 3.14). Letk be a finite field of characteristic p. Let X be a smooth
proper geometrically connected scheme over W.k/ together with a smooth log structure
D=W.k/ and let Xo D X nD : Assume that there exists a semistable graded logarithmic
Higgs bundle .E; �/=.X;D/1 with r WD rank.E/ � p � 1, discriminant �H .E/ D 0,
r and degH .E/ being coprime. Then there exists a positive integer f and a geometri-
cal absolutely irreducible PGLr .Fpf /-representation � of �ét

1 .X
o
K0/, where Xo D X nD

and K 0 D W.k � Fpf /Œ1=p�.

The proof of Theorem 0.5 will be divided into two parts. We first show the existence
of the irreducible projective representation of �ét

1 .X
o
K0/, in Section 3 (see Theorem 3.14).

The proof for the geometric irreducibility of � will be postponed to Section 5.

The second main result of this paper, the so-called base change of the projective
Fontaine–Faltings module and twisted Higgs–de Rham flow over a very ramified valu-
ation ring V is introduced in Section 5. We show that there exists an equivalent functor
from the category of twisted periodic Higgs–de Rham flow over X�;1 to the category
of twisted Fontaine–Faltings modules over X�;1, where X�;1 is the closed fiber of the
formal completion of the base change of X to the PD-hull of V . As a consequence, we
prove the second statement of Theorem 0.5 on the geometric absolute irreducibility of �
in Section 5.4 (see Theorem 5.20).

We like to emphasize that the Fontaine–Faltings module and Higgs–de Rham flow
over a very ramified valuation ring V introduced here shall be a crucial step toward con-
structing p-adic Hitchin–Simpson correspondence between the category of de Rham rep-
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resentations of �ét
1 .XV Œ1=p�/ and the category of periodic Higgs bundles over a potentially

semistable reduction XV .

As the third ingredient of this paper, we investigate the dynamics of Higgs–de Rham
flows on the projective line with marked points in Section 4. Taking the moduli space M
of graded stable Higgs bundles of rank 2 and degree 1 over P1 with logarithmic struc-
ture on m � 4 marked points we show that the self-map induced by Higgs–de Rham flow
stabilizes the component M.1; 0/ of M of maximal dimension m � 3 as a rational and
dominant map. Hence by Hrushovski’s theorem [13] the subset of periodic Higgs bun-
dles is Zariski dense in M.1; 0/. In this way, we produce infinitely many geometrically
absolutely irreducible PGL2.Fpf /-crystalline representations. By Theorem 3.14, all these
representations lift to PGL2.Zur

p /-crystalline representations. In Proposition 4.7 we show
that all those lifted representations are strongly irreducible.

For the case of four marked points ¹0; 1;1; �º we state an explicit formula for the
self-map and use it to study the dynamics of Higgs–de Rham flows for p D 3 and several
values of �.

Much more exciting, we claim that (Conjecture 4.8) the self-map on the moduli space
M.1; 0/ induced by the Higgs–de Rham flow for P1 � ¹0; 1;1; �º coincides with the
multiplication by p map on the associated elliptic curve defined as the double cover

� W C� ! P1

and ramified on ¹0; 1;1; �º. We have checked this conjecture holds true for p � 50: It
really looks surprised that the self-map coming from nonabelian p-adic Hodge theory has
really something to do with the addition law on an elliptic curve.

For `-adic representations Kontsevich has observed a relation between the set of iso-
morphic classes of GL2.Ql /-local systems over P1 n ¹0; 1;1; �º over Fq and the set of
rational points on C� over Fq via the work of Drinfeld on the Langlands program over
function field. It looks quite mysterious. There should exist a relation between periodic
Higgs bundles in the p-adic world and the Hecke-eigenforms in the `-adic world via Abe’s
solution of Deligne conjecture on `-to-p companions. We plan to carry out this program
in a further coming paper joint with J.Lu and X.Lu [26].

In Section 4.8, we consider a smooth projective curve X over W.k/ of genus g � 2.
In the Appendix of [29], de Jong and Osserman have shown that the subset of twisted
periodic vector bundles overX1 in the moduli space of semistable vector bundles overX1
of any rank and any degree is always Zariski dense. By applying our main theorem for
twisted periodic Higgs–de Rham flows with zero Higgs fields, which should be regarded
as projective étale trivializable vector bundles in the projective version of Lange–Stuhler’s
theorem (see [21]), they all correspond to PGLr .Fpf /-representations of �ét

1 .X1/. Once
again we show that they all lift to PGLr .Zur

p / of �ét
1 .X1/. It should be very interesting

to make a comparison between the lifting theorem obtained here lifting GLr .Fpf /-repre-
sentations of �ét

1 .X1/ to GLr .Zur
p /-representation of �ét

1 .X1;Fp / and the lifting theorem
developed by Deninger and Werner [3]. In their paper, they have shown that any vector
bundle over X=W which is étale trivializable over X1 lifts to a GLr .Cp/-representation
of �ét

1 .XK/.
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1. Twisted Fontaine–Faltings modules

In this section, we will recall the definition of Fontaine–Faltings modules in [7] and
generalize it to the twisted version.

1.1. Fontaine–Faltings modules

Let Xn be a smooth and proper variety over Wn.k/. And .V;r/ is a de Rham sheaf (i.e.
a sheaf with an integrable connection) overXn. In this paper, a filtration Fil on .V;r/ will
be called a Hodge filtration of level in Œa; b� if the following conditions hold:
� FiliV ’s are locally split subsheaves of V , with

V D FilaV � FilaC1V � � � � � FilbV � FilbC1V D 0;

and locally on all open subsets U � Xn, the graded factor FiliV.U /=FiliC1V.U / are
finite direct sums of OXn.U /-modules of form OXn.U /=p

e .
� Fil satisfies Griffiths transversality with respect to the connection r.

In this case, the triple .V;r;Fil/ is called a filtered de Rham sheaf. One similarly gives
the concepts of (filtered) de Rham modules over a W -algebra.

1.1.1. Fontaine–Faltings modules over a small affine base. Let U D SpecR be a small
affine scheme (which means there exist an étale map

WnŒT
˙1
1 ; T˙12 ; : : : ; T˙1d �! OXn.U /;

see [7]) overW and letˆ W bR! bR be a lifting of the absolute Frobenius onR=pR, wherebR is the p-adic completion of R. A Fontaine–Faltings module over U of Hodge–Tate
weight in Œa; b� is a quadruple .V;r;Fil; '/, where
� .V;r/ is a de Rham R-module,
� Fil is a Hodge filtration on .V;r/ of level in Œa; b�,
� ' is an R-linear isomorphism

' W F ��U;ˆ�V D �V ˝ˆ bR! V; F ��U;ˆ D Spec.ˆ/;

where �V is the quotient
Lb
iDa Fili=� with x � py for any x 2 FiliV and y is the

image of x under the natural inclusion FiliV ,! Fili�1V ,
� the relative Frobenius ' is horizontal with respect to the connections F ��U;ˆ Qr on
F ��U;ˆ�V and r on V , i.e. the following diagram commutes:

F ��U;ˆ�V '
//

F ��U;ˆ Qr
��

V

r

��

F ��U;ˆ�V ˝�1U=W '˝id
// V ˝�1

U=W
.
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Let M1 D .V1;r1;Fil1; '1/ and M2 D .V2;r2;Fil2; '2/ be two Fontaine–Faltings
modules over U of Hodge–Tate weight in Œa; b�. The homomorphism set between M1

and M2 constitutes by those morphism f W V1 ! V2 of R-modules, satisfying:
� f is strict for the filtrations, i.e. f �1.FiliV2/ D FiliV1,
� f is a morphism of de Rham modules, i.e. .f ˝ id/ ı r1 D r2 ı f ,
� f commutes with the '-structures, i.e. . �f ˝ id/ ı '1 D '2 ı f , where �f is the image

of f under Faltings’ tilde functor.
Denote by MF

r;ˆ
Œa;b�

.U=W / the category of all Fontaine–Faltings modules over U of
Hodge–Tate weight in Œa; b�.

The gluing functor. In the following, we recall the gluing functor of Faltings. In other
words, up to a canonical equivalence of categories, the category MF

r;ˆ
Œa;b�

.U=W / does
not depend on the choice ofˆ. More explicitly, the equivalent functor is given as follows.

Let ‰ be another lifting of the absolute Frobenius. For any filtered de Rham module
.V;r;Fil/, Faltings [7, Theorem 2.3] shows that there is a canonical isomorphism by
Taylor formula

˛ˆ;‰ W F
��U;ˆ�V ' F ��U;‰�V ;

which is parallel with respect to the connection, satisfies the cocycle conditions and
induces an equivalent functor of categories

MF
r;‰
Œa;b�

.U=W /!MF
r;ˆ
Œa;b�

.U=W /; .V;r;Fil; '/ 7! .V;r;Fil; ' ı ˛ˆ;‰/:

1.1.2. Fontaine–Faltings modules over a global base. Let I be the index set of all pairs
.Ui ; ˆi /. The Ui is a small affine open subset of X, and ˆi is a lift of the absolute
Frobenius on OX.Ui /˝W k. Recall that the category MF rŒa;b�.X=W / is constructed
by gluing those categories MF

r;ˆi
Œa;b�

.Ui=W /. Actually the categories MF
r;ˆi
Œa;b�

.Ui=W /

can be described more precisely as below.
A Fontaine–Faltings module over X of Hodge–Tate weight in the interval Œa; b� is

a tuple .V;r;Fil; ¹'iºi2I / over X, i.e. a filtered de Rham sheaf .V;r;Fil/ together with

'i W �V .Ui /˝ˆi
3OX.Ui /! V.Ui /

such that:
� Mi WD .V .Ui /;r;Fil; 'i / 2MF

r;ˆi
Œa;b�

.Ui=W /,
� for all i; j 2 I , on the overlap open set Ui \Uj , local Fontaine–Faltings modules
Mi jUi\Uj and Mj jUi\Uj are associated to each other by the equivalent functor
respecting these two liftings ˆi and ĵ . In other words, the following diagram com-
mutes: �V .Uij /˝ˆi

3OX.Ui /
˛ˆi ; ĵ

//

'i

��

�V .Uij /˝ ĵ
3OX.Ui /

'j

��

V.Uij /
id // V.Uij /.
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Morphisms between Fontaine–Faltings modules are those between sheaves and locally
they are morphisms between local Fontaine–Faltings modules. More precisely, for a mor-
phism f of the underlying sheaves of two Fontaine–Faltings modules over X, the map f
is called a morphism of Fontaine–Faltings modules if and only if

f .Ui / 2 Mor.MF
r;ˆi
Œa;b�

.Ui=W // for all i 2 I :

Denote by MF rŒa;b�.X=W / the category of all Fontaine–Faltings modules over X

of Hodge–Tate weight in Œa; b�. And denote by MF rŒa;b�.XnC1=WnC1/ the subcategory
of MF rŒa;b�.X=W / consisted of strict pn-torsion Fontaine–Faltings modules over X of
Hodge–Tate weight in Œa; b�.

1.2. Inverse Cartier functor

For a Fontaine–Faltings module .V;r;Fil; ¹'iºi2I /, we call ¹'iºi the '-structure of the
Fontaine–Faltings module. In this subsection, we first recall a global description of the
'-structure via the inverse Cartier functor over truncated Witt rings constructed by Lan,
Sheng and Zuo [20].

Note that the inverse Cartier functor C�11 (the characteristic p case) is introduced
in the seminal work of Ogus and Vologodsky [28]. Here we sketch an explicit con-
struction of C�11 presented in [20]. Let .E; �/ be a nilpotent Higgs bundle over X1 of
exponent� p � 1. Locally we have

Vi D F
�
Ui
.EjUi

/;

ri D dC
d�F�Ui

Œp�
.F �Ui

� jUi
/ W Vi ! Vi ˝�

1
Ui
;

Gij D exp.hij .F �Ui
� jUi

// W Vi jUij
! Vj jUij

;

where FUi
is the absolute Frobenius on Ui and

hij W F
�
Ui;1

�1Uij
! OUij

is the homomorphism given by the Deligne–Illusie Lemma [2]. Those local data .Vi ;ri /
can be glued into a global sheave H with integrable connection r via the transition
maps ¹Gij º (see [19, Theorem 3]). The inverse Cartier functor on .E; �/ is

C�11 .E; �/ WD .V;r/:

Remark. Note that the inverse Cartier transform C�11 also has the logarithmic version.
When the log structure is given by a simple normal crossing divisor, an explicit construc-
tion of the log inverse Cartier functor is given in the Appendix of [18].

As mentioned in the introduction, we need to generalize C�11 to the inverse Cartier
transform over the truncated Witt ring for Higgs bundles over Xn=Wm.k/. We briefly
recall the construction in [20, Section 4].
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1.2.1. Inverse Cartier functor over a truncated Witt ring. Let S D Spec.W.k// and let
FS be the Frobenius map on S . Let XnC1 � Xn be a WnC1-lifting of smooth proper
varieties. Recall that the functor C�1n is defined as the composition of C�1n and the base
change FS W X 0n D Xn �FS S ! Xn (by abusing notation, we still denote it by FS ). The
functor C�1n is defined as the composition of two functors Tn and Fn. In general, we have
the following diagram and its commutativity follows easily from the construction of those
functors:

H .Xn/

C�1n

**

F �
S //

Tn

��

H .X 0n/

C�1n

%%

Tn

��

MCFp�2.Xn/

�. � / &&

Gr
88

MIC.Xn/

eMIC.Xn/
F �
S

//

¹F �
U
ºU

44

eMIC.X 0n/.

FnD¹F
�
U=S
ºU

99

(1.1)

These categories appeared in the diagram are explained as following:
� MCFa.Xn/ is the category of filtered de Rham sheaves over Xn of level in Œ0; a�,
� H .Xn/ (resp. H .X 0n/) is the category of tuples .E; �; V ;r;Fil;  /, where

– .E; �/ is a graded Higgs module1 over Xn (resp. X 0n D Xn ˝� W ) of exponent
� p � 2,

– .V ;r;Fil/ is a filtered de Rham sheaf over Xn�1 (resp. over X 0n�1),
– and  W GrFil.V ;r/ ' .E; �/˝ Z=pn�1Z is an isomorphism of Higgs sheaves

over Xn (resp. X 0n),
� eMIC.Xn/ (resp. eMIC.X 0n/) is the category of sheaves over Xn (resp. X 0n) with inte-

grable p-connection,
� MIC.Xn/ (resp. MIC.X 0n/) is the category of de Rham sheaves over Xn (resp. X 0n).

Functor Gr. For an object .V;r;Fil/ in MCFp�2.Xn/, the functor Gr is given by

Gr.V;r;Fil/ D .E; �; V ;r;Fil;  /;

where .E; �/ D Gr.V;r;Fil/ is the graded sheaf with Higgs field, .V ;r;Fil/ is the mod-
ulo pn�1-reduction of .V;r;Fil/ and  is the identifying map Gr.V / Š E ˝ Z=pn�1Z.

Faltings tilde functor f. � /. For an object .V;r;Fil/ in MCFp�2.Xn/, the D.V;r;Fil/ will
be denoted as the quotient

Lp�2
iD0 Fili=� with x � py for any x 2 FiliV and y the image

of x under the natural inclusion FiliV ,! Fili�1V .

1A Higgs bundle .E; �/ is called graded if E can be written as direct sum of subbundles Ei
with �.Ei / � Ei�1 ˝�1. Obviously, a graded Higgs bundle is also nilpotent.
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The construction of functor Tn. Let .E; �; V ;r;Fil;  / be an object in H .Xn/ (resp.
H .X 0n/). Locally on an affine open subset U � X (resp. U � X0), there exists a triple
.VU;rU;FilU/ ([20, Lemma 4.6]), a filtered de Rham sheaf, such that
� .V ;r;Fil/jU ' .VU;rU;FilU/˝ Z=pn�1Z,
� .E; �/jU ' Gr.VU;rU;FilU/.

The tilde functor associates to .VU;rU;FilU/ a sheaf with p-connection over U. By
gluing those sheaves with p-connections over all U ([20, Lemma 4.10]), one gets a global
sheaf with p-connection over Xn (resp. X 0n). Denote it by

Tn.E; �; V ;r;Fil;  /:

The construction of functor Fn. For small affine open subset U of X, there exists endo-
morphism FU on U which lifts the absolute Frobenius on Uk and is compatible with the
Frobenius map FS on S D Spec.W.k//. Thus there is a map FU=S WU!U0DU�FS S

satisfying FU D FS ı FU=S :

U FU

��

FU=S

  

%%

U0
FS //

��

U

��

S
FS // S .

Let .�V 0; Qr 0/ be an object in AMIC.X 0n/. Locally on U, applying the functor F �
U=S

, we
get a de Rham sheaf over U

F �U=S .
�V 0jU0 ; Qr 0jU0/:

By Taylor formula, up to a canonical isomorphism, it does not depends on the choice
of FU. In particular, on the overlap of two small affine open subsets, there is an canonical
isomorphism of two de Rham sheaves. By gluing those isomorphisms, one gets a de Rham
sheaf over Xn; we denote it by

Fn.�V 0; Qr 0/:
1.3. Global description of the '-structure in Fontaine–Faltings modules (via the inverse

Cartier functor)

Let .V;r;Fil/ 2 MFCp�2.Xn/ be a filtered de Rham sheaf over Xn of level in Œ0; p � 2�.
From the commutativity of diagram (1.1), for any i 2 I , one has

C�1n ı Gr.V;r;Fil/jUi
D Fn ı Tn ı F

�
S ı Gr.V;r;Fil/jUi

D Fn ı F
�
S .
�V ; Qr/jUi

' F �Ui
.�V jUi

; QrjUi
/:
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Here FUi
D Spec.ˆi / W Ui ! Ui is the lifting of the absolute Frobenius on Ui;k . As

the Fn is glued by using the Taylor formula, for any i; j 2 I , one has the following
commutative diagram:

F �
Ui
.�V jUi\Uj ;

QrjUi\Uj /
� //

˛ˆi ; ĵ

��

C�1n ı Gr.V;r;Fil/jUi\Uj

F �
Uj
.�V jUi\Uj ;

QrjUi\Uj /
� // C�1n ı Gr.V;r;Fil/jUi\Uj .

To give a system of compatible '-structures (for all i 2 I )

'i W F
�
Ui
.�V jUi

; QrjUi
/! .V jUi

;rjUi
/;

it is equivalent to give an isomorphism

' W C�1n ı Gr.V;r;Fil/! .V;r/:

In particular, we have the following results:

Lemma 1.1 ([20, Lemma 5.6]). To give a Fontaine–Faltings module in the category
MF rŒ0;p�2�.X=W /, it is equivalent to give a tuple .V;r;Fil; '/, where

� .V;r;Fil/ 2 MCFp�2.Xn/ is a filtered de Rham sheaf over Xn of level in Œ0; p � 2�,
for some positive integer n,

� ' W C�1n ı Gr.V;r;Fil/! .V;r/ is an isomorphism of de Rham sheaves.

1.4. Fontaine–Faltings modules with endomorphism structures

Let f be a positive integer. We call .V;r;Fil; '; �/ a Fontaine–Faltings module over
X with endomorphism structure of W.Fpf / whose Hodge–Tate weights lie in Œa; b� if
.V;r;Fil; '/ is an object in MF rŒa;b�.X=W / and

� W W.Fpf /! EndMF .V;r;Fil; '/

is a continuous ring homomorphism. We call � an endomorphism structure of W.Fpf /
on .V;r;Fil; '/. Let us denote by MF rŒa;b�;f .X=W / the category of Fontaine–Faltings
module with endomorphism structure ofW.Fpf / whose Hodge–Tate weights lie in Œa; b�.
We denote by MF rŒ0;p�2�;f .XnC1=WnC1/ the subcategory of MF rŒ0;p�2�;f .X=W / con-
sisted by strict pn-torsion objects.

Lemma 1.2. Assume f is a positive integer with Fpf � k. Then giving an object in
MF rŒ0;p�2�;f .X=W / is equivalent to give f -ordered objects

.Vi ;ri ;Fili / 2 MCFp�2.Xn/; i D 0; 1; : : : ; f � 1

(for some n 2 N) together with isomorphisms of de Rham sheaves

'i W C
�1
n ı Gr.Vi ;ri ;Fili /! .ViC1;riC1/ for 0 � i � f � 2
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and
'f �1 W C

�1
n ı Gr.Vf �1;rf �1;Filf �1/! .V0;r0/:

Proof. Let .V;r;Fil; '; �/ be an object in MF rŒ0;p�2�;f .X=W /. Let � be the Frobenius
map on W.Fpf / and let � be a generator of W.Fpf / as a Zp-algebra. Then �.�/ is an
endomorphism of the Fontaine–Faltings module .V;r;Fil; '/. Since Fpf � k, all conju-
gate elements of � are of form � i .�/, which are contained in w D w.K/. The filtered de
Rham sheaf .V;r;Fil/ can be decomposed into eigenspaces

.V;r;Fil/ D
f �1M
iD0

.Vi ;ri ;Fili /;

where .Vi ;ri ;Fili / D .V;r;Fil/�.�/D�
i .�/ is the � i .�/-eigenspace of �.�/. Applying the

functor C�1n ı Gr on both side, we get

C�1n ı Gr.V;r;Fil/ D
f �1M
iD0

C�1n ı Gr.Vi ;ri ;Fili /:

Comparing � iC1.�/-eigenspaces of �.�/ on both side of

' W C�1n ı Gr.V;r;Fil/ ' .V;r/;

one gets the restrictive isomorphisms

'i W C
�1
n ı Gr.Vi ;ri ;Fili /! .ViC1;riC1/ for all 0 � i � f � 2;

and
'f �1 W C

�1
n ı Gr.Vf �1;rf �1;Filf �1/! .V0;r0/:

Conversely, we can construct the Fontaine–Faltings module with endomorphism structure
in an obvious way.

1.5. Twisted Fontaine–Faltings modules with endomorphism structures

Let Ln be a line bundle over Xn. Then there exists a natural connection rcan on Lp
n

n

by [16, Theorem 5.1]. Tensoring with .Lp
n

n ;rcan/ induces a self-equivalence functor on
the category of de Rham bundles over Xn.

Definition 1.3. An Ln-twisted Fontaine–Faltings module over Xn with endomorphism
structure of Wn.Fpf / whose Hodge–Tate weights lie in Œa; b� is a tuple consisting the
following data:
� for 0 � i � f � 1, a filtered de Rham bundle .Vi ;ri ;Fili / over Xn of level in Œa; b�,
� for 0 � i � f � 2, an isomorphism of de Rham sheaves

'i W C
�1
n ı Gr.Vi ;ri ;Fili /! .ViC1;riC1/;

� an isomorphism of de Rham sheaves

'f �1 W .C
�1
n ı Gr.Vf �1;rf �1;Filf �1//˝ .Lp

n

n ;rcan/! .V0;r0/:
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We use .Vi ;ri ;Fili ; 'i /0�i<f to denote the Ln-twisted Fontaine–Faltings module and
use TMF rŒa;b�;f .XnC1=WnC1/ to denote the category of all twisted Fontaine–Faltings
modules over Xn with endomorphism structure of Wn.Fpf / whose Hodge–Tate weights
lie in Œa; b�.

A morphism between two objects .Vi ;ri ;Fili ; 'i /0�i<f and .V 0i ;r
0
i ;Fil0i ; '

0
i /0�i<f

is an f -tuple .g0; g1; : : : ; gf �1/ of morphisms of filtered de Rham sheaves

gi W .Vi ;ri ;Fili /! .V 0i ;r
0
i ;Fil0i /; i D 0; 1; : : : ; f � 1;

satisfying
giC1 ı 'i D '

0
i ı .C

�1
n ı Gr.gi // for 0 � i � f � 2;

and
.g0 ˝ id

L
pn

n
/ ı 'f �1 D '

0
f �1 ı .C

�1
n ı Gr.gf �1//:

Remark. We make the following observations.
(i) By Lemma 1.1, to give an object in TMF rŒa;b�;1.Xn=Wn/ with Ln D OXn is equiv-

alent to give a strict pn-torsion Fontaine–Faltings module over Xn whose Hodge–
Tate weights lie in Œa; b�.

(ii) Suppose Fpf � k. By Lemma 1.2, to give an object in TMF rŒa;b�;f .Xn=Wn/ with
Ln D OXn is equivalent to give a strict pn-torsion Fontaine–Faltings module over
Xn with endomorphism structure ofWn.Fpf / and whose Hodge–Tate weight in the
interval Œa; b�.

Local trivialization. Let j 2 I . Locally on the small open affine set Uj (Rj D OX.Uj /),
we choose and fix a lifting ĵ W bRj ! bRj and a trivialization of the line bundle Ln

�j W OXn.Uj / ' Ln.Uj /:

It induces a trivialization of de Rham bundle �p
n

j W .OXn.U/; d/ ' .L
pn

n .U/;rcan/. Let
M D .Vi ;ri ;Fili ; 'i /0�i<f 2 TMF rŒa;b�;f .XnC1=WnC1/ be an Ln-twisted Fontaine–
Faltings module over Xn with endomorphism structure of Wn.Fpf / whose Hodge–Tate
weights lie in Œa; b�. Then one gets a local Fontaine–Faltings module over Rj with endo-
morphism structure of Wn.Fpf / whose Hodge–Tate weights lie in Œa; b�

M.�j / D

 M
Vi .Uj /;

M
ri ;

M
Fili ;

f �2X
iD0

'i C 'f �1 ı .id˝ �
pn

j /

!
:

We call M.�j / the trivialization of M on Uj via �j .

Logarithmic version. Finally, let us mention that everything in this section extends to the
logarithmic context. Let X be a smooth and proper scheme overW and Xo is the comple-
ment of a simple normal crossing divisor D � X relative toW . Similarly, one constructs
the category TMF rŒa;b�;f .X

o
nC1=WnC1/ of strict pn-torsion twisted logarithmic Fontaine

modules (with pole along D �Wn � X �Wn) with endomorphism structure ofWn.Fpf /
whose Hodge–Tate weights lie in Œa; b�.
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2. Projective Fontaine–Laffaille–Faltings functor

2.1. The Fontaine–Laffaille–Faltings’ D-functor

The functor Dˆ. Let R be a small affine algebra over W D W.k/ with a � -linear map
ˆ W bR! bR which lifts the absolute Frobenius of R=pR. If ˆ happens to be étale in
characteristic 0, Faltings ([7, p. 36]) constructed a map �ˆ W bR! BC.bR/ which respects
Frobenius-lifts. Thus the following diagram commutes:

bR �ˆ //

ˆ

��

BC.bR/
ˆB

��bR �ˆ // BC.bR/,
Here ˆB is the Frobenius on BC.bR/. Denote

D D BC.bR/Œ1=p�=BC.bR/;
which is equipped with the natural '-structure and filtration.

Let M D .V;r;Fil; '/ be an object in MF
r;ˆ
Œa;b�

.U=W /. Faltings constructed a func-
tor Dˆ by

Dˆ.M/ D Hom.V ˝�ˆ B
C.bR/;D/;

where the homomorphisms are BC.bR/-linear and respect filtrations and the '-structure.
The action of

� WD Gal.bR=bR/
on the tensor product V ˝�ˆ B

C.bR/ is defined via the connection on V , which commutes
with the ' and hence induces an action of � on Dˆ.M/. Since V is a p-power torsion
finitely generated R-module, Dˆ.M/ is a finite Zp-module. Faltings shows that the func-
tor Dˆ from MF r;ˆŒa;b�.U=W / to Repfinite

Zp
.�//, the category of finite Zp-representation

of � , is fully faithful and its image is closed under subobjects and quotients.

The functor D. Recall that I is the index set of all pair .Ui ; ˆi / of small affine open
subset Ui of X and lifting ˆi of the absolute Frobenius on OX.Ui /˝W k. For each
i 2 I , the functor Dˆi associates to any Fontaine–Faltings module over X a compatible
system of étale sheaves on �Ui;K (the generic fiber of �Ui ). By gluing and using the results
in EGA3, one obtains a locally constant sheaf on XK and a globally defined functor D.

In the following, we give a slightly different way to construct the functor D. Let J
be a finite subset of the index set I such that ¹Uj ºj2J forms a covering of X. Denote
Uj D .Uj /K and choose x a geometric point of XK contained in

T
j2J Uj .

Let .V;r;Fil; ¹'iºi2I / be a Fontaine–Faltings module over X. For each j 2 J , the
functor D

ĵ
gives us a finite Zp-representation of �ét

1 .
bUj ; x/. Recall that the functor Dˆ

does not depends on the choice of ˆ, up to a canonical isomorphism. In particular, for all
j1; j2 2 J , there is a natural isomorphism of �ét

1 .
bUj1 \ bUj2 ; s/-representations

D.V .Uj1 \Uj2/;r;Fil; 'j1/ ' D.V .Uj1 \Uj2/;r;Fil; 'j2/:
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By Theorem 2.6, all representations D.V .Uj /;r;Fil; 'j / descend to a Zp-representa-
tions of �ét

1 .XK ; x/. Up to a canonical isomorphism, this representation does not depend
on the choice of J and s. This representation is just D.V;r;Fil; ¹'iºi2I / and we construct
the Fontaine–Laffaille–Faltings’ D-functor in this way.

Theorem 2.1 (Faltings). The functor D induces an equivalence of MF rŒ0;p�2�.X=W /

with the full subcategory of finite ZpŒŒ�ét
1 .XK/��-modules whose objects are dual-crystal-

line representations. This subcategory is closed under subobjects and quotients.

The extra W.Fpf /-structure. Suppose that Fpf � k. Let .V;r;Fil; '; �/ be an object in
the category MF rŒ0;p�2�;f .XnC1=WnC1/. Since the functor D is fully faithful, we get
an extra W.Fpf /-structure on D.V;r;Fil; '/, via the composition

W.Fpf /
�
! EndMF .V;r;Fil; '/

�
! End.D.V;r;Fil; '//:

Since V is strictly pn-torsion, the Wn.Fpf /-module D.V;r;Fil; '/ is free with a linear
action of �ét

1 .XK/. We write this Wn.Fpf /-representation as

D.V;r;Fil; '; �/:

2.2. The category of projective representations

The categories RepO.G/ and Repfree
O
.G/. Let O be a commutative topological ring with

identity and let G be a topological group. Note that all morphisms of topological groups
and all actions of groups are continuous in this subsection. Denote by RepO.G/ the cat-
egory of all finitely generated O-modules with an action of G and denote by Repfree

O
.G/

the subcategory of all free O-modules of finite rank with an action of G.

The categories PRepO.G/ and PRepfree
O
.G/. For a finitely generated O-module V , we

denote by PGLO.V / the quotient group GL.V /=O�. If � W G ! PGLO.V / is a group
morphism, then there exists a group action of G on the quotient set V=O� defined by
g.Œv�/ WD Œ�.g/v� for any g 2 G and v 2 V . In this case, we call the pair .V ; �/ a projec-
tive O-representation of G. A morphism of projective O-representations from .V1; �1/ to
.V2; �2/ is an O-linear morphism f W V1 ! V2 such that the quotient map from V1=O�

to V2=O� induced by f is a morphism ofG-sets. Denote PRepO.G/ the category of finite
projective O-representations of G. Denote by PRepfree

O
.G/ the subcategory with V being

a free O-module.

2.3. Gluing representations and projective representations

Let S be an irreducible scheme. We fix a geometric point s of S . In this subsection, U is
an open subset of S containing s.

Proposition 2.2 (SGA1 [11], see also [33, Proposition 5.5.4]). The open immersion
U ! S induces a surjective morphism of fundamental groups

�SU W �
ét
1 .U; s/� �ét

1 .S; s/:
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Thus, there is a natural restriction functor res from the category of �ét
1 .S; s/-sets to

the category of �ét
1 .U; s/-sets, which is given by

res.�/ D � ı �SU :

Corollary 2.3. The restriction functor res is fully faithful.

The proof of this corollary directly follows from the surjectivity proved in Proposi-
tion 2.2 and [32, Lemma 52.4.1 in Tag 0BN6].

Let eS be a finite étale covering of S . Then there is a natural action of �ét
1 .S; s/ on the

fiber Fs.eS/.
Proposition 2.4. The following statements hold.

(i) The fiber functor Fs induces an equivalence from the category of finite étale cover-
ing of S to the category of finite �ét

1 .S; s/-sets.

(ii) The functor Fs is compatible with the restrictions of covering to open set U � S
and restrictions of �ét

1 .S; s/-sets to �ét
1 .U; s/-sets by �SU .

See [32, Proposition 52.3.10 in Tag 0BN6] for a proof of the first statement. The
second one follows the very definition, one can find the proof in [27, Section 5.1].

As a consequence, one has the following result, which should be well known for
experts.

Corollary 2.5 (Rigid). The restriction functor . � /jU from the category of finite étale cov-
erings of S to the category of finite étale coverings of U is fully faithful. Suppose that
there is an isomorphism

fU W
eS 0jU ! eS jU

of finite étale coverings of U , for some finite étale coverings eS and eS 0 of S . Then there is
a unique isomorphism

fS W
eS 0 ! eS

of finite étale coverings of S such that fU D fS jU .

In the following, we fix a finite index set J and an open covering ¹Uj ºj2J of S with
s 2

T
j Uj . Then for any j 2 J , the inclusion map Uj ! S induces a surjective group

morphism of fundamental groups

�j W �
ét
1 .Uj ; s/� �ét

1 .S; s/:

Denote
UJ1 WD Uj1j2���jr WD Uj1 \ Uj2 \ � � � \ Ujr

for any J1 D ¹j1; j2; : : : ; jrº � J . Similarly, for any J1 � J2 � J , we have a surjective
group morphism of fundamental groups

�
J1
J2
W �ét

1 .UJ2 ; s/� �ét
1 .UJ1 ; s/:

Now we can view every �ét
1 .UJ1 ; s/-set as a �ét

1 .UJ2 ; s/-set through this group morphism.
Since we already have the rigidity of finite étale coverings, one can use it to glue these
local �1-sets together.
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Theorem 2.6. Let .†j ; �j / be a finite �ét
1 .Uj ; s/-set for each j 2 J . Suppose for each

pair i; j 2 J , there exists an isomorphism of �ét
1 .Uij ; s/-sets �ij W †i ' †j . Then every

†j descends to a �ét
1 .S; s/-set .†j ; b�j / uniquely. Moreover, the image of �j equals that

of b�j .

2.4. Comparing representations associated to local Fontaine–Faltings modules
underlying isomorphic filtered de Rham sheaves

Here we compare several representations associated to local Fontaine–Faltings modules
underlying isomorphic filtered de Rham sheaves. To do so, we first introduce a local
Fontaine–Faltings module, which corresponds to a Wn.Fpf /-character of the local fun-
damental group. We will then use this character to measure the difference between the
associated representations.

LetR be a small affine algebra overW.k/ and denoteRn D R=pnR for all n � 1. Fix
a lifting ˆ W bR! bR of the absolute Frobenius on R=pR. Recall that �ˆ W bR! BC.bR/
is the lifting of BC.bR/=F 1BC.bR/ ' bR with respect to the ˆ. Under such a lifting, the
Frobenius ˆB on BC.bR/ extends to ˆ on bR.

Element an;r . Let f be an positive integer. For any r 2 bR�, we construct a Fontaine–
Faltings module of rank f as following. Let

V D Rne0 ˚Rne1 ˚ � � � ˚Rnef �1

be a free Rn-module of rank f . The integrable connection r on V is defined by the
formula

r.ei / D 0;

and the filtration Fil on V is the trivial one. Applying the tilde functor and twisting by the
map ˆ, one gets�V ˝ˆ bR D Rn � .�e0 ˝ˆ 1/˚Rn � .�e1 ˝ˆ 1/˚ � � � ˚Rn � .�ef �1 ˝ˆ 1/;
where the connection on �V ˝ˆ bR is determined by

r.�ei ˝ˆ 1/ D 0:
Denote by ' the Rn-linear map from .�V ˝ˆ bR;r/ to .V;r/ defined by

'.�e0 ˝ˆ 1;�e1 ˝ˆ 1; : : : ;�ef �1 ˝ˆ 1/ D .e0; e1; : : : ; ef �1/
0BBBBB@
0 rp

n

1 0

1 0
: : :

: : :

1 0

1CCCCCA :
The ' is parallel due to d.rp

n
/ � 0 .modpn/. By Lemma 1.1, the tuple .V;r;Fil; '/

forms a Fontaine–Faltings module.
One gets a finite Zp-representation of Gal.bR=bR/, which is a free Z=pnZ-module of

rank f , by applying Fontaine–Laffaille–Faltings’ functor Dˆ.
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Lemma 2.7. Let n and f be two positive integers and let r be an invertible element in R.
Then there exists an an;r 2 BC.bR/� such that

ˆ
f
B .an;r / � �ˆ.r/

pn
� an;r .mod pn/: (2.1)

Proof. Since Dˆ.V;r;Fil; '/ is free over Z=pnZ of rank f , one can find an element g
with order pn. Recall that Dˆ.V;r;Fil; '/ is the sub-Zp-module of

Hom
BC.bR/.V ˝�ˆ BC.bR/;D/

consisted by elements respecting the filtration and '. In particular, the following diagram
commutes:

.�V ˝�ˆ BC.bR//˝ˆ BC.bR/ g˝ˆid
// D ˝ˆ B

C.bR/
'

��

.�V ˝ˆ bR/˝�ˆ BC.bR/
'˝id
��

V ˝�ˆ B
C.bR/ g

// D.

Comparing images of .�ei ˝�ˆ 1/˝ˆ 1 under the diagram, we have

ˆ.g.vi ˝�ˆ 1// D g.viC1 ˝�ˆ 1/ for all 0 � i � f � 2;

and
ˆ.g.vf �1 ˝�ˆ 1// D �ˆ.r/

pn
� g.v0 ˝�ˆ 1/:

So we have
ˆf .g.v0 ˝�ˆ 1// D �ˆ.r/

pn
� g.v0 ˝�ˆ 1/:

Since the image of g is pn-torsion, it follows that Im.g/ is contained in

DŒpn� D
1

pn
BC.bR/=BC.bR/;

the pn-torsion part of D. Choose a lifting an;r of g.e0 ˝�ˆ 1/ under the surjective map

BC.bR/ 1
pn

��! DŒpn�:

Then equation (2.1) follows. Similarly, one can define an;r�1 for r�1. By equation (2.1),
we have

ˆf .an;r � an;r�1/ D an;r � an;r�1 :

Thus an;r � an;r�1 2 W.Fpf /. Since both an;r and an;r�1 are not divisible by p (by the
choice of g), we know that an;r � an;r�1 2 W.Fpf /

�. The invertibility of an;r follows.
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Comparing representations. Let n and f be two positive integers. For all 0 � i � f ,
let .Vi ;ri ;Fili / be filtered de Rham Rn D R=p

nR-modules of level a (a � p � 1). We
write

V D

f �1M
iD0

Vi ; r D

f �1M
iD0

ri ; Fil D
f �1M
iD0

Fili

for short. Let

'i W C
�1
ı Gr.Vi ;ri ;Fili / ' .ViC1;riC1/; 0 � i � f � 2;

'f �1 W C
�1
ı Gr.Vf �1;rf �1;Filf �1/ ' .V0;r0/

be isomorphisms of de Rham R-modules. Let r be an element in R�. Since

d.rp
n

/ D 0 .mod pn/;

the map rp
n
'f �1 is also an isomorphism of de Rham Rn-modules. Thus

M D .V;r;Fil; '/ and M 0 D .V;r;Fil; '0/

are Fontaine–Faltings modules over Rn, where

' D

f �1X
iD0

'i and '0 D

f �2X
iD0

'i C r
pn'f �1:

Proposition 2.8. The following statements hold.

(i) There areWn.Fpf /-module structures on Dˆ.M/ and Dˆ.M 0/. And the actions of

� WD Gal.bR=bR/
are semilinear.

(ii) The multiplication of an;r on

Hom
BC.bR/.V ˝�ˆ BC.bR/;D/

induces a Wn.Fpf /-linear map between these two submodules

Dˆ.M/
�
! Dˆ.M

0/:

Proof. (i) Let

g W

f �1M
iD0

Vi ˝�ˆ B
C.bR/! D

be an element in Dˆ.M/. For any a 2 Wn.Fpf /, denote

a ? g WD

f �1X
iD0

� i .a/gi (2.2)
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where gi is the restriction of g on the i -th component Vi ˝�ˆ B
C.bR/. One can check

that a ? g is also contained in Dˆ.M/. Thus ? defines a Wn.Fpf /-module structure
on Dˆ.M/. Let ı be an element in � . Then

ı.a ? g/ D ı ı

 
f �1X
iD0

� i .a/gi

!
ı ı�1

D

f �1X
iD0

� i .ı.a//ı ı gi ı ı
�1

D ı.a/ ? ı.g/:

In this way, Dˆ.M/ forms a Wn.Fpf /-module with a continuous semilinear action of
�ét
1 .UK/. For the Wn.Fpf /-module structure on Dˆ.M 0/, the action of Wn.Fpf / on

Dˆ.M 0/ is defined in the same manner as in (2.2).
(ii) Recall that Dˆ.M/ (resp. Dˆ.M 0/) is defined to be the set of all morphisms in

Hom
BC.bR/.V ˝�ˆ BC.bR/;D/

compatible with the filtration and ' (resp. '0). Since Dˆ.M/ and Dˆ.M 0/ have the same
rank and multiplication by an;r map on

Hom
BC.bR/.V ˝�ˆ BC.bR/;D/

is injective, we only need to show that an;r � f 2 Dˆ.M 0/ for all f 2 Dˆ.M/. Sup-
pose f W V ˝�ˆ B

C.bR/! D is an element in Dˆ.M/, which means that f satisfies the
following two conditions:
(1) f is strict for the filtrations, i.e.X

`1C`2D`

Fil`1V ˝�ˆ Fil`2BC.bR/ D f �1.Fil`D/:

(2) f ˝ˆ id D f ı .' ˝�ˆ id/, i.e. the following diagram commutes:

.�V ˝�ˆ BC.bR//˝ˆ BC.bR/ f˝ˆid
// D ˝ˆ B

C.bR/
'

��

.�V ˝ˆ bR/˝�ˆ BC.bR/
'n;r˝id
��

V ˝�ˆ B
C.bR/ f

// D.

Since an;r 2 BC.bR/� � Fil0BC.bR/ n Fil1BC.bR/, we have an;r � Fil`D D Fil`D, and
thus X

`1C`2D`

Fil`1V ˝�ˆ Fil`2BC.bR/ D f �1.Fil`D/ D .an;r � f /�1.Fil`D/:
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Simultaneously, we have

.an;r � f /˝ˆ id Df ˝ˆ ˆ.an;r / � id

Df ˝ˆ an;r � �ˆ.r/
pn
� id D .an;r � �ˆ.r/p

n

/ � .f ˝ˆ id/

Dan;r � �ˆ.r/
pn
� .f ı .' ˝�ˆ id//

D.an;r � f / ı .r
pn' ˝�ˆ id/:

So by definition an;r � f 2 Dˆ.M 0/.

Corollary 2.9. Suppose that Fpf � k. The map from Dˆ.M/ to Dˆ.M 0/ is an isomor-
phism of projective Wn.Fpf /-representations of

� WD Gal.bR=bR/:
In particular, we have an bijection of �-sets

Dˆ.M/=Wn.Fpf /
�
! Dˆ.M

0/=Wn.Fpf /
�:

2.5. The functor DP

In this subsection, we assume f to be a positive integer with Fpf � k. Let ¹Uj ºj2J

be a finite small affine open covering of X. Let Uj D .Uj /K . For every j 2 J , fix
ĵ as a lifting of the absolute Frobenius on Uj ˝W k. Fix x as a geometric point in
UJ D

T
j2J Uj and fix j0 an element in J .

Let .V;r;Fil; '; �/ be a Fontaine–Faltings module over Xn with an endomorphism
structure of W.Fpf / whose Hodge–Tate weights lie in the interval Œ0; p � 2�. Locally,
applying Fontaine–Laffaille–Faltings’ functor D

ĵ
, one gets a finite Wn.Fpf /-represen-

tation %j of �ét
1 .Uj ; x/. Faltings shows that there is an isomorphism

%j1 ' %j2

of Z=pnZ-representations of �ét
1 .Uj1j2 ; x/. By [20], this isomorphism isWn.Fpf /-linear.

By Theorem 2.6, these %j uniquely descend to a Wn.Fpf /-representation of �ét
1 .XK ; x/.

Thus one reconstructs the Wn.Fpf /-representation D.V;r;Fil; '; �/ in this way.
Now we construct functor DP for twisted Fontaine–Faltings modules, in a similar

way. Let
.Vi ;ri ;Fili ; 'i /0�i<f 2 TMF rŒ0;p�2�;f .XnC1=WnC1/

be an Ln-twisted Fontaine–Faltings module over Xn with endomorphism structure of
Wn.Fpf /whose Hodge–Tate weights lie in the interval Œ0; p � 2�. For each j 2 J , choos-
ing a trivialization M.�j / and applying Fontaine–Laffaille–Faltings’ functor D

ĵ
, we get

a Wn.Fpf /-module together with a linear action of �ét
1 .Uj ; x/. Denote its projectification

by %j . By Corollary 2.9, there is an isomorphism

%j1 ' %j2

as projective Wn.Fpf /-representations of �ét
1 .Uj1j2 ; x/. In what follows, we will show

that these %j uniquely descend to a projective Wn.Fpf /-representation of �ét
1 .XK ; x/ by

using Theorem 2.6.
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In order to use Theorem 2.6, set †j to be the quotient �ét
1 .Uj ; x/-set

D
ĵ
.M.�j //=Wn.Fpf /

�:

Obviously, the kernel of the canonical group morphism

GL.D
ĵ
.M.�j ///! Aut.†j /

is just Wn.Fpf /
�, we identify the image of this morphism with

PGL.D
ĵ
.M.�j /// D GL.D

ĵ
.M.�j ///=Wn.Fpf /

�:

Let us denote by �j the composition of %j and GL.D
ĵ
.M.�j ///! Aut.†j / for all

j 2 J :

�ét
1 .Uj0 ; x/

����

%j0 //

�j0

++

GL
�
D

ĵ0
.M.�j0//

�
���� &&

�ét
1 .XK ; x/

c�j0 //
c�j0

33
PGL.D

ĵ0
.M.�j0///

// // Aut.†j0/.

By Corollary 2.9, the restrictions of .†j1 ; �j1/ and .†j2 ; �j2/ on �ét
1 .Uj1j2 ; x/ are iso-

morphic for all j1; j2 2 J . Hence by Theorem 2.6, the map �j0 descends to some c�j0 and
the image of c�j0 is contained in PGL.D

ĵ0
.M.�j0///. So the projective Wn.Fpf /-repre-

sentation .D ĵ0
.M.�j0//; �j0/ of �ét

1 .Uj0 ; x/ descends to projective representation

.D
ĵ0
.M.�j0//;c�j0/

of �ét
1 .XK ; x/. Up to a canonical isomorphism, this projective representation does not

depends on the choices of the covering ¹Uj ºj2J , the liftings ĵ and j0. And we denote
this projective Wn.Fpf /-representation of �ét

1 .XK ; x/ by

DP ..Vi ;ri ;Fili ; 'i /0�i<f /:

Similarly as Faltings’ functor D in [7], our construction of the DP -functor can also be
extended to the logarithmic version. More precisely, let X be a smooth and proper scheme
over W and let Xo be the complement of a simple normal crossing divisor D � X rela-
tive to W . Similarly, by replacing XK and Uj with XoK D XK and U oj , we construct the
functor

DP
W TMF rŒ0;p�2�;f .X

o
nC1=WnC1/! PRepfree

Wn.Fpf /
.�ét
1 .X

o
K//

from the category of strict pn-torsion twisted logarithmic Fontaine modules (with pole
along D �Wn � X �Wn) with endomorphism structure ofWn.Fpf /whose Hodge–Tate
weights lie in Œ0; p � 2� to the category of free Wn.Fpf /-modules with projective actions
of �ét

1 .X
o
K/.

Summarizing this section, we get the following result.
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Theorem 2.10. Let M be a twisted logarithmic Fontaine–Faltings module over X (with
pole along D) with endomorphism structure of W.Fpf /. The DP -functor associates to
M and its endomorphism structure n a projective representation

� W �ét
1 .X

o
K/! PGL.DP .M//;

where XoK is the generic fiber of Xo D X nD .

3. Twisted periodic Higgs–de Rham flows

In this section, we will recall the definition of periodic Higgs–de Rham flows and gener-
alize it to the twisted version.

3.1. Higgs–de Rham flow over Xn � XnC1

Recall [20] that a Higgs–de Rham flow over Xn � XnC1 is a sequence consisting of
infinitely many alternating terms of filtered de Rham bundles and Higgs bundles®

.V;r;Fil/.n�1/�1 ; .E; �/
.n/
0 ; .V;r;Fil/.n/0 ; .E; �/

.n/
1 ; .V;r;Fil/.n/1 ; : : :

¯
;

which are related to each other by the following diagram inductively:

.V;r;Fil/.n/0

Gr
��

.V;r;Fil/.n/1

Gr

��
.E; �/

.n/
0

C�1n

<<

��

.E; �/
.n/
1

C�1n

CC

� � � ,

.V;r;Fil/.n�1/�1

Gr
��

Gr..V;r;Fil/.n�1/�1 /
�

 
// .E; �/

.n/
0 .modpn�1/

where
� .V;r;Fil/.n�1/�1 is a filtered de Rham bundle over Xn�1 of level in Œ0; p � 2�,
� .E; �/

.n/
0 is a lifting of the graded Higgs bundle Gr..V;r;Fil/.n�1/�1 / over Xn,

.V;r/
.n/
0 WD C

�1
n

�
.E; �/

.n/
0 ; .V;r;Fil/.n�1/�1 ;  

�
and Fil.n/0 is a Hodge filtration on .V;r/.n/0 of level in Œ0; p � 2�,
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� inductively, for m � 1, .E; �/.n/m WD Gr..V;r;Fil/.n/m�1/ and

.V;r/.n/m WD C
�1
n

�
.E; �/.n/m ; .V;r;Fil/.n�1/m�1 ; id

�
;

where .V;r;Fil/.n�1/m�1 is the reduction of .V;r;Fil/.n/m�1 on Xn�1, and Fil.n/m is a
Hodge filtration on .V;r/.n/m .

Remark. In case n D 1, the data of .V ;r;Fil/.n�1/�1 is empty. The Higgs–de Rham flow
can be rewritten in the following form:®

.E; �/
.1/
0 ; .V;r;Fil/.1/0 ; .E; �/

.1/
1 ; .V;r;Fil/.1/1 ; : : :

¯
:

In this way, the diagram becomes

.V;r;Fil/.1/0

Gr
##

.V;r;Fil/.1/1

Gr
  

.E; �/
.1/
0

C�1
1

;;

.E; �/
.1/
1

C�1
1

;;

� � � .

In the rest of this section, we give the definition of twisted periodic Higgs–de Rham
flow (Section 3.2), which generalizes the periodic Higgs–de Rham flow in [20].

3.2. Twisted periodic Higgs–de Rham flow and equivalent categories

Let Ln be a line bundle over Xn. For all 1 � ` < n, denote by L` D Ln ˝OXn
OX` the

reduction of Ln on X`. In this subsection, let a � p � 2 be a positive integer. We will
give the definition of Ln-twisted Higgs–de Rham flow of level in Œ0; a�.

3.2.1. Twisted periodic Higgs–de Rham flow over X1.

Definition 3.1. Let f be a positive integer. An f -periodic L1-twisted Higgs–de Rham
flow over X1 � X2 of level in Œ0; a�, is a Higgs–de Rham flow over X1®

.E; �/
.1/
0 ; .V;r;Fil/.1/0 ; .E; �/

.1/
1 ; .V;r;Fil/.1/1 ; : : :

¯
together with isomorphisms �.1/

fCi
W .E; �/

.1/

fCi
˝ .L

pi

1 ; 0/! .E; �/
.1/
i of Higgs bundles

for all i � 0,

.V;r;Fil/.1/0

Gr
��

.V;r;Fil/.1/1

Gr

��

� � �

Gr

��

.V;r;Fil/.1/
f

Gr
��

.V;r;Fil/.1/
fC1

Gr

��

Gr

��

� � � .

.E; �/
.1/
0

C�1
1

FF

.E; �/
.1/
1

C�1
1

FF

� � �

C�1
1

FF

.E; �/
.1/

f

C�1
1

FF

�
.1/

f

ii
.E; �/

.1/

fC1

C�1
1

FF

�
.1/

fC1

ii
� � �

���

ii

C�1
1

FF
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For any i � 0 the isomorphism

C�11 .�
.1/

fCi
/ W .V;r/

.1/

fCi
˝ .L

piC1

1 ;rcan/! .V;r/
.1/
i

strictly respects filtrations Fil.1/
fCi

and Fil.1/i . Those �.1/
fCi

are relative to each other by the
formula

�
.1/

fCiC1
D Gr ı C�11 .�

.1/

fCi
/:

Denote the category of all twisted f -periodic Higgs–de Rham flow over X1 of level
in Œ0; a� by HDF a;f .X2=W2/.

3.2.2. Twisted periodic Higgs–de Rham flow over Xn � XnC1. Let n � 2 be an integer,
let f be a positive integer and letLn be a line bundle overXn. Denote byL` the reduction
of Ln modulo p`. We define the category THDF a;f .XnC1=WnC1/ of all f -periodic
twisted Higgs–de Rham flow over Xn � XnC1 of level in Œ0; a� in the following inductive
way.

Definition 3.2. An Ln-twisted f -periodic Higgs–de Rham flow over Xn � XnC1 is
a Higgs–de Rham flow®

.V;r;Fil/.n�1/n�2 ; .E; �/
.n/
n�1; .V;r;Fil/.n/n�1; .E; �/

.n/
n ; : : :

¯
=Xn�XnC1

which is a lifting of an L1-twisted f -periodic Higgs–de Rham flow®
.E; �/

.1/
0 ; .V;r;Fil/.1/0 ; .E; �/

.1/
1 ; .V;r;Fil/.1/1 ; : : : I�.1/�

¯
=X1�X2

:

It is constructed by the following diagram for 2 � ` � n, inductively

.V;r;Fil/.`/
`�1

Gr
��

��

� � �

Gr

��

��

.V;r;Fil/.`/
`Cf �2

Gr
��

��

.E; �/
.`/

`�1

C�1n

@@

mod p`�1

��

.E; �/
.`/

`

C�1n

DD

��

� � �

C�1n

AA

��

.E; �/
.`/

`Cf �1

��

�
.`/

`Cf�1

kk

.V;r;Fil/.`�1/
`�2

Gr
��

.V;r;Fil/.`�1/
`�1

Gr
��

� � �

Gr

��

.V;r;Fil/.`�1/
`Cf �2

Gr
��

.E; �/
.`�1/

`�1

C�1
`�1

@@

.E; �/
.`�1/

`

C�1
`�1

DD

� � �

C�1
`�1

AA

.E; �/
.`�1/

`Cf �1
.

�
.`�1/

`Cf�1

kk
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Here:
� .E; �/

.`/

`�1
=X` is a lifting of .E; �/.`�1/

`�1
=X`�1, which implies automatically

.V;r/
.`/

`�1
WD C�1` ..E; �/

.`/

`�1
; .V;r;Fil/.`�1/

`�2
; id/

is a lifting of .V;r/.`�1/
`�1

since C�1
`

is a lifting of C�1
`�1

.
� Fil.`/

`�1
� .V;r/

.`/

`�1
is a lifting of the Hodge filtration Fil.`�1/

`�1
� .V;r/

.`�1/

`�1
, which

implies that
.E; �/

.`/

`
D Gr..V;r;Fil/.`/

`�1
/=X`

is a lifting of .E; �/.`�1/
`

=X`�1 and

.V;r/
.`/

`
WD C�1` ..E; �/

.`/

`
; .V;r;Fil/.`�1/

`�1
; id/:

� Repeating the process above, one gets the data Fil.`/i , .E; �/.`/iC1 and .V;r/.`/iC1 for all
i � `.
� Finally, for all i � ` � 1,

�
.`/

iCf
W .E; �/

.`/

iCf
˝ .L

pi

`
; 0/! .E; �/

.`/
i

is a lifting of �.`�1/
iCf

. These morphisms are related to each other by the formula

�
.`/

iCfC1
D Gr ı C�1` .�

.`/

iCf
/:

Denote the twisted periodic Higgs–de Rham flow by®
.V;r;Fil/.n�1/n�2 ; .E; �/

.n/
n�1; .V;r;Fil/.n/n�1; .E; �/

.n/
n ; : : : I�.n/�

¯
=Xn�XnC1

:

The category of all periodic twisted Higgs–de Rham flow over Xn � XnC1 of level in
Œ0; a� is denoted by THDF a;f .XnC1=WnC1/.

Remark. For the trivial line bundle Ln, the definition above is equivalent to the original
definition of periodic Higgs–de Rham flow in [20] by using the identification

� W .E; �/0 D .E; �/f :

We can also define the logarithmic version of the twisted periodic Higgs–de Rham
flow since we already have the log version of inverse Cartier transform; X is a smooth
proper scheme over W and Xo is the complement of a simple normal crossing divisor
D �X relative toW . Similarly, one constructs the category THDF a;f .X

o
nC1=WnC1/ of

twisted f -periodic logarithmic Higgs–de Rham flows (with pole along D�Wn �X�Wn)
over X �Wn whose nilpotent exponents are � p � 2 .

3.2.3. Equivalence of categories. We will establish an equivalence of categories between
THDF a;f .XnC1=WnC1/ and TMF rŒ0;a�;f .XnC1=WnC1/.

Theorem 3.3. Let a � p � 1 be a natural number and let f be an positive integer.
Then there exists an equivalence of categories between THDF a;f .XnC1=WnC1/ and
TMF rŒ0;a�;f .XnC1=WnC1/.
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Proof. Let

E D
®
.V;r;Fil/.n�1/n�2 ; .E; �/

.n/
n�1; .V;r;Fil/.n/n�1; .E; �/

.n/
n ; : : : I�.n/�

¯
=Xn�XnC1

be an f -periodicLn-twisted Higgs–de Rham flow overXn with level in Œ0; a�. Taking out
f terms of filtered de Rham bundles

.V;r;Fil/.n/0 ; .V;r;Fil/.n/1 ; : : : ; .V;r;Fil/.n/
f �1

together with f � 1 terms of identities maps

'i W C
�1
n ı Gr..V;r;Fil/.n/i / D .V;r/

.n/
iC1; i D 0; 1; : : : ; f � 2;

and 'f �1 WD C�1n .�
.n/

f
/, one gets a tuple

IC.E / WD .V .n/i ;r
.n/
i ;Fil.n/i ; 'i /0�i<f ;

This tuple forms an Ln-twisted Fontaine–Faltings module by definition. It gives us the
functor IC from THDF a;f .XnC1=WnC1/ to TMF rŒ0;a�;f .XnC1=WnC1/.

Conversely, let .Vi ;ri ;Fili ; 'i /0�i<f be an Ln-twisted Fontaine–Faltings module.
For 0 � i � f � 2, we identify .ViC1;riC1/ with C�1n ı Gr.Vi ;ri ;Fili / via 'i . We con-
struct the corresponding flow by induction on n.

In case n D 1, we already have the following diagram:

.V;r;Fil/0

Gr
��

.V;r;Fil/1

Gr
��

� � �

Gr
��

.V;r;Fil/f �1

Gr
��

.V;r/f .

'f�1
rr

.E; �/1

C�1
1

BB

� � �

C�1
1

BB

.E; �/f �1

C�1
1

BB

.E; �/f

C�1
1

BB

Denote .E; �/0 D .E; �/f ˝ .L1; 0/. Then

C�11 .E0; �0/ ' .Vf ;rf /˝ .L
p
1 ;rcan/ ' .V0;r0/:

By this isomorphism, we identify .V0;r0/ with C�11 .E0; �0/. Under this isomorphism,
the Hodge filtration Fil0 induces a Hodge filtration Filf on .Vf ;rf /. Take Grading and
denote

.EfC1; �fC1/ WD Gr.Vf ;rf ;Filf /:

Inductively, for i > f , we denote .Vi ;ri / D C�11 .Ei ; �i /. By the isomorphism

.C�11 ı Gr/i�f .'f �1/ W .Vi ;ri /˝ .Lp
iC1�f

;rcan/! .Vi�f ;ri�f /;

the Hodge filtration Fili�f induces a Hodge filtration Fili on .Vi ;ri /. Denote

.EiC1;riC1/ WD Gr.Vi ;ri ;Fili /:

Then we extend above diagram into the following twisted periodic Higgs–de Rham flow
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over X1:

.V;r;Fil/0

Gr
��

.V;r;Fil/1

Gr
��

� � �

Gr
��

.V;r;Fil/i

Gr
��

.V;r/iC1

Gr
��

.E; �/0

C�1
1

DD

.E; �/1

C�1
1

DD

� � �

C�1
1

DD

.E; �/i

C�1
1

DD

.E; �/iC1

C�1
1

DD

� � � .

For n � 2, denote

.V �1;r�1;Fil�1/ WD .Vf �1 ˝ L
pn�1

n�1 ;rf �1 ˝rcan;Filf �1 ˝ Filtri/;

where .Vf �1;rf �1;Filf �1/ denotes the modulo pn�1 reduction of .Vf �1;rf �1;Filf �1/.
Those 'i reduce to a '-structure on .V i ;ri ;Fili /�1�i<f �1. This gives us anLn�1-twisted
Fontaine–Faltings module over Xn�1

.V i ;ri ;Fili ; 'i /�1�i<f �1:

By induction, we have a twisted periodic Higgs–de Rham flow over Xn�1

.V ;r;Fil/�1

Gr
��

.V ;r;Fil/0

Gr

��

� � �

Gr
��

.V ;r;Fil/f �1

Gr
��

� � � ,

.E; �/�1

C�1
n�1

DD

.E; �/0

C�1
n�1

DD

� � �

C�1
n�1

DD

.E; �/f �1

C�1
n�1

DD

.E; �/f ,

C�1
n�1

DD

where the first f -terms of filtered de Rham bundles over Xn�1 are those appeared in the
twisted Fontaine–Faltings module over Xn�1.

Based on this flow over Xn�1, we extend the diagram similarly as the n D 1 case,

.V;r;Fil/0

Gr
��

.V;r;Fil/1

Gr
��

� � �

Gr
��

.V;r;Fil/f �1

Gr
��

.V;r/f .

'f�1
rr

.E; �/1

C�1n

CC

� � �

C�1n

CC

.E; �/f �1

C�1n

CC

.E; �/f

C�1n

CC

Now it is a twisted periodic Higgs–de Rham flow over Xn. Denote this flow by

GR..Vi ;ri ;Fili ; 'i /0�i<f /:

It is straightforward to verify GR ı IC ' id and IC ı GR ' id.

This theorem can be straightforwardly generalized to the logarithmic case and the
proof is similar as that of Theorem 3.3.

Theorem 3.4. Let X be a smooth proper scheme over W with a simple normal crossing
divisor D � X relative to W . Then for each natural number f 2 N, there is an equiva-
lence of categories between THDF a;f .X

o
nC1=WnC1/ and TMF rŒ0;a�;f .X

o
nC1=WnC1/



Projective representations and twisted Higgs–de Rham flows 2019

3.2.4. A sufficient condition for lifting the twisted periodic Higgs–de Rham flow. We
suppose that the field k is finite in this subsection. Let X be a smooth proper variety
over W.k/ and denote Xn D X �W.k/ Wn.k/. Let D1 � X1 be a W.k/-liftable normal
crossing divisor over k. Let D � X be a lifting of D1.

Proposition 3.5. Let n be an positive integer and let LnC1 be a line bundle over XnC1.
Denote by L` the reduction of LnC1 on X`. Let®

.V;r;Fil/.n�1/n�2 ; .E; �/
.n/
n�1; .V;r;Fil/.n/n�1; .E; �/

.n/
n ; : : : I�.n/�

¯
=Xn�XnC1

be an Ln-twisted periodic Higgs–de Rham flow over Xn � XnC1. Suppose that

� lifting of the graded Higgs bundle .E; �/.n/i is unobstructed, i.e. there exist a logarith-
mic graded Higgs bundle .E; �/.nC1/i over XnC1, whose reduction on Xn is isomor-
phic to .E; �/.n/i ,

� lifting of the Hodge filtration Fil.n/i is unobstructed, i.e. for any lifting .V;r/.nC1/i

of .V;r/.n/i over XnC1, there exists a Hodge filtration Fil.nC1/i on .V;r/.nC1/i , whose
reduction on Xn is Fil.n/i .

Then every twisted periodic Higgs–de Rham flow over Xn can be lifted to a twisted
periodic Higgs–de Rham flow over XnC1.

Proof. By assumption, we choose .E 0; � 0/.nC1/n a lifting of .E 0; � 0/.n/n . Inductively, for
all i � n, we construct .V 0;r 0;Fil0/.nC1/i and .E 0; � 0/.nC1/iC1 as follows. Denote

.V 0;r 0/
.nC1/
i D C�1nC1

�
.E 0; � 0/

.nC1/
i

�
;

which is a lifting of .V;r/.n/i . Also by assumption, we can choose a lifting Fil0.nC1/i on
.V 0;r 0/.nC1/i of the Hodge filtration Fil.n/i and denote

.E 0; � 0/
.nC1/
iC1 D Gr.V 0;r 0;Fil0/.nC1/i ;

which is a lifting of .E; �/.n/iC1.
From the �-structure of the Higgs–de Rham flow, for all m � 0 there is an isomor-

phism
.E; �/.n/n ' .E; �/

.n/

nCmf
˝ Lp

n�1CpnC���CpnCmf�2

n :

Twisting .E 0; � 0/.nC1/
nCmf

with Lp
n�1CpnC���CpnCmf�2

nC1 , one gets a lifting of .E; �/.n/n .

By deformation theory, the lifting space of .E; �/.n/n is a torsor space modeled by
H 1

Hig.X1;End..E; �/.1/n //. Therefore, the torsor space of lifting .E; �/.n/n as a graded
Higgs bundle should be modeled by a subspace ofH 1

Hig. We give a description of this sub-
space as follows. For simplicity of notations, we shall replace .E; �/.1/n by .E; �/ in this
paragraph. The decomposition ofE D

L
pCqDnE

p;q induces a decomposition of End.E/
as follows:

.End.E//k;�k WD
M

pCqDn

.Ep;q/_ ˝EpCk;q�k :

Furthermore, it also induces a decomposition of the Higgs complex End.E; �/. One can
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prove that the hypercohomology of the Higgs subcomplex

H1..End.E//0;0
�End

��! .End.E//�1;1 ˝�1
�End

��! � � � / (3.1)

gives the subspace corresponding to the lifting space of graded Higgs bundles.
Thus by the finiteness of the torsor space, there are two integers m > m0 � 0, such

that
.E 0; � 0/

.nC1/
nCmf ˝ L

pn�1CpnC���CpnCmf�2

nC1

' .E 0; � 0/
.nC1/
nCm0f ˝ L

pn�1CpnC���CpnCm
0f�2

nC1 :
(3.2)

By twisting suitable power of the line bundle LnC1 we may assume m0 D 0. By
replacing the period f withmf , we may assumem D 1. For any integer i 2 Œn;nC f � 1�
we denote

.E; �; V;r;Fil/.nC1/i WD .E 0; � 0; V 0;r 0;Fil0/.nC1/i :

Then (3.2) can be rewritten as

�
.nC1/
nCf W .E; �/

.nC1/
nCf ˝ L

pn�1CpnCpnCf�2

nC1 ! .E; �/
.nC1/
n ;

where
.E; �/

.nC1/
nCf D .E

0; � 0/
.nC1/
nCf D Gr

�
.V;r;Fil/.nC1/nCf �1

�
:

Inductively, for all i � nC f , we construct .V;r;Fil/.nC1/i , .E; �/.nC1/iC1 and �nC1iC1 as
follows. Denote

.V;r/
.nC1/
i D C�1nC1

�
.E; �/

.nC1/
i

�
:

According to the isomorphism

C�1nC1.�
.nC1/
i / W .V;r/

.nC1/
i ˝ L

pi�f�1Cpi�fC���Cpi�2

nC1 ! .V;r/
.nC1/
i�f ; (3.3)

we see that the Hodge filtration Fil.nC1/i�f on .V;r/.nC1/
i�f

induces a Hodge filtration Fil.nC1/i

on .V;r/.nC1/i . Denote

.E; �/
.nC1/
iC1 D Gr

�
.V;r;Fil/.nC1/i

�
:

Taking the associated graded objects in equation (3.3), one gets a lifting of �.nC1/iC1

�
.nC1/
iC1 W .E; �/

.nC1/
iC1 ˝ L

pi�f�1Cpi�fCpi�1

nC1 ! .E; �/
.nC1/
iC1�f

and a twisted Higgs–de Rham flow over XnC1 � XnC2®
.V;r;Fil/.n/n�1; .E; �/

.nC1/
n ; .V;r;Fil/.nC1/n ; .E; �/

.nC1/
nC1 ; : : : I�

.nC1/
�

¯
=XnC1�XnC2

;

which lifts the given twisted periodic flow over Xn � XnC1.

Remark. In the proof, we see that one needs to enlarge the period for lifting the twisted
periodic Higgs–de Rham flow.
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3.3. Twisted Higgs–de Rham self-map on moduli schemes of semistable Higgs bundles
with trivial discriminants

LetX1 be a smooth properW2-liftable variety over k, with dimX1 D n. LetH be a polar-
ization of X1. Let r < p be a positive integer and .E; �/0 be a semistable graded Higgs
bundle over X1 of rank r and with the vanishing discriminant.

Theorem 3.6. There is a Higgs–de Rham flow of Higgs bundles and de Rham bundles
over X1 with initial term .E; �/0.

The construction of the Higgs–de Rham flow given by Theorem 3.6 is made by
two steps.

Step 1. There is a Simpson’s graded semistable Hodge filtration Fil ([20, Theorem A.4]
and [23, Theorem 5:12]), which is the most coarse Griffiths transverse filtration on a semi-
stable de Rham module such that the associated graded Higgs sheaf is torsion free and still
semistable. Denote

.V;r/0 WD C
�1
1 .E0; �0/

and by Fil0 the Simpson’s graded semistable Hodge filtration on .V;r/0. Denote

.V;r/1 WD C
�1
1 .E1; �1/

and by Fil1 the Simpson’s graded semistable Hodge filtration on .V;r/1. Repeating this
process, we construct a Higgs–de Rham flow of torsion free Higgs sheaves and de Rham
sheaves over X1 with initial term .E; �/

.V;r;Fil/0

Gr
  

� � �

Gr
��

.V;r;Fil/f �1

Gr
""

� � � .

.E; �/0

C�1
1

>>

.E; �/1

C�1
1

AA

� � �

C�1
1

<<

.E; �/f

C�1
1

AA (3.4)

Since the Simpson’s graded semistable Hodge filtration is unique, this flow is also
uniquely determined by .E; �/0.

Step 2. The Higgs sheaves and de Rham sheaves appearing in the Higgs–de Rham flow
are locally free. Thanks to the recent paper by A. Langer [24]. The local freeness follows
from [24, Theorem 2.1 and Corollary 2.9].

The purpose of this subsection is to find a canonical choice of the twisting line bundle
L such that this Higgs–de Rham flow is twisted preperiodic.

Firstly, we want to find a positive integer f1 and a suitable twisting line bundle L1
such that .E 0

f1
; � 0
f1
/ WD .Ef1 ; �f1/˝ .L1; 0/ satisfies the following conditions:

c1.E
0
f1
/ D c1.E0/; (3.5a)

c2.E
0
f1
/ � ŒH �n�2 D c2.E0/ � ŒH �

n�2: (3.5b)

Under these two condition, both .E; �/0 and .E; �/f1 are contained in the moduli scheme
M ss

Hig.X1=k; r; a1; a2/ constructed by Langer in [22] classifying all semistable Higgs
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bundles over X1 with some fixed topological invariants (which will be explained later).
Following [22], we introduce � 0

X1=k
.d I r; a1; a2; �max/ the family of Higgs bundles over

X1 such that .E; �/ is a member of the family, where E is of rank d ,

�max.E; �/ � �max; a0.E/ D r; a1.E/ D a1; a2.E/ � a2:

Here �max.E; �/ is the slope of the maximal destabilizing subsheaf of .E; �/, and ai .E/
are defined by

�.X1;k ; E.m// D

dX
iD0

ai .E/

 
mC d � i

d � i

!
:

By the results of Langer, the family �
0
X1=k.d I r; a1; a2; �max/ is bounded (see [22, Theo-

rem 4:4]). SoM ss
Hig.X1=k; r; a1; a2/ is the moduli scheme which corepresents this family.

Note that
ai .E/ D �.Ej

T
j�d�i Hj

/;

whereH1; : : : ;Hd 2 jO.H/j is anE-regular sequence (see [14]). Using the Hirzebruch–
Riemann–Roch theorem, one finds that a1.E/ and a2.E/ will be fixed if c1.E/ and
c2.E/ � ŒH �

n�2 are fixed.

Proposition 3.7. Assume the discriminant of E0 (with respect to the polarization H )

�.E0/ WD

�
c2.E0/ �

r � 1

2r
c1.E0/

2

�
� ŒH �n�2

equals zero. Let f1 be the minimal positive integer with r j pf1 � 1, and let

L1 D det.E0/
1�pf1

r :

Then the two conditions in (3.5) are satisfied.

Proof. Since c1.C�11 .E0; �0// D pc1.E0/ and c1.L1/ D 1�pf1

r
� c1.E0/, we have

c1.E
0
f1
/ D rc1.L1/C c1

�
.Gr ı C�11 /f1.E0; �0/

�
D

�
r �
1 � pf1

r
C pf1

�
c1.E0/:

One gets condition (3.5a). Note that the discriminant � is invariant under twisting line
bundles, and

�.C�11 .E0; �0// D p
2�.E0/;

one gets
�.E 0f1/ D �.Gr ı C�11 .E0; �0// D p

2f2�.E0/ D 0:

So we have
c2.E0/ � ŒH �

n�2
D c1.E0/

2
� ŒH �n�2

and
c2.E

0
f1
/ � ŒH �n�2 D c1.E

0
f1
/2 � ŒH �n�2:

Since c1.E 0f1/ D c1.E0/, we already get condition (3.5b).
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Corollary-Definition 3.8. There is a self-map ' on the set of k-points of the moduli
scheme M ss

Hig.X1=k; r; a1; a2/ defined by the twisted Higgs–de Rham flow, which sends
a Higgs bundle .E; �/0 to the Higgs bundle .E; �/f1 ˝ .det.E0/

1�pf1

r ; 0/. Here f1 is the
minimal positive integer with r j pf1 � 1.

Remark. In fact, one can show that the self-map is a constructible map, i.e. there is
a stratification of the moduli scheme such that there is a Simpson graded semistable
Hodge filtration attached to the universal de Rham bundle restricted to each constructible
subset. Taking the associated graded objects and twisting suitable line bundles, one gets
a morphism from each constructible subset to the moduli scheme itself. For more explicit
construction one can see the special case in subsection 4.2.

Proposition 3.9. Suppose that discriminant of E0 equals zero and there exists a positive
integer f2 with

'f2.E0; �0/ ' .E0; �0/:

Then the Higgs–de Rham flow (3.4) is det.E0/
pf �1

r -twisted f -periodic, where f D f1f2.

Proof. Inductively, one shows that

'm.E0; �0/ D .E; �/mf1 ˝ .det.E0/
1�pmf1

r ; 0/:

Since 'f2.E0; �0/ ' .E0; �0/, there is an isomorphism of Higgs bundles

�f W .Ef ; �f /˝ .det.E0/
pf �1
r ; 0/! .E0; �0/:

By the formula
�i D .Gr ı C�11 /i�f .�f / for all i � f ,

we construct the twisted �-structure. Under this �-structure the Higgs–de Rham flow is
det.E0/

pf �1

r -twisted f -periodic.

Theorem 3.10. A semistable Higgs bundle over X1 with trivial discriminant is prepe-
riodic after twisting. Conversely, a twisted preperiodic Higgs bundle is semistable with
a trivial discriminant.

Proof. For a Higgs bundle .E; �/ in M ss
Hig.X1=k; r; a1; a2/, we consider the iteration of

the self-map '. Since M ss
Hig.X1=k; r; a1; a2/ is of finite type over k and has only finitely

many k-points, there must exist a pair of integers .e; f2/ such that

'e.E; �/ Š 'eCf2.E; �/:

By Proposition 3.9, we know that .E; �/ is preperiodic after twisting.
Conversely, let .E; �/ be the initial term of a twisted f -preperiodic Higgs–de Rham

flows. We show that it is semistable. Let .F; �/ � .E; �/ be a proper subbundle. Denote
.F

.1/
i ; �

.1/
i / and .E.1/i ; �

.1/
i / are the terms appearing in the Higgs–de Rham flows. By the

preperiodicity, there exists a line bundle L and an isomorphism

� W .Ee; �e/ Š .EeCf ; �eCf /˝ .L; 0/:
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Calculating the slope on both side, one gets �.L/ D .1 � pf /�.Ee/. Iterating m times
of this isomorphism �, one gets

�m W .Ee; �e/ Š .EeCmf ; �eCmf /˝ .L
1CpfC���Cp.m�1/f ; 0/:

So .�m/�1.FeCmf ˝ L1Cp
fC���Cpm�1f / forms a subsheaf of Ee of slope

pmf �.Fe/C .1C p
f
C � � � C p.m�1/f /�.L/ D pmf

�
�.Fe/ � �.Ee/

�
C �.Ee/:

So �.Fe/ � �.Ee/ (otherwise there are subsheaves of Ee with unbounded slopes, but
this is impossible). So we have

�.F / D
1

pe
�.Fe/ �

1

pe
�.Ee/ D �.E/:

This shows that .E; �/ is semistable. The discriminant equals zero follows from the fact
that �.C�11 .E; �// D p2�.E/.

Corollary 3.11. Let .E; �/ � .F; �/ be the initial terms of a twisted periodic Higgs–
de Rham flow and a sub-twisted periodic Higgs–de Rham flow. Then

�.F / D �.E/:

3.4. Subrepresentations and sub-periodic Higgs–de Rham flows

Here we assume that Fpf is contained in k. Recall that the functor DP is contravariant
and sends quotient object to subobject, i.e. for any sub-twisted Fontaine–Faltings mod-
ule N �M with endomorphism structure, the projective representation DP .M=N/ is
a projective subrepresentation of DP .M/. Conversely, we will show that every projective
subrepresentation comes from this way. By the equivalence of the category of twisted
Fontaine–Faltings modules and the category of twisted periodic Higgs–de Rham flows,
we construct a twisted periodic sub-Higgs–de Rham flow for each projective subrepre-
sentation.

Let X be a smooth properW.k/-variety. Denote by Xn the reduction of X onWn.k/.
Let ¹Uiºi2I be a finite covering of small affine open subsets and we choose a geometric
point x in

T
i2I Ui;K .

Proposition 3.12. Let M be an object in TMF rŒa;b�;f .X2=W2/. Suppose we have a pro-
jective Fpf -subrepresentation of �ét

1 .XK/, V � DP .M/. Then there exists a subobject
N of M such that V equals DP .M=N/.

Proof. Recall that the functor DP is defined by gluing representations of

�i D �
ét
1 .Ui;K ; x/

into a projective representation of

� D �ét
1 .XK ; x/:
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Firstly, we show that the projective subrepresentation V is actually corresponding to some
local subrepresentations. Secondly, since the Fontaine–Laffaille–Faltings’ functor D is
fully faithful, there exist local Fontaine–Faltings modules corresponding to those subrep-
resentations. Thirdly, we glue those local Fontaine–Faltings modules into a global twisted
Fontaine–Faltings module.

For i 2 I , we choose a trivialization Mi DM.�i / of M on Ui , which gives a local
Fontaine–Faltings module with endomorphism structure on Ui . By the definition of DP ,
those representations DUi

.Mi / of�i are glued into the projective representation DP .M/.
So we have the following commutative diagram of �ij D �ét

1 .Ui;K \ Uj;K ; x/-sets:

DUi
.Mi /=F�pf

a1;r

��

DP .M/=F�
pf

77

''

DUj .Mj /=F
�

pf
.

Here r is the difference of the trivializations of the twisting line bundle on Ui and Uj ,
and a1;r is the elements given in Lemma 2.7.

Assume that V is a projective Fpf -subrepresentation of DP .M/ of �ét
1 .XK ; x/, i.e.

V=F�
pf

is a �ét
1 .XK/-subset of DP .M/=F�

pf
. Then Vi , the image of V under the map

DP .M/! DUi
.Mi /;

is a projective Fpf -subrepresentation of DUi
.Mi /. So we have the following commuta-

tive diagram of �ij -sets:

Vi=F�pf
// //

a1;r

��

DUi
.Mi /=F�pf

a1;r

��

V=F�
pf
// //

;;

##

DP .M/=F�
pf

77

''

Vj =F�pf
// // DUj .Mj /=F

�

pf
.

(3.6)

Notice that DUi
.Mi /=F�pf is the projectification of the Fpf -representation DUi

.Mi /

of �i . So Vi � DUi
.Mi / is actually a Fpf -subrepresentation of �i .

Since the image of the contravariant functor DUi
is closed under subobjects, there

exists Ni �Mi as a sub-Fontaine–Faltings module with endomorphism structure of Fpf
such that

Vi D DUi
.Mi=Ni /:

On the overlap Ui \Uj , those two Fontaine–Faltings module Mi andMj have the same
underlying filtered de Rham sheaf. We can twist the '-structure of Mi to get Mj by the
element r . Doing the same twisting on Ni , we get a sub-Fontaine–Faltings module N 0i
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of Mj . By the functoriality of D, one has the following commutative diagram:

D.Mi=Ni / // //

9

��

D.Mi / // //

a1;r

��

D.Ni /

a1;r

��

D.Mj =N 0i /
// // D.Mj / // // D.N 0i /.

So we have
D.Mj =N

0
i / D a1;rD.Mi=Ni / D a1;rVi :

On the other hand, one has

D.Mj =Nj / D Vj D a1;rVi

by diagram (3.6). Thus
D.Mj =N

0
i / D D.Mj =Nj /:

Since D is fully faithful and contravariant, it follows that N 0i D Nj . In particular, on the
overlap Ui \Uj the local Fontaine–Faltings modules Ni and Nj have the same under-
lying subbundle. By gluing those local subbundles together, we get a subbundle of the
underlying bundle M . The connection, filtration and the '-structure can be restricted
locally on this subbundle, so does it globally. We get the desired sub-Fontaine–Faltings
module.

Let E be a twisted f -periodic Higgs–de Rham flow. Denote by M D IC.E/ the
Fontaine module with the endomorphism structure corresponding to E . By the equiva-
lence of the category of twisted Fontaine–Faltings modules and the category of periodic
Higgs–de Rham flow, one gets the following result.

Corollary 3.13. Suppose V �DP .M/ is a nontrivial projective Fpf -subrepresentation.
Then there exists a nontrivial sub-twisted periodic Higgs–de Rham flow of E which cor-
responds to DP .M/=V .

After Corollary 3.13 we arrive at Main Theorem 0.5 stated in the introduction. How-
ever, we prove a weaker form of Theorem 0.5 below. The proof of the stronger form will
be postponed in the Section 5.

Theorem 3.14. Let k be a finite field of characteristic p. Let X be a smooth proper
scheme over W.k/ together with a smooth log structure D=W.k/. Assume that there
exists a semistable graded logarithmic Higgs bundle .E; �/=.X;D/1 with discriminant
�H .E/ D 0, rank.E/ < p and .rank.E/; degH .E// D 1. Then there exist a positive inte-
ger f and an absolutely irreducible projective Fpf -representation � of �ét

1 .X
o
K0/, where

Xo D X nD and K 0 D W.k � Fpf /Œ1=p�.

Proof. We only show the result for D D ;, as the proof of the general case is similar. By
Theorem 3.10, there is a twisted preperiodic Higgs–de Rham flow with initial term .E; �/.
Removing finitely many terms if necessary, we may assume that it is twisted f -periodic,
for some positive integer f . By using Theorem 3.3 and applying the functor DP , one gets
a PGLrank.E/.Fpf /-representation � of �ét

1 .X
o
K0/.
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Since .rank.E/; degH .E// D 1, the semistable bundle E is actually stable. Accord-
ing to Corollary 3.11, there is no nontrivial sub-twisted periodic Higgs–de Rham flow.
By Corollary 3.13, there is no nontrivial projective subrepresentation of �, so that �
is irreducible.

Remark. For simplicity, we only consider results on X1. Actually, all results in this
section can be extended to the truncated level.

4. Constructing crystalline representations of étale fundamental groups of p-adic
curves via Higgs bundles

As an application of the main theorem (Theorem 3.14), we construct irreducible PGL2
crystalline representations of �ét

1 of the projective line removingm (m� 4) marked points.
Let M be the moduli space of semistable graded Higgs bundles of rank 2 degree 1 over
P1=W.k/, with logarithmic Higgs fields which have m poles ¹x1; x2; : : : ; xmº (actually
stable, since the rank and degree are coprime to each other). The main object of this
section is to study the self-map ' (Corollary-Definition 3.8) on M . In Section 4.1, we
decompose M into connected components. In Section 4.2, we show that the self-map is
rational and dominant on the component of M with maximal dimension. In Section 4.3,
we give the explicit formula in case of m D 4.

4.1. Connected components of the moduli space M

First, let us investigate the geometry of M . For any Œ.E; �/� 2M , E Š O.d2/˚ O.d1/
with d1 C d2 D 1 (d2 < d1). The graded semistable Higgs bundle with nilpotent nonzero
Higgs field

� W O.d1/! O.d2/˝�
1
P1.m/

By the condition � ¤ 0 in HomOP1
.O.d1/;O.d2 Cm � 2//, we have d1 � d2 Cm � 2.

Combining with the assumption d1 C d2 D 1(d2 < d1), one gets m � 3 and

.d1; d2/ D .1; 0/; .2;�1/; : : : ; or .Œm�1
2
�; Œ4�m

2
�/;

where Œ � � is the greatest integer function. Therefore, M admits a decomposition

M D
a

.d2;d1/

M.d2; d1/;

where M.d2; d1/ is isomorphic to

P
�
HomOP1

�
O.d1/;O.d2/˝�

1
P1.log D/

��
' P

�
H0.P1;O.d2 � d1 Cm � 2//

�
(note that in this case two Higgs bundles are isomorphic if the Higgs fields differ by
a scalar). For m D 3; 4, the decomposition is trivial because .d2; d1/ D .0; 1/ is the only
choice. But for m � 5, there are more choices. The following table presents the informa-
tion of M.d2; d1/.
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3 4 5 6 7 8 9 � � �

.1; 0/ P0 P1 P2 P3 P4 P5 P6 � � �

.2;�1/ P0 P1 P2 P3 P4 � � �

.3;�2/ P0 P1 P2 � � �

:::
: : :

: : :

4.2. Self-maps on moduli spaces of Higgs bundles on P1 with marked points

Let p be an odd prime number. Since the rank r D 2 for any element inM , by Corollary-
Definition 3.8 we know that f1 D 1 and L1 D OP1.

1�p
2
/. In other words, the self-map is

given by
' W .E; �/ 7! .Gr ı C�11 .E; �//˝OP1.

1�p
2
/;

where the filtration on C�11 .E; �/ is the Simpson’s graded semistable Hodge filtration.
Let us denote .V;r/ D C�11 .E; �/, which is a rank 2 degree p stable de Rham bundle
over P1. Using Grothendieck’s theorem, one gets V Š O.l1/˚ O.l2/ with l1 C l2 D p
(assume l1 < l2). In this case, the Simpson’s graded semistable Hodge filtration is just the
natural filtration .O.l2/ � V /.

Since .V;r/ is stable, O.l2/ cannot be r-invariant, which means the Higgs field

Grr W O.l2/! O.l1/˝�
1
P1.m/ Š O.l1 Cm � 2/

is nontrivial. Thus, l2 � l1 Cm � 2. Combining with the fact l1 C l2 D p and `1 < `2,
one gets

.l1; l2/ D .
p�1
2
; pC1

2
/; .p�3

2
; pC3

2
/; : : : ; or .Œp�mC3

2
�; ŒpCm�2

2
�/:

For m � 5, the jumping phenomena appears, i.e. there exists Œ.E; �/� 2M.d2; d1/ such
that the type of .Gr ı C�11 .E; �//˝O.1�p

2
/ is different from .d2; d1/.

Next we shall characterize the jumping locus on M.d2; d1/. Define a Z-valued func-
tion l on M.d2; d1/: for each Œ.E; �/� 2M.d2; d1/, set l.Œ.E; �/�/ D l.Œ��/ WD l2.

Lemma 4.1. The function l on M.d2; d1/ is upper semicontinuous.

Proof. Define

Un WD ¹Œ� � 2 PH 0.O.d2 � d1 Cm � 2// W l.Œ��/ � nº:

One only needs to prove that Un is Zariski open in Pd2�d1Cm�2 for all n 2 Z. Recall the
proof of Grothendieck’s theorem, for .V� ;r/ WD C�11;2 .O.d2/˚ O.d1/; �/ one defines

m WD min¹� 2 Z W H 0.P1; V� .�// ¤ 0º

and gets the splitting

V� Š O.�m/˚ O.p Cm/ .p Cm � �m/:
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Therefore, we have l.Œ��/ D �m. Since Œ� � 2 Un, it follows that �m � n. But this means
�n � 1 < �n � m. Thus H 0.P1; V� .�n � 1// D 0.

By the semicontinuity of the rank of the direct image sheaf, we know that

H 0.P1; V� 0.�n � 1// D 0

for � 0 in a neighborhood of � . This means l.Œ� 0�/ � n in a neighborhood. Therefore, Un

is Zariski open for each n 2 Z.

Construction of the universal Simpson graded semistable Hodge filtration and the ratio-
nal self-map. Now we consider the first component of moduli scheme M.1; 0/ and the
universal Higgs bundle .Eu; �u// on P1 �UpC1

2
:

Eu D .OP1 ˚ OP1.1//˝ OP1�UpC1
2

;

�ujP1�¹xº D �x 2 HomOP1

�
O.1/;O ˝�1P1.log D/

�
for x 2 UpC1

2
. Applying the inverse Cartier functor, we get the universal de Rham bundle

.V u;ru/ on P1 �MdR.
p�1
2
; pC1

2
/. Here MdR.

p�1
2
; pC1

2
/ is the corresponded compo-

nent of the moduli space of semistable de Rham bundles with rank 2 degree p, i.e. Œ.V;r/�
with V Š O.p�1

2
/˚ O.pC1

2
/. For each s 2MdR.

p�1
2
; pC1

2
/, we know that

O.pC1
2
/ ,! Vs

gives a Hodge filtration. In order to find a Hodge filtration on .V u;ru/, we shall construct
a subsheaf F � V u such that Fs Š O.pC1

2
/. We have the following diagram:

P1 �MdR.
p�1
2
; pC1

2
/

p1

xx

p2

((

P1 MdR.
p�1
2
; pC1

2
/.

Define
L WD p2�.p1

�OP1.�
pC1
2
/˝ V u/:

For each s 2MdR.
p�1
2
; pC1

2
/,

Ls D H
0.P1;OP1.�

pC1
2
/˝ V us /:

By the definition of UpC1
2

and MdR.
p�1
2
; pC1

2
/, we know that

V us Š O.p�1
2
/˚ O.pC1

2
/:

By Grauert’s theorem (see [12, Corollary 12.9]), L is a line bundle on MdR.
p�1
2
; pC1

2
/.

Now we define
F WD p1

�O.pC1
2
/˝ p2

�L

as a line bundle on P1 �MdR.
p�1
2
; pC1

2
/. Then there is a canonical nonzero morphism
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from F to V u:

F D p1
�O.pC1

2
/˝ p2

�p2�.p1
�O.�pC1

2
/˝ V u/

¤0
��! p1

�O.pC1
2
/˝ p1

�O.�pC1
2
/˝ V u Š V u:

Thus the image Im.F ! V u/ is a line subbundle of V u on a Zariski dense open subsetW
of MdR.

p�1
2
; pC1

2
/, which gives the Hodge filtration of V u on W .

By the discussion above, U WD C.W / is a Zariski open set of M.1; 0/, where C
is the morphism induced by the Cartier functor. All Higgs bundles .E; �/ in U will
be sent back to M.1; 0/ by applying the inverse Cartier transform, taking the quotient
of FŒC�1.E;�/� Š O.pC1

2
/ and tensoring with O.1�p

2
/. This process actually gives us

a functor, which we denote as

GrpC1
2
ı C�11 . � /˝O.1�p

2
/:

We want to represent this functor as a rational self-map on the moduli scheme M.1; 0/.

Lemma 4.2. The functor GrpC1
2
ı C�11 . � /˝O.1�p

2
/ induces a rational map

' WM.1; 0/ÜM.1; 0/:

Proof. Let M.1; 0/ denote the moduli functor of semistable graded Higgs bundles of
type .1; 0/ (see Section 4.1 for details), which is represented by the schemeM.1; 0/. And
U denotes the subfunctor corresponding to U . Note that the functor

GrpC1
2
ı C�11 . � /˝O.1�p

2
/

gives a natural transform between these two moduli functors U and M.1; 0/. As M.1; 0/

is represented by M.1; 0/, one gets the following diagram:

U

�� ''

M.1; 0/ // Homk. � ;M.1; 0//.

By the universal property of the coarse moduli scheme, one gets a natural transform

Homk. � ; U /! Homk. � ;M.1; 0//:

Take Id 2 Homk.U; U /, the natural transform will give the k-morphism

U !M.1; 0/:

One can easily check that this map is induced by the self-map.

Remark. We only deal with the first strata UpC1

2
here. Actually the argument above

can be applied for each strata UkC1=Uk , for k D pC1
2
; pC3

2
; pC5

2
; : : : . The restriction of

the self-map on each strata is a rational map from UkC1=Uk to M.k � p�1
2
; pC1

2
� k/.

Therefore, the self-map is a constructible map.



Projective representations and twisted Higgs–de Rham flows 2031

Now we want to prove:

Lemma 4.3. The rational map ' is dominant.

Proof. We prove this lemma by induction on the number m of the marked points. For
m D 3, the lemma trivially holds since M is just a point. Now suppose the statement is
true for the case ofm � 1marked points. We want to prove ' is dominant for the case ofm
marked points. Set Z WD Im.'/ �M.1; 0/ and we want to prove Z DM.1; 0/. Suppose
Z is a proper subscheme of M.1; 0/ Š Pm�3. Then dimZ � m � 4. Denote M. Oxi / to
be the moduli space of semistable graded Higgs bundles of rank 2 degree 1 over P1, with
nilpotent logarithmic Higgs fields which have m � 1 poles ¹x1; : : : ; Oxi ; : : : ; xmº. Then
one can define a natural embedding M. Oxi / ,!M by forgetting one marked point xi .
Therefore, [

i

'.M. Oxi I 1; 0// � Z;

where M. Oxi I 1; 0/ is the component of M. Oxi / with maximal dimension. Then we know
that M. Oxi I 1; 0/ Š Pm�4. So dimZ D m � 4 by the assumption that ' is dominant for
the case m � 1. And Z has more than one irreducible component. But this is impossible
since Z is the Zariski closure of '.M.1; 0// Š '.Pm�3/, which is irreducible.

Now we can state and prove the main result of this section:

Theorem 4.4. The set of periodic points of ' is Zariski dense in M.1; 0/. Combin-
ing this with Proposition 3.9, one gets infinitely many irreducible crystalline projective
representations of the fundamental group.

To prove this, we need a theorem of Hrushovski:

Theorem 4.5 (Hrushovski [13], see also [5, Theorem 3.7]). Let Y be an affine variety
over Fq , and let � � .Y �Fq Y /˝Fq Fq be an irreducible subvariety over Fq . Assume
the two projections � ! Y are dominant. Then, for any closed subvariety W ¨ Y , there
exists x 2 Y.Fq/ such that .x; xq

m
/ 2 � and x … W for large enough natural numberm.

Proof of Theorem 4.4. For each Zariski open subset U �M.1; 0/, we need to find a peri-
odic point x of ' such that x 2 U. We take Y to be an affine neighborhood of M.1; 0/.
Furthermore, � is the intersection of �' ˝Fq Fq and .Y �Fq Y /˝Fq Fq , andW is defined
to be the union of .M.1; 0/ nU/ \ Y and the indeterminacy of '. By Lemma 4.3, the pro-
jections � ! Y are dominant. So we can apply Theorem 4.5 and find a point x 2 Y.Fq/
such that .x; xq

m
/ 2 � and x … W for some m. Therefore, we have x 2 U, ' is well-

defined at x and '.x/ D xq
m

(Y � Ar , so x can be written as .x1; : : : ; xr / 2 Ar .Fq/
and xq

m
WD .x

qm

1 ; : : : ; x
qm

r /). The rational map ' is well-defined at x means that ' is
also well-defined at xq

N
for any N 2 N. Then we have

'.'.x// D '.xq
m

/ D '.x/q
m

D xq
2m

Thus
'N .x/ D xq

Nm

D x

for N large enough. That means, x is a periodic point of '.
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4.3. An explicit formula of the self-map in the case of four marked points

In this subsection, we given an explicit formula of the self-map in case of m D 4 marked
point. Using Möbius transformation on P1, we may assume these 4 points are of form
¹0; 1;1; �º. By Section 4.1, the moduli space M is connected and isomorphic to P1,
where the isomorphism is given by sending .E; �/ to the zero locus .�/0 2 P1. To empha-
size the dependence of the self-map on � and p, we rewrite the self-map by '�;p . By
calculation, details are given in the appendix Section A.1, we get

'�;p.z/ D
zp

�p�1
�

�
f�.z

p/

g�.zp/

�2
;

where f�.zp/ is the determinant of matrix0BBBBBBBBB@

�p.1�zp/�.�p�zp/�2

2
�p.1�zp/�.�p�zp/�3

3
� � �

�p.1�zp/�.�p�zp/�
pC1
2

pC1
2

�p.1�zp/�.�p�zp/�3

3
�p.1�zp/�.�p�zp/�4

4
� � �

�p.1�zp/�.�p�zp/�
pC3
2

pC3
2

:::
:::

: : :
:::

�p.1�zp/�.�p�zp/�
pC1
2

pC1
2

�p.1�zp/�.�p�zp/�
pC3
2

pC3
2

� � �
�p.1�zp/�.�p�zp/�p�1

p�1

1CCCCCCCCCA
and g�.zp/ is the determinant of matrix0BBBBBBBBB@

�p.1�zp/�.�p�zp/�1

1
�p.1�zp/�.�p�zp/�2

2
� � �

�p.1�zp/�.�p�zp/�
p�1
2

p�1
2

�p.1�zp/�.�p�zp/�2

2
�p.1�zp/�.�p�zp/�3

3
� � �

�p.1�zp/�.�p�zp/�
pC1
2

pC1
2

:::
:::

: : :
:::

�p.1�zp/�.�p�zp/�
p�1
2

p�1
2

�p.1�zp/�.�p�zp/�
pC1
2

pC1
2

� � �
�p.1�zp/�.�p�zp/�p�2

p�2

1CCCCCCCCCA
:

By calculation, for p D 3 one has

'�;3.z/ D z
3

�
z3 C �.�C 1/

.�C 1/z3 C �2

�2
and '�;3.z/ D z3

2
if and only if � D �1; for p D 5, one has

'�;5.z/ D z
5

�
z10 � �.�C 1/.�2 � �C 1/z5 C �4.�2 � �C 1/

.�2 � �C 1/z10 � �2.�C 1/.�2 � �C 1/z5 C �6

�2
;

and '�;5.z/ D z5
2

if and only if � is a 6-th primitive root of unit; for p D 7 one has

'�;7.z/ Dz
7

0BB@
z21C2�.�C1/.�2C�C1/.�2C3�C1/z14

C�4.�C1/2.�2C�C1/.�2C1/z7C�9.�C1/.�2C�C1/

.�C1/.�2C�C1/z21C�2.�C1/2.�2C�C1/.�2C1/z14

C2�6.�C1/.�2C�C1/.�2C3�C1/z7C�12

1CCA
2

and '�;7.z/ D z7
2

if and only if .�C 1/.�2 C �C 1/ D 0.
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We regard '�;p as a self-map on P1, which is rational and of degree p2 ¤ 1. Thus
it has p2 C 1 fixed k-points counting with multiplicity. Suppose Conjecture 4.8 holds;
then the multiplicity of each fixed point equals 1. Let .E; �/=P1

k0
be a fixed point of '�;p

defined over some extension field k0 of k. Then in the language of Higgs–de Rham flow,
.E; �/ is the initial term of a twisted 1-periodic Higgs–de Rham flow over P1

k0
.

4.4. Lifting of twisted periodic logarithmic Higgs–de Rham flow on the projective line
with marked points and strong irreducibility

Here we just consider 1-periodic case, for the higher-periodic case the treatment is sim-
ilar. First of all, Higgs bundles considered here are given by logarithmic 1-forms on the
punctured projective line vanishing at one point. They lift unobstructed to Wn.k/. Sec-
ondly, the obstruction group of lifting Hodge filtration in this case isH 1.P1

k
;O.�1// D 0.

Hence those two conditions required in Proposition 3.5 hold true and one lifts .E; �/ to
a twist periodic Higgs bundle over P1W2 . Recall the proof of Proposition 3.5, one con-
structs a self-map on the torsor space of all liftings of .E; �/, and the fixed points of
this self-map correspond to those liftings of the twisted 1-periodic Higgs–de Rham flow.
Fix a point x0 in the torsor space; we identify the torsor space (3.1) with k. Let x be
any point in the torsor space, and denote z D x � x0 2 k. By Corollary B.7 and Propo-
sition B.5, there exists an element a 2 k such that azp D Gr ı C�1.x/ � Gr ı C�1.x0/.
Denote b D Gr ı C�1.x0/ � x0 2 k. Then the self-map on this torsor space is of form

z 7! azp C b;

where a; b 2 k.

Case 1: a D 0. Then z D b is the unique fixed point of the self-map. In other words,
there is a unique twisted periodic lifting of the given twisted 1-periodic Higgs–de Rham
flow over P1

W2.k/
.

Case 2: a ¤ 0. Let z0 2 k be a solution of z D azp C b. Then

† D ¹i � a�
1
p�1 C z0 W i 2 Fpº

is the set of all solutions. If a ¤ 0 is not a .p � 1/-st power of any element in k�, then
#.† \ k/ � 1. In other words there is at most one twisted 1-periodic lifting over P1W2.k/
of the given twisted 1-periodic Higgs–de Rham flow. If a ¤ 0 is a .p � 1/-st power of
some element in k�, then #.† \ k/ D 0 or p. In other words, if the twisted 1-periodic
Higgs–de Rham flow is liftable then there are exactly p liftings over P1W2.k/. If we con-
sider the lifting problem over an extension k0 of k, which contains †, then there are
exactly p liftings of the twisted 1-periodic Higgs–de Rham flow over P1W2.k0/. Repeat-
ing the same argument for lifting over truncated Witt ring of higher order, we lift twisted
periodic Higgs–de Rham flows over W.Fp/. We prove:

Theorem 4.6. Any periodic Higgs bundle in M.1; 0/Fq lifts to a periodic Higgs bundle
in M.1; 0/Zur

p
:
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We recall the notion of strong irreducibility of representations, which is introduced
in [18, Proposition 1.4]. Let � W �ét

1 .X
0
K/! PGLr.Zur

p / be a representation and let �
be the restriction of � to the geometric fundamental group �ét

1 .X
0

K
/: We say � is strongly

irreducible if for any surjective and generically finite logarithmic morphism

f W YK ! XK ;

the pull-back representation f �.�/ is irreducible.

Proposition 4.7. Let
� W �ét

1 ..P
1
nD/Qur

p
/! PGL2.Z

ur
p /

be a representation corresponding to a lifted twisted periodic logarithmic Higgs bundle
.E; �/ D .O.1/˚O; �/ over .P1;D/Zur

p
. Then � is strongly irreducible.

Proof. Denote Y D P1 D X. We take the double cover of P1

� W Y ! X

defined by z 7! z2, which is ramified on ¹0;1º � D . Taking the logarithmic structure
D 0 WD ��.D/ on Y, we obtain that � is a logarithmic étale morphism with respect to the
logarithmic structures D and D 0.

The logarithmic inverse Cartier transforms on both logarithmic curves are compatible
with respect to ��. We may choose compatible local Frobenius liftings on both logarith-
mic curves. Let U be a small affine open subset of X and denote V D ��1U. According
to the commutative diagram of logarithmic schemes

.V1;D
0jV1/

closed embedding
��

ˆV1 // .V ;D 0jV /

�

��

.V ;D 0jV /

9ˆV

55

ˆUı�
// .U;D jU/

and the logarithmic étaleness of � , [15, Proposition 3.12] implies that there exists
a Frobenius lifting ˆV on V fitting into the commutative diagram. Since the inverse
Cartier transforms is constructed by using the pull-back via local Frobenius liftings, the
local inverse Cartier transforms2 on both logarithmic curves are compatible with respect
to ��. After the gluing process, one gets global compatibility.

2The original inverse Cartier transform is defined by Ogus and Vologodsky [28] for characteris-
tic p. And lately, it was generalized to the truncated version by Lan, Sheng and Zuo [20] and to the
logarithmic version by Schepler [30] and Lan, Sheng, Yang and Zuo [18]. Here we need a truncated
logarithmic version. In this case, the inverse Cartier transform is defined in the same manner as
in [20] except that there are some restrictions on the choices of local liftings of the Frobenius map.
The existence of such kind liftings is given by [6, Proposition 9.7]. It is routine to give an explicit
definition. We left it to the readers.
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According to the compatibility of logarithmic inverse Cartier transforms on both log-
arithmic curves, the periodicity is preserved by the pull-back ��, i.e. if .E; �/.1/ is a log-
arithmic O.1/˝

p�1
2 -twisted periodic Higgs bundle over .X;D/1, then

��.E; �/.1/ ˝O.1/�1

is a logarithmic periodic Higgs bundle over .Y;D 0/1 and one has ��� 6D 0. Furthermore,
if .E; �/.l/ is a lifting of .E; �/.1/ to .X;D/l as a twisted periodic Higgs bundle, then

��.E; �/.l/ ˝O.1/�1

is a lifting of ��.E; �/.1/ ˝O.1/�1 to .X;D/` as a periodic Higgs bundle. In this way
we show that the projective representation ��� lifts to a GL2-crystalline representation

�0 W �ét
1 ..Y nD 0/Qur

p
/! GL2..Z

ur
p //

corresponding to the Higgs bundle

��..E; �//˝O.�1/ DW .E; �/0

over .Y;D 0/Zur
p

of the form

.O.1/˚O.�1/; ���6D0 W O.1/! O.�1/˝�1Y.log D 0//:

By the same argument used in the proof of [18, Proposition 1.4], we are going to show that
�0 is strongly irreducible. Hence � is strongly irreducible. Let f W Z! Y be a surjective
logarithmic morphism between logarithmic curves. By the example in [9, p. 861], one can
see that the generalized representation associated to .E; �/0Cp WD .E; �/

0 ˝Cp is com-
patible with �0 by tensoring with Cp . We can find a finite extension field K 0 of Qur

p with
its integral ring OK0 such that ZK has an integral model ZOK0

over OK0 and with toroidal
singularity. By the construction of the correspondence ([9, Theorem 6]), the twisted pull-
back of the graded Higgs bundle f ı.E; �/0Cp corresponds to the pull-back representation
of �0 ˝Cp to �ét

1 .Z
o
Cp
/. By the construction of the twisted pull-back, one has a short

exact sequence

0! .f �O.�1/; 0/Cp ! f ı.E; �/0Cp ! .f �O.1/; 0/Cp ! 0;

and that the Higgs field of f ı.E; �/0Cp is nonzero. Assume by contradiction f ��0 ˝Cp
is not irreducible. Then it contains a 1-dimensional Cp-subrepresentation. By [9, p. 860,
last paragraph], it follows that f ı.E; �/0Cp contains a rank-1 Higgs subbundle .N; 0/
of degN D 0: Since the Higgs field of f ı.E; �/0Cp is nonzero, .f �O.�1/; 0/Cp in the
above short exact sequence is the unique rank-1 Higgs subbundle. Hence, one obtains
a nonzero factor map

.N; 0/! .f �O.�1/; 0/Cp :

But it is impossible, since degN > degf �O.�1/: The proof is completed.

Remark. The inverse Cartier functor over truncated Witt rings was defined by Lan,
Sheng and Zuo [20].
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4.5. Examples of dynamics of Higgs–de Rham flow on P1 with four marked points

In the following, we give some examples in case k D F34 . For any � 2 k n ¹0; 1º, the
map '�;3 is a self-k-morphism on P1

k
. So it can be restricted as a self-map on the set of

all k-points
'�;3 W k [ ¹1º ! k [ ¹1º:

Since ˛ D
p
1C
p
�1 is a generator of k D F34 over F3, every elements in k can be

uniquely expressed in the form

a3˛
3
C a2˛

2
C a1˛ C a0; a3; a2; a1; a0 2 ¹0; 1; 2º: (4.1)

We use the integer 27a3 C 9a2 C 3a1 C a0 2 Œ0; 80� stand for the element in (4.1). By
identifying the set k [1 with ¹0; 1; 2; : : : ; 80;1º in this way, we get a self-map on
¹0; 1; 2; : : : ; 80;1º for all � 2 k

'�;3 W ¹0; 1; 2; : : : ; 80;1º ! ¹0; 1; 2; : : : ; 80;1º:

In the following diagrams, the arrow 
̌ ! 

 means 
 D '�;3.ˇ/. An m-length loop in
the following diagrams just stands for a twisted m-periodic Higgs–de Rham flow, which
corresponds to PGL2.F3m/-representation by Theorem 3.4 and Theorem 3.14.
� For � D 2

p
1C
p
�1, we have

21

43

54

27 6

34

61

62

15

38

47

25

35

65
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The 1-length loops

6

jj

and 65

jj

in the diagrams above correspond to projective representations of form

�ét
1

�
P1W.F

34
/Œ1=3� n

°
0; 1;1; 2

q
1C
p
�1
±�
! PGL2.F3/;

where W.F34/Œ1=3� is the unique unramified extension of Q3 of degree 4.
� For � D

p
�1, we have

47

60

31

35

57

15

The 2-length loop

31

**

15
jj

corresponds to a projective representation of form

�ét
1

�
P1W.F

34
/Œ1=3� n

®
0; 1;1;

p
�1
¯�
! PGL2.F32/:

We also have diagram

21 64

48

53

2437

78

77

which is an 8-length loop and corresponds to a projective representation of form

�ét
1

�
P1W.F

38
/Œ1=3� n

®
0; 1;1;

p
�1
¯�
! PGL2.F38/:
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� For � D 2C
p
1C
p
�1, one has

33 34

32

65 35 59 60

74 61

and the 3-length loop in this diagram corresponds to a projective representation of
form

�ét
1

�
P1W.F

312
/Œ1=3� n

°
0; 1;1; 2C

q
1C
p
�1
±�
! PGL2.F33/:

We also have

1558

3831

which is a 4-length loop and corresponds to a projective representation of form

�ét
1

�
P1W.F

34
/Œ1=3� n

°
0; 1;1; 2C

q
1C
p
�1
±�
! PGL2.F34/:

4.6. Questions on periodic Higgs bundles and torsion points on the associated elliptic
curve

For P1W.Fq/ with four marked points ¹0; 1;1; �º we denote the associated elliptic curve
as the double cover � W C� ! P1 ramified on ¹0; 1;1; �º and

Œp� W C� ! C�

to be the multiplication by p map.
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Conjecture 4.8. The following diagram commutes:

C�
Œp�
//

�

��

C�

�

��

P1
'�;p

// P1,

where '�;p is the self-map induced by the Higgs–de Rham flow.

Conjecture 4.8 has been checked to be true for all primes p � 50:

Corollary 4.9. Assuming Conjecture 4.8 holds. A Higgs bundle .E; �/ 2M.1; 0/Fq is
periodic if and only if the zero .�/0 D �.x/, where x is a torsion point in C� of order
coprime to p.

In Theorem 4.6 we have shown that any periodic Higgs bundle in M.1; 0/Fq lifts to
a periodic Higgs bundle over Zur

p . In fact, there are infinitely many liftings if ��;p 6D zp
2
:

Conjecture 4.10. A periodic Higgs bundle .E; �/ in M.1; 0/Fq lifts to a periodic Higgs
bundle .E; / inM.1; 0/W.Fq0 / if and only if .�/0 D �.x/, where x is a torsion point in C�
of order coprime to p.

4.7. Questions on `-adic representation and `-to-p companions

Kontsevich observed a relation between the set of isomorphic classes of GL2.Ql /-local
systems over P1 n ¹0; 1;1; �º over Fq and the set of rational points on C� over Fq (see
[17, Section 0.1]) via the work of Drinfeld on the Langlands program over function
field. It looks quite mysterious as the elliptic curve appears in p-adic as well in `-adic
case. There should exist a relation between periodic Higgs bundles in the p-adic world
and the Hecke-eigenforms in the `-adic world via Abe’s solution of Deligne conjecture
on `-to-p companions. To make the analogy, we first lift the PGL2-representations to
GL2-representations.

In this paragraph, we keep the notations in the proof of Proposition 4.7. Now we want
to descent the GL2-representation

�0 W �ét
1 ..Y nD 0/Qq0 /! GL2..Zq//

to a GL2-representation of �ét
1 ..X nD/Qq0 /, whose projectification is just the projective

representation �. There is a natural action of the deck transformation group

G D Gal.Y=X/

on OY D �
�OX , with OX D OG

Y
. Since 0 and 1 are fixed by G, the action of G on

OY can be extended to OY..0// and OY..1//. On the other hand, both OY..0// and
OY..1// are isomorphic to OY.1/. We could endow two actions of G on the periodic
Higgs bundle ��.E; �/˝OY.1/

�1. This is equivalent to endow a parabolic structure3 on

3Recall that to give a Higgs bundle with parabolic structure is equivalent to give a Higgs bundle
over some Galois covering with an action of the deck transformation group. In our case, we can view
��.E; �/˝OY.1/

�1 with a G-action as the Higgs bundle .E; �/ with a parabolic structure.
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the Higgs bundle .E; �/. Extend the actions to the periodic graded Higgs–de Rham flow
with initial term ��.E; �/˝OY.1/

�1. Via Faltings’ functor D, the actions of G on the
flow induce actions of G on the sections of locally constant sheaf on .Y nD 0/Qq0 . Then
those G-invariant sections forms a locally constant sheaf on .X nD/Qq0 . This gives us
a GL2..Zq//-representation of �ét

1 ..X nD/Qq0 /.
For example, if we choose the G-action on OY.1/ via the isomorphism

OY.1/ ' OY..1//:

Then one could lift the PGL2.Zq/-representation to

� W �ét
1 .X n ¹0; 1;1; �º/! GL2.Zq/

such that the local monodromy around ¹0; 1; �º are unipotent and around 1 is quasi-
unipotent with eigenvalue �1.

Let .V;r; F il�; ˆ/ be the Fontaine–Faltings module corresponding to �. Forgetting
the Hodge filtration on V , one obtains a logarithmic F -isocrystal

.V;r; ˆ/=.P1; ¹0; 1; �;1º/Qq0 ;

which should correspond to an `-adic representation

�` W �
ét
1 .P

1
Fq0
n ¹0; 1; �;1º/! GL2.Q`/

by applying Abe’s solution of Deligne’s conjecture on `-to-p companion (see [1, Theo-
rem 4.4.1] or [4, Theorem 7.4.1]). However, in order to apply Abe’s theorem one has to
check the determinant of the F -isocrystal .V;r; p̂/=.P1; ¹0; 1; �;1º/ is of finite order
(note that the category of F -isocrystal is a tensor category, and det.V;r; p̂/ is of finite
order just means that its some tensor power becomes the trivial F -isocrystal OP1 ).

Conjecture 4.11. There exist elements u 2 Z�q0 such that .detV; detr; u detˆ/ corre-
sponds to a finite character of �ét

1 .P
1
Qq0
n ¹0; 1;1; �º/:

4.8. Projective F -units crystals on smooth projective curves

Let X be a smooth proper scheme overW.k/. In [20] an equivalence between the category
of f -periodic vector bundles .E; 0/ of rank r over Xn (i.e. .E; 0/ initials an f -periodic
Higgs–de Rham flow with zero Higgs fields in all Higgs terms) and the category of
GLr .Wn.Fpf //-representations of �ét

1 .X1/ has been established. This result generalizes
Katz’s original theorem for X being an affine variety. As an application of our main
theorem, we show that:

Theorem 4.12. The DP -functor is faithful from the category of rank-r twisted f -periodic
vector bundles .E; 0/ over Xn to the category of projective Wn.Fpf /-representations of
�ét
1 .X1;k0/ of rank r , where k0 is the minimal extension of k containing Fpf .

Remark. For n D 1 the above theorem is just a projective version of Lange–Stuhler’s
theorem.
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Theorem 4.13 (Lifting twisted periodic vector bundles). Let .E; 0/=X1 be an twisted
f -periodic vector bundle. AssumeH 2.X1;End.E// D 0. Then for any n 2 N there exists
some positive integer fn with f j fn such that .E; 0/ lifts to a twisted fn-periodic vector
bundle over Xn.

Translate the above theorem in the terms of representations:

Theorem 4.14 (Lifting projective representations of �ét
1 .X1/). Let � be a projective

Fpf -representation of �ét
1 .X1/. Assume H 2.X1; End.�// D 0. Then there exist an posi-

tive integer fn divisible by f such that � lifts to a projective Wn.Fpfn /-representation of
�ét
1 .X1;k0/ for any n 2 N, where k0 is the minimal extension of k containing Fpfn .

Assume that X is a smooth proper curve over W.k/, de Jong and Osserman
(see [29, Appendix A]) have shown that the subset of periodic vector bundles over X1;k
is Zariski dense in the moduli space of semistable vector bundles over X1 (Laszlo and
Pauly have also studied some special case, see [25]). Hence by Lange–Stuhler’s theorem
(see [21]) every periodic vector bundle corresponds to a .P /GLr .Fpf /-representations of
�ét
1 .X1;k0/, where f is the period and k0 is a definition field of the periodic vector bundle

containing Fpf .

Corollary 4.15. It holds that every .P/GLr .Fpf /-representation of �ét
1 .X1;k0/ lifts to

a .P/GLr .Wn.Fpfn //-representation of �ét
1 .X1;k00/ for some positive integer fn divisible

by f , where k00 is a definition field of the periodic vector bundle containing Fpfn .

Remark. It shall be very interesting to compare this result with Deninger–Werner’s theo-
rem (see [3]). Let E be a vector bundle over X, we view it as a graded Higgs bundle with
trivial filtration and trivial Higgs field. Suppose it is preperiodic over X1. Then it has
strongly semistable reduction of degree zero. According to Deninger–Werner’s theorem,
this vector bundle induces a GLr .Cp/-representation of �ét

1 .XK/.

5. Base change of twisted Fontaine–Faltings modules and twisted Higgs–de Rham
flows over very ramified valuation rings

Let k be a finite field of characteristic p containing Fpf . Denote

K0 D W.k/Œ
1
p
�:

Let X be a smooth proper scheme over W.k/ together with a smooth log structure
D=W.k/. For any finite extension K of K0, denote

XoK D .X �W.k/ SpecK/ n .D �W.k/ SpecK/:

Recall that Theorem 3.14 guarantees the existence of nontrivial representations of étale
fundamental group in terms of the existence of semistable graded Higgs bundles. Then
the PGLr .Fpf /-crystalline representation of �ét

1 ..X
o
K0
/ corresponding to the stable Higgs

bundle should have some stronger property: its restriction to the geometric fundamental
group �ét

1 ..X nD/Qp / is absolutely irreducible.
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We outline the proof as follows. Fix a K0-point in XK0 , one can pull back the rep-
resentation � to a representation of the Galois group, whose image is finite. This finite
quotient will give us a field extension K=K0 such that the restriction of � on Gal.K0=K/
is trivial. That means

�.�ét
1 .X

o
K// D �.�

ét
1 .X

o

K0
//:

So it suffices to prove the irreducibility of � on �ét
1 .X

o
K/, which gives us the chance to

apply the method of twisted periodic Higgs–de Rham flows as before. But the field exten-
sion K=K0 is usually ramified. So we have to work out the construction in the previous
sections to the very ramified case. Note that this section is deeply inspired by Faltings’
work [8].

5.1. Notations in the case of Spec k

In this notes, k will always be a perfect field of characteristic p > 0. Let � be a root of an
Eisenstein polynomial

f .T / D T e C

e�1X
iD0

aiT
i

of degree e over the Witt ring W D W.k/. Denote

K0 D Frac.W / D W Œ 1
p
� and K D K0Œ��;

whereK0Œ�� is a totally ramified extension ofK0 of degree e. Denote byW� D W Œ�� the
ring of integers ofK, which is a complete discrete valuation ring with maximal ideal �W�
and the residue field W�=�W� D k. Denote by W ŒŒT �� the ring of formal power-series
over W . Then

W� D W ŒŒT ��=f W ŒŒT ��:

The PD-hull BW� ofW� is the PD-completion of the ring obtained by adjoining toW ŒŒT ��
the divided powers f

n

nŠ
. More precisely,

BW� D

´
1X
nD0

anT
n
2 K0ŒŒT �� W anŒn=e�Š 2 W and anŒn=e�Š! 0

µ
:

A decreasing filtration is defined on BW� by the rule that F q.BW� / is the closure of the
ideal generated by divided powers f n

nŠ
with n � q. Note that the ring BW� only depends

on the degree e while this filtration depends on W� and e. One has

BW�=Fil1BW� ' W� :

There is a unique continuous homomorphism of W -algebra BW� ! BC.W�/ which
sends T to Œ��. Here

� D .�; �
1
p ; �

1

p2 ; : : : / 2 lim
 �

R:

We denote �BW� D BW� Œ
f
p
�
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which is a subring of K0ŒŒT ��. The idea .f
p
/ induces a decreasing filtration Fil��BW� such

that �BW�=Fil1�BW� ' W� :

The Frobenius endomorphism on W can be extended to an endomorphism ' on K0ŒŒT ��,
where ' is given by '.T / D T p . Since '.f / is divisible by p, we have

'.�BW� / � BW� :

Thus one gets two restrictions

' W �BW� ! BW� and ' W BW� ! BW� :

Note that the ideal of BW� , generated by Fil1BW� and T , is stable under '. Then we
have the following commutative diagram:

BW�

'

��

// // BW�=.Fil1BW� ; T / D k

. � /p

��

BW�
// // BW�=.Fil1BW� ; T / D k.

(5.1)

5.2. Base change in the small affine case

For a smooth and small W -algebra R, which means there exists an étale map

W ŒT˙11 ; T˙12 ; : : : ; T˙1d �! R;

see [7], Lan, Sheng and Zuo constructed the categories MIC.R=pR/, AMIC.R=pR/,
MCF .R=pR/ and MF .R=pR/. A Fontaine–Faltings module over R=pR is an object
.V;r;Fil/ in MCF .R=pR/ together with an isomorphism

' WD.V;r;Fil/˝ˆ �R! .V;r/

in MIC.R=pR/, where f. � / is the Faltings’ tilde functor.
We generalize those categories over the W� -algebra R� D R˝W W� . In general,

there does not exist Frobenius lifting on the p-adic completion of �R� . We lift the absolute
Frobenius map on R�=�R� to a map ˆ W BR� ! BR�

BR�

ˆ

��

// // R�=�R� D R=pR

. � /p

��

BR�
// // R�=�R� D R=pR,

(5.2)

where BR� is the p-adic completion of BW� ˝W R. This lifting is compatible with
' W BW� ! BW� . Denote �BR� D BR� Œ

f
p
�. Then ˆ can be extended to

ˆ W �BR� ! BR�
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uniquely, which is compatible with ' W �BW� ! BW� . The filtrations on BW� and �BW�

induce filtrations on BR� and �BR� respectively, which satisfy

BR�=Fil1BR� '
�R� ' �BR�=Fil1�BR� :

Lemma 5.1. Let n < p be a natural number and let b be an element in F nBR� . Then
b
pn

is an element in F n�BR� .

Proof. Since the filtrations on BR� and �BR� are induced by those on BW� and �BW�

respectively, we have

F nBR� D

´
1X
i�n

ai
f i

i Š
W ai 2 �RŒŒT �� and ai ! 0

µ
(5.3)

and

F n�BR� D

´
1X
i�n

ai
f i

pi
W ai 2 BR� and ai D 0 for i � 0

µ

D

´
1X
i�n

ai
f i

pi
W ai 2 �RŒŒT �� and

i Š

pi
ai ! 0

µ
:

(5.4)

Assume b D
P
i�n ai

f i

iŠ
with ai 2 �RŒŒT �� and ai ! 0. Then

b

pn
D

X
i�n

piai

pni Š
�
f i

pi
;

and the lemma follows.

Recall that BR� and �BR� are �R-subalgebras of �R. 1
p
/ŒŒT ��. We denote by

�1BR�
resp. �1�BR�

the BR� -submodule (resp. �BR� -submodule) of

�1�R. 1p /ŒŒT ��=W
generated by elements db, where b 2 BR� resp. b 2 �BR� . There is a filtration on �1

BR�
resp. �1�BR� given by

F n�1BR�
D F nBR� ��

1
BR�

resp. F n�1�BR� D F n�BR� ��
1�BR� :

One gets the following result directly by Lemma 5.1.

Corollary 5.2. Let n < p be a natural number. Then 1
pn
F n�1

BR�
� F n�1�BR� .

Lemma 5.3. The graded pieces Grn �BR� and Grn BR� are free �R� -modules of rank 1
generated by f n

pn
and f n

nŠ
, respectively.
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Proof. By equation (5.3), one has

�RŒŒT �� � f nC1
nŠ
� �RŒŒT �� � f n

nŠ
\ F nC1BR�

and

Grn BR� D

�RŒŒT �� � f n
nŠ�RŒŒT �� � f n

nŠ
\ F nC1BR�

:

On the other hand,

�RŒŒT �� � f n
nŠ
\ F nC1BR� �

�RŒŒT �� � f n
nŠ
\ �RŒ 1

p
�ŒŒT �� � f nC1

�
��RŒŒT �� \ �RŒ 1

p
�ŒŒT �� � f

�
�
f n

nŠ

D �RŒŒT �� � f nC1
nŠ

:

Then the result for Grn BR� follows that �R� ' �RŒŒT ��=.f /. The proof of the result for
Grn �BR� is similar, one only need to replace nŠ by pn and to use equation (5.4).

We have the following categories:
� MIC.BR�=pBR� /: the category of free BR�=pBR� -modules with integrable con-

nections,
� AMIC.�BR�=p

�BR� /: the category of free �BR�=p
�BR� -modules with integrable nil-

potent p-connection,
� MCF Œ0;a�.BR�=pBR� /: the category of filtered free BR�=pBR� -modules equipped

with integrable connections, which satisfy the Griffiths transversality, and each of
these BR�=pBR� -modules admits a filtered basis vi of degree qi , 0 � qi � a.

A Fontaine–Faltings module over BR�=pBR� of weight a (where 0 � a � p � 2) is an
object .V;r;Fil/ in the category MCF Œ0;a�.BR�=pBR� / together with an isomorphism
in MIC.BR�=pBR� /

' WD.V;r;Fil/˝ˆ BR� ! .V;r/;

where f. � / WMCF .BR�=pBR� /!
AMIC.�BR�=p

�BR� / is an analogue of the Faltings’
tilde functor. For an object .V;r;Fil/ in MCF .BR�=pBR� / with filtered basis vi (of
degree qi , where 0 � qi � a), we define �V to be a filtered free �BR�=p

�BR� -module�V DM
i

�BR�=p
�BR� � Œvi �qi

with filtered basis Œvi �qi (of degree qi , 0 � qi � a). Informally one can view Œvi �qi as
“ vi
pqi

”. Since r satisfies the Griffiths transversality, there are

!ij 2 F
qj�1�qi�1BR�

satisfying
r.vj / D

X
i

vi ˝ !ij :
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Since qj � 1 � qi < a � p � 2, we have
!ij

pqj�1�qi
2 F qj�1�qi�1�BR� :

We define a p-connection �r on �V via�r.Œvj �qj / DX
i

Œvi �qi ˝
!ij

pqj�1�qi
:

Lemma 5.4. The �BR�=p
�BR� -module �V equipped with the p-connection �r is indepen-

dent of the choice of the filtered basis vi up to a canonical isomorphism.

Proof. We write v D .v1; v2; : : : / and ! D .!ij /i;j . Then

r.v/ D v ˝ ! and �r.Œv�/ D Œv�˝ .pQ!Q�1/;
where Q D diag.pq1 ; pq2 ; : : : / is a diagonal matrix. Assume v0i is another filtered basis
(of degree qi , where 0 � qi � a) and .�V 0;�r 0/ is the corresponding �BR�=p

�BR� -module
equipped with the p-connection. Similarly, we have

r.v0/ D v0 ˝ !0 and �r.Œv0�/ D Œv0�˝ .pQ!0Q�1/:
Assume v0j D

P
i aij vi (aij 2 F qj�qiBR� ). Then

A D .aij /i;j 2 GLrank.V /.BR� / and QAQ�1 D

�
aij

pqj�qi

�
i;j

2 GLrank.V /.�BR� /:

We construct an isomorphism from �V 0 to �V by

�.Œv0�/ D Œv� � .QAQ�1/;

where Œv� D .Œv1�q1 ; Œv2�q2 ; : : : / and Œv0� D .Œv01�q1 ; Œv
0
2�q2 ; : : : /. Now we only need to

check that � preserve the p-connections. Indeed,

� ı �r 0.Œv0�/ D Œv�˝ .QAQ�1 � pQ!0Q�1/ D Œv�˝ .pQ � A!0 �Q�1/
and �r ı �.Œv0�/ D �r.Œv�QAQ�1/

D Œv�˝ .pQ!Q�1 �QAQ�1 C p �QdAQ�1/

D Œv�˝ .pQ � .!AC dA/ �Q�1/:

Since

r.v0/ D r.vA/ D v ˝ dAC v ˝ !A D v0 ˝ .A�1dAC A�1!A/;

we have
!0 D A�1dAC A�1!A

by definition. Thus � ı �r 0 D �r ı � .
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If there are third filtered bases v00, one has the following commutative diagram under
the isomorphisms constructed:

.�V ;�r/ //

$$

.�V 0;�r 0/
��

.�V 00;�r 00/.
This can be checked easily by definition. In this sense, the isomorphism constructed is
canonical.

The functor

�˝ˆ BR� W
AMIC.�BR�=p

�BR� /!MIC.BR�=pBR� /

is induced by base change underˆ. Note that the connection on .�V ;�r/˝ˆ BR� is given
by

dC
dˆ
p
.ˆ��r/:

We denote by MF Œ0;a�.BR�=pBR� / the category of all Fontaine–Faltings module over
BR�=pBR� of weight a.

Let .M;r;Fil; ‰/ be an object defined in [8, Definition 2]. Then we can construct an
Fontaine–Faltings module over BW�=pBW� as follows. Denote
� V WDM=pM ,
� r D r .modp/,
� Fil

i
V D .FiliM C pM/=pM .

By [8, Definition 2 (i) and (ii)], one gets

.V;r;Fil/ 2MCF Œ0;a�.BW�=pBW� /:

Assume ¹miº is a filtered basis of M with filtered degree qi . Then vi D mi C pM 2 V
forms a filtered basis of V with filtered degree qi . By the definition of tilde functor we
have �V DM

i

�BW�=p
�BW� � Œvi �qi :

Now we can construct a BW� -morphism

' W �V ˝ˆ BW� ! V;

by giving

'.Œvi �qi ˝ˆ 1/ D
‰.mi /

pqi
.mod p/:

Because‰ is ar-horizontal semilinear endomorphism and ‰.mi /

pqi
forms a newRW� -basis

ofM , the morphism ' is actually an isomorphism of modules with connections. Thus we
get a Fontaine–Faltings module

.V;r;Fil; '/ 2MF Œ0;a�.BW�=pBW� /:
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Replacing every W� by R� , one gets a functor from the category of Fontaine modules
defined in [8] to the category MF Œ0;a�.BR�=pBR� /. In this sense the Fontaine–Faltings
modules we defined above is compatible with the Fontaine modules defined in [8].

Lemma 5.5. We have the following commutative diagram by extending the coefficient
ring from R to BR� (or �BR� ):

MCF .R=pR/
e. � /

//

�˝RBR�

��

AMIC.R=pR/
�˝ˆR //

�˝R
�BR�

��

MIC.R=pR/

�˝RBR�

��

MCF .BR�=pBR� /
e. � /

// AMIC.�BR�=p
�BR� /

�˝ˆBR� // MIC.BR�=pBR� /.

In particular, we get a functor from the category of Fontaine–Faltings modules overR=pR
to that over BR�=pBR�

MF Œ0;a�.R=pR/!MF Œ0;a�.BR�=pBR� /:

Those categories of Fontaine–Faltings modules are independent of the choice of the
Frobenius lifting by the Taylor formula.

Theorem 5.6. For any two choices of ˆBR�
there is an equivalence between the cor-

responding categories MF Œ0;a�.BR�=pBR� / with different ˆBR�
. These equivalences

satisfy the obvious cocycle condition. Therefore, MF Œ0;a�.BR�=pBR� / is independent of
the choice of ˆBR�

up to a canonical isomorphism.

Definition 5.7. For an object .V;r;Fil; '/ in MF Œ0;a�.BR�=pBR� /, denote

D.V;r;Fil; '/ D HomBC.R/;Fil;'.V ˝BR�
BC.R/; BC.R/=pBC.R//:

The proof of [7, Theorem 2.6] works in this context. we can define an adjoint functor E
of D as

E.L/ D lim
�!
¹V 2MF Œ0;a�.BR�=pBR� / W L! D.V /º:

The proof in [7, p. 41] still works. Thus we obtain:

Theorem 5.8. The following statements hold.

(i) The above-defined homomorphism set D.V;r;Fil; '/ is an Fp-vector space with
a linear Gal.RK=RK/-action whose rank equals the rank of V .

(ii) The functor D mapping from the category MF Œ0;a�.BR�=pBR� / to the category of
Wn.Fp/-Gal.RK=RK/-modules is fully faithful and its image on objects is closed
under subobjects and quotients.

5.3. Categories and Functors on proper smooth variety over the very ramified valuation
ring W�

Let X be a smooth properW -scheme and X� D X ˝W W� . Let X� be the formal com-
pletion of X ˝W BW� and let �X� be the formal completion of X ˝W �BW� . Then X�
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is an infinitesimal thickening of X� and the ideal defining X� in X� has a nilpotent
PD-structure which is compatible with that on F 1.BW� / and .p/

X�
//

��

**

X�

��

**eX�
//

��

X

��

SpecW� //

))

Spec BW�

**

Spec �B�
// SpecW .

Let ¹Uiºi be a covering of small affine open subsets of X. By base change, we get a cov-
ering ¹Ui D Ui �X X�ºi of X� and a covering ¹ �Ui D Ui �X

�X�ºi of eX� . For each i ,
we denote Ri DOX� .Ui �X X�/. Then BRi DOX�

.Ui / and �BRi DO �X�
. �Ui / are the

coordinate rings. Fix a Frobenius-lifting ˆi W �BRi ! BRi , one gets those categories of
Fontaine–Faltings modules

MF Œ0;a�.BRi =pBRi /:

By Theorem 5.6, these categories are glued into one category. Moreover, those underly-
ing modules are glued into a bundle over X�;1 DX� ˝Zp Fp . We denote this category
by MF Œ0;a�.X�;1/.

5.3.1. Inverse Cartier functor and a description of MF Œ0;a�.X�;1/ via inverse Cartier
functor. Let ˆ W BR�=pBR� ! BR�=pBR� be the p-th power map. Then we get the
following lemma directly.

Lemma 5.9. Let ˆ W BR� ! BR� and ‰ W BR� ! BR� be two liftings of ˆ which are
both compatible with the Frobenius map on BW� .

(i) Since '.f / is divisible by p, we extend ˆ and ‰ to maps on �BR� via

f n

p
7!

�
'.f /

pn

�n
uniquely.

(ii) The difference ˆ �‰ on �BR� is still divisible by p.

(iii) The differentials dˆ W�1�BR� !�1
BR�

and d‰ W�1�BR� !�1
BR�

are divisible by p.

From now on, we call the extension given by (i) of Lemma 5.9 the Frobenius liftings
of ˆ on �BR� .

Lemma 5.10. Let ˆ W �BR� ! BR� and ‰ W �BR� ! BR� be two Frobenius liftings
of ˆ on �BR� . Then there exists a BR�=pBR� -linear morphism

hˆ;‰ W �
1�BR� =p�BR� ˝ˆ BR�=pBR� ! BR�=pBR�

satisfying that:

(i) we have dˆ
p
�

d‰
p
D dhˆ;‰ over �1�BR� =p�BR� ˝ˆ 1,

(ii) the cocycle condition holds.
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Proof. Note that
�1�BR� =p�BR� ˝ˆ BR�=pBR�

is an BR�=pBR� -module generated by elements of the form

dg ˝ 1 .g 2 �BR�=p
�BR� /

with relations
d.g1 C g2/˝ 1 � dg1 ˝ 1 � dg2 ˝ 1;

d.g1g2/˝ 1 � dg1 ˝ˆ.g2/ � dg2 ˝ˆ.g1/:

Since ˆ �‰ is divisible by p, we can denote

hij .dg ˝ 1/ D
ˆ. Og/ �‰. Og/

p
.modp/ 2 BR�=pBR�

for any element g 2 OU1 (the definition does not depend on the choice of the lifting Og
of g in OU). By direct calculation, we have

hij .d.g1 C g2/˝ 1/ D hij .dg1 ˝ 1/C hij .dg2 ˝ 1/

and
hij .d.g1g2/˝ 1/ D ˆ.g2/ � hij .dg1 ˝ 1/Cˆ.g1/ � hij .dg2 ˝ 1/:

Thus hij can be BR�=pBR� -linearly extended. One checks (i) and (ii) directly by defi-
nition.

Let .�V ;�r/ be a locally filtered free sheaf over �X�;1 D
�X� ˝Zp Fp with an inte-

grable p-connection. Here a “filtered free” module over a filtered ring R is a direct
sum of copies of R with the filtration shifted by a constant amount. The associated
graded then has a basis over GrF .R/ consisting of homogeneous elements(see [8]). Let
.�Vi ;�ri / D .�V ;�r/j �Ui;1 be its restriction on the open subset �Ui;1 D

�Ui ˝Zp Fp . By taking
functor ˆ�i , we get bundles with integrable connections over Ui;1 D Ui ˝Zp Fp�

ˆ�i
�Vi ; dC dˆi

p
.ˆ�i

�r/�:
Lemma 5.11. Let .�V ;�r/ be a locally filtered free sheaf over �X�;1 with an integrable
p-connection. Then these local bundles with connections�

ˆ�i
�Vi ; dC dˆi

p
.ˆ�i

�r/�
can be glued into a global bundle with a connection on X�;1 via transition functions

Gij D exp
�
hˆi ; ĵ .ˆ

��r/� W ˆ�i .�Vij /! ˆ�j .
�Vij /:

Denote this global bundle with connection byC�1X�;1
.�V ;�r/. Then we can construct a func-

tor
C�1X�;1

W AMIC. �X�;1/!MIC.X�;1/:
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Proof. The cocycle condition easily follows from the integrability of the Higgs field. We
show that the local connections coincide on the overlaps, that is

.Gij ˝ id/ ı
�

dC
dˆi
p
.ˆ�i

�r/� D �dC
d ĵ

p
.ˆ�j

�r/� ıGij :
It suffices to show

dˆi
p
.ˆ�i

�r/ D G�1ij ı dGij CG�1ij ı
d ĵ

p
.ˆ�j

�r/ ıGij :
Since G�1ij ı dGij D dhˆi ; ĵ .ˆ

��r/ and Gij commutes with d ĵ

p
.ˆ�j

�r/ we have

G�1ij ı dGij CG�1ij ı
d ĵ

p
.ˆ�j

�r/ ıGij D dhˆi ; ĵ .ˆ
��r/C d ĵ

p
.ˆ�j

�r/
D

dˆi
p
.ˆ�i

�r/
by the integrability of the Higgs field. Thus we glue those local bundles with connections
into a global bundle with connection via Gij .

Lemma 5.12. To give an object in the category MF .X�;1/ is equivalent to give a tuple
.V;r;Fil; �/ satisfying

(i) V is filtered locally free sheaf over X�;1 with local basis having filtration degrees
contained in Œ0; a�,

(ii) r W V ! V ˝OX�;1
�1X�;1

is an integrable connection satisfying the Griffiths trans-
versality,

(iii) the map ' W C�1X�;1

D.V;r;Fil/ ' .V;r/ is an isomorphism of sheaves with connec-
tions over X�;1.

5.3.2. The functors D and DP . For an object in MF Œ0;a�.X�;1/, we get locally constant
sheaves on UK by applying the local D-functors. These locally constant sheaves can be
expressed in terms of certain finite étale coverings. They can be glued into a finite covering
of X�;K D XK . We have the following result.

Theorem 5.13. Suppose that X is a proper smooth and geometrically connected scheme
over W . Then there exists a fully faithful contravariant functor D from MF Œ0;a�.X�;1/

to the category of Fp-representations of �ét
1 .XK/. The image of D on objects is closed

under subobjects and quotients. Locally D is given by the same as in Lemma 5.7.

Again one can define the category MF Œ0;a�.X
o
�;1/ in the logarithmic case if one

replaces all “connections” by “logarithmic connections” and “Frobenius lifting” by “log-
arithmic Frobenius lifting”. We also have the version of MF Œ0;a�;f .X

o
�;1/ with endomor-

phism structures of Fpf , which is similar as Variant 2 discussed in [20, Section 2]. And
the twisted versions TMF Œ0;a�;f .X

o
�;1/ can also be defined on X�;1 in a similar way as

before. More precisely, let L be a line bundle over X�;1. The L-twisted Fontaine–Faltings
module is defined as follows.
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Definition 5.14. An L-twisted Fontaine–Faltings module over X�;1 with endomorphism
structure is a tuple

..V;r;Fil/0; .V;r;Fil/1; : : : ; .V;r;Fil/f �1; '�/;

where .V;r;Fil/i are objects in MCF .X o
�;1/ equipped with isomorphisms in the cate-

gory MIC.X o
�;1/

'i W C
�1
X�;1

D.V;r;Fil/i ' .V;r/iC1 for i D 0; 1; : : : ; f � 2

and
'f �1 W C

�1
X�;1

D.V;r;Fil/f �1 ˝ .Lp;rcan/ ' .V;r/0:

The proof of Theorem 2.10 works in this context. Thus we obtain the following result.

Theorem 5.15. Suppose that X is a proper smooth and geometrically connected scheme
over W equipped with a smooth log structure D=W.k/. Suppose that the residue field
k contains Fpf . Then there exists an exact and fully faithful contravariant functor DP

from TMF a;f .X
o
�;1/ to the category of projective Fpf -representations of �ét

1 .X
o
K/. The

image of Dp is closed under subobjects and quotients.

Recall that ¹Uiºi is an open covering of X . A line bundle on X can be expressed by
the transition functions on Uij .

Lemma 5.16. Let L be a line bundle on X�;1 expressed by .gij /. Denote by eL the line
bundle on �X�;1 defined by the same transition functions .gij /. Then one has

C�1X�;1
.eL; 0/ D Lp:

Proof. Since gij is an element in BRij �
�BRij , by diagram (5.2), one has

ˆ.gij / � g
p
ij .mod p/:

On the other hand, since the p-connection is trivial, one has

C�1X�;1
.eL; 0/ D .ˆmodp/�.eL/:

Thus one has C�1X�;1
.eL; 0/ D .O �Ui;1 ; gpij / D Lp .

In a similar way, one can define the Higgs–de Rham flow on X�;1 as a sequence
consisting of infinitely many alternating terms of Higgs bundles over �X�;1 and filtered de
Rham bundles over X�;1

¹.E; �/0; .V;r;Fil/0; .E; �/1; .V;r;Fil/1; : : :º

with

.V;r/i D C
�1
X�;1

..E; �/i / and .E; �/iC1 D D.V;r;Fil/i for all i � 0.

The f -periodic L-twisted Higgs–de Rham flow over X�;1 of level in the interval Œ0; a�
is a Higgs–de Rham flow over X�;1

¹.E; �/0; .V;r;Fil/0; .E; �/1; .V;r;Fil/1; : : :º
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equipped with isomorphisms �fCi W .E; �/fCi ˝ .eLpi ; 0/! .E; �/i of Higgs bundles
for all i � 0

.V;r;Fil/0e. � /
��

.V;r;Fil/1e. � /
��

� � � e. � /
��

.V;r;Fil/fe. � /
��

.V;r;Fil/fC1e. � /
��

� � � .

.E; �/0

C�1X�;1

DD

.E; �/1

C�1X�;1

DD

� � �

C�1X�;1

DD

.E; �/f

C�1X�;1

DD

�f

ii
.E; �/fC1

C�1X�;1

CC

�fC1

ii
� � �

���

ii

C�1X�;1

DD

For any i � 0 the isomorphism

C�1X�;1
.�fCi / W .V;r/fCi ˝ .L

piC1 ;rcan/! .V;r/i

strictly respects filtrations FilfCi and Fili . Those �fCi are related to each other by formula

�fCiC1 D Gr ı C�1X�;1
.�fCi /:

Just taking the same construction as before, we obtain the following result.

Theorem 5.17. There exists an equivalent functor ICX�;1
from the category of twisted

periodic Higgs–de Rham flows over X�;1 to the category of twisted Fontaine–Faltings
modules over X�;1 with a commutative diagram

T HDF .X1/
ICX1 //

�˝OX1
OX�;1

��

TMF .X1/

�˝OX1
OX�;1

��

T HDF .X�;1/
ICX�;1

// TMF .X�;1/.

5.4. Degree and slope

Recall that X� is a smooth formal scheme over BW� . Then X�;1 and X1 are the mod-p
reductions of X� andX , respectively. Note thatX1 is the closed fiber of Y1 DX�˝ZpFp ,
X�;1 DX� ˝Zp Fp , X� and X� .

X1 //

��

X�;1
//

��

))

X�;1

��

))eX�1
//

��

X1

��

X1 //

��

X�

))

��

// X�

))

��

eX�
//

��

X

��

Spec k // SpecW�

--

//

))

Spec BW�

))

Spec �B�
// SpecW .
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For a line bundle V on X�;1 (resp. �X�;1), V ˝OX�;1
OX1 (resp. V ˝O �X�;1

OXk ) forms
a line bundle on the special fiber X1 of X. We denote

deg.V / WD deg.V ˝OX�;1
OX1/:

For any bundle V on X�;1 (resp. �X�;1) of rank r > 1, we denote

deg.V / WD deg

 
r̂

iD1

V

!
:

By Lemma 5.9, the mod-p reduction of the Frobenius lifting is globally well-defined.
We denote it by ˆ1 W �X�;1 !X�;1. Since �X�;1 and X�;1 have the same closed sub-
set X1, we have the following diagram:

X1
Q� //

ˆX1

��

�X�;1

ˆ1

��

X1
� // X�;1.

Here � and Q� are closed embeddings and ˆX1 is the absolute Frobenius lifting on X1. We
should remark that the diagram above is not commutative, because ˆ1 does not preserve
the defining ideal of X1.

Lemma 5.18. Let .V;r;Fil/ be an object in MCF .X�;1/ of rank 1. Then there is an
isomorphism

ˆ�X1 ı Q�
�.�V / �! �� ıˆ�1.

�V /:
Proof. Recall that ¹Uiºi is an open covering of X . We express the line bundle V by
the transition functions .gij /, where gij 2 .BRij =pBRij /

�. Since V is of rank 1, the
filtration Fil is trivial. Then, by definition, �V can also be expressed by .gij /. Since

gij 2 BRij =pBRij ;

one has
.ˆX1 jUi;1/

�
ı . Q� j �Ui;1/�.gij / D .� jUi;1/� ı .ˆ1jUi;1/�.gij /;

by diagram (5.2). This gives us the isomorphism ˆ�X1 ı Q�
�.�V / �! �� ıˆ�1.

�V /.
Lemma 5.19. Let .V;r;Fil/ be an object in MCF .X�;1/. Then we have

deg.�V / D deg.V / and deg.C�1X�;1
.�V // D p deg.�V /:

Proof. Since the tilde functor and inverse Cartier functor preserve the wedge product and
the degree of a bundle is defined to be that of its determinant, we only need to consider
the rank-1 case. Now let .V;r;Fil/ be of rank 1. The reductions of V and �V on the closed
fiber X1 are the same, by the proof of Lemma 5.18. Then we have

deg.�V / D deg.V /:
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Since the filtration is trivial, the p-connection �r is also trivial. In this case, the transition
functions Gij in Lemma 5.11 are identities. Thus

C�1X�;1
.�V / D ˆ�1.�V /:

Recall that deg.ˆ�1.�V // D deg.�� ıˆ�1.�V // and deg.�V / D deg. Q��.�V //. Lemma 5.18
implies

deg.�� ıˆ�1.�V // D deg.ˆ�X1 ı Q�
�.�V //:

Since ˆX1 is the absolute Frobenius, one has

deg.ˆ�X1 ı Q�
�.�V // D p deg. Q��.�V //:

Composing above equalities, we get deg.C�1X�;1
.�V // D p deg.�V /.

Theorem 5.20. Let E D ¹.E; �/0; .V;r;Fil/0; .E; �/1; .V;r;Fil/1; : : :º be an L-twisted
f -periodic Higgs–de Rham flow with endomorphism structure and log structure overX1.
Suppose that the degree and rank of the initial term E0 are coprime. Then the projective
representation DP ı ICX�;1

.E/ of �ét
1 .X

o
K0
/ is still irreducible after restricting to the

geometric fundamental group �ét
1 .X

o

K0
/, where K0 D W Œ 1p �.

Proof. Let
� W �ét

1 .X
o
K0
/! PGL.DP

ı ICX�;1
.E//

be the projective representation. Fix a K0-point in XK0 , which induces a section s of the
surjective map

�ét
1 .X

o
K0
/! Gal.K0=K0/:

We restrict � on Gal.K0=K0/ by this section s. Since the module DP ı ICX�;1
.E/ is

finite, the image of this restriction is finite. And there is a finite field extension K=K0
such that the restriction of � by s on Gal.K0=K/ is trivial. Thus

�.�ét
1 .X

o
K// D �.�

ét
1 .X

o

K0
//:

It is sufficient to show that the restriction of � on �ét
1 .X

o
K/ is irreducible. Suppose that the

restriction of DP ı ICX1.E/ on �ét
1 .X

o
K/ is not irreducible. Since the functors DP and

C�1X�;1
are compatible with those over X1, the projective representation

DP
ı ICX�;1

.E ˝OX1
OX�;1

/ D DP
ı ICX1.E/

is also not irreducible. Thus there exists a nontrivial quotient, which is the image of
some nontrivial sub-L D L˝OX1

OX�;1
-twisted f -periodic Higgs–de Rham flow of

E ˝OX1
OX�;1

¹.E 0; � 0/0; .V
0;r 0;Fil0/0; .E 0; � 0/1; .V 0;r 0;Fil0/1; : : :º;

under the functor DP ı ICX�;1
according to Theorem 5.15 and Theorem 5.17. Since E 00

is a subbundle of E0 ˝OX1
OX�;1

, we have 1 � rank.E 00/ < rank.E0/. By [28, Theo-
rem 4.17],

deg.EiC1/ D p deg.Ei / for i � 0

and
deg.E0/ D p deg.Ef �1/C rank.E0/ � deg.L/:



R. Sun, J. Yang, K. Zuo 2056

Thus
deg.E0/
rank.E0/

D
deg.L/
1 � pf

:

Similarly, by Lemma 5.19, one gets

deg.E 00/
rank.E 00/

D
deg.L/
1 � pf

:

Since deg.L/ D deg.L/, one has

deg.E0/ � rank.E 00/ D deg.E 00/ � rank.E0/:

Since deg.E0/ and rank.E0/ are coprime, and rank.E 00/ is divisible by rank.E0/. This
contradicts

1 � rank.E 00/ < rank.E0/:

Thus the projective representation DP ı ICX1.E/ is irreducible.

Appendix A. Explicit formulas

In this appendix, we give an explicit formula of the self-map '�;p in Theorem A.5 and
an explicit formula of multiplication by p map in Theorem A.8. Then Conjecture 4.8 is
equivalent to

1

ap

�
det.B0/

det.BmC1/

�2
D

ap

�p�1

�
det.AmC1/

det.Ap/

�2
; (A.1)

where m D p�1
2

and matrices AmC1, Ap , B0 and BmC1 are given as follows:

Ai D

0BBBBB@
ım � � � ıi�2 ıi � � � ıp�1
ım�1 � � � ıi�3 ıi�1 � � � ıp�2
:::

: : :
:::

:::
: : :

:::

ı2 � � � ıi�m ıiC2�m � � � ımC2
ı1 � � � ıi�1�m ıiC1�m � � � ımC1

1CCCCCA ;

B0 D

0BBBBB@
ap
3m ap
3m�1 � � � ap
2mC1 ap
2m

m ap
3m � � � ap
2mC2 ap
2mC1

mC1 
m � � � ap
2mC3 ap
2mC2
:::

:::
: : :

:::
:::


2m�1 
2m�2 � � � 
m ap
3m

1CCCCCA ;

BmC1 D

0BBBBB@

m ap
3m ap
3m�1 � � � ap
2mC1

mC1 
m ap
3m � � � ap
2mC2

mC2 
mC1 
m � � � ap
2mC3
:::

:::
:::

: : :
:::


2m 
2m�1 
2m�2 � � � 
m

1CCCCCA
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and

ın D
�p.1 � ap/ � .�p � ap/�n

n
;


n D .�1/
mCn

X
iCjDn�m

0�i;j�m

 
m

i

! 
m

j

!
�m�j :

By Proposition A.9, we reduce Conjecture 4.8 to the following conjecture:

Conjecture A.1. The following equation holds:

det.Ap/ D c�m
2

.� � 1/m
2

� det.BmC1/;

where

c D .�1/m � det

0BBBB@
1
m

1
mC1

� � �
1
p�2

1
m�1

1
m

� � �
1
p�3

:::
:::

: : :
:::

1
1

1
2

� � �
1
m

1CCCCA :
By using Maple, Conjecture A.1 has been checked for odd prime p < 50. Thus Con-

jecture 4.8 holds for p < 50.

A.1. Self-map

To compute the self-map '�;p , we recall the explicit construction of the inverse Cartier
functor in curve case and give some notations used in the computation. For the general
case, see the appendix of [18].

Let k be a perfect field of characteristic p � 3. For simplicity, we may assume that k
is algebraic closed. Let W D W.k/ be the ring of Witt vectors and Wn D W=pn for all
n � 1 and let � W W ! W be the Frobenius map on W . Let X1 be a smooth algebraic
curve over k and let D be a simple normal crossing divisor. We assume that .X1;D/ is
W2.k/-liftable and fix a lifting .X2;D/ [6].

For a sufficiently small open affine subset U of X2, [6, Propositions 9.7 and 9.9]
give the existence of log Frobenius lifting over U , respecting the divisor D \ U . We
choose a covering of affine open subsets ¹Uiºi2I of X2 together with a log Frobenius lift-
ing Fi W Ui ! Ui , respecting the divisor D \ Ui for each i 2 I . Denote Ri D OX2.Ui /,
Rij D OX2.Uij / and

ˆi D F
#
i W Ri ! Ri :

For any object @ (e.g. open subsets, divisors, sheaves, etc.) over X2, we denote by @ its
reduction on X1. Denote by ˆ the p-th power map on all rings of characteristic p. Thus
ˆi D ˆ on Rij .

Since Fi is a log Frobenius lifting, it follows that dˆi is divisible by p and which
induces a map

dˆi
p
W �1X1.logD/.U i /˝ˆ Ri ! �1X1.logD/.U i /: . dˆi

p
/
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Let .E; �/ be a logarithmic Higgs bundle with nilpotent Higgs field over X1 of expo-
nent � p � 1 and rank r . Now, we give the construction of C�1X1�X2.E; �/. Locally we
set

Vi D E.U i /˝ˆ Ri ;

ri D dC
dˆi
p
.� ˝ˆ 1/ W Vi ! Vi ˝Ri �

1
X1
.logD/.U i /;

Gij D exp.hij .� ˝ˆ 1// W Vi jU ij ! Vj jU ij ;

where
hij W �

1
X1
.U ij /˝ˆ Rij ! OU ij

is the homomorphism given by the Deligne–Illusie Lemma [2]. Those local data .Vi ;ri /
can be glued into a global sheaf V with an integrable connection r via the transition
maps ¹Gij º ([19, Theorem 3]). The inverse Cartier functor on .E; �/ is defined by

C�11 .E; �/ WD .V;r/:

Let ei;� D ¹ei;1; ei;2; : : : ; ei;rº be a basis of E.U i /. Then

ˆ�ei;� WD ¹ei;1 ˝ˆ 1; ei;2 ˝ˆ 1; : : : ; ei;r ˝ˆ 1º

forms a basis of Vi . Now under those basis, there are r � r-matrices !�;i , !r;i with
coefficients in �1X1.logD/.U i /, and matrices Fij , Gij over Rij , such that

.ei;�/ D .ej;�/ � Fij ; .Fij /

�.ei;�/ D .ei;�/ � !�;i ; .!�;i /

ri .ˆ
�ei;�/ D .ˆ

�ei;�/ � !r;i ; .!r;i /

Gij .ˆ
�ei;�/ D .ˆ

�ej;�/ � Gij : .Gij /

By the definition of ri , one has

!r;i D
dˆi
p
.!�;i ˝ˆ 1/: (A.2)

Choose and fix a parameter tij on Uij for every two elements ¹i; j º in I. Then �1X1.U ij /
is a free module over Rij D OX1.U i \ Uj / of rank 1 generated by dtij , and there is
a matrix A�;ij over Rij with

!�;i D A�;ij � dtij : .A�;ij /

Explicitly, the Deligne–Illusie map hij is given by

hij .f � dtij ˝ˆ 1/ D ˆ.f / �
ˆi .tij / � ĵ .tij /

p
:

So we have
hij .� ˝ˆ 1/.ˆ

�ei;�/ D .ˆ
�ei;�/ � G

�
ij

and
Gij D ˆ.Fij / exp.G�ij /;

where

G�ij D ˆ.A�;ij /
ˆi .tij / � ĵ .tij /

p
: .G�ij /
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Computation of our example. Let � 2 W2.k/ with � 6� 0; 1 .modp/ and let

X2 D ProjW2ŒT0; T1�:

Let D be the divisor of X2 associated to the homogeneous ideal

.T0T1.T1 � T0/.T1 � �T0//:

By using t D T �10 T1 as a parameter, we can simply write D D ¹0; 1; �;1º. Denote

U1 D X2 n ¹0;1º; U2 D X2 n ¹1; �º;

D1 D ¹1; �º; D2 D ¹0;1º:

Then ¹U1; U2º forms a covering of X2,

R1 D O.U1/ D W2Œt;
1
t
�;

R2 D O.U2/ D W2Œ
t��
t�1

; t�1
t��

�;

R12 D O.U1 \ U2/ D W2Œt;
1
t
; t��
t�1

; t�1
t��

�;

�1X2.logD/.U1/ D W2Œt; 1t � � d log
�
t � �

t � 1

�
;

�1X2.logD/.U2/ D W2Œ t��t�1 ;
t�1
t��

� � d log t:

Over U12, one has

d log
�
t � �

t � 1

�
D

.� � 1/t

.t � �/.t � 1/
� d log t:

Denote

ˆ1

�
t � �

t � 1

�
D

�
t � �

t � 1

�p
and ˆ2.t/ D t

p;

which induce two Frobenius liftings on R12. One checks that ˆi can be restricted on Ri
and forms a log Frobenius lifting respecting the divisor Di . Moreover,

dˆ1
p

�
d log

t � �

t � 1
˝ˆ 1

�
D d log

t � �

t � 1

and
dˆ2
p
.d log t ˝ˆ 1/ D d log t:

Local expressions of the Higgs field and the de Rham bundle. Let .E; �/ be a logarithmic
graded semistable Higgs bundle over X1 D P1

k
with E D O ˚O.1/. Then the cokernel

of
� W O.1/! O ˝�1X1.logD/

is supported at one point a 2 P1
k
.k/, which is called the zero of the Higgs field. Con-

versely, for any given point a 2 P1
k
.k/, up to isomorphic, there is a unique graded semi-

stable logarithmic Higgs field on O ˚O.1/ such that its zero equals a. Assume a ¤1;
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we may choose and fix a basis ei;j of O.j � 1/ over Ui for 1 � i; j � 2 such that

F12 D

 
1 0

0 t
t�1

!
;

!�;1 D

 
0 t�a

��1

0 0

!
� d log

t � �

t � 1
;

By (A.2), we have

!r;1 D

 
0 . t�a

��1
/p

0 0

!
� d log

t � �

t � 1
:

We choose t12 D t as the parameter on U12. Then

A�;12 D

 
0 t�a

.t�1/.t��/

0 0

!
;

G�12 D ˆ.A�;12/ � z12;

G12 D

 
1 g

0 tp

.t�1/p

!
;

where

z12 D
ˆ1.t/ �ˆ2.t/

p
.z12/

and

g D
.t � a/p

.t � �/p.t � 1/p
� z12: .g/

Hodge filtration. Since X1 D P1
k

and .V;r/ is semistable of degree p, the bundle V is
isomorphic to O.m/˚O.mC 1/ with p D 2mC 1. So the filtration on .V;r/

0 � O.mC 1/ � V

is the graded semistable Hodge filtration on V . Choose a basis ei of O.mC 1/ on Ui such
that

e1 D

�
t

t � 1

�mC1
e2

onU12. In the following, we will write down the inclusion map � W O.mC 1/! V explic-
itly via those basis. Before this, we shall fix some notations pr, A and ˛i . The map pr is
the quotient map of k-vector spaces

pr W R12�
R12

R1 C .
t
t�1
/mC1R2

: .pr/

For all n 2 ¹1; 2; : : : ; p � 2º, we denote

ın D
�p.1 � ap/ � .�p � ap/�n

n
;
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and A D A.�; a/ the matrix of size m � .mC 1/

A D

0BBBB@
ım ımC1 � � � ıp�2 ıp�1

ım�1 ım
: : :

:::
:::

:::
: : :

: : : ımC1 ımC2
ı1 � � � ım�1 ım ımC1

1CCCCA
m�.mC1/

.A/

FormC 1 � i � p, we denote byAi the submatrix ofA by removing the .i �m/-column

Ai D

0BBBBB@
ım � � � ıi�2 ıi � � � ıp�1
ım�1 � � � ıi�3 ıi�1 � � � ıp�2
:::

: : :
:::

:::
: : :

:::

ı2 � � � ıi�m ıiC2�m � � � ımC2
ı1 � � � ıi�1�m ıiC1�m � � � ımC1

1CCCCCA (A.3)

and
˛i D .�1/

i
� detAi : (A.4)

Obviously, the vector .˛mC1; ˛mC2; : : : ; p̨/
T is a solution of AX D 0.

Lemma A.2. The following statements hold.

(i) Let f; h be two elements in R1. Then the R1-linear map from R1 � e1 to V.U 1/,
which maps e1 to e11 ˝ˆ hC e12 ˝ˆ f , can be extended to a global map of vector
bundles O.mC 1/! V if and only if

f 2

mX
iD0

k �
1

t i
and pr.fg/ D 0:

(ii) Suppose f D .1; 1
t
; : : : ; 1

tm
/X with X 2 k.mC1/�1. Then pr.fg/ D 0 if and only

if AX D 0.

(iii) The matrixA is of maximal rank and the vector .˛mC1; ˛mC2; : : : ; p̨/
T is a k-basis

of the 1-dimensional space of solutions of AX D 0.

Proof. (i) Over U12, one has

�.e2/ D .e21 ˝ˆ 1; e22 ˝ˆ 1/

 
.hC fg/ � . t�1

t
/mC1

f � . t
t�1
/m

!
:

Thus � can be extended globally if and only if

hC fg 2

�
t

t � 1

�mC1
R2 and f �

�
t

t � 1

�m
2 R2:

That is equivalent to

f 2 R1 \

�
t � 1

t

�m
R2 and fg 2 R1 C

�
t

t � 1

�mC1
R2:

The result follows from the fact that R1 \ . t�1t /
mR2 is a k-vector space with a basis

¹1; 1
t
; : : : ; 1

tm
º.
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(ii) By directly computation, one checks that

pr.fg/ D pr
�

t

tp � 1
;

t2

tp � 1
; : : : ;

tm

tp � 1

�
� A �

0BBB@
amC1
amC2
:::

ap

1CCCA :
(iii) Since

V ' O.m/˚O.mC 1/;

the k-vector space Hom.O.mC 1/; V / is 1-dimensional. By (i) and (ii), the k-vector
space of solutions of AX D 0 is of 1-dimensional.

Two notations Œ � � and ¹ � º. We have inclusion mapsRi ! R12, for i D 1; 2. Under these
inclusions, we have the following direct sum decomposition as free k-vector spaces:

R12 D R1 ˚
t

t � 1
R2:

We denote the projection map to the first summand by Œ � � and the projection map to the
second summand by ¹ � º. Denote

fo D
˛mC1t

mC1 C ˛mC2t
mC2 C � � � C p̨t

p

tp
and ho D �Œfog�:

By Lemma A.2, we have following result.

Corollary A.3. The Hodge filtration of .V;r/ on U1 is given by

0 � R1 � v12 � V.U 1/;

where v12 D e11 ˝ˆ ho C e12 ˝ˆ fo.

The Higgs field of the graded Higgs bundle. We extend v12 (defined in Corollary A.3) to
an R1-basis ¹v11; v12º of V.U 1/. Assume v11 D e11 ˝ˆ h1 C e12 ˝ˆ f1 and denote

P D

�
h1 h2
f1 f2

�
;

which is an invertible matrix over R1 with determinant d WD det.P / 2 R
�

1 . One has

.v11; v12/ D .e11 ˝ˆ 1; e12 ˝ˆ 1/

�
h1 ho
f1 fo

�
and

r.v11; v12/ D .v11; v12/ � �r;1;

where �r;1 D .P�1 � dP C P�1 � !r;1 � P / equals0@fodh1�hodf1
d log t��t�1

C f1fo.
t�a
��1

/p fodho�hodfo
d log t��t�1

C f 2o .
t�a
��1

/p

�f1dh1Ch1df1
d log t��t�1

� f 21 .
t�a
��1

/p �f1dhoCh1dfo
d log t��t�1

� f1fo.
t�a
��1

/p

1A � d log t��
t�1

d
:
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Taking the associated graded Higgs bundle, the Higgs field � 0 on

Gr.V;r;Fil/.U 1/ D V.U 1/=.R1 � v12/˚R1 � v12

is given by

� 0.e012/ D
1

d

�
fodho � hodfo

d log t��
t�1

C f 2o

�
t � a

� � 1

�p�
�

�
e011 ˝ d log

t � �

t � 1

�
over U 1, where e011 is the image of v11 in V.U 1/=.R1 � v12/ and e012 D v12 in R1v12.
Thus the zero of the graded Higgs bundle Gr.V;r;Fil/ is the root of polynomial

P� 0.t/ D
fo � dho � ho � dfo

d log t��
t�1

C f 2o �

�
t � a

� � 1

�p
:

Lemma A.4. Define p̨ and ˛mC1 as in (A.4). Then

P� 0.t/ D
˛2p

� � 1
t �

˛2mC1

� � 1
�
ap

�p�1
:

Proof. Since ho D �Œfog� D ¹fogº � fog, the polynomial P� 0.t/ is equal to

.t � �/.t � 1/

� � 1

�
fo

d¹fogº
dt

� ¹fogº
dfo
dt

�
C f 2o

��
t � a

� � 1

�p
�
.t � �/.t � 1/

� � 1
�

dg
dt

�
:

Recall that

ˆ2.t/ D t
p and ˆ1.t/ D

. t��
t�1

/p � ��

. t��
t�1

/p � 1
;

one has

dˆ2.t/ D p � tp�1dt and dˆ1.t/ D p �
.t � 1/p�1.t � �/p�1

.1 � �/p�1
dt :

Since g D .t�a/p

.t��/p.t�1/p
� z12 with z12 D

ˆ1.t/�ˆ2.t/
p

, we have�
t � a

� � 1

�p
�
.t � �/.t � 1/

� � 1
�

dg
dt
D
.t � �/.t � 1/

� � 1
�
tp�1.tp � ap/

.tp � �p/.tp � 1/

and
dg
dt
D

.t � a/p

.t � �/p.t � 1/p
�
�
.� � 1/p�1.t � 1/p�1.t � �/p�1 � tp�1

�
:

Claim. Suppose G is some power series contained in´
1X

`DmC1

a` �

�
t

t � 1

�`
C

1X
`DmC1

b` �

�
t

t � �

�`
W a`; b` 2 k

µ
and F belongs to ´

mX
iD0

ai �
1

t i
W ai 2 k

µ
:

Then .t�1/.t��/
��1

.F dG
dt �G

dF
dt / is contained in R2 and divisible by t

t�1
in R2.
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The claim follows from

.t � 1/.t � �/

� � 1

��
t � 1

t

�i d
dt

�
t

t � 1

�j
�

�
t

t � 1

�j d
dt

�
t � 1

t

�i�
D .i C j /

��
t

t � 1

�j�i
�

�

� � 1
�

�
t

t � 1

�j�1�i�
and

.t � 1/.t � �/

� � 1

��
t � �

t

�i d
dt

�
t

t � �

�j
�

�
t

t � �

�j d
dt

�
t � �

t

�i�
D .i C j /

�
�

�
t

t � �

�j�i
�

1

� � 1
�

�
t

t � �

�j�1�i�
:

By the claim, .t��/.t�1/
��1

.fo
d¹fogº

dt � ¹fogº
dfo
dt / 2

t
t�1
R2, i.e.�

.t � �/.t � 1/

� � 1

�
fo

d¹fogº
dt

� ¹fogº
dfo
dt

��
D 0:

On the other hand, P� 0.t/ 2 R1, one has

P� 0.t/ D ŒP� 0.t/�

D

�
f 2o

��
t � a

� � 1

�p
�
.t � �/.t � 1/

� � 1
�

dg
dt

��
D

�
f 2o

�
.t � �/.t � 1/

� � 1
�
tp�1.tp � ap/

.tp � �p/.tp � 1/

��
D

�
.˛mC1 C ˛mC2t C � � � C p̨t

m/2 � .t � a/p

.� � 1/.t � �/p�1.t � 1/p�1

�
:

Obviously, there are polynomials f1.t/, f1.t/ and f�.t/, which are divisible by t , such
that

.˛mC1 C ˛mC2t C � � � C p̨t
m/2 � .t � a/p

.� � 1/.t � �/p�1.t � 1/p�1
� f1.t/ � f1

�
t

t � 1

�
� f�

�
t

t � �

�
is a constant. Taking value at t D 0, this constant is just �

˛2
mC1

��1
�
ap

�p�1
. By the definition

of Œ � �, we know that

P� 0.t/ D f1.t/ �
˛2mC1

� � 1
�
ap

�p�1
:

Since
deg..˛mC1 C ˛mC2t C � � � C p̨t

m/2 � .t � a/p/

� deg..� � 1/.t � �/p�1.t � 1/p�1/ D 1;

the polynomial f1.t/ is of degree 1. Comparing the coefficients of the first terms, we get

f1.t/ D
˛2p

.� � 1/
� t:
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Theorem A.5. Let Ap and AmC1 be defined as in (A.3). Then the self-map '�;p is given
by

'�;p.a/ D
ap

�p�1
�

�
det.AmC1/

det.Ap/

�2
:

Proof. For a ¤1, this follows from Lemma A.4. For a D1, we can change the param-
eter t to compute the self-map at a.

A.2. Multiplication by p map on elliptic curve

Let k be a perfect field of characteristic p � 3. Let � 2 k with � 6� 0; 1 .modp/. The
Weierstrass function

y2 D x.x � 1/.x � �/

defines an elliptic curve C� over k. Let Q1 D .a; b/ be a k-point on C�. We denote

Qn D .an; bn/ WD Q1 CQ1 C � � � CQ1„ ƒ‚ …
n

:

Then an is a rational function of a. In this appendix, we will give an explicit formula of
this rational function for the case of n D p. Without lose of generality, we may assume
that k is algebraic closed and a ¤ 0; 1; �;1.

Since the divisor .p C 1/.1/ � p.Q1/ is of degree 1, the space of global sections of
its associated line bundle is of 1-dimension. Choosing a nontrivial global section ˛, we
have

div.˛/ D p.Q1/C .Qp/ � .p C 1/.1/

and it is also a global section of OC�..p C 1/.1//. On the other hand, the k-vector space
of the global sections of OC�..p C 1/.1// are of dimension pC 1with basis (m D p�1

2
)

1; x; x2; : : : ; xmC1; y; yx; : : : ; yxm�1:

So we can write ˛ in the form
˛ D f � yg;

where f; g 2 kŒx� with deg.f / � mC 1 and deg.g/ � m � 1. Since

div..x�a/p.x�ap// D p.Q1/Cp.�Q1/C .Qp/C .�Qp/� .2p C 2/.1/
D div.˛˛/:

Here ˛ WD f C yg.
By multiplying suitable constant to ˛, we may assume

.x � a/p.x � ap/ D ˛˛ D f
2
� x.x � 1/.x � �/g2: (A.5)

Comparing the degree on both side, one gets

deg.f / D mC 1 and deg.g/ � m � 1:

Writing f in the form

f D ˇ0 C ˇ1x C � � � C ˇmC1x
mC1;
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we denote

ˇ D

0BBB@
ˇ0
ˇ1
:::

ˇmC1

1CCCA
and consider the first terms and the constant terms on both sides of (A.5). Then one gets

ap D
1

ap

�
ˇ0

ˇmC1

�2
:

In order to get the rational function we want, we need to determine the ratio Œˇ0 W ˇmC1�.
In the following, we will define a full-rank matrix B of size .mC 1/ � .mC 2/ such that
.ˇ0; ˇ1; : : : ; ˇmC1/

T is a nonzero solution of BX D 0. Then the ratio Œˇ0 W ˇmC1� can be
described by the determinants of submatrices of B . Expand the polynomial�

x.x � 1/.x � �/
�m
D 
mx

m
C 
mx

mC1
C � � � C 
3mx

3m;

where


n D .�1/
mCn

X
iCjDn�m

0�i;j�m

 
m

i

! 
m

j

!
�m�j (A.6)

and denote

B D

0BBBBB@

m ap
3m ap
3m�1 � � � ap
2mC1 ap
2m

mC1 
m ap
3m � � � ap
2mC2 ap
2mC1

mC2 
mC1 
m � � � ap
2mC3 ap
2mC2
:::

:::
:::

: : :
:::

:::


2m 
2m�1 
2m�2 � � � 
m ap
3m

1CCCCCA : .B/

Lemma A.6. We have B � ˇ D 0.

Proof. Since a ¤ 0; 1; �;1, the function x.x � 1/.x � �/ is invertible in kŒŒx � a��.
Thus 1p

x.x�1/.x��/
is an element in kŒŒx � a��. Since�

x.x � 1/.x � �/
�p
�
�
a.a � 1/.a � �/

�p
.mod .x � a/p/;

one has p
x.x � 1/.x � �/ � ˙

.a.a � 1/.a � �//
p
2

.x.x � 1/.x � �//m
.mod .x � a/p/: (A.7)

Since .x � a/p.x � ap/ D f 2 � x.x � 1/.x � �/g2 and x � a − fg, one getsp
x.x � 1/.x � �/ � ˙

f

g
.mod .x � a/p/: (A.8)

Now comparing (A.7) and (A.8), one gets

f �
�
x.x � 1/.x � �/

�m
� ˙

�
a.a � 1/.a � �/

�p
2 � g .mod .x � a/p/: (A.9)
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Consider the map of k-vector spaces

pr0 W kŒŒx � a���
kŒŒx � a��

.x � a/p � kŒŒx � a��C
Pm�1
iD0 k � x

i
: .pr0/

From (A.9), we have
pr0
�
f � .x.x � 1/.x � �//m

�
D 0:

By direct computation, one checks that for all 0 � i � mC 1,

pr0
�
xi �

�
x.x � 1/.x � �/

�m�
D

3mX
jDm


j � pr0.xiCj /:

Since xnCp � apxn mod .x � a/p , one has pr0.xnCp/ D ap � pr0.xn/. Thus

pr0
�
xi �

�
x.x � 1/.x � �/

�m�
D

p�1X
jDmCi


j�i � pr0.xj /C
mCi�1X
jDm

ap
pCj�i � pr0.xj /:

Therefore

pr0
�
f �

�
x.x � 1/.x � �/

�m�
D pr0.xm; xmC1; : : : ; x2m/ � .B � ˇ/:

The lemma follows.

Recall that 
n is defined in (A.6), we denote B0 and BmC1 to be two submatrices of B
as follows:

B0 D

0BBBBB@
ap
3m ap
3m�1 � � � ap
2mC1 ap
2m

m ap
3m � � � ap
2mC2 ap
2mC1

mC1 
m � � � ap
2mC3 ap
2mC2
:::

:::
: : :

:::
:::


2m�1 
2m�2 � � � 
m ap
3m

1CCCCCA ;

BmC1 D

0BBBBB@

m ap
3m ap
3m�1 � � � ap
2mC1

mC1 
m ap
3m � � � ap
2mC2

mC2 
mC1 
m � � � ap
2mC3
:::

:::
:::

: : :
:::


2m 
2m�1 
2m�2 � � � 
m

1CCCCCA :

Corollary A.7. We have Œˇ0 W ˇmC1� D Œ.�1/mC1 det.B0/ W det.BmC1/�.

Now, we get the self-map on P1
k

induced by the multiplication by p map.

Theorem A.8. We have

ap D
1

ap
�

�
det.B0/

det.BmC1/

�2
:

Proposition A.9. Conjecture A.1 implies equation (A.1) and Conjecture 4.8.
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Proof. Regard all terms of AmC1, Ap , B0 and BmC1 as polynomials of a; �. One checks
directly that

ATmC1.�; a/ D �
2papAp.

1
�
; 1
a
/; BT0 .�; a/ D �

mapBmC1.
1
�
; 1
a
/:

On the other hand, by Conjecture A.1,

det.Ap. 1� ;
1
a
// D c��2m

2

.1 � �/m
2

� det.BmC1. 1� ;
1
a
//:

Thus
det.AmC1/ D c�m

2Cm.1 � �/m
2

a�p � det.B0/:

The proposition follows.

Remark. Conjecture A.1 holds for odd prime p < 50. This was checked directly by
using Maple. By Proposition A.9, our main conjecture holds for p < 50.

Appendix B. The torsor maps induced by inverse Cartier functor and grading
functor

In this section, we describe the torsor map induced by the inverse Cartier functor (Propo-
sition B.6) and the grading functor (Proposition B.5) via maps between cohomology
groups.

Some notations

Let T be a vector space and assume L is a T -torsor space. Then for a given point ` 2 L,
the torsor structure gives a bijection �` W L! T . We call �`.`0/ the difference between `0

and `, or we say that `0 differs from ` by �`.`0/. Denote c.`0; `/ WD �`.`0/.
Denote W D W.k/ and Wn D W=pnW . Let X be a proper smooth W -scheme with

normal crossing divisor D , Xn WD X �W Wn and Dn WD D ˝W Wn. Let X D
S

Ui be
a covering of small affine open subsets and let ˆi be a Frobenius lifting on Ui which
preserves the log divisor, i.e. ˆ�i .D \Ui / D p.D \Ui /. Denote Uij D Ui \Uj . For
a vector bundle L over Xn, write

L.Ui / WD L.Ui �W Wn/ and L.Uij / WD L..Ui \Uj / �W Wn/

for short.
In this section, all Higgs bundles and de Rham bundles are logarithmic with respect

to the divisor D .

B.1. Lifting space of Higgs bundles and de Rham bundles

Let .E; �/ be a Higgs bundle over Xn�1. Denote its reduction modulo p by .E; �/. Now
we want to study the space of Wn-liftings of .E; �/=Xn�1.

Lemma B.1. The space ofWn-liftings of .E; �/=Xn�1 is anH 1
Hig.X1;End.E; �//-torsor.
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Proof. Consider two Wn-lifting . LE; L�/=Xn and .bE; O�/ of .E; �/=Xn�1. We denote by
. LEi ; L�i / (resp. .bEi ; O�i /) the restriction of . LE; L�/ (resp. .bE; O�/) on Ui �W Wn. Locally we
can always find isomorphisms 
i W LEi

�
! bEi over Ui �W Wn which lifts idE i . Set

fij WD 

�1
j jUij

ı 
i jUij
� id 2 End. LE/.Uij /

and
!i WD 


�1
i ı

O�i ı 
i � L�i 2 End. LE/.Ui /˝�
1
X=W .log D/.Ui /:

Since . LE; L�/ and .bE; O�/ are both Wn-liftings of .E; �/, we have

fij � 0 .mod pn�1/ and !i � 0 .mod pn�1/:

Thus

f ij WD
fij

pn�1
.mod p/

is a well-defined element in End.E/.Uij / and

!i WD
!i

pn�1
.mod p/

is a well-defined element in End.E/.Ui /˝�
1
X=W

.log D/.Ui /. These local datum give
us a LCech representative

.f ij ; !i / 2 H
1
Hig.X1;End.E; �//

of the difference of the two liftings.
Conversely, we can construct a Higgs bundle from datum . LE; L�/ and

.f ij ; !i / 2 H
1
Hig.X1;End.E; �//:

Locally over Ui �W Wn, the new Higgs bundle is given by

. LEi ; L�i C p
n�1!i /;

and the gluing transform is

idC pn�1f ij W bEj.Ui\Uj /�WWn !
bEj.Ui\Uj /�WWn :

Since .f ij ; !i / is a 1-cocycle, the local datum are glued into a new Higgs bundle. More-
over, the following diagram commutes:

. LEi ; L�i C p
n�1!i /

idCpn�1f ij
//


i

��

. LEj ; L�j C p
n�1!j /


j

��

.bEi ; O�i / id // .bEj ; O�j /
and this new Higgs bundle is isomorphic to .bE; O�/ via local isomorphisms 
i .

Similarly, for de Rham bundle .V ;r/ over Xn�1, we denote its reduction modulo p
by .V;r/.

Lemma B.2. The space of Wn-liftings of .V ;r/ is an H 1
dR.X1;End.V;r//-torsor.
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B.2. Lifting space of graded Higgs bundles and filtered de Rham bundles with Griffiths
transversality

Let .V ;r;Fil/ be a filtered de Rham bundle over Xn�1 satisfying Griffith transversality.
Denote its modulo p reduction by .V;r;Fil/. Denote by .E; �/ the graded Higgs bun-
dle Gr.V ;r;Fil/ over Xn and denote by .E; �/ the graded Higgs bundle Gr.V;r;Fil/
over X1. Note that the filtration Fil on V induces a subcomplex of the de Rham complex
.End.V /˝��

X=W
.log D/;rEnd/

0 // FilpEnd.V / //
� _

��

Filp�1End.V /˝�1
X=W

.log D/ //
� _

��

Filp�2End.V /˝�2
X=W

.log D/ //
� _

��

� � �

0 //// End.V / rEnd
// End.V /˝�1

X=W
.log D/

rEnd
// End.V /˝�2

X=W
.log D/

rEnd
// � � � ,

where
FilpEnd.V / D

X
j�iDp

.FiliV /_ ˝ FiljV :

We denote this subcomplex by Filp.End.V /˝��
X=W

.log D/;rEnd/. When p runs all
integers, these subcomplexes give an exhaustive and decreasing filtration on

.End.V /˝��X=W .log D/;rEnd/:

Taking the associated graded object, one gets an isomorphism of Higgs complexes

Gr
�
End.V /˝��X=W .log D/;rEnd�

'
�
End.E/˝��X=W .log D/; �End�:

Denote by E
p
D Grp.V / the p-th grading piece of V . Then Higgs bundle .E; �/ is

graded with E D
L
E
p

and

� W E
p
! E

p�1
˝�1X=W .log D/:

Note that the decomposition of E induces a decomposition of its reduction E D
L
Ep

and a decomposition End.E/ D
L

End.E/p with

End.E/p WD
M
j�iDp

.Ei /_ ˝Ej :

Thus the complex

0! End.E/0 ! End.E/�1 ˝�1X=W .log D/! End.E/�2 ˝�2X=W .log D/! � � �

is a direct summand of the Higgs complex, which is just the 0-th grading piece of the
de Rham complex .End.V /˝��

X=W
.log D/;rEnd/. Taking the second hypercohomol-

ogy of this complex, one gets a direct summand of H 1
Hig.X1;End.E; �//, we denote it

by Gr0H 1
Hig.X1;End.E; �//.

Lemma B.3. The space of Wn-liftings of the graded Higgs bundle .E; �/=Xn�1 is
a Gr0H 1

Hig.X1;End.E; �//-torsor.
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Proof. The proof is the same as that of Lemma B.1, except that one may choose 
i which
preserves the grading structures on both sides. Thus

f ij 2 End.E/0.Uij / and !i 2 End.E/�1.Ui /˝�
1
X=W .log D/.Ui /:

Hence one has .f ij ; !i / 2 Gr0H 1
Hig.X1;End.E; �//.

Let . LV ; Lr; LFil/ and .bV ; Or;cFil/ be two filtered de Rham bundles satisfying Griffith
transversality over Xn, which are liftings of .V ;r;Fil/.

Lemma B.4. The difference between .bV ; Or/ and . LV ; Lr/ is contained in the hyper-cohom-
ology H1.Fil0.End.V /˝��

X=W
.log D/;rEnd//.

Proof. The proof the similar as that of Lemma B.1. Denote by . LVi ; Lri / (resp. .bV i ; Ori /)
the restriction of . LV ; Lr/ (resp. .bV ; Or/) on Ui �W Wn. Locally we can always find iso-
morphisms 
i W LVi

�
! bV i over Ui �W Wn that is strict under the Hodge filtrations on both

sides and lifts the idV i . Then

fij WD 

�1
j ı 
i jUij � Id LVij 2 Fil0End. LV /..Ui \Uj / �W Wn/:

Since the connections satisfy Griffith transversality, one has

!i WD 

�1
i ı

Ori ı 
i � Lri 2 Fil�1End. LV /.Ui �W Wn/˝�
1
X=W .log D/.Ui /:

Similarly as in the proof of Lemma B.1, these local data give us a LCech representative

.f ij ; !i / 2 H1
�
Fil0

�
End.V /˝��X=W .log D/;rEnd��

of the difference of the two liftings.

B.3. The torsor map induced by grading

In this subsection, we will describe the difference between the grading objects of two
filtered de Rham bundles satisfying Griffith transversality over Xn. The morphism of
complexes

Fil0
�
End.V /˝��X=W .log D/;rEnd�

! Gr0
�
End.V /˝��X=W .log D/;rEnd�

induces a k-linear map of the hyper-cohomology groups

H1
�
Fil0

�
End.V /˝��

X=W
.log D/;rEnd

��
l //

++

H1
�
Gr0

�
End.V /˝��

X=W
.log D/;rEnd

��

Gr0H 1
Hig.X1;End.E; �//.

(B.1)

Suppose that . LV ; Lr; LFil/ and .bV ; Or;cFil/ are two filtered de Rham bundles satisfying
Griffith transversality over Xn, which are liftings of .V ;r;Fil/.

Proposition B.5. The difference between Gr.bV ; Or;cFil/ and Gr. LV ; Lr; LFil/ is just the image
of the difference between .bV ; Or/ and . LV ; Lr/ under the morphism in (B.1).
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Proof. Choosing local isomorphisms 
i W LVi ! bV i as in the proof of Lemma B.4 and tak-
ing the associated graded object, one gets the isomorphism Gr. LVi ; LFili /! Gr.bV i ;cFili /.
Then this proposition can be checked directly.

Remark. Let L be a line bundle over X. Assume End..E; �/˝L/ is canonical iso-
morphic to End..E; �//. Let . LE; L�/ and .bE; O�/ be two liftings of .E; �/. Then the dif-
ference between . LE; L�/ and .bE; O�/ is the same as the difference between . LE; L�/˝L

and .bE; O�/˝L. Now, the proposition still holds for replacing the grading functor by the
composition functor of grading functor and twisting by a line bundle.

B.4. Torsor map induced by inverse Cartier functor

Assume .E; �/ is a graded Higgs bundle and assume it is isomorphic to Gr..V ;r;Fil/�1/
for some filtered de Rham bundle .V ;r;Fil/�1 over Xn�1 satisfying Griffith transversal-
ity. Denote

.V ;r/ D C�1n�1..E; �/; .V ;r;Fil/�1 .modpn�2//:

Let . LE; L�/ be a graded Higgs bundle which lifts .E; �/. The inverse Cartier transformC�1n
on .. LE; L�/; .V ;r;Fil/�1/ define a de Rham bundle . LV ; Lr/ over Xn which lifts .V ;r/:

. LV ; Lr/

. LE; L�/

C�1n 22

.V ;r;Fil/�1
Gr ,,

.V ;r/.

.E; �/

C�1
n�1

22

Let .bE; O�/ be another graded Higgs bundle which lifts .E; �/. Denote

.bV ; Or/ WD C�1n ..bE; O�/; .V ;r;Fil/�1/:

Assume .bE; O�/ differs from . LE; L�/ by an element .f ij ; !i / 2 H
1
Hig.X1;End.E; �//.

Let t1; t2; : : : ; td be local coordinate of the small affine open subset Ui \Uj of X.
There are two Frobenius liftings ˆi and ĵ on the overlap subset. Denote

zJ D
Y
`

z
j`
`

and z` D
ˆ�i .t`/ �ˆ

�
j .t`/

p
:

For a field � on a bundle over X1, we denote

hij .�/ D
X
`

�.@`/˝ˆ z`;

which is obviously Frobenius semilinear. Now, we want compute the difference between
.bV ; Or/ and . LV ; Lr/.

Proposition B.6. The de Rham bundle .bV ; Or/ differs from . LV ; Lr/ by the element�
ˆ�.f ij /C hij .!j /;

ˆ�

p
.!i /

�
2 H 1

dR.X1;End.V;r//:
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Proof. Recall diagram (1.1) and denote

.
eLV ;eLr/ D Tn.. LE; L�/; .V ;r;Fil/�1/

and
.
ebV ;eOr/ D Tn..bE; O�/; .V ;r;Fil/�1/:

From the definition of functor Tn, both are bundles with p-connections and both are lifting
of a bundle with p-connection over Xn�1. Their reductions modulo p are the same Higgs
bundle .E; �/. From the definition of the functor Tn, the difference between

.
ebV ;eOr/ and .

eLV ;eLr/
is also equal to .f ij ; !i / 2 H

1
Hig.X1;End.E; �//.

Now, let
Q
i W

eLV jUi
!
ebV jUi

be a local isomorphism and ˆi be the local lifting of the absolute Frobenius on Ui . The
following diagram (not commutative in general)

ˆ�i .
eLV jUij

/
Gij .

eLr/
//

ˆ�
i
. Q
i /

��

ˆ�j .
eLV jUij

/

ˆ�
j
. Q
j /

��

ˆ�i .
ebV jUij

/
Gij .

eOr/
// ˆ�j .

ebV jUij
/.

Recall that the de Rham bundle . LV ; Lr/ (resp. .bV ; Or/) is defined by gluing

¹ˆ�i .
eLV jUi

/º (resp. ¹ˆ�i .
ebV jUi

/º)

via the isomorphisms Gij .
eLr/ (resp. Gij .

eOr/). The Gij are given by the Taylor formula

Gij .
eLr/.e ˝ 1/ DX

J

eLr.@/J
J Š

.e/˝ zJ ; e 2
eLV .Ui /:

Denote

gij D Gij .
eLr/�1 ıˆ�j . Q
j /�1 ıGij .eOr/ ıˆ�i . Q
i / � id

ˆ�
i
.eLV jUi\Uj /

and
!r;i D ˆ

�
i . Q
i /

�1
ı Lri ıˆ

�
i . Q
i / �

Ori

which are trivial modulo pn�1. Denote

gij D
gij

pn�1
.mod p/ 2 End.V /.Uij /

and
!r;i D

!r;i

pn�1
2 End.V .Ui //˝�X=W .log D/.Ui /:
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Then the de Rham bundle .bV ; Or/ differs from . LV ; Lr/ by the element

.gij ; !r;i / 2 H
1
dR.X1;End.V;r//:

Now let us express gij and !r;i with f ij and !i . Since

Q
j W .
eLV jUj ; Q
�1j ı eOr ı Q
j /! .

ebV jUj ;eOr/
is an isomorphism of twisted de Rham bundle, one has the commutative diagram

ˆ�i .
eLV jUij

/
Gij . Q


�1
j
ıeOrı Q
j /
//

ˆ�
i
. Q
j /

��

ˆ�j .
eLV jUij

/

ˆ�
j
. Q
j /

��

ˆ�i .
ebV jUij

/
Gij .

eOr/
// ˆ�j .

ebV jUij
/.

Hence

gij D Gij .
eLr/�1 ıGij . Q
�1j ı eOr ı Q
j / ıˆ�i . Q
j /�1 ıˆ�i . Q
i / � id

D Gij .
eLr/�1 ıGij .eLr C pn�1!j / ıˆ�i . Q
�1j ı Q
i / � id

D

�
idC pn�1

X
`

!j .@`/˝ ĵ
z`

�
ıˆ�i .idC p

n�1f ij / � id

D pn�1
�X

`

!j .@`/˝ ĵ
z` Cˆ

�.f ij /

�
D pn�1

�
hij .!j /Cˆ

�.f ij /
�

and
gij D

X
`

!.@`/˝ˆ z` Cˆ.f ij /:

Since
Lri D

ˆ�i
p
.
eLr/ and Ori D

ˆ�i
p
.
eOr/;

it follows that

!r;i D
ˆ�i
p

�
Q
�1i ı

eOri ı Q
i � eLri�:
Thus !r;i D

!r;i
pn�1

D
ˆ�

p
.!i /.

Corollary B.7. The map from Gr0H 1
Hig.X1;End.E; �// to H 1

dR.X1;End.V;r// defined
by

.f ij ; !i / 7!

�
ˆ�.f ij /C hij .!j /;

ˆ�

p
.!i /

�
is a Frobenius semilinear map between k-vector spaces.

Proof. This follows from the fact that ˆ�, h and ˆ�

p
are all Frobenius semilinear.
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